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SUMMARY 

A numerical procedure for solving the problem of 
steady supersonic inviscid flow around smooth conical bodies is 
presented. Results are obtained by solving the elliptic partial 
differential equations that define the conical flow between the 
body and the shock. Results are given for circular cones up to 
moderately high relative incidences, including some cases for 
incidences beyond a critical value at which the entropy sin- 
gularity moves from the surface. 

Also presented are' a few results for elliptic cones at 
zero and non-zero incidence, as Well as results for another 
conical body whose cross section is. defined by a fourth order 
even cosine Fourier series. 

The applicability of the method can be limited by the 
entropy singularity moving too far away from the surface, by 
the flow field containing regions of locally conically supersonic 
flow, or by the shock wave approaching very close to the Mach 
wave. 

Comparison of results shows excellent agreement with 
other theoretical methods and also with experimental results. 
The method is efficient in computer time. 

(hi) 
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1.0    INTRODUCTION 

The first attempts to obtain solutions for the steady inviscid supersonic flow field about 
conical bodies were made by several authoi-s in the early 1930's. These authors considered a circular 
cone at zero incidence to the free stream. The equations defining the flow were reduced to ordinary 
non-linear differential equations to be satisfied between the shock and the body, thus giving a two- 
point boundary value problem. These equations were numerically integrated by Kopal in 1947 
(Ref. 1) using the equations as derived by Taylor and Macoll in 1932. Later, Sims computed these 
zero order solutions again and presented the results in a convenient form in Reference 2. 

Using a small perturbation method, Stone in 1948 (Ref. 3) produced a first order solution 
applicable to circular cones at small incidence. Kopal made the original numerical integration of the 
resulting equations, and Sims (Ref. 4) later repeated and extended the calculations. A second order 
theory for a circular cone was also formulated by Stone (Ref. 5), and Kopal in 1949 again provided 
numerical results. These second order tabulations of Kopal (Ref. 6) are of limited range and in- 
convenient to use. 

These first and second order solutions contain uncertainties, as pointed out by Ferri (Ref. 
7), owing to the singularity in entropy not being included. Ferri observed that the body must be a 
surface of constant entropy and that all streamlines must eventually converge at the leeward gen- 
erator of the cone, thus resulting in an entropy singularity at this line. Ferri also pointed out that 
there is a layer very close to the surface, the vortical.layer, in which the entropy changes rapidly in 
a direction normal to the surface. 

Melnfk, amongst others, studied in detail the vortical layer and the position of the entropy 
singularities (Ref. 8 and 9) for a circular cone and a delta wing and was able to show that, in the 
case of the circular cone, the nodal type singularity remained at the leeward generator until an in- 
cidence was reached when the transverse pressure gradient became adverse. Beyond this incidence 
it was shown that the nodal.singularity might follow the point of minimum pressure or might stay 
at the leeward generator until a certain incidence was reached, at which time the singularity would 
lift off the cone surface. It is shown in this Report that the latter is the correct behaviour. 

Several numerical techniques have been developed in recent years to solve the problem, 
particularly for cones that are circular or elliptical in cross section. Stocker and Mauger (Ref. 10), 
amongst others, solved the set of elliptic partial differential equations that apply between the shock 
wave and the body, assuming a shock shape and integrating in towards a body that is defined by 
the envelope of the streamlines obtained in the integration procedure. The shock shape was then 
modified empirically to obtain a given body shape. Results were presented for the circular cone with 
a semi-apex angle of 20° (at incidences of 5° and 10°) for a Mach number of 3.53. The results for the 
5° incidence agree well with experiment, while only fair agreement was obtained at 10° incidence. In 
fact, difficulties were encountered in the iteration procedure, for the 10° incidence case and it was 
not possible to obtain a solution for an incidence of .15°. At this larger incidence, the computed body 
seemed to have a "bump" located at and near the leeward generator, which at that time was thought 
to be accounted for by the singularity leaving the body. Stocker and Mauger's method canalso, in 
principle, be applied to other bodies' besides circular cones, and a computation was made for an 
elliptic cone at zero incidence, the results of which gave reasonable agreement with experiment. 



A different numerical method of solving the problem for any conical body was proposed by 
Babenko et al. (Ref. 11). In this method the full three-dimensional flow field equations are considered 
and, starting from an estimated shock shape with the given body set at the required incidence, the 
equations are integrated step by step downstream until a condition of conicity is reached. When 
this condition is reached, the full flow field solution is then available. 

Reference 11 gives tabulated values of the flow field quantities for circular cones at incidence. 
Some results are given for Mach numbers of 2, 3, 4, 5, 6, and 7, cone semi-angles of from 10° to 45° 
in 5° steps, and for relative incidences up to 0.8. Most of the Mach number 4 and 6 results were 
obtained by interpolation from the results at the other Mach numbers. These numerioal results 
show excellent agreement with experiment. 

Gonidou (Ref. 12) has used the method of Babenko et al. to obtain solutions for a circular 
cone at relative incidence, a/0o, up to about 1.2 where the entropy singularity has lifted from the 
surface of the cone at the leeward generator. Solutions for elliptic cones of fairly high eccentricity 
(~3) were also obtained by Gonidou. Computer times and some other program details for the 
Babenko method are given in his paper. About 500 downstream steps are required to reach a condi- 
tion of conicity, and about Yi hour is required for a typical solution on a CDC 3600 computer for a 
mesh size of 10 x 16 in the radial and circumferential directions respectively. 

Moretti (Ref. 13) has used a similar approach to that of Babenko et al. Again, the flow 
field solution is obtained by marching step by step downstream until a conicity condition is suffi- 
ciently well satisfied. The method differs from Babenko's method in the details of numerical analysis 
and in his use of a characteristics method on the shock and on the body. Moretti's method requires 
about 400 downstream steps and the computer time is typically y^ hour on an IBM 360/50 computer. 
This time is applicable to a mesh increment that is about twice the size of that used by Gonidou in 
the time quoted above. To get a true comparison of computer times, it should be noted that a CDC 
3600 computer operates at about twice the speed of an IBM 360/50 computer. 

The purpose of investigating a further numerical technique, as given in this Report, was 
not only to try to find a more efficient technique than those given previously, but also to investigate 
a method that, in principle, is capable of solving non-linear elliptic partial differential equations; in 
itself a difficult problem in numerical analysis. The present method uses the condition of conicity 
to reduce the problem to a set of elliptic non-linear partial differential equations in two independent 
variables. A transformation of co-ordinates is used, as in the methods of Babenko and Moretti, to 
fix the boundaries between which the elliptic equations are to be satisfied. This transformation also 
has the effect of including the body shape in the coefficients of the partial differential equations and 
in the boundary conditions, so that the same method can be used for general conical body shapes. 
simply by changing a few program'statements to redefine the equation of the body. In fact, the 
method is, in most cases, only limited by locally supersonic cross-flow conditions, or by the entropy 
singularity moving too far away from the surface, or by the shock approaching very close to the 
Mach wave. 

At the present time the method has been used successfully for circular cones and for bodies 
that can be obtained by successive perturbations of a circular cone and that do not have curvatures 
that are too large. The examples given here are for circular cones at incidence, elliptic cones, and a 
body whose cross-sectional shape is represented by a fourth order even cosine Fourier series. 
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The method is efficient in computer time compared with other fully numerical techniques 
and one solution takes from about '}/£ minute to 3 minutes on an IBM 360/50 computer for the 
circular cone at incidence — the time increasing as the incidence increases. 

2.0 EQUATIONS OF MOTION AND THE BOUNDARY CONDITIONS 

2.1 The Equations of Motion and the Boundary Conditions for a Genera! Body 

The co-ordinate system and equations of motion are written in a notation similar to that 
used in Reference 11. 

Let (z, r, 0) be a cylindrical co-ordinate system as shown in Figure 1. Then the equations 
of continuity,, momentum, and energy for an inviscid, non-heat conducting gas can be written in 
matrix form in this co-ordinate system as follows 

where 

oz dr 3d 
(1) 

B' 

C = 

D' = 

~    u 0 0 1/p o   - 
0 u 0 0 0 
0 0 u 0 0 
pc2 o. 0 u 0 

-     P 0 0 0 •  u   _ 

V •0 0 0 0    _ 

0 V '  0 1/P 0 
0 . 0 V 0 0 
0 pC2 0 V 0 

_    0 p 0 0 v    „ 

w 0 0 0 o  - 
0 w 0 0 0 
0 0 w 1/p- 0 
0 0 p.C2 w 0 

_    0 0 p 0 w   _ 

~    0 —1 u 
—w2 

V 
wv and X = w . 
pC2V p 

—   Pv — — p   — 

In the above matrices and vectors (u, v, w) are the velocity components in the (z, r, 0) 
directions respectively, p is the pressure, p the density, and c2 the square of the local speed of-sound. 

