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SUMMARY 

Birkhoff's normalizing canonical transformation at 

an equilibrium of elliptic type with no internal resonance 

can be built explicitly and recursively, without partial 

inversions or substitutions, by means of Lie transforms. 

Invariant sections and ordinary families of periodic 

orbits  for truncated normalized systems are analyzed in 

detail. 
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Introduction 

We consider a conservative dynamical system with    m   degrees of 

freedom whose equations of motion we write In vector form 

<-!?*•        p--l?*' (1) 

In which    q    and    p    Indicate vectors with components    q.    and    p. 

(1 ^_ j ^ m)     respectively.     We assume  that the origin     (p ■ 0, q ■ 0) 

In the phase space  Is an equilibrium point,  and that  the Hamlltonlan 

^(q.p)     is an analytic function of the state variables  in a neighbor- 

hood of the equilibrium.    Hence Taylor's expansion of   31   in that 

neighborhood is of  the form 

W(p.q)   '    1   ^ #n(P.q). (2) 
n>0 

where,   for each    n >_ 0,  &      is a homogeneous polynomial, of degree 

n + 2    in the  state variables.     Indeed the constant  term in the develop- 

ment of   31   around the equilibrium does not  contribute  to the equations 

(1),   and since    (q ■ 0, p » 0)    is a solution of  (1),   the first degree 

terms  in (2)  must vanish.     Thus  the power series  for   31   begins with 

quadratic  terms. 

We suppose that  the series   (2)  has only real coefficients,  in particular 

that  the quadratic  form 3{Q    is real.     Let    <5f   be  the matrix of the   linear 

Hamiltonian system derived  from 3{Q.     If    X     is  an eigenvalue  of  <$,   then 

its  complex conjugate    X     and its inverse     -\     are  also eigenvalues  of 

„ , ^-.J...     . . ^I^.-^.,: 
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of an    m-dimensional torus by the    m-dimensional phase space  (Arnold 

and Avez 1967).    Now most of the invariant tori of quasi-periodic 

motions  in the flow of trajectories determined by cV   will survive 

(N) the perturbations induced by the remainder   JP      .     This may explain 

why  (although Birkhoff's normalization is only exceptionally convergent 

as    N —>>»), it proves useful in revealing the dynamical structures 

around the equilibrium for the full system  Ä. 

1.    Normalization by Lie transforms 

It is assumed that the basic frequencies    X-,A» X      are 
x    Z m 

rationally independent of each other. 

Traditionally the normalizing transformation is defined from a 

generating function 

W(IM)  -     I      I**k +   I   Wn(I*,(t). (8) 
l<k<m n>l 

by the implicit equations 

^■\+ ^nfV a<k<m) 
n>l      k 

(9) 

n>l      k 

Conversion is  then made  to the  complex variables 

r-    Hk r-    "^k Ck -   yi^ e    K, nk--iyi^e      K (l^k^m) (10) 

so  that  the operations of normalization are performed entirely within 
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the algebra of polynomials In 2m letters over the complex numbers. 

They have been programmed for automatic processing by computers for 

systems with two degrees of freedom: programs originally set up to 

deal with resonance cases (Gustavson 1966) have been modified to 

operate In the regular case (Chal and Kass 1966). 

The use of a generating function in order to build a normalizing 

canonical transformation is reminiscent of a well known procedure in 

the theory of General Perturbations (Poincar^ 1893) that is usually 

referred to as Von Zelpel's method.  But its shortcomings have recently 

prompted the formulation of a more direct algorithm based ön Lie trans- 

forms (Deprlt 1969). This new formalism simplifies to a large extent 

Birkhoffs normalization.  The present application will in turn check 

the general procedure.  For we had previously normalized the Hamlltonian 

of the restricted problem of three bodies at L,  (Deprlt et dt.   1967), 

and we shall find that the algorithm about to be described indeed restores 

the already established normalized Hamlltonian. 

The basic step is to construct a sequence of functions 

W (I*,t*)      (1 U 1 N) 

depending not  on mixed variable« but on both new angles  and new actions. 

They will be obtained in  the course of transforming the Hamlltonian.     For 

reasons of  clarity,   let  the exposition refer to the diagram in Fig.   1 

'  ■ -ii I MMi—■■ ■ 
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5f,  m (i) 

Z1  / 
/2  Z1 7° 

Fig. 1. - Recursive normalization of the Hamiltonian. 

The functions entering the diagonal ^fg, Jf. ,5f 2»* • •  are the hoino~ 

gentous components in the initial series (2) as expressed by means of 

the primitive angles and actions $.  and I.  (1 ^ j ^ m); the functions 

entering the diagonal »Q, ÄQ  . ÄQ  .••• are their normalized forms. 

The elements in Table I are to be built recursively according to the 

law 

^q Vl 0<T<a UFq-J     ' WJ+lj (ID 
0<J<q 

where    /M    is  the binomial  coefficient 

(]) 
q(q-l)   ...   (q-j-H) 

1.2. j 

\d   (jl.: U.,,\     is the Poisson bracket \    q-j     j+1/ 

J_«(P-I) .i 
axj^q-j     ^ 3** Wj+l) 

Extending a proposition established by Brown and Shook (1933), we can 

prove that,  if    f    is a homogeneous d'Alembert series of degree    p    with 
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respect to the variables     Jl*,y/lt,...,Jl*,    (t»?,^» • • • »^i    and    8 

is a homogeneous d'Alembert series of degree    q    with respect to the 

same variables,  then the Poisson bracket    (f ;g)    is also a d'Alenibert 

series with  respect to these variables, but of degree    p + q - 2.    The 

fact is that, while the separate partial derivatives with respect to 

the actions    I*,!* I*    are not d'Alembert series,  in each Jacobian 12. m 

3(f.g) i_.  a(f.g) 

the divisor y/T*   disappears, and by exact cancellation of all terms 

not having the d'Alembert characteristic, the Jacobian of f and g 

with respect to $* and JlF   turns out to be a homogeneous polynomial 

in the variables yi*", y/ltf,..., ^1*" of degree p + q - 2 with the 

d'Alembert characteristic. 

This proposition assures the consistency of the scheme we propose 

here; it is useful as a check, on the various parts of a program to be 

implemented by computer. 

As we shall see, the differential operator 

l<k<m   Tk 

will play an essential role.    It is a linear mapping into itself of the 

algebra   Gf  :öf(l*,t>*)     of d'Alembert series with respect to jl*, Jlij  

>/l*f    ^f .'{'A.. •• .4,*•    More precisely it is a linear mapping into itself 

of  the vector space   <3f ^      (I*,4>*)    of homogeneous polynomials of 
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degree    p    in   Jl*,^!*,...,,/!*    having the d'Alembert  characteristic 

and,  under the condition that the  frequencies    X ■  (X.)     are rationally 

independent of each other,  the kernel of this restriction is the vector 

space    T^'  E !rp) (I*)    of homogeneous polynomials  in   yi*,/!* ^1* 

of degree    p   with real coefficients.    Notice also that 

D(X)cos(   2      «)--Li     Vk|sin(J      «)' 
\l^k<m ' ll<k<m '       xl<k<m ' 

D(X)Sin(   I      V*)-     |   I     Vk]cos(S      j^*). 
,l<k<m / ll<k<m '        vl<k<m / 

(12) 

which makes the inverse operator    (D(X))        a trivial operation over   <%, 

Now let us see how the normalization is carried out  recursively. 

