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ABSTRACT 

Bayes ambiguity functions are defined as an important parameter governing the 

performance of optimum (i.e., Bayes or minimum average risk) systems.   Bayes 

ambiguity functions are generalizations of the classical ambiguity functions of 

Woodward and are specifically derived from an appropriate decision process.   It is 

shown here that it is the real part of the ambiguity function that is significant, rather 

than its modulus.   Optimum target resolution is formulated as a detection problem 

involving the two hypothesis states   H :   "unresolved" signals versus   H :   "resolved" 

signals, and general conditions for the qualitative utility of the ambiguity functions 

are discussed.   These latter are:   additive gaussian noise and threshold operation; 

otherwise the ambiguity function is an inadequate description of system performance. 

The analysis is extended to a number of situations involving interfering signals, such 

as electronic countermeasures (ECM) and is illustrated with simple examples 

showing quantitatively, as well as qualitatively, the typical roles played by the Bayes 

ambiguity function in a variety of ECM applications.   It is emphasized that one must 

also consider the probability of correct and incorrect decisions, in conjunction with 

the properties of the ambiguity functions, to achieve a reliable measure of expected 

performance. 

Accepted for the Air Force 
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Chief,   Lincoln Laboratory Office 
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BAYES AMBIGUITY FUNCTIONS 

Some Simple Applications to Resolution and Radar Countermeasures 

1.       INTRODUCTION 

1 
The classical ambiguity function of Woodward   is an established tool for the 

design of signals in radar and communication problems.   As is well known, its 

principal application in radar is to the resolution of targets in a multi-target envi- 

ronment.   The ambiguity function provides a quantitative method for selecting signal 

waveforms (at the transmitter) which, at the receiver, enables one to separate or in 

some appropriate sense, distinguish the returns from a desired target from the 

signals reflected from other, undesired targets.   This is accomplished primarily on 

the basis of two principal parameters of the targets in question:  range (or time 

delay) and velocity (or doppler frequency).   Loosely stated, two targets are "resolved" 

if the differences in range and velocity are such as to make the ambiguity function for 

the pair of signal returns some sufficiently small fraction of this ambiguity function's 

maximum value. 

The advantage of using an ambiguity function in detection and resolution situa- 

tions is its comparative analytic simplicity:  it is readily calculated in most cases 

and it provides useful "pictures" whereby performance can be qualitatively estimated, 

2, 3 
for various choices of signal waveforms and modulations '   .   In these respects it is 

analogous to the signal-to-noise ratio as a partial measure of expected system 

4 
behavior.   The signal-to-noise ratio is a second-order statistic   (of the system's 



Output).   It can likewise be calculated where more general statistical measures 

(such as error probabilities, etc.) can only at best be approximated or simulated, 

and it does relate various of the chief system parameters.   On the other hand, the 

principal limitation of both the ambiguity function and the (output) signal-to-noise 

ratio is that they are incomplete measures of system performance.   They omit the 

decision process, which in signal detection and estimation is the system's desired 

output, and which itself is crucial in the specification of optimum and near-optimum 

systems for these purposes  . 

2 
Earlier work, with the partial exception of Siebert's important paper , has for 

the most part focused on the structure and properties of the "classical" ambiguity 

function and its quasi-qualitative uses for signal design purposes.   Our effort here 

2a 
appears to be new    , chiefly with the introduction of the generalized or Bayes ambi- 

guity functions, their relation to the defining decision process, and application to 

interference studies.   Accordingly, the general purpose of this study is to show how 

the useful design concept of the ambiguity function can be incorporated into the more 

complete description of the system and evaluation of its performance based on 

decision-theoretic methods  .   In more detail, our aim is to consider a number of 

radar detection situations in a variety of environments, including electronic counter- 

measures (ECM), and to attempt to relate, quantitatively, ambiguity functions to 

optimal system structure and performance.    [Related topics, for subsequent 

analysis, include waveform design to enhance ECM, and signal waveform selection 



to minimize its effects, under various operating constraints (e.g., fixed total energy, 

bandwidth, etc.). ]   The criterion of optimality is the usual one of minimum average 

5 45 
risk or cost of decision , which leads to the so-called Bayes systems '    .   Ambiguity 

functions associated with such systems are accordingly called "Bayes ambiguity 

functions."   Apart from the solution of a few typical and illustrative problems from 

this viewpoint, our ultimate aim is to provide greater insight into the role that the 

ambiguity function plays in the decision process, its advantages and limitations as a 

working tool for the practical system design and waveform selection, and to 

strengthen its effectiveness in these respects. 

This paper is organized as follows:  Section 2 presents some preliminary 

remarks and results concerning the classical ambiguity function.   No attempt at 

completeness is intended; just enough background is given to provide a framework 

for the subsequent analysis and discussion.   Sections 3-5 are the meat of the work 

and consist of a formulation of the resolution problem (Section 3); illustrative 

examples of radar resolution (Section 4) and detection (Section 5) subject to ECM. 

These illustrations are deliberately chosen to have somewhat limited application in 

order to ensure analytic simplicity.   The chief results, however, include the Bayesian 

ambiguity function in this instance, its detailed structure, its role in the decision 

process, and a variety of important features which enables us to draw some important 

general conclusions about this extension of the ambiguity concept.   These, in turn, 



are summarized and discussed in the closing Section 6, along with a short list of 

further questions to be examined. 



2.       SOME PRELIMINARY REMARKS ON AMBIGUITY FUNCTIONS* 

Let us begin with a narrow-band, complex signal  S(t; 0), which we write 

iwQt 
S(t;£) = So(t, 0)e ;uo = 27rfo, (2.1) 

where  f    is the carrier frequency,   S    is a complex envelope, slowly-varying 

vis-a-vis   exp(io; t), and   0  is a set of structure parameters that characterize the 
o *" 

waveform.   In terms of a real envelope,   E , and phase ,   o , the complex envelope 

S    is 
o 

S (t, 0) = E(t, 0)e10(t* ^ . (2.2) 

1 
The (normalized) classical ambiguity function of Woodward is now defined   as 

X(T, 0 = J     §0(t, 0)So(t + T, 0)* e'2irlvtdt  /|     |So(t, 0.)|2dt    (2.3) 
oo 

00 

= |     SQ(t,  0)so(t + r,  0)*e"27ri,ytdt, (2.4) 

* 
A glossary of symbols is included at the end of the paper. 



where 

i 

So(t, 6) = §o(t, £)   / (j      |So(t, 6)|2dty (2.4a) 

is the normalized complex envelope.   It is understood that the integrals in (2.3) - 

(2.4a) are finite.   This means that if the data interval   (T)  is infinite, periodic 

signals are excluded on the infinite interval and  S    must be such that  S (± °°) 
oo 

vanishes properly.   In practice, however, the data on observation periods   (t , t + T) 

are always finite, so that 

S (t, 6)    =S (t, 0), (t   <t<t   + T); = 0 elsewhere, (2.5) 
o       • T       o       "• o o 

and Equations (2.3) - (2. 4a) are bounded, since  S   eT  has   , at worst, integrable 

singularities. 

* 2 7T i V t 
Physically, we can interpret  S (t + T) e as the received signal's (com- 

plex) envelope after reflection from a target which introduces a delay or shift in 

range by  T  and a phase change, or doppler displacement, of   2 7r!;t  radians, with 

respect to another, otherwise identical signal.   If  S (t)  is the (complex) envelope 

* 27T i vX. 
of a target return at time  t, then  S (t + T ) e is the return from an identical 

target displaced from the former in range   (T)  and velocity   (v).   Thus,    X(T, V)  is 

* 
The symbol,   e, means "in the interval." 



a complex autocorrelation function with two parameters, range and velocity.   In the 

instance where  S (t)  is the envelope of a locally generated signal,   X(T, V )  maybe 

interpreted as a complex cross-correlation function, between the locally generated 

signal (envelope) and that of a target return whose range is   (~ r/2)  and which is 

moving relative to the receiver with a velocity   (~ v ).   Care must accordingly be 

taken, when we use   x » to ascertain the intended interpretation of the signals in 

question. 

Some of the more important and easily established properties of  X(T, V)  are 

(i)      Maximum value:        |x(0, 0)|=1 (2.6) 

[This is an immediate consequence of (2.3).] 

oo 

(ii)     Fourier transform:    \      X(T, V ) e27M Vt dv = S (t) S (t + r )* ;    (2.7) 

(iii)    Conservation of volume:     \ \   |X(T,  y)|    dT dv = 1 . (2.8) 

-OO 

This last says that the total volume under the surface   \x{r, v)\   is bounded, and 

since the signal is such that the various integrals (2.3), (2.4), e.g.,   X , are bounded 

and continuous, it follows from (2.6) and (2.8) that the   |X(T, 0|— surface must 

eventually fall off to zero in the   T , v  plane.    [Equation (2.8) is independent of the 

particular form of   x. ]   Usually there is one large "spike, " of maximum height unity, 



at   (0, 0), with other "spikes" for some   (T,  v) f (0, 0).   The precise form of the 

|x(~,  v)\—  surface depends, of course, on that of the signal envelope   S   . 

As a very simple example let us consider a narrow-band rectangular pulse of 

duration   r   : 
o 

iw t 
S(t) = A   e    °  ,  -T 12 < t < T /2; = 0, elsewhere. (2.9) 

O O 0 

Accordingly, we have 

>r/2 
[      |S(t)|2dt = r°     A2dt = A2r, (2.10) 
J      '  o J/Oo oo 

•V2 

and so (2.4) becomes 

'.>r -2*i„t X(r,  V) = (1/T   ) \ e dt,   T   > |T| >0 

•v2 

= 0,   |r|>ro 

(2.11a) 



X(T,  I<) = e 

-2 7T 1 V (T      -      T    ) 
7T1/'T      / O 

o /   1 - e 

2 7T i VT 

= e 
7T 1 V    T 

1   - 
-,   sin7riv(r    - |T|) 

7T VT  (1 - IT |/T   ) 
o "   o' 

(2.11b) 

= e 
i   I     sin7r v (T    - |T I ) 

HCT O ' 

7T l^T 

all for 0 < | T | < T   ; 
o 

(2.11c) 

= 0,      T     > T 

And so we have directly 

2 
2      sin  7T^(TQ - |T | ) 

\X(T, U)\    = 2  ,0<|T|<T   ; = 0,T elsewhere,       (2.12) 
(ir VT   ) 

with the properties (2.6) - (2.8) easily verified. 

Here we have explicitly 

|X(T, 0)| = 1 - |T|/TO, 0< |T I <TQ; =0,   k| > TQ; (2.12a) 



SUlff VT 

|X(0, u)] = —   . (2.12b) 
ff VT 

O 

The ambiguity function described above is an (auto-) ambiguity function, since 

the signals are the same.   We should therefore write for (2.3),   x    (T, v).   This, 
ss 

and the interpretation of the ambiguity function as a measure of separation in fre- 

quency and delay of two signals, permit us to generalize (2.4) to the concept of a 

(cross-) ambiguity function 

*12<T- t>äLVt)§02(t+r>%"2,ri''td7'^7^' (2-13> 

where the normalizations are 

00 

E01.02-JJä0.,02(t)|2dt- <2-,3a> 

Thus, rewriting with the help of the normalized signal 

s01(t) = SQ1(t)- E~Q\. etc., (2.14) 

we have in a more compact form 

10 



oo 

X12(T,  r)=j      s01(t)sQ2(t+ r)*e"27rl,,tdt. (2.15) 

This cross-ambiguity function has just the same sort of interpretation as that given 

above for   X(T,  V), cf. Equation (2.5) et seq.   We see that   X.„  is a kind of com - 

plex cross-correlation function, between  s_.,(t)  and   s    (t)*   delayed by   r   and 
Ul 02 

undergoing an (angular) frequency shift   2 TT i i • t, e.g., 

5^) = ^); s2(t;T, O = s02(t+r)e27rl"t , (2.16a) 

.*.X12(r, K)=J    S^DS^T, «//dt. (2.16b) 

By Schwartz's inequality   we see that 

!X12(0, 0)| <1, (2.17) 

with the equality only if  s      = s     .   We also easily show that 

OO 

j     X12(T, „)e27riPtd„=s01(t)s02(t+T)*, (2.18) 

like (2.7).   It can be demonstrated that 

11 



j j   'X12(T'  v)\2*Tdv< i <2-19> 

2 
also, but the volume under the surface   |x .J   , is no longer necessarily conserved 

cf. (2.8). 

From Equation (2.12) we may say that if a signal is displaced in delay r  and 

frequency   v  from itself (at   T = 0,   v = 0), such that   \X(T, ^)|   is (for all such  T, 

v) less than some prechosen number, then these two signals are "resolved"--i.e., 

are "distinguishable" in some observational sense.   Thus, for all   (T, V )  such that 

X(T,  ")*X0 . (2.20) 

a region is defined where the two signals are said to be "distinguished, " "resolved, " 

or "separated."  In the example calculated above, (2.12), this "resolution" region is 

the entire   (T, V )  plane outside the closed curve bounding the region for which 

X(T,  f)>Xn» for at least some   (T,  V ).   Similar remarks apply directly to the 

(cross-) ambiguity function   X . „ • 

12 



3.        A REFORMULATION OF THE "RESOLUTION" PROBLEM*:   BAYES 
AMBIGUITY FUNCTIONS 

The central point about the conventional use of the ambiguity function to resolve 

two signals, or "targets, " is the fact that the decision process:   "two signals are (or 

are not) resolved, or distinguished, " based on   X ( — some arbitrary threshold   Xn)» 

is in no direct way related to the actual processing of the received data.   One simply 

agrees that two signals are resolved, or resolvable, if   X < Xn   over appropriate 

regions of   (T, V ).   As remarked in the INTRODUCTION, this is similar to the use 

2 2 
of the signal-to-noise ratio:   (S/N)      versus (S/N).   , in evaluating detector per- 

4 
formance in the older theories  .   In both instances the actual decision process based 

on the received data does not enter into or influence the calculation of these partial 

criteria of performance:  data processing and decision-making are "uncoupled. " 

Furthermore, the classical ambiguity function (above) is defined in the absence 

of the inevitable background noise that accompanies practical operation, and which 

makes decision-making here, in reality, an act carried out in the face of uncertainty. 

All this strongly suggests that a more realistic formulation of the problem, which 

now includes these critical factors of decision-making and accompanying noise, will 

be illuminating and provide greater insight into the concepts of, and bounds on, the 

use of ambiguity functions as useful, partial criteria of system performance and 

signal design. 

* 
See Section 5.0 of Reference 2 for an earlier (nondecision treatment). 

13 



Let us therefore reformulate the resolution problem in terms which couple 

together the actual data processing and decision-making in the face of uncertainty. 

We choose the now standard concept of average risk or cost to describe the expected 

5 
performance of our systems  .   Optimum (or Bayes) systems are those that minimize 

this average risk, and the decision-theoretical formulation of our problem allows us 

to determine and compare optimal systems with suboptimum ones for the common 

7 
purpose in the usual fashion  . 

We now specify the resolution problem involving two (real, narrow-band) 

signals as a detection problem, involving the test of two hypotheses against each 

other 

H,:   S,(0, 0) + S1(TJI  I;   )+N: a "reference" signal   SW0,0)andan 
11 111 

otherwise similar signal, displaced from 
Si(0, 0 ) by  jy , v^   in delay and frequency; 

(3.1) 

H„:   5,(0, 0)+S,(TO,  y„ )+N: same as HA, but the "displaced" signal 
2       A 12      2 

now has a displacement   (T2,  VJ). 

If we set   (T,, I>   ) = (0, 0), (T„ — T, V   -—V ), we have the decision situation: 
11 2 2 

H :   25,(0, 0)+N versus H  :   S,(0, 0)+S,(T, I>)+N, (3.2) 
11 2      11 

The resolution question is thus the decision problem of deciding which state occurs, 

H   , where the two signals completely overlap, or  H   , where there is some 

14 



Separation in   T  and   v.   This is done in the familiar way by assigning costs to the 

various possible outcomes   (H. true,   H   false, etc.), and comparing a suitable test 
1 1 

statistic (receiver output) against a threshold,   JC(which is a ratio of the above costs). 

If the threshold is exceeded we decide   H   , otherwise   H   .   With a suitable choice of 

threshold we can ensure high probabilities of correct decisions.   Thus, if the 

threshold is exceeded, we say that for the particular piece of data in hand, the two 

signals are resolved, with the reverse decision if the threshold is not exceeded. 

Moreover, for (3.2) if the probability  P(H  ) that  H    occurs is sufficiently large 

[and   .*. P(H   )  is sufficiently small] we say that the two signals are "resolved, " for 

the values of   (T, V ) given.   Expected performance is thus measured in terms of the 

probabilities of correct decisions as to  H    and  H   :   "no resolution" for the former 

and "resolution" for the latter.   Otherwise, the signals are not resolved.   Clearly 

P(H   ),   P(H  )  are functions of  (T,  V ).   The subjective element here is the choice 

of the values of  P(H   )  and ultimately of  (T, U), at which we say that resolution 

occurs.   This however, is more fundamental than the choice of threshold,   xn, in the 

conventional use of the ambiguity function   X , since it represents the overall decision 

process and includes the effects of uncertainties occasioned by the presence of back- 

ground noise. 