Boundary conditions are given at the body and at the shock. The boundary condition on 
the body is that the normal velocity should be zero. Thus, if the equation of the body is r = g (z, 0) 
then the boundary condition on this body is 

dg i   w 3g       n 

dz 2 dd 
(2) 
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Velocity components, pressure, and density behind the unknown shock can be found in 
terms of the shock equation by applying the Rankine-Hugoniot relations across the discontinuity, 
giving the following equations 

PVn   =   Poo Vnco , . • . 

P   +   Pco Vnco    V„   =   POT   +   pm Vn^ 

h + y2 vn
2 = hro + y2 vnl (3) 

•   at    '     • .       at u + v^ = uro+Va)- 

v öf . Vc af•. 
F ae + w = T- äe + w- 

where Vn is the velocity component normal to and behind the shock, and is given by 

af ,  w Of 
u 

Vn   = 

KJi. YV      WX 

dZ I    dd 

(S)' + (^): 

h is the static enthalpy (=  -?— -" for a calorically perfect gas) and the equation of the shock is given -5L P 
y-l p 

by r = f (z, 6). The subscript °° refers to values in front of the shock wave, hence 

Uco   =   Voo C0S  «.  Vco     =    -   Voo Sin« C0S ö>  Wco   =   Vco    Sin  « Sin Ö 

u^-v     +^^ 
and ffl te   • Y"   t   f   a? 

where Vra is the free stream velocity. 

The present Report deals with situations that are conical, hence the number of independent 
variables can be reduced from three to two. A suitable transformation to carry out this reduction is 
made in the following paragraph. 

2.2    Transformation of the Independent Variables 

The equations given in the previous paragraph apply to any general body shape r = 
g (z, 6) and a shock wave given by r = f (z, 0). However, we now consider a situation in which the 
body and flow characteristics are conical so that the number of independent variables can be reduced 
from three to two. 

Firstly it is seen that, since the z-axis is along the axis of the cone with the oxigin at the 
apex, the equation of the conical body can be written 

r = zG(0) 
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where G(fl) is a function of 0 only, and similarly the equation of the conical shock wave can be written 

r = zF(0)   . 

where F(0) is a function of 0 only. 

Now the independent variables (z, r, 0) are transformed by transformations involving the 
equations of the body and the shock as follows 

x = z 

r - z G (0) 
*  = z[F (0) - G (0)] 

. <t> = e 

This transformation has the effect of fixing the radial as well as the circumferential boundaries 
between which the partial differential equations are to be satisfied, since now the body r = z G(0) 
corresponds to the surface f = 0, while the shock r = z F(0) corresponds to the surface £ = 1. 

The above transformations change the equations of motion (1). to the form 

where A = A' 

B = £z A' + fc B' + le C 

C = C 

D = D' 

and the subscripts denote partial differentiation so that £z, £r, and £  can be evaluated as 

i 

z (F - G) 

f. =  - £r[G + (F - G)£]   -. (4) 

^=-«f,[G, + (F;-Gs)fl 

In the new co-ordinate system (x, £, ^>) the region in which the equations are to be satisfied is 

x> 0 

0< Z< 1 

0 < <t> < 2 7T 

However, since the flow is conical, quantities are constant for all x and for a fixed £ and <£,'-thus 

-— = 0. The problem is then reduced to two dimensions in the independent variables £ and <p 

and we may consider the equations at a unit distance (x = z — 1) along the body. 



Thus the problem is reduced to that of solving the elliptic non-linear partial differential 
equations 

• B ** + C |5 + D = 0 (5) 

subject to the boundary conditions given in the next 'paragraph. 

2.3    The Boundary Conditions for a Conical Body 

In the transformed co-ordinate system the boundary conditions become, from equation (.2), 

uG-v+?r?=0   ' (6) 

at £ = 0 

ii n _ IT _i_ - 
Gd<t> 

and at £ = 1, from equations (3) 

pV„-ProVnro 

P   +   Pec Vnco Vn   =   pro     +Pco Vnco 

h + HV; = hro + HXL (7) 
u+vF = uco + vcoF 

V <3F   ; vm    OF 

where 

F^+W = T- ^ + w« 

„ , w    F 
u F - v + TJT T- 

V  =      - <t>- 
IV '~Z~TTi~äfy 

V1+F" + (F^) 

and the equations of the body and shock have transformed to 

r = Gfo) 

and r = F(</>)       • 

respectively. 

Further boundary conditions can be applied if the body and flow characteristics are sym- 
metrical about the axis 0(= 4>) = 0, w as is often the case. In this case boundary conditions at $ = 
0, 7T are 

du _ ov _ dp _ dp . _ ^ 

dcf>        def)        d(j> d(j> 

and the problem is reduced to solving the equations in the region 

0 < £ < 1 

0    <    <b    <    TV 
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In the next Section a summary of the method for solving the set (5), subject to the given 
boundary conditions, is presented; a more detailed description is presented in Appendix A. 

3.0    METHOD OF SOLUTION 

• We observe that if the function F(</>) defining the shock shape is known, the problem is 
solved completely, since then the equations (7) can be solved to give u, v, w, p, p at £ = 1 and equa- 

tions: (5) can be integrated from £ = 1 to £ = 0 by replacing the elements of    - by difference formulae 
0(f) 

of the type (A-l) (see Appendix A). This makes the set (5) into ordinary differential equations and 
they can be integrated by standard techniques such as those given in Reference 14. However, F (•</>) 
is not known initially, but it.is assumed that we have a reasonable estimate so that the equations 
(5) can be integrated as above. Using the estimated F(0') then, after integration, a "residual normal 
velocity given by the value of the left-hand side of equation (6) at £ •= 0 will be obtained. The 
problem then is to minimise the residual at £ = 0, for all <£, by changing the function F(<£). This 
minimisation is carried out by the iteration procedure described in Appendix A. 

In the method described in Appendix A it is necessary for the conical flow solutions required 
here to have a good initial estimate of F((j>), so that the integration will not diverge. To obtain a 
good estimate of the shock shape F(<£) for conical bodies, the following procedure is adopted. The 
flow field solution is first found for a circular Cone at zero incidence by means of the iteration pro- 
cedure described in Appendix D. A very small perturbation is then made in either body shape or 
incidence (for example an elliptic cone of small eccentricity or a circular cone at very small incidence 
is considered) and for this situation a solution is sought, using for the initial estimate of F(<j>) the 
value.obtained for the circular cone at zero incidence. Having obtained the solution for the small 
perturbation, a much bigger perturbation of the same type is made and the function F(c/>) extra- 
polated so that a good initial estimate is still available. For example, in the case of a circular cone 
at incidence, a solution is first found for an incidence a where a/dc = 0.01, then F(</>) is extrapolated 
linearly to a/6c = 5a where 5a ^ 0.1 to give an initial estimate, and the final solution at that in- 
cidence is found by iteration as mentioned above. After this computation a quadratic extrapolation 
of F(4>) is made to give an initial estimate, at a/Bc = 2 Sa and so on to higher incidences. 

In the case of the circular cone at incidence, the function F(c£) is represented adequately 
by a Fourier series 

m 

F (4>) = X)F,cosi* (8) 
i = o 

since F (ij>) must be symmetrical about .$ = 0 and $ = w (</> = 0 is the windward plane of symmetry 
and </> = -a-, is the leeward plane of symmetry). This form has the advantage that m can be kept 
small (= 1 or 2) for small incidences, thus giving fewer "unknowns" to the problem and economising 
on the iteration process to determine F (</>). The value of m, however, must be increased as the 
incidence is increased. Now as m increases, the representation (8) of the function F •((/>) may still 

be good, but the derivative of the Fourier series may not be a good representation of . --, so instead 
öF . "^ 

of obtaining-     by differentiation of (8) the difference formula (A-l) is used. 
d(fi 



A difficulty that must be overcome in integrating the ordinary differential equations that 

represent the set (5) is that some of the derivatives —- are not defined at £. = 0. This is observed by 

examining the equations at £ = 0 where we have 

IrG „   ... w„. _ n (a) 
p 

£r d U,   -  ^—   p~   +  g U0   =   0 

«.     1 ,     £r ,    W W2      ' , (b) 
p IT (jr 

'    f   flw'     £rG,n   +Ww+P'- WV (C) (9) 

..••.>.      ., £» pc2 a,        ,   pc-      • ,    w pc2'v (d) 
f, pC' u? + £r Pc2 v5 + -5^- w? + d' p5 + 'y W,+   -R|=--'-- 

> ,   ••        •  i   £«P J/       i   P i  w pv (e) 
f, pu{ + frpv{ + Ywf + d 'Pf + r w« + 7 P* =  ~ ~f ' 

where d = v — Gu— ^- —, d' = £z u + £r v H  w, and the subscripts z, r, 6, £ and <£ refer 
Lr a<j> r - 

to partial differentiation with respect to these variables. 

