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On Linear Viscoelastic Rods
by

W. J. Shack

Abstract. This paper is based on the general thermodynamical theory of
a Cosserat continuum developed by Green and Laws. We present here
specific constitutive equations for a linear viscoelastic material.
When the form of the free energy is restricted by certain symmetry
conditions, the basic equations separate into four groups, two for
flexure, one for torsion, and one for extension of the rod. Thermal
effects occur only in the last group. Flexural and torsional wave
propagation =2long an infinite rod are cousidered.

l. Introduction

This paper presents a theory of a one dimensional, viscoelastic,
Cosserat continuum. Following Green and Laws [1], we shall define a rod
as a one dimensional Cosserat continuum. Green and Laws have developed
an exact thermodynamical theory of rodc, which is not restricted to small
deformations or elastic rods. Of course, a theory of rods can also be
constructed by considering the rod as a three dimensional body. The
equations governing the rod are then obtained from the three dimensional
equations by introducing assumptionsor expansions based on the "thinness"
of the rod. Some results which show that the Cosserat theory is a natural
first approximation to the three dimensional problem have recently been
given by Green, Laws and Naghdi [{3]. In Section 5 of this paper, we shall
briefly discuss how solutions from the Cosseret theory of rods can be
compared with corresponding exact solutions from the three dimensional

theory of linear viscoelasticity.




Recently Green, Laws and Naghdi [2] nave used the basic theory of
[1] to derive a linear theory of straight elastic rods, although as the
authors note their work could be readily extended to the case where the
rod has an initial curvature.

In this paper, using a procedure similar to that of [2], we derive
a linear theory of viscoelastic rods which are initially straight. The
basic field equations of the theory, which are the same as those given
in [2], are presented in Section 2. In Section 3 appropriate constitu-
tive equations for viscoelastic rods are discussed. The discussion of
constitutive equations and the thermodynamics of viscoelastic rods given
here is analogous to the discussion of the general linear viscoelastic
solid by Christensen and Naghdi [4]. We then restrict our attention to
the case where the rod possesses certain symmetries. The resultant
equations seem to correspond to those of a rod considered as an isotropic,
viscoelastic, three dimensional member with a cross section which is
symmetric about its principal axes. Under this symmetry restriction the
equations of the theory separate into four groups: Two governing flexure,
one governing torsion, and one governing longitudinal motions. We note
that the temperature is present in only the last group.

In Section 5 we use the equations of Sections 3 and 4 to consider
the propagation of flexural waves in an infinite rod. The solution for
an arbitrary frequency is very complicated, and explicit results are
presented only for the asymptotic wave speeds, attenuation and ampli-
tudes as the frequency becomes very large. These results generalize
well known results of Hunter [5]. We also compare the solution of the
problem of quasi-static pure flexure using the Cosserat theory with the
solution of the corresponding problem using the exact solution obtained

fran the three dimensional theory of linear viscoelasticity.
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Finally in Section 6 we consider the torsion equations. We intro-
duce an additional symmetry restriction on the form of the constitutive
equations. Under this restriction our Cosserat rod now seems to correspond
to a right circular cylinder. We then study the propagation of torsional
waves through the Cosserat rod and compare our results with those of

Berry [6], who solved the corresponding three dimensional problenm.




2. Linear Theory of Rods

In the basic theory of rods as developed by Green and Laws [ 1],
a rod is defined to be a curve (embedded in a Euclidean 3-space) at each
point of which there are two assigned directors. The motion of the rod

at time t is then described by the equations
r= £(z’t) s %= Ea(z’t) ’ (2.1)
where r is the position vector of the curve, a_ (a=1,2) are the

directors and 2z 1is a convected coordinate which defines points on the

curve. We also define the base vector 53 along the curve by

oL
233 = a_z ’ (2 '2)
and impose the restriction
la), &, 53] >0 . (2.3)

In terms of f'a and a.3 , the basic kinematical quantities may be taken

as

af'.i +
8y T8 By Ki,j'f'.,j -val (2.4)

*latin indices take the values l, 2 and 3, and Greek indices the values
1l and 2. Also, repeated indices imply the usual summation convention.