Useful generalizations of this approach are immediately made:   (i) we can use 

(3.1) to distinguish between pairs of partially resolved signals (in noise); (ii) we can 

15 



consider the important case of different signal waveforms, e.g., 

H4:   S^O, 0)+S2(^, T4)+N versus H2:   S^O, 0)+S2(^, r2> + N.      (3.3) 

Resolution is achieved, as before, if   P(H   ), or   P(H   ), is sufficiently large. 

So far we have said nothing about the appearance of ambiguity functions in 

these decision problems (3.1) - (3.3).   Remembering from (2.16b) that the ambiguity 

function is a species of (complex, first order, i.e.,   < S. x S. > ) correlation function, 
1       2 

we are naturally led to look for such forms in both the structure and the evaluation of 

performance of these detectors, operating under the hypothesis states (3.1) - (3.3). 

Accordingly, when such first-order correlation functions appear in the structure and 

evaluation of optimum (Bayes) systems, we call them Bayes ambiguity functions. 

Let us consider optimum (i.e., Bayes) systems and two principal modes of 

operation: 

A. Threshold detection:   Here the input signal-to-noise ratio is small, but 
g 

the processing gain   is large enough to ensure high probabilities of 

correct decisions.   This is the usual limiting situation in detection, for 

9 
which one seeks optimal receivers   .   Here the background noise statistics 

dominate in determining both optimum structure and expected performance. 

B. Strong Input Signals:   In this case the input signal-to-noise level is high, 

and processing gains may be of the order of unity for effective perfor- 

mance.   Now, however, it is the statistics of the signal that control 

16 



performance, when optimum structures and performance are desired, 

and these may be very complicated.    [Usually, strict system optimality 

is not critical here--one generally employs the optimum threshold 

system obtain in A above. ] 

iO 
If now we look at the general structures for threshold performance    , we see that, 

2 2 
generally, all orders of signal correlations,   <S   x S   > ,   <S   x S   > , etc., appear 

so that the ambiguity forms   [ <S   xS   >] are but one of many parameters of the 

system.   Similarly, the decision probabilities, based as they are on appropriate 

statistics of the threshold structure, contain all orders of signal correlation as well. 

For stronger input signals these effects are enhanced.   The resulting conclusion is 

that, not unexpectedly, 

1. The ambiguity function (Bayes or "classical"), above, in the case of 

general signal and general background noise, is not a system parameter 

that gives an adequate description of structure and performance. 

However, it is very important to note that: 

2. In the common situation of additive signals and gaussian (or gaussian- 

derived ) noise, for optimum and near optimum threshold operation the 

type of signal correlation characterized by Bayes ambiguity functions is 

a major parameter of system structure and performance.   It may 

* 
Originally gaussian noise, subject to modification by the input signal, or passage 
through zero-memory non-linear devices, etc. 

17 



therefore be regarded as significant in the description of the system and 

in the associated problems of signal design (choice of optimum waveform). 

The reason for this, (2), is basically because both structure and performance depend, 

significantly, at worst on second-order statistics of the noise and the signal in the 

threshold situation.   (All our examples in succeeding sections exhibit this explicitly.) 

Because of (1), then, we must be cautious in our use of ambiguity functions as a per- 

formance description, but because of (2) we can expect the ambiguity function to be a 

useful, partial criterion of system behavior in the many important cases obeying the 

additive, gaussian, and threshold conditions of operation. 

If we regard  S (0, 0)  in Equations (3.1) - (3.3) as a desired target return, 

and   S (T,  V),   S (T,  V), etc., as interfering or jamming signals, it is evident that 

the resolution problem defined above has the equivalent alternative interpretation in 

an ECM context as determination of the presence of a desired signal in noise alone 

vis-a-vis the presence of the same signal subject to a jamming signal   S (T,  V )   or 

S (T,  V), etc.   A variety of ECM models is clearly possible, and will be discussed 

in Section 5.   Again, subject to the conditions of Conclusion (1) above we may expect 

that the concept of ambiguity function will be of little use here, whereas if the condi- 

tions of (2) above apply, appropriate forms of the ambiguity functions may be of 

significant aid in describing system behavior. 

18 



4.        A RESOLUTION EXAMPLE 

Let us illustrate the above remarks with an explicit calculation.   We choose the 

resolution situation embodied in Equation (3.2) and in order to simply the analysis 

and obtain explicit results, we further assume 

(i)      additive gaussian noise, independent of the signals; 

(ii)     the (real) signals are completely known, and narrow-band, so that 

detection is coherent. 

(iii)    all signals have the same strength. 

Next let 

(1) 
C      = cost of deciding, correctly, that   H    occurs when in fact it does; 

(1) C'    = cost of deciding, incorrectly, that   H    occurs when   H    is the 
true state; 

(4.1) 

(2) 
C   ' = cost of deciding, correctly, that  H     occurs when  H     actually 

does; 

(2) C}    = cost of deciding, incorrectly, that  H    occurs when  H    actually 
does. 

(Here the superscript represents the true hypothesis state, while the subscript indi- 

cates the type of decision that is made.)  The optimum detector of  H   versus H    is 

19 



easily shown to be   the ratio of the probability densities associated with the two 

states   H, ,   H„, viz: 
1        2 

P2
<Fn(^VSl»S0,Si 

A21= WW^ 

P2-e 
■*(x- «01*1 - Vfz^1 (~~ aoi h - aoi M 

pi '( 

^(v-2a()1i'1)]cN
1(v-2a01si) 

or 

■"• A21 = ^21 6XP { ■ **N   (a01 S4 " a
0l *2 > + 2a01 h kN  *1 

2 
01        ~      ~ ,    -1 

<h+i2
)^(h + h)} 

(4. 2a) 

(4.2b) 

where   p.     = PVP. . *s the ratio of a priori probabilities associated with   H     and   H , 

respectively, and 

* 
Reference 5, Sections (2.2), (2.3), extended to two signal classes. 

20 



s2 
= 2i(T'  U)' Wlth  -1 =*l(0' 0) (4.2c) 

The p.d. 's   F   (V |S   ), etc., in (4. 2a) are the a priori probability densities of the 

data given signal   S   , etc.   As before,   k     is the normalized covariance matrix of 

the noise, e.g.,   k(t., t   ) = [ N(t. ) N(t   ) / N   ], and  v,        are normalized data 

and signals, and  a      is a normalized signal amplitude, e.g., 

v = y/VT; s = S *VT/A     ; a     = A    /VT? ; $ = N2 (N = 0 ), etc., (4. 2d) 

cf., page 32, reference 5.   Writing 

_(s)    ~     -1 .(s)    ~     -1 As)     As)    ~  . -1 
*11 " h *N  *1 '> »22 " h *N   *2 : *12 = *21  = h *N   S~2 

(4.3) 

V^N^i"^' (4.4) 

we can express the optimum detector (4.2a, b) more compactly as 

A21 = H21 exp $   a    +2a
2   *(S) 

v   01 01    11 
01 *(S)

+*(S)
+2*(S> 

11        22 12 
,    (4.5) 

or, as is often the more convenient form, by 

21 



2 
a. 