It is convenient to rewrite (9d) and (9e) in terms of 

("f. u + £rv + j* w\ 
5 />  „   i  ,  „   ,   f» ,„\ (10) 

where f „ £f, and £„ are given by equation (4) with z = 1. Equations (9d) and (9e) were written above 
without the limit of £ = 0, thus considering the derivative (10) in connection with (9d) and (9e) is 
permissible. 

Now (10) can te written 

f.u5 + f,-vt+£wt  -u-?(Fj^)  -|w(F-G) 

and (9d) and (9e) as 

* [£.(«.» + 6-t* w)  + u + g (^5°.) +|»(F - G>] Pc^ 

,   „   ,        ,   pc2         ,   w                  pc2 v (9d') 
+ £r d p5 + !~r w(i + g p(( = G^ 

[| (*- + « + **) +u + g(£=g) +|w(F -G,] 
.. J      _,     pw(1   ,    wp0  _ ,     pv   •    • (9e') 

on applying the limit £ = 0. 
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The boundary condition at the surface (eq. (6) ) implies that d = 0 at £ = 0 and hence it 
is not possible to determine u5, v=, w5, or p= at £ = 0 from the surface equations (9). However, if we 
assume that du5, dv=, dw;, dp,, and dp-* all tend to zero as £-» 0, which appears reasonable, and also 
assume that derivatives, of quantities with respect to 4> are finite on the surface (which is reasonable 
since the surface is a streamline), then we can at least say that p5 is finite from (9a), (9b), or (9c), 

and' that -?   / £,. u + £r v + % w) from (9d') or (9e') is also finite at £ = 0. 

The previous analysis shows that integration of the differential equations, right up to £ = 0 
cannot be made by the usual techniques, since these would require calculation of all derivatives 
with respect to £ at £ = 0. However, integration can be made to a value <5£ close to the surface and 

the variable £, u + £r v + —• w can be extrapolated from its value and derivative at points near 

to   the   surface   (at- 5£,  2  (5£,   3  <5£,  and  4  <5£,' for   example).   Extrapolation of this  quantity   is 
permitted, since we have shown its derivative is at least finite at  £   =   0.  Now the quantity 

£z u + £r v + — w    is the normal velocity V„   at the surface, which we are trying to make zero 
v      J s = o 

by the iteration procedure. Thus the problem is solvable by the technique mentioned. 

Having completed the iteration to make normal velocity Y, sufficiently small, a final 
integration of the set (5) is made to a value of £ fairly close to the surface (approximately 0.003) 
and then pressure is obtained at the surface £ = 0 by inward extrapolation from 0.003. Again this 
extrapolation is permitted since the derivative of p is finite at the surface. The values of VUi and p 
thus obtained at the surface allow a complete calculation of the other flow variables at the surface^ as 
follows. 

Since the body is a streamline we have 

constant (11) 
(•?:). 

and the constant is equal to the value at a saddle point or points of attachment, on the surface 
which for the circular cone at incidence is at the windward axis <t> = 0 since this axis also forms the 
same streamline, as pointed out in Reference 7. '     • 

Also in the flow field, and hence on the surface for isoenergetic flow 

.! (u2 + v- + w2) + — -   = constant (12) 
7-1  p 

where the constant is determined from free steam conditions. 

A further condition follows by eliminating p5 from (9a) and (9b) (with d = 0) 

w up + w G v(1 = w2 G (13) 

The equations (11), (12), (13), together with the boundary condition (6) and the:knowledge 
of the pressure, give five equations to be solved for u, v, w, p, and p at the surface. A method of 
solving these equations for the circular cone at incidence is given in Appendix B. The same method 
can be used for other conical bodies, provided the positions of the saddle points of attachment on the 
surface are first determined. 
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It should be noted that a complete surface solution may not always be necessary since 
the pressure is found correctly by extrapolation, and it is probably better to use extrapolated or 
near the surface values of other quantities for, say, boundary-layer calculations. This follows from 
the assumption that the vortical layer (the layer near the surface where large gradients are present) 
is much thinner than the boundary layer. 

4.0    A SHORT DISCUSSION OF THE VORTICAL LAYER 

It has been pointed out (Ref/7, 8, and 9) that in non-axisymmetric conical supersonic flow, 
large gradients in some quantities are present very near to the surface.' It was shown in Section 3.0 
by examining the equations of motion on the surface, that .the derivatives of pressure p and normal 

velocity £z u + £r v + ^ w   were finite af the surface, while derivatives of other quantities were 

indeterminate. Since only the normal velocity at the surface was required for iteration and the pres- 
sure p was required to solve the surface equations completely, the present method overcame any 
difficulties due to large gradients within the vortical layer. For completeness, however, an inte- 
gration of the set (5) was performed, taking very small increments in £ as the surface was approached.. 
Figure 2 shows plots of the velocity components u and w and the density profile near to the surface 
for the particular case of a circular cone with Mro = 7, 0C = 25, a = 10 at cj> = 90°. 

Also, for completeness, Table 1 shows a.comparison between surface values of pressure 
obtained by integration near to the surface and those obtained in the usual method of this Report 
(i.e. by inward extrapolation from £ « 0.003). The tabulated results are for the case Mcp = 1.797, 
0C = 12.5°, a = 7.5°; this example is chosen since there is a fairly noticeable change in pressure 
near to the surface (for the above case of Moo = 7, 0O = 25, a = 10° there is very little change in 
pressure). The adequacy of the usual method of extrapolation is well illustrated. 

5.0    COMPARISON OF THE PRESENT RESULTS WITH THOSE OF OTHER  THEORETICAL METHODS FOR 
THE CIRCULAR CONE AT INCIDENCE 

Figures 3, 4, and 5 show comparisons of the present theory with the results of first order 
theory given in Reference 4. Figure 4 also shows a comparison with the results of Moretti (Ref. 13), 
while Tables 2 to 9 give comparisons of the present theory with that due to Babenko et al. (Ref. 11). 

It can be seen from these Tables that almost exact agreement is obtained between the 
present results and those of Reference 11, while the results of Reference 13 differ by a larger amount, 
probably because of the differences in step size used. 

The step sizes used by Babenko were 5£ = 0.05 and S<£ = 11.25°, by Moretti S£ = 0.167 
and 8<j) = 18°, and with the present method Sf = 0.1 and S$ = 22)4° for most of the cases in 
which comparisons were made in this Report. Good accuracy is obtained with the present method 

•1 5 
even though larger step sizes are used. This is to be expected since the errors are 0 (50 ) and 0 (5£ ) 
in the present scheme. 

The first order results agree, as expected, for small relative incidences only, and the inade- 
quacy of the first order theory is noted even for relative incidences of about 0.5. Results from 
References 11 and 13 are available cnly for relative incidences a/dc up to about 0.8. At present, 
accurate tabulated results for higher relative incidences are not available, so that comparisons cannot 
be made with other theoretical methods for relative incidences higher than 0.8. However, a compar- 
ison with experimental results is made.in the next Section, which extends to higher relative incidences. 
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6.0    COMPARISON OF PRESENT RESULTS WITH EXPERIMENT FOR THE CIRCULAR CONE 

Experiments to measure surface pressures on 12.5° and 5° circular cones have beenmade 
at NAE under high Reynolds' number conditions (Ref. 15 and 16). The experiments were con- 
ducted over a wide range of Mach numbers from 1.8 to 4.25 and with relative incidences from zero 
to about 2.5. Figures 6 — 9 show a comparison of surface pressure ratio p/pro as calculated by the 
present method with the experimental data. 

In most cases the greatest difference between the theory and experiment occurs in the 
region 4> = 0° to 30°. It is known that the high surface shear stress in this region leads to appreciable 
positive hole errors in the measured static pressures (Ref. 17), but the exact magnitude is difficult 
to estimate in each case. 

It can be seen from the Figures that excellent agreement is obtained in the region from 
4> = 30° to 180°, even at incidences where the singularity has left the surface, e.g. MOT = 1.8, 
0c = 12.5°, a = 17.5°, and also where locally conically supersonic conditions are just becoming present 
near the surface, e.g. Mro = 4.-25, 0C = 12.5°, a — 12.5°. The present method is limited to inciden- 
ces below some critical value at which a region of the flow becomes locally conically supersonic, 
However", it can be seen that surface pressures extrapolated from incidences below this critical 
incidence (by quadratic extrapolation) still give good agreement with the experiment, at least in 
the region of the flow where separation does not have large effect (see, for example, Fig. 10). 

7.0    THE ELLIPTIC CONE IN SUPERSONIC FLOW 

Most of the discussions in this Report have been concerned with circular cones at incidence. 
However, the method of solution is applicable, at least in principle, to any conical bodyjwithcpni- 
caüy_ÄuhaonicJlow. As a further example of the method some calculations were made for elliptic 
cones at zero incidence, and at incidence but without yaw, again starting from the-a = 0 circular 
cone solution. Some of these results (the surface pressures) are compared with another theoretical 
method (Ref. 18) and with experiments (Ref. 19) in Figures 11 and 12. It can be seen from these 
Figures that the present method-gives much better agreement with the experiments, particularly 
for the cases at incidence, than the linearised characteristics solutions of Martellucci (Ref. 18). 

The method has been found to be less efficient when the ratio of major to minor axes, 
a/b, becomes so high that large gradients in quantities occur in the flow field near the "leading 
edge". Very small increments 50 are needed for the difference scheme' (A-l). A reasonable limit for 
the ratio a/b seems to be within the range 2 to 3, (see computer times, App. E.4.2). 

8.0    A FURTHER EXAMPLE OF A CONICAL BODY IN SUPERSONIC FLOW 

As a further example to illustrate the use of the present method, computations were made 
for the conical body given by 

.   r = Go "+ G2 cos 2<f> + G4 cos 4<j> 

at a unit distance z = 1 from the body tip, where Go, G2, and G4 are constants (0.2679, —0.01, and 
0.02 respectively, in the example for which results, are given). The computation was started from a 
circular cone at zero incidence (G2 = G4 =0) and G2 and G4 were given small values (e2, e4, say) 
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and a solution obtained. G2 and G.i were then increased proportionally to et and u and an initial es- 
timate of the shock shape was made by extrapolation from the solution with G2 = «2 and G4 = e4, 
and a solution was again obtained by iteration. G2 and G4 were increased again proportionally to 
e2 and 64 and the process continued. 

Figure 13 shows the shock shape and the surface pressure distribution corresponding to 
Go = 0.2679, G2 = . —0.01, G4 = 0.02 at zero incidence. Figure 14 shows pressure distributions and 
also indicates the circumferential angles at which nodal and saddle type singular points on the 
surface are present for the same body at several incidences. 

This example illustrates well the singularity behaviour to be expected for this type of 
indented body. It can be seen that at zero incidence there are two nodal and three saddle type 
singular points on the surface in the range 0 < 4> < 180. As the.incidence is increased the nodal and 
one of the saddle type singularities on the windward side combine to "cancel" each other so that the 
surface streamlines now converge only near to the leeward generator. As the incidence is further 
increased the nodal type singularity near to the leeward generator moves around to eventually lie 
on the leeward generator where previously there was a saddle type singular point. The positions 
of the singularities are easily determined from the direction of the streamlines as integration is made 
into the surface, and it is also known that they can be located at points on the surface only where the 
circumferential gradient of pressure is zero. 

9.0    CONCLUSIONS 

A method, has been presented that shows that the elliptic partial, differential equations 
defining the conical inviscid flow between a conical body and its conical shock wa.ve are solved very 
efficiently by a numerical approach. 

A transformation is used that has the effect of including the body shape in the coefficients 
of the differential equations and of the boundary conditions, thus making the computer program 
suitable, in principle, for any conical situation simply by writing a few program statements to define 
the body shape. 

Solutions have been obtained by making successive perturbations to a circular cone at 
zero incidence for which the flow field solution is readily available. Perturbations of incidence were 
made to obtain results for circular cones at incidence and have given good results even at relative 
incidences higher than any other known fully numerical method. To generate solutions for an. 
elliptic cone, perturbations were made first in body shape and then in incidence, if solutions at 
incidence were required. Similarly, solutions can be obtained for other conical body shapes, such as 
those obtained for the body given by a fourth order even cosine Fourier series. 

It was shown that excellent agreement with other theoretical methods'(in particular that 
due to Babenko et al. (Ref. 11) for the circular cone) and also with experiment, was obtained. At the 
same time, solutions were generated at about 30 to 50 times faster with the present method (typical 
computer times are quoted in App. E.4.0) than with other fully numerical, accurate techniques. 
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At present the method appears to be limited to cases that do not have regions of conically 
supersonic flow, since, if such regions do exist,- the defining equations in these regions become hyper- 
bolic while they remain elliptic in the other regions. Two other conditions also present a limit to 
the applicability of the method, These occur when an entropy singularity moves sufficiently far 
away from the surface that it lies very near to the first exterior set of mesh points, and also when the 
shock wave approaches very close to the Mach cone from the apex, which occurs for very slender 
conical flows at low supersonic Mach numbers. 
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TABLE 1 

p NEAR TO THE SURFACE FOR THE CIRCULAR CONE 

Mro = 1.797, ea = 12.5°, a = 7.5C 

0 22.5 45 67.5 90 112.5 135 157.5 180 

0.1 0.8473 0.8322 0.7919 0.7382 0.6857 0.6463 0.6230 0.6124 0;6096 

0.05 0.8522 0.8361 0.7930 0.7359 0.6809 0.6412 0.6197 0.6116 0.6099 

0.025 0.8537 0.8370 0.7924 0.7333 0.6769 0.6371 0.6169 0.6107 0.6099 

0.0125 0.8541 0.8371 0.7916 0.7315 0.6743 0.6346 0.6152 0.6101 0.6099 

0.00625 0.8542 0.8370 0.7911 0.7304 0.6729 0.6331 0.6142 0.6098 0.6099 

0.003125 0.8543 0.8369 0.7908 0.7299 0.6721 0.6324 0.6137 0.6096 0.6099 

1.53xl0"6 0.8543 0.8369 0.7905 0.7293 0.6713 0.6316 0.6132 0.6095 0.6099 

Value 

extrapolated 
from 

H  = 0.003125 
0.8543 0.8369 0.7905 0.7293 0.6713 0.6316 0.6132 0.6095 0.6099 
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TABLE 2 

COMPARISONS OF SURFACE PRESSURE AND SHOCK SHAPE BETWEEN PRESENT 
THEORY AND THE THEORY OF BABENKO ET AL. (REF.   11) 

. Mro = 5, 0O = 10, a = 7.5 

4> 0 22.5 45 67.5 90 112.5 135 157.5 180 

PJ 0.6170 0.5872 0.5081 0.4046 0.3044 0.2284 0.1894 0.1822 0.1833 

PB 0.6172 0.5874 0.5082 0.4047 0.3045 0.2284 0.1895 0.1821 0.1830 

FJ 0.2488 0.2507 0.2567 0.2674 0.2832 0.3041 0.3281 0.3499 0.3596 

FB 0.2489 0.2508 0.2568 0.2674 0.2831 0.3040 0.3281 0.3495 0.3652 

TABLE 3 

Mro = 2, 0C = 10, a = 2.5- 

<t> 0 22.5 45 67.5 90 112.5 135 157.5 180 

PJ 0.6569 0.6530 0.6421 0.6271 0.6115 0.5981 0.5885 0.5831 0.5814 

PB 0.6565 0.6525 0.6416 0.6265 0.6109 0.5976 0.5882 0.5829 0.5812 

FJ 0.5601 0.5633 0.5724 0.5867 0.60.46 0.6236 0.6407 0.6527 0.6570 

FB 0.5624 0.5655 0.5746 0.5889 0.6067 0.6256 0.6426 0.6546 0.6588 

Subscripts:   J   Values obtained by present method 

B   Values obtained by Babenko et al. (Ref. 11) 
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TABLE 4 

COMPARISONS OF SURFACE PRESSURE AND SHOCK SHAPE BETWEEN  PRESENT 
THEORY AND THE THEORY OF BABENKO ET AL. (REF.  11) 

Mro = 2, 6C = 15, a = 10 

<*> 0 22.5 45 67.5 90 112.5 135 157.5 . 180 

Pj 1.0143 0.9839 0.9018 0.7931 0.6884 0.6153 0.5833 0.5783 0.5795 

PB 1.0153 0.9852 0.9039 0.7957 0.6914 0.6178 0.5852 0.5805 0.5821 

FJ 0.5624 0.5691 0.5896 0.6244 0.6737 0.7351 0.8010 0.8550 0.8764 

FB 0.5636 0.5703 0.5909 0.6259 0.6755 0.7369 0.8037 0.8574 0.8795 

TABLE 5 

Mm = 5, Ba = 15, a = 10 

4> 0 22.5 45 67.5 90 112.5 135 157.5 180 

PJ 1.0698 1.0141 0.8667 0.6750 0.4897 0.3469 0.2624 0.2333 0.2303 

PB 1.0700 1.0144 0.8668 0.6748 0.4897 0.3467 0.2623 0.2334 0.2296 

FJ 0.3459 0.3476 0.3530 0.3623 0.3763 0.3942 0.4142 0.4298 0.4366 

FB 0.3460 0.3477 0.3530 0.3624 0.3763 0.3943 0.4140 ' 0.4302 0.4363 

Subscripts:   J    Values obtained by present method 

B   Values obtained by Babenko et al. (Ref. 11) 



20 

TABLE 6 

COMPARISONS OF SURFACE PRESSURE AND SHOCK SHAPE BETWEEN  PRESENT 
THEORY AND THE THEORY OF BABENKO ET AL.  (REF.  11) 

Mo, = 7, 0C = 15, a = 10 

4> 0 22.5 45 67.5 90 112.5 135 157.5 180 

Pj 1.0795 1.0178 0.8542 0.6435 0.4426 0.2901 0.1972 0.1615 0.1562 

PB 1.0798 1.0179 0.8544 0.6433 0.4426 0.2899 0.1974 0.1615 0.1560 

FJ 0.3260 0.3271 0.3304 0.3363 0.3450 0.3561 0.3681 0.3755 0.3772 

FB 0.3261 0.3272 0.3305 0.3363 0.3449 0.3561 • 0.3679 0.3753 0,3776 

Subscripts:   J   Values obtained by present method 

B   Values obtained by Babenko et ab (Ref. 11) 
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TABLE 7 

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN  PRESENT 
THEORY AND THE THEORY OF BABENKO.ET AL.  (REF.   11) 

M^ = 5, 0C = 25, a = 20 

* . 0 22.5 45 67.5 90 112.5 135 157.5 180 

ÜJ 1.3028 1.3167 1.3571 1.4205 1.5026 1.5956 1.6906 1.7741 1.8123 

üB 1.3026 1.3165 1.3572 1.4217 1.5048 1.5989 1.6936 1.7711 1.8129 

VJ 0.6075 0.6140 0.6328 0.6624 0.7007 0.7440 0.7883 0.8273 0.8451 

vB 0.6074 0.6139 0.6329 0.6630 0.7017 0.7456 0.7897 0.8259 0.8454 

WJ 0 0.1785 0.3464 0.4862 0.5890 0.6358 0.6205 0.4319 0 

wB 0 0.1792 0.3446 0.4832 0.5818 0.6285 0.6075 0.4463 0 

Pj 2.6838 2.5058 2.0418 1.4619 0.9277 0.5447 0.3172 0.2426 0.2522 

PB 2.6842 2.5062 2.0423 1.4596 0.9282 0.5434 0.3182 0.2436 0.2508 

PJ 4.7758 4.5474 3.9284 3.0946 2.2362 1.5288 1.0391 0.8580 0.8819 

PB 4.7759 4.5475 3.9289 3.0909 .2.2368 1.5260 1.0411 0.8603 0.8785 

FJ 0.5919 0.5943 0.6029 0.6168 0.6395 0.6657 0.6960 0.7075 0.6920 

FB 0.5920 0.5947 0.6028 0.6173 0.6388 0.6665 0.6949 0 7068 0.6917 

Subscripts:   J   Values obtained by present method 

B   Values obtained by Babenko et'al. (Ref. 11) 



22 — 

TABLE 8 

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESENT 
THEORY AND THE THEORY OF BABENKO ET AL.  (REF.   11) 

Mro = 7, fl, = 10, a =. 6    " 

<t> 0 22.5 45 67.5 90 112.5 135 157.5 180 

Üj 2.1933 2.1952 2,2009 2.2099 2.2212 2.2336 2.2451 ' 2.2535 2.2565 

UB 2.1932 2.1952 2.2009 2.2099 2.2213 2.2338 2.2453 2.2536 2.2565 

Vj 0.3867 0.3871 0.3881 0.3897 0.3917 0.3938 0.3959 0.3974 0.3979 

vB 0.3867 0.3871 0.3881 0.3897 0.3917 0.3939 0.3959 0.3974 0.3979 

Wj 0 0.0579 . 0.1107 0.1535 0.1801 0.1838. 0.1546 0.0885 0 

WB 0 0.0578 0 1104 0.1526 0.1786 0.1801 0.1504 0.0861 0 

PJ 0.4646 0.4457 0.3952 0.3273 0.2594 0.2042 0.1688 0.1522 .0.1479 

PB 0.4647 0.4459 0.3952 0.3274 0.2594 0.2043 0.1689 0.1522 0.1479 

h 3.1270 3.0359 2.7857 2.4352 2.0622 1.7386 1.5174 1.4094 1.3808 

PB 3.1275 3.0364 2.7858 2.4354 2.0620 1.7386 1.5179 1.4090 1.3804 

FJ 
0.2284 0.2293 0.2322 0.2371 0.2440 0.2526 0.2615 0.2687 0.2715 

FB 0.2285 0.2294 0.2323 0.2372 0.2440 0.2525 0.2614 0.2691 0.2719 

Subscripts:   J   Values obtained by present method 

B   Values obtained by Babenko et al. (Ref. 11) 
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TABLE 9 

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN  PRESENT 
THEORY AND THE THEORY OF BABENKO ET AL.  (REF.   11) 

Mro = 5, 0o = 10, a = 5 

* 0 22.5 45 67.5 90 112.5 135 157.5 180 

Uj 2.0911 2.0934 2.1001 2.1106 2.1238 2.1381 2.1512 2.1604 2.1637 

uB 2.0911 2.0934 2.1001 2.1107 2.1239 2.1382 2.1513 2.1604 2.1637 

VJ 0.3687 0.3691 "0.3703 0.3722 0 3745 0.3770 0.3793 0.3809 0.3815 

vB 0.3687 0.3691 0.3703 0.3722 0.3745 0.3770 0.3793 0.3809 0.3815 

WJ 0 0.0681 0.1301 0.1798 0.2095 0.2102 0.1723 0.0963 0 

WB 0 0.0678 0.1295 0.1788 0.2084 0.2090 0.1719 0.0971 0 

Pj 0.5053 0.4882 0.4421 0.3797 0.3169 0.2665 0.2353 0.2215 0.2181 

PB 0.5055 0.4884 0.4422 0.3798 0.3169 0,2665 0.2352 • 0.2214 0.2180 

PJ 2.3721 , 2.3144. 2.1559 1.9342 1.6998 1,5020 1.3742 1.3162 1.3018 

PB 2.3726 2.3149 2.1562 1.9344 1.6997 1.5017 1.3735 1.3154 1.3009 

FJ 0.2557 0.2573 0.2620 0.2699 0.2810 0.2946 0.3088 0.3206 0.3253 

FB 0,2558 0.2573 0.2620 0.2699 0.2810 0.2945 0.3090 0.3206 0.3252 

Subscripts:   J   Values obtained by present method 

B   Values obtained by Babenko et al. (Ref. 11) 
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2.   3-6 

PRESENT THEORY 
FIRST ORDER THEORY (REF 4) 

Q THEORY-MORETTI  (REF 13) 

FIG. 4:   CIRCULAR  CONE 
PLOTS OF FIRST ORDER, MORETTl'S, AND PRESENT SURFACE 

PRESSURE  RESULTS, 

M   = 5 
oo 

.= 10' 
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FIG. 5 :   CIRCULAR  CONE 
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RESULTS 
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FIG.6--   CIRCULAR   CONE 
COMPARISON OF SURFACE PRESSURE   BETWEEN   PRESENT   THEORY AND EXPERIMENT 

M  =4-25, 9C=5°,   a = 5° 
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FIG. 7:   CIRCULAR  CONE 
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Moo= l-8       9= = l2-5°      a   = l7-5' 
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T-    EXPERIMENT    (REF   15) 
PRESENT   THEORY—PRESSURE 
OBTAINED BY EXTRAPOLATION 
FROM VALUES AT 0-9,l'0, I- 

FIG. 10:   CIRCULAR   CONE 
COMPARISON   OF SURFACE PRESSURE   BETWEEN 

AND   EXPERIMENT 
PRESENT   THEORY 

M^ 4 • 2 5,     0C = I 2 • 5 °, 15-63° 
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APPENDIX A 

NUMERICAL  PROCEDURE  FOR  SOLVING  ELLIPTIC  PARTIAL  DIFFERENTIAL  EQUATIONS 

A. 1.0    NOTATION 

(x, y) 

U . 