The initial values of the position vector and the directors are

We assume that the rod is initially

denoted by R , ﬂl’ and As -
straight so that
B=2Ay » AcAy=84 (2.5)
where é& are independent of 2z and bij is the Kronecker delta. We
restrict our attention to the case when the subsequent displacements of
the rod are "small". To be consistent we will also assume that the
changes in the thermodynamic variables such as temperature are also
"small". More precisely, we assume that
= = '= o
I=2A;+en , a,=A+edb , T'=T +eT , (2.6)

where T’ is the temperature of the body with value To in the initial
undeforﬁed state, and € 1is a small non-dimensional parameter. All

forced and assigned loads are also assumed to be of O(e) . By neglecting
all terms of O(e2) and higher in the field equations we obtain the
linearized field equations. After obtaining the approximate equations, we
may formally set e=1 in the equations without loss of generality with the
understanding that when the displacements, temperature changes, forces, and
assigned forces are expressed in suitable non-dimensional forms they are to
be considered small, i.e., << 1. Since this procedure is straightforward,
only the final results are presented here. Before writing down the

basic equations, however, we note that as a consequence of the lineari-
zation all components of vectors such as r and a, are now referred to the
fixed orthonormal base vectors é&’ and hence, there is no need to distinguish
between covariant and contravariant components.
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It is convenient to define measures of deformation by

or in the linearized theory

(2.7)
Yij =bij+b,ji .
Also, by (2.’+)2 and (2.6)1, we have
ob., du,
= i g ‘
where u, are the components of the displacement vector
Ueeiug ey
The linearized basic field equations of the theory are given in
[2]. Here we quote freely from [ 2] and also record additional re-
sults appropriate to the linear theory which will be useful
later. The linearized equations of motion are
ani azui
-+tpf.=p ’ (2.9)
d2Z bl at2
= =n 2.10
"8 e * "B3™ 7 ° (2.10)

where p 1is the initial mass per unit length of the rod, n, are force
components, and fi are the componerts of the assigned force per unit

mcss on the rod. The quantities nal are defined by
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op ol

1=y * 32 . (2.11)
where p ol are the components of the director forces, and q ol are the
sum of the assigned director force on the rod and the director inertia
forces.
Equations (2.7C) and (2.11) can be written in a more familiar form
if we introduce vectors m and g defined by
b BeAXRy o B=A XY, o (2.12)
with components
ml' P23 ’ m2 = = pl3 ’ m3 = p12 = P21 ’
(2.13)
gl. Q.23 ’ 52 - = q'l3 ’ 83 = (112 - pzl .
It is then easily seen that (2.10) and (2.11) are equivalen’ to
om
i
aT - + PSl = 0 ’
5— + nl - pgz = 0 > (2.1’4)
om

a$+pg3'o ’

and



M1 =P * 32

. , P22 (2.15)
Moo = Pdpp 32 ’ s

2
2mp = 2my) = P+ dpy) *+ 37 (Prp+Py) -

We must also introduce an explicit form for the director inertia
terms. If we assume that the contribution of the directors to the
kinetic energy is of the form

« 8. + a, 8
~

1 o
Za 88 +5 a8, (2.16)

2 b

where the coefficients oy and a, are independent of t and a super-

posed dot denotes partial differentiation with respect to time, it fol-

lows that
Beb i
= . -« (no sum on g) , (2.17)
%G1 = fp1 T % T
ot
where zsi are the assigned director forces.

The energy equation appropriate to the linear theory is

. . 5 1 . 1 . . 1 .
-pA - p(T'S+ TS ) + pr + §ﬂdﬁ YO!B+§ nB(YB3+Y3B)+'2‘ n3 'Y33

. ah -
where
: oy oK
S - 3



A is the Helmholtz free energy per unit mass, r is the heat supply
per unit mass ver unit time and h is the flux of heat along the rod.

To camplete the basic equations we postulute an entropy production in-
equality of the form

1§ - gh _ h of
pT’S pr + TOBZEO .

If we use (2.18) to eliminate pr from (2.20), we obtain the reduced

entropy inequality

i

. . . 1 . A 1 .
-p(A+ TS )+2 T Yog* 2 ns(ya3+ Y3B)+§ N3 Y33

B ar
* Poi Kot T_ 3z 20 .

(2.20)

(2.21)




3. Constitutive Equations for a Viscoelastic Rod

To obtain a complete theory we must specify appropriate constitutive
equations for the free energy A , the force vector n, , the director
forces Pyi ? the quantities ﬂaB s, the entropy S , and the heat flux h .
Since we wish to consider the case where Ny 5 Py o etc. are linear func-

tionals of the kinematical and thermal histories, it is sufficient to

consider a constitutive equation for the free energy of the form

t . t .
pA = pA_ + I Dij(t-T)Yij(T)dT + I A(t-7)T(7)dr

-0 -0

t ot . .
* -ZJZJ:Q '[eo Gijkz(t-T’t-n)Yij (T)Ykz(ﬂ)d‘f dn

+

t ot . .
J7I ey temmeemdyg (Di(n)ar an

NS .. t .
[ [ mere=myi(n)i(mar o + | B (t=r)K ; dr

-0 =00 -0

+
(N ) o

it o
l . .
+ 5 L L Haisj(t-'r,t-T])Kai(T)KBj(’n)d'r an

t ot

2L £y g8 £y (1 (War a
t ot . .
] ry ek (oBmar an (3.1)

where as we recall a superposed dot denotes partial differentiation with
respect to the time variable 1 . Without loss of generality, we may

assume that
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Gi’jkz(t-'r’t'n) = szij (t"ﬂ:t"'f) 5

m(t-1,t-1) = m(t-n,t-7) ’ (3.2)

-(t-ﬂ,t-T) s

Ho:iBJ (t-T,t-1) = HB,jal

and that the kernel functions in (3.1) vanish for negative values of
their arguments.