In view of  (11), 

^ -#!+ C^; w^, (13) 

with the understanding that in 3(Q    and  3{.    the letters    I    and    fy 

have been replaced by    I*    and    4)*    respectively.    We collect in  3f0 

the  terms  of   gt    that do not depend explicitly on the  angle coordinates 

h 
Lo 

(3) 
()*.  Of course, since jf,  is an element of Of  , there are no such 

terms, and we find that ^    must be put equal to zero.  On the other 

hand 

C^; W1) ■= - D(X)W1, 

so that the definition (13) transforms into the linear partial differential 

equation 

D(X)W1 -3^. (14) 

. 
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W, DU) ^1 

of  (14)  is  constructed according to the rules  (12), and thus it  is an 

element of   <5f      .    We neglect to complete it by arbitrary elements of 

the kernel of    D(X); their addition would indeed deny the d'Alembert 

characteristic  to    W... 

Suppose that the first    N    rows     (N >  1)    of the triangle  in Fig.  1 

1 have been computed,  that is to say the Hamiltonian has been normalized 

up to order    N + 1    and the first    N - 1    generators    VL.W-,,,. ,W„ ,    of 

the canonical   transformation have been computed.     At this  step,   it is 

convenient   tc put    WM = 0     for the  time being, and to  compute  the elements 

of the     (N + l)-th row of the  triangle in Fig.  1 by the formula   (11). 

~(D) Denoting them by   3£      , we  obviously have  that,  for    p ^ 1    and    p + q « N, 

*<P>-5f + C*o;wN) 

S(P) Notice that each element   3^'    belongs  to the vector space   Cf 

(15) 

(N+2) 

Making p = N and q = 0 in (15), we find the relation 

ÄoN) + ö*)5 V =^oN)- (16) 

(N) "~(N) 
Once more we collect in 3lQ        the  terms  of 31-        which do not  depend 

explicitly on the angle coordinates     <j)*.     If    N    is odd,   then   J£t 
(N) 

turns  out  to be  zero; but  if    N =  2M    is even,  Jll 
(N) 

0 

is  a homogeneous 

polynomial of degree    M    in the letters     I*,I* I*    with real  coef- 

ficients.     Let  us put 

■*••—• 
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3w .j^) .mm (17) 

so that we can write the identity (16) as the linear partial differential 

equation 

D(X)WN =JP
(N), (18) 

of which a solution is found in accordance with the rules (12): 

Observe that the particular solution (19) belongs to the vector space 

Ci . If N is odd, completing W  with elements of the kernel of 

D(\) would result in depriving the completed solution of its d'Alembert 

characteristic.  But, if N = 2M is even, that characteristic would not 

disappear by adding to VL, a homogeneous polynomial of degree M in 

the letters I*,I*,...,I* with real coefficients. Yet, as follows from 

Birkhoff's proof of invariance with respect to the group of normalizing 

canonical mappings, this complementary term is not going to contrib-Jte 

subsequently to the normalized Hamilton:!?.n. Therefore we decide to omit 

it systematically. 

Having determined W.,, we complete the elements (15) as follows 

^(P) »^(P) .jpW      (p > 1, q > 0, p + q = N)     (20) 
q     q -     - 

so as to be ready to extend the normalization, if necessary, beyond the 

order N + 2. 

So far we have determined the components of the normalized 
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Hamiltonian,  and the generators     (W-.W.,... ,W )    of the Lie transform. 

In order to construct formally the normalizing canonical transformation, 

we have to compute the He transforms of the original angle and action 

variables    (<Ji,I).    To this effect, we apply the usual triangular algorithm 

(Deprit   1969) which converts series like 

*0  "  *'     ^n E 0 for    n ^ 1 

into functions of the normalizing angle and action variables    ((j)*,I*). 

We proceed in the same manner to express the original state variables 

(q,p)     as  given by  (4),  if we need them expressed in terms of    (((i*,I*). 

2.    Normalized systems with two degrees of freedom 

From now on we restrict o 'rselves  to dynamical systems with two 

degrees  of freedom 

As we just described  it,  Birkhoff's normalization has now become 

a relatively easy operation to be implemented automatically by computer, 

and the  analysis of an elliptic equilibrium can avail itself freely of 

this  routine technique.     Hence,   from the methodological standpoint, the 

emphasis  shifts on the problem of how to obtain local  information about 

the phase space at the equilibrium from the normalized Hamiltonian, 

Quite naturally we  are led  to contrast  two kinds  of dynamical 

systems.     On one hand there is   the original system described by the 

full Hamiltonian Ä(I,<|>)     which,   after transformation,   takes the form 

■.,-,-.--. ,—raig-^-^.---    ■-•■..■..,.■■■   -...r^ ^ 



wmmmm H wmm 

-12- 

(7);  on the other hand, at a given order    N + 2, there is  the integrable 

system described by the principal part oV(I*,-).    Before we indicate how 

the integrable system is a deformed, yet informative, version of the full 

system,  let us see how we can study in depth the principal part. 

The  canonical transformation    9*:(q1,q2,p1,p2) ->   ((})*,<{)*,I*,I*) 

from the original state variables  to  the normalizing angle and action 

variables is singular along the phase manifolds    I* = iMq. ,q7,p1 ,p_)  = 0 

and    I*  = I*(q1,q2,p1,p2) - 0. 

But,  for  the normalized system,   i.e.   the dynamical system represented 

by the integrable Hamiltonian cV,   the equilibrium configuration is  defined 

by    I* = I* = 0.     Moreover,  the frequencies    A      and    X«    being rationally 

independent,  there emanate from the equilibrium two natural families of 

periodic orbits.    The faidly   0.     associated with the  frequency    X       lies 

on the manifold    I* = 0, and conversely any point of the Integral mani- 

fold    I* = 0    belongs  to one,  and only one,  periodic orbit in the family 

£.    Likewise the family   cr    that    Liapunov's theorem associates with 

the frequency    X»    lies on the manifold    I* = 0, and it is  coextensive 

to that set. 

It is eas>   to show  (Deprit et at,   1967)   that the nontrivial characteris- 

tic exponents   for the periodic orbits belonging to    &.     and   &„    are 

respectively  the series 
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±iwl E ^{-i*^1*!*1?] IM) - ±i(Xl + h1*! + a21!2 +"-) 

±U2 ' Hälf*1?*1^ lifmQ ' 
±i(A2 + blI2* + b2I$2 ^'^ 

in  the powers  of    I*    or    I*.    The independence of    X.    and    X»    over 

the  rationals implies of course that neither    A      nor    X.    is equal to 

zero.     Consequently  the nontrivial multipliers  of the periodic orbits 

either in   &.    or in   &*    are not equal to one;  in other words for these 

orbits,  the algebraic multiplicity of the multiplier 41 is equal to 2, 

which implies  that the  gradients of the integrals    I*    and    It    In the 

original phase space    (q, »q? »P-i .Pn)    at any point of the integral mani- 

fold    I* = 0    and    I* = 0     are collinear. 

Outside the manifolds     I* = 0    or    I* = 0,   the normalizing canonical 

transformation    0*    is   regular, i.e.   its Jacobian matrix is invertible. 

