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U S ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS VIRGINIA 23604

This contract was initiated to determine the aeroelastic stability
limits of articulated and unarticulated helicopter rotor systems at
high forward speeds. The four primary modes of aerocelastic instability
(classical flutter, stall flutter, torsional divergence, and flapping
or flatwise bending instability) were investigated. The possibility

of a flap-lag instability suggested by Dr. Maurice I. Young of the
Vertol Division, The Boeing Company, was investigated as a special case
of flapping instability.

The results are published as a five-volume set; the subject of each
volume is as follows:

Volume 1 Equations of Motion
Volume 11 Classical Flutter
Volume III Stall Flutter

Volume 1V Torsional Divergence
Volume V Flapping Instability

These reports have been reviewed by the U. §. Army Aviation Materiel
Laboratories. These reports, which are published for the exchange of
information and the stimulation of ideas, are considered to be tech-
nically sound with regard to technical approach, results, conclusions,
and recommended parameter ranges for accurate usage.
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SUMMARY

The purposes of this research program were to extend or develop analytical
methods for determining rotor blade aeroelastic stability limits and to
perform stability calculations over a range of desizn and operating vari-
ables for articulatel and nonarticulated configurations. The usefulness of
simpler analytical methods is invercigated by comparing results with oper-
ating boundaries from the more elaborate analysis.

In this volume the differential equations of motion for a linearly twisted
rotor blade having chordwise mass unbalance and operating under steady
flight conditions are derived. The motions include flapping and lagging for
the articulated blade, as well as flatwise, edgewise,and torsional defor-
mations for the articulated and nonarticulated bladeg. The fully coupled
aerodynamic forcing functions are based on quasi-steady theory. The dif-
ferential equations of motion are expanded in terms of the uncoupled vibra-
tory modes of the blade in crder to facilitate their numerical solution on
a digital computer.
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FOQREWORD

The work presented in this volume is part of an effort which is contained
in five volumes. The work was performed under Contract DA 4L-1T77-AMC-332(T)
with the U, S. Army Aviation Materiel Laboratories, Fort Bustis, Virginia.
The work was monitored for USAAVLABS by Mr. Joseph McGarvey.

This volume contains a presentation of work performed by Mr. Peter
Arcidiacono, of the United Aircraft Research Laboratories. The resulting
equations of motion were prepared and programmed for computer solution by
Mr. Russell Berquist of Sikorsky Aircraft. The method of computer solution
was generated independently for earlier versions of the equations of motion,
and was extended under this contract to include non-coincident blade elastic
axis and section center of gravity locatiocns.

Volume II presents a linearized discreet azimuth classical flutter analysis
for rotor blades, with an appropriate parameter variation study, a com-

parison with test data, and a comparison with results calculated by using
the method of Volume I.

Volume III describes a stall flutter analysis based on the calculation of
aerodynamic work during a cycle of blade torsional vibration, using two-

dimensional unsteady airfoil test data. The analysis was used to generate
stall flutter boundaries.

Volume IV contains the results of a study of static torsional divergence.
A set of design charts were generated and the effects of a range of par-
ameter variations are presented. The results of the static divergence

calculation are compared with results calculated by using the method of
Volume I.

Volume V is concerned with flapping, flatwise bending, and coupled flap-lag
iustability. A single degree of freedom flapping or flatwise bending
analysis was used to investigate a wide range of parameters. Comparisons
were made with the results of the more elaborate method of Volume I. The
method of Volume I was also used to determine the coupled flap-lag response
of a rotor to a number of sudden control changes.
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LIST OF SYMBOLS

acceleration of any roint on the rotor blade, ft/sec2

distance from mid-chord to pitch axis divided by 0/2, positive
when pitch axis is downstresm (see Eq. (131))

blade chord, ft
section drag coefficient, d/({1/2 ,oUzc)

section pitching moment coefficient sbout the quarter-chord,
Mesa/ 172 pUEc?

section 1lift coelficient, 2/ (172 P Uac)

rotary viscous damping coefficient, ft-lb-sec/rad

C04J4Dj blade modal constants (see Appendix IV)

C*
d

linear viscous damping coefficlent, lb-sec/ft
section drag force per unit span, 1lb/ft

X, coordinate of coincident flap-icg hinge, ft
Yio coordinate of centroid cf spar area; ft
Young's modulus of elasticity, 1b/ft2
acceleration of gravity, ft/sec2

shiear modulus of elasticity, lb/ft2

i,j, kK unit vectors

spar area moments of inertia about an axis parallel to 2

and Yo buthpassing through the spar and counterweight
centroid, ft~

mass moment of inertia of blade about flap and lag hinges
(see Eq. (93)), 1b-ft-sec®

torsional stiffness constant of blade section, fth
radius of gyration of blade section mass, ft
radius of gyration of spar, ft

1ift force per unit span, 1b/ft
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m »lede mass per unit spex, 1b-sec?/ft2

my. section aerodynamic pitching moment per unig span about
elastic axis, ft-1b/ft

Mc/4  steady-state section pitching moment per unit span, ft-1b/ft

counterweight mass per unit span, lb—secz/ft2

Me w

my quasi-steady section damping moment per unit span
(see Eq. (130), ft-1b/ft

My blade mass per unit span at some reference stat on,
1b-sec2/ft2

M moment, ft-1b

M, moment due to aerodynamic forces, ft-1b

Mg blade mass, 1b~se02/ft

Mo moment due to dynamic forces (including moments due to flap
damper, ldg damper, and pushrod), ft-1b

Me’ moment due to elastic deformation of blade, ft-lb

P vector from origin of reference frame to point on rotor
blade, ft

ay emplitude of ( ) edgewise deflection mode (equals blade

() tip deflection in 2 direction divided by R when Y,
at tip is defined as 1.0) )

Gy amplitude of ( )th flatwise deflection mode (equals blade
() +tip deflection in z, direction divided by R when y

& w
at tip is defined as 1.0) ()
q amplitude of ( 'B elastic torsional mode (equals elastic
9() twist angle about Xy axis in radians at tip when 7b
at tip is defined as 1.0) ()
r blade spanwise coordinate, measured from flap hinge in Xg

direction, ft

value of r at blade tip, ft

Teq value cf r at blade center of gravity, ft

r value of I at inboard end of courterweight, ft

R rotor radius ( e+v; ), £t

b
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S shear force ver unit span, .b/:'t

; Sy aerodynamic shear force per unit span, 1lb/ft
~ Sp dynemic shear force per unit span, 1lb/ft
t time, sec
u resultant velocity of blade section ( \/G:E:I;? ), ft/sec
Up velocity component of blade section, normal to X axis

and U; , ft/sec

Ur velocity ccmpinent of blade section parallel to the plane
of rotation ( ¥ ~y; plane) and normal to x, , ft/sec

i v velocity, ft/sec
1 Ve local edgewise elastvic displacement of elastic axis in Ye
: direction, ft
3
Yo translational velocity of axis system, ft/sec
4 v forward velocity of aircraft, fi/sec .
We local flatwise clastic displacement of elastic axis in Zg

direction, ft
X,Y¥,2 axis system coordinates
! ag rotor shaft angle ¢f attack, angle between Z, axis and

remote girstream velecity vector, positive when z, axis
tilted aft, radiens

PO

a, local section angle of attack, radians

B blade flap angle {see Figure 1), radians

Yv ( )th edgewise uncoupled mode shape, deflection shape
i () assumed by 2 rotating blade wher vibrating at its ( )th
g uncoupled =dgewise f{reguency

7w() ( )th flatwise uncoupled mode shape
14
i Y ( )th torsional uncoupled mode shape

8
] ) blade lead angle (see Figure 1), radians

83 pitch flap coupling angle, deg

JAY nondimensional spanwise distance over which a concentrated

force is applied to the blade
xi
§

T, . . +
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distance between chordwise location of counterweight and
chordwise location of spar centroid, positive when former
is between centroid and leading edge, ft

local blade section pitch angle (see Figure 5), radians

local blade pitch angle due to control system input and
built-in twist (see Eq. (147)), radians

local blade pitch angle due to built-in linear twist
(see Eq. (148)), radians

locel elastic twist angle (see Figure 1), radians

blade pitch angle due to control system input (see Eq. (1k9)),
radians

rate of change of 93 with respect to T , radians

total local blade pitch angle (see Eq. (147)), redians

ratio of relative air velocity component in Z, direction
to IR (see Eq. (138))

berding rotation angles (see Figure 1), radians

ratio of relative air velocity component in X direction
to QR (see Eq. (137))

rotor induced velocity, ft/sec

dunmmy variable of integration along x axis, ft

5
.- . . 2,0kt
air density, lb-sec®/ft

local inflow angle (see Figure 5), radians
blade azimuth angle (see Figure 1), radians
angular velocity of axis system, rad/sec

_unccupled natural frequency of { )R edgewise vibratory
tode, rad/sec

uncoupled natural frequency of { )th flatwise vibratory
mode, rad/sec

uncoupled natural frequency of ( )¥B torsional vibratory
mode, rad/sec

rotor angular velociity about z, axis, rad/sec
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SUBSCRIPTS
I-10
c/4

3C/4

c.g.

ea

X,Y,2
Xeya Yoy 22

y|0cg =0

indicates axis system under consideration

indicates quantity evaluated at 25% chord

indicates quantity evaluated at 75% chord

indicates quantity evaluated at local chordwise
center of gravity

indicates quantity evaluated at elastic axis

indicates flap damper or quantity evaluated at
flap damper attachment point, as appropriate

flatwise mode subscripts (maximum value = 5)
torsional mode subscrir*s (meximum value = 3)

indicetes lag damper or quantity evaluated at
lag damper attachment point, as appropriate

indicates pushrod or quantity evaluated at
pushrod attachment point, appropriate

edgewise mode subscripts (maximum value = 2)

indicates quantity eveluated at 7 =0

indicates quantity evaluated in x , y, or z direction
(Egs. (29) and (30)
indicates quantity evaluated in x , y,or 2z direction

of () axis system

indicates quantity evaluated at Yioeg = 0

DERIVATIVE NOTATION

d( )/dr

indicates derivative of (

-

) with recpect to

indicates derivetive of (

-

) with respect to
indicates derivative of ( ) with respect to t

indicates derivative of (

(i.e.y, ¢ )

-l

) with respect to

differential operator defined on page 9

xiii
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{
(
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)

indicates vector quantity

indicates quantity nondimensionalized through the
-use of factors, R , My » and

indicates an approximate equality
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INTRODUCTION

The development of analyses for the prediction of rotor performance, blade
metions, stresses and loads has been progressing for many years. The
equations of motion derived in this part represent an important additional
step in the refinement and generalization of these methods.

The analysis used to develop the performance charts of Reference 1 deter-
mines rigid blade flapping motion by a step-by-step timewise integration
of the flapping equation of motion. The solution finally converges to a
cyclic pattern if a steady-state condition is being analyzed. The analysis
is fully capable of handling a transiunt condition, however, since the
equations of motion are solved with arbitrary starting values.

Following the development of a rigid blade analysis, continued improvements
in helicopter performance objectives and the need for prediction of flex-
ible blade loads and stresses madz the development of a solution for flex-
ible blade motions necessary. The result of this development utilized
rotating blade natural vibration modes as elastic degrees of freedom. The
use of these orthogonal or "normal" modes gave rise to the designation
"Hormal Mode Transient Analysis". The analysis is similar to the rigid
biade analysis mentioned sbove, in that it is essentially & so-called start-
ing value r.oblem, in which the Aifferential equations of motion are inte-
grated on the basis of some set of starting boundary values. When a
steady-state condition is being analyzed the integration proceeds in small
but finite timewise steps; .after a number of rotor revolutions, the pre-___
dicted motions will become cyclic within a desired tolerance. This is the
usual solution desired, and performance, load, and stress calculations are
usually based on these cyclic motions. On the other hand, the prediction
of rotor behavior following an arbitrary initial disturbance is a basic
capability.

For the purposes of this investigation, the above analysis was extended to
provide for noncoincident blade elastic and center-of-gravity axes. The
basic differential equations are supplied in detail, in order to define and
document all assumptions completely. The provision for noncoincident axes
opens entirely new areas of investigation to the Normal Mode Transient
Analysis.
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ASSUMPTIONS

Nondimensional quantities are used extensively throughout this report.
Nondimensionalizing factors are rotor radius, rotor angular velocity, and

muss

per unit span at some blade reference station. The principal assump-

tions which were made in the analysis presented herein are listed below.

;.

2.

The aircraft is in steady flight with constant rotor angular

velocity.

The blade has an elastic axis so that blade deflections can be
considered as the superposition of two orthogonal translations
of and a rotation about the elastic axis.

Quasi-steady eserodynamic theory is applicable with the exception
that apparent-mess aerodynamic effects are assumed to be neglig-

ible.

Radial flow effects on eserodynamic forces are negligible.

‘Principal blade flexibility effects can be accounted for by con-
sidering only five flatwise, two edgewise, and three torsional
vibrat- ry modes.

Blade flap and lag hinges are coincident for articulated rotors.

“The local center of gravity is assumed to lie on the major

principal axis of the section.

The blade is linearly twisted along its span.

The following quentities can be assumed to be small in
comparison to unity:

a.

b.

Flap and lvad angles (in radians) and their derivatives.

Ratio of elastic deflections to rotor radius and their
derivatives.

Ratios of chordwise distances (i.e., chord, center-of-
gravity offset, etc.) to rotor radius.

Built-in twist (in radians).

Ratio of flap-leg hinge radial distance from a center
of rotation to rotor radius.

Reciprocal of Froude number based on rotor radius
(g/9°R ).

Ratios of blade thickness dimensions to chord.
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On the basis of assumptions 8 and 9, the following types of terms
in the equations noted can be neglected as higher order:

a.

Flatwise and edgewise bending equations:

(1) Second-order products of elastic coordinates.

(2) Third-order products of elastic coordinates,
chordwice distances, flap angle, lead angle,
built-in twist, and flap-lag hinge offset.

Torsional equation:

(1) Third-order products of elastic coordinates.

(2) Fourth-order products involving elastic coordinates,
chordwise distances, flap angle, lead angle, built-
in twist, and flap-lag hinge offset.

Flap angle ané@ lead angle equations:
Second-order terms involving products of elastic
coordinates, chordwise distances, and built-in
twist.

Section velocity equations:

(1) Second-order products of elastic coordinates.

(2) * Third-order products involving the elastic coor-
dinates, chordwise distances, flap angle, lead
angie, built-in twist, and flap-lag hinge offset

as factors.

All equations:

The spanwise component of acceleration due to
gravity.
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AXIS SYSTEMS

The axis systems employed in the analysis are shown schematicelly in
Figure 1 and are discussed below.

NONRCTATING ROTOR HUB AXIS SYSTEM: x,,y,,Z,

This axis system has its origin at the rotor hub center and is nonrotating
with respect to the aircraft. z lies elong the rotor shaft, pesitive
up; X is normal to the rotor shaft, lies in the plane formed by z, and
the remote air velocity vector, and is positive aft; Y, is orthogonal to
%X and z, and is pcsitive toward the advancing side of the rotor. This
axis system is Newtonian in nature,having at most a steady translational
velocity.

ROTATING ROTOR HUB AXIS SYSTEM: X,,y,,Z,

This axis system has its origin at the rotor hub center and rotates with
the rotor, Its coordinates are related to those of the "1" axis system
above by the following equations:

Dy

X; = xzcony = y,sinyg (1)
Y = Yypcosy + x,siny (2)
7 = 2z, ' (3)

OFFSET AXSS SYSTEM: xy,¥3,Z3

This axis system has its origin at the coincident flap and lead-lag hinge
radial position. Its coordinates are related to those of the "2" axis
system by the following equations:

Xp T X3 1 e (%)
' y, = Y3 (5)
2, = 14 (6)
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BLADE LEAD ANGLE AXIS SYSTEM: X4 g 124

This axis system rotates about the 25 axis with an angular velocity
ds/dt . Its coordinates are related to those of the "3" axis system by
the following equations:

KA PR W iR £

JERS T

X3 = Xx4€088 - y4sind (1) ’
Y3 = Yy4€0s8 + x,sind (8)

i
sy k2, (9) 1

Note that & is equal to the built-in lead angle for nonarticulated
rotors.

RIGIL BLADE AXIS SYSTEM: X¢ ,¥5 .25

This axis systea rotates about the Ya axis with an angular velocity
dB/dt . Its coordinates are related to those of the "' axis system by
the following equations:

oA L S L Nl T AR P S S SN LS QIO R b wt TS AN Tt

Xqg = xgcosB — zgsinf3 (10)
Ya Y5 (11)
24 = 25c088 + xgsinf3 (12)

Note that the flap angle B is equel to the built-in coning angle for
nonarticulated rotors.

RIGID BLADE SECTION AXIS SYSTEM: Xg,Ye sZ6

) o

This section axis system is obtained by a translation along Xs through
through the local rigid blade pitch

-
Viev.awras e 5 -~ =22

A3 ndnn .
a distance ¢ end a rotetion ehout X

angle § » Where @ includes the pitch angle resulting from control
system inputs as well as that resulting from built-in twist. The "6" axis
coordinates are related to those of the "5" axis system by the following
equations:

e (g am
i

S~y
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Xs = %g t 1 (13)
Y5 = YgCOS 6 — zgsind (1)
25 = zgcos@ + ygsin@ (15)

BENDING TRANSLATION AXIS SYSTEM: x5 ,y; ,z7

This axis system is obtained by bending translations of the elastic axis
in the Yg and 2y directions (section principal axis directions before
¢lastic deformation). The "T" axis coordinates are related to the "6"
axis coordinates by the following equations:

Xs S Y (16)
Vo = Y7 T Ve (17)
g =z, t ow, (18)

Eq. (16) implies that the change in length of the blade due to elastic
displacements is negligible.

BENDING ROTATION AXTS SYSTEM: Xg,Yg,Zq

This axis system is obtained from two small rotations which occur when the
blade underzoes the elastic be- ding translations, We and V, . The rota-
tions are assumed to be smoll, so that the order in vhich they occur is of
no consequence. The "9" axis system coordinates are related to those of
the "7" axis system by the following equations:

o X7 3 X = Zak — yud; (19)

2, = 25+ X\ (20)

—— e
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Y 7 Yot %ok, (21)
where ;
A s —::k" + Ve'gri" ’ (22}
i ' (23)
dr dr

Since A, and XA, are very smal
are neglected.

b=

engles, terms involving their products

BLADE SECTION AXIS SYSTEM: Xg,Yi0:Zi0

The final blade section axis system is obtained by a rotation about the
Xy axis through the elastic twist angle §, . The Y, end gz

axes lie in the plane of the airfoil section of the deformed blade, Y4

coinciding with the major principal axis (which is also assumed to be

E coincident with the reference chord line o2 the airfoil section). The "10"
3 axis coordinates are related to those of the "9" axis system by the follow-
! ing equations:
Xg = x|Q (2k)
.
\ Yo = Yo = 200 (25)
29 = 10 * YoBe (26)
-
-
s
T
o
- o
i




NONROTATING AND_ROTATING HUR OFFSET AND BLADE LEAD ANGLE

2, 23, 24

Iy 23

ds
\.)_d-r Ya

X X2

RIGID BLADE. AND RIGID SECTION BENDING TRANSLATION

Y
v
—*Y%
BENDING ROTATION BLADE SECTION
z, 25,2 Z9
Be
-~
\
\*
T . yg
ELASTIC AXIS

Figure 1. Axis Systems.




L VELOCITY AND ACCELERATION VECTORS IN THL RIGID BLADE AXIS SYSTEM

: To develop the blade equations of motion, the velocity and acceleration
vectors for a blade mass element in an appropriate reference axis system
are required. A convenient reference system and one used herein is the
Rigid Blade Axis System ("5" system). Inasmuch as this is a reference
frame moving relati—e to Newtonian space, care must be exercised to account
for all velocity and acceleration components. The approach employed herein
assumes that the linear and angular velocity vectors of the Nonrotating
Rotor Hub Axis System ("1" system) are known along with the gravity vector
(from specification of the trim flight condition of the aircraft). The
velocity and acceleration vectors jin any other axis system can then be
derived by classical vector techniques as discussed, for example, in
Reference 2 (Article 12.3). The velocity and acceleration of any point
defined by coordinates measured in a frame of reference which is both
translating and roteting can be shown to be

4-&
v =V§+%+wx$ (27)
2 ~ - dv’ - - -
3 a = ZT + wXy + g (28)
3
| where
P is the vector from the orlg1n of the reference frame to the
point in question, Xl +yj + zk i
V; is Epe reference frame translational velocity vector, i
: v. i +v. i +v. k
‘ o, oyl o,
1 -
| w is the reference frame angular velocity vector,
3] w,i +wyj + w, K
_4_. d > >
A4 is defined as (_.)x; + M I _d_(,)_ K
i3 1 . di -~ dt ! d

is the gravity acceleration vector

-l QY

xr

are the usual unit vectors
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Eqs. (27) and (28) can be expanded, if the above definitions are used, to
yield the following general expressions for y and g

- [+ - (<]
? = i(\bx+ x + wyz — wyy) + j(\by-i-y + owix —~ wez)
S )
+ klvp, T z + wy — wyx)

(29)

-~ - lo o0 ] -]

a = i[vox-— wzv°y+ wyVo,* X — 2wy + (wy + wewgz
+2wyg :*'(-:’z+ “’x“’y)y—(“’)z‘i'wg)x + gx]
+’;[%v— w*v02+ wzv01+ 03? - ngg + (2’: + wywx)x
+2uwk oSt wpuz- i wlly + Gy]

] =~ o o QO_ o Q
: +k["o;‘ wy¥y +w"vo.,+ Z—2wyx T (wy + wz wyly

+ 2y + (=Gt k-l wd), + gz] (30)

i)

where (°) 3

Eqs. (29) and (30) apply to any axis system. For application to the Rigid
Blade Axis System all quantities should be subscripted 5, and expressions
for ’\70 > @, » Xy, »and z are required. These are derived
below. 5 5 575 5

The velocity vectors V05 and &35 can be: obtained from the correspond-
ing vectors for the "1" axis system ( v, and {:,‘ ) which, for steady

flight, are %
. —%I = v°x,_r' + vOZ'—.k' (31)
and
@, =0 (32)
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When Eqs. (31) and (32), and the coordinate relations of Eqs. (1) through
(12) are employed, and when Eq. (29) is successively applied, the follow-

ing expressions for v05 and (;‘,5 result:
- 52 g° :
Vo, ° |5{vox|cos¢(|- - - —-:2—) - 8vo*lsm\p+ efld + Bvoz,}
3 {-v (l—ﬁ)sinw+ea—v Scosw}
+ 15 ox, 2 Ox,
a 132
+ kg {vozl(!— T) —voxlﬁcosqz +Vox'B Ssin\p} (33)
- = Q= 2 o>
ws i [ B(2+8)] - BT+ [a(1- £2) 4 3]%, (34)
If Egs. (13) through (26) are used, the coordinates Xy Ys and z,

3
can be expressed in terms of the blade section coordinates ( o s Yo »

Z, ) as follows (assuming blade sections having infinitesimal spanwise
thickness so that X0 =0 ).

X5 T = 250 = Yok, (35)
Y5 = (Ve tY10=2,06,)c0s 6 - (Wet2Z5t ¥108,) sind (36)
25 = (We + 25+ y,08,) cosg + (Ve + y10-2,8,) sin § (37)

11




Substitution of Egs. (33) through (37) into Eq. (30) yields the tollowing
expression for the acceleration vector in the "5" axis system:

- —_— dW dv o A
Qg = 15{ -eQ? -2, —d?ﬁ - ylo-d—rg- -28 [(ve ~2,,0,) 08 8 = (v ty,

- 2,6,) fsin 6 - (W, + yloée) sing - (we+ 2,y + y,oee}écosej

- izé[&?ecos 8- (Vg +Y,,)§5In8 - Wesing — (w, + 2,0) 6 cos @ ]

+ (-5 +8Q3) [(we+ z,,)cos 8 +(vyt ylo)sinB] - zé[fvecos ]

— (We2,0)Bsin 6+ Tysin 8+ (v +y,0) Boos 8] - B[y by, ) cos 8
— (WetZz,p)sin 9] - r[é2 +0%(1- B2) + 205+ 52]

dw dv - 00 00
- \Q'a [_ZIO dl’e ~ Yo dl’e] + gxs} + Is {8028+(Ve—2|oee)cose

- 2(Vp - zloée)ésin 8 = Vet ¥, =2, )(Esin 9+ 82 cosB) - (%,
+ Yobe)sind - 2 (W +Y,06e)8 €08 8 ~ (W, + 2,0+ ¥,,8,) (Bcos 8 - §25in 6)
- ZBQ[W,cos 8 — (W +2,0)8 5in 8 + Vgsin 6+ (vg + y,0) Bcos 8 ]
+ r3-2880 428 [-z,o%—f’—e - y,o—d% ]-289 [(wtzgcos 8
+ ot yo)sinB] = Q2[(vet vz, )OS B~ (Wet 2,0+ Yo B sin 6]
- 208[(ve+y0)cos 8 — (we + zp)sin 8]+ gys} +ks{BO%
+ (Wt 8) cOS B = 2 (Wt ,08e) B5in 6 — (et 2,6+ y,00% (Bsin 8+ 62 cos 6)
o 4 (V- zloéz)sin 8+2(Vp- zloeoe) fcosf + (vet ylo—zloee)(?cose -8%sin §)
+ 289 [Gecos 8 - (Ve+ o) 65in 6 - Wesin 8 — (We+ 2,0) Bcos 8 ]

+r [2?+ B(Q2+ 25&1)] + Gz, } (38)

12
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EQUATIONS OF MOTION FOR BLADE ELASTIC DEGREES OF FREEDOM

Details of the derivation of the equations of motion for the blade elsstic
degrees of freedom are given below. Briefly, the equations were derived
from consideration of the equilibrium of aerodynemic, dynamic, and elastic
moments at a given section of the blade. The resulting moment esquilibrium
equations were differentiated as required to express them in terms of the
local blade loadings; the elastic deflections cf the blade were replaced
by summations of appropriate uncoupled blade vibratory modes, of which a
firite number were retained in the final analysis. Stiffness terms, bolh
structural and c.ntrifugal, appeering in the equations were replaced by
equivalent natural frequency terms, and the orthogonelity properties of the

assumed modes were employed where possible to eliminate modal dynsmic cou-
pling terms.

MOMENT EQUILIBRIUM EQUATIONS

The basic mcment equilibrium ecaations for any hlade section are of the
following general form:

(Me)xlo = MA)'IO + (MD )x:o (39)

(Mely, = (Maly  + (Mo)y, (40)

(Me)y, = (Ma)y, + (Mply, (k1)
where M, s M, and M, represent moments due to elastic defor-

mation, applied aerodynemic forces, and dynamic body forces respectively.
It is convenieat to express the latter two moments with reference to the
Rigid Blade, or "5" Axis System. When the axis transformation relation-
ships given in Eqs. (1) through (26) are employed, Egs. (39) through (k1)
are as follows:

(Mdy =My + X, [My5 COS8 + M, sine] + A (M cos 8-y sinB)

Xi0 Ys

(b2}
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(Me)y,o E Mys (cos 8- G, sing) + MZs (sing + 8, €Os ) =X, Mx5 (43)

B

1

fj (Me)l.o = Mzs (cos 8 -8, sinB) - My!s (sin § + 8, cos 8)->\, st (hk)

é where st ’ My5 ,and M25 represent the sum of the aercdynamic and dy-
namic moment components in the X5 , Y5 > and Zg direction, respec-
tively (e.g.,Mx, = (M, )x5+ (Mp )y, ).” Solving for My_  from Eq.

4 (42), substituting the result 1nto Eqs. (43) and (4k4), negledting bigher

order terms, and defining a total pitch angle

®=0+6, (45)

yields the following forms of Eqs. (U43) and (hb):

Mely = My, cos® + Mg,sin®@ - AMe), (16)
(Me)zlo = Mg cos@ - My, sin@ — X,(Me)x'o (47)
rd

It is now convenient to nondimensionalize Egs. (42), (46),and (47) by using
as nondimensionalizing factors the rotor radius, R , the rotor angular

velocity, S, and a reference mass per unit length, M, . All such
nondimensionalized quant:.tles will héareafter be indicated by means of a bar
(e.g., T=Tr/R, Mys = S myQ°R” , ete.); further, differentiation

with respect to nondlmensn.ongl tme will be indicated by (* ), while dif-
ferentiation with respect to nondimensional radial distance will be indi-
cated by ( )'. If these conventions are employed and Egs. (22) and (23)
are used, the moment equilibrium equations are then

- I 2N —_ . . .
(Me)xlo = My * (- gw,) (M, cos 6+ M, sin 8)+(w, +8 Ve ) (M, cos B-My5s|n 6)
(48)

1k
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(Mg)y = My cos ® +M, sin®-(Mg) (v,"-%0') (49)

10

M) = M. sin® - (¥ o !, vl
(M), = My, cos®-My sin® (Mg ( We' + V,8')

(50)

The moments associated with the elastic deformetion of a section of a beam
having & finite rate of twist along its span and a center of tension dis-
placed in the chordwise direction from the elastic axis have been derived
in Reference 3. Expressing the results of Reference 3 in terms of the We
and Vo elastic coordinates employed in this analysis and neglecting
higher order terms in accordance with assumptions 8 and 10 lead to the
following expressions for the elastic deformation moments:

. - - {51)
Moy = ~ETy (W, + 27, 6) \3

(W), =596, + (8'+ 8K} ['s, o (53)

15
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The last term in Eq. (52) is not contained in the results of Reference 3
but rather arises when, for blade balance purposes, a counterweight is
employed which is so mounted as to be restrained radially by the blade's
tip structure and laterally by the blade's local structure. This type of
; counterweight is then constrained to bend with the blade and is in com-

' pression under the action of centrifuvgal force.

Combining Eqs. (51) through (53) with Eqs. (48) through (50) and negiecting
higher order terms in accordance with assumption 10, results in the final
form of the moment equilibrium equations below:

- rT_ - - 1 — - .
GTJBe' + (el+6el)k:j; st df = st + (T, - elwe)(My5 cos 8 +Mzs sin 8)

+(Wg +6'T,) (M _cos 8- M sin 6)
(54)

x3 — 1l - Il v 2 H v ~1 -
~El, (We +2V, 0) = My, cos® + M, sin ® (Me)x,o("e' - 5,6

(55)

T 4 m
=1l =l = T= 7z cw
€T, (7'~ 2%, 61-8, [ Sx5d£+AéAcw_/;° 3y, - d
cw

m

z ﬁzs cos ® - My, sin @ -(me)x'o( Wi + 7,8

(56)

The last two terms in Eqs. (55) and (56) are alweys comparatively small,
and are ueglected hereafter.

LOADING EQUILIBRIUM EQUATIONS

Flatwise Loading Equilibrium Equation

The desired flatwise loading equilibrium equation cen be obtained by dif-
ferentiating Eq. (55) twice with respect to the spanwise coordinate T (if

. techniques described in Reference I, pp. 352-353 are used). The resulting
equation is

16
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-[ET, (me"+ 2%e)” = @[-ysin@ + Wycose)]
+ (®,)2 [—Myscos@ - ﬁzssin@)] + 2®'["V§55i"® +Mz’5cos®]

+ M{,’scos@ + MzSin@® (57)

To proceed further, expressions for the "5" exis moment components are re-
quired. These are derived in Appendix I along witn their derivatives with
respect to T . The derivatives of My5 and N&S in Eq. (57) are
replaced by the expressions given in Eqs. (110) through (11k) of Appendix
I. Then by employing the relations

>/ H kvild A ——
25¢05M@® + V5,,C05@ £ -~Wo 8 + v (58)
—_— 7 H D Sar kv /
zseacos® - Vi, 5in® & WE V6 (59)
7" sin® - 7" cos® & -wi+ BN w _oulnl = olt
Seq Sea et (6)°W -2v,0' - 7,0
(60)
y”cos@-:-i" sin@ & 7"~ 9.00")2 - pwlelw g
Seo 5ea = Ve Ve e - 2W69—we9
(61)
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and by neglecting higher order terms in accordance with assumption 10,

Eq. (57) becomes

_‘[gy»(we" + 2‘\7é9’)]”= - :a@'{sin®fF fT§z,5ci3§+ cos®j; ?T§y5d’§'} - W /; ?"sdef

X e Y
- 5;,005® + Sy sin@ + 5, (W + V,6) +20¢0s8 [mkﬁo]
+ ®’Y|0Cg(go)x5'yl 0cg0 ¥ ®" [-'Mys Sin® +M; _cos ®]
+ @)7-F,cos © - 7, sin © J+ 5 [in O(Finl~(Fiy, cos @)
/ £
- (mA)ybcos e - (mA)zssm ®

(62)

The flatwise loading eauation can now be expressed in the desired form if

the ©" and (@)

terms are expanded through use of Eas. (45), (55)

and (56), and if higher order terms are neglected in accordance with

sssumption 10.

124
e V4
-[ET, W + 29,6

Ty 71 fy
/ N - -— — - — -— -
= -20 {sm ®j; 5z5d€+005@ff Sysdf} - We,/r: Sx5d€
= -, Y X .~ 27
=S, L05® + Sy, Sin ® + sxs(welfvee ) + zepose[mkylo]

i Fooo
+ (A - _n's — < - 1 = Mew 4=
O 0,50 05 [ 5., + oz, 6, fr_owsx5~m—d§

t 20’ [(ﬁA)yssin ® - (ﬁA)zscos(@] - ('rﬁ,,‘)y/5 cos® -(rTwA);bsin ®

(63)
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BEdgewise Loading Equilibrium Equation

The desired edgewise Toading equilibrium equation is obtained by differ-
entiating Eq. (56) twice with respect to T The resulting equation is

[ﬁz (Ve”_ Zwelel) s)( dé + AGAJ SX5 —l'fi ]

-0 [ stsin ® + T\A'yscos®] 4+ (@)2 [-‘Mzscos ® + ﬁyssin ®]

Hoe—e / , _ 7/ — _— .,
20 [Mz"sm® + Myscos@)] + Mg Cos ® Myss|n®

(64)
Substituting (from Appendix I) for the derivatives of My5 and Aﬂs ,
1sing Eqs. (58) to (61) as required, and neglecting higher order terms

where necessary, allows Eq. (6U4) to be expressed as

v

[E;z(ve-ZWeG)-eAf SxdE+AeAJ Sy mcwdf]

-® [Mzssin ® + 'My5cos @] + (@)2 [-'Kfzscos ® + ﬁyssin @]

£

_2®’{ -sin® _/:%ysdf +cos ® ‘/:T§25d'€}+vef S, dr+sy5cos®

- . R s (T ’ 3 si )’
s st sin® - ( We9+Ve)3x5+ [y,ocq(so)x ,y%;o] -'zes:nEI(lezom);

" 2®’[(’rﬁA)z5sin® (), cos @] - ) <03 @ + (), 5in®

(65)
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Or, expanding the @° and (@')2 terms through the use of Eqs. (45),
(55), and (56) and neglecting higher order terms permits Eq. (65) to be
placed- in the desired form, as follows:

7, Foo
fer o ominy = (= 5. ae [ = Mow. =l
(1,655 2wg6") -3, j; B 0F + Ae,,wg Sy dF |

Ocw

/ . [ A r -1 L -
= -20 {-—sm@ j; Sy,d¢ + cosfi*)fr_ §z5d§} +Ve”_/; Sxgd€ + Sy, c05 @
+5,, 5in @ (~Wp8+ Vo) Set [T, (S0l wo)-28sin 6 (k2
25 e e Xs ‘_ylocq D Xs.ylocao sin Z,om

+ 20 (Ma), s ® + (My), cos® | - (Fa) cos ® + (g sin®
5 Ys Zg ¥s
(66)

Torsional Loading Equilibrium Egquation

The desired torsional loading eguation is obtained by differentiating

Eq. (54) once with respect to ¥ . Prior to differentiation, however, it
is convenient (1) to substitute for _ M, with the use of Eq. (106) of
Appendix I, and (2) to simplify the My, ° and W,  terms in Eq. (54)
with the use of the definitions below: 5

Vs, = Ve COS 6-0Wecos 8-We'sin 86V, sing (67)

v 7, _ . —
Z,, = VeSin 8-6Wesin 6 + WaC0S 0+ 6'Vecos 6 (68)

The resulting expression for the torsionsl moment eqguation is then

T, ¢
—_— tan=2f L T — = /=
516, + B4 K[ 5, dF « [ {(mA)x; S2q(Ts oy~ V5,47

ys .

N i = = ) =
-3 (25,;,'25,0(”)} dé + j; ylocq[ (So)z5C°5® = (Sp)y,sin @ J!Yo d&
10cg

rT__ -2 —2 XX X —~— F‘I -2 ~2 | X .

| YA A Ry X8 +AIEE + [m(®iKE )[4 1+2Bisinzs
rr It

- -2 . = - X =

+ (6- B cos26)df -2 [ Ky Vosin .0F -2 [ Ty, Wocos 8 dF

—_ .7 —
+ My5 y5e0+ HZSZSeO
(69)
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Note that all quantities appearing in the various [integrands above are
functions of the dummy veriable of integration £ , unless explicitly
indiceted to be a function of 7 . Differentiating Eq. (69 with re-

"

spect to T and using the definitions of Ys and 25e along with

Egs. (55) and (56) to eliminate M, and M. "9 resultsin the final
. ye . . Ys

torsional loading equation below:

[} / -
— ! ¢t ¢ -2 - - — - - - .
[0 +(848R2 [ 518 | = -, ~Tia ] Gol 058 (Sp), sine@) por 0
a2 2 XX X2 2. X x
+ m(kzlg kylo)(®+ B)-m (kym—kzlo)[-g (1 +28)sin 26 + (B~ B)cosze]
+ 2K sing (W, - Oy) + 2y, cos 8(We +6%) + 7., (5o, Wet%ed)
10 . 10 = K%g LA™
s @ oo [~ 5, 0F + 08, [  TR¥S, dE]
rs o Toow 5

— Ml

b (ET, - BT, (W V- 2Wg W 8 + 2V¢ Ve &) (70)

MODAL EQUATIONS OF MOTION

The preceding sections of this report have been directed toward the der-
ivation of the fundamental differential equations of motion (Egs. (63),
(66), ané (70))governing the forced response of the elastic motion of &
twisted rotating beam. These equations have generally been derived in
terms of the local dynamic and aerodynemic shear forces and moments. Ex-
pressions for the dynamic shear forces are given in Eas. (102), (103) and
(108) of Appendix I, while the aerodynamic shear forces and mechanical
damping forces are derived in Appendixes II and TSI respectively. Examin-
ation of the dynamic and aerodynamic shear force expressions indicate that
closed~form solutions to the blade equations of motion are not possible
because of the nonlinearities present. Therefore soluticns must be ob-
teined by approximate means. The particular approach employed herein is a
modal approach wherein the elastic coordinates We s Va and 9& s
ore expressed as finite series summations of zssumed radial shape functions
(mode shapes) with each suitably scaled by time-dependent generalized coor-
dinates. The series expansions employed are

(g 13

We(F;‘l/ ) =

2 %), ) (11)

2
velfop) = ZYVm(F)qu(‘i/} (12)
mzj

2, T]& ;"'7

———-ar
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XX

S‘Mu

v, (T)ag, () (73)

Note that the number of terms retained in the expansions of W, , v )
and Be are 5, 2, and 3, respectively. The radial shape functicns
(hereinafter referrsd to as mode shapes) employed in this analysis cor-
respond to the natural vibratory mode shapes of an untwisted blade mounted
on an unaccelerated rotor hub and operating at zero pitch, flap, and lead
angles and at a rotor angular velocity, £} . As indicated in the anal-
ysis which follows, the substitutions of Eqs. {71) through (73) into Egs.
(63), (66), and (70) permit these equations of motion to be expanded into
a system of simultaneous differential equations with the generalized co-
ordinates as the unknowns. Further, because of the orthogonality prop-
erties of the particular mode shapes employed, the resulting system of
equations can, to a large extent, be dynamically uncoupled as far as the
blade elastic degrees of freedom are concerned. As a result, solution of
the equations through numerical integration techniques is greatly facil-
itated. Details of the procedures followed are given below.

Flatwise Modal Equation

Substituting Egs._(71) through (73) into Eq. (63), setting (ﬁkb R
(kas and (52& equal to zero in accordance with the results of
AppendiX II, and emBloying the uncoupled free vibration form of Eq. (63),

i.e.,

.

‘ /- - - p T - - - _ _ 2
lEIyV”] +myy (edr) eyt _L‘m(e‘f{ )A€ = my, w,

Wn
(7%)

2?

-~ e e~
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permits Eq. (63) to be expressed in the following form:

= — 2 —_— ’ ” /(. TT-' =
m% Yw, Qw, Y, -z[exye%Yquvm]=-z@{s.n®j; stdf

r

. ) _ -
+ cos® [T§y5d£}-§yw:qwn[4:%D)x5d?-j;rrr-ﬁ (Z+E)dg]

- S, cos® +§ i + ! o _—— - -
75 s $in @ §7wn qwn[‘so’xs'm(e”)]+(So)x59/27v q,
m m m

T.
x —_— o) - — "— T — -
+ 28cos 8 (m kylf)) +®y|0cg(SD )"5-Yloc9‘°-9° ea [r_ (Splxgdé

T —
- V4 — o
-8 aej; S (5 ), 0 (75)
o

cw

Note that in Eq. (75) and in succeeding equations, a shorthand summation
notation is used vwhereby the summation limits are not explicitly indicated
but rather are understood to be those of Egs. (71) through (73).

The integrals containing the Z5 and Ys shears can be simplified con-
siderably by noting thet when the response of a beam is represented by a
summation of modes, the shears at uny point on the beam may be expressed
in terms of the modal inertial loadings and, hence, in terms of the modal
amplitudes and associated modal natural frequencies (Reference 5, p. 6L4l).
Thus, the following relations are valid for a limited mode analysis:

.[rT_ T G
5, d€= ¥ w,? ™ 8dE+ @2 my, sindd€
L 2 %“anWn./r_- Yw, €0s8d{ r%: (1+ wy QV,,,_r[ W

(76)

T
- T T,
v 2 — . -— -2 [
LSy, §= %wwnqwnf mywn sm9d€+§ (l+wvm)qvm j;Tm Yv,COS 8dE

(11)
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Tha 1's in the second summations above result from the centrifugal shears
essociated with the uncoupled edgewise modal digplacement. Employing Egs.
(76) and (77) and the definitions of §; , v > (Sok

5 )
( D)X,,Y and 6 from Appendixds I and“ITI permits Eq. (75) to be
expressed in the following form (after high.er order terms have been elim-
inated):

T2 0,0 0{ T, s
+ %79,(”09,( +6g(FE + E"*Ufm)qvm j:ﬁ vy, 4€ }
+ zzjye'kqek{§awn2qwn [ f%ywn(-eewa(?n dE+ Z(1+37),, [r FTavadE}
+ %:Yw:/qw,. f [265 2yIo sme]d{ mZyw A, [2r8 2yIO Bsme ]
-6 2y, 9, 26,505 8, ik, 2)'~(§* T, %, MY T
+ (SA SFD PR)Z cos® - (g‘\-gu)yssin@ 5 {EBcos 90_'53 sind,
+§ rwn[?fw:qwn(-éo —aﬁéo;é sin26 o-é— (1 - cos 283 26,sin 26, )
-8 (- coszeo))]+ ('i,ocq“’%: Y, qvm)[é( l-coszeo)-F-é—( sin28,+28,c0526,)

L 3 XX X X X
+85|n260+BQ]+ erm a, [20°+2£31 +Zyv/qv Yo sin§,
m m ° " <9

*E:)’gk QQK[VKJC cos 29 -y B+B)s|n9 -rSCosQJ +y Z)’ qek

0cq

- T _
’%%’:%,[*Jfﬁfdf Oe, f "\cwde]+r(B+B)(cose Bsin 8y

Toew
+2B87 cosfg+ G, cosf- 3, Sin B 7 8sing+8,c05.8) + 27 B sin 6}

(18)
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The equations of motion for each flatwise mode can be obtained by consid-
ering the work done during a virtual displacement of each mode. Formaily,
; this invloves multiplicavion of Eq. (78) by Yw, . integration over the
blade span, and application of the orthogonallty property of the assumed
uncoupled natural modes, namely,

rT_ _ fI_
}E“f T Y, Yo, O7 = { My, 20 (79) :

This procedure yields the following equation of motion for the ith flatwise
moce: _

t

0= _c/: X, [(§A)zscos ®-(§A) sin@] dF—ﬁpRcosepR(yw’ )__ +5in9LDﬁLD(7w/|),-:° N

o e i o e s s < Ymw

- cos9,,DV,,-D(wa);_o [qw +qy, <ww| ZBG +B sm29-—-( I

+28)(l—c0529 )\]+qu[ Zwa Cg /+8 snn29°C +28(C C)
1T

XX

X
28 bSinBg( Cog ~C g ),,,] + Z ay {c3 [ -6,-8 (I—coszeo.-—(l+28)sm290]

= 8,cos 280(c5--o.75c3) 'C27|, + 26 (|+59)c8"p—9,c5|°}

X .
+ Z a, [-ZSln9°C64 —2(h +B,C3J +2 Zqu qv(|+wv )Cs'r o
~z% C62| /i * Z% [ 57” CGZ ICOSZB +C56 <(B+B)sm9+8¢os@>
- CG'n,i] -c,ol[e (Bcoseo~ 3singy) + 7, coseo-§y55ineo] 'an,[(B

X X xx XX XX
+B+ 2B8)cosg,+(2BB-8) sineo] +C,3I[(B+B ) sin9°+8cosao]
X X X

-c61[6°+ B {1-cos28,) + —;_,- (1+28)sin 290] =6, 0s26Cep ~0.75Ce3 )-8, Ce0 ‘

i I I i

(80)

vhere the various modal integration constants (e.g., C” ) are defined

in Appendix IV. Eq. (80) above is the finel flatwise modal equation of
motion. Note that in this equaticn, as in the final edgewise and torsional
modal equations to follow in the next sections, the modal subscript nota-
tion has, for convenience, been standardized so that the | subseript i
refers to flatwise modal quantities, the p subscript to edgewise modal
quantities, and the j subscript to torsional modal quantities. Where
products of flatwise modes appear, i’ subscripts are introduced to dif-
ferentiate between terms associated with the various summations. The p'
and j' subscripts serve similar purposes for the edgewise and torsional
modes. Furthermore, Eqs. (155), (156), and (161) have been substituted

[T,

25 ’T




for the flap demper, lag damper, and pushrod forces, respectively; and the

integrations over T have been performed to obtain the corresponding
moment contributions defined below:

-M—LD' mon TORS [SF Z (y, )(qV cosl o~ Ay, 8 sinf\ ) =

X
:[, ()’w:z_:i aw' sin HLD+ qwleocosel_o')]

(81)

- _ CFD X / X A e
Mro = meSLR3 [B +; (ywi)?:o( Aw; €08 frp = Gy & SiN B )

+ % (Yv’p)ho(avDsin B¢p + 50 cos BFD)]

(82)

M -
i o R Y AT RS T W Gk AL

_ — /
Mpg = tan 83 (GJ )7,02]:(79i )eeo g (83)

Edgewise Modal Equation

The desired edgewise modal equation is derived in a manner entirely anal-
ogous to that followed in deriving the flatwise modal equation. The free

vibration identity and the orthogonality condition for the uncoupled edge-
wise modes used in the derivation are

Y i
[Eiz va] +)v,,, m(€+7) — 7'vm fm(éu)d{ myv = myvmav"‘a
(8k)
23
%jo‘ M Yym YvpdT j; myv:df (85)

The resulting edgewise modal equation is (with the standardized | , j
p modal subscripts)

T i |
j; yvp [(gA)Y5 COS@ + (§A)25$In®] di: - (YV;)F,Q MPR sin BPR

_ / . v - / — _ xx - 2
(YVP)F:gm 8o Mep Wv,,)?:gosgm Mip — Cisp [qu + Gy, <va




-y

gy v e

: _ 12 X L 3 X
S )" - 238, - Bsin26, - —'2-(l+28)(|+c05290)+l>]

+ - . X X

vt

+ Dy 2 ]
26) Cayp 0 (1¥ @ )] + %l Avpr 2€0S 8, (Cs;+Cogt2Crg)y o

F

- @ 2 D2
2 ? ziqe, Qi i Crsip, ? Qw, [C?-’?i,p" 28,Bu; Cez,,p

b i e S A

PR

¢ <3 B (1+ : 8)si
T30\ o-B °°5290)+'2"“+28)5m23°>+8'c5i.p

PN

X
- cos260(C5-0.75C3);.9--26?o 088, (Cg3tCoqt Cg, )l,p ]

PR T

+2%q [C (B,+B) - SInB{CoytCqo+Cyy ) ]+zéza c
- 3i0 O 053" 99 "~8I ' o oi 8l 74,

"

+ iqui [—c74 jinzeo"cloo,,g (B+8 )cosG0 -3 sing, >]-C'5p[§(ﬁsin%

4

RPN W s
.

+ 8cosgy) + 525 sing,+ §y5 coseo] —-C47p[(§+ﬁ+2 Bg)sineo
XX X XX XX Xz X
+(8~2B8B)co SGJ - 6339[(B+B)coseo- Ssin9J+ Cr04 80 +2B8,
x x )
+ B sin290+-é—- (1+23) (i+cos2f )]—sin29°C7sp+‘é(C5°+C.,2 ;

X X
+ Cza)p +(1+23) (C52+C73*C7o*024)p‘ 26, sinBoCs (86)

: The modal integration constants are defined in Appendix IV.

TR

; Torsional Modal Eguation *

CaleLan

3 The torsional modal equation is derived as follows: First, Egs. (71)
F through (73), (147), and (148) are substituted into Eq. (70) and k ?O
is neglected compared to Rua (a valid assumption for blades having
thin ai: foil-type cross sections). Next, the torsional free vibration
identity for uncoupled vibration,

rr
T ya tys K 2[ ME+E)dE -k 2y :-Tk 2. T2
[GJ Ye, "o, *a -é mie E)dé] mkzlo 78, ml&lo 78, “8,

(87)
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and the shear force definitions of Appendix I are substituted into the
resulting equation. The final torsional modal equation is then obtained by
multiplying the torsional loading equation (as modified by the above oper-
ations) by 9@, , by integrating over the blade in the 7  direction,

and by appljinglthe orthogonality condition for the assumed uncoupled
torsional vibratory modes, namely,

T_ o, rI._
mkzlo 79} )bk {mk dr (88)

O'\o -~

z
K

The resulting torsional modal equation is (with standardized modal sub-
seript notation being used)

T
- - XX xx
_£ ye] (mA)xsdr+ 037,+00529°C80.- Z Q, Cg2 ~C3¢ Gg
| N B B b
- 2 _ - XX | X . X
+ (:36qu§ (1 wg c0s26,) C44l[8°+ — (1+23 ) sin26,+ B {1-cos 290)]
- %zp: qwi qu C48.I,p,i+el quwl Qw, C38| i l+ elzzlqv Qv /C39

] Pp{j
+ iqul[zeosin 8, Cio, -

X
3 S ,
-2[36,+ B sin2g, - -é— (I+28)(l-c0529°)>+sin 26,C, ]

'Zav [ZSine Cez, [F2C7a, (9+B )]*’qu [29|C87 761 Ces, 7 Cra, <90

+[3(l-cos?.9 )+—(| +28)sm28°) coszeoc,m ]

P

ZZ Zc"'i u, (qv cos8, ~ay, Bsme )+ZZZC"2 9w, (qw,sme
-q, /6 cosé, ) ~Coe, [e(Bcoseo- 8sing,) +g25 coseo- gy5sin 60]
o, [ (B +B+28) cos, (3 -26B)sing +Cyy [ (B+R)sing,

+8¢os § ]+Zq9’ Ci, [(ﬁ+B)sm9 80059] (89)
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EQUATIONS OF MOTION FOR BLACE FLAP ANGLE
AND IEAD ANGLE DEGREES OF FREEDOM

FLAP ANGLE EQUATION

The flap angle equation can be obtained directly from Eq. (98) by setting
the 7 integration limit to zero to obtain the moment about the flap
hinge. This, ir turn, is equated to zero. With the elimination of F
items in the integrand, E (the dummy variable of integration in the T
direction) can be replaced by 7 to yield the following equation:

E
; o: [ {@m,), -5, 745, 7. +3, sin® (5
! 0 Ays Zg Xs 5ea ylocq slﬁ@(SD )x5'ylocq=°

-2 8 m{ky,cos?9 +F, sin%0) } oF (90)

Substituting the shear force and moment expressions from Appendixes I
through III, and the modal expansion equations (Egqs. (71) through (73)),
neglecting higher order terms in accordance with previously defined assump-
tions, and noting that the uncoupled flatwise and edgewise mode shapes are,
for small hinge offset, essentially orthogonal with the function T , 1
results in the following desired flap angle equation of motion:

r,
T
0: W FD+{ Balyf O ~WyTg (8847, ) -Tg[ B+ (1+23) ]

XX x? . X X
- C97[9°coseo —Hosmeo-zBGosmHo -(1+28 )sineo]

— / -
1a08,(G).o b ot [ 2,4, 058,

|
14
) i ;
+p qvpclspsnn90+smeocgs] (91) ¥
where ;
T f

Wgie = [ midr (92)
- {
4 (93) |

Ty: [ miter ”
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LEAD ANGLE EQUATION

The lead angle equation is obtained by setting moments about the Z4
axis to zero. This condition, expressed in terms of "5" axis moment com-
ponents, is

(Mgy g7 0= (Mz5) g (1-B72)+ Mxg)r.oB (9k)

Neglecting the latter term as higher order (because of the small magnitude

of Mx5 and using Eq. (105) to evaluate the 2, moment at the root of
the blade yields

T,

T - - - -
0 =(|-Ba/2){f [(mA xgY5,0 Y0 cos® (s, )
0 eo c9

x5'y10 :
+9msm29(k 20" le )]dr}
(95)

With a procedure analogous to that followed in developing Eq. (91) the
following lead angle equation is obtained:

— -T_— - - —_ —_— - -— XX X
0= =Mt (I -B%/2) f r(Saly  dr-{e8+gy )Mgreq-Ig( 8-288)
0

x°

+C9-,(9 sin8 +90c059 +2[39°cose +2B sinB,) - [cosGOqu Cis,

- sing, Z Aw, G0, * cosBocge]
I

(96) :

30 ‘




RN

R R

SUMMARY OF PRINCIPAL EQUATIONS

In view of the length of the analysis described in this report, a summary
of the principal equations is given here.

The blade equations of motion are as follows:

Flap Angle - Eq. (91)

Lead Angle - Eq. (96)

ith Flatwise Bending Mode - Eq. (80)

pth Edgewise Bending Mode - Eq. (86)

Jth Torsional Mode - Eq. (89)
The above equations of motion are given in terms of section aerodynamic
forces and moments, flap damper, lag damper and pushrod moments, and modal
natural frequencies and integration constants. The section aerodynamic
forces and moments are given by Egs. (14l). (142), and (146); the damper
and pushrod moments are given by Eqs. (81) through (83); anrd the modal
integration constants are defined in Appendix IV. The required uncoupl z2d

blade mode shapes and frequencies can be deterwined from an appropriate
eigenvalue~-eigenvector analysis.
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CONCLUDING REMARKS

The differential equations outlined in this volume are an extension of an
existinrg Sikorsky Aircreft advanced method for the prediction of rotor
loads, stresses, and performance. In most cases, these predictions will
be goorl approximations of actual rotor behavior. In some instances, how-
ever, ansteady aerodynemic effects will be an imporvent factor. Therefore,
the tesk of including unsieady aerodynamic effects in the .‘ormal Mode
Trans:..ent Analysis should receive further attention.
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APPEWDIX I
AERODYNAMIC AND DYNAMIC MOMENTS AND DERIVATIVES
IN THE RIGID BLADE AXIS SYSTEM

The expression for the acceleration vector developed previously (Eq. (38))
is employed herein, along with the force and moment diagrams presented in
Figures 2 through U4, to determine expressions for the total aerodynamic and
dynamic moments acting at a given blade station. These moments, for coa-

venience, ave expressed with reference tc the Rigid Biade Axis System ("35"
axis system).

MOMENT ABOUT vy.  AXIS

The moment at a blade section at r seabout an axis which is parallel to
the VY, axis and which passes through the elastic axis of the section
can be obtained by integrating the elemental moment contributions due to
the aerodynamic and dynemic forces acting on all sections of the blade
outboard of the section urier consideration. Thus, in Figure 2, the
desired moment at statiom r is

r
T
My (Mg +Mp) _( {tmaryg = [isa, *+Seolyg +Sro,

#USerly, | (x5 x5, (1)) + a ), (25 25, (1)) }dé

+j:'y‘c { ozs[xs - xsw(r)] -oxs[zs ’z5ea(')]}dmdf (97) !

where ‘sAks and (SA)x5 are the aerodynamic forces per unit span in the '
Z, and X5 directions, (acting at the elastic axis)respectively, and

("kk is the component of the aerodynamic moment per unit span.
The terms (Sep); f (Sep), » (Spr);  represent the shear forces per
unit span in the® ¢5 dire¢etion intréduced by a flap damper, & lag damper,
and the control system pushrod. The precise nature of these forces is |
described on p. 49 . All quantities on the right-hand side of Eq. (97) are i
functions of the dummy spanwise variable, £ , unless explicitly indicated
to be a function of r (i.e., the radial location of the blade section
for which the moment is being determined). Also, the differentiel, dm |
derotes the local blade mass per unit area while the integral subscripted €
symbolically indicates integration over the chord of the blade section.
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Substituting Eqs. (35) through (38) into Eq. (97) and performing the inte-
grations over the chord, yields the following:

T
hfys : '[r { (ma ,Y5 [(SA)Zs + (SLD)ZS + (SpR)25+ (Spdzs.l(x5e° X5° (r)

+(S4 ),(5 (25.0-25.0(r) )} dé +j;Tm(£- r) {eQ B +(we+y,ocgee)cose

- Z(We"'Ylocgée )8 sin 6 ~{wet Y10, @sing+6%0s9) +Vesin@

+ 2veécose + (ve+y|ocg)(.9.cose- 8°%ine) +280 [\'/e cos8

- (vet y,ocg)ésin 8- v'JesinB- We 5cose] +r [§+B (Sf+2§ﬂ)]

ry
+gzs}d€ - f m [we Cos 8 + vgsin 6 ~w, (r)cos 8 (r)

Ve (r)sme(r)]{ "6+ 20y, bsin 6 -1 (0% 2081+ q, } a
- zﬂf mky 2ecos 0d$+f my,o ecosGrQ,dE frry,o sme{eﬂ

-2Q [vecos 8- veésm 6- wesme-we Gcosa] ~r (.Q +2S28) +g,5}d£

-Zﬂf mkz,oésm 6d¢

(98)

where the following definitions apply:

[om=m

.é%dmso

fcylo am =m (o)
Yo 2, dM =0
j;»'?o 10

2 — 2
fcy,o dm = mkz’o

(mass per unit length in r direction)

(i.e., blade section c.g. lies on the
Yo axis -- this is true for symmetric
sections, and errors introduced for non-
symmetric sections are believed to be
negligible)

(first moment of section mass about
elastic axis)

(i.e., the Wo. axis is an axis of
symetry )

(second moment of section mass about
2, exis)
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(second moment of section mass about

2 2
2. dm=Emk s s
‘{: 10 Yio Yo axis)

Equation (98), after nondimensionalization, becomes

.__/'?T——-_,________.
Mys * Jo {(malyg -5z 1€ - 71+ SxglZg,2 Zg, N Yo, (sin 6

- L k=2 2 .2 2 ) -
+ 8¢ cos8) (Sp) ,5,y‘0c0=o-2em (Kyio cose+kz,osm8,}d£

(99)

g AR NN N

where the following definitions have been made:

525.=. (sA)25+(sm)25+ Sp )25+(sw)25+(spa)25 (100)

Sxs “Sayg * Soy, (101)

- —_ = X - X X N
(So),5 :m {e+ 2 (Vg cos8- v, 8sinb - W, sing -'w, Hcosb)

i
¢
3

- X _ %
+ri{1+28)- gx5-2y.ocg85in9}

(102) !

_ — _ _X_X - XX _X‘ — X X
(Bl = -m { B+ We Yo, fe) C0s8 - 2 (We +, 8¢) B sin 6
— — XX . Xz _X_} X X
—(w + y.ocgee)(e sin@ +68cosf) + Ve sing + 2 veHcosh

— > x2 x
+ve + y,oq)(ecose-e sinB ) +ZB[Ve0059—(Ve+?:oc,)£;snn9
_'_X_ — X — XX X
wesme—weecose] +7 [B+/3 (1 +28)] +§,5}

(103)

-7, (F) = WeC0s 8 +7,sin 8 - W, (F)cos 6(r) ~V, (M sin8(7)

580 580

(10k)
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When (Sp )y is defined as in Eq. (102), it is recognized that upon sub-

stitution of Eq. (102) into Eq. (99) certain products will be neglected
as higher order in accordance with assumption 10.

MOMENTS ABOUT 2zs AND xs AXES

If a procedure is followed that is exactly analogous to that followed in
developing the Y; moment and if Figures 3 and 4 are utilized, the

2
following expressions for the moments about section axes parallel to the
Z, and Xg axes can be obtained:

1

— _ Te —_— = -
Mog™ (Madggt Mol s [ {1Madg+SyalE -T) =55, Vs,

— — x— - -
= Yio., (€0s6-gsin6) (SD)XS‘E%: +@msin 29(k2l0 Yio }df
O (209)

- _ Tro_ = =~ = = o= -
Py = (M), + (), = j{ {@a), + Sy5seq = Too )~ Sy (Zay, = Zs,, P

+ Y10, [(§D)25 ogg?? (cos 8 - B, sind) - (§o),5' Hogg 0 (sing + Becose)]

XX XX X)

+a(i§lo+k‘;o)(-9_9e_ﬁ + r‘ﬁ(Eflo—Rflo){ (1+28)sin 26
i

L
2

X
+(99-B)60529] 2m [kz vesm9+kyowecose]}d (106)

where

(50) = -m {es + vecosa 2veesm0 (ve + yIoc (bsm9+ 9cos8)
XX
= (We+Fiog, & )sin -2 (W + Yioe, & e)6cos6- (We+¥i0, Be)(Bcos- esme)

% - X, x —_ —
-28 [we COS §— We 8sinB + Ve Sing + (Ve + y.ocq)écosa] + F(%-ZBé)
xI

~2i0c e ~ 28 [Wec0s8+ (T, +Ti0q )sing)] - (1+23) [ #Fi0cy) cos6

- We sinB] +.S;IOcq 9e Sine':-gys} (108)

Ysco = Yoeq (T = Vo COS 8- W, SiNG~ TV, (7)COSE (7)+W, (Fsin@(F)
(109)
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In Eq. (107), (§w) s (8¢p), , and (gpa) represent Ys  components
of the lag damper, flgp da.mper 5and pushrod forces, respectively. These
are given in Appendix III.

SPANWISE DERIVATIVES OF MOMENTS

The following expressions, which represent the first and second derivatives
with respest to T of Egs. (99) and (105) and the corresponding first
derivative of Fq. (1C6), are also required in the derivation of the final
nodal equsations of motion:

r —
fT{ozs"‘ Zseo (t) st}df yloc Sln@(SD’x c;o —(mA)y5

+2§ (K5,c052 + Ky gsin2e)

(110)

i "

£ _ 1 _ _
mYt’): —§z 5" 35ec: _/;T (§D)x5 dé + ZSeo (SD) [y|o sin@ (go) 0 + (mA)y5

*8Y10¢q
/

2 —2

26 (kylo cos2g+ kz'osinze)]

(111)

/ r ! - - =\ =
= . _g - =\ & S — (M
Mzs',/;{ Sy5+y5e°(r)st}d€+YIocgcos®( D),s,yloego' ( A)15

.2 -2
—ﬁésmze(kmo‘kno)
(112)
I B | /"T_ = [_. - —
MZS-syS_ysea Sy_5+y5e° 7 Sx5d€+ YIOCQCOS®(SD)X5’yloc =0 "(l"nA)25
o\
—mesmze(kzlo kylo)]

(113)

AT S B S _
Mxs® ~Ys,, [ Sz, dé + zsm‘/; Sy ¢ ~ (mA)x5 = Yo, [(’50)25 cos®

- . /-2 =2 \/XX X ~2
(S, sinely, o +m(F, o ool (Fr o) m (5
2 22
_"Zno)[ (|+28)sm 26+ 9e cosz ] 2|oVe S'"9*2mky,°~ecose
(11k)
where the angle @ is given by Eq. (LS).
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APPENDIX II
AFRODYNAMIC SHEAR FORCES AND MOMENTS

To determine the aerodynamic shear forces and moments acting oa the rotor
blade, a blade element approach was followed that utilized the quasi-steady
aerodynamic theory as developed in Reference 5. Quasi-steady theory neg-
lects the effect of the weke generated by the blade, and its use is dic-
tated by the lack of a generalized, variable-inflow theory applicable to
rotating wings in forward flight. In the analysis herein, the apparent-
mass terms appearing in quasi-steady theory have also been neglected as
second order. The primary differences between the resulting quasi-steady
aerodynamic expressions and those predicted by classical steady aerodynamic
theory are that (1) the aerodynamic forces are determined by the velocity
components at the 75% chord point and (2) an aerodynamic damping moment in
pitch, My , is predicted. The use of the blade element approach implies
that radial flow effects are also neglected.

When the aerodynemic shear forces and mcments are derived, reference will

te made to Figure 5,which shows a cross section of the blade as well as
tae relative air velocity components Ur and U, . The tangential
velocity vector UT is parallel to the plane of rotation of the rotor

and normal to the local Xy axis while Up is normal to both the
local X axis and U; . U; and U, thus lie in the plane formed
by the blade section axes, Y and % . Within the assumptions of
small elastic rotation of the blade section, the incidence angle € is

equal to the local total pitch angle @ . The aerodynamic force and
moment components in the "10" axis system are then

(Splyy = (fcosp + dsing )cos® - (tsing — dcos¢ )sin@®

(115)

(SAlflo = (4sing -dcosglcos® + (fcosp + dsinglsin®

(116)
Bl = © ) (117)
(Mpdyy = O (118)
(mA),,lo = 0 (119)
(mA),'oé m., * (Lcosp + dsin¢>)y,oc/4cos®— (£sing - dcos¢)y,0c/‘sin®+md
(120)
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The above forces and moments can be resolved into the desired "S" axis
components (using previously defined axis relationships) to obtain, after
nondimensionalizetion, the following:

(‘55‘)15 = Icoscp + asin¢ (121)
(Saly, = Zsin¢. - dcos¢ (122)
(Sady = —(fcosd + dsing)lNcos® + X\,sin®)

—(fsing — decospl—\sin® + Acos@)
(123)

Ay, = [Meat o + (Ecosg + dsinglo gos®

- (Zsing - Ecoscj:)'jogln@][)\,cos@ + )\Zsin®]

(12k)

(maly, = [’E\c 4t My + (Zcosp + Hsin¢)§oq‘cos®

~ (1 sing - acos¢)win®]£x2cos® - A sin@]

(125)

(Maley = Mejq * Mg + (XCosp + 'Hsincp)imcmcos@

- (L sing - deos )'9,0 3in®
. G4
(125)
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In the above, 2 is the local 1ift, d  the local drag, Mgss the

local pitching moment about the 25% cherd predicted by steady-state aero-

dynamic theory, and my the damping mouwent predicted by quasi-steely
' theory. With use of conventional acrodynamic notetion, the following ex-
‘ pressions are readily derived:

. 2

| - —4 . (e u e

| Sy~ ?-("p?wo_ (QR)(“)C‘ (a27)

!

|

s

| T NN 3. V(T 2 WA
- moQ'R 2 me R R/ 9

2
c
“) Cme,  (129)

i

[P W

(130)

RS

In Eq. (130) the quantity g represents the nondimensional distance
(in terms of 50% chord lengths) from the mid-chord to the pitching axis of
the blade section. The quentity q, is positive when the pitch axis is
downstream of the mid-~chord. For a rotor blade, the downstream direction
depends on whether the hlade is in conventional or reverse flow. Hence, 0y
is

N SN T TS T Y e A o P P o o . St ot At St b et o e e e o

3
7
3 2 I
| : TYow 3 (conventional flow) ‘
F[ ¢ 00 = ] 2
| 1 3 - -c—xoc” (reverse flow) ,
: b
| :
EI i (131) ;
ks
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The aerodynamic coefficients in Egs. (127) to (130) are functions of the
section angle of attack and Mach number, as determined by the velocitly
components at the 75% chord peint. From Figure 5, the angle of attack is

U
e = @+ ton"-U:'_ (132)

The relative air velocity components are given by

% = (vy,o)_i_ccos® - (Vzlo)%c sin @ (133)
U 7. -
Q_“; = - (v2'°)%c Cos® - (Vylo)%c sin® (13h)

Or.,. expressing the "10" axis velocity components in terms of "5" axis
components, Eqs. ((133) and (134) are

u V, v : _
-Sz_‘; ( yS)% + (sz)%c (XIS"\@ )\ZCOS @)

(135)

EU% - (Vz!»)%c + (sz)%.c (MNcos@ + Apsin @)

(136)

By using Eg. (29) to determine (Vz5)3/4 ¢ » ete,, in terms of "1" axis
’ velocity components, by neglecting higher order terms,and by noting that
v°x and T/;) can be written more familiarly as
i Z,
v = vcos as . _
Ox, - QR R o (137)

v (Vsina, = V)
VOzI —__———QRS = - )\5 . (138)
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Egs. (135) and (136) can be rewritten as

.\%,I? = /-‘[(l--gz)sinnp + 8cos¢] + 8 + F(l-ﬁf§)+ﬁ‘:°59

2
- —~ X . X 2y . — -

..(ve + y.o_%c)esme - (We + 710% cee/ sin-g - (We’*' logcee)gcose

- y,.o%cve - B[We cosg + (Ve +V,O%C) sin 0]

+(We’sin6—ve’cosg) [-;L(cos ¥ - §sin \I:) ~ AgBB- Ylo%ccose:,

-9 [Ve sing + Wecose] BCOS ¥

(139)

Y - (,_@j)_ rB(cosy ~ 8siny) - (We + Vio. & cosg
.Q,R S 2 \ e\ %C e)

+ (we+ Yo ee)ésine - Ve sing - (Ve+Y',o_3_c)écosB
3c 4
- . = X
- -B[(ve+y,o%c)cose - Wesme] - TR

+(We’cos 6 + %'sing) [- 1 (cos ¥ ~ Bsiny) - AB - V,oi cosg]
N c

~@kcosy (Vcos9 - W,sing )
(1ko)

Now, inasmuch as the aerodynamic terms (SA)xs s (m‘) Vs (mA)z_r>
involve elastic coordinate factors, they can be neglected as higher order.

Thus, the final aerodynamic force and moment expressions are (after sub-
stitution of Egs. (127) to (130) into (121) to (125))

]

(§“)25 =z (%) (ﬁuﬁ)z(c*‘ Cos ¢ + cgsing)  (141)

(SA))'s = %(PTR:) T (zgﬁ)a(c,sin ¢ - cqcos ¢)
{(1k2)
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(Sadyg 2 O (143)
(M), 2O (144)
— A '
(mA)ls = 0 (lhs)

"y = 4 (5) {28 omg E () 7O E 20
+'§,°%6 (&ﬁ)a [cos@ (c,cos¢> + C4 sincb)

-sin® (cysing - °d°°54’)]} (146)

The following pitch ans.e relationships are also required in the aerody-
namic éxpressions:

Total section pitch angle
& =06+8 = O+ 6+ 86, . (k)
Built-in pitch angle

8 = 6,(8+7-075) (118)

Control system pitch angle
6, = 'B%R - A,scosw - alssinw ~ fan 85 [B +(We’)r=o]
(1L9)
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APPENDIX IIX
FLAP DAMPER, LAG DAMPER, AND PUSHROD FORCES

FLAP DAMPER FORCE

in this analysis, it is acsumed thal the flap deamper force is in the 24
direction end is located at a distance [Igp from the flapping hinge.
The damper thus provides a pure moment about the flapping axis Ya s
which can be expressed as

Mro® fep €05 B (Sep)y, 1 (150)

where (SFO)T is the total damper force in pounds. For a pure viscous
damper

» d24
Ceodz,r ~Cro\GT o (151)
c. ¥
where FD is the line. ™ demping coefficient of the damper in units

of lb-sec/ft and the bracketed expression represents the approximate
velocity of the blade in the 2, direction at the point of attachment
of the lag damper. By nondimensionalizing, and if Egs. (12), (36) and (37)
are used, and if higher order terms are neglected, Eq. (151) becomes
- 'CFD* =2 X
= ——— TR +wW, cos8
(Seo), , 1 mgSLR B+ e
- X X - X
— W 8sin8 +v, sin8 +v Bcose]FD
(152)

Resolving the asbove force into "5" axis components and neglecting higher
order terms yields the following:

(Sro)yyir 2 (o) 24,7 (153)

(gr-'o)y5 ':r’ Y (15k)
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T
N

To obtain tie flap damper force per unit span {SFOE , it is .ssumed
that the total damper force is gpplied uniformly over the infinitesimal
interval A . Thus,

IR
\ ek, N W Ay
» 0 for (rrn+ -2“) <r '<("Fo" '2—) (155)

LAG. DAMPER FORCE

The required lag damper force per unit span, (SLDN , can be obtained

. from an analysis similar to that for the flap damper assuming, however,
, tha& the ‘damper erce acts in the y, direction. The following result is

=oﬁtajned:

o w(rgd )i ) s

(S.p )25 0 (157)

-where

Buoied o 20 (73 4+, coso7 Gsnd
= - = r Yo COSU =~V siny -

(5,)

XX
W sind -w, Gcose]
LD

(158)
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PUSHROD FORCE

Rotor blades are generally restrazined in pisch (i.e., the motion ahout the
X5 axis) by the moment exerted sbout the Xg axis due to the pushrod
nf the control system. For conventional rotors, the pusnrod force passes
through the VY axis and is parallel to the Z, axis. A pure pitching
moment is thus provided. For rotors having pitch-flap coupling, the push-
rod is displaced from the VYs axis in the direction of X4 by a dis-
tence [Ifpg . In this position,the foree of the pushrod exerts a moