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THIN CYLINDRICAL SHELL UNDER

INTERNAL PRESSURE AND

CONCENTRATED NORMAL LOAD

J. E. Goldherg

ABSTRACT

A method is developed in the present report tor calculating the normal dis-
plscements in a very thin, pressurized cylindrical shell which is subjected
Le a concentrated normal lead. The shell is treated as a membrane and the
6olution is obtained in the form of a single or one-dimensional Fourier
series, the longitudinal coordinate being taken as the independent variable
of the trigonometric terms, with the circumferential eoni-inate being ab-
sorbed into the Fourier coefficients.

The solution given in the present report is an alternative to a solution
given in a previous report in the form of a double Fourier series.

The report concludes with a numerical example.

INTRODUCTION

The present report ;A concerned with the problem of deterv:ining the dis-
placements in a very tI'in. prso-aurized cylindrical shell which is subjected
to an *almost concentrated" normal load.

In a previous renort , a method was given for determining the displacements
under the loading stated above by first expanding the "concuntrated" load
into a double Fourier series. It was assumed that the displacements could
also be represented by a double Fourier series of the same trigonometric
functions, and it was shown that a definite relation exisie. between the co-
efficients of the loadirg series and the coefficients of b. dJisplacement
series.

Unfortunately, the series i1t.-:ved in the method previously described is
likely to converge quite slowly in certain actual cases and, in these .aes,
it becomes necessary to compute a large number of terms in order to obtain
the required accuracy.

METHOD OF ,4tSIS

We present now a method of analysis which could reduce ratprially the amount
of computation involved in obtaining a soluition to the ,rablem sLate above.

1. Goldberg, J. E., "Theory of Membranes, Deflection% % d Ltrd:sns lit "oAew-
branes unde Concentrated Normal Load", FIIR-AN-05F, "5 Jul% 1 64fG
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We assume that the normal load P is located on the surface of the shell at
(in cylindrical coordinates) e a 0, x - c where c in measured from one end.

* 4 Instead of a single load P at that location, we shall assume that we have,
at x =c, two loading cases as follows:

(a) Symmetrical loads each of magnitude P/2 locatc'i at e = M/T
(b) Anti-symmetrical loads each of magnitude P,/? located at e =04,T

Clearly, the loading obtained by .4uperimposing loadings (a) and (b) is
equivalent to the original single load P at 0 - 0.

We will now imagine that the shell is divided into two semi-cylindrical
3hells by cutting at e m0 and e) -17 , and we assume that the several loads
P/2 which have been placed on the lines at 0 9 0 andi = mW have also been
split into two equal components.

2,1?

The problem now becomes that of finding the displacements in a seini-cylin-
drical *membrane' which, in addition to an internal pressure is loaded
along its straight edges as shown.

We as 'tme that the internal pressure is such as te cause a hoop membrane
fore-. (i.e., No M pR) and an axial membrane force N /.We shall take

w to be the additional deflection (i.e., in addition to that due to inter-
nal pressure alone) due to the applied load P.

Within the boundaries of each semi-cylinder the deflection must satisfy
the equation

N )w+No a2w

R2 Oe2 2 )

We will assume that the deflection may be taken in the form of a series

w (x, 4) M Wna sin nTrx/L (2)

where the factors W - W (e), that is, the coefficients, are functions
of the angular positioO This series will give zero normal displacement at

the circular edges of the seni-cylindrical shell.

We will consider the implications of one term of the series in Equation (2),
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that is, we will assume that

W wn - sin Trz/ (3)

Substitution of Equation (3) into Equation (1) would lead to

d2i - k n2 - 0 (4)n n ni

dE-
" 2 2

where U -n R 0.T2 (5)
2" L"

The general solution of Equation (4) is

W = A sinh k 4 + cosh k 9 (6)a nn n ni

Along the edge .- 0,

And therefore the distributed normal (i.e., radial) force along this
edge is

ft-N Ank sin n7Txn o a n -L 7
n no L (7)

R

Let us now consider a 'concentrated" load -1 P/4 which is applied at the
point x = c on the edge e- 0. Thi* "cn.centrated" load may be assuued to
be distributed over a small length 2P' in the direction nf the edge, and we
may therefore say that Q is euivel-,." e a distribute-! lo.ding along the
edge defined as follows:

(0 0_x:(c - e)

q ~ (C)+ e)

Such a loading may be represented by a Fourier serLes:

q sin nTx/L (9)
n=

n-1

We have now to determine the coefficients qn by a standard techniqjue. We
substitute Equation (8) into Equation (9), multiply both sides of the re-
sulting equation by sin iTx/l, dx (where i is an arbitrary integer) and in-
tograte. .%;e observe that substitution of Equation (8) into the left side
of Equation (9) and performing the operations mentioned above would yield

Jq sin un dx w 0 + n dx + 0
L 2es L

c-e

If e is taken sufficiently small, the integrand of the term on the right
side remains essentially constant 2 , and we obtain

General IDynamics/Astronautics
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I i ix dx - 9. i in Mer dx- --- _ e__ --£-~ ~=

Lsin i_.x dx - s in dx (10)

o L

Performing the same operations upon the right side of Equation (9) we have,
by use of the orthogonality relations

(Zqn sin nTrx) sin ANi dx = sin2 ix dx
L L L

2

Equating (10) and (11) and replacing i by n yields

i 2q sin n'(
L L(12)

Hence, the concentrated load € (-P/4) may be represented by the series
CO

Q-2/ (sin Aff-c)(sin nifl (13)

Thus a concentrated load corresponds to the superposition of a series of
sinusiodally varying distributed loads.

We may now compare one term of the series in Ejuation (13) with the sinu-
soidal term of Equation (7) and we see that the two terms are identical if

An - - 2QR sin nre
LNk L
o n

Recalling that q = P/49 and using Equation (6) this becomes

A n  -F sin nltc (14)
n L~

0

t. Alternatively lf sin Nilx dx - Lcos iO(e-e)- cos iT(c +_e)
2e c-e L 2eiir L L J

.L sin ini1 sin iMe - .L (sineirc)11T. if ilTe/ L is
eiL" eiL L no L

fairly small, say one-tenth of a radian or less. Hence, if we can "cut
off" our series at a point where this restriction is satisfied, the re-
sults should be acceptable.
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We return now to consideration of Equation (6), the general solution of the
ordinary differential equation for W n If the loads P/4 are applied symme-
trically, then the deflections along the edges e - 0 and e .7T are equal.
Hence, for this case

B a A sinh k T + B cosh k Tr
n n n n n

or B - A sinh k 7 /(1 - cosh k 'n) (symmetrical) (15)
n n n n

If, on the other hand, the loads P/4 are applied antisymmetrically, the de-
flections along these edges are equal in magnitude but opposite in sign.
Hence for the antisymmstrical case

B - -A sinh k t -B cosh k T
n n n n n

or B - -A sinh k Tr/(l + cosh k 1T) (antisymmetrical) (16)
n n . n

A concentrated load P/2 at E - 0, x - c on the semi-shell (corresponding to
a single lead P on the complete shell) was nhown to be eqrivalent to symme-
trical and antisymuetrical laads P/4 on the semi-shell. Therefore we com-
bine both Eouationp (15) and (16), substitute into Equation (6). thence into
Equation (3 , and upon using Equation (14) and Equation (2) we obtain the
following expression for the additional normal deflections of a very thin
pressurized cylindrical shell when subjected to a concentrated normal load
P applied at W 0, X - c:

W(x,B) - 2 (-.,nh k e + cosh k cosh kG) e84_1i, sina IX)
21 N 0 n-l n n nL L-

sinh k 'Pin

or vlr,'a; - 4P 0 1 cosh k(1- 0) sin nalc sin nix (17)
Sn-l sinh k rr L L

where k - R i
a n

DISCUSSION

The coefficients in Equations (17) are easily evaluated either by use of a
table of hyperbolic functions or by use of the fundamental exponential forms
of these functions and a table of powers of e. When the argument of these
hyperbolic functions becomes large asymptotic forms may be useful. For
example: sinh G/cosh 0 -91 - 2e - Z as G becomes very large.

Equations (17) are valid when

(a~ the shell is very thin
the internal pressure is high
the "concentrated" load in small
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When these restrictions are violated, the deflection* given by these *ua-
tions generally are larger than thi actual defiections. Rules for estab-
lishing the range of validity of the membrane theory, and for estimating
the secondary or additional stresses in terms of the displacemente given
by the above equations wore presented in the previous report.

We will not apply Equations (17) to the point directly under the center of
the lead since a theoretically concentrated load would result in an infinite
deflection at the load point. Actually however, we do not deal with theo-
retically concentrated loads but with loads which are distributed over some
finite area. If the area is small, Equations (17) should give reasonably
gocd results beyond the edge of the actual contact area.

It would be well to avoid sharp edges on the attachment which trangmits the
load to the shell. If possible the slope at Lhe edge of the fitting should
not t less than the calculated slope of the shell at the edge of the fit-
ting. Also, the curvature of the fitting should not exceed that which, wbzn
applied to the shell, causes extreme fiber stresses of a magnitude such as
to raise the stress level above the dvoign allowable stress.

ILLUSTRATIVE EXAMPLE

As an illustrative example, we take a very thin cylindrical shell subjected
to a positive internal pressure of sufficient magnitude as to place the
shell in the approximate condition of a membrane. The shell is subjected
also to a *concentrated' normal load P located at c - L/2. The necessary
data include:

R a 40 inch#s k - RI n - .740480 n

L - 120 irchea kf - 2.326287 n
n

Wt will calculate the normal displacement at the point x - L/2, e = 0.1.
Thus, if the fitting shich transmits the load to the shell has a dimension
of about eight inches in the circumferential direction, is suitably shaped
both in profile and plan (probably with an elliptical planform having its
major aix in the circumferential direction), and is itself properly d*-
signed, the calaulated deflection -ould be expected to pertain to the edge
of the fitting.

General Dynamics/Astronautics
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Oe observe -. iat *ince &in n 'T c/L = 0 for all even integral values
of n, it is necessary to c.lcu&te terms only for the odd integers.
Furthermore, sinci c = L/2 and x a L/2, then sin n7T si- - l x - I

L L
for the odd integers. We nete also that coth k 1T becomes unity (to the
sixth decimal ;la-e) when n = 5 and remains zt ?La-value for larger n.
Conseque'.tly, for n equal to or Iarger than 5,

n V coth k i cosh k -sh k -k* n
n n M

Obviously this simplification is possible only when k is sufficiently
large. Aside from this simplification, the series may be expected to
converge nicely if 9 (which is a coordinate of the point where the
deflection is being computed, not the point where the load is applied)
is not too small, i.e., is not too close to the generator upon whic-h
the load is applied.

The calculations are carried out in the table below. Because of the
simplification mentioned above, sinh k 9 and cosh k 9 are notn a
tabulated for n greater than 5, and tk. value of ml for these values
of n is taken directly from a table of exponentials as -ka 9.C
The last column of the table should be multiplied term by tern by sin 0 1r c
sin n71- x before summing. Since this product was shoo to be unity L

L
(for odd values of n) for the particular loan point and deflection point
under consideration, this step has been omitted. In the general ca"se,
obviously, a column should be provided for this calzulation.

n k77 cth kiT kG nh k a csb k 0
n n n na z

.947890 .947S90
1 2.326287 1.019258 .074116 .074116 1.002742
3 6.978862 1.000001 .222144 .223976 1.024775 .8 ,S08 .266933
5 11,631436 1.O0000) .370240 .378757 1.069325 .690568 .138114
7 20.936585 .518336 .619035 .0S434
9 .666432 .51353 .057060

11 .814528 .442848 .040247
13 .962624 .381890 .029376
15 1. 110720 .3293=2 .021955
17 1.258S16 .293990 .016705
19 1.406912 .2448S9 .W2a89

21 1.555008 .211189 .010057
23 1.703104 .182!!e .0079!8
25 1.851200 .15-1I5~ .006282
27 1.999296 .1354 31 .00518
29 2.147392 .i-67 8 .0 >,,?
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The above result shows that, for a sufficiently thin shell having
the dimensions stated above and subjected to a sufficiently high internal
pressure, the normal deflection at the point x a L/2, 0 = 0.1 would be

W 2 P (1.6529)
0

If the shell and loads Jo not satisfy the stated conditions, a solution
of the above type may be taken as a first approximation.

General Dynnics/Astronautics

EUR-AN-O59 A 8