* n   2    ,(s) 01 
X21 S l0g A21 = l0g *21 • a01 *v + 2a01 *H   " ~T 11 12        22 

(4.5a) 

From this it is at once evident that the data processing consists of a cross - 

correlation of the received data,   v., with the difference of the "reference" signal   s 

and the "shifted" signal   s   .   The other terms represent (precomputed) biases, 

which must be used with respect to the decision threshold.   The decision process is 

,    (4.6) 

decide   H0:   e.g., a "resolved" signal, in noise,      *    >i      v 
—   vis-a-vis the reference, if 21 21 ' 

* 
decide   H .:   e.g., no resolution x .. < log JC 
 1 21 21 

where  K       is the threshold, formed by the various 

c(l) . c(l) 

*« -   c(2)    J2)       <>°>- ^ 
S     "C2 

[We must have   Cl    > C.    , C;     > C„   , i.e.,  "failure" costs more than "success."] 
2 112 

4.1     Expected Performance 

In order to evaluate how well this optimum system resolves   S   = S (T,  V ) 

vis-a-vis   S   = S^O, 0), we must next determine the error probabilities, or equally 
0       1 
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effectively, the probabilities of correct decisions.   These are the (conditional) error 

probabilities 

^1) = 1 -ß(2) = i " j1  <F
n <X!S1»S   <5(Y2|V)dV (4.8a) 

ß{2) = i -ßf) = i - J <F
n<llä!' S2)>s ^ s   ^yJvjdV, (4.8b) 

1*    2 

where   ö(y   |\f) + ö(y   | V ) = 1   are the decision rules (probabilities) governing the 

* 
decisions   y :   H , y :   H    based on the received data  V, in the usual way .   Here 

(1) 
ß        is the (conditional) error probability of deciding   H   , i.e.,  "resolution, " when 

H    is truly the case, etc.   The probability densities   F    are 

Hi! VXlV- 
exp i(v-2a01J1)ki;

1(x-2a01si) 
(4.9a) 

.n/2 
(2TT) 

/     »J det k 

H2:   VX'W" 
exp *(v-2a01i;2)kN   (v-a01^-a01i 

-2 

n/2 
<2ir)'     '^TdeT^ (4. 9b) 

Reference 5, Equation (2.10a, b) extended to the two-signal case. 
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The averages   <   >     ,   <  > here drop out, as all parameters of the signals 
bi S1'S2 

are assumed known.   We need first the characteristic functions of xJ „, viz: 
12 

Mx i£x 
F1(i«|H1) = Ce >H   ;   F^i^H^^e >H   , 

1 2 
(4.10) 

where   <   >       indicates the average with respect to the   H -density, Equation (4.9a), 
Hl 1 

etc.   These averages are easily found with the help of Equation (7. 26),  Reference 4, 

to be 

F1(is
f|H1) = exp iU   log (i 

01 
21 

* 
12 

2      2 
aoi4 

* 
12 

(4.11) 

with 

*     = *(s> - 2 *
(S) + *(S) 

12        11      ^12 +     22 ' 
(4.11a) 

and 

F1(idH2) = exp 
01 

12 
-21. «2* 

12 
(4.12) 
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The d.d.'s of  x      with respect to  H     and   H     are the Fourier transforms of (4.10), 

respectively, and become [cf. Equation (2.45), (2.46), Reference 5]. 

wr'lHi   r9    2*   I'*    ■(x*i2"log^2i + aoiV2>2/2aoi*i: 
VX12,Hl)=[2ira01*12]        6 

(4.13a) 

w,*,„,     f9     2_       -I     •(Xi2-1(«^ra01*12/2)2/2ao1*i: W1(x12|H2) = [27ra01*12]       e 

(4.13b) 

From this and the fact that the conditional error probabilities for this optimum 

system are given by 

log ^ 

log M, 

■i     „      Wl(X12,Hl)dX
12i'3l      -J. W

1
<X12|H2>dX12' 

(4.14) 

enables us to write finally [cf., Equation (2.47), Reference 5] 

,(!)* 

.(2)* .h-H1'® 
V  * log(X     /u.      ) 

01 12 Kl   2l'^2l'  .  ±  

2V 2 »7 2  a     *7 * 
01 12 

(4.15) 

©' where   ( H )   is the familiar error function 
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x        2 
®(x)=—£-     f    e_t   dt,  @ (-x)= - (H) (x). (4.16) 

The desired (total) probabilities of correct decisions are now 

a**      a)*   pi  r   ^^r aoiv *i2    lpg('K2i/hl2i) l^ 

01        12 

(4.17a) 

«,¥Hr,^A{lt® P,   r     ^rV"^    i«<VV 

01 12 

(4.17b) 

(1)* 
Thus,   p  ß is the probability (for the optimum system) that, for the given 

system parameters:   (T, V) for signal   S   ,   a     , sample size   (n), and threshold 

X     , as well as a priori probabilities   p   + p   = 1 , one has decided correctly on a 

(2)* 
state of complete overlap, i.e., no resolution.   Similarly,   p /3 is the probability 

of correctly deciding that the two signals   S   ,   S    are "resolved. " 

An alternative form, which is often more illuminating, relates the (conditional) 

(2)* 
probability ß of correctly resolving the two signals, to the (conditional) proba- 

(1)* bility ß of incorrectly stating that the two signals are resolved.   This is obtained 

by eliminating the threshold expression  log 0^*,/[*■*. )> with the help of (4.15), viz: 
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log(K21/fi21) =*n aOl'/*l7©"4 (1 • 2ßtT) ' 

2 
12 a01 (4.18) 

With this in (4.17b) we get directly the desired relation for the (conditional) proba- 

bility of correct resolution: 

,(2)* 1 + ®[aoi,/VrT-©"1(1-241)*) (4.19) 

(1)* (1)* 
Let us suppose that  ß is required to be small   [ ß        > 0 , of course, for 

finite sample sizes and thresholds].   Then   (H)       is a positive number,   0(< °° ), so 

(2)* « /"-\-l 
that to make  ß large we must have  ani *t *. J2  large enough to offset   f -(H) 

2 01 12 ^—/ 
®(1)* 

= 1 .   Thus, we see that for fixed  ß       , the 

value of the desired "resolution" probability is controlled by 

2    _ 
a     * 

01    12 01 
12 

4> <S> - 2 *(S) + *(s) 

11 12 22 
(4. 20) 

2 , 2 
We can achieve large   cr      if either, or both, the input signal-to-noise ratio  a 

and the structure factor  *      are large.   Note that 

-1 
*.„ = (s. ~s„)Ki   (s. "§_)>0 12     v-l     "»2   -N   v*1     *2 

(4.21) 

27 



* 2 2 
is a positive definite quadratic form  , so that for  anA > 0, we have  o\ n > 0 

01 12 

4. 2     Continuous Sampling:   Bayes Ambiguity Functions 

To illustrate the role of the ambiguity functions, let us now replace the discrete, 

sampled forms above by the appropriate continuous functionals.   From the Appendix 

(Reference 5) we easily see that now 

•H ~ *u - * IT 
s!(t' v J«o> XT <t; v -9o\dt: <4-22a> 

*22 - *2? ■ * 1 S2<1 " V «o> XT <t; V V, dt: (4' 22b) 
T ^ 

*12 - *»  = * IT 
S2(t " V -V XT <t; V lo>f 

dt 

(4.22c) 

(-♦£•»&-v4.)xT(t!VV.*)- 

This is true, unless   s   = s   , where of course, there is complete overlap of the two 

signals ta   H2, and  „f .„«V also,   ,{'>* . ,f . ,f> * . „f .»..-. P/f 

+ p.ß        = i  and  p ß        + p ß        = i :  the probability of correct or incorrect 

decisions as to resolution or not   (H   versus H  )  are equal and   \ ; either state   H , 

or  H   , is equally likely on the average, and since   s   =,s     there is no "resolution." 
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where   X     , X       are the (real) solutions of the basic integral equations 

\    K   (t, u) X     (u, e , 0   )        du = s     „(t - € , 0), t 
J_P    N T °     ° 1   2 ' 0*0 

€T. (4.23) 

Now, since   s are real, narrow-band signals, we may expect that  X     has 

a narrow-band structure also.   In any case, we can define a complex reference 

"signal" 

iu> t - i ip / -iif    v 
5TUä|V2|e    ° ^T01,2=(.|JTl,2le \2- <4-24> 

which is the solution of 

p ioj t 
)    KN(t, u) ZT (u; co, 0 )lf 2 du = s1? 2(t - eo> öo) = s01> 2 e    

3 , t c T, 

(4.25) 

so that 

ReZT = XT= |ZTI cos(Wot -i^), etc.; = 0, t/f T. (4.26) 

(T) 
We can now express   $        etc., in complex form by the following argument: 
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*n = * IT 
Re gi • Re *Tl dt = * IT 

,5oi I "»K1 - ii> 

• |ZT| cos(oM: -tfzl)dt, 

(4.27) 

with  j/;   = $   + a;   c   •   Expanding the cosine product and observing because of the 

narrow-band character of   |s   |   and    |Z      | , and slowly-varying nature of   |s     | , 

|Z      I ,   ip   , ip   , that the rapidly oscillating term in  COS(2OJ t - ip    ~ $- )  yields an 
1 1 S Lt O S Lt 

ignorable contribution to the integral, we obtain 

<J> 
(T)1 jp_ 
41 2 

JTIS01IIZT1I coS(;sl-^zi)dt 

2    ReJT'
801l,ZTll   6 dt 

J, Re     ^(Mjz™ (t;e , e )*dt 01v ' *o'    T01  v '   o' -o 

■ -f Rel ZT01(t)S01(t)*dt' 
(4.28) 

(T) 
so that   $\ .     is now expressed as the (real part of the) product of the complex signal 

11 
A 

envelope and the complex envelope of the "reference" signal,   Z    , cf. (4.24). 
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Similarly, we get for (4. 22b, c) 

*S>ti-RelT
S02<t)Wt;--,*dt' <4-29a> 

•« '-f Re IT -V«> Wt; • • >'dt ■ ir Re 4 go2(t> Wt; • • >*dt 

(4.29b) 

where   sQ1 ,   s     ,   ^TQ2,   
z
TQi   are the complex envelopes of  s^ ,   s2,   Z      ,   Z     . 

