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SUMMARY

A numerical procedure for solving the problem of
steady supersonic inviscid flow around smooth conical bodies is
presented. Results are obtained by solving the elliptic partial -
differential equations that define the conical flow between the
body and the shock. Results are given for circular cones up to
moderately high relative incidences, including some cases for
incidences beyond a critical value at Which the entlopy gin-
gularity moves from the sulface

Also presented are a few results for elliptic cones at
zero and non-zero incidence, as well as results for another
conical body whose cross section is defined by a fourth 01de1
even cosine Fourier series. '

The applicability of the method can be limited by the-
entropy singularity moving too far away from the surface, by
the flow field containing regions of locally conically supersonic
flow, or by the shock wave approaching very close to the Mach
wave.

Compai vison of results shows excellent agreement with

other theoretical methods and also with experimental results
The method is efficient in computer time,

(iif)
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Symbol . Definition

AB,CA'B,C’ Square matrices (5 X b), see equation (1)

a,b : Semi:major and semi-minor axes of an elliptic cone at unit distance from the
cone'apex '
c . Local speed of sound
Cor Critical speed of sound
D, D’ ' - Vectors, see equation (1)
: G
d - - =v —Gu — T}‘i w )
f .' r = f(z, 6) defines the equation of a shock wave
F r = z F(0) defines the equation ,6f the conical shock wave
F;,FI;FQ, .. _ Constant coefficients of the Fourier series gsed to define the shock shape
g . T =g (z,0) deﬁneé a éeneral l:)ody
G | . r = z G(8) defines the 'équation of the conical body
Gy éec0nd deriva;cive of G with respect to ¢
Go,G2,Gs Constant coefficients used to deﬁné a body shape given by a fourth order even

cosine Fourier series
;

h _ - Static enthalpy

M Local. Mach number

M, Surface Mach number

p " Pressure

‘p' Pressure non-dimensionalised with respect to p, cc,'~’.
Pys _ ' Second derivative of p with respect to ¢

Pe .' = 'Sul‘face' pressure

r : Radial distance from the 7-axis
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1.0 INTRODUCTION

The first attempts to obtain solutions for the steady inviscid supersonic flow field about
conical bodies were made by several authors in the early 1930’s. These anthors considered a circular
cone at zero incidence to the free stream. The equations defining the flow were reduced to ordinary
non-linear differential equations to be satisfied between the shock and the body, thus giving a two-
point boundary value problem. These equations were numerically integrated by Kopal in 1947
(Ref. 1) using the equations as derived by Taylor and Macoll in 1932. Later, Sims computed these
zero order solutions again and presented the results in a convenient form in Reference 2,

Usmg a small per turbation method, Stone in 1948 (Ref. 3) pr oduced a first order solution
applicable to circular cones at small incidence. Kopal made the original numerical integration of the
resulting equations, and Sims (Ref. 4) later 1epeated and extended the calculations. A second order
theory for a circular.cone was also formulated by Stone (Ref. 5), and Kopal in 1949 again provided
numerical results. These second or der tabulations of Kopal (Ref. 6) are of limited range and in-
convenient to use,

These first and second order solutions contain uncertainties, as pointed out by Ferri (Ref.
7), owing to the singularity in entropy not being included. Ferri observed that the body must be a
surface of constant entropy and that all streamlines must eventually converge at the leeward gen-
erator of the cone, thus resulting in an entropy singularity at this line. Ferri also pointed out that
there is a layer very close to the surface, the vortical layer, in which the entropy changes rapidly in
a direction normal to the swrface. ' :

Melnik, amongst ofhel‘s, studied in detail the vortical leyel'_ and the position of the entropy
singularities (Ref. 8 and 9) for a circular cone and a delta wing and was able to show that, in the
case of the circular cone, the nodal type singularity remained at the 1eewald generator until an in-

cidence was reached when the transverse pressure gradient became adverse. Beyond this incidence =

it was shown that the nodal singularity might follow the point of minimum pressure or might stay
at the leeward generator until a certain incidence was reached, at which time the singularity would
lift off the cone swrface. It is shown in this Report that the latter is the correct behaviour.

Several numerical techniques have been developed in recent years to solve the problem,
particularly for cones that are circular or elliptical in cross section. Stocker and Mauger (Ref. 10),
amongst others, solved the set of elliptic partial differential equations that apply between the shock
wave and the body, assuming a shock shape and integrating in towards a body that is defined by
the envelope of the streamlines obtained in the integration procedure. The shock shape was then
modified empirically to obtain a given body shape. Results were presented for the circular corie with
a semi-apex angle of 20° (at incidences of 5° and 10°) for a Mach number of 3.53. The results for the
5° incidence agree well with experiment, while only fair agreement was obtained at 10° incidence. In

fact, difficulties were encountered in the iteration procedure. for the 10° incidence case and it was ..

not possible to obtain a solution for an incidence of 15°. At this larger incidence, the computed body
seemed to have a ‘““bump”’ located at and near the leeward generator, which at that time was thought
to be accounted for by the singularity leaving the body. Stocker and Mauger’s method can-also, in
principle, be applied to other bodies besides circular cones, and a computation was made for an
elliptic cone at zero incidence, the results of which gave reasonable agreement with experiment.



- A different numerical method of solvmg the problem for any conical body was pr oposed by
Babenko et al. (Ref, 11). In this method the full three-dimensional flow field equatlons are considered
and, starting from an estimated shock shape with the given body set at the required incidence, the
equations are integrated step by step downstream until a condition of conicity is reached. When
this condition is reached, the full flow field solution is then available.

Reference 11 gives tabulated values of the flow field quantities for circular cones at incidence.,
Some results are given for Mach numbers of 2, 3,.4, 5, 6, and 7, cone semi-angles of from 10° to 45°
in5° steps, and for relative incidences up to 0.8. Most of the Mach number 4 and 6 results were
obtained by interpolation from the results at the other Mach numbers. These numerical lesults
show excellent agreement with experiment.

Gonidou (Ref. 12) has used the method of Babenko et al. to obtain solutions for a circular
cone at relative incidence, a/6.; up to about 1.2 where the entropy singularity has lifted from the
surface of the cone at the leeward generator. Solutions for elliptic cones. of fairly high eccentricity
(~3) were also obtained by Gonidou. Computer times and some other program details for the
Babenko method are given in his paper. About 500 downstream steps are required to reach a condi-
tion of conicity, and about 14 hour is required for a typical solution on a CDC 3600 computer f01 a
mesh gize of 10 x 16 in the radial and circumferential dnectlons 1espect1vely

Moretti (Ref. 13) has used_ a similar approach to that of Babenko et al. Again, the flow
field solution is obtained by marching step by step downstream until a conicity condition is suffi-
ciently well satisfied. The method differs from Babenko’s method in the details of numerical analysis
and in his use of a characteristics method on the shock and on the body. Moretti’s method requires
about 400 downstream steps and the computer time is typically 14 hour on an IBM 360/560 computer.
Thig time is applicable to a mesh increment that is abont twice the size of that used by Gonidou in
the time quoted above. To get a true comparison of computer times, it should be noted that a CDC
3600 computer operates at about twice the speed of an IBM 360/50 computer. :

The purpose of investigating a further numerical technique, as given in this Report, was
not only to try to find a more efficient technique than those given previously, but also to investigate
a method that, in principle, is cdpable of solving non-linear elliptic partial differential equations; in
itself a difficult problem in numerical analysis. The present method uses the condition of conicity
to reduce the problem to a set of elliptic non-linear partial differential equations in two independent
variables. A transformation of co-ordinates is used, as in the methods of Babenko and Moretti, to
fix the boundaries between which the elliptic equations are to be satisfied. This transformation also
has the effect of including the body shape in the coefficients of the partial differential equations and
in the boundary conditions, so that the same method can be used for general conical body shapes.
simply by changing a few program- statements to redefine the equation of the body. In fact, the
method is, in most cases, only limited by locally supersonic cross-flow conditions, or by the entropy
singularity moving too far away from the surface, or by the shock apploachmg very close to the
Mach wave,

At the present time the method has been used successfully for circular cones and for bodies
that can be obtained by successive perturbations of a circular cone and that do not have curvatures
that are too large. The examples given lhere are for circular cones at incidence, elliptic cones, and a
body whose cross-sectional shaﬁe is represented by a fourth order even cosine Fourier series.



The method is efficient in computer time compared wi’ﬁh other fully numerical techniques
and one solution takes from about 14 minute to 3 minutes on an IBM 360/50 computer for the
circular cone at incidence — the time increasing as the incidence increases.

2.0 EQUATIONS OF MOTION AND THE BOUMDARY CONDITIONS

2.1 The Equations of Motion and the Boundary Conditions for a General Body

The co-ordinate qystem and equations of motion are wr 1tten in a notatlon similar to that
used in Reference 11.