As  a consequence,  since  the gradients  of    I*    and    It    in the phase space 

(q-,q» ,p1,p„)     form two rows of the Jacobian of     (G*)     , they must be 

linearly independent.     In other words,  along any solution of the normalized 

system, which is neither the equilibrium nor an orbit of   ^1     or    ^,   the 

gradients of the  "adelphic" integrals  are not  collinear. 

A torus     (I* ^ 0,   I* ^ 0)    is filled by quasi-periodic motions having 

the   frequencies 

saaB—aa     i—•--'•■- c       ..-■-■■  ■-.■■■...•    .     .  ~ 
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O'-blts   In that   torus  are transformed into each other by properly adjusting 

the additive  constants  in the phase angles     «f-*    and    $i.     In composition 

with  the normalizing canonical  transformation    0*,  this  translation of 

origin  in  the  torus   constitutes what Whlttaker (1916)   called  the adelphia 

t iwiefomatlon. 

Exceptionally   the  constant  values   given  to the  Integrals     I*     and 

I*    can be  such  that   the  frequencies  are  commensurable:     there  could 

exist  a pair     (p. ,p.,)     of relatively prime   Integers such  that 

P2V1(I1,I2)   " P1V2(I1,I2)" (21) 

In  this   case,   the  quasi-periodic  motions  degenerate   Into  the OPjhuxi'y 

families  of  periodic  orbits mentioned by Whlttaker  (1916).     For such 

orbits,   the   fact  that  the adelphic   Integrals have  linearly  Independent 

gradients  Implies   that all multipliers  are equal to +1;   In each  torus, 

all  the  orbits  have   the same  period. 

The  totality  of  motions   for  the normalized system  Is  aptly  sum- 

rized   In the plane of actions     (I*I*)   (see  Fig.  2).    The origin nut 

represents  the equilibrium;   to each  point  along  the    I*-axis  corresponds 

one  and only  one  singular periodic  orbit   In  the  family    £7 •   likewise 

to each  point   of   the     l*-axis   corresponds   one  and only  one  singular 

periodic  orbit   In  the   family    <7,.     Elsewhere   in  the plane  of  actions, 

the  correspondanco  between pairs     (!*,!*)     and orbits  of  the  system  Is 

one-to-many:     any  point     (I*,l^)     not   on  tiu,  action axes   represents 

ka^B 
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the  class of quasi-periodic motions transformed into one another by 

idelphic transformation. 

There is a natural network of curves coordinatizing the plane 

of  actions     (I*,IJ).    On one hand the energy manifolds  appear in the 

diagram as  the one-parameter  family of curves defined by the equation 

cV(I*,I*)  - constant. 

On the other hand the ratio of frequencies 

p - v(I*,I*)/v2(l*,I*), 

which we found suggestive to call the rotation number,  defines another 

family of curves.    When    p     is rational, each point of such a curve 

represents the family of ordinary periodic orbits  filling the torus 

(I*  I*).     We shall modify Whittaker's definition,   and call ordinary 

family of periodic orbits  the two-parameter set    0(P2/p1)    of ordinary 

periodic-orbits corresponding to the curve  (20)  in the plane of actions. 

Let  us  recall that,  along    Ö^/Pi) .  the period is  a function of the 

energy alone (Deprit and Henrard 1968, pp.  62-63). 

Much expertise is  gained from studying invariant sections through 

the phase space of a normalized system. 

The  figures  that   follow pertain to the normalization  (truncated at 

order 1A)   for the restricted problem of three bodies  around the triangular 

center of  libration    L,     in the system sun-Jupiter.     The state variables 
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are the Cartesian coordinates  and velocities  in the synodical frame 

of  reference located at    L..    The sections  are cut by the hyperplane 

x = 0     (the    x-axis  is in the direction of  the line of syzygies 

oriented  from sun to Jupiter). 

A plane section of a three-dimensional energy manifold is  a two- 

dimensional surface, which we project  on the coordinate plane     (y,y) 
* 

by  lines parallel to  the    x-axis. 

One way of making this surface apparent  in its  projection is by 

plotting the projection of some of  its  curves.     In the case  of an 

integrable  system,   the most  informative curves  are obviously  the traces 

of  the  invariant  tori of quasi periodic orbits  in the energy manifold, 

in particular the tori corresponding to ordinary families  of periodic 

orbits.     Fig.   3 displays for a normalized system sections of several 

ordinary  families  lying on  the energy manifold at the equilibrium. 

The  restricted problem at    L,     for the system sun-Jupiter was normalized 

up  to degree  14;   the   residual  in  the Hamiltonian was neglected.     Then 

the  curves  were  computed  from  the  series  for  the state variables 

x,y,x,y     in  terms  of     ^*i*,l*l*.     The  integral of energy  defines  a 

region  of   the  plane     (y,y)     that will not be  covered by   the  projection 

of  the  section   (the   area shaded  in  Fig.   3).     On each  curve  that  projects 

the  intersection of  a natural  family  of periodic orbits  with   the    x-plane 

passing through  the  equilibrium,   the  points   at which    x ^ 0     are  joined 

by  solid  lines—they  are  located  above   the  projection plane   (y,y);  the 

» 

ür:r: r.' ■ :•*g"•■'••-   - ;  ■   ■ ■ " 
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0.82 0.84 0.86 0.88 

Fig.   3.  - Projection on the plane    (y,y)     of  the section in tho 
energy manifold    C =  3    by  the    x-plane  going through    L^. 
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points at which    x <_ 0    are joined by dashed lines.    As can be seen 

from Fig.   3,   invariant  curves may have intersecting projections.    But 

the points  having the same projection correspond to distinct phase 

states:    on one curve,    x    is    > 0    whereas, on the other,  it: is    < 0. 

In numerical explorations  of invariant curves,   it has been  the rule 

for some time  to plot  only  the  intersection points  at which    x    is    >_0; 

Fig.   3 makes  it obvious  that,   on adopting this  convention,  one discards 

so much information that a correct  interpretation of the sections could 

be  in peril.    We see for instance that  the locus of  intersection points 

with    x >  0    separates  into two disconnected arcs  located on both sides 

of    L. ;  the  same is true for the curve of intersection points with    x < 0, 

However,  in each quadrant,   the  arc  corresponding to    x > 0     falls in 

continuity with the arc corresponding to    x < 0.    Once  this   continuity 

is  perceived,   it is immediately rationalized:     the plane    (y,y)     cuts 

rhe  torus,   leaving part of  it visible above it, while the rest remains 

hidden under the plane on which  the  section is projected. 

In one   respect.  Fig.   3 may seem odd:    the invariant sections do not 

contain the   equilibrium    L, .     But this peculiar feature  is  just another 

instance of  the fact that we  are dealing here with  the projection of a 

surface   onto a plane.    Had we made  the projection on the plane    (x,y), 

we would have   found that section curves in the    x-hyperplane  do indeed 

go  around  the equilibrium    L.      (see   Fig,  A). 