Xo, Xi 

yo, yi 

.      F(y) 

<(y) 

Fi 

Ui 

Pi 

co-ordinate system 

a function of (x, y) 

lower and upper limits on x 

lower and upper limits on y 

a function of y at x = x0 

a function of y at x = xx 

value of £ (y) at the kth line at x = Xi 

value of F (y) at the ith line at x = x0 

a value of U on the ith line 

a value of p on the ith line 

f I U, r— I    boundary condition at x = xx is that f ( U, — 1 is zero. 

A.2.0    METHOD 

Suppose '(x, y) are independent variables and U is any function of (x, y) defined by partial 
differential equations within a region x0 < x < Xj and y0 < y < ylP Boundary conditions for U or 
its normal derivatives are given on the bounds of the above region. 

By estimating some unknown function (or functions) at one of the boundaries (say, for 
•jTJ 

example, — = F (y) at x = x0, y0 < y < yx), and by replacing the derivatives in the y direction by 

differences, thus making the partial differential equations into ordinary differential equations, the 
equations can be integrated from x0 to xx in a way similar to that for integrating parabolic partial 

differential equations. At x = xx there are given boundary conditions, of the form f I TJ, r— 1  =0, 

to be satisfied, but the preceding integration, assuming the estimate at x = x0 is not correct, would 

give a residual of f I U, —- )   = e (y.), say. To solve the elliptic problem completely the estimated 

function at x = xp must be improved until e (y) is sufficiently small. 
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r)TT v 

To carry out the above integration (using an estimate of-— at x = x0) the region is first 

divided into strips of width ay and first'or second derivatives replaced by differences 

(em 
\dy/x,y 2 5y 

U (x, y + 8y) - U (x, y - fiy)   + Q 

/32U\       = U (x, y + ay)  - 2U (x, y) + U (x, y -_jy)       Q 

\dy2 /x,y 8y- 

or alternatively by more accurate formulae such as 

"U (x,y+ 2«y) -.U (x, y - 25y)- /aU\ 4 rU(x,y + 3y) - U (x, y - gy)1   _  1T 
W/x.y  ""   3 L 2 5y J        3 [ 4 5y .  J. 

+ 0 (ay*) ' (A-l) 

for a first derivative. The partial differential equations thus become a set of coupled ordinary 
differential equations in one independent variable x with differential equations for eaeh of the 
dividing lines in the region y0 < y < y1 and with the differential coefficient at any line depending 
on variables to both sides of that line. These resulting ordinary differential equations can then be 
integrated by standard techniques, one of the most efficient being the Hamming predictor modifier 
corrector method (Ref. 14). This method was used in calculations presented in this Report; the 
starting procedure employed was the Runge Kutta method given, for example, in Reference 20. 

Once an integration has been made from one boundary to the other (x„ to Xi in the case 
above) the residual function e(y) is known for the given estimate F(y). To improve the estimate 
F(y) so that |e(y)| is made smaller, the following method is used. 

The function F(y) Can be defined by its values at F(y0 + j5y) .(j = 0, 1 . . . n; y0 + n8y = 
yi), and similarly e(y) is represented by its values at e(y0 + jöy). Therefore determining a procedure 

to minimise |e(y)| is equivalent to finding a procedure to minimise ^, e2 (yo + k5y) with respect to 
k = 0 

F (yo + jöy), j = 0, 1 .... n. Many methods exist for minimisation; one of the best for minimising 
a sum of squares is presented by Powell (Ref. 21). This method is similar to the generalized least 
squares technique given by the iterative process 

where, in the above case, the number of unknowns m is equal to n.   ek =   e (y0  + k5y)  and 
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Fi = F (y0 + i5y) and <5Fj is the improvement to be made to Fj so that   ]T)   «2  is minimised. 
k = 0     k 

In the generalised least squares technique "steps" defined by (A-2) are made until either ^ e2 

or 6Fj/Fj is sufficiently small. Each step requires calculating dek/dFi by differences 

de± ^ ek (FQ, Ft . . . , Fj + AFj, . . . Fm) - et (F0, Ft . . . Fj . . . Fm) (A-3) 
3Fi AFi 

for i = 0, 1, 2 ... m, 

where ek is considered as a function of F0, Fi. . . Fm since, for given values of F0, Fi . . . Fm, the 
corresponding values of ek (k = 0, 1 . . . n) can be found by integration as described previously. 
AFi is a small increment in Fi, say 10"6 F; if Fi ^ 0. Now in Powell's method only the first "step" 
requires the use of (A-3), and after the first step the partial derivatives can be calculated from values 
of ek (k = 0, 1 . . . n) already obtained on the previous step. Thus Powell's method is more efficient 
than the generalised least squares technique arid it is also claimed to ensure convergence. 

It should be noted that it is not necessary to define the" function F(y) by its values at 
yo + jßy (j = 0, 1 . . . n). In fact it is more economical to define F(y) by as few "unknowns" as 
possible in order to reduce the computation required for the first step given by (A-3). For instance, 
the first few terms of a Fourier series expansion could be used if it is known that F(y) can be ade- 
quately represented in this way, which is the case for a circular cone at incidence and for the other 
conical bodies discussed in this Report. 

A simple example illustrates the above method. To solve 

ätf+ä^+1=;0 ,(A'4) 

given U = 0 on x= 0, 1 and on y = 0,1. From symmetry it is sufficient to solve the problem for 
the region 0 < x < §, 0<y<! with boundary conditions 

U = 0   on x = 0 and on y = 0 

— = 0 on x = | and -^ = 0 on y. = | 
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Divide the region 0 < x < I, 0^y<| into strips as shown, and number the lines forming 
the strips 0, 1, 2, .... n 

0.5 

U = 0 

*y. 
n 

au 
dv 

= 0 

au 
. ax 

o 
o 

1 

'-                     0-  fc-X 

= 0 

U = 0 

ay2 Replace —2 at line i by the difference approximation 

Ui+1 - 2Ui + Ui-i 
5y2 

Let pi = |--   }   , then equation (A-4) can be written 

dpi  ,     Ui+i - 2Ui + Ui-i 

also- 

dx 

du, 
dx 

+ 

= Pi 

5y2 +i •= o 

(A-5) 

Now the set (A-5) represents a set of ordinary differential equations. The boundary condition 
ill 
— = 0 on y  =   0.5  can  be satisfied  by  the  difference  approximation  Un +1   =  Ün -1. The 
ay 
equations (A-5) are subject to boundary conditions at x = 0 

Ui = 0 

Pi = F(y,) 

On estimating F(y), the set (A-5) can be integrated to x = 0.5 giving residual errors e(i<5y) = p; 

at x = 0.5 (we require pi = -j-1 = 0 at x = 0.5). One can then make small displacements to F(y) 

as in (A-3) and use (A-2) to improve the estimate of F(y). 

An advantage of the above procedure is that if the differential equations and boundary 
conditions are linear as in the above example, then the correct solution will be obtained after only 
one step given by (A-2), since in this case the ek are linear functions of ¥,. A disadvantage of such 
an approach is that reasonably good initial estimates of Fi may be necessary in order that the inte- 
gration will not diverge. 
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APPENDIX B 

A METHOD FOR SOLVING THE SURFACE EQUATIONS FOR THE CIRCULAR 
CONE AT INCIDENCE 

The surface pressure is given by the method of Section 3.0, but it is necessary to calculate 
u, v, w, and p from equations (6), (11), (12), and (13). Obviously the density follows directly from 

equation (11) where the constant in that equation is the value of ( —• ) at  $ = 0. 

At the windward and leeward axes (4> = 0, v), w = 0 from the symmetry of the problem, 
hence at these two points u and v can be calculated from (6) and (12). Equation (13) u0 + Gv0 = wG 
is replaced by differences as in equation (A-l). These difference equations are written at every 
point where p is given (except at 0, ir) and, together with (6) and (12) written at every such point, 
give a set of non-linear algebraic equations. These equations can then be solved.by usual techniques. 
The method employed here was that of Reference 21, since this method is efficient and was already 
being used to solve the main part of the problem. 
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APPENDIX C 

THE POSITION OF NODAL AND SADDLE TYPE SINGULAR POINTS 

It has been noted in Reference 7 that singular points will always exist in conical flow 
without axial symmetry. We define a nodal type singular point as a point where surface streamlines, 
converge and a saddle type singular point as one where the surface streamlines diverge. At a nodal 
type singular point, discontinuities in entropy will exist giving a discontinuity in some other 
quantities, while at the saddle type singular point no discontinuities will exist. In this Section we 
will consider the position of the singular points for a circular cone at incidence and also for an 
elliptic cone at zero incidence. 

The position of a singularity is important since, if it should move off the surface, it is not 
possible to integrate the equations (5) past this singularity. On the other hand, a knowledge of their 
position on the surface is also important, since this would affect the solution of the surface equations 
(6), (11), (12), (13). 