Let (z, 1, 8) be a cylindrical co-ordinate system as shown in Figure 1. Then the equatlons
of continuity, momentun, and energy for an inviscid, non-heat conducting gas can be written in
matrix form in this co-ordinate system as follows

+B’Q<“+C’—}E+D’~O ’ (1)
where

 u 0 0 1/p 0
0 u 0 0 0
Al = 0 0 u 0 0
pc? 0. 0 u 0
| p 0 0 0 - u

— v 0 0 0 0 ]
0 v 0 1/p 0
B’ = 0. 0 v 0 0
0 pc? 0 v 0

| . 0 o - 0 0 v

w- 0 0 0 0
C == 0 0 w 1/p 0
I 0 0 oCt W 0

0 0 P 0 W
0 - u
e 1 —w? V.
D = T WV and X = w
pctv p
pv p

In the above matrices and vectors (u, v, w) are the velocity components in the (z r, 8)
dir ectlons respectively, p is the pr essure, p the density, and c? the square of the 1ocal speed of sound.

Boundary conditions are given at the body and at the shock. The boundaly condition on
the body is that the normal velocity should be zero. Thus, 1f the equation of the body isr = g (z, 9)
then the boundary condltlon on this body is :

@



Velocity components, pressure, and density behind the unknown shock can be found in
terms of the shock equation by applying the Rankine-Hugoniot relations across the discontinuity,
giving the following equations

an = Py Vi

P

2

p.+ Poo Yoo Va = Dy + P Vi

h+ %V = h, +/ww : SR ‘ (3)
af . of

u+v&—gm +V°°a_z

v of Voo Of

Taa ™V =71 5" Y

af w of
Uor TV T o

JH() (f %)

h is the static enthalpy (= 7’)/?1 f: for a calorically perfect gas) and the equation of the shock is given

by r = f (z, 6). The subscript « refers to values in front of the shock wave, hence

u, =V, cosa vV, = — V, sinacosb w, =V, sina«sing
. of Weo af
. u utal
and _°°0z~v°°+f60

Yo f 1 of\?
af\? , (1 oF\T
Vi+(z) + G5

where V_ is the free stream velocity.

The present Report deals with situations that are conical, hence the number of independent
variables can be reduced from three to two. A suitable transformation to carry out this 1eductlon is
made in the following paragraph.

2.2 Transformation of the Independent Variables

The equations given in the previous paragraph apply to any general body shape r =
g (z, 0) and a shock wave given by r = f (z, §). However, we now consider a situation in which the
body and flow characteristics are conical so that the number of independent variables can be reduced
from three to two.

Firstly it is seen that, since the z-axis is along the axis of the cone with the origin at the
apex, the equation of the conical body can be written -

=z G()



where G (6) is a function of § only, and similarly the equation of the conical shock wave can be written
r =z ()
where F(6) is a funetion of 6 only.

Now the indepehdent variables (z, r, 0) are transformed by transformations involving the
equations of the body and the shock as follows

X =12

# r—zG (0
SELFO) -G 0]

9 =0

This transformation has the effect of fixing the radial as well as the circumferential boundaries
between which the partial differential equations are to be satisfied, si_nce now the body r = z G(0)
corresponds to the surface ¢ = 0, while the shock r = z F(8) corresponds to the surface £ = 1,

* The above transformations change the equations of motion (1) to the form

X X X
Ax B 05

+D=0
where : A = A

B =t A + 6B 4+ C

C = '

D =D’

and the subscripts denote partial differentiation so that &,, £, and £, can be evaluated as

__ 1 .
SOy

= —EIGHEF -G8 . @
b = — 281G, + (F, - G,) &l |
In the hew co-ordinate system (x, ¢, ¢) the region in which the equations are to be satisfied is
| x>0
0 <i< 1
0<o<2n

However, since the flow is conical, quantities are constant for all x and for'a fixed ¢ and ¢, thus
g—x}g = 0. The problem is then reduced to two dimensions in the independent variables ¢ and ¢

and we may consider the equations at a unit distance (x = z = 1) along the body. -
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Thus the pl‘oblem is reduced to that of solving the elliptic non-linear partial differential
equations : : ‘ '

axX axX ' _
'Bag +Ca—¢-+D=0 , | ()

subject to the boundary conditions given in the next paragraph.
2.3 The Boundary Condiiio.ns for a Conical Body

In the transformed co-ordinate system the boundary conditions become, from equation (2), -
att =0

Q2

) : ' :
e =0 )

uG—v—I—%d)

and at ¢ = 1, from eduationé 3)
| Vo = pey Vaos
P+ o Voo Vo = Do +50 Vg | |
bV =h, + %V %
u+vF=uw;|-'vc°-F ) |

v oF Ve OF
Fag ~ W= F ogg T Ve

where

. w oF
uF—V—f—gﬁ‘d)

n

S (I)

and the equations of the body and shock have traﬁsforrﬁed fo
r=G(¢)

and ' , _ r = F(¢)

respectively.

Further boundary conditions can be applied if the body and flow characteristics are sym-
metrical about the axis (= ¢) = 0, = as is often the case. In this case boundary conditions at ¢ =
0, = are ' : .

du = Ivi_ OpE_ dpst oG
06 o "o g " 0

and the problem is reduced to solving the equations in the region
0<t=<1

OSd)Sjr.



In the next Section a summary of the method for solving the set (5), subject to the given
boundary conditions, is presented; a more detailed description is presented in Appendix A.

3.0 METHOD OF SOLUTION

. We observe that if the function F(¢>)‘ defining the shock shape is known, the p1oblem is
solved complebely, since then the equations (7) can be solved to give u, v, w p, patg =1 and equa-

tions'(5) can be integr ated from £ = 1.to £ = 0 by replacing the elements of % by difference fommlae

of the type (A-1) (see Appendix A). This makes the set (5) into 01dma1_y differential equations and
~ they can be integrated by standard techniques such as those given in Reference 14. However, I (¢)
is not known initially, but it is assumed that we have a reasonable estimate so that the equations’
(5) can be integrated as above, Using the estimated F (¢) then, after integration, a “residual’’ normal
velocity given by the value of the left-hand side of equation (6) at £ = 0 will be obtained. The
problem then is to minimise the residual at ¢ = 0, for all ¢, by changing the function F(¢). This
minimisation is carried out by the iteration procedure described in Appendix A.

~ Inthe method described in Appendix A it is necessary for the conical flow solutions required
here to have a good initial estimate of F(¢), so. that the integration will not diverge. To obtain a
good estimate of the shock shape F(¢) for conical bodies, the following procedure is adopted. The
flow field solution is first found for a circular cone at zero incidence by means of the iteration pro-
cedure described in Appendix D. A very small perturbation is then made in either body shape or
incidence (for example an elliptic cone of small eccentricity or a circular cone at very small incidence
is considered) and for this situation a solution is sought, using for the nitial estimate of F(¢) the
value.obtained for the eircular cone at zero incidence. Having obtained the solution for the small
perturbation, a mueh bigger perturbation of the same type is made and the function F(¢) extra- -
polated so that a good initial estimate is still available. For example, in the case of a circular cone
at incidence, a solution is first found for an incidence « where /9, = 0.01, then F(¢) is extrapolated
linearly to «/0. = Sa where 6« = 0.1 to give an initial estimate, and the final solution at that in-
cidence is found by iteration as mentioned above. After this computation a quadratic extrapolation
of F(¢) is made to give an initial estimate at a/8. = 2 sa and so on to higher incidences,

In the ¢ase of the cir culal cone al 11101dence ithe function F(qS) is represented adequately
by a Fourier series

n1 . '
F(¢) =3 Ficosig : o (8)
i=o ’ .

since F (¢) must be symmetrical about ¢ = 0and ¢ = = (¢ = 0 is the windward plane of symmetry
and ¢ =  is the leeward plane of symmetry). This form has the advantage that m can be kept
small (= 1 or 2) for small incidences, thus giving fewer * ‘anknowns” to the problem and economising
on the iteration process to determine F (¢). The value of m, however, must be increased as the
incidence is increased. Now as m increases, the representation (8) of the function F (¢) may still

be good, but the derivative of-the Fourier series may not be a good representation of i)f;, S0 mstead

of obtalnm,(yF by differentiation of (8) the difference formula (A-1) is used.



A difficulty that must be overcome in 1nteg1at1ng the ordinary differential equatlons that

represent the set (5) is that some of the derivatives 55— are not defined at £ = 0. This is observed by

examining the equations at ¢ = 0 where we have

Erd-ug—.%} p_EJrC}VYu":O (a)
s.,dv5+%'l;.>5+%v‘o=g~ | | : | | ®
£ d w; — Erp(éo p; + gWo + fé S Vg ' | " (c) .' ©)
Ex pC* U + e pCt Vg | ggrpc‘ P + %: W + V1V Py = — pCI_'"i : (d.)

PY (e)

w
Eopuct o+ P b dp Py + W= = P
w dG’
G A’
to partial dlffelenhatlon w1th 1espect to these Vauables

where d = v — G u d = g, u+ &V + —E— w, and the subscripts z, r, 4, £ and ¢ refer .