Most analytical  treatments  of an equilibrium treated so   far were 

concerned with Hamiltonians without  gyroscopic  terms   (linear  in  the 

—^^ .-.-.--.- ■^-.  -.      -^..^^     r-.:^- 
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l— P = Ti/t    -   .   JC^ >-.  )  \\ vsT^ 
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P=5l/4 xs. \^_J ] ^s 
I" -  IO ^^^^                                    y                        ' 

-J 1 1 1 1  j i        i 1 
-0.08     -0.06    -0.04    -0.02 0.02 0.04       0.06 

Fig.   4.  - Projection on the plane    (x,y)     of  the section in the energy 
manifold    C = 3    by the    x-hyperplane going through    L. . 
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momenta) wherein the  equilibrium constitutes  a minimum on the potential 

surface.     But,   in the restricted problem,    L,     and    L,.    are maxima on 

the potential surface, whose elliptic character in stability is  conferred 

by  the Coriolis   forces due  to the  rotation of the synodical frame of 

reference.    One has  to expect  that  the global structures  of the  phase 

space differ substantially on the energy manifolds according as   Lo whether 

they lie above     (C <  3)    or below     (C >   3)     the equilibrium configur- 

ation.    We illustrate this  change of patterns  in the normalized 

system   cH  in Fig.   5 where we present  the projection of the section 

of  the energy manifold    C s 2.9    by the    x-hyperplane passing through 

V 
Since we have in analytical  form the general solution  for  the 

principal  part   oV» we  can without  much   labor  observe  the evolution of 

invariant  sections with  changes  in  the  Jacobi  constant.     By way   of 
* 

illustration, we followed the projection on the plane  (>',y)  of the 

section by the  x-plane going through L,  of the energy manifold for 

tue Jacobi constant going from C = 3.0001015  to C = 2.9.  On each 

manifold we concentrated on the ordinary family of periodic orbits 

0(25/2)  corresponding to the rotation number p = 25/2.  The sequence 

of curves (see Fig. 6) begin with two points:  these are the intersec- 

n 

Lion points of the orbit in the natural family £? =£,  out of which 
14 

branch the ordinary family. Then for a while, the invariant section 

is made up of two disjoint ovals; such is the case at C = 3. Later 

on,   the  components   toucli one  another,   and  thereon  the section   takes 

• 
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Fig.   5.   - 
manifold 
system). 

Projection on  the plane    (y,y)     of the section in  the energy 
C =  2.9    by  the    x-hyperplane  going  through    L..     (Normalized 
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the shape of two hinged crescents. There will come a value of C at 

which the crescents will separate; each closed component will contract 

and eventually, at C = 2.559, they will collapse each into a point 

corresponding to the orbit in the natural family £7_ ~ ^/.     on which the 

ordinary family terminates. 

The same pattern is found for the sections in the ordinary family 

of periodic orbits 0(12/1)  (see Fig. 7). We know that the family 

originates at C = 2.960750380 from an orbit in the natural fa.nily 

s 
£,t  and that it terminates at C = 2.635008320 on an orbit in the same 

family.  By the way, in the full restricted problem, the ordinary  two- 

parameter family of periodic orbits associated with the commensurability 

12/1 dissolves into a natural  family which is a two lane bridge from 

s      s 
£,     to £,.    Of the curves drawn in Fig. 7, there remain only finite 

sets of isolated fixed points, half of them being elliptic (for the 

stable orbits in the bridge) and the other half being hyperbolic (for 

the unstable orbits).  In this respect. Fig. 7 which refers to the 

truncated normalized system cH   should be compared with the corresponding 

figure published elsewhere (Deprit and Rabe 1969) for the full restricted 

problem of three bodies. 

So far we have considered invariant sections in the map defined 

by the original Cartesian coordinates.  It is not without interest to 

analyze them in the normalizing coordinates (i,**,^*,!* I*)  themselves. 

Thus in Fig. 8, we have plotted for three values of the Jacobi constant 

C  the values of i>* and  1^ of the points at which the periodic 

orbits in the ordinary family 0(25/2) intersect the  x-hyperplane 

•-'•••■ 1 
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C = 2.995 

C = 3 

('7- 

c=. 2.98 

C = 2.95 

V 
C = 2.90 
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0.5 0.6 0.8 

Fig. 6. - Evolution of the projection on the plane  (y,y)  of the 
sections in the ordinary family 0(25/2). 
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■'ig.   7.   -  Evolution  ol   the  projection on   the  plane     (y,y)     of  the 
sections   in  the  ordinary   family  of periodic  orbits    0(12/1). 
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going through    L,.    Actually  Fig.   8 is but the  transform of Fig.  6 

by  the normalizing mapping    (x,y,px,p  ) ->   ($*,$*,!*,I*).     At 

C -  3.0001015,   i.e.  the energy  level at which  the ordinary  family 

bifurcates   from the natural  family   £,,  the section would consist of 

two lines     4»* = constant:     the  family    0(25/2)     reduces  there  to an 

orbit of  long period.     Somewhere between    C = 2.995    and    C = 2.9, 

the two branches of the intersection curve made  a contact,   and  there- 

after  the curv>3  reduces  to a closed oval.     As it expands  in the  direc- 

tion of  the  angles    $*,  it will eventually touch its  image  in  the 

congruence modulo    2TT    which defines  tie angle    <})*.     From this   level 

of energy onward,  the intersection curve will split into two separate 

arcs.    The evolution terminates when these arcs have become  two straight 

lines    $* =  constant.    We are  then  at  the energy level    C =  2.559    at 

which  the ordinary family    0(25/2)     collapses into a short period orbit 

circuited    25   times. 

The  preceeding explorations   cause us   to question  an empirical defini- 

tion given  lately  for the rotation number    p.    Given a dynamical system, 

usually not  integrable,   the section of an energy manifold by  a hyper- 

plane  is  determined by numerical  integration:    on an orbit  starting 

from a selection of initial  conditions,   the program marks   the  points at 

which   the hyperplane  is  penetrated.     In  the absence  of  any  qualitative 

information  about   the  structure  of   the phase space  around  this  orbit, 

Contopoulos   (1967)  proposes   to define  the  rotation number as  the  average 
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77 2    77    377 2     0     77/2 77/2     77   377/2    0     77/2 77/2     77   377/2    0    77/2 

C=3 C = 2.9<,5 C = 2.90 

Fig.   8.   -  Kvolution  of  the  projection  on  the   torus     (>;*,:*)     of  the 
sections   in  the  ordinary  family    0(25/2)     by   the     x-hvperplane  going 
through     L,. 
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angle between successive pointers  to the intersection points  from 

what seems  to be the  fixed point  inside the island circumscribed by 

the "invariant curve".    Let us explain now on the principal part 

cV for the restricted problem at    L,    how this empirical definition 

fails  to be satisfactory.     At  the energy level    C = 2.560    a bit after 

the  family branched out of a short period orbit traveled 25 times, 

the orbits  of   0(25/2)    have 25 well developed loops,  and  they inter- 

sect the  section plane in 25 points.    But it takes  two full rotations 

around  the  fixed point which is  the trace of the short period orbit 

before  the crossings  come back on the first intersection point.    Hence, 

according to Contopoulos,   the  rotation number would lie in the vicinity 

of  25/2.     But,  as    C    increases,   the loops  contract,  so  that  fewer of 

them are  crossing the section hyperplane.     For instance at the level 

C = 2.9,  we  count only 16  intersections on the orbits of   0(25/2)     after 

two full  rotations:     according to Contopoulos'   definition,  the rotation 

number would have decreased now to 16/2.     Eventually the  family approaches 

a long period orbit traveled twice.    A little before    C =  3.0001015    where 

the bifurcation takes place,  the plane section presents  only two crossing 

points,   in which case Contopoulos'   rotation number cannot be unambiguous- 

ly estimated. 
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3.     The resolution power of a normalization 

How does  the portrait In phase  space  for the normalized system 

cV  compare with  that  of the full system?     In order to answer that 

question,  it might seem logical to begin by inquiring about  the con- 

vergence  of Birkhoff's normalizing  transformations.    The  few precise 

results  mathematicians  have so  far established  look, discouraging. 

We know  that,   in  an admissible  set  of power series  provided with  a 

natural topology,   the subset  of Hamiltonians  for which Birkhoff's  normali- 

zations  are  divergent  is everywhere  dense   (Siegel 19A1), whereas   the 

subset  of Hamiltonians  for which  these transformations  are  convergent 

is  of   first   category  in  the sense  of  Baire   (Siegel  1954).     However, 

Siegel's  topology  can be weakened sufficiently without yet   losing 

a certain  tightness  so  that  the  set  of Hamiltonian systems   for which 

Birkhoff's  normalization  converges   appears   as everywhere  dense   (Contopoulos 

1963) . 

Such   theorems  show  that  so  far  the mathematical problem of  con- 

vergence   is  not  yet  of  physical significance.     From a purely  experimen- 

tal  point  of  view,  we have  learned   to  use  normalization  as  a tool,  much 

as  a physicist  uses  a microscope.     The  ultimate structure  in  the phase 

space  around  the  equilibrium is yet  beyond   our reach.     Numerical 

integration  of  the  original equations  of motion will provide  a detail 

here   and  there,  but  it will  leave  us   totally  ignorant  of some  global 

structures.     For  instance we  might  be  interested  in  locating some 

invariant   tori  of  quasi-periodic  motions  surrounding  the  equilibrium. 

 rT?- •'" .-.^ ----.  1 
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Let  us assume that we are in the conditions which guarantee their 

existence  for the full Hamiltonian   &.     In this  case, we could act 

under the assumption that,  if the transformation is   carried to a 

sufficiently high degree,  the normalized system   oV   will possess  tori 

in the domain of phase space  that we analyze,   and that the perturbing 

residual   iP   will not wipe  them all from the phase space of the  full 

system. 

Normalization will  reveal some of  the  features  in the phase 

space  around the equilibrium.    Of course on the whole it will simplify 

them.    Where it  tells   the story of two basic frequencies so well locked 

in a resonance that  they generate an ordinary  family  of periodic orbits, 

we have  to expect  that,   in the full problem,   the ordinary family breaks 

down into isolated natural  families of periodic orbits, some of them 

being of the elliptic  type and thus surrounded by "islands" indicative  of 

tori  of quasi-periodic orbits, others being of  the hyperbolic  type and 

acting as epicentres  in  the middle of instability zones.    But  this dis- 

tribution of stability islands and instability  faults is very likely 

inscribed in annulus bordered by fringes of quasi-periodic notions 

with nonzero measure.     The normalization is unable to resolve  these 

fine details; yet  through  the blurring,  an experienced investigator 

might  gain a feeling  for what  complexity there  is  in  the full problem. 

A normalization  truncated after the first   few orders may be out- 

rageously simplifying.     The higher the  order of  truncation is,   the more 

significant the  approximation could be.     Compare  for instance Fig.   12, 
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13,  and 1 of Gustavson  (1966) where a progress  for order 6  to 8 

results  in bringing forth more patently new fixed points  in the 

sections,  i.e.  natural families  in the phase space.    Of  course,  like 

with  any asymptotic series,  there  comes an optimum beyond which the 

resolution power of the normalization loses its significance.    And 

it  is   likely  that,  even before  the optimum in truncation is   reached, 

numerical accuracy will have failed.     For the normalization will have 

been obtained by so many operations on the intermediate  results that 

the high order coefficients in  the power series will have lost most, 

if not  all,   of their relative accuracy; besides  coordinates  and velocities 

obtained by  adding a large number of small terms soon cease  to be 

meaningful. 

Whereas   the  mathematician  spontaneously  looks  for bounded domains 

in which trajectories can be guaranteed to flow for ever without  leak- 

ing or  lor uniform vicinities  in which orbits are predicted  to stay 

for ever close  to one  another,   astronomers  and  physicists  accommodate 

themselves with more  realistic  and  thus  less  stringent   requirements. 

In order  to  build ephemerides   for Trojan planets   from an  analytical 

theory,   it   is  sufficier.t   to be  certain that  an intermediate  orbit 

provided by  a normalizing transformation about    L,    will stay  for  a 

sufficiently   long  time,   although  not   for ever,   reasonably  close  to 

an  approximately quasi-periodic  motion of  the  restricted  problem of 

three  bodies.     In  this   respect we  see   two  reasons why   the normalized 

model   mav  fail; 

         J^jmg, -    j^yg^lj    .     .■        . 



"■WWHfHHWli- - - '«" mmmmmmmmm 

-32- 

(i)     As we carry  the normalization up to an assigned order, 

trunaation errors will steadily decrease the accuracy of the normali- 

zation  as  the normalized action integrals move away  from their singu- 

lar values  at the equilibrium. 

(ii)     But also as  the  order of the normalization goes  to infinity, 

we do not expect  that  the normalizing transformations  converge uni- 

formly  in a neighborhood  of  the equilibrium.     Rather we shall now show 

that  there are regions where  the structures of the phase  space for the 

full problem differ significantly from the ones predicted by the normali- 

zation.     In these regions we shall speak of model errors. 

As we plan to test  the normalizing approximation where we expect 

it to be  ac its worst, we  focused our attention on the ordinary families 

of periodic orbits  revealed by  the normalization.     Another test would 

have been to compare  for the same initial conditions  the  solution of 

the  restricted problem and the quasi-periodic motion of its normalization. 

Actually the  test on ordinary families of periodic orbits has been 

done under very convincing  conditions.    Four years before we even con- 

templated normalizing the  restricted problem at    L, , we began computing 

invariant sections  in the neighborhood.    The differential and variational 

equations were integrated simultaneously by recurrent power series 

(Deprit  and Price  1965)  so  as  to assure at least  twelve  significant 

figures   for the orbit  and nine significant  figures   for  the variations 

for at   least several hundred units of time.     At  the  level    C = 3.00007, 

we obtained at first several  curves strongly suggestive  of quasi-periodic 
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motions;   then we began looking for stable periodic orbits belonging 

to natural  families and thus  causing swirls to appear in the general 

stream of  quasi-periodic motions.     To  our dismay,   all we  could get was 

several sets  of periodic orbits with equal periods  and  the  stability 

index    Tr(T)     equal to 2 up to eight decimal rigures.    Moreover,   in 

each  case,   the normal variation    n-    solution of Hill's homogeneous 

equation  for  the  initial  conditions    n2(0)  = 0,    n?(0)   ■  1,   and   the 

normal variation    n.    solution of  Hill's  nonhomogeneous  equation  for 

the  initial  conditions    n^(0)  = n-(0)   = 0    checked at  the end of  the 

period  the   relation 

n2(T)A3(T)   -   [n2(T)  -   l]n3(T)  * 0, 

as predicted for an ordinär^ periodic orbit (Deprit and Henrard 1968), 

Initial condLtins for Hiese remarkable orbits constitute all the 

entries of Table I hut the last two ones.  The integrations have been 

carried out at two different seasons, hence unfortunately a slight varia- 

tion of the mass ra'. io which reflects in the entries of the first row. 

It has induced small alterations in the corresponding periods. 

The -ibundance of seemingly ordinary families of periodic orbits 

seemed odd to us at the time we discovered them.  For in the opinion 

of some experts, "ordinary solutions... are never found after extensive 

searcli by many investigators" (Bray and Goudas 1967).  Normalization 

ol the restricted problem of three bodies was then undertaken to eluci- 

date tluse results. 

'- •••'• 
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We started with initial   conditions which,   for the normalized 

model,   correspond to ordinary families of periodic orbits.     We inte- 

grated numerically the orbits  they generate in the restricted problem 

and stopped the calculation when we reached the estimate  of  the period 

predicted by the normalization.     Then either, within  the  assigned tolerance, 

the   final state was equal to the  initial one,   or there was  a discrepancy. 

In the  former case,  the orbit was held to be periodic.     In  the latter, 

by  trial  and error,  the initial conditions were adjusted so as to pro- 

duce  a periodic orbit. 

If its  characteristic exponents came all four very close to zero, 

then we  restarted the search  for periodic orbits along the  invariant 

curve of  the ordinary family of periodic orbits  in the normalized 

problem.     This was a cumbersome and time-consuming investigation;  the 

usual differential corrections  to  converge onto a periodic orbit fail when 

the  characteristic exponents  are so definitely close  to  zero.    Thus 

we had to  satisfy ourselves with  a  few orbits   for each  invariant  case. 

Anyway,   first WP recovered in this manner the ordinary  families  that 

had been discovered prior to  the normalization,  and,   then,   on each 

of  them,  we  added a  few more.     It   is  reasonable  to  conclude  that,  in 

a close neighborliood of    L, , within  the accuracy at present available 

by  careful  calculations  in double precision the structure of the phase 

space  about     L,     cannot be magnified beyond the resolution of a Birkhoff's 

normalization of the thirteenth order.    The ordinary  families of the 

normalized system for the rotation numbers 25/2,   35/3,  51/4,  64/5 and 

77/6  could not be broken down into natural  families  of periodic orbits. 

-_---—-~»—---- -.—   -.■■-».'<»-—■-,■ ■      . .   •        •- 
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Yet   further  away   from five  equilibrium in  the phase  plane     (1^,1*), 

the   torus  of   the  normalized system which  is   filled with   the  ordinary 

periodic  orbits   corresponding to  the  rotation number  13/1   is washed 

away   from  the   restricted problem.     In  its   place,  numerical   integration 

detected  long  and  thin islands.     But   the   crossing points  on  the section 

curves  move  so  slowly  that we  did not   think  it worthwhile  to  calculate 

the  complete  pattern.     In one  case,  we had  followed a trajectory  for 

1600 units  of  time   (i.e.   30000  solar years) ,   and yet we had not  even 

traveled halfway  around the  island.     Instead we  applied variational 

corrections   to  converge  onto  the subsiding natural periodic  orbits. 

One of   them  (see  the  last  two lines  of Table  I)  has  unstable  charac- 

teristic exponents,   and we discovered  later on by numerical  continua- 

tion  that  it   is   an  element  of  the  family  £ ,     on  its way back   from its 

maximum Jacobi   constant.     The  other natural periodic  orbit has  characteris- 

tic exponents   of   the stable  type; we  also  established  later  on  that   it 

belongs   to  the bridge   21(135,145)     of periodic orbits   connecting  an 

s s 
element  of   £ .     traveled  13  times   to  another element  of   £ .     traveled 

4 4 

14  times. 

The  dissolution of  the   family    0(13/1)     could be   rationalized 

on  two  ground:;:     not  only does   the resonance  13/1 occur  in  the normalized 

system further away  from the equilibrium than the commensurabilities 

previously encountered, but also,  as  indicated by Contopoulos   (1967), 

the width of an island at the resonance    m/n    is proportional  to 
1^(nri-n-4)       , . . ^    ,       , 

r , where     r     is  an estimate  of  the  distance   to  the equilibrium. 

In the present  case,   the sum    m + n    drops   to its minimum value when 
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the  rotation number passes by the ratio 13/1,   and  therefore in an 

intuitive way, we expect significantly wider islands  along the in- 

variant  curve  of    0(13/1). 

The breakdown  of  an  ordinary  family  into  a pair  of natural 

families with  characteristic exponents  of  opposite   type in stability 

is but  an illustration of   familiar statements  of Poincare.    What it 

tells  also  is  that  the  normalization is  only  a  local  tool,  and  that 

it   fails  to  reveal   the global structure  of  the phase space.     Indeed, 

in  the normalized  approximation,  the ordinary  family    0(13/1)     consti- 

tutes  a two-parameter bridge  connecting  a natural  orbit  of  ■£,     and 

a natural orbit  of   X',     travelel thirteen  times.     But,  in the  restricted 

problem,   the  two natural  families which  survive  the  destruction of 

£7(13/1)     have  certain  terminations  modified. 

Our  findings  at   the  energy  level    C =  3.00007     are presented  in 

Fig.   9. 

A similar  analysis  has  been undertaken  at  the  energy  level     C = 

2.90.    We  find  tlu-re   the  same pattern.     Close  to  the  fixed point belong- 

ing  to  the short  period  orbit—an element  of  the natural  family   ß,—the 

ordinary  families  of   the  normalized  system subsist   in  the  restricted 

problem.     Such   is   the  case,   for instance,   of  the  family    0(35/3), 

But   at a greater  distance,   the  invariant  curves  of  the ordinary   families 

break down   into  interspersed subsets  of  isolated   fixed points  correspond- 

ing to natural   families  of  periodic  orbits.     The   invariant  curve  of 

the  ordinary   family     0(12/1)     gives way  to  the elliptic  fixed  points 

^ ,-      -.■......■■^-...■^    ...     . ,       .,_,_._.    ,.    ,.. 
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Fig.   l).   - I'rojoctliin on  the plane     (y,y)    of the section  In  the 
energy  manifold    C = J.ÜÜ0Ü7    by   the     x-hyporplane going through 
L/      (Restricted  problem of   three  bodies   for  the  system sun-Jupiter) 
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problem of   three bodies   for  the  system sun-Jupiter) 
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relative   to    0(25/2)    between two successive hyperbolic  fixed points 

belonging to  the  two-lane bridge   3K25S,2L).    The closed  curve around 

the  elliptic  fixed point  demanded   that  the numerical  integration be 

extended  over 5723  units  of   time   (i.e.   about   10,000  solar years),  yet 

keeping  fixed  10  decimal  figures  of  the Jacobi constant. 

At  the   level    C = 3.00007,   the ordinary  family   0(25/2)     of the 

normalized system seemingly subsists  in  the  restricted problem,  at 

least within  the  constraints  of  an  accuracy  limited  to  the double 

precision  arithmetic  of  an  IBM  7094;  but  at    C =  2.9,   it has  dissolved. 

The  dissolution  is  progressive  as   the Jacobi  constant   recedes   from its 

value     C  =   3     at   thr  equilibrium =tate.     As   the natural   family    J(25S,2L) 

moves   from  its bifurcation out  of   ■^/.  we  noticed  that  the  stability 

Lndox  at   first  grows  larger  than  2   along  the  unstable  lane  of  the bridge, 

Chen  decreases  toward 2  and,  starting with     C = 2.99,   it  stays  equal 

to 2   up   to nine decimal   figures   (see   Fig.   12).     At   this  point   the natural 

tamilv  has  entered  the zone  around     L.     where-  the  restricted  problem 

cannot  be   detached   from its  normalizing  approximation. 

