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On Linear Viscoelastic Rods 

by 

W. J.  Shack 

Abstract. This paper is based on the general thermodynamical theory of 
a Cosserat continuum developed by Green and Laws. We present here 
specific constitutive equations for a linear viscoelastic material. 
When the form of the free energy is restricted by certain symmetry 
conditions, the basic equations separate into four groups, two for 
flexure, one for torsion, and one for extension of the rod. Thermal 
effects occur only in the last group. Flexural and torsional wave 
propagatic-» Q1ong an infinite rod are couäiJered. 

1. Introduction 

This paper presents a theory of a one dimensional, viscoelastic, 

Cosserat continuum. Following Green and Lavs [l], we shall define a rod 

as a one dimensional Cosserat continuum. Green and Laws have developed 

an exact thermodynamical theory of rod^, which is not restricted to small 

deformations or elastic rods. Of course, a theory of rods can also be 

constructed by considering the rod as a three dimensional body. The 

equations governing the rod are then obtained from the three dimensional 

equations by introducing assumptions or expansions based on the "thinness" 

of the rod.  Some results which show that the Cosserat theory is a natural 

first approximation to the three dimensional problem have recently been 

given by Green, Laws and Naghdi [3]. In Section 5 of this paper, we shall 

briefly discuss how solutions from the Cosserat theory of rods can be 

compared with corresponding exact solutions from the three dimensional 

theory of linear viscoelasticity. 
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Recently Green, Laws and Naghdi [2] have used the basic theory of 

[l] to derive a linear theory of straight elastic rods, although as the 

authors note their work could be readily extended to the case where the 

rod has an initial curvature. 

In this paper, using a procedure similar to that of [2], we derive 

a linear theory of viscoelastic rods which are initially straight. The 

basic field equations of the theory, which are the same as those given 

in [2], are presented in Section 2. In Section 3 appropriate constitu- 

tive equations for viscoelastic rods are discussed. The discussion of 

constitutive equations and the thermodynamics of viscoelastic rods given 

here is analogous to the discussion of the general linear viscoelastic 

solid by Christensen and Naghdi ik].    We then restrict our attention to 

the case where the rod possesses certain symmetries. The resultant 

equations seem to correspond to those of a rod considered as an Isotropie, 

viscoelastic, three dimensional member with a cross section which is 

symmetric about its principal axes. Under this symmetry restriction the 

equations of the theory separate into four groups: Two governing flexure, 

one governing torsion, and one governing longitudinal motions. We note 

that the temperature is present in only the last group. 

In Section 5 we use the equations of Sections 3 and k  to consider 

the propagation of flexural waves in an infinite rod, The  solution for 

an arbitrary frequency is very complicated, and explicit results are 

presented only for the asymptotic wave speeds, attenuation and ampli- 

tudes as the frequency becomes very large. These results generalize 

well known results of Hunter C^]. We also compare the solution of the 

problem of quasi-static pure flexure using the Cosserat theory with the 

solution of the corresponding problem using the exact solution obtained 

from the three dimensional theory of linear viscoelasticity. 

2. 



Finally in Section 6 we consider the torsion equations. We intro- 

duce an additional symmetry restriction on the form of the constitutive 

equations. Under this restriction our Cosserat rod now seems to correspond 

to a right circular cylinder. We then study the propagation of torsional 

waves through the Cosserat rod and compare our results with those of 

Berry [6], who solved the corresponding three dimensional problem. 
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2. Linear Theory of Rods 

In the basic theory of rods as developed by Green and Laws [ 1 ], 

a rod is defined to be a curve (embedded in a Euclidean 3-space) at each 

point of which there are two assigned directors. The motion of the rod 

at time t is then described by the equations 

r-r(z,t)  ,  a^-a^t)  , (2.1) 

where r is the position vector of the curve, a (a-1,2) axe the 

directors and z is a convected coordinate which defines points on the 

curve. We also define the base vector a« along the curve by 

or 

A3 " i?    ' (2-2) 

and impose the restriction 

^1' 52» £3] > 0  ' (2-3) 

In terms of a  and a0 , the basic kinematical quantities may be taken 

as 

da 
a. - a. • a.  ,  IC. . ■ a. • ^-      . (2A) 
ij  ~i  ~j      ij  ~J  öz x  ' 

Latin indices take the values 1, 2 and 3, and Greek indices the values 
1 and 2. Also, repeated indices Imply the usual summation convention. 
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The initial values of the position vector and the directors are 

denoted by R , A-, and Ap . We assume that the rod is initially- 

straight so that 

z-z*3   >   £i-V6ij   ' (2-5) 

where    A.     are independent of    z    and    6..    is the Kronecker delta.    We 

restrict our attention to the case when the subsequent displacements of 

the rod are  "small".    To be consistent   we will also assume that the 

changes in the thermodynamic variables such as temperature are also 

"small".    More precisely, we assume that 

zA3 + eu    ,    ^1 = ^+6 b.     ,      T'=To+eT       , (2.6) 

where T1 is the temperature of the body with value T  in the initial 

undeformed state, and e is a small non-dimensional parameter. All 

forced and assigned loads are also assumed to be of 0(e) • By neglecting 

all terms of 0(e ) and higher in the field equations we obtain the 

linearized field equations. After obtaining the approximate equations, we 

may formally set e= 1 in the equations without loss of generality with the 

understanding that when the displacements, temperature changes, forces, and 

assigned forces are expressed in suitable non-dimensional forms they are to 

be considered small, i.e., « 1. Since this procedure is straightforward, 

only the final results are presented here. Before writing down the 

basic equations, however, we note  that as a consequence of the lineari- 

zation all components of vectors such as r and a, are now referred to the 

fixed orthonormal base vectors A-, and hence, there is no need to distinguish 

between covariant and contravariant components. 