It is convenient to rewrite (9d) and (9e) in terms of

E(Ezu"i"srv +'“W) (10)

where £,, £, and £, are giveﬁ by equation (4) with z = 1. Equatiohs (9d) and (9e) were \}vntten above
without the limit of ¢ = 0, thus considering the denvatwe (10) in connection with (9d) and (9e) is
permissible, :

Now (10) can ke written
. by g W (P =G\ _& ¢
Ez Uz + gr VE + r W ] u r ( F _ G_) T2 w (P G)

and (9d) and (9e) as
Gy

pc[g(szu+srv+@w) 4«u'+V@V(F§‘—:—@)+g, (F—G>]
2 ' : : 9d’
_+Erdp5+%—wss+gpn=—*pcc}v ' (C)

Eo Fy— Go £o _

v R 9 7
+ £ p, -.%—V‘i+ = " . | (9¢’)

on applying the limit ¢ = 0.
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The boundary condition at the surface (eq. (6) ) implies that d = 0 at £ = 0 and hence it
is not possible to determine ue, v:, wg, or p: at ¢ = 0 from the surface equations (9). However, if we
assume that dug, dv;, dw:, dp,, and dp: all tend to zero as £ » 0, which appears reasonable, and also
assume Lhat derivatives of quantities with respect to ¢ are ﬁl}ite on the surface (which is reasonable
since the surface is a streamline), then we can at least say that p, is finite from (9a), (9b), or (9¢),
and that —(f))g (g[ u+ £ v+ % w) from (9d’) or (9¢’) is also finite at £ = 0.

The previous analysis shows that integration of the differential equations right up to ¢ = 0
cannot be made by the usual techniques, since these would require calculation of all derivatives
with respect to ¢ at ¢ = 0. However, integration can be made to a value ¢ close to the surface and

the variable £, u + & v + %
to the surface (al- é¢, 2 6 3 o8& and 4 of for example). Extrapolation of this quantity is
permitted, since we have shown ils derivative is at least finile at ¢ = 0. Now the quantity

w can be extrapolated from its value and derivative at points near

[EL u+ & v+ % w] is the normal velocity. V. at the swface, which we are trying to make zero
= _ :
by the iteration procedure. Thus the problem is solvable by the technique mentioned.

Having completed the iteration to make normal velocity V.. sufficiently small, a final
integration of the setl (5) is made to a value of ¢ fairly close to the surface (approximately 0.003,
and then pressure is obtainéd al the surface ¢ = 0 by inward extirapolation from 0.003. Again this
ex{rapolation is permitied since the derivative of p is finite al the surface. The values of V., and p
thus obtained at the surface allow a complete calculation of the other flow variables at the surface, as

follows.

Since the body is a streamline we have

(B ) = conslant ' (11),

and the constant is equal to the value at a saddle point or points of attachment on the surface -
which for the circular cone at incidence is at the windward axis ¢ = ( since this axis also forms the
same streamline, as pointed out in Reference 7.

Also in the flow field, and hence on the surface for isoenergetic flow

= conslant : (12

b4 v W) L
v-1

- Blce]

where the constant is ‘determined from free steam conditions.
A further condition follows by eliminating p, from (9a) and (9b) (with d = 0)
wu, +wGv,=wG ' (13)

The equatiens (11), (i2), (13), together with the‘boundary condition (6) and the knowledge
of the pressure, give five equations Lo be solved for u, v, w, p, and p at the surface. A method of
‘solving these equations for the circular cone at incidence is given in Appendix B. The same method
can be used for other ¢onical bodies, provided the positions of the saddle points of attachment on the
"surface are first determined. ‘
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It should be noted that a complete surface solution may not always be necessaly since
the pressure is found correctly by extrapolation, and it is probably better to use extrapolated or
near the surface values of other quantities for, say, boundary-layer calculations. This follows from -
the assumption that the vortical layer (the layer near the surface where large gradients are present)

is much thinner than the boundary layer.

4.0 A SHORT DISCUSSION OF THE VORTICAL LAYER

It has been pointed out (Ref.7, 8, and 9) that in non-axisymmetric conical supersonjé flow,
large gradienis in some quantities are present very near to the surface. It was shown in Section 3.0
by examining the equations of motion on the surface, that the derivatives of pressure p and normal

velocity &, u + & v + E— w were finite ai the smface while derivatives of other quantities were

indeterminate. Since only the normal velocity at the surface was required for iteration and the pres-
sure p was required to solve the surface equations completely, the present method overcame any
difficullies due lo large gradients within the vortical layer. For compleleness, however, an inte-
gration of the set (5) was performed, taking very small increments in ¢ as the surface was approached.
Figure 2 shows plots of the velocity components u and w and the density profile near 1o the surface
for the particular case of a circular cone with M = 7,6, = 25, & = 10 at ¢ = 90°.

Also, for completeness, Table 1 shows a.comparison between surface values of pressure
obtained by integration near to the surface and those obtained in the usual method of this Report
(i.e. by inward extrapolation from ¢ =~ 0.003). The tabulated results are for the case Mo = 1.797,
8. = 12.6° a = 7.5° this example is chosen since there is a fairly noticeable change in pressure
near to the swrface (for the akbove case of Mo = 7, 6. = 25, « = 10° there is very litile chdange in
pressure). The adequacy of the usual method of extrapolation is well illustrated.

5.0 COMPARISON OF THE PRESENT RESULTS WITH THOSE OF OTHER THEORETICAL METHODS FOR
THE CIRCULAR CONE AT INCIDENCE.

Figures 3, 4, and 5 show comparisons of the present theory with the results of first order
theory given in Reference 4. Figure 4 also shows a comparison with the results of Moretii (Ref. 13),
while Tables 2 10 9 give comparisons of the present theory with that due to Babenko et al. (Ref. 11).

It can be seen from these Tables that almost exact agreement is obtained between the
present results and those of Reference 11, while the results of Reference 13 d1ffe1 by a lar ger amount,

probably because of the differences in step size used.

The step sizes used by Babenko were 65 = 0.05 and 6¢ = 11.25°, by Moreiii ¢ = 0.167
and 6¢ = 18°, and with the present method 8¢ = 0.1 and é¢ = 223%° for most of the cases in
which comparisons were made in this Report. Good accuracy is obtained with the plesent method
even though larger step sizes are used. This is to be expected since the errors are 0 (5¢ ) and 0 (65 )
in the plesent scheme.

The first order 1esults agree, as expected, for small relative incidences only, and the made-
quacy of the first order theory is noted even for relative incidences of about 0.5. Results from
References 11 and 13 are available cnly for relative incidences «/6, up to about 0.8. At present,

‘accurate tabulated results for higher relative incidences are not available, so that comparisons cannot

be made with other theoretical methods for relative incidences higher than 0.8. However, a compar-
ison with experimental results ismade in the next Section, which extends to higher relative incidences.
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6.0 'COMPARISON OF PRESENT RESULTS WITH EXPERIMENT FOR THE CIRCULAR CONE

Experiments to measure surface pressures on 12,5° and 5° circular cones have been made
at NAE under high Reynolds’ number conditions (Ref. 15 and 16). The. experiments were con-
ducted over a wide range of Mach numbers from 1.8 to 4.25 and with relative incidences from zéro
to about 2.5. Figures 6 — 9 show a comparison of surface pressure ratio p/pe, as calculated by the
" present method with the experimental data. '

In most cases the greatest difference between the theory and experiment occurs in the
region ¢ = 0° to 30°. It is known that the high surface shear stress in this region leads to appreciable
positive hole errors in the measured static pressur es (Ref. 17), but the exact magnitude is difficult
to estnnate in each case.

It can be seen from the Figures that excellent agreement is obtained in the region from
$ = 30° to 180°, even at incidences where the singularity has left the surface, e.g. M, = 1.8,
8, = 12.5°, a = 17.5° and also where locally conically supersonic conditions are just becoming present
near the surface, e.g. M, = 4.25, 6, = 12,5% « = 12.5°, The present method is limited to inciden-
ces below some critical value at which a region of the flow becomes locally conically supersonic,
However, it can Dbe séen that surface pressures extrapolated from incidences below this critical
incidence (by quadratic extrapolation) still give good agreement with the experiment, at least in

the region of the flow where separation does not have large effect (see, for example, Fig. 10).

7.0 THE ELLIPTIC CONE IN SUPERSONIC FLOW

Most of the discussions in this Report have been concerned with cir culai' cones at incidence

%Ll,;usubsqnic flow. As a further example of the method some calcurtions weie “made for elhptic
cones at zero 1nc1dence and at incidence but without yaw, again starting from the « = 0 circular
cone solution. Some of these results (the surface pressures) are compared with another theoretical
method (Ref, 18) and with experiments (Ref. 19) in Figures 11 and 12. It can be seen from these
Figures that the present method: gives much better agreement with the experiments, particularly

for the cases at incidence, than the linearised characteristics solutions of Martellucci (Ref. 18).

The method has been found to be less efficient when the ratio of major to minor axes,
a/b, becomes so high that large gradients in quantities occur in the flow field near the “leading
edge”. Very small increments 6¢ are needed for the difference scheme (A-1). A reasonable limit for
the ratio a/b seems to be within the range 2 to 3, (see.computer times, App. E.4.2).

8.0 A FURTHER EXAMPLE OF A CONICAL BODY IN SUPERSONIC FLOW
As a further example to illustrate the use of the present method, computations were made
for the conical body given by
= Gy 4+ Gy cos 2¢ + G, cos 4¢
at a unit distance z = 1 from the body tip, where G,, G,, and G, are constants (0.2679, —0.01, and

0.02 respectively, in the example for which results are given). The computation was started from a
circular cone at zero incidence (G; = Gy =0) and G, and G, were given small values (e, «, say)
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and a solution obtained. G, and G, were then increased proportionally to e and ¢ and an initial es-
timate of the shock shape was made by extrapolation from the solution with G, = e and Gy = e,
and a solution was again obtained by iteration. G, and G, were increased again p10p01t10nallv to
e; and ¢, and the process continued.

~ Figure 13 shows the shock shape and the surface pressure distribution coi‘résponding to
Go = 0.2679, G, = —0.01, G, = 0.02 at zero incidence. Figure 14 shows pressure distributions and
also indicates the circumferential angles at which nodal and saddle type singular points on the
surface are present for the same body at several incidences.

This example illustrates Well the blngulanty behaviour to be expected for this type of
indented body. It can be seen that at zero incidence there are two nodal and three saddle type
singular points on the surface in the range 0 < ¢ < 180. As the incidence is increased the nodal and
one of the saddle type singularities on the windward side combine to “cancel” each other so that the
surface streamlines now converge only near to the leeward generator. As the incidence is further
increased the nodal type singularity near to the leeward generator moves around to cventual]y lie
on the leeward gene1at01 where previously there was a saddle type singular point. The positions
of the singularities are easﬂy determined from the direction of the streamlines-as integration is made
into the surface, and it is also known that they can be located at points on the sulface only where the
circumferential gradient of pressure Is zero,

9.0 CONCLUSIONS

. A method has been presented that shows that the elliptic partial differential equations
defining the conical inviscid flow between a conical body and its conical shock wave are solved very
efficiently by a numerical approach. -

A transformation is used that has the effect of including the body shape in the coefficients
of the differential equations and of the boundary conditions, thus making the computer program
suitable, in principle, for any conical situation simply by Wlltmg a few program statements to define
the body shape. :

. Solutions have been obtained by making successive perturbations to a circular cone at,

zero incidence for which the flow field solution is readily available, Perturbations of incidence were
made to obtain results for circular cones at incidence and have given good results even at relative
incidences higher than any other known fully numerical metliod. To generate solutions for an
elliptic cone, perturbations were made first in body shape and then in incidence, if solutions at
incidence were required. Similarly, solutions can be obtained for other conical body shapes, such as
those obtained for the body given by a fourth order even cosine Fourier series. :

It was shown that excellent agreement with other theoretical methods'(in particular that
due to Babenko et al. (Ref.11) for the circular cone) and also with experiment, was obtained. At the
same time, solutions were generated at about 30 to 50 times faster with the present method (typical
computer times are quoted in App. E.4.0) than with other fully numerical, accurate techniques.
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At present the method appears to be limited to cases that do not have regions of conically
supersonic flow, since, if such regions do exist, the defining equations in these regions become hyper-
bolic while they remain elliptic in the other regions. Two other conditions also present a limit to
the applicability of the method, These occur when an entropy singularity moves sufficiently far
‘away from the surface that it lies very near to the first exterior set of mesh points, and also when the
shock wave approaches very close to the Mach cone from the apex, which occurs f01 Very slender
conical flows at low supelsonlc Mach numbers. '

10.0 ACKNOWLEDGEMENTS

The author wishes to thank W, J. Rainbird and R. F. Meyer for useful discussions held
during the course of this project. He is also grateful to G. Moretti of General Applied Science Labo-
ratory, New York, for supplying the cornputel program to carry out the computatlons described in -
‘Reference 13.-



11.0 REFERENCES

1.

10.

11.

12,

13.

Kopal, Z.

Smms, J. L.

Stone, A. H.

Sims, J. L.

Stone, A. H.

. Kopal, Z.

Ferri, A.

Melnik, R. E.

. Melnik, R. E.

Stocker, P. M.

Mauger, F. E.

Babenko, K. 1.
‘et al.

Gonidou, R

Moretti, G.

— 14 —

‘Tables of Supersonic Flow Around Cones. Massachusetts lnstitute of
Technology, Dept. of Electrical Engineering Tech. Report No 1, Cam-
bndge Mass., 1947,

. Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of
. Attack. NASA SP-3004, National Aeronautics and Space Administration,

Washington, 1964,

On the Supers_onic Flow Past a Slightly Yawing Cone, Part I. Journal of
Mathematics and Physics, Vol. 27, No. 1, April 1948, pp. 67-81.

Tables for Supersonic Flow Around Right Circular Cones at Small Angle
of Attack. NASA SP-3007, National Aeronautics and Space Administration,
Washington, 1964,

On the Supersonic Flow Past a Slightly Yawing Cone. Part I1. Jowrnal of
Mathematics and Physics, Vol.-30, No. 4, Jan. 1952, pp. 200-213.

Tables of Supersonic Flow Around Cones of La1ée Yaw. Massachusetts
Institute of Technology, Dept. of Electncal Engineering, Tech. Report
No. 5, Cambridge, Mass 1949

Supersonic Flow Around Circular Cones at Angles of Attack. NACA. TN
2236, National Aeronautics and Space Administration, Washmgton Nov.,
1950.

A Conical Thin-Shock-Layer Theory Uniformly Valid in the Entropy
Layer. U.S. Air Force Flight Dynamics Lab., Report No. FDL-TDR-64-82,

1965.

Vortical Singularities in Conical Flow. AIAA Journal, Vol. 5, No. 4, 1967,
pp. 631-637,

Supersonic Flow Past Cones of General Cross Section. Journal of Fluid
Mechanics, Vol. 13, Pt. 3, 1962, pp. 383-399.

Three Dimensional Flow of Ideal Gas Past Smooth Bodies. NASA TT
F-380, National Aeronautics and Space Administration, April 1966.-

Ecoulements Supersoniques Autour de Cones en Incidence. ONERA, La
Recherche Aerospatiale, No. 120, Sept.-Oct., 1967, pp. 11-19.

Inviscid Flow Field Past a Pointed Cone at An Angle of Attack. Pélt I-—
Analysis. General Applied Science Lab Inc., Westbul y, New York, Tech.
Report No. 577, Dec. 1965,



14.

15.

16

179.

18.

19.

20.

21.

22.

23.

- 24,

Hamming, R. W:

Rainbird, W. J.

Rainbird, W. J.

Rainbird, W. J.
Martelluccei, A.

Zakkay, V.
Visich, M. Jr.

Powell,' M.d. D.

Babenko, K. I.

Lance, G. N

Jdones, D. J..

— 15—

Stable Predictor-Corrector Methods for Ordinary'Differential Equations.
Assoc. of Computing Mach. Journal, Vol. 6, No. 1, 1959, p. 37.

Turbulent Boundary Layer Growth and Séparation on a Yawed 12 14°.
Cone at-Mach Numbers 1.8 and 4.25. ATAA Paper No. 68-98, Amellcan
Institute of Aeronautics and Astronautics, Jan. 1968.

The External Flow. Field About Yawed Cifcular Cones. AGARD Con-
ference Proceedings No. 30. IN Hypersonic Boundary Layers and Flow
Fields, May, 1968.

Errors in Measurement of Mean Static Pressure of a Moving Fluid due to
Pressure Holes. National Research Council of Canada, DME /N AE
Quarterly Bulletin No. 1967(3).

An Extension bf the Linearised Characteristics Method for Calculatiﬁg
the Supersonic Flow Around Elliptic Cones. Journal of the Aerospace
Sciences, Vol. 27, No. 9, Sept. 1960, p. 667.

Experimental Pressure Distributions on Conical Elliptical Bodies at M,
3.09 and 6.0. Polytechnic Institute of onoklyn PIBAL Report No. 467
March 1959.

Modern Computing Methods. National Physical Laboratory Notes on
Applied Science No. 16 HMSO London, 1961, p. 87.

A Method for anmsmg a Sum of Squares of Non-Linear Functions
without Calculating Derivatives. Computer Journal, Vol. 7, No 4, Jan,
1965, pp. 303-307.

Investigation -of a Three-Dimensional Gas Flow Around Conic Bodies.
IN International Congress of Applied Mechanics, 11th, Munich, Germany,
1964. Berlin, Springer-Verlag, 1966, pp. 749-755.