The  neighborhoods  of  the  equilibrium that we  considered  often 

times   in   this  analysis  are  of  course  defined   in  the  plane  of  normalized 

actions     (1*,I*).     Mapped back  into  the  original  Cartesian  phase space, 

the  orbits we  had  under study  usually depart  significantly   from the 

textbook   concept   of  an  infinitesimal neighborhood  of     L. .     By way  of 

illustrating  this   contrast,  we have  drawn  in  Fig.   13  the  unstable  orbit 

of  the  bridge    J}(12S,12S)     that we  discovered  on  the  energy  manifold 

r-».-.  ■       m  ■ -. M^mii   IM- 
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'Unstable Periodic Orbit Unstable Periodic Orbit 

I   I   l 

1.1790 1.1800   1.1820   1.1840    1.1860    1.1880   1.1900 .1920 

Fig.   11.   - Quasi-periodic motions  on  the  energy manifold    C * 2.9 
in  the  neighborhood  of  the  two-lane bridge    J}(25S,2L). 
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2.6 2,8 

Flg.   12.  -   Stability  curve   for   the  stable  and  -uistablG   lanes   of  the 
bridge    J(2r)S,2I.)     showing  the  progressive blu: ring   from a natural 
family   into  the ordinary   family    ^(25/2). 
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Fig.   13.   - An  crblt   in  the  unstable   lane  of  the  natural  bridge 
;g(12S,12.S)     for  ihi-  restricted  problem of  three bodies. 
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Birkhoff's normalization acts  as a lens  focused on a dynamical system. 

It helps in penetrating the complexity beyond the  first order appear- 

ances.    Yet  its  resolution power is  limited.    There  comes a threshold 

beyond which  the present   computer equipment does not allow us  to separate 

the normalized image  from the  real phase space.     Fortunately,   at  least 

in the  case we have had under special investigation,   to learn that  there 

is  a hard core in which double precision arithmetic  cannot divide the 

restricted problem from its normalization truncated beyond order 13 is 

not unwelcome news.     At   least it offers  a way of substantially improving 

the  theory of Trojan planets by building it  on Birkhoff's normalization. 

On the whole  the present study ....       ents numerically    the views held 

by  Contopoulos and others   (see for instance Walker and Ford 1969).     For 

librations around the equilibrium with sufficient^   small amplitudes,  :  > .t 

orbits  are not influenced by resonances  in a way  that  could presently be 

detected by  accurate  integrations carried over a long time; yet one is 

already able  to detect exceptional motions  influenced by isolated  resonances, 

Mathematically speaking  these  motions  are  densely populating  the  area 

covered by the well behaved majority; however Birkhoff's normalization 

filters  only  a few  of  the exceptional motions,  namely  those  corresponding 

to  the  smallest   resonances,  and  thus   isolates   them.     We have  shown here 

that  numerical  integration,  however  accurate,   could  do no better  than 

normalization  in  this  respect. 
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Appendix  1 

The program 

The basic information on how we represent Poisson series  (3-3) 

in  the  computer has been given elsewhere (Deprit and Rom 1968 a,  1968 b). 

We  concentrate here  on the specific program which  implements Birkhoff's 

normalization. 

The   function    BCOEF(N,M)     computes  in double  precision arithmetic 

the  binomial  coefficient    (    j.     Dr.   David Walkup,  our  colleague  at 

B.S.R.L.,   is   the author of  this  program. 

Before we  describe  the next subroutines,   let  us  agree  on some 

conventions.     We  operate  exclusively with Poisson series  of  the  type 

(3-3);  elements  of  a series  are  of   the  form 

n1 n2  n3 

x^  xn   x^     cos(m1^1  + m0:0  + m^), 

n1  n9  n2 

x.   x,,~x_    sin(m  *.  + m9:0 + m  •   ). 

The first polynomial argument is not used, the second stands for /TT, 

and the third for » S ; the first trigonometric argument refers to i, 

the  second  refers  to     s,   and  the  third  is not  used. 

The subroutine PDS(A,B,J) differentiates the Poisson series A 

with respect to the polynomial argument x. and stores the result as 

the  Poisson  series     B. 

The  subroutine     PDJS (A,B , < ,h
: ,Y)     applies   to  the Poisson series     A 

the  differential  operator 

       ■ ■ •- ■ —-      - 
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difi. d<py d(})_ 

and stores  the  result  as  the Poisson series    B. 

The subroutine    PR0D3(A,B,C,c0     stores  as  the Poisson series    C 

the  result  of  the  operation    C + aAB. 

These  three  conunands enable us  to compute  the Jacobian determinants 

3A     33 3A    3B 3A     SB 3A    3B 
J$1   3x2       3x2  Z4>1   ' 3*2   3x3  "   3x3 S* 3 ^2 

But, when we compute the Poisson bracket of two functions in L, S, 1 

and s, we should not overlook that x2 stands for /L and not for 

L,  and that     x.    stands   for    /S     and not  for    S.    Therefore 

j(A-B)  =  1 1_    3(A.B) 
3(£,i)  =  2 x2   3(*1,x2)   ' 

^(A.B)       1 1^_    3(A.B) 
3(stS)  =  2 x3   3(^2,x3)   * 

Therefore we  need  the subroutine    DVLS(A,J)     which  replaces   the Poisson 

series    A    by  the  series    A/xj. 

The various  partial derivatives  of  a d'Alembert  series   and their 

products  do  not  necessarily possess   the d'Alembert  characteristic.     But 

. . 3A  3B s     3A  3B 
the exceptional  terms   in  the  products    -rj —    and   — TJ    cancel  one 

another  in  the   formation of  the Jacobian determinant     ' ,n*   r   .     In  the 

computer,   should we  proceed in  integer arithmetic,  all   the  exceptional 

terms would  disappear  in  the   'acobian which   thus would possess   the 

d'Alembert   characteristic exactly.     But,   as we  proceed only  in double 
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precision,  the expected cancellations are missed by relatively small 

amounts.    The subroutine    DALPIC(A,B)     remedies  this deficiency:     it 

scans  the elements  of     A    checking for each  one  such  that     [m-l   ^ n», 

!moi   H nv    n„   ; m1   (mod.   2)     and    n.  _  nu   (mod.   2).     The terms which 

satisfy  these properties are  stored as  the Poisson series    B. 

The preceding subprograms  are called in the subroutine 

DPBRAC(/A/,/B/,/C/).     The Poisson series    A    and    B     are  assumed  to 

have   the  d'Alembert  characteristic,  the  resulting Poisson series    C 

is   the  d'Alembert  series 

_   '(A^)        HAtB) 

i.e., the Poisson bracket  (A;B), of the functions A  A(£,s,L,S) 

and  B  B(£,s,L,S)  in the phase space  (£,s,L,S). 

