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THIN CYLINDRICAL SHELL UNDER
INTERNAL PRESSURE AND
CONCENTRATED NORMAL LOAD

Jo E. Goldher‘

ABSTRACT

A method is developed in the present report tor calculating the normal dcis-
placements in a very thin, pressurized cylindrical shelt which is subjected
io a concentrated normal lead. The shell is treated as « membrane and the
solution is obtained in the form of a single or one-dimensional Fourier
series, the longitudinal coordinate being taken as the independent variable
of the trigonometric terms, with the circumferential con:iinate being ab-
sorbed into the Fourier coefficients.

The solution given in the present report is an alternative to a solution
given in a previous report in the fora of a double Fourier series.

The report concludes with a numerical examgle.

INTRODUCTION

The present report :s cencerned with the problem of deteruining the dis-
placements in a very thin. pressurized cylindrical shell vhich is subjected
to an "almost concentrated” normal load.

In a previous reportl, a method was civen for determining the displacements
under the loading stated above by first expanding the "concentrated” lead
into a double Fourier series. It was assumed that the displacements could
also be represented by a double Fourier series of the same trigonometric
functiens, and it was shown that a definite relation exisied between the co-
efficients of the loadiny smeries and the coefficients of !h.- displaceament
series.

Unfortunately, the series 1:1v-~:ved in the method previously described is
likely to converge quite slowly in certain actual cases and, in these cises,
it becomes necessary to compute s large number of terms in order to obtain
the required accuracy.

METHOD OF aNiIS1S

We present nov a method of analysis which could reduce raterigily the amount
of computation involved in obtaining a solution to the ;rcbles astaiea above,

l. Goldberg, J. E., "Theory of Membranes, leflectionx » d Ctressen 1u em-
branes unde- Concentrated Normal Load", ¥RR-AN-0SE, °$ .Julyv 146!}
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We assume that the normal load P is located on the surface of the shell at
(in cylindrical coordinates) © = 0, x = ¢ where ¢ is measured from one end.
Instead of a single load P at that location, we shall assume that we have,
at x = ¢, two loading cases as follows:

(a) Symmetrical loads each of magnitude P/2 located at & = 0.7
(b) Anti-syemetrical loads earh of gasnitude P/? located at @ = 0,1T

Clearly, the loading obtained by superimposing loadings {a) and (b) is
equivalent to the original single load P at € = 0.

We will now imagine that the shell is divided into two semi-cylindrical
shells by cutting at © = 0 and € =1r , and we assume that the several loads
P/2 which have been placed on the lines at © = 0 and € =Ir have also been
split into two equal components.

—T‘ P/4 P/4

P/4 P/4

The problem now becomes that of finding the displacements in n sexi-cylin-
drical "membrane® which, in addition to an internal pressure is loaded
along its straiszsht edges as shown.

We as 'ume that the internal pressure is such as tc cause a hoop membrane
fore= _ (i.e., K = pR) and an axial membrane force X /2. ¥e shall take
w %o be the additxonul deflection (i.e., in addition to that due to inter-
nal pressure alone) due to the applied load P.

Within the boundaries of each semi-cylinder the deflection munt satisfy
the equation

082 + 09. =0
257 (1)
R™ 26 2 Ix

We will assume that the deflection may be taken in the form of a series
O

3 o
w(x,6) = 221 ¥ sin nfx/L (2)
where the factors ¥ = % (8), that is, the coefficients, are functions

of the angular po.ition? Thls series will give zero normal displacement at
the circular edges of the semi-cylindrical shell.

We will consider the implications of one term of the series in Equaticn (2),

General Dynamics/Astronantics
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that is, we will assume that

s w = ’n sin o x/1 (3)
Substitution of Equation (3) into Equation (1) would lead te
9
d_"_u_n - kn2l'n =0 (4)
d§2
where kn: 2 gf(glL)z (s)
2" L

The general solution of Equation {4) is

¥ =4 sioh k &+ B cosh k & (s)
Along the edge & = 0,

laen » Ankn sin nTix

R 06 R L

And therefore the distributed normal (i.e., radial) force along this
edge is
f = NAk sin nlix
N ol;xn L (1)

Let us now consider a “concentrated” load ¢ = P/4 which is anpilied at the
poiat x = ¢ on the edge 8= 0. This "co:centrated® load may be assuned to
be distributed over a small length 2~ in the direction of the adge, and we
may therefore say that Q is equiv~len® ¢n a distribute! loadisg along the
edge defined as follows:

] 0<x<{(c - e)
q ={Q/2e (c - e)ex<(c + o (8)
0 (c + e)=x<L

Such 2 loading may be represented by a Fourier sertes:

e~ >, q sin nTix/L (9)

n=l

We have now to determine the coefficienta qp by a standard technique, We
substitute Equation (8) into Equation (9), multiply both sides of the re-
sulting equation by sin iWx/L dx (where i is an arbitrary integer) and in-
tegrate. Ye observe that substitutien of Equation (8) into the left side
of Equation {9) and performing the operations mentioned ahove would yield

~o Ce+o
‘J q sin ifx dx = 0 + 2 sin iTlx dx + 0
° L 2e /e L

If e is taken sufficiently small, the integrand of the term on the right
side remains essaentially conltantz, and we obtain

General Dynamics/Astronautics
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L c+e
J:[ sin iflx dx = Q sin iflc dx

o L 2e —e L

L (10)
j;lin_ﬂlx_dx-qﬁni_'ﬂ'_g
(] 8 L

Performing the same operations upon the right side of Bquation (9) we have,
by use of the orthogonality relations

L L
(an sin nlix) sin 27ix dx = rq. sin® ilix dx
A L L t 1

/) L
° (11)
- qiL
2
Equating (10) and (11) and reclacing i by n yields
= si ‘“’
1, = 28 vin i 12

Hence, the concentrated losd | (=P/4) may be represented by the series
©0
Q~29/L 2\ (sin n'n'c)éin xm’x) (13)
n= L L

Thus a concentrated load corresponds to the superposition of a series of
sinusiodally varying distributed loads.

¥We may now compare one term of the series in Equation (13) with the sinu-
soidal term of Equation {7) and we see that the two terms are identical if

An = - 29R sin nffe ’
wokn L :

Recalling that 3 = P/4, and using Equation (§) this becomes

A = <F sin oile (14) '
n nlle
n L
°
> —
2. Alternatively sin illx dx = _QL |cos iT(c-e) - cos iM{c + ¢)
2e Ve-e L 2eiT L L

= QL sin illc sin iTe ., QL (*in ille) iMe  if ie/L is
eiT L L eill L’1L

fairly small, say one-tenth of a radian or less. Hence, if we can "cut
off® our series at a point where this restriction is satisfied, the re-

_sults should be acceptable.

General Dynamics/Astronautics
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We return now to consideration of Equation (6), the general solution of the
ordinary differential equation for W . If the loads P/4 are applied symme-
trically, then the deflections alongnthe edges © = 0 and 5§ = 17 are equsl.
Hence, for this case

B = A s8inh kT + B c¢osh k T
n n n n n
or Bn - An sinh k;r /(1 - cosh k;ﬂj (symmetrical) (15)

1f, on the other hand, the loads P/4 are applied antisymmetrically, the de-
flections along these edges are equal in magnitude but opposite in sign.
Hence for the antisymm:trical case

B = -A sinh kT -B_ cosh k. T
n n n n n
or B = -A_ sinh kgh'/(l + cosh k;ﬁ) (antisymmetrical) (16)

A concentrated load P/2 at € = 0, x » ¢ on the semi-shell (corresponding to
a single lead P on the complete ahell) was shown to be sqrivalent to symme-
trical and antisymmetrical loads P/4 on the semi-shell. Therefore we com-
bine both Equationr (15) and (16), substitute into Equation (6). thence into
Equation (3), and upon using Equstion (14} and Equation (2) we obtain the
following expreszion for the additionzl normwal deflections of a very thin
pressurized cylindrical ahell when aubjected to a concentrated pnormal lecad
P applied at 8 = 0, x = ¢:

- -]
w(x,8) « 42P_ = 1 (-sinh k 8 + cosh k_T cosh k_6) sinhilc, sinalix
Fe 31 g o 0 ki) @
n= sinh k T
n
\ o
or w(x,5) = 42p Z 1 cosh En('ﬂ"- 6) 4in aflc sin ollx (17)
SN, 2T ginh kv L L
n
vhere k =R T

DISCUSSION

The coefficients in Equations (17) are easily evaluated either by use of a
table of hyperbolic functions or by use of the fundamentai exponential forms
of these functions and a table of powers of e. When the argument of these
hyperbolic functions becomes largf, asymptotic forms may be useful. For
example: sinh 8/cosh © —»1 - 2¢”%® asg 6 becomes very large.

Equations (17) are valid when
( the shell is very thin

a
(o) the internal pres:ure is high
(¢) the "concentrated” load is small

General Dynawics/Astronautics
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When these restrictions are viclated, the deflections given by these ecua-
tions generally ara larger than th~ actual defiections. Rules for estab-
lishing the rapge of validity ef the membrane theory, znd for estimating
the secondary or additicnal stresses in terms of the diasplacemente given
by the above equationa vwere presented in the previous report.