Numerical Methods for High Speed Computers. Iliffe, London, 1960, p. 134.
Use of the Computer Programme to Determite the Flow Field for Conical

Flow Situations. National Research Council of Canada, NAE L.TR-HA-1
(to be published). '



"~ TABLE 1

—_17 —

p NEAR TO THE SURFACE FOR THE CIRCULAR CONE

M, = 1.797, 0, = 12.6°, « = 7.5°

¢
g3 0 22.5 45 67.5 90 | 1125 135 157.5 180
0.1 0.8473 | 0.8322 | 0.7919 | 0.7382 | 0.6857 | 0.6463 | 0.6230 | 0.6124 | 0.6096
0.05 0.8522 | 0.8361 | 0.7930 | 0.7359 | 0.6809 | 0.6412 | 0.6197 | 0.6116 | 0.6099
0.025 0.8537 | 0.8370 | 0.7924 | 0.7333 | 0.6769 | 0.6371 | 0.6169 | 0.6107 | 0.6099
0.0125 0.8541 | 0.8371 | 0.7916 | 0.7315 | 0.6743 | 0.6346 0.6152 | 0.6101 | 0.6099
0.00625 0.8542 | 0.8370 | 0.7911 | 0.7304 | 0.6729 | 0.6331 | 0.6142 { 0.6098 | 0.6099
0.003125 0.8543 | 0.8369 | 0.7908 | 0.7299 | 0.6721 | 0.6324 | 0:6137 | 0.6096 | 0.6099
1.53x10°° 0.85643 | 0.8369 | 0.7905 | 0.7293 | 0.6713 | 0.6316 | 0.6132 | 0.6095.| 0.6099
Value
extrapolated s
from 0.8543 | 0.8369 | 0.7905 | 0.7293 | 0.6713 | 0.6316 | 0.6132 | 0.6095 | 0.6099

¢ = 0.003125
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TABLE 2

THEORY AND THE THEORY OF BABENKO ET AL. (REF. 11)

Mo, = 5,0, = 10, « = 7.5
¢ 0 22.5 45 67.5 90 112.5 135 1575 | 180
D, 0.6170 | 0.5872 | 0.5081 | 0.4046 | 0.3044 | 0.2284 | 0.1894 | 0.1822 | 0.1833
Dy | 06172 | 0.5874 | 0.5082 | 0.4047 | 0.3045 | 0.2284 | 0.1895 | 0.1821 | 0.1830
F, | 0.2488 | 0.2507 | 0.2567 | 0.2674 | 0.2832 | 0.3041 | 0.3281 | 0.3499 | 0.3596
Fp | 02480 | 0.2508 | 0.2568 | 0.2674 | 0.2831 | 0.3040 | 0.3281 | 0.3495 | 0.3652

TABLE 3
My =20, =10,a = 2.5
b 0 22.5 45 67.5 90 112.5 135 157.5 180
D, | 0.6569 | 0.6530 | 0.6421 | 0.6271 | 0.6115 | 0.5981 | 0.5885 | 0.5831 | 0.5814
Py | 0.6565 | 0.6525 | 0.6416 | 0.6265 | 0.6109 | 0.5976 | 0.5882 | 0.5829 | 0.5812
F; | 05601 | 05633 | 0.5724 | 0.5867 | 0.6046 | 0.6236 | 0.6407 | 0.6527 | 0.6570
Fy, | 05624 | 0.5655 | 0.5746 | 0.5889 | 0.6067 | 0.6256 | 0.6426 0.6546 | 0.6588
Subscripts: J Values obtained by present method
B Values 6btained by Babenko et al. '(Ref. 11)



COMPARISONS OF SURFACE PRESSURE AND SHOCK SHAPE .BETWEEN PRESENT
- THEORY AND THE THEORY OF BABENKO ET AL. (REF, 11)

R opay

TABLE 4

4

M, = 2,6, =15, & = 10
é 0 225 | 45 67.5 90 1125 | 135 | 1575 .| 180
P, | 1.0143 °| 0.9839 | 0.9018 | .0.7931 | 0.6884 | 0.6153 | 0.5833 | 0.5783 | 0.5795
P, | 10153 | 0.9852 | 0.9039 | 07957 | 0.6914 | 0.6178 | 0.5852 | 0.5805 | 0.5821
F, | 05624 | 05691 | 0.5896 | 0.6244 | 0.6737 | 0.7351 | 0.8010 | 0.8550 | 0.8764
Fy | 05636 | 05703 | 0.5909 | 0.6259 | 0.6755 | 0.7369 | 0.8037 | 0.8574 | 0.8795
= .. - — 1

TABLE 5

Mg = 5,6, = 15, @ = 10 |
¢ 0 | 225 45 675 | 90 1125 | 135 157.5 180
P, | 1.0698 | 1.0141 | 0.8667 | 0.6750 | 0.4897 | 0.3469 | 0.2624 | 0.2333 | 0.2303
P, | 1.0700 | 1.0144 | 0.8668 | 0.6748 | 0.4897 | 0.3467 | 0.2623 | 0.2334 | 0.2296
F, | 0.3459 | 0.3476 | 0.3530 | 0.3623 | 0.3763 | 0.3942 | 0.4142 | 0.4298 | 0.4366
Fy | 0.3460 | 0.3477 | 0.3530 | 0.3624 | 0.3763 | 0.3943 | 0.4140 | 0.4302 | 0.4363

Subscripts: J Values obfained by’ present method

B Values obtained by Babenko et al. (Ref. 11)
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TABLE 6

THEORY AND THE THEORY OF BABENKO ET AL. (REF. 11)

M, = 7,0, = 15, « = 10
_’kr ’ ——_—F. — -
¢ 0 22.5 45 67.5 90 112.5
B, | 1.0795 | 10178 0.8542 | 06435 | 0.4426 ().—25;01“
Dn | 10798 | 1.0179 | 0.8544 | 06433 | 0.4426 (;.;899—-
F, | 03260 | 0.3271 0.3304 | 0:3363 | 0.3450 -:).356;
Fy | 0.261 05272 | 03305 | 03363 | 0.3449 '”0.3;;1

Subscripts: J Values obtained by present method

B Values obtained by Babenko et al. (Ref. 11)
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TABLE 7

COMPARISONS' OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESENT

THEORY AND THE THEORY OF BABENKO .ET AL. (REF. 11)

M, = 5,0, =2, a=20

22.5 45

e 0 67.5 90 1125 135 | -157.5

a; 1.302;; 1.3167 1.35’;1 1.4205 | 1.5026 | 1.5956 | 1.6906 |- 1.77417'7 1.8123
Gy | 1.3026 | 1.3165 | 1.3572 | 1.4217 | 1.5048' 1.5989 ‘.1.693<6— 17711 | 1.8129
v, | 0.6075 | 0.6140 | 0.6328 | 0.6624 | 0.7007 ;7;1(; 0.7883 | 0.8273 | 0.8451
Vs | 0.6074 | 0.6139 '.0.6329 0.6630 | 0.7017 | 0.7456 | 0.7897 | 0.8259 | 0.8454
Wy oﬁ 01785 | 0.3464 0.48627 0.5890‘ 10.6358 | 0.6205 04319 m?)_—w
W 0 0.1792 0.5442; 0.4873‘2 0.5818 | 0.6285 | 0.6075 ;463 0

D, | 2.6838 | 25058 | 2.0418 1.461£; 0.9277 | 0.5447 | 0.3172 | 0.2426 | 0.2522
P, | 2.6842 2.5062 2.0423 ml..4596 09282 | 0.5434 | 0.3182 0.2436v '0.2’508
—51,—# 4.7758 ;1—5;17:1 3.92:73"4' 3.0946 22362 | 15288 | 1.0391 | 0.8580 o.ssig_
Py | 47759 45475 | 39280 | 3.0000 | 2.2368 | 1.5260 1.0;11 0.8603 ; 0.8785
F, | 0.5919 | 0.5943 M(;.6029v 0.61Gé 0.6395 0.6657 0.6960 | 0.7075 | 0.6920
F, | 05920 | 0.5947 | 0.6028 | 0.6173 | 0.6388 0.6665 | 0.6949 | 07068 | 0.6917

Subscripts: J Values obtained by present method .

B Values obtained by Babenko et al. (Ref. 11)
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COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESENT
' THEORY AND THE THEORY OF BABENKO ET AL. (REF. 11)

M, = 17,6, = 10, «

- 22—

TABLE 8

-5
; 0 22.5 4; 1 67.5 o0 | 1125 | 13 | 715‘7.5 180
%J 21933 | 2.1952 2..2009'ﬁw2.2099 00212 | 2233 | 2.2451 '2.2_5;5 ;256:
Gy | 21932 | 21952 | 2.2009 '2'.20;3— -. 2_.2213'. 2.9338 | 2.2453 l'2.2536—3— 2.2565
v, 0.9867 | 0,387 d.;z;él _—(;.3897' 0.3917 | 03938 0.3959 -0.397Z —0.'3979'
s | 0.3867 | 0.3871 0.3881 0.3897__ 7).3917 0.3939 | 0.3959 7).3;4 —;.3:79’-—
w0 0.0579 | 0.1107 o.;;é; 0.1801 | 0.1838. | 0.1546 OT(;885 B o—d
_%B 0 0.0578 | 01104 0?1526- 0.1786 | 0.1801 | 0.1504 0.08;31— T—'
B, | 04646 | 0.4457 | 0.3952 | 0.3273 | 0.2594 | 02042 | 0.1688 | 0.1522 | 0.1479
Pa | 04647 | 0.4459 | 0.3952 To.327—4" 02504 0.2043 | 0.1689 ;1522_ 0.1;_7;3—
5, | 31270 | 3.0359 | 2.7857 2._43—52- ‘2;0622' 17386 | 15174 ;4_054 ““1.32;;
5, | 31275 | 3.0364 2.7858 2.41;;~_r 2.0620 | 1.7386 | 1.5179 1.41)5;0— 1:3804l.
i«“J 0.2284 | 0.2293 02322 | 02371 | 02440 | 0.2526 | 0.2615 0.;6—87 7)—.2715
_FB 02285 | 02204 | 02323 | 0.2372 | 0.2440 | 0.2525 | 0.2614 o.~2;;9'1 7_0.2719-