We know that a singular point is defined by the two conditions 

w = 0 (C-la) 

and the main diagonal of matrix B should be zero, that is 

f .u + £r v + & w = 0 ,    (C-lb) 

since equations (9d) and (9e) can be combined to give ( £zu -f- £rv + — w   I^TTH TTT = 0 where 
\ r       / of        v o(p 

S = log --- and, hence, when conditions (C-l) are satisfied S is indeterminate. 
P    • ••'"".' 

Now (C-lb) is satisfied at the surface as a boundary condition, and because of the symmetry 
about <j> = 0 and r in the case of a circular or elliptic cone, we also know that w = 0 at <£ = 0 or ?r 
(as well as at <f> = TT/2 for the elliptic cone at zero incidence). Thus a singular point is always present 
at a point on the body and in a plane of symmetry for the conditions being considered. 

C.1.0    THE CIRCULAR CONE AT INCIDENCE 

It is shown in Reference 9 that for the circular cone at incidence ä saddle type singular 
point is present at the windward generator <t> = 0 and that a nodal type singular point is present 
at the leeward generator <f> = r until the surface pressure becomes adverse. It is then shown that 
this nodal singularity may move away from the leeward generator, to follow the point of minimum 
circumferential pressure, or that it may stay at the leeward generator until a certain critical incidence 
is reached, when it would lift off the surface. The following analysis shows that the latter situation is, 
in fact, what happens to this nodal singularity. 

To determine whether the nodal singularity can move along the leeward plane of symmetry 
and off the surface, we consider the quantity [£,.u + fr vk = 1>f) = „. which, as the normal compo- 
nent of the velocity at the shock, must be negative in the sign convention being used. We also consider 

U(^+HU 



— 52 

and show that this derivative becomes positive under the conditions given in Reference 9 for the 
singularity to move away from £ = 0, <j> = r. Thus, since £zu + £rv = 0 at £ = 0 (the normal 
velocity), it follows that £zu -+- £rv will pass through another zero along the leeward plane of sym- 
metry as well as being zero on the surface. 

It will also be shown that the nodal singularity will not move along the surface away from 
the leeward generator. Thus, the nodal singularity will move into the flow field along the leeward 
plane of symmetry. - 

C.1.1     To Show Thatl — (   £zu -f-  £rV   I Becomes Positive At A Certain Critical Incidence 
LaSV .   /Jj = o,-0 = » 

Consider equation (9c), which applies at the surface £ = 0 

£rG0 w „ p0   _       wv   • 
_   -^P,   +    Q    W0    +   JQ     -     -   -Q- 

since d = 0 is a surface boundary condition. Now differentiate this equation with respect to <j> 
and consider the result at a plane of symmetry (G„ = w = p0 = 0) giving 

_ _k^L p   + w 2 + V^ + = 0 
P • P 

or 

v.   <C-2) .|[-V±N/V>-4(B!<-T)] 

where T = £r G0(j p5/p and must be zero, since from (9b) it follows that if w = 0 then p5 = 0. 
For the circular cone, in the leeward or windward plane of symmetry the positive sign obviously 
applies at incidence a = 0, since we then know that pil(( = w(, = 0 and it seems from the results 
obtained, using the method of this Report or from those of Reference 11, that the + sign always 
applies on the windward side. The + sign applies also on the leeward side until an incidence is 
reached where v2 = 4 p^/p, when the sign changes to —, and this seems to occur at relative inci- 
dences a/0e between 0.2 (for slender bodies) and about 0.4 (for hypersonic conditions). 

Now consider equation (9d') at the plane of symmetry and at the cone surface 

d_ 

a* 
[,u + e„] __•[„ + i + s] 

and substitute for w0 from (C-2) 

at 
[f.u   +   £rv]   = ^[ + ^/v2-4p00/P- v -2uG] (C"3) 

Now u and v are always positive on the cone surface in the sign convention used, hence, when 

the + sign in (C-2) applies, it follows that — (£z u + £r v) < 0 and the singularity stays on the surface. 
Q d£ 

When the — sign in (C-2) applies, — (£z u + £r v) is still negative until an incidence is reached such that 
d£ 

i* - 4 p00/P > v + 2 u G 

= 3 v 
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since on the surface at the plane of symmetry from (6) we have v = uG. Alternatively, this condition 
can be written 

. P(W< - 2Pv2.. 

or in terms of surface Mach number M0, surface pressure pc and cone semi-angle de 

P00 < - 2T pc M
2

0 sin 0„ 

This is the expression formed in Reference 9 for the singularity to move away from 
£   =   0,   <(>   =    7T. 

C.1.2    To Show That the Singularities Cannot Move from the Planes of Symmetry. 

When the singularity does move, and, in fact, for incidences above that incidence when 
the sign in (C-2) first changes (i.e. v2 = 4p00/p at the leeward generator), which always occurs 
before adverse pressure starts, we know that the — sign applies in the expression (C-2) for W0 at the 
leeward plane, that is 

w0 = i [- v - Vv! - 4p00/p. ] 

which is always negative. On the other hand, at the windward plane we have 

w0 = i [ - v + vV •- 4p00/p  ] 

and it is observed from results that-a pressure maximum always exists at 4> = 0, so that p00 < 0, 
thus w0 > 0. Hence, it is shown that at the surface w0 > 0 on the windward plane and w0 < 0 on 
the leeward plane, and since w is zero at <£ = 0 and 71-, other zeros in w could only occur on the surface 
if they were to occur in pairs. Now a zero in w can only occur at a surface pressure minimum or 
maximum, and apart from the minimum'and maximum pressure at the windward and leeward 
generators, it is observed from results that only one other minimum occurs at incidences greater 
than that at which adverse pressure first starts. Hence w cannot be zero except at the windward and 
leeward generators. 

Thus the singularity situation for a circular cone at incidence is as follows. A saddle type 
singularity is always situated at the windward generator and a nodal singularity is at the leeward 
generator until an incidence is reached when p00 < — 27 pc M0 sin" 6a. For incidences above this, 
the nodal singularity will be situated off the surface along the leeward plane of symmetry. 

These conclusions on the position of the singularity are, in fact, verified by results obtained 

in certain cases for the circular cone at incidence, and a plot of •— (£zu + £r v) 

and -r~    — (f,u+ £rv)    against £ along 4> = TT is given in Figure 15 for the case Mra = 1.797, 0„ = 

12.5°. Figure 16 shows a plot of p,i0 + 2p v2 at the leeward generator against relative incidence 
a/8c for the same case. 

It should be noted that it is possible by the present method to obtain solutions for some 

cases where the singularity moves off the surface, since extrapolation of £z u + £r v + ——    from 

£ = 8£ to £ = 0, as described in Section 3.0, is made. It also appears to be valid to extrapolate press- 
ure through this singularity. The singularity does not cause trouble until it moves so far out that it 
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is at a distance corresponding to £ approaching <5£ from the surface, so that results can still be 
obtained for moderately large relative incidences (assuming that £2 u + £r v and p are continuous 
through these singularities). 

C.2.0    ELLIPTIC CONE AT ZERO INCIDENCE 

Since the elliptic cone at zero incidence is symmetric about $ = 0 and <f> = ir/2, only the 
section 0 < 4> < ir/2 of the flow field needs to be considered. 

Consider the pressure distributions around elliptic cones in the section 0 ^ <$> < x/2. 
They have the forms shown, for example, in Figure 17, which shows the form variation against 
various values of a/b where a is the semi-major axis and b is the semi-minor axis. The minor axis 
lies in the plane 4> = 0, IT. From these distributions it can be seen that the pressure is monotonic 
except in the cases a/b = 2.4 and 2.8. It is the opinion of the author that the non-monötonic behaviour 
in these latter cases is due to "numerical overshoot" of the pressure, since the numerical procedure is 
trying to fit an almost constant pressure in the region 0 < 4> < 40° followed by a rapidly varying 
pressure in the region 40° < 4> < 90° — in fact, in the author's opinion, the pressure will always be 
monotonic for all a/b whatever the free stream Mach number. 

On the assumption that the pressure is monotonic in the region 0 < </> < T/2, it is easily 
seen that w cannot be zero except at 4> = 0, r/2 as follows. If w = 0 on the surface, then from 

equation (9b) we must have — = 0, and hence from equation (9c) a necessary condition for w to 
dp o£. 

be zero is that ~~- must be zero. However, for the elliptic cone at zero incidence, since p is monotonic, 

w can only be zero at <t> = 0, -K/2. 

The above analysis contradicts Reference 22, where results are given that show that for 
M^ = 10, a = 0.7 and a/b = 2, a nodal type singularity existed on the cone surface at about 
<f> = 20° with saddle type singularities at. 4> = 0 and ir/2. Plots of some results for this same case, 
using the present method, are given in Figure 18. They indicate a nodal type singularity at $ = 0 
with a saddle type singularity at 4> = -K/2. 

It still must be determined whether the singularities can move off the surface for the 

elliptic cone at zero incidence. It can be shown that for the elliptic cone the formulae for w0 and — 

(£zU + £r v) given by (C-2) and (C-3) apply at the planes of symmetry at the cone surface, but the 
appropriate signs have to be determined. Clearly when a/b = 1, p00 = w0 = 0 everywhere and, 
hence, the + sign holds in (C-2) and the — sign in (C-3). Now if we assume a sign change takes 
place continuously in w0 as a/b increases,. this would imply that v2 — 4p00/p =• 0 would be a 
necessary condition for the change, but at <j> = ir/2 it is observed that p00 < 0 always for a/b > 1, 
hence v2   —  4p00/p is never  zero,   implying  that the   —  sign is always  applicable in equation 

(C-3). This in turn implies that-^     £z u + £r v       = is   always  negative.   Also,   since 

?z u •'+ £r v is zero on the cone surface and is negative at the shock, it follows that this 

singularity stays on the surface. On the other hand, at 0 = 0, since p00 > 0 always for a/b > 1, then 

clearly whichever sign applies in equation (C-3) it follows that    -„-—(t, u • + £r v) 
Lö? J ? = o, 0 = o 

< 0, and by the same argument as above, the singularity stays on the surface. 

Thus, in conclusion, the singularities stay at the cone generators in the planes of symmetry 
for the elliptic cone at zero incidence. 
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APPENDIX D 

THE SOLUTION FOR A CIRCULAR CONE AT ZERO INCIDENCE 

The computations to generate the zero order solution are straightforward once a reasonable 
initial estimate of the shock angle is determined. The method will be described without going into 
mathematical details. 

An estimate of the shock angle is made empirically from results obtained by Sims (Ref. 2) 
for situations involving conically slender bodies (M0 sin 0„ < 0.6) and from hypersonic small 
disturbance theory for M^ sin 0„ > 0.6. These estimates then take the form 

Mco sin 0„ - 1 = -7-^t— (Moo sin 0C)
3-63 for Moo sin 0O < 0.6 

and 

I"J-^ +     •   1.  ,    -1 * for Moo sin 0C > 0.6 
L    2 M^ sm2 0C J 

where 0a is the shock wave angle. 

Having obtained these estimates of the shock angle, quantities behind the shock can be 
determined and the equations of motion integrated into the body, thus giving a residual nprmal 
velocity on the surface. An iteration procedure due to Wegstein (Ref. 23) is then used to improve 
the estimate of the shock angle so that the residual normal velocity is made very close to its required 
value of zero. It is found that this computation requires only three or four iterations, hence only a 
few seconds of computer time. 

sm 0S 

sin 0C 
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APPENDIX E 

SOME COMMENTS ON THE COMPUTER PROGRAM 

E.1.0    THE INCLUSION OF FURTHER FOURIER COEFFICIENTS TO REPRESENT THE SHOCK SHAPE 

As the incidence or other perturbation is increased, the number of Fourier coefficients in 
m 

the shock wave equation F (0) = Yl F; cos i 4> must be increased. At each incidence the estimated 
i = 0 m 

Fm (i.e. the last coefficient) is compared with   ^    F; (the tangent of the shock angle at </> = 0), 

and if I Fm I  /  53    Fi > 5 xlO6, an extra coefficient is added so that the shock wave equation is 

m + I 
now F (0)  =  X)     F; cos i <f> where Fo, Fi Fm have the same values as were estimated previously 

_,     i = 0 
and the estimate for Fm + 1 is zero. An extra coffiecient is also added if the sum of squares of residuals 

on the preceding calculation is greater than 2 x 10"8. 

E.2.0    STEP LENGTHS 

Step lengths of 22|° and 0.1 in $ and £ respectively seem to give sufficiently accurate results 

for all the cases computed so far for the circular cone at incidence. To keep the step length of 22|° 

in cj> implies that no more than nine Fourier coefficients can be used to represent the shock shape, 

since the number of unknowns defining the shock must not exceed the number of dividing lines in 

the region 0 < <j> < TT/2. Thus, when the criterion in Section E-1.0 is satisfied to include a tenth 

coefficient, the Fourier series representation to the shock is not used; instead the shock is simply 

represented by values at discrete points 0=0, 22! 180°. Initial estimates at these discrete 

points are found by extrapolation as before. The iteration procedure then improves these estimates 

at the discrete points. 

In the cases of the elliptic cones and the fourth order cosine Fourier series body, the 

increment in <t> is taken as 22.5° to start with, i.e., when the configuration is near to a circular cone 

at zero incidence (this is equivalent to 8 sections and 9 lines in the range 0 < <j> < 180°). As the 

incidence or eccentricity or other perturbation increases, further Fourier coefficients are added to 

the sum forming the shock r = F(<£), and when the number of coefficients is about to exceed the num- 

ber of dividing lines in the region 0 < <t> ^ 180, the number of lines is increased so that their number 

is always equal to the number of coefficients. It is necessary to do this in order that the number of 

discrete normal velocities at the surface is not less than number of unknowns defining the shock, 

which is a necessary condition for the iteration process. 
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E.3.0    EXTRAPOLATION TO THE BODY 

Integration was always made to a value £ = 0.1 in equal steps 5f. The velocity £z u + £r v 

H -w was then extrapolated, using the values and derivatives of this quantity at 0.1, 0.1 + S£, 

0.1 4- 2 fi{, and 0.1 + 3 5£, by solving the formulae 

•q(0)  = q (Sh)  - &h q' (Sh) + 4^ [q"(0) .+ Sh q'"(0) + -^ q-(Q) J 

- x L 3"'(0) + 5h qIV(0) J + "M qIV(0) + °(sh6) 

where 5h = 0.1 - (j - 1) 5£   for j = 1, 2, 3, 4 (5£ < 0) 

and q represents the quantity to be extrapolated. 

When the iteration procedure is completed the differential equations are integrated to a 
value £ of approximately 0.003 and the pressure is then extrapolated to the surface by a quadratic 
formula. 

E.4.0    COMPUTING TIMES 

Typical times on an IBM 360/50 computer for the circular cone at one incidence are 40 
seconds to 1 minute for relative incidences up to 0.6; times for higher relative incidences vary from 
1 to 3 minutes approximately. Actual times are given below for certain typical cases. 
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E.4.1     Circular Cone 

Mc = 25° 

Time (min.) 

0.01 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.7 

0.6 

0.6 

0.7 

0:7 

0.8 

1.0 

1.2 

Moo =  1.797 12.5° 

Time (min.) 

0.01 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

0.7 

0.6 

0.8 

0 7 

0.7 

0.7 

0.7 

0.9 

0.9 

1.0 

1.1 

1.1 

1.1 

1.1 

2.5 
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E.4.2    Elliptic Cone 

Moo = 10 

q/b 

1.01 

1.2 

1.4 

1.6 

1.8 . 

2.0 

2.2 

2.4 

2.6 

2.8 

Moo = 2 

a = 0.7 a = 0 

Time (min.) 

0.5 

0.5 

0.6. 

0.8 

1.3 

1.8 

2.7 

4.3 

5.7 

10.0 

a = 0.2217 b = 0.18475 

10 

0.01 

0.1 

0.2 

0,3 

0.4 

0.5 

0.6 

0.7 

0.8 

.0.9. 

1.0 

1.1 

1.2 

1.3 

Time (min.) 

1-2 
1.1 

1.0 

1.0 

1.2 

1.2 

1.2 

1.3 

1.3 

1.3 

1-4 
1.5 

2.9 

4.1 



61 

E.5.0    TERMINATION OF THE ITERATION PROCEDURE 

The iteration procedure is continued until the change in each Fourier coefficient is less 
than 10"6 of that Fourier coefficient. An alternative criterion for terminating the iteration is also 
used; this is based on the sum of squares of residual errors being less than 10 6. It was found that for 
small relative incidences up to about 0.6, only one step in the iteration procedure was required to 
give sufficient accuracy. This one step requires about 10 to 15 integrations of the equations from the 
shock to the body. For higher relative incidences about 2 to 4 steps were necessary, requiring about 
15 to 30 integrations of the equations. 

E.6.0    PROGRAM  AVAILABILITY 

Duplicate program decks are available upon application to the High Speed Aerodynamics 
Section, National Aeronautical Establishment. 

A description of the program and its use is given in Reference 24. 

1 