We will not apply Equations (17) to the point directly under the center of
the lecad since a theorstically concentrated lead would result in an infinite
defleetion at the lead peint. Aciually however, we do not deal with theo-
retically concentrated leads but with loads which are distributed over some
finite area. If the area is small, Equations {17} should give reasonably
gocd resuits bayond the edge sf the actual contact area.

It would be well te avoid sharp edges on the attachwent which tran=amits tbe
load to the shell., If possible the slepe at the edge of the fitiing shbeuld
not k¥ lesx than the calculated slope of the zhell at the edga ef the fit-
ting. Also, the carvature of the fitting shculd not exceed that which, whan
applied to the shell, causes extireme fiber stresces ¢f a magnitude such as
to raise the streas level above the deusign allowable atress.

ILLUSTRATIVE EXAMPLE

As ap illustrative example, we take a very thin cylindrical shell sabjected
to a pesitive internal pressure of sufficient magnitude as to place the
shell in the approximate condition of a membrane. The shel: is subjected
also to a "concentrated®” normal load P located at ¢ = L/2. The necessary
data izclude:

R = 40 inches k- R n = .740489 n
V2L
L = 120 icchea kn'Tf = 2.328287 n

We will calculate the normal displacement at the point x = L/2, € = 0.1.

Thus, if the fitting shich transmits the load to the shell has a dimensgion '
of about eight inches in the circumferential direction, is smitably shaped

both in protile and plan (probadbly with an elliptical planform having its

major azis in the circumferential direction), and in itself properly de-

signed, the caleulated deflection vyould be expected te pertain to the edge

of the fitiing.

General Dynamics/Astronautics
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#ec observe ‘hat siace 4in 077 /L a O for 21l evea integral values

of n, it is necessary to calcuiale terams only for the o0dd integers.

Furthermore, sinc> ¢ = L/2 and x = L/2, then sia aTc¢

for the odd integers.

L

Conseque’ tly, for n egqual to or larger thas 5,

n¥
3

= coth X ’ill‘
n

cosh k &
n

-sksh k £ = ¢
n

Obviously this simplification is possibdble only when k

large.
converge nicely if ©

8iz=

-k &
n

a7 x =1
L
§e¢ ncte also that coth k 77 becomee unity {to the

sixth decimal slazc) when o = 5 and remzins 2t I:aZvalue for larger no.

is sufficiently

Aside from this siaplification, the series an§ be expected to
{which is a coordinate of ibe point where the

deflection is being computed, not the point where the load is applied)
is ast too small, i.e., is notl too close 0 the generator upss which
the load is applied.

The calculations are carried out is the tadble below.

simplification sentioned above, siph k

Secause of the
@ and cosh k= Q@ are Dot

tabulated for n greater than 5, and the vaive of a¥_ for ikese values

of o is taken directly from a table of exposentialg as

e°kﬂ 9.

The last column of the table should be multiplied term by term by sim aTi ¢
Since this product was showd o be umity i

sin n7 x before summing.

L

{(for odd values of n) for the particular loao poimt a=d deflection poinmt

under consideration, this slep has been omitied,

obviously, a column should be provided for t:is cal:-ulatie=x.

Ia the general case,

n kT cts kT kK © enh k © csb k @ ¥ »
n n n n n n =

1 2.326287 1.019258  .D74116 .074116 1.002742 -237890  .547350

3  6.978862 1.000001  .222144 .223976 1.024775 .S00S00  .266933

5 11,631436 1.000000  .370240 .378757 1.059325 .690358  .133114
7 20.936585 .51833% .619035 .05834
9 666432 .513538  .057080
11 814528 L432848 .040247
13 .962624 .381890  .029376
15 1.110720 .329322 .G21955
17 1.258516 .283590 .016705
19 1.405912 .2 012889
21 1.555008 .211189  .010057
23 1.703104 .182112 007918
25 1.851200 .157088  .006232
27 1.995296 .135331  .00S016
29 2.3147392 L116783  .OD4027

General Dynamice/Astronauties
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The above result shows that, for a sufficiently thin shell having
the dimensions stated above and subjected to a sufficiently high internal
pressure, the normal deflection at the point x = L/2, @ = 0.1 would be

wa _d2

—2—,‘1—,32— (1,6529)
[+]

If the shell and loads Jdo not satisfy the stated conditions, a solution
of the above type may be tuken as a first approximation.
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