S'ubscripts: d Values obtained by present method

B Values obtained by Babenko et al. (Ref. 11)
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TABLE 9

* Subscripts: J Values obtained by present method

B Values obtained by Babenko et al. (Ref, 11)

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESEN'*'
THEORY AND THE THEORY_ OF BABENKO ET AL. (REF. 11)
Mg, =5,0 =10, 0 =5

¢ 0 22.; 45 675 | 90 | 1125 | 135 1575 . .'—1;

| | .
@ | 20011 | 2.0934 | 21001 | 21106 | 21238 | 21381 2.1512, 2.16‘04 2.1687
s | 20911 QBQQZ" ;.1001 21107 | 2.1239 | 21382 | 2.1513 2.16_04 ;E—
¥, - | 0.3687 | 0.3691 (;.3'703 | 05722 | 03745 | 0.3770 | 0.3793 0..3;3@ 0.;3515
Vg 0.3687 0.3691 | 0.3703 \0.372.2 0.3745 | 0.3770 | 0.3793 ,0.‘3809i 0.3815
W5 0 0.—0681 0.1301 | 0.1798 | 0.2095 | 0.2102 0.1723 0..0963 0

. , . B

W 0 0.0678 | 01295 | 01788 | 0.2084 | 0.2090 | 01719 | 0.0971 | 0
P; | 05053 | 0.4882 &;21 0.3797 | 0.3169 | 0.2665 | 0.2353 0. 2215 0.2181
Py | 0.5055 | 0.4884 o.—4422 6.3798 0.3169 6;2665 0.2352 -0.22i4- o.ziso ﬁ
5, | 28721 | 2.3144 | 2.1550 19342 | 1.6998 15020 | 1.3742 1.3162 | 1.3018
Py | 2.3726 2.3149_ 21562 | 19344 | 1.6997 | 15017 | 1.3785 | 1.8154 | 1.3009
F, 02557 '0.25—%'5 0.2620 | 0.2699 | 0.2810 | 0.2946 | 0.3088 0.3206*- ﬁo;253
Fy | 02568 | 0.2573 | 0.2620 —_.0.2699 02810 | 0.2945 | 0.3090 | 0.3206 '0.3252~
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APPENDIX A

NUMERICAL PROCEDURE FOR SOLVING ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

A.1.0 NOTATION

x, y) - co-ordinate system_

U . ~a function of (x, y)

Xq, X1 lower and upper limits on x

Vo, V1 low'er' aﬁd upper limits on y

F(y) a function (;f yatx = x,

e (y) -a function of y at x = x,

€K ' -value of ¢ (y) at the kth line at x = x; -
F; value of F(y) at the ith line at x = Xo
Ui a value of U (;n the ith line

o 8 value of p on thg ith line

f (U, %]) boundary condition at x = x, ié that f (U, %{I ) is zero.

A.2.0 METHOD

Suppose (%, v) are independent variables and U is any function of (x, y) defined by partial
differential equations within a region x, < x < x; andy, < y < y,. Boundary conditions for U or
its normal derivatives are given on the bounds of the above region. :

By estimating some unknown function (or functions) at one of the boundaries (say, for

example, gg =F(y)atx =%,y <

y < 1), and by replacing the derivatives in the y direction by

differences, thus making the partial differential equations into ordinary differential equations, the
equations can be integrated from x, to x, in a way similar to that for integrating parabolic partial

’9x

differential equations. At x = x, there are given 'bouhdary conditions, of the form f (U ﬁj) = 0,
to be satisfied, but the preceding integration, assuming the estimate at x = x, is not correct, would

‘give a residual of f ( U, gg) = ¢ (y), say. To solve the elliptic problem completely the estimated.

function at x = x, must be improved until ¢ (y) is sufficiently small.
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To carry out the above integration (using an estimate of gxg at X = X;) the region is first

divided into strips of width sy and first or second derivatives replaced by differences

--(«&J) _ Uy + 6y)2— Uy —dy)
oy

by )= | +0 (3y?)

+ 0 (6y?)

(ZU) Uy +dy) —20xy) + Uy —.dy)
Jy? 5y* _

or alternatively by more accurate formulae such as

3

(aU) _%[U(xyv%y U(Xy—Sy)]l

U(x,y+2y) —U®y-— zay)]
ay 2 5y .

45y
roey) e

for a first derivative. The partial differential equations thus become a set of coupled ordinary
differential equations in one independent variable x with differential equations for eaeh of the
dividing lines in the region y, < y < y, and with the differential coeflicient at any line depending
on variables to both sides of that line. Theése resulting ordinary differential equations can then be
integrated by standard techniques, one of the most efficient being the Hamming predictor modifier
corrector method (Ref. 14). This method was used in calculations presented in this Report; the
starting procedure employed was the Runge Kutta method given, for example, in Reference 20.

Once an integration has been made from one boundary to the other (x, to x; in the case
above) the residual function ¢(y) is known for the given estimate F(y). To improve the estimate
F(y) so that |¢(y)| is made smaller, the following method is used.

The function F(y) can be defined by its values at F(y, + jsy) (j = 0,1...1n; yo + ndy =
y1), and similarly e(y) is represented by its values at e(y, + joy). Therefore determining a procedure

to minimise |e(y)| is equivalent to finding a procedure to minimise Z (yo + kay) with respect to

F (yo +36y),j = 0,1....n Many methods exist for mrmmlsatron one of the best for minimising
a sum of squares is'presented by Powell (Ref. 21). This metlhod is similar to the generalized least
squares technique given by the iterative process

o . > L 6ek 6ek _ = Jex . . \ .
j;o {kgo b—ETl —aETJ} (SFj = - kZ,_:o €k (ﬁ;‘j (1 = 0, 1... m) (A-2)

where, in the above case, the number of unknowns m is equal to n. ¢ = ¢ (y, + ksy) and
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Fi = F (yo + i8y) and §F); is the improvement to be made to F; so that Z ei is minimised.
i k=0

In the generalised least squares technique “steps” defined by (A-2) are made until either > ei
or 6FJ /Fj is sufficiently small. Each step requires calculating de./0F; by differences

e e (FoFi.. ., Fi + AF, .. . Fp) —a (Fo, Fi. .. Fi.. . Fo) (A-3)
.aFi'N . AF, .

fori=0,1,2...m,

where ¢, is considered as a function of Iy, Fy. . . F,, since, for given values of Fo, Fy ... F,, the
corresponding values of ¢ (k = 0, 1 ... n) can be found by integration as described previously.
AT, is a small increment in F,, say 10°° F, if F, # 0. Now in Powell’s method only the first “step”
requires the use of (A-3), and after the first step the partial derivatives can be calculated from values
of e (k = 0,1 ...n) already obtained on the previous step. Thus Powell’s method is more efficient

than the generalised least squares technique and it is also claimed to ensure convergence.

- It should be noted that it is not necessary to define the function F(y) by its values at
vo + 38y (G = 0, 1 ... n). In fact it is more economical to define F(y) by as few ‘“unknowns” as
possible in order to reduce the computation required for the first step given by (A-3). For instance,
the first few terms of a Fourier series expansion could be used if it is known that F(y) can be ade-
quately represented in this way, which is the case for a circular cone at incidence and for the other
conical bodies discussed in this Report.

A simple example illustrates the above method. To solve
U | U

6X2 +5§2 + 1 =O . (A-4)

given U=0onx=0,1and on y = 0, 1. From symmetry it is sufficient to solve the problem for

the region 0 < x < %, 0 < y < 3 with boundary conditions -

U=0 onx =0andony =0

: au
— =0onx = %and@—= O on y.=

TS



o T

Divide the region 0 < x < },0 <y < # into strips as shown, and number the lines forming
the strips 0, 1,2, ... .n

0.5 - n dy - 0—-'——
oU
L0X . L
U=20 :
3
2-
1
0 0 X
U=0
U . .
Replace oyt at line i by the difference approximation
Uiy1 — 2U; + Uiy
dy?
oU . . L
Let p; = i . then equation (A-4) can be written
dp; Uit1 — 2U; + Uiy _
dx + 5yE +1=0
. (A-5)
also . dUi = Pi

dx
Now the set (A-5) represents a set of ordinary differential equations. The boundary condition
au ' : ' '

ay Oony = 05 can be satisfied by the difference approximation U, s, = U._1. The

equations (A-5) are subject to boundary conditions at x = 0
| Ui =0

pi = F(yy)

On estimating F(y), the set (A-5) ’can be integrated to x = 0.5 giving residual errors e(idy) = p;
~at x = 0.5 (we require p; = Txl = 0 at x = 0.5). One can then make small displacements to F(y)

as in (A-3) and use (A-2) to improve the estimate of F(y).

An advantage of ‘the above procedure is that if the differential equations and boundary
conditions are linear as in the above example, then the correct solution will be obtained after only
one step given by (A-2), since in this case the ¢ are linear functions of F;. A disadvantage of such
an approach is that reasonably good initial estimates of F; may be necessary in order that the inte-
gration will not diverge,
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APPENDIX B

A METHOD FOR SOLVING THE SURFACE EQUATIONS FOR THE CIRCULAR
: CONE AT INCIDENCE

The surface pressure is given by the method of Section 3.0, but it is necessary to calCuléte
u, v, w, and p from equations (6), (11), (12), and (13). Obviously the density follows dnectly from

equatlon (11) where the constant in that equatlon is the value of ( 1:., ) at ¢= 0.

At the windward and leeward axes (¢ = 0, =), w = 0-from the symmetry of the problem,
hence at these two points uand v can be calculated from (6) and (12). Equation (13) u, + Gv, = wG '
is replaced by differences as in equation (A-1). These difference equations are written at every
point where p is given (except at 0, ) and, together with (6) and (12) written at every such point,
give a set of non-linear algebraic equations. These equations can then be solved. by usual techniques.
The method employed here was that of Reference 21, since this method is efficient and was aheady
bemg used to solve the main part of the problem.
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APPENDIX o

THE POSITION OF NODAL AND SADDLE TYPE SINGULAR POINTS

It has been noted in Reference 7 that singular pomts will always exist in conical flow -
without axial symmetry. We define a nodal type singular point as a point where surface streamlines
converge and a saddle type singular point as one where the surface streamlines diverge. At a nodal
type singular point, discontinuities in entropy will exist giving a discontinuity in some other
quantities, while at the saddle type singular point no discontinuities will exist. In this Section we
will consider the position of the singular points for a circular cone at 1nc1dence and also for an

_elliptic cone at zero incidence. -

The position of a singularity is important since, if it should move off the surface, it is not
possible to integrate the equations (5) past this singularity. On the other hand, a knowledge of their
position on the surface is also important, since this would affect the solution of the surface equations
(6), 1), 12), (13).

We know that a singular point is defined by the two conditions

w = 0. , (C-1a)

and the main diagonal of matrix B should be zero, that is
szu+srv+-§?w=o o - (C-b)
since equations (9d) and. (9e) can be combined to give (g,u + gV 4= E" ) o + 1E 3-2 = 0 where

S = log ;g and, hence, when conditions (C-1) are satisfied S is lndetermmate.'

. Now (C-1b) is satisfied at the surface as a boundary cbndi_tion‘, and because of thel symmetry
about ¢ = 0 and r in the case of a circular or elliptic cone, we also know that w = 0 at ¢ = 0 or. =

. (as well as at ¢ = =/2 for the elliptic cone at zero incidence). Thus a singular point is always present

at a point on the body and in a plane of symmetry for the conditions being considered.
C.1.0 THE CIRCULAR CONE AT INCIDENCE’

Tt is shown in Reference 9 that for the circular cone at incidence a saddle type singular

. point is present at the windward generator ¢ = 0 and that a nodal type singular point is present

at the leeward generator ¢ = 7 until the surface pressure becomes adverse. It is then shown that
this nodal singularity may move away from the leeward generator to follow the point of minimum
circumferential pressure, or that it may stay at the leeward generator until a certain critical incidence
is reached, when it would lift off the surface. The following analysis shows that the latter situation is,
in fact what happens to this nodal singularity.

To deter mme whether the nodal singularity can move along the leeward plane of symmetry
and off the surface, we consider the quantity [£,u + & ] £ =l = which, as the normal compo-
nent of the velocity at the shock, must be negative in the sign convention being used. We also cons1der

gu + &V )] '
I:E( E=0,p=m



and show that this derivative becomes positive.-under the conditjoné gi§e11 in Reference 9 for the
singularity to move away from ¢ =.0, ¢ = x. Thus, since t,u + (v = 0 at ¢ = 0 (the normal
velocity), it follows that tu + v will pass through anothe1 zero along the leeward plane of sym-

_metry as Well as being zero on the surface,

1t will also be shown that the nodal singularity will not move along the surface away from
the leeward génerator. Thus, the nodal singularity will move into the flow ﬁeld along the leeward
plane of symmetly -

C.1.1 To Show Thu![a%( g+ £V )] Becomes Positive At A Certain Critical Incidence

=05 =
" Consider equation (9¢), which applies at the surface £ =

_ £ Gy w Py _ WV
pG Ds +G Wy + ;JG = G

gince d = 0 is a surface boundary condition. Now differentiate this equation with respect to ¢
and consider the result at a plane of symmetry (Gy = w = py = 0) giving

_ 1 Gma
p.

Wg = % [— v i \/;;—— 4-(— i;"“.—_‘:]j)‘ ] ; o (C-2)

where T = £ G p,/p and must be zero, since from (9b) it follows that if w = 0 then p, = 0.
For the circular cone, in the leeward or windward plane of symmetry the positive sign obviously
applies at incidence o = 0, since we then know that py, = w, = 0 and it seems from the results
obtained, using the method of this Report or from those of Reference 11; that the -+ sign always
applies on the windward side. The + sign applies also on the leeward side until an incidence is
reached where v2 = 4 p,,/p, when the sign changes to —, and this seems to occur at relative inci-
dences a/6, between 0.2 (for slender bodies) and about 0.4 (for hypersonic conditions).

p; + W ~'|——'p:‘f~ + wev =0

or

- Now consider equation (9d’) at the plane of symmefry and at the cone surface

v+w¢

9 8 -
9% [Ezu =+ Erv] =—[u+ -G——]

and substitute for w, from (C-Z)

a -

. Now u and v are always positive on the cone surface in the sign convention used, hence, when

" the + sign in (C-2) applies, it follows that (£z u-+¢ rV) <0 and the singularity stays on the surface.

When the — signin (C 2) applies, — (¢, u + 5, v) is still negative until an incidence is reached such that

)a£

\/v2 — 4 pg/p>Vv +2uG
' =3v
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since on the surface at the plane of symmetry from (6) we have v = u@G. Alternatively, this condition
can be written

Pyg < — 2pv%
or in terms of surface Mach number M,, surface pressure p, and cone semi-angle 6,
2,2
Py < — 27 Pe M, sin’ 6,

This is the expressibn formed in Reference 9 for the singularity to move away from

' C.1.2 To Show That the Singularities Cannot Move from the Planes of Symmetry.

When the singularity does move, and, in fact, for incidences above that incidence when
the sign in (C-2) first changes (i.e. v = 4p,,/p at the leeward generator), which always occurs -
before adverse pressure starts, we know that the — sign applies in the expr ession (C-2) for Wﬁj at the
leeward plane, that is

W =4 [—v—-Vvt— 4pys/p ]
which is always negative. On the other hand, at the windward plane we have -

ws =3[ —v+ VvE — 4py/p |

"~ and it is observed from results that-a i)ressure maximum always exists at ¢ = 0, so that p,, < 0,

thus w, > 0. Hence, it is shown that at the surface w,> 0 on the windward plane and w, < 0 on
the leeward plane, and since w is zero at ¢ = 0 and r, other zeros in w could only occur on the surface
if they were to occur in pairs. Now a zero in w can only occur at a surface pressure minimum or
maximum, and apart from the minimum and maximum pressure at the windward and leeward
generators, it is observed from results that only one other minimum occurs at incidences greater
than that at which adverse pressure first starts. Hence w cannot be zero except at the windward and
leeward generators.

‘Thus the singularity situation for a circular cone at incidence is as follows. A saddle type
singularity is always situated at the windward generator and a nodal singularity is at the leeward
generator until an incidence is reached when p,, < — 2v p, M: sin” 6,. For incidences above this,
the nodal singularity will be situated off the surface along the leeward plane of symmetry.’

These conclusions on the position of the singularity are, in fact, verified by results obtained

in certain cases for the cnculal cone at incidence, and a plot of - (gzu + £ V)

and aE [ (gzu -+ g,v)] against t along ¢ = = is given in Figure 15 for the case M - 1.797, 6,

12.5° Figure 16 shows a plot of py -+ 2p v* at the leeward generator against relative incidence
a/8, for the same case,

It should be noted that it is possible by the present method to obtain solutions for some

. cases where the singularity moves off the surface, since extrapolation of £, u + & v + %ﬂ from

£ = 8t to ¢ = 0, as described in Section 3.0, is made. It also appears to be valid to extrapolate press-
ure through this singularity. The singularity does not cause trouble until it moves so far out that it -
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s at a distance‘couesponding to ¢ apploachin‘gr 6t from the surface, so that results can still be

obtained for moderately large relative incidences (assuming that £, u + £ v and p are contmuous
through these singularities).

C.2.0 ELLIPTIC CONE AT ZERO INCIDENCE

Since the elliptic cone at zero incidence is symmetric about ¢ = 0 .al_ldl ¢ = w/2, dnly the
section 0 < ¢ < /2 of the flow field needs to be considered. S

Consider the pressure distributions around elliptic cones in the section 0 < ¢ < /2.
They have the forms shown, for example, in Figure 17, which shows the form’ variation against
various values of a/b where a is the semi-major axis and b is the semi-minor. axis. The minor axis

" lies in the plane ¢ = 0, =. From these distributions it can be seen that the pressure is monotonic

except in the casesa/b = 2.4 and 2.8, Tt is the opinion of the author that the non-mondétonic behaviour

in these latter cases is due to “numerical overshoot”” of the pressure, since the numerical procedure is

trying to fit an almost constant pressure in the region 0 < ¢ < 40° followed by a rapidly varying
pressure in the region 40° < ¢ < 90° — in fact, in the auther’s opinion, the pressure will always be
monotomc for all a/b whatever the free stleam Mach number, '

On the assumption that the plessure is monotonic in the region 0 < & < 7/2, 1t is eas1ly
seen that w cannot be zero except at ¢ = /2 as follows. If w = 0 on the surface, then from -
equation (9b) we must have 3?
be zero is that 562 must be zero. However, for the elliptic cone at zero incidence, since p is monotonic,

= 0, and hence from equation (9¢c) a necessary condition for w to

w can only be zero at ¢ = 0, v/2.

The above analysis contradicts Reference 22, where results are given that show that for
M, = 10,a = 0.7 and a/b = 2, a nodal type singularity existed on the cone surface at about
¢ = 20° with saddle type singularities at. ¢ = 0 and =/2. Plots of some results for this same case,
using the present method, are given in Figure 18. They indicate a nodal type singularity at ¢ —
with a saddle type singularity at ¢ = /2.

It still musf be determined whether the singularities can move off the surface for the

elliptic cone at zero incidence. It can be shown that for the elliptic cone the formulae for w, and C%
(a0 + & v) given by (C-2) and (C-3) apply at the planes of symmetry at the cone surface, but the
appropriate signs have to be determined. Clearly when a/b = 1, py = wy = 0 everywhere and,
hence, the + sign holds in (C-2) and the — sign in (C-3). Now if we assume a sign change takes

place continuously in wy as a/b increases,. this would imply that v? — 4pg/p = 0 would be a

necessary condition for the change, but at ¢ = #/2 it is observed that pys < 0 always for a/b > 1,

hence v? — 4pg/p is never zero, implying that the — sign is always apphcable in equation

(C-3). This in turn implies that ag U+ bV e= 0 /2 is always mnegative. Also, s_111ce.
= , = qr )

gL, U+t v /2 is zero on the cone surfacé and is negative at the shock, it follows that this

" singularity stays on the surface. On the other hand, at ¢ = 0, since p,,,; > 0 always for a/b > 1, then

clearly whichever sign applies in equation (C-3) it follows that [ —(t,u+ £ V) . .
, 8 =

< 0, and by the same argument as above, the singularity stays on the sulface .

Thus, in conclusion, the singularities stay at the cone generators in the planes of symmetly
for the elliptic cone at zero 1n01dence
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APPENDIX D

THE SOLUTION FOR A CIRCULAR CONE AT ZERO INCIDENCE

The computations to generate the zero order solution are btlalghthIWB.l'd once a 1easonable

initial estimate of the shock angle is determined. The method will be described w1thout gomg into
mathematical details.

An estimate of the shock angle is made empirically f1om results obtained by Sims (Ref. 2).
for situations involving conically slender bodies (M., sin 6, £ 0.6) and from hype1sonlc small
dlsturbance theory for M, sin 6, > 0.6. These estimates then take the form

Mo sin b, — 1 = 'Y "|2' 1_ (Mm.Sin §,)33 for Mo sin 6, < 0.6
and |
sing, _[y+1, 1 73 ‘ ‘ |
sin 4, [ g T M2 sinﬁ_éc'] for Mo Sln,ec > 0.6

where 6, is the shock wave angle,

Having obtained these estimates of the shock angle, quantities behind the shock can be
determined and the equations of motion integrated into the body, thus giving a residual nermal
velocity on the surface. An iteration procedure due to Wegstein (Ref. 23) is then used to improve
the estimate of the shock e}ngle'so that the residual normal velocity is made very close to its required
value of zero. It is found that this computation requires only three or four iterations, hence only a
few seconds of computer time.
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APPENDIX E

SOME COMMENTS ON THE COMPUTER PROGRAM |

E.1.0 THE INCLUSION OF FURTHER FOURIER COEFFICIENTS TO REPRESENT THE SHOCK SHAPE

As the incidence or other perturbatlon is increased, the riumber of Fourier coefﬁ(nents in

the shock wave equation F (¢) = Z Ficosi ¢ must be increased. At each incidence the estlmated

i=0

Fo, (i.e. the last coefficient) i is compared with Z F; (the tangent of the shock angle at ¢ = 0),

and if | Fpp, | Z Fi > 5 x'10%, an extra coeflicient is added so that the shock wave equation is
i=o
m { 1 . ' ’ ; g
now F (¢) = Z Ficosi¢whereFy, Fi..... F have the same values as were estimated previously

and the estlmate for Fu, 4 1 1s zero, An extra cofliecient is also added if the sum of squares of residuals

on the preceding calculation is greater than 2 x 10,

E.2.0 STEP LENGTHS

Step lengths of 223°and 0.1 in $and ¢ respectively seem to give sufﬁéiently accurate results
for all the cases coniputed so far for the circular cone-at incidence. To keep the step length of 223°
in ¢ implies that no more than nine Fourier coefficients can be used to represent the shock shape,
since the number of unknowns defining the shock must not exceed the number of dividingllines in
the region 0 < ¢.:'S 7/2. Thus, when the criterion in Section E-1.0 is satisfied to include a tenth
coefficient, the Fourier series representation to the shock islnot used; instead the shock is simply
represented by values at discre't‘e'points ¢ =0,225..... 180°. Initial estimates at these discrete
points are found by extrapolation as before. The iteration procedure then improves these estimates

at the discrete points,

In the cases of the elliptic cones and the fourth order cosine Fourier series body, the
increment in ¢ is taken as 22.5° to start with, i.e., when the configuration is near to a circular cone
at zero incidence (this is equivalent to 8 sections and 9 lines in the range 0 < ¢ < 180°). As the
incidence or eccentricity or other perturbation increases, further Fourier coefficients are added to
the sum forming the shock r = F(¢), and when the number of coefficients is about to exceed the num-
ber of dividing lines in the region 0 < ¢ < 180, the number of lines is increased so that their number
is always equal to the number of coefficients. It is necessary to do this in order that the number of
discrete normal velocities at the surface is not less than number of unknowns 'dgﬁnipg the shock,

which is a necessary condition for the iteration process.

E



SRS R 8

[ N I S

e A

— 58—

E.3.0 EXTRAPOLATION TO THE BODY

Integration was always made to a value £ = 0.1 in equal steps 8¢ The yelocity g.u -+ £ v
+ —i”—w was then extrapoldted, using the values and derivatives of this quantity at 0.1, 0.1 + §¢,
0.1 4+ 25t and 0.1 + 3 8%, by solving the formulae '

a® = a @) —sha’ 6h) + 5 [a70) + shq"© + 5 0@ |

oh? i ht
-8 a0 +mar |+ 3§ @@ + o 6

where sh=01—(G—1)s forj=1234(@<0)
and q represents the quantity to be extrapolated.

When the iteration procedure is completed the differential equations are integrated to a
value £ of approximately 0.003 and the pressure is then extrapolated #o the surface by a quadratic
formula. ' '

E.4.0 COMPUTING TIMES.

Typical times on an IBM 860/50 computer for the circular cone at one incidence are 40

“seconds to 1 minute for relative incidences up to 0.6; times for higher relative incidences vary from

1 to 3 minutes approximately. Actual times are given below for certain typical cases.
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E.4.1 Circular Cone

Mo =7 6, = 25°

Time (min.)

a

.00
- 0.01 - 0.7
01 - 0.6
02 - 0.6
£ 03 o
0.4 0T
05 - 0.8
0.6 ' S 1.0
0.7 o B 1.9

My = 1797 : ) 6, = 12.5°

] .

b, Time (min.)
001 0.7
01 0.6
02 "% 0.8
0.3 07
0.4 . 0.7
0.5 - 0.7
0.6 0.7
0.7 : 0.9

08 0.9

0.9 : 1.0
1.0 .' 1.1
11 1.1
1.2 o 1.1
1.3 - | 11

14 2.5
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E.4.2 Elliptic Cone

Mo = 10 ‘ a=07  a=0
a/b Time (min.)
101 0.5
1.2 ' 0.5
14 | 06
1.6 ' 0.8
1.8 . 1.3
2.0 18
2.2 27
2.4 ' 4.3
26 ‘ 5.7
2.8 : 100

Mp =2 . a =02217 b =0.18475

o

10 ' Time (min.)
0.01 1.2
0.1 o 1.1
0.2 ' 1.0
03 10

04 1.2
0.5 1.2
0.6 o 1.2
07 1.3
0.8 : 1.3
0.9 - 1.3
1.0 3 14
1.1 1.5
12 2.9
1.3 41
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E.5.0 TERMINATION OF THE ITERATION PROCEDURE

The iteration procedure is continued until the change in each Fourier coefficient is less
than 10°° of that Fourier coefficient. An alternative criterion for terminating the iteration is also
used; this is based on the sum of squares of residual errors being less than 10°°. It was found that for
small relative incidences up to about 0.6, only one step in the iteration procedure was required to

- give sufficient accuracy. This one step requires about 10 to 15 integrations of the equations from the

shock to the body. For higher relative incidences about 2 to 4 steps were necessary, requiring about
15 to 30 integrations of the equations. ‘

E.6.0 PROGRAM AVAILABILITY

Duplicate program decks are available upon application to the High Speed Aerodynam1cs
Section, National Aeronautical Estabhshment

A description of the program and its use is giveﬁ in Reference 24,