At this point let us normalize   s_. ,   s„„  and   Z__.   n, according to (2.4a). 
01        02 T01, 2 

Letting 

z = Z 
T01, 2        T01 

1 

,2/(^T0i,2(t),2dt) ;(ir = 0'MT±)' (4,30a) 

g 
01, 2-norm 

miM.2MKS     l§01,2(t)|2dt)2' <4-30b> 

(T) 
be the normalized signals, we can now express   $      , (4.28), etc., with the help of 

the normalizations of (2.4), (2.15) for the respective ambiguity functions, alterna- 

tively as 

<?=^{J lWt>l2dt-jjVt>l2dt}2 •Re*S,,£<°-t»' 
(4.31a) 
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1 

(4.31b) 

*(T)- 
12        2 

2 

oo i 

H'W'»2*-!. '§oi<t>|2dt}a • """S^S (0- 0ir' ">' 
(4.31c) 

{JT
iaTO<t)|2*'LlS02(,)|2*}    «•"i1.

S2(0'0iT',') 

Thus, we see that it is the real part of the ambiguity function that enters into these 

* 
expressions   .   The real part of the ambiguity function is the critical factor deter- 

(T) 
mining the magnitude of the quadratic forms   *      , etc., which determine the key 

(T) 
parameter  *     — *      , which in turn governs the probabilities of correct and in- 

(2)* 
correct decisions,   ß        , etc., cf. (4.19). 

(T) 
We remark that   X~     ~  (0, 0)  does not depend on   (T, V)  here, while   *       , 

s   , z 22 
(T) * (T) 

*        depend, in general, implicitly on the   (T,  y)   of   S   = S (T,  t»).   In   *„„    this 

dependence is weak, entering only as small contributions from the "end-effects" 

(T) 
(att = 0-,   T+)   in the solution   Z        of (4.25).   However, in   *        the dependence 

on   (T,  V)  is critical, as we shall note below in the important special case of white 

noise backgrounds, for example. 

This is because   x   is a quadratic (or signal energy) form and we deal always with 
real signals. 
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The (cross-) ambiguity functions [above (4.31)) are normalized and have the 

specific forms 

1      1 T 

X,     $  (0,  0)=f   5     <t)      mz        (t;r,  v )* dt 
»  , z^ J      02     norm   TU2 

(4.32b) 

C   -    / v 27rip't~        . ,*  , 
= J,S0t(t+7)norm

e ZT02,t:T"»   dt ; 

X.        (0. OiT. ,)-£ V'WmW^ '>'* 
12 T 

(4.32c) 

(*> ,   \ *     t v* ~ 2 TT i i ■ t , „    „ 
= LZT01(t)S01(t+T)norme * - X-     g (0. 0; r,  « ), 

T 12 

where, of course,   z        ,   zTn9   are obtained from the solution of (4.25) in conjunc- 

tion with (4.30a) above.   These ambiguity functions are called Bayes ambiguity func- 

tions here, because they arise in the determination of the Bayes, or optimum 

(detector) system--for resolution, in this particular instance [cf. Section 3 earlier] . 

They represent a more general type of ambiguity function because they are generated 

as one of the significant parameters of optimum system structure and performance 
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through Bayes criteria and decision rules [cf. Section 3].   In this respect they are 

11 
analogous to Bayes matched filters    .   They subsume the earlier, "classical" forms 

and in special instances are identical with them [cf. Section (4.3) following]. 

4.3     White Noise Backgrounds 

With white noise backgrounds, characteristic of most system noise in the 

receiver and certain types of external interference, we obtain an interesting simpli- 

fication of the preceding results.   We have 

W 
Fyt, u)=——       ö(t-u), (4.33) 

where  W     is the intensity spectral density of the noise.   Applied to (4.25) we get 

at once 

:T1,2= -VT"   \2{t'€o'^'   ^T;=0, t^T (4.34a) 

2      A . %   
icV 2 i»0(t-e0)-i*s(t,£) 

—   S01,2(t'Ve        = — l801.2(t'Ve 
o o (4.34b) 

ty'(t,  6   )   iw t 

T01, 2      W       '  01,2'    *o" s     Ts       oo 
o 
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and 

XT1,2=   W^-   l«oi,2|cOSfWot-Vt'A)
)1't€T- (4-35b) 

o 

Substituting these relations into (4. 31) gives 

A ^°° 
2    _(T) 01 

a„. * I     |s01(t)l'dt.ReX       £<0. 0), 
01    11        2W 

0 _oo 11 

[  lSoi(t),T = °'  (t^T)>  etC>]' 

(4.36a) 

,2 
A 

"«•S'-sM |yt'|Tdt-Re«s„,s'°'o)' (4-36b) 
o     -«• 2     2 

A 
2    _(T) 01 

WL(j     lS01(t)lTdtJ     lS02(t)lTdt)    Rex-    f (0,0; r,,). 
° ■" ■" '     2     (4.36c) 

Now, because of our original choice of signals, viz., 

*     .   .     A     . .    2jrii^t ,.  „_. 
s02(t) = sQ1(t+ r)e , (4.37) 
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we see that 

OO OO °0 

)      l«02(t)lTdt=J      lS01(t + T)e27ri"t|Tdt=J      |g01(t,),Tdt''    (4'38) 
-OO _oo 

and so Equation (4.32a) becomes the (auto-) ambiguity function 

o       T /   u o   y       T 

i 
r> 2        "l2 

JTls0,(t)|    dtj    =1, 

as expected.   Similarly, we get from (4.32b), trie (auf--) ambiguity functions 

/n     n\        P     *      /». v     27T i ^ t 2
Ä/ v*      ~2 7T i ^ t   , 

X22(0'0)=J Vt + T)e       • — S
0i

(t + T) e        dt 

T o 

(4.39) 

2 

W 
o      -°° 

I     l§0l(t+T)lTdt (4-40) 

= 1, 

again as expected, and   Xo9(0, 0)  is independent of   (T, V).   However, for 

X-     - (0, 0; T, v), (4.32c), we get here 
VZ2 
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X <0, 0;r, „>=]"  S01(OS0l(
t+T>*e"2'"';tdt/l    |ä01(t)lTdt 

1      2 T    "" /    ~-°° 
(4.41a) 

= X11(r,  i;). (4.41b) 

Accordingly, the (cross-) ambiguity function   x~     *      in this white noise case 
S1'Z2 

becomes the (auto-) ambiguity function   X   AT, V)  of the original signal,   s   . 

Furthermore, we see that   X.AT, V) here is not only Bayes, but is identical with 

*     *" 2 7T i v x 
the classical ambiguity function of Woodward, where also  z     = s    (t + T)   e 

2 
may be interpreted in familiar fashion   as a matched filter response to the returned 

signal from a target delayed by  T   and shifted in doppler by   v .   Putting Equations 

(4.39) - (4.41) into Equations (4.36a, b, c) gives us finally, for these signals and 

white noise, 

A2 
2    *(T)       2    _(T) 01     f    i-     /v|2J „   ._. 

a01*H   -"02#i2—M-L Is01(t)l   dt: (4-42) 
o     T 

and 

A2 

•oi *£> = -äT-i. IV»** • Re *n(T' ">• (4-43) 
o      T 
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(T) 2 
so that our basic parameters   $?      , or  a    , becomes 

A2 

2   rn       o   r 2 
30    12   ~-W~)     |sQ1(t)|    df  [1 -ReXll(r,  ,)] (4.44a) 

o      T 

and 

A
2 

.     2        A01 
12       2W 

o     T 
J     |sQ1(t)|2dt • [1 -Rexil(r> «/)] 

(4.44b) 

|Sn,(t)|
2dt 

o 

where   S       is the complex envelope of the (unnormalized) reference signal .    (Note 

2 
that for   (T, y) = (0, 0), X^^O, 0)  is unity; and so  a.n  vanishes, as expected, 

11 12 

with a resulting minimum probability of correct decisions as to resolution, as indi- 

(2)*       (IV (2)* 
cated by (4.20), viz:  ß        = ß' [which is required to be small   (« ß   '   ), 

ordinarily, for effective operation]. 