DPBRAC is the main ingredient of the subroutine  LTRAN(F,W,P,Q,N,/ANS/) 

It is assumed that all Poisson series entering the triangle 

'0 

r (i) 

f(l)   f(2) 
1   ro 

f(l)   f(2) 
2     1     0 

(3) 

have  been  defined  up   to  and   InciudinR   those  belonging   to  the     (n-l)-th 

row.     Note  that   these   elements   are  labeled   in  FORTRAN   as   follows 

iäSi^^UmmmSMUm^^ 



HK-'J i1'1 

-50- 

F(l.l) 

F(1.2)     F(2.1) 

F(l,3)     F(2,2)     F(3,l) 

F(l,4)     F(2,3)     F(3,2)     F(' ,1) 

Also it is  assumed that the Poisson series W. ,W-,...,W  have received 
1 Z     n 

a FORTRAN name, W(l),W(2),...,W(N). The subroutine computes the element 

f(P  from the rule 

:(P)=  V  /QWf(P-l).w  \ + f(P-l) 

and stores  it   as   the Poisson series    ANS.     One should not overlook  that 

LTRAN  assumes   that  input  and output series have  the d'Alembert  charac- 

teristic;   it  cannot be regarded as  a general subroutine  to  compute any 

element  in the  triangle of a Lie  transform under any canonical  trans- 

formation. 

BIRKOF(NMAX)     essentially performs  a cycle  to generate   from the 

sequence   ^Q ^ . • • • »^^    the  sequence  5^, ;»0     ,... , tt^ that 

is  the  normalized Hamiltonian,   and  the sequence    Wi »^ »• • • «
W

VIMAV     
that 

defines   the  normalizing  transformation.     The    N-th  cycle begins by set- 

ting    W       equal   to  zero;   it  is  accomplished by declaring  that    W—whose 

FORTRAN designation  is    W(N+1)—is  the  Poisson series   in  formation  at 

the bottom of  the  stack.     As   long  as  no element  is  entered  in    W..,   it 

will  represent   the  null d'Alembert  series.     Then the provisional  ele- 

ments   3i!\  ^,^ ;,,..., ä are  formed by  calling recursively LTRAN; 

~(N) 
they  are  stored  in  the disk,  except  Jf^ which  is kept  in  core  in 
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Appendix 2 
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FORTRAN IV 

OOOl 
0002 
0003 
000« 
0005 
0006 
00C7 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
G016 
0017 
0018 
0019 
0C20 
0021 
0022 
0023 
002* 
002S 
C026 
C027 
0028 
0029 
CC30 
CC31 
0032 
G033 
003* 
CC35 
0036 
0C37 
C038 
C039 
COfcO 
COM 
C0<.2 
C0A3 
oo** 
C0<i5 
r;cH6 
CC47 

MODEL «4  PS VERSION 2*  LEVEL 1   DATE  66271 

10 
12 

2C 
101 

40 
100 

SUBROUTINE   BIRKOF(NMAX) 
REALMS   LAHRDAtSIGMA 
CC^^CN/HAH/LAHBDAtSIGWA.Fl20*20)fW(20) 
INTEGER   P,C»TPART(4)/4*0/ 
CC   ICO   Nrl.N^AX 
CALL   OEFINEUCNMn 
CALL   GETIME(Il) 
C-N-l 
CC     10   J«1.N 
CALL   LTRAN(F,U,J»Q,20tH) 
IFU.EC.M   GC   TO   12 
CALL   SEEK(C) 
CALL   WRlTEP<HtF(J*l,C*l),-1.0) 
CALL   ERASE(H» 
C»C-l 
CALL   CCLECTlH,FCN*ltl)iTPART) 

LIST3(F(N*1,1),,H,,-N) 
HEXCUT(F(N*l,n ) 
SCREEMH.P.TPART) 
ERASE(H) 
IPDJS(P,WN,LAM60A,SIGMAI 
HEXCUTIhN) 
SEEK(C) 
ERASE(W(N^1)) 
WRITEP(hN,H(N*l),-l,200*NI 
ERASEIWN) 

101 
TO   101 

TO 
GO 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
IF(N.EC.l)   GC 
IFJN.EC.NMAX) 
M»N-l 
C = N 
CC  20   J»1,M 
Jl«J*l 
CALL   CEFINE(TEHP) 
CALL   ACLMl(P,TEMPf-1.00) 
CALL      ACUMMMCtJU.TEMP, l.ODO» 
CALL   SEFK(FK.Jl)» 
CALL   >.8nEPITEMP,F(Q,Jl),-lf0l 
CALL   ERASEtTEMP) 
C«C-1 
CALL   GETIMC«12) 
ETK«12-11 
£TK««ET>«/i<;2C0. 
PRINT   40,N,ETM 
FORMATJSX.'TIME 
CALL   ERASE(P> 
RETURN 

)/60. 

F0R,lI3,•   ■   •,F7.2) 

-^.,r „„... r-m , .     ^g;r<--w you MM 
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FORTRAN IV MCOEL *4  PS VERSION 2«  LEVEL 1  DATE  68271 

OOOl 
0002 
0003 
0004 
0005 
OC06 
0007 
0008 
0009 
0010 
COM 
0012 
0013 
C014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
002« 

10 

SUBROUTINE   OPBRAC(/F/,/G/f/RB/) 
REALMS   LS(2.2)/1.00fO.vO.«l.DO/ 
CALL CEFINE(PB) 
CC  10 I« 1.2 
CALL OEFINEIPll 
CALL P0JSIF,0FtLSIl.I)*LS(2*I),0.00) 
CALL PDSIC*CG*I*1) 
CALL PRCC3(0F,OG.Pl,.5DO) 
CALL ERASE(OG) 
CALL ERASE(OF) 
CALL PDSCF.DF,1*11 
CALL PCJS(G,CG»LS(1.I),LSI2*11,0.00) 
CALL PROO3(0F.0GtPlf-.5DO) 
CALL ERASE(CF) 
CALL ERASEICG) 
CALL CRTERIPl) 
CALL DVLSCPl.I) 
CALL ACUH1(P1,PB,1.D0) 
CALL ERASE(PI) 
CALL CALPICIPB.SPBI 
CALL ERASEIPB) 
CALL PXCA(PB,SPB) 
RETURN 
END 

FORTRAN IV MODEL 44.  PS VERSION 2,  LEVEL 1  OATE  66271 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 

10 

SUBROUTINE LTRAN(F,W,P,Q,N,/ANS/) 
REALMS BCOEF 
INTEGER P.C 
DIPEKSICN F(N,N)tW(N) 
NJ»0*l 
CALL CEFINE(ANS) 
00  10 Jl-l.KJ 
CALL DPBRAC(F(Ptg-Jl*2),W( Jl*n,B) 
CALL ACUMl(BtANS*BCOEF(C,Jl-l)) 
CALL ERASEtB) 
CALL ACUMl(F|P,Q42)«ANStU00) 
RETURN 
ENC 

FORTRAN IV NCOEL 44  PS VERSION 2t  LEVEL 1  OATE  6B271 

CC01 
0002 
0003 
0004 
0005 
0006 
00C7 
oooe 
CC09 
0010 
0011 
0012 

C0L8LE PRECISION FUNCTION BCOEFCN.M) 
I6C>I 
IF(2*P.LE.NJG0 TO 20 
IB«N-P« 
GO TC 30 

20 IB«M 
30 IF(IB,LE.0)G0 TO 60 

CO SO I«1.IB 
50 IBC«((N-I*n»I8CJ/I 
60 BCCEF«IBC 

RETURN 
ENC 
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