5. 
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It is convenient to define measures of deformation by 

ij  ij  ij 
> 

or in the linearized theory (2.7) 

v. ,   = b. . + b .. 
ij id       Ji 

Also, by (2.k)2  and (2.6),, we have 

9b öu 

hr-g-  >  b3i = ir  ' ^ 

where u.  are the components of the displacement vector 

u = u A. . 
i**        i mi. 

The linearized basic field equations of the theory are given in 

[ 2 ]. Here we quote freely from [ 2 ] and also record additional re- 

sults appropriate to the linear theory which will be useful 

later.   The linearized equations of motion are 

^2 
on        5 u. 

ot 

"«rV   '   "ea-^    ' (2-10) 

where p is the initial mass per unit length of the rod,  n.  are force 

components, and f.  are the components of the assigned force per unit 

mf ss on the rod. The quantities TT   are defined by 

6. 
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where p . are the components of the director forces, and q . are the 

stun of the assigned director force on the rod and the director inertia 

forces. 

Equations (2,10) and (2.11) can be written in a more familiar form 

if we introduce vectors m and g defined by 

*    r^p*   ' e-^xäa ' (2-;L2) 

with components 

ml" P23 » m2 " " P13 ' m3 ' p12 " P21  ' 

gl" ^B * ß2 " " q13 ' g3 " q12 " P21  * 

It is then easily seen that (2.10) and (2.11) are equivalent to 

cto-L 

(2.13) 

äS" " "2 + P8l " 0  ' 

7%n 

—+n1-pg2.0  , (2.11+) 

anu 

äT + PS3 ' 0 ' 

and 



apll 
> 

ap22 
"22 " P^a +   az" » (2.15) 

2TT
12 " 2TT21 = P^12+q2l) + Ä (P^ + ^l5 

We must also introduce an explicit form for the director inertia 

terms. If we assume that the contribution of the directors to the 

kinetic energy is of the form 

• • 

kaiii'ii + h0l2k'i2   > (2-l6> 

where the coefficients a-, and «_ are independent of t  and a super- 

posed dot denotes partial differentiation with respect to time, it fol- 

lows that 

c^ = l^±  - ofp  1-   (no sum on ß)  , (2.17) 
5t 

where    A.,    are the assigned director forces, pi 

The energy equation appropriate to the linear theory is 

•pA -  p(T'S+TS  ) +  pr + i TT .  Y^ + p na(Va^+VoR) + ö n^ Y 2 "aß ^«ß ^ 2 "BVYß3T ^ß7 T 2 "3 T33 

where 
^«i^i-i=0   > (2-18) 

8. 
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A is the Helmholtz free energy per unit mass, r is the heat supply 

per unit mass per unit time and h is the flux of heat along the rod. 

To complete the basic equations we postulate an entropy production in- 

equality of the form 

pT'S-pr + §-^§.0  . (2.20) 

If we use (2.18) to eliminate    pr    from (2.20), we obtain the reduced 

entropy inequality 

-p(Ä+TS  ) + |TT.  W   I nfl^oq+Y.J + i n    V 2 "aß  TaeT   2 "ß^ß3" T3ß,T2 "3 T33 

+ ^i^i-^i50   • (2-21) 

9. 



3.    Constitutive Equations  for a Viscoelastic Rod 

To obtain a complete theory we must specify appropriate  constitutive 

equations for the free energy    A  ,  the  force vector    n.   ,  the director 

forces    pai   ,  the quantities    rr „   ,  the entropy    S   ,  and the heat flux    h   . 

Since we wish to consider the case where    n,   , v  .   ,  etc.  are  linear func- 
i   ' -^ai   ' 

tionals of the kineraatical and thermal histories,  it is  sufficient to 

consider a constitutive  equation for the free energy of the form 

P* • P* • 
-   pAo + J     Dij(

t-T)YiJ(T)dT + J     X(t-T)T(T)dT -      -I        ij 
"00 

+ iJ J W^'^ij^ia^ dT1 
"00     —00 

J    J    *ij(t-T't-Tl)vij(
T)T(T)dT dTl 

— CO     —00 

|J    J    m(t-T5t-Tl)r(T)f(Tl)dT  dT] + J    H^.Ct-T)^.   dT 

i lY W^'^i^W^ d^ 

-00    -00 " " 

.t „t 
J    J    rcyi(

t-T't-Tl)^i(T)T(^)dT dl]       , (3.1) + 
-00    -00 

where as we recall a superposed dot denotes partial differentiation with 

respect to the time variable T . Without loss of generality, we may 

assume that 

10. 



ra(t-T,t-1l) = m(t-Tl,t-T)   , (3.2) 

and that the kernel functions in (3.1) vanish for negative values of 

their arguments. 

ST The heat flux is assumed to be linear in the history ^— (T) 
QZ 

h = - J ^-^ S (T) dT   • (3-3) 
-00 

It is not necessary to record here specific constitutive equations for 

n. , p . , TT „ and S ; it suffices to assume that they are linear 
i ' -^ai   aß 

integral operators over the histories of y. .   ,  K   .     and T , but that 

they are Independent of the temperature gradient. 

Substituting from (3.1) into the reduced entropy inequality (2.20), 

we obtain 

11. 
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pt . pt 
[-pS-X(0)-|    m(0,t-T)T(T)dT - J    *. .(t-T,0)Y. .(T)dT 

-00 .50        1J 1«J 

" 1. rai(t-T'0)K
ai(T)dT]T(t>+ ^«e - 2IW0) 

pt pt 
■ 2 J   ^i^^Ki^*7 - 2 J  Se^t-OTCOdT 

—00 .00        ^"^ 

" 2 L FYiae(t-T'0)V(T)dT]^(t)+ C2np 

" k L Fai33(t-T'0)^i^)dT " %3(0)] ^3(t) 

+   [n3-2D33(0)   -2 j    G33k£(0,t-T)^(T)dT 
-00 

- 2 J^  $33(0,t-T)T(T)dT  -  2 J^ Fa.33(t-T,0)Kai(T)dT]  ^(t) 

+ [v-H
ai(0) - f W0'*-^^ - f ^uk^^-VT)dT 

- J     rai(05t-T)T(T)dT]Kai(t)        -  A - f ^ D     (t-T)Y     (T)dT 
"00 _Q0 ^ " 

- f |r x(t-T)i(T)dT - J^ A „a. (t.T)Kai{T)dT. ^ |3 (t) s o  ,   (3.u) 

where 

12 
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"00 »"00 

+ J  J  at ♦ij(t-T.t-'n)Yij(T)T(Tl)dT dl] 
"00 "00 

+ f J I Ä m(t-T,t-Tl)f(T)T(,n)dT dTl 
-00 -0» 0 

»t wt 

"00 "00 

+ J J ^ rai(t-T,t-Tl)Kai(T)T(Tl)dT dT]  , (3-5) 

and we have made use of the symmetry conditions (3.5)' 

Tlie Inequality (3.U) must hold for arbitrary continuous histories 

of y.^ir),  ^i^yCT)» T(T) . The integral operators in (3.^) depend 

smoothly upon the histories, and thus changing the histories in the 

neighborhood of the present time T = t produces only a small change in 

the value of the integrals. If the present rates could be assigned in a 

completely arbitrary manner without chancing the values of the coefficients 

of the present rates, then, clearly, in order that the inequality be 

satisfied it would be necessary that the coefficients vanish identically. 

It can be shown that this is also true in the present case. The formal 

argument is similar to that of Coleman [ 7]; for the interested reader 

the details are given in an Appendix. 

The vanishing of the coefficients then yields 

13. 
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pS =   - X(0)  - J     m(0,t-T)T(T)dT - J     $iJ(t-T,0)Yi.(T)dT 

J   rai(t-T,o)Kai(T)dT    , (3.6) 

n
ap= 2[Dfl«(0) + J G^0't-r)\^)dT + J »ae(0't-T)T(T)dT 

+ J    FYicy6(t-T'0)%i(T)dT]       ' (3-7) 

^ ' 2[D
k3(0) + J    Gk3mn(0't-'r^ran(T)dT + J    *k3(0,t-T)T(T)dT 

-00 -00 

-00 

pt . pt 
p   .   =  H  .(0)  + H   .fl.(0,t-T)Ko,(T)dT + F  . .1,(0,t-T)Y.v(T)dT 

.t 
+ J   rai(

0't-T)T(T)dT      . (3.9) 
ee      a:L 

"00 

The  inequality  (3.^) then reduces to 

I. at ^-^li^  - J. ^ ^t-T)T(T)dT 

"00 O 

i4. 

(3.10) 



The first three terms in (3.10) are of first order in the rate histories, 

while the remaining terms are of second order. Hence, to satisfy (3.10), 

we must have 

and 

A-|-|£ao (3.11) 

-1 h Vt-T)''ij(T)dT -1 h. m-^M* 
"00 —00 

" J Ä Hai
(t"T),Cai(T)dT " 0  ' (3-12) 

As
    'Y.M(T) , T(T) and K . (T) can be chosen arbitrarily, we must 

have 

Since (3.11) must hold for homogeneous temperature distributions, we 

also have 

- A 1 0  . (3.1^) 

From (3.11)j we see that the familiar condition 

-h|Uo (3.15) 

does not necessarily follow from the entropy production inequality for 

a viscoelastic rod. However, to satisfy (3«ll) it is sufficient that 

(3.15) be valid. If we restrict our attention to a class of materials 

for which (3«15) holds, it is easily seen that the constitutive equation 

(3.3) must reduce to 

15. 
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K g      , (3.16) 

where    K (> 0)    is a constant.    The arguments leading to (3.13) and 

(3.16) are similar to those of Christensen and Naghdi [k] in their work 

on the general linear viscoelastic solid. 

Substituting from (3.1) and (3.6-9) into the energy equation (2.1?) 

and neglecting second order terms, we obtain a linearized energy equation 

p T0 S +  pr - || -  0 (3.17) 

which can be used to determine the temperature. 

16. 
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k.    Symmetries 

We restrict our attention now to a rod whose Helmholtz function is 

invariant under the transformations: 

X-tx       ,      A.  - t A1       ,      A9 - t A-       , (k.l) 

where we may take any combination of + and -   .    It is a  straightforward, 

but tedious,  calculation to find the form of the  kernel functions under 

these restrictions.    We present here only the final results.    The free 

energy   A    is now given by 

PoA "  PoAo " PoSoT + J   J    f I ßiUY^Th^CTO + l g2(,)Y23(T)Y23(Tl) 

+ 2 e3(«)Y13('r)Y13(Ti)+ij: g^(,)Y11(T)Y11(Tl) + ^ g5(,h^T^Cfl) 

+ £ g6(.)Y33(T)Y33(Tl)+^ g7(J)[Y11(T)Y22('Tl)+^^^iC1!)^ 

+ ij- g8(>)[Y22(T)Y33(,n)+ Y33(T)Y22(T1)J + ^ g9(5)[Y11(T)Y33(Tl) + 

Y33(T)Y11(T1)]+ [^ CP1(»)Y11(T)+2 CP2(,)Y22(T)+ 2 ^{^^^Wl 

+ |m(,)T(T)T(Tl)+| h1(,)K11(T)K11('n)+| ^(JEIC^CT)^^) 

+ K22(T)K11(Tl)] + i h3(,)K22(T)K22(Tl) + | h^( ,)K12(T)K;I2(T1) 

+ | h5(,)[K12(T)K21(<n)+ tC21(T)lC12(Tl)]+ | h6(,)K21(T)K21(Tl) 

+ | h7(,)K13(T)K13(7l) + | h8(,)K23(T)K23(Tl) ) dr dj\       , (U.2) 

where we have used the notation 

17. 
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f(,) H f(t-T, t-T))    , 

and we have set - X(o) = oS  and assumed that D..(o) =0 , i.e., the 
it» 

rod  is free of initial stresses. 

The constitutive equations  (3-6),   (3.7)j  (3'8) and  (3.9) become 

nl = J     g3^0'  t"T)v13(T) dT      ' 
-00 

n2 = J     g2^0'   t"T)v23(T)  dr       , 
-08 

(^.3) 
•t 

n3 = J     tg6(0't"T^33(T)+g8(0jt"T^2P(T) + g9(0't"TWl(T):i dT 

+ J    cp3(0,t-T)T(T) dT 

pt 
al = J    h8(0't"T)K23^T^ dT 

m„ = J       h7(0,t-T)K13(T)   dT , ik.k) 

rru - J     [(h^-h  )(0,t-T)K12(T)- (h6-h  )(0,t-T)tC21(T)]  dT        , 

pll " J     th1(0Jt-T)K11(T)+h2(0,t-T)K22(T)] dT       , 
-09 

pt 
P22 = J     [h  (0,t-T)K22(T)+h2(0,t-T)K11(T)]  dT       , (^.5) 

-t 
P12 + p21 = J     C(Vh5^0't"T)K12(T)+ (V^^0'*-1)^!^^  dT 

-00 '   "' 

18. 
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-t 

"ll ' J  [S4(0't-T)Y11(T)+ ^(O.t-TKppCT)* g (0,t-T)Y„(T)] 22^ ' ' T BQ^W> ,'_ ' /Y^oVT/-1 dT 

+ 
-08 

P 

"22 s J  [65(0»t-T)Y22(T)-:-g7(0,t-T)Yi;L(T)+g8(0,t-T)Y33(T)] dx   (4.6) 

+ J  cp2(0,t-T)T(T) dr 

"12 = "21 ' J  ßi(0't-T)Y12^
T^ dT 

and 

pt        .       pt 
PS  - pS0 - J^m(0,t-T)T(T)dT-iJ [cpi(t-T,0);il(T)+cp2(t-T,0);22(T) 

+ cp3(t-T}0)Y33(T)] dT   . (J+.7) 

The quantity A is now given by 

19. 
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«— i —^ ^   -^ - . . 

A = J J { i ^ ßiOY^CTK^Cn) (^.8) at 
-OB -06 

+ 2 it e2(')Y23(T)Y23(
,ri) + 2 ät ^('^(T^Cn) 

+ * It ^('^(T^gdl) + | ^ ß7(,)Y11(T);22(Tl) 

+ I *£ SSCO^CT^CTI) + | ^ g9())Y11(T)v33(Tl) 

+ ^^^l^^n^) + ^^('^(T) +i|t «P3(,)Y33(T)] T(T1) 

+ I It m(')T(T)T(Tl) + | ^ ^(JK^CT^CTI) 

I ^ ^OK^CT)^^) + ^ ^(JK^CT^CTI) 

+ I it ht'^l^KlW + I ^ ^(,)K13(T)K13(TI) 

+ I ^ h8(,)K23(T)K23(Tl) ] dT dll 

Inspection of the equations of motion (2.9), (2.1U) and (2.15), the energy- 

equation (2.18) and the constitutive equations (U.3-7) shows that they can 

be separated Into four distinct groups: two governing flexure, one governing 

torsion and one governing longitudinal motions. Thermal effects and the 

20. 
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energy equation need only be considered with the equations governing 

longitudinal motions. 

21. 



•  ~ 

5. The Flexure Equations 

The two sets of equations governing the flexure of the rod are 

%n1 a u. 
^r+ pfi = p -T-    ' 

am- 3 b,-, 
— + n1 - pA13 + p^ —2- - 0 

rt        . pt        . 
n1 = J  g3(05t-T)Y13(T)dT  , m2 = ' J  h (0,t-T)K  (T)dT 

-00 - -00 

Y13 " b13 + b31 ' ''IS = "äT ' b31 != äT ' 

and 

^2 Sng        3 Ug 

9m1 3 bgo 

äT " n2 +  P£23 ■  Pa2 -^2    =  0 

(5.1) 

(5.2) 
-t . pt . 

^ » J  62(0>t-T)Y23(T)dT  , mj^ = J  h8(0}t-T)K23(T)dT  , 

ab23 au2 
Y23 = b23 + b32  '  ^23 * ax   ' b32 = to"  • 

As a simple application of these equations we may discuss the propa- 

gation of flexural waves along an infinite rod. To simplify our discussion 

Throughout this Section, we restrict our attentions to the case when 
ff-i > ap > P > ß-i > So > etc • > are independent of z . 

22. 



we introduce the notation 

G(s) = 82(0,8)  ,  H(s) = h8(0,s)  . (5.3) 

Assuming that the waves are of the forms 

Ug - Ve'V*  cos a)(t - ^) 

b23 = B1  e"^x cos (»(t-i) + B2 e"^
x sin u)(t-|) , 

on substitution of (5.10 into (5.2)_ s  „, we find 

rig = [-a)(B1-p.U)Gc + u)(B2 + | U)Gs]e"
M'x sinu)(t-^) 

+ [u)(B1-nU)Gs+u)(B2+^ U)Gc]e"^
X cos u)(t - |)  , 

m1 - M^1 + äi B2)Hc + u)(-pB2 + ^ Bj^^le'^ sin u)(t-f) 

(5.U) 

(5.5) 

+ [-a)(M.B1 + f B2)Hc + a)(-nB2 + | B^H^e"^ cos a»(t-|)  , 

where 

G (w) ■ J  G(u) sin u)U du  ,  G (Oö) = J G(u) COS (DU du  ,     (5.6) 
o 0 

and H (u)) and H (cu) are similarly defined as the Fourier sine and s^ '      c 

cosine transforms of H(u) . Using (5*5) > (5.^) and the equations of 

motion (5«2), «, we obtain a set of homogeneous equations to determine 

U, B., and B2 

23. 
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o      2 

[ -2ii - G   + (u" - ~5)G   + pu)]U +   [ -uG   + - G IB,   - [LLG   + - G  ]B0 = 0       , ^ccv^        2/s^ ^sccl        pccs2 ' 

[2uf Gs+(^-%)Gc]U-   [^Gc + f Gs]B1+  [-fGc^Gs]B2 =  0        , 
c 

? 2 
[^Gs-| GC]U +  [^-2^, | Hc-^Hs-Gs+pcy2u)]B1 

c 

2 
+  [2^f Hs + lx

2Hc-%Hc-Gc]B2 = 0       , 
G 

UG  - A G ]U + [-2u ffi H + ai- H  - a2 H  - G ]Bn 

2 
+ [.^Hs + M) ^-2^ Ä Hc-Gc+pa2u)]B2 = 0  . 

c 

These equations will determine JJ, , c and the direction of the 

vector {U , B, , B?3 
as functions of the frequency cu • The solution 

for an arbitrary value of the frequency is quite complex, and we will 

restrict our attention to the asymptotic behavior of the solution as the 

frequency becomes very large. If G(u) and H(u) are sufficiently 

smooth, it is well known (see, e.g., Lighthill [8]) that 

(5.7) 

„ / N  G(0)  G(0) 
sv '   cu     3 

0)      U) 

with similar e3q)ansions for H (cu) and H (cu) . We assume that b , 

B, , Bp , (i , and c have asymptotic expansions of the form 

2k. 

(5.8) 



ul bll u~uo + ir+ •••   '   Bi~bio + —+ •••    ' 

b21 ^1 
B2~b20 +"5r+ •'•     '     ^x~^io + ■5^+•••      ' (5-9) 

ci c ~ c    +  — + . • • 
O   U) 

Substituting (5.8) and (5.9) into (5.7), and then investigating the con- 

ditions that non-trivial solutions exist, we find two modes of propaga- 

tion for flexural waves . In the first, 

2  G(0) G(0) 
Co ' p    '  ^o " " 2coG(0)   ' 

Uo ^ 0  '  b10 = b20 = 0  ' 

(5.10) 

while in the second 

2  H(0) H(0) 
Co "  pa2 '      ^o " " 2coH(0)   ' 

Uo ^ 0 ' b10 = 0 ' b20 ^ 0  * 

(5.11) 

These relations generalize well known results for extensional waves in a 

one dimensional visco-elastic medium (see, e.g.. Hunter [5 1). 

Our developments here rest on the initial postulates of a balance 

of energy and an entropy inequality. For a curve with assigned directors 

embedded in a Euclidean 3-space the  resulting equations in Sees. 2 and 

3 are exact and aside from linearization involve no approximations. 
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However, the equations given here could be obtained from a three dimen- 

sional theory of rods after suitable approximations are made. A discus- 

sion of the kind of approximation necessary is given in [3]. 

To one familiar with classical theories of rods, the form of our 

equations is quite suggestive, and we will present here a few rather 

intuitive ideas concerning the connection between the two theories. 

A rod as a three dimensional body may be regarded as the Cartesian 

product of its line of centroids and its cross section. Because a rod 

is a "thin" body, we can constrain the cross section to undergo only 

homo^neous deformations. The homogeneous deformation of the cross 

section is then determined by the motion of two independent vectors. 

Thus in the model of the Cosserat curve, the two directors can serve to 

describe the homogeneous deformations of the cross section. Since any 

two independent vectors uniquely determine a homogeneous deformation, we 

may choose to take the directors along the principal axes of inertia of 

the cross section. 

These ideas will be sufficient to permit us to compare the results of 

the Cosserat theory with solutions from the theory of linear viscoelasticity 

for an isotropic three dimensional rod. We consider first the case of iso- 

thermal, quasi-static pure flexure. Using the usual quasi-static "corre- 

spondence principle" between elastic and viscoelastic solutions, the solution 

of the viscoelastic problem in the Laplace transform plane is easily obtained 

from the corresponding elastic solution. We consider a straight, isotropic 

prismatic rod and introduce a Cartesian coordinate system (x , y , z) 

where the z axis coincides with the line of centroids of the cross section, 

and the x and y axes are taken along the principal axes of the cross section. 
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Consider now the problem of pure flexure of such a body.  If a  denotes the 

transform of the stress tensor, the only non-zero component of the stress is 

CT33 = ax + ßy   , (5.12) 

where a and ß are constants. The three dimensional displacement 
*■ 

vector is denoted by u  and its transform is given by 

ul = ^(iax2. ßxy-|ay
2) -^-Z

S 

sE 2sE 

U2 = 
v    . 1Q2  la2N   B  2 — («xy +^Py -^ßx)--'i

zz 
sE 2sE 

(5.13) 

u- - -^ (ax + ßy) z  , 
0      sE 

where v and E are defined in terms of G, (t) , the relaxation func- 

tion in shear, and Gp(t) , the relaxation function in isotropic com- 

pression, by 

12G2+  Gl 

E   30^2 
v = 

G2   -Gl 

2G2 + ^ 
(5.14) 

The transforms of the moments acting across any section are then 

m, = ßl xx SEI 
9 u2 

xx I 2 

x,y=0 

nu ■ - orl  = sEI 
2     yy 

^2-* a u1 

x,y*0 

(5-15) 
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where I   and I   are moments of inertia about the x and y axes xx      yy 

respectively. 

Taking the trantforms of (5.1) and (5-2) we easily obtain the 

equations 

Ob 

and 

n1 = 0  ,  m, = - s^ az 

-   - -   ^i 
bi3 + b3i = 0 ' b3i = aF- 

r^ = 0  ,  mi - shg -^  , 

au2 
b23 + b32 » o , b32 - az 

Thus 

+We assume U^T) and b1 (T) vanish on - • < T « o 

28. 

(5.16) 

(5.17) 

2— 2— 
_ 5 u2     -      ^ ul 

ml=!"sh8—5~  '  ni2=Sh7—2"  » (5.18) 

and comparing these results with (5.15), we obtain 

^8 = EIxx   '  ^7 = EIyy   ' (5.19) 



.J 

(6.1) 

6.    Torsion 

The equations governing torslonal motion of the rod are 

-JÄ+   pU^-i^)   -   P(ai—g--*,-—   )       , 
O* ot 

5(P12 + P2l)   .     r#     ^     x ,       ^12 ^21  ,       5 
 55 + p(Aa2 + ^i) - PK TX + ^ —2" ) = 2TTi2    ' 

ft 
m =J [(h^-h )(0,t-T)K:L2(T)- (h6-h )(0,t-T)K21(T)]dT  , 

-OB ? ' 

Pa2 + P2l'J C(Vh5^0,t"T^K12(T)+(h6+h5^0,t"r),C21(T^dT  } 

rt 
"12 = J 8i(0>t"T)v12(T)dT  , 

ab12     „    ^21 
K12 " ^   '  K21 ' ^T  *  Y12 " 12 + D21 

We restrict our attention here to the case when the free energy and 

kinetic energy are Invariant under the transformations 

This restriction Implies that 

o^ - a2  »  \ " h6  * (6-3) 

Under these conditions, we seek solutions of (6.1) with 
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Y12 = 0      '      b12 ' b12(x) eltt,t       * (6A) 

Then, if the assigned loads are assumed to vanish, equations  (6,1) 

reduce to 

^3 2    *      itut 

m    - 2 ft   ^^ m3 ~ 2 Hl ^5" e 

where 

« = 2ai = 2a2      , 

^(0^) = ^(0^) - h5(0,u)       , 

^ = id) J    ^(0^) e"ia,u du      , 

» ia) Hj^Co^d)) 

Combining (6.5 a,b), we obtain 

where 

A 

(6.5) 

(6.6) 

d b12   2    * 
-~r * q ^ - o    , (6.7) 
dz 

<l2-^  • (6.8) 
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If we take b15(0) = 0 , the solution of (6.7) is '12' 

4(. 
b „ = b sin q z  . (6.9) 

The torque necessary to maintain this deformation is 

2 
^ = b -ßSÜL cos q z eiU5t   . (6.10) 

This result may be compared with Berry's [ 6 ] result for the torsional 

vibrations of a circular cylinder obtained from the three dimensional 

theory. With some changes in notation, Berry's expression for the torque 

necessary to maintain sinusoidal oscillation is 

2 2 2 
m- « b-fi£»-cos X z  ,  X2 =  p 2PU)  , (6.11) 
3    2X TTa2Ciu)G1(ia))] 

where    a    is the radius of the cylinder.    The tangential displacement of 

points in the cross section is given by 

l^t IS     ^X u    = b r sin q z e . (6.12) 
ö 

Thus, b.p can be interpreted as the rotation of a radial line element 

in the cross section. Equations (6.11) and (6.10) are equivalent if 

2 1 

a=|-  ,  H1(i(i)) = ^ Iz G1(iu))  , (6.13) 

where I  is the polar moment of inertia of the cross section, z 
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7.    Longitudinal Motions 

In the theory employed In this paper, thermal effects only arise In 

the case of extenslonal motion of the rod.    We restrict our attention to 

the case when the heat flux Is given by (3.19) •    Then, the equations 

governing the motion are 

on., 9 u_ 
— .p^.p-j.   . 

Spll a bll 
"n= —+ p(iii - ai -rr >   > 

"22 = "^T +  p(A22 " a2 —T  )        ' 

m    A 9h- -pT    S+pr-^-=0       , 

pt 
n3 = J   [g6(0,t-T)v33(T) + g8(0,t-T)Y22(T) + g9(0,t-T)Y;L1(T) (7.1) 

+ cp3(0,t-T)T(T)]dT       , 

-t 
Pll'J   Cll1(0,t-T)K11(T)  +  h2(0>t-T)lC22(T)]dT        , 

-oo 

pt 
P22 = J   Ch3(0,t-T)K22(T)  +  h2(0,t-T)K11(T)]dT        , 

"ll'J fßu(0»t-T)Y11(T) + g7(0,t-T)Y22(T) + ^(Ojt-OY^T) 

+ cp1(0,t-T)T(T)]dT       , 

32. 



"22 " J ^iOtt"Th22(r)  + g7(0,t-T)Y11(T) + g8(0,t-T)Y33(T) 

+ Cpö(0,t-T)f(T)]dT   , 

Acknovledgement. The results reported here were obtained in the course 
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Appendix 

The inequality (3.h)  can be written in a more revealing form if we 

introduce the vectors 

jae (Hj, Kai, T)   , 

(Al) 

£- (TT , n., icai> - pS') 

Then the constitutive hypothesis for n. , p ., TT,, and s' in terms 
1   Qfl   Afp 

of a matrix kernel function P(T) and a constant vector T      is 

L'Lo  +  l     P(t-T)l)(T)dT   . (A2) 

By introducing appropriate matrix kernal functions G(S,T) and 

H(T) in (3.1) we can write pA in the form: 

Pt 
pA » [H(0) + I  G(0,t-T)Tl(T)dT] Tl(t) 

'»' «I     ~ »N< M 

»t   ^ „t   .t 

■00 "00 "00 
J ^^w^ + J J ^£(t-'r>t-s) 

»t „t 
+ 

-« -00 

J J ^£(t-T,t-8)T[j(T)Tj(s)dTds  . (A3) 

The inequality (3.^) for processes with f- (t) ■ 0 then beccxnes 
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(r - H(0) +   [P(t-T) - G(0,t-T)]Tl(T)dT} Tl(t) 
fM     #W J     /W t*0 ** f* 

"j  at 5(t_T);i!(T)dT"j  J  ^£(t-T,t-s)T|(T)Tj(s)dTdS 1 0   .   (AU) 
"00 "00 "00 

We will assume that TICT), TT H(T), TT G(T,S), and ^- G(T,S) are con- 

tinuous (these assumptions have already been used when differtntiating 

under the integral sign to find pA). Typical terms in (AU) are of the 

form 

J  cp(t-T)Tl(T)dT   , 
-00 

(A5) 
rt rt 

^(t-T,t-s)Tl(T)Tl(s)dTds  , 
—to   -00 

where cp and i^ are continuous functions. If T1(T) is some specified, 

continuous history and if a    is an arbitrary vector, then given any 

e > 0 we can find a continuous history ^(T) such that Tl(t) = a and 

(A6) 

|| J  Cp(t-T)Tl(T)dT - J  Cp(t-T)Tl(T)dTl| < 6   , 
-co -to 

|| r f t(t-T,t-s)'n(T)Tl(s)dTds-J J ^(t-T,t-s)Tl(T)Tl(s)dTdsl| < e  . 
«•00  "00 "OD ~%JO 

The norm in (A6)  is the usual vector or tensor norm;  i.e.,   if V is a 

vector ||v|| - [V V]1/2,  if A is a tensor, then ||A|1 = tr[A A7]1'2. 

For example,  consider 

TUT) - T1(T) -» < T « t -  6 

1l(t-6) + Ca- Tl(t-6)]  [I=|^]     .      t - 6 * T s t (A?) 
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Then 

11 J  cp(t-T)Tl(T)dT - J  Cp(t-T)Tl(T)dT|| 
—00 -»00 

-llj cp(t-T)[1l(T)-Tl(t-6)-[«-^t-6)[I=|^]}dT||s«(3r+ |W1)8 ,   (A8) 
t-6 

where $ = supllcp(t-T)ll and r= SUP1|'T)(T)|| on some sufficiently large 

interval containing (t - 5,t) .  Similarly 

.t „t 
| (  !  4(t-T5t-s)Tl(T)Tl(s)dTds| 

v   «I   (^^ e** is* 

.2T.2 ^ Y[r%(2r+ Mf^      > (A9) 

where Y = suplli(((t-T,t-s)ll . By choosing 5 sufficiently small we 

obtain our desired result. 

Consider now the inequality (A1*) for a given history T|(T) . Choose 

A v       A ~ 
another history T1(T) with Tl(t) = or , a being an arbitrary vector. 

This history must also satisfy the inequality so that 

CIV - H(0) +  [p(t-T) - G(0,t-T)]Tl(T)dT} a 
-00 

-J ^ H^-OJCT^T-J J ^ G(t-T,t-s)2(T)Tl(s)dTds 5 0  .       (A10) 
-00 -00 

Adding and subtracting terms in (A10) we obtain: 
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P1^ ,  A        , 
{  [P(t-T) - G(0,t-T)] [Tl(t)-'n(T)]dT} • a 

•00 

11^ a(t-T,t-s)tll(T)-|l(s) - Tl(T)ll(s)]dTdS 
~0D '•00 

P* 
[F - H(0) +  [P(t-T) - G(0,t-T)]n(T)dT"| . a 

-00 'w 

J ^ H(t-T)T](T)dT - J J ^ G(t-T,t-s)Tj(T)Tj(s)dTds 1 0  .   (All) 

However, using (A6) we see that by choosing ^(T) properly the first 

three terras in (All) can be made arbitrarily small, and hence if the 

inequality is to hold we must have 

P* 
to ' 5^°^ + J   ^(^T)-G(0»t-T)^(T)dT}   • a 

vfc -t 
+ J    ^ H(t-T)^(T)dT + J    J    ^ G(t-T,t-s)Tl(T)Tl(s)dTds 1 0       .          (A12) 

~00 a00     ~00 

Since a is arbitrary and T1(T) is any continuous history, (A12) implies 

that 

ro « H(0)   , (A13) 
<wO   ~ 

and 

P(t-T) = G(0,t-T)   . (AlU) 
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The  inequality  (AU)  then reduces to 

.t  „t 
J    ^ H(t-T)T](T)dT  - J    J    ^ G(t-T,t-s)Tj(T)T)(s)dTds * 0       . (A15) 

•x- 
Let T| (T)= ß T1(T) where ß is an arbitrary scalar. The inequality 

(A15) must still be satisifed for this new history so that 

ß J H ^-^^^  - ß2 J J ^ G(t-T,t-s)irj(T)Tj(s)dTds S 0 .  (A16) 

In order that (Al6) be satisfied, we must have 

^ H(t-T) = 0   , (Al?) 

and 

.t „t 
J J ^2(t-TJt-s)Tl(T)'Tl(s)dTds > 0  . (Al8) 
—00 —00 

Our original inequality  (3.^)  in view of (A13),   (AlU),  and  (Al?) reduces 

to 

"J    J    ^2(t-TJt-s)Tl(T)Tl(s)dTds 

If we revert to our usual index notation, (A13) and (AlU) imply (3.6), 

(3.7), (3.8), (3.9), and (3.10). 
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