4.4    Optimum Resolution 

Next, let us suppose that the signal energy available in   (0, T)  is fixed and, 

2 
again, that the background noise is white.   Thus, the only way to increase  a    ,   and 

(2)* 
hence  ß       , the probability of correctly deciding that the two signals are resolved 
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(1)* 
(for given probability ß of incorrectly deciding this), cf. (4.19), is to make 

Re)[     (T,  V)  as small as possible, by Equation (4.44a, b).   This broadly agrees 

with our intuitive or "classical" notions of "resolution" being achieved when    |x . 
11 

is small enough [cf. remarks in Section 2, 3 above] .   However, note again, that 

when "resolution" is formulated on an (optimum) decision basis-a-la-Bayes--it is 

Re X . .(T,  v) that is controlling, not   |x..|   above.   Accordingly, we must consider 

not only   |x.       but the angle of   x.     as well, e.g., 
11 11 

r i0   (T, I/K 

Re X11(T,  »*) = Re| |X11(T, v)| e   * J- = IX^T,  i>)| cos0   (T,  i>) 

It is this   cos 0     term which must be included in our inspection and interpretation of 
A 

xn and   |xn' * 
Similar remarks apply for the more general case of colored noise backgrounds. 

(T) (2)* 
It is   $        that must be made as small as possible, to ensure the largest  ß con- 

(1)* sistent with given  ß        , as we can see at once from (4.31) in (4. 20).   Again, it is 

the real part of the ambiguity functions that is pertinent here. 

As a numerical example, let us consider again the white-noise case of Section 

(4.3) above, and let us require the conditional probability of incorrectly deciding the 

"resolved state"   H2  to be  ß^* = 5 x lo"2. Then @'1(1 " 2ß«    )= ©~*   (°-90) 

(2)* 
= 1.163.   Furthermore, let us also require that  ß        =0.990.   From (4.19) and 
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2 2 
(4.44a) we easily find that  a     = (2.808)   = 7.88.   Now, if sample size   T, waveform 

S     , and noise density W     are such that   \     |S    (t)|   dt/W   =8.00, say, we see 

that 

Re X11(r,  I/) = 1.5 • 10"2, (4.45) 

for these conditional probabilities.   This fixes the domain of   (T, V ):   such that 

-2 
Re X,.(T,  V) ^ 1.5 • 10     , for a (conditional) probability of correctly deciding that 

(2)* 
the signals are resolved  ß        > 0.990.   In the case of the single rectangular pulse 

of Equation (2.9), we find that (4.44b) is specifically 

2 
2 AT        f simr U(T^ -   \T\ ) 

a 
r Sin7T V(T      -    \T |  ) -\ 

i   1 cos 7T VT Y ;0< IT I <T 
L ■nVT J O 12 W 

o o 

0   o 

,     (4.46) 

w ' |T|>V 
o 

2 
with   A   T /W    =8.00   in the present case, so that we require 

sin7r^(To -  |T| < _2 

Rex,,(T,  v) =  cos7r VT = 1.5x10     ,0<|T|<T; 
11 7T VT O 

O 

(4.47) 

= 0,     |T|   > T 
o 
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for the present numerical choices.   Note that although the conditional probability 

(2)* 
ß is nearly unity, the total probability  P(H   )  of correct decision on  H 

(2)* 
("resolution") may be quite small, since the total probability is   P9ß9      .   Thus, if 

(2)* 
p   =0.10,   P(H   ) = pJ:      =0.099, while on the other hand, if  p   = 0.8, say, we 

see that   P(H   ) = 0.792, which may be regarded as quite large in some applications. 

(2)*       (1)* -2 
Observe that ßy '   - ß\      =5-10      here if   (T, U) = (0, 0):  the (conditional) 

probability of correct decision as to resolution is equal to the corresponding (preset) 

error probability, which is taken to be very small.   Thus, as expected, we have 

little accuracy of decision when there is complete overlap under these conditions. 

Other useful values may be obtained in similar fashion. 
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5.        SOME SIMPLE ECM EXAMPLES 

In the preceding we have illustrated the use and significance of Bayes ambiguity 

functions in a typical resolution situation.   Now let us examine their uses in a 

optimum detection example involving interfering signals.   We distinguish four typical 

situations, two of which we shall examine in some detail below.   These are 

Case I: H.:   S + ST + N vs.  H :  S + N (5.1) 
             1             J                     o 

We wish to decide whether an interfering signal   (S )  is present 
or not (and if it is, how effective it is in concealingrthe desired 
signal   S:  this is basically a signal extraction problem, which 
we shall not consider further here). 

Case II:       H/   S +S+N vs.   H :  N (5.2) 
            1             J                     o 

This is the same as (5.1), but now the desired signal is not 
necessarily known to be present. 

Case III:      H,:   S + ST + N vs.   H:   ST + N (5.3) 
          1             J                     o     J 

Here we wish to determine (or concealkhe presence of a desired 
signal in (or by) an interfering signal ("obliteration"). 

Case IV:      H-   S + N vs.  H:   ST + N (5.4) 
           1                           o     J 

In this case we wish to distinguish between the presence of the 
desired signal against that of the interference ("decoy"). 
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An accompanying background noise is denoted by  N , which is usually gaussian, 

white, and statistically independent of  S   and   S .   The interference  S    may be 

deterministic, entirely random (e.g., another gaussian) noise process, or a combi- 

nation of such elements.   The general task here is to obtain optimum detection from 

a hierarchy of viewpoints: 

(i)      given a class of  S , determine the best detector for desired signals   S: 

(ii)     given a class of desired signals   S , determine the best detector for  S 

in the presence of  S , and then find the subclass of  S , subject to one or 

more reasonable constraints, which minimizes this "maximum" perfor- 

mance for  S: 

(iii)    given (ii), find the subclass of desired signals   S   (again with suitable 

constraints) which now must effectively operate against the subclass of 

V 
If  R(cr, <5|S, ST)    is the average risk for detection with  S,   S    in various combina- J J 

12 
tions, we may express (i) - (iii) symbolically by 

* * * 
(i)       min        R = R   (<r, ö   |S, S ); ö   = Bayes decision rule; 

ö — Ö 
y,~       -u.^«,«™.^, {55) 

(ii)     max        (R* + A1f1 (S )) = R*'t ; (5 6) 

SJ 
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* It,, , ,_   *lt (iii)    min    max        (R        + X2 f2(S )) = R „  ?) 

S Sj 

where   X   ,    X    are undetermined multipliers for the constraints  f ,   f   .   With 

random signals, max or min over  S ,   S    is replaced by max or min over the respec- 

tive distributions   a(S),   a(S ) governing the signal waveforms. 

Let us now illustrate the approach with the promised examples, which although 

not very realistic in detail, show qualitatively (and quantitatively) how Bayes 

ambiguity functions enter into the evaluation of a detectors's effectiveness against, 

and/or vulnerability to, interfering signals.   We select Cases III and IV, Equations 

(5.3) and (5.4) and for analytic simplicity postulate that the  S , as well as the desired 

signals,   S , are deterministic and except for possible presence or absence are other- 

wise completely known at the receiver.   We proceed as in Section 4 to determine the 

optimum detector structures and probabilities of error and detection, under the 

additional assumption of independent gaussian noise backgrounds. 

5.1     Examples 1 and la (Case III) 

Let us begin with the appropriate a priori distribution for the various   H   ,    H 

states in Cases III and IV.   We have 
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Case III: 

i<*-*ji;>£NV
ajV "2 

Ho:   F„<XIV=^ „    .n/2   ,H     ^      <5'8a> J (2 7r) '    NTdetkTT 

e ■*<^a
J%-^i>kN&"aj*j~ao&) 

H :   F (V|S +S) =   . (5.8b) 
1        n  •    J (2 7r)n/2*^ieTk^ 

[For Case IV:   Equation (5.8a) applies directly for  H   , while   H    here is obtained 

2       2 
from (5.8b) on setting   S   =0].   Here  a   ,   a    are input signal-to-noise ratios, cf. 

(4. 2d), and   s   and  v  are normalized as before, cf. (4. 2d).   The optimum detector 

structures (for detecting the desired signal,   S) are at once (in logarithmic form): 

(x0 =) log A TT = log u.,^ + a   vL   s - a   aT ST k T   s - 2 a   s \c7   s ,        (5.9) 
3 s    III        6 ^10       o * *N   *       o   J *J <"N ** o "»   N   * v      ' 

(x* -) log AIV = log n10 - v kN' (a; Sj - ao s) + * a2 jj k^ s} - I a2 £ k^1 ^ 

(5.10) 

cf. (4.5a), with  u _, = p /p   , the ratio of a priori probabilities associated with the 
10       1    o 

states   H   ,    H, , as before, 
o        1 

Writing 

*SS
B

S*NJ:  V^N^rV  V%*NV (5-11) 
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* * 
and evaluating the various characteristic functions of x   ,   x     as in (4.10), (4.11) 

we get finally for Case III, 

F(U|Ho)3 = exp '^^^rfV^^ss^2 (5.12a) 

F(i||H1)3 = exp log ji21 + -- *. SS o    SS 
(5.12b) 

It is really not surprising that the effects of the interference  S    do not appear in the 
* 

statistics (Equations 5.12a, b) of the structure  x    and hence in the evaluation of 
ö 

performance.   This is because we assume that  S    is known completely at the re- 

ceiver, so that optimal processing simply requires that we process new data 

v'   = v - a   s  , obtained by subtracting the perfectly known   s    from the raw data   v , 

according to 

x*' = log n21 + aov'.kN
1s-lvkN

1s=X3 (5.13) 

[which is just (5.9), of course].   Our optimal detector is thus invariant of S    under 

these circumstances, and performance is described in detail by the material of 

Section (2.5), Reference 5.   [However, as soon as   S    is in anyway unknown at the 

receiver, the problem is no longer trivial, and the results will depend on the inter- 

ference. ] 
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{Example la:   A nontrivial modification of Case III here is to consider the back- 

ground noise to be the interference.   Then, the probability of correctly detecting the 

desired signal in the noise is easily shown to be [cf. Equation (2.49c), Reference 5] 

(D* -©k-o-v-^r, (5.14) 

where 

2       2 (0)* 
<j   = a   *    /2,   and  ß        = (conditional) false-alarm probability. (5.14a) 

(T) (T)        (T) 
In general,   $     — *        for continuous sampling, where   *       =®\*   » Equation 

(T) 
(4.31a) here, if narrow-band signals are used.   Thus,   4       ~ [ Re Xcc(0, 0) = 1 ]. 

If the signal is delayed by   T   and has a frequency shift   v, i.e., s = s   , cf. Section 

(T) 
4,    $      = *       , Equation (4.31b), and   #       is at most weakly dependent on   (T,  V ). 

In any case, whatever the signal (and the receiver is optimal and therefore "matched" 

to it), increasing the level of the interference lowers   P   , as expected.   Also, we 

see again that it is the real part of the (Bayes) ambiguity functions [here at (0, 0)] 

that appears in the critical system parameter,   cr  , determining performance.} 

5.2     Example 2 (Case IV) 

Turning next to Case IV, which will not be trivial in   S  , we find the charac- 

teristic functions for  x   , Equations (5.10), now to be 
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F(i^Ho>4 = eXp{i^lo^10-*Sjao/2)-i"ao*SJ^2}' (5-15) 

with 

%s*ss-2{Tr)%+(^-)2*]y <5-16> 

and 

F(i^|H1)4 = exp|i| (logHi10+*SJa^/2)- I> a^ *gJ ^ } . (5.17) 

Consequently, the probability of correctly detecting the desired signal is [cf. (2.49c). 

Reference 5] directly 

W'T- {i + ©("^V2- ®'i[i-2C*i)} •     (5-18) 

Here   *      is entirely analogous to  *. 9 , cf. Equations (4.11a), (4.20),  [and equal to 

(T) 
it, if  a  = a ] .   With continuous sampling (and narrow-band signals) we see that   $      , 

(T)       (T) (T) 
Equation (4.31a), becomes   ^    ;   #'     , Equation (4.31b)   becomes   $      ; and 

(T) 
Equation (4.31c) is equivalent to   $       , with appropriate modifications of notation and 

interpretation. 
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(T) 
Again, it is the cross-term,   *      , that primarily controls the "match" or 

SJ 

"mismatch" of the interference   S    with the desired signal   S .   Another important 

2    2 
factor is the input jam-to-signal ratio  a /a   , cf. (5.16).   For a given value of  a/a 

(T) 
there will be certain values of   $      , representing the degree of overlap or cross- 

correlation between  S    and   S , that minimize   *      and consequently minimize the 

probability of correct signal detection  P    , according to (5.18).   Conversely, there 

will be other values of   $      that maximize   *      and   P   , so that from either the 

viewpoint of the receiver or the interferer we may expect max and min-max solutions, 

according to Equations (5.5) - (5.7). 

A simple case will serve as illustration.   Let us assume white noise back- 

grounds and let us choose for our narrow-band signals the following complex 

envelopes [cf. (2.11, 2.2)]: 

s T(t) = s (t+ r)e27rlI/t. (5.19) 
oj o 

Thus, we choose an interference here that is designed to resemble the desired signal 

waveform, but to give false information   (T, V) fi (0, 0), i.e., different range and 

velocity.   Thus, we can use the results of Section (4.3) above directly to write, 

remembering here that  Re XTT(0, 0) = Re Xcc(0, 0) = 1 , 
JJ ^b 
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2 

4 = ao*g,/23j'   |So(t)|2dt.{l-2(J)RaXss(T,,) + (l)2}, 
o   T o o 

(5. 20) 

since now   XQT(0, 0) = XCC(T, V ), on application of (5.19).   With identical levels of 
oj So 

"decoy" and desired signals, e.g.,   A   = A , this reduces to our earlier result 

(4.44b): 

A2 

4 =(^ I    Is0(t)|2dt). {l - Re xss(r,  „)} . (5.20a) 

From (5.20) it is clear that various trades-off between interference level 

(A^/A   )  and signal overlap,   Re )(     , are possible for either interference against a 

given signal   S , or the choice of desired signal   S   against a given interference   S  , 

or a combination of these two situations.    For the first case in our present example, 

where a "decoy" signal is involved, it is not   Pn(H   ), (5.18), that we wish to 

minimize, but   Pn(H   )  that we wish to maximize: in other words, for a given desired 

signal   S , we wish to establish a false "target, " with   (T, I>) f- (0, 0), and maximize 

its probability of detection subject to some (small) fixed probability   Pn(H   )   or 

(1)* ß       , of correctly detecting the desired signal.   Paralleling (4.12) - (4.17) we easily 

see that [cf. (5.18)] 
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W'oC- -r {' + ®[v®'1(1-2'?r)]}- (5-21> 

This is maximized (or made suitably great) by making  a„    large.   Since   (T, V ) 
SJ 

must be appropriately different from zero--in order to establish the false target and 

velocity--this means (for given signal duration) an appropriate increase in the inter- 

ference level,    A  , cf. (5. 20).   And, since we may also not wish the receiver to be 

able to distinguish the desired from the false target on the basis of signal level, we 

must then set   A   = A , and Equation (5. 20a) governs the key parameter   a    .   Now 0       J SJ 

only if the desired input signal level   (A  )  is sufficiently large (and/or the signal of 

sufficiently long duration),  so that the coefficient of   { 1 - Re Xcc(0, 0)}   is likewise 

large, will   Pn(H   )  be near unity and interference effective (to this degree of prob- 

ability).   Conversely, in the second case where   S   operates against a given inter- 

ference   S    of the decoy type (5.11), we wish to maximize   Pn(H   ), (5.18),  [instead 

(0)* 
of  Pn(H   )], subject to an acceptability low value  ß       .   Then it is at once evident 

from (5. 20) and (5. 20a) that increasing the desired signal level   A    will accomplish 

this.   Still other variations on these themes are clearly possible, including appropriate 

signal design for   S    versus   S, or   S   versus   S , subject to reasonable constraints, 

etc.   We shall however, reserve discussion of this topic to a later study, since our 

purpose here has been to limit the treatment to general remarks with some simple 

illustrations. 
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6.       CONCLUDING REMARKS 

We summarize the proceeding analysis and discussion with the following 

general observations. 

(i) The ambiguity function, in particular the Bayes ambiguity function, is a 

useful parameter of performance and system structure in the important 

but restricted class of optimum reception problems involving additive 

gaussian noise and, generally, threshold reception. Otherwise, it is at 

best only very partially descriptive of the reception process, and in any 

case does not give a full picture of system behavior. [See Section 3.] 

(ii)     In many radar and other situations when the conditions of (i) apply, it is 

the real part of the appropriate (Bayes) ambiguity function that is signifi- 

* 
cant  .   Thus, the conventional use of the modulus,  |x I , of the ambiguity 

function   in signal design and system evaluation may be noticably incom- 

plete, since one needs   Re X = |x | coso   , rather than just   |x I  above. 

Consideration of   |x |  only may be, in some instances (i.e., resolution), 

too strict.   In others it may be quantitatively misleading.   The qualitative 

relationship between   | X I  and   Re X   in signal design and selection needs 

to be studied further, and in each case referred to the decision processes 

* 
It is the real part because we are dealing always with physically real signals and with 
signal energies. 
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involved [cf. Section 3.] through the various probabilities of correct and 

incorrect decisions. 

(iii)    Unlike the classical ambiguity function [cf. (2.4)], the Bayes ambiguity 

function,   X , may be a statistical quantity--i.e., it may be some 

statistical average of classical forms over one or more random param- 

eters that describe the signal classes in question, or even over the 

waveforms themselves, in the case of entirely stochastic signals.   Again, 

we expect   Re x   to be a significant parameter in determining perform- 

ance when the conditions of (i) are obeyed. 

(iv)    Central to an adequate employment of the concept of ambiguity functions 

in signal design and system performance is its quantitative relationship 

to the decision process.   This is given here for Bayes (i.e., optimum) 

receivers, and illustrated with a number of elementary examples in 

detection, resolution, and ECM, to show how these concepts may be 

applied to more realistic problems. 

The principal tasks of the next state of this study are: 

(1) To determine the effects of  Re x   on the qualitative use of   X   and   |x | 

in applications; 

(2) To obtain and investigate the role of   Re x   in more involved and realistic 

(Bayes--optimum and suboptimum) detection situations, including inco- 

herent reception; 
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(3)      To use these ideas and results in specific ECM and counter ECM (ECCM) 

studies.   We emphasize again that one must use the (Bayes) ambiguity 

function in conjunction with the associated error probabilities and proba- 

bilities of correct decisions, as well as such other critical parameters as 

signal-to-noise ratio and sample size, if a really adequate measure of 

system performance is to be obtained. 

DMrkaf 
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GLOSSARY OF SYMBOLS 

A. A = (peak) signal amplitude; pulse amplitude 

AJ 
= (peak) interference signal amplitude 

= normalized signal amplitudes 

= normalized jamming signal amplitude 

= input signal-to-noise ratios 

B. ß\   , ßA = conditional error probabilities 

= conditional probabilities of correct decision 

= Bayes conditional error probabilities 

C. C]'', C)^', C~', C)~' = preassigned costs 

= a "threshold" value of the ambiguity function 

= (normalized" ambiguity of functions of Woodward 

= (auto-) ambiguity function 

= (cross-) ambiguity function 

X~     *  » X*     * > etc. = normalized (Bayes) ambiguity functions 
Z1'S2      VZl 

V a01* a02 

"l 

2      2 
V aoi '' ' etc. 

ß2   , ^ 

ß(i) ßf 

(1)* 
ß\} (2)* 

c(1) c(1) 
U

2   ' 
c(2) 
L

2   ' 
r(2) 

X 
0 

X(T, ") 

*11 

X12 
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D. 6(y1|V),   ö(y2|^) = decision rules (probabilities) 

= Bayes decision rule 

E. E(t, 0) 

E01' E02 

= real envelope of a narrow-band wave 

= energy of signals 1, 2; normalization factors in 
the ambiguity function 

= a fixed epoch (time delay) 

I. 

J. 

€,   t = does, or does not,  "lie in the interval" 

F. F (V S) 

F/iJlH       > 

a priori probability density of the data  V , given 
the signal  S 

frequency 

a carrier frequency 

characteristic function associated with the 
probability density of the detector under 
hypothesis   H    or H 

G.        V y2 = decisions 

H. H 
0, 1, 2 

= alternative hypothesis states 
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K. 
KN 

KN 

•4l' kN 

ii ,    ji 

= noise covariance matrix 

= noise covariance function 

21 

= normalized noise covariance matrix and function 

= detection thresholds (cost ratios) 

L. A, A 
12 

= generalized likelihood ratios 

YX2 = undetermined multipliers 

M. H. H10. ^2, u21 ratios of a priori probabilities as to presence 
and absence of a signal 

N. N 

N 

= background noise 

= mean noise level 

= a frequency shift 

O. u = angular carrier frequency 

P(H0, 1, 2> 
= probability of the occurrence of the hypothesis 

states   H-,   H.,   H0 U        1 2 

w w 
0(t, 0) 

P1'P2 

= probability of detection 

= a phase 

= a priori probabilities 
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2 
Q. ip = mean intensity of background noise = N 

*<s>   *<s>   *<s> 
11'     12'     22 

#(T)   #(T) 
11 '     22 ' 12 

sj    ss 

*v 

12'     SJ 

H 
i 

*s'*s 

= quadratic forms involving the signal 

= quadratic forms 

= quadratic form involving the data 

= a combination of signal quadratic forms 

= a phase of complex reference signal 

= phase of an input signal 

S- §» ;L » So = signal vectors 

£ = normalized input vector (real) 

S(t), S(t; g) = signal waveforms 

S = jamming signal 

S(t; 0 ) = complex signal waveform 

S » S (t;0), §.., §_. = complex signal envelopes 
o     o     *       01     02 

s(t), s(t), S-.(t), etc. = normalized signal waveforms;   S  is complex 
01 
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2 
(S/N) = signal-to-noise power ratio 

T. T = observation interval 

t = time 

T = a delay (in range) 

T = pulse duration 
o 

U. 

® 

V. V(t) 

v(t) 

X'L 

w. w 
o 

X. x_> X     , X 
T      Tl      T2 

- a set of (possibly random) signal parameters 

= an initial time 

= error function 

= received data waveform 

= normalized data waveform 

= data and normalized data vectors 

= intensity density of white noise spectrum 

= solutions of an integral equation 
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ZT1' ZT2 
= complex reference signals 

Z Z 
TOI'     T02 

= complex envelopes of reference signals 

ZT01' ZT02 
normalized complex envelopes of reference 
signals 

61 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body ol abatract and indexing annotation muir be entered when the overall report ia claaailied) 

I,    ORIGINATING   AC Tl VIT Y   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.    REPORT   SECURITY   CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.    REPORT   TITLE 

Bayes Ambiguity Functions:  Some Simple Applications to Resolution and 
Radar Countermeasures 

4.    DESCRIPTIVE   NOT ES   (Type of reporf and Inclusive dates) 

Technical Note 
9.   AUTHOR(S) (Laat name, tiret name, Initial) 

Middleton, David 

6.    REPORT   DATE 

13 February 1969 

7«.    TOTAL   NO. OF   PAGES 

68 

7b. NO. OF REFS 

12 

8a.  CONTRACT OR GRANT NO. 

AF 19(628)-5167 
b.    PROJECT   NO. 

627A 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

TN 1969-16 

9b.   OTHER   REPORT   NOISI   (Any other numbers that may be 
assigned this report) 

ESD-TR-69-10 

10.     AVAILABILITY/LIMITATION   NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

II.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY   ACTIVITY 

Air Force Systems Command, USAF 

13.    ABSTRACT 

Bayes ambiguity functions are defined as an important parameter governing the performance of op- 
timum (i.e., Bayes or minimum average risk) systems.   Bayes ambiguity functions are generalizations 
of the classical ambiguity functions of Woodward and are specifically derived from an appropriate de- 
cision process.    It is shown here that it is the real part of the ambiguity function that is significant, 
rather than its modulus.   Optimum target resolution is formulated as a detection problem involving 
the two hypothesis states H0:   "unresolved" signals versus Hj:   "resolved" signals, and general con- 
ditions for the qualitative utility of the ambiguity functions are discussed.   These latter are:   additive 
gaussian noise and threshold operation; otherwise the ambiguity function is an inadequate description 
of system performance.   The analysis is extended to a number of situations involving interfering sig- 
nals, such as electronic countermeasures (ECM) and is illustrated with simple examples showing 
quantitatively, as well as qualitatively, the typical r8les played by the Bayes ambiguity function in a 
variety of ECM applications.   It is emphasized that one must also consider the probability of correct 
and incorrect decisions, in conjunction with the properties of the ambiguity functions, to achieve a 
reliable measure of expected performance. 

14.     KEY   WORDS 

Bayes ambiguity functions 
radar countermeasures 
ambiguity functions 
radar signals 

target resolution 
electronic countermeasures 
radar detection 

62 UNCLASSIFIED 

Security Classification 