The heat flux is assumed to be linear in the history 2% (1)

-t .
h= - I k(t-7) g—z (v) ar . (3.3)

It is not necessary to record here specific constitutive equations for

n and S ; it suffices to assume that they are linear

i Pai 0 Top .
integral operators over the histories of Qij S &ai and T , but that
they are independent of the temperature gradient.

Substituting from (3.1) into the reduced entropy inequality (2.20),

we obtain

1l,




t . t .
[-ps = A(0) -j m(0,t-7)T(7)dr -J Qij(t-'r,o)yij('r)d'r

t ~ c -
- I Ty  (t- T,O)K ('r)d'r]T(t)+[11'aB = 2Daﬂ(o)

. t .
- 2J' dﬁkz(o,t-'r)'ykz(ﬂ')d'r - 2_[ Qae(o,t-'r)T(T)dT

- 2j P 10p (87200 (1)arly g (8) + [2ng

'
=
é'_"

Gs3kz(0,t-'r)\'(kz('r)d'r -4 Lo 953(0,t-'r)'i'('r)d'r

t
=
IL—-)

le3(1-, T O)K J(1)ar - uDB3(o)] {,B3(t)

+

["3' eDo3(0)ERe -_L G330 (0st-1)y (r)ar

i ) t . .
2J '~§33(O,t-'r)T('r)d'r - 2J Fi 3(t-'r,O)K . (7)dr] 733(1;)

t
# [Bgy = Hyy (0 = | Hyp5(0om)ig(r)ar - _[ I CRED N OLY
t . t
-] raleeineli (6) - - || 5% pyy(emnvy(nar
) It 3 - b h 3T
)_ 5t A(t-7)T(7)ar - 3 ozl(t 'r)K ('r)d'r - ﬂ 3% (t)zo , (3.4)

where

12.




1t gty L

t .t 3 » o
L] & a ety (nEmar an
t .t
+3] [ 2 £ m(t-1,4-M)T(r)T(N)ar an

1] j 2 Hoy gy (BT8R (1)K (Mar an

Nl

. j j P g (8=7st=MK ; (1) (R)ar an

+ I I 2 T, (ter,tem)K i('r)T(ﬂ)d'r an (3.5)

and we have made use of the symmetry conditions (3.5).

The inequality (3.4) must hold for arbitrary continuous histories
of QiJ(T), éia(T), T(t) . The integral operators in (3.l4) depend
smoothly upon the histories, and thus changing the histories in the
neighborhood of the present time r=t produces only a small change in
the value of the integrals. If the present rates could be assigned in a
completely arbitrary manner without changing the values of the coefficients
of the present rates, then, clearly, in order that the inequality be
satisfied it would be necessary that the coefficients vanish identically.
It can be shown that this is also true in the present case. The formal
argument is similar to that of Coleman [ 7]; for the interested reader
the details are given in an Appendix.

The vanishing of the coefficients then yields

13.




t . t .
ps = - A(0) - f m(0,t-7)T(r)dr - I 8, (t-7,0)v; 5 (7)dr

-

t .
- [ r (6em,00K (r)ar (3.6)

=00

t . t .
Mg = 2[Dae(0) + Im GaekL(O,t-T)Ykz(T)dT + I; QQB(O,t-T)T(T)dT

t
b ]R800 s (ar] (3.7)

5

t , t .
= 2[Dk3(0) + Iﬁ Gk3mn(0,t-T)Ymn(T)dT + I; §k3(0,t-T)T(T)dT

. & .
+ _[ Faik3(t-T’O)Kai(T)dT ’ (3.8)

t .
1 (O) + [ Hop5(0,6-m)ig (n)ar +j' F g 5 (0st-T )Yy (r)ar

‘g
i

ol oijk

+ I 'Tdi(ost'T)é(T)dT 5 (3.9)
The inequality (3.4) then reduces to

‘s
f 5t Dy4(t- A j{riar - I 3¢ ME- T)T(r)dr

t
N R -p - BT
J_ 3 Hai(t T)Kai(T)dT A T, =0 . (3.10)

14,
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The first three terms in (3.10) are of first order in the rate histories,
while the remaining terms are of second order. Hence, to satisfy (3.10),

we must have

h 3T
-A-Toaxzo (3.11)
and
t 8
S -1 e I - N
-L, S D,y (b=1)yy, (r)ar L 2 A(t-r)i(r)ar
t 3 .
ol .[Q a_t Hai(t'T)Kai(T)dT 20 a (3.12)
As Qij(T) , T(t) and kai(w) can be chosen arbitrarily, we must
have
2 " =N - 2 N
v Dij(t) 0 , sz Mt)=0 , ZTH(t)=0 . (3.13)

Since (3.11) must hold for homogeneous temperature distributions, we

also have

-A20 . (3.14)

- h -g% z0 (3.15)

does not necessarily follow from the entropy production inequality for
a viscoelastic rod. However, to satisfy (3.11) it is sufficient that
(3.15) be valid. If we restrict our attention to a class of materials
for which (3.15) holds, it is easily seen that the constitutive equation

(3.3) must reduce to

15.



T
h = - K ax s (3.16)

where K (> 0) is a constant. The arguments leading to (3.13) and
(3.16) are similar to those of Christensen and Naghdi [4] in their work
on the general linear viscoelastic solid.

Substituting from (3.1) and (3.6-9) into the energy eqﬁation (2.17)

and neglecting second order terms, we obtain a linearized energy equation
o dh
-p T, S+pr-= 0 (3.17)

which can be used to determine the temperature.

16.
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L. Symmetries

We restrict our attention now to a rod whose Helmholtz function is

invariant under the transformations:

- t -t t - 1
LIS XL e T B a5 = 2 f g s
where we may take any combination of + and - . It is a straightforward,

but tedious, calculation to find the form of the kernel functions under
these restrictions. We present here only the final results. The free

energy A 1is now given by

Pt = Pohy = ST + I: j: 05 8 GV M) + 5 850 Wag(r)vp5(M)
+ 5 8GN (TN (M + F 8, GV (1N, (M) + F 850 )T ap(M)
+ 8 W3 (T W33(M+ § 8701V, (MVpp (M + Ypp (1) (M)]
+ 7 880 )50 (T IV33(M)+ Y33 (T)p (M + § 85 (5)LNp3 (T)¥55(M) +
V33(T)vg; (M + (5 1 Gy (D)4 5 90 M55(m)+ 5 ?3( ’)\.’33(7)];?(“)
+ 5 n(,)Hr)PM) + 5 by (kg (1)KL (M) + 5 By ()IKy (1)Kpp(M)
+ Ko (1) (M + 3 Byl )np (1)pp (M) + 5 by, () (1)K, (M)
+ 3 s (5 )k (1)K (1) + Ky (7)pp (M) + 2 g (5)Kpp (1)K, (1)

+ 5 B (g (r)kg (M) + 3 Bg (L Depg(n)Epq(M) J ar an

where we have used the notation

17.
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f(’) Ef(t'T, t"ﬂ) ’

and we have set - A(0) = oS, and assumed that Dij(o) =0, i.e., the
rod is free of initial stresses.

The constitutive equations (3.6), (3.7), (3.8) and (3.9) become

5 _
nl = J g3(0, t-T)Yl3(T) dr s
lt .
ny =] 8,(0, t-r)yys(r) ar
. (4.3)
n3 s J [gé(O,t-T)'Q33(T) +g8(o,t'T)Y.22(T)+gg(ost‘T)Y.ll(T)] dar
t .
+ J. ¢3(O9t'T)T(T) dr ’
t 5
m, = L hg(0,t-r)kyq(r) ar
t .
m2 = B Io h7(0,t-T)Kl3(T) dr s (’4.’-&)
t . .
n, = J_'” [ (1, 05) (0,8-1)K (1) = (Bg=hg)(Ost=ry ()] ar
t , :
Py, = L [y (0,8-1)ky; (1) + by (0, 6=m)po (1)) dr
t . .
Py = _[ [hy(0,t-m)kps (1) + By (0,t-7)ky, (7)) ar (4.5)

t . .
P, + Ppp = I [(hu+h5)(0,t-'r)K12('r)+ (h6+h5)(0,t-'r)K21('r)] dr

18.



t : . .
™ = I Le),(0,t-7)yy; (1) + g7 (0,8-7)y p(7) + 89(0,t-1)y55(1)] ar

t
+ I cpl(O,t-'r)T('r) dr )

t s 3 .
“22 Ei I [gs(o,t'T)Yzz(T)% g7(0’t'T)Yll(T)+ 88(O,t'T)Y33(T)] dr (h.6)

t ,
+f 9 (0,t=7)T(r) ar

t L]
"12 = "21 o I gl(oit'T)Yla(T) dr )

and

t : 1 pt ) )
pS’ = oS, - J m(o’t'T)T(T)dT"éI Loy (£-7,0)v,, () + @, (t=7,0)y,, (1)

+ ¢3(t-730)§33(7)] dr . (u°7)

The quantity A 1is now given by

19.



t ot . .
A= [ 032 g G (4.8)

=00 =

2 6, Wag(mhpg(M + 5 2 830N, 5(1)p5(M)

+
NI

2

> = 850 )¥p0 (T )0 (M)

2 (¥ (1, (1) +

+
-
Fi-

2 8(s)33(1)g3(M) +

|~

2 8,547 (T (M)

+
-

+ 5 55 880 Wan( V33N + 5 T £g()¥yy (1)g5(M)

+ 132 0,0 + 3 el vap(r) + 5 F 0305 )¥g5(n)] ()

2 2

+ 5 = m()ANIM) + 5 2 by gy (1 (M)

o)

2 1, G (1) (M) + § 22 1y (4 Dy (1) (M)

3

ot

+
O]

2= g0, (1) (M) = 5 22 b (506 5k 5(0)

+
N

2

= bg(s)pg()kya(M) 3 ar an

+
WM 1

Inspection of the equations of motion (2.9), (2.14) and (2.15), the energy
equation (2.18) and the constitutive equations (4.3-7) shows that they can
be separated into four distinct groups: two governing ~lexure, one governing

torsion and one governing longitudinal motions. Thermal effects and the

20.



energy equation need only be considered with the equations governing

longitudinal motions.
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and

5. The Flexure Equations

The two sets of equations governing the flexure of the rod are

anl azul
Evraing pfl =9 ) ’
am,, 2%p
3% " 01 C Ply3 t Py P
t

SR IENCRUMROL

ab
- - 213
Vi3 = P13t Py o K3 ® Ty
F.) 32u2
= +pf,=0p ’
ax 2 3t°
am %o

R - 23 _
3%~ Pt plag - pay T3 =

t . t .
ny = | gy(0t-m)vpg(rlar , my = [ mg(0,ter)pg(rlar

b
- _ %23
Vo3 = Pp3 + Py 5 Kp3 = 3

13 _ o
h7(0,t-'r)K

31~ &

32" :x

(5.1)

(5.2)

As a simple application of these equations we may discuss the propa-

gation of flexural waves along an infinite rod. To simplify our discussion

+Throughout this Section, we restrict our attentions to the case when
@9 Ups P 81 &5 etc., are independent of z .

22,



we introduce the notation
G(s) = 82(098) ’ H(s) = hg(o’s) . (5-3)
Assuming that the waves are of the forms

u, = ve ™* cos w(t - %) ,

(5.4)
b23 = B, e X cos w(t-%) + By e ™ sin w(t--)ci) )
on substitution of (5.4) into (5.2)5 6,70 Ve find
b At |
n, = [-w(B, - pU)Gc+w(132+%’ U)Gs]e'“'x sin w(t -%)
+ [w(B, - U)o, + m(B2+% U)Gc]e'”'x cos w(t-’—;) 5
(5.5)
m = [w(uB) +2 B,)H_+w(-up,+% Ial)Hs]e’”'x sin w(t -%)
0 [-m(u.Bl+%’- Ba)Hc+ u)(-p.B2+%:- B]_)Hs]e-""x cos w(t-zcc-) 1
where
r@
Gy (w) = r G(u) sinwu du , G (w) = G(u) coswudu (5.6)
o )

and Hs(w) and Hc(w) are similarly defined as the Fourier sine and

cosine transforms of H(u) . Using (5.5), (5.4) and the equations of

motion (5-2)1 oy We obtain a set of homogeneous equations to determine
b

U,B’and B

1 2

23.



2
w 2 w w w _
(-2 2 G+ (u -?)Gs+ owlU + [-pe + 3 Gc]Bl [p.Gc+ c GS]B2 =0 ,

2
5, ¢ 2_w_ - w L -
2u 2 G+ (u c2)Gc]U (wG,+3 6 1B, + -2 6 +uc lB, =0 ,

2
w 2 w W
lueg - 2 GC]U + [WH -2u 2 Hc-:é H - G + paew]Bl
(5.7)
w 2 m2
+ [2u SH +u Hc-c—g- Hc-Gc]Be =0
w w w2 2
e -3 6 Ju+ (-2 QH +2H -u° H -6]B
w2 2 w
+ [- -c—2-Hs+p, Hs-2p, = HC-GC+ parzu)]B2 =0
These equations will determine y , ¢ and the direction of the
vector {U , Bl o B2} as functions of the frequency w . The solution
for an arbitrary value of the frequency is quite complex, and we will
restrict our attention to the asymptotic behavior of the solution as the
frequency becomes very large. If G(u) and H(u) are sufficiently
smooth, it is well known (see, e.g., Lighthill [8]) that
G(w)NM_Q(%l.F e o e
S w
w
(5.8)

w W

with similar expansions for Hs(w) and Hc(w) . We assume that U ,

Bl ) B2 »y wy,and ¢ have asymptotic expansions of the form

2k,



Un~mu + == oo 5 Bl~blO+T+ . 5
b
21 B
Bpmbypt gttt BBt (5.9)

Substituting (5.8) and (5.9) into (5.7), and then investigating the con-
ditions that non-trivial solutions exist, we find two modes of propaga-

tion for flexural waves. In the first,

c2 - G(o) - . .Go
o p > Mo 2c G(O ?
(5.10)
ug #0 5 Bg=by=0
while in the second
2 . H() e H(0
’ == )
o  pa, o 2coH 0
(5.11)
u, = (0 ) blo =0 , b20 #0 .

These relations generalize well known results for extensional waves in a
one dimensional visco-elastic medium (see, e.g., Hunter [5 ]).

Our developments here rest on the initial postulates of a balance
of energy and an entropy inequality. For a curve with assigned directors
embedded in a Euclidean 3-space the 1resulting equations in Secs. 2 and

3 are exact and aside from linearization involve no approximations.

25.



However, the equations given here could be obtained from a three dimen-
sional theory of rods after suitable approximations are made. A diccus-
sion of the kind of approximation necessary is given in [ 3].

To one familiar with classical theories of rods, the form of our
equations is quite suggestive, and we will present here a few rather
intuitive ideas concerning the connection between the two theories.

A rod as a three dimensional body may be regarded as the Cartesian
product of its line of centroids and its cross section. Because a rod
is a "thin" body, we can constrain the cross section to undergo only
homogeneous deformations. The homogeneous deformation of the cross
section is then de*ermined by the motion of two independent vectors.

Thus in the model of the Cosserat curve, the two directors can serve to
describe the homogeneous deformations of the cross section. Since any
two independent vectors uniquely determine a homogeneous deformation, we
may choose to take the directors along the principal axes of inertia of
the cross section.

These ideas will be sufficient to permit us to compare the results of
the Cosserat theory with solutions from the theory of linear viscoelasticity
for an isotropic three dimensional rod. We consider first the case of iso-
thermal, quasi-static pure flexure. Using the usual quasi-static "corre-
spondence principle" between elastic and viscoelastic solutions, the solution
of the viscoelastic problem in the Laplace transform plane is easily obtained
from the corresponding elastic solution. We consider a straight, isotropic
prismatic rod and introduce a Cartesian coordinate system (x , y , z)
where the z axis coincides with the line of centroids of the cross section,

and the x and y axes are taken along the principal axes of the cross section.
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Consider now the problem of pure flexure of such a body. If ;i.'l denotes the

transform of the stress tensor, the only non-zero component of the stress is

;33 = oX + BY ’ (5'12)

where o and P are constants. The three dimensional displacement

*
vector is denoted by u and its transform is given by

E;=--v:(%ax2+axy-%ay2)-%z2 ;
sE 2sE
- v 1 2 1 2 2
- L@y egey mze) -t (5.13)
sk 2sE
E;=i_(ax+ay)z 3
sE

where v and E are defined in terms of Gl(t) , the relaxation func-

tion in shear, and G2(t) , the relaxation function in isotropic com-

pression, by

n
Ql
+
Q

G2-G

- 1
2.2, J-=" . (5.14)
E 3G4G, 2G, + G

The transforms of the moments acting across any section are then

Dk
= - oy,
ml = BI = - SET > s
dZ
X,y=0 (5.15)
_ _
m2 = - ol = SEI 2 >
yy yy 3z
%, y=0
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where Ixx and Iyy are moments of inertia about the x and y axes

respectively.

Taking the transforms of (5.1) and (5.2)" we easily obtain the

equations
ab
o = I - e -
ny 0 0 m, = sh7 3z 5
= -
bl3 + b3l = 0 3 b3l = S-z—
and
b,
- - = %%
B, =0 , W osshygg?
_ - - aﬁé
byy + b3 = 0, B, ==
Thus
3% 2%
my = - s_é __§§ , ﬁé = sh CI
0z 7 2z

and comparing these results with (5.15), we obtain

035‘
o
\FI
b

*We assume ui(f) and biJ(T) vanish on - o<t 50 .
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6. Torsion

The equations governing torsional motion of the rod are

2 2

am Db db
12 21

3—23 + p(‘lz' 121) = D(O'l - a 02 - ) ’

at dt

2 2
2’(1)12+1>21)+ (ot 2.} - ola 3y, ab21)_2
3z PO 22/ = Pl atﬁ L) at§ = Mo

t g .
my = [ [0y, 0g) 0,8k 5 (1) = (B ) (0,6=1)kp (M) ]ar
t s .
P+ p21=I [ (my+h5)(0,t-1)Kk 5 (1) + (hg+hg) (0, 8-7)K,, (1) ]ar

t .
™o =JI g (0st-7)y 5 (r)ar

3by, by

Kio = 3x K1 = 5% > Y2

We restrict our attention here to the case when the free energy and

kinetic energy are invariant under the transformations

Lo o Bmh
This restriction implies that

=0 , B =ho .

Under these conditions, we seek solutions of (6.1) with
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* iwt
le = 0 0 b12 = bl2(X) e

Then, if the assigned loads are assumed to vanish, equations (6.1)

reduce to

am

iwt
Szé = < paw b12 ’
b,
A 12 iwt

my = 2 H1 3z © :

where

d82d1=202 H

Hl(O,u) hh(osu) - hs(osu) s

o>

= iw r H, (0,u) e~1% gu
0

iw ﬁl(o,iw) .

Combining (6.5 a,b), we obtain

where
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(6.6)

(6.7)
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*
If we take blz(o) = O , the solution of (6.7) is

b;:? =bsingz . (6.9)

The torque necessary to mairtain this deformation is
m,=b 2%?— cos q z Wt (6.10)

This result may be compared with Berry's [ 6 ] result for the torsional
vibrations of a circular cylinder obtained from the three dimensional
theory. With some changes in notation, Berry's expression for the torque

necessary to maintain sinusoidal oscillation is

22 2
my =T PZJAL cos Az , A2 = 5 alf , (6.11)
ma [imGl(iw)]

where a is the radius of the cylinder. The tangential displacement of

points in the cross section is given by

ug = brsingqz et (6.12)

Thus, b can be interpreted as the rotation of a radial line element

12
in the cross section. Equations (6.11) and (6.10) are equivalent if

2
a=% ., HE(w)=§I, §>w) |, | (6.13)

where Iz is the polar moment of inertia of the cross section.
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7. Longitudinal Motions

In the theory employed in this paper, thermal effects only arise in
the case of extensional motion of the rod. We restrict our attention to
the case when the heat flux is given by (3.19). Then, the equations

governing the motion are

on au
f + 9*3 =p 23 ’
at
2
3
11 X 11 1 3t2
2
(¥ ¥
Mop = 3 F Plop = X at§ ’
—pT°é+pr-—=O )
t . . .
n3=I [g6(0,t-'r)y33('r) + ge(O,t-'r)'Yza('r) + 39(0,t-'r)‘vll('r) (7.1)

+ ¢3(O,t-1')']..‘('r)]d'r 5
t . .

Py = [ By (0,6mm)iy (1) + By(0s6-mhigp()lar
t . .

Poa= ] [n3(0,61)igp(m) + By(0,e-mliy(Mlar

t .
"11=J. [gu(o,t'T)Qll(T) + 87(0’1""")922(7) % 89(0,t-1‘)‘Y33(‘I‘)

+ ¢ (0,t-7)T(r)lar



t . y
11'22 - I [gs(o’t-T)QZQ(T) + &I(O,t"‘l’)Yll(T) + gs(ogt-‘T)Y33(T)

+ ¢2(0,t--r)'i‘('r)]d'r

5

au ab ab

- - - .—J = i lﬁ

Vi1 = @P3; o Yop =2y 5 Ya3=2 F 5 Ky = 3, K= 3y
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Appendix

The inequality (3.4) can be written in a more revealing form if we

introduce the vectors

(A1)

E: (ﬂaB’ ni, kai, - psl) .

Then the constitutive hypothesis for n, , pai’ ™ and S’ in terms

of

of a matrix kernel function P(r) and a constant vector L, 1is

t
T=T + J P(t-7)y(r)ar . (A2)

~
-0

By introducing appropriate matrix kernal functions G(s,r) and

H(t) in (3.1) we can write pl.\ in the form: >

. t
o = [§(0) + [ g(0,t-r)n(r)ar] 7(t)

+ I aa_t E(t-T)B(T)dT + It It % G(t-1,t-5)

t
+ [ Z stt-rsteon(e)n(e)anas (a3)

The inequality (3.4) for processes with % (t) = O then becomes

3k.



t
(L - 5(0) + [ [R(t=r) - G(0,t-7)In(r)ar} q(t)

t t ot
-‘[ 9, H(t-‘r)T\(‘r)d‘r-I I o G(t-1,t-s)n(7)n(s)drds = 0 . (Al)
=Y. - =0

9 9 d
We will assume that T(r), == H(7), == G(1,s), and == G(r,s) are con-
tinuous (these assumptions have already been used when differentiating
under the integral sign to find pA) Typical terms in (A4) are of the

form

t
J‘fg(t"‘f)ﬂ('f)d'r :
(A5)
t ot
.[ .[ j’,(t'T’t's)ﬂ(T)B(s)des ,

where ¢ and ¢ are continuous functions. If N(r) is some specified,

~ ~

continuous history and if « 1is an arbitrary vector, then given any

A
¢ > O we can find a continuous history ﬁ('r) such that T1(t) = o and
t t n
1] ett=mn(m)ar - [ olt-nnnarll < e,
(46)
t ot t ot A
7] yterstmsdntmmisdanas - [ [ y(s-r,8-5)n(1) (s )aras]] < e
The norm in (A6) is the usual vector or tensor norm; i.e., if V is a
vector ||v|| = (v X]l/z, if A is a tensor, then ||| = tr[A éT]l/e.
For example, consider
A
T(r) = n(r) o< TSt -5
= 1(t-8) + [a-1(t-6)] [K-:ﬂ] . t-fsSTSt (A7)
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Then

t

t
I I p(t-T)n(r)ar - I g(t-'r)ﬁ('r)dT”

. -t
= || J‘ o(t=-7){n(r) - N(t-6) - [g-ﬂ(t-b)[%l}dﬂ]g@@r + lelds ,  (a8)
t-5

where &= supllp(t-7)|| and T=sup||n(r)|| on some sufficiently large

interval containing (t- 6§,t) . Similarly

b it
|I J 3(t-1,t-8)3(¢)3(s)d¢ds|

-0 =-m
= y[r%4 (ar + ||aﬂ)2]62 5 (A9)
where ¥ = sup||§(t-T,t-s)|| . By choosing & sufficiently small we

obtain our desired result.
Consider now the inequality (AL) for a given history T(t) . Choose
A A -
another history T(r) with T(t) = ¢ , @ being an arbitrary vector.

This history must also satisfy the inequality so that

t A
{r, - H(O) + I [B(t-1) - G(0,t-7)I7(r)ar} &

2 steofomn[ [

-0 =0 =0

t 3 A A
Fy g(t-'r,t-s)‘n(-r)'n(s)dq'ds =20 c (A10)

Adding and subtracting terms in (A10) we obtain:
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t A
(] Trt=1) - 6(0,t-)1 [(t) - (m)lar} - o

t
- [T & o) - n(n Jar

t ot
]I Z stenetfimiee) - pen(s)leras

t
+ {Eo - E(O) i J [E(t'T) = G(O,t-T)]ﬂ(T)dT} -

t

t ot
[ &g - [ & steneangerme 2oL )

A
lowever, using (A6) we see that by choosing T (1) properly the first
three terms in (All) can be made arbitrarily small, and hence if the

inequality is to hold we must have

t
{Eo - g(o) + I [g(t-w) -G(O,t-w)]ﬂ('r)d'r'} - o

t £ ot
+ L aa_t E(t-w)l](T)dT + L L % G(t-T,t-S)B(T)B(S)deS z0 . (A12)

Since « is arbitrary and T(7) is any continuous history, (Al2) implies

that

L, = H(0) (A13)
and

P(t-1) = G(0,t-7) . (ALL)
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The inequality (A4) then reduces to

t t b
= I g% g(t-wlﬂ(f)dw - I I 'g%'g(t-T,t-S)E(TZB(S)deS =0 . (A15)

- =00 =0

*
Let T (7)=8 M(t) where B is an arbitrary scalar. The inequality

(A15) must still be satisifed for this new history so that

t t ot
- B L ait H(t-T)n(7)ar - B J" _[ a% G(t-7,5-s)n(r)n(s)drds 2 0 . (A16)

In order that (Al6) be satisfied, we must have

& H(-) =0, (A17)
and
t &
J I gagg(t'ﬂt-s)ﬂ('r)ﬂ(s)dfds >0 . (a18)

-0 =m
Our original inequality (3.4) in view of (Al3), (All4), and (Al7) reduces

to

tot o
'J .[ ﬁ'ﬁ(t'T’t'S)ﬂ(T)g(s)des

-CD =0

h 3T

If we revert to our usual index notation, (Al3) and (All4) imply (3.6),

(3.7), (3.8), (3.9), ana (3.10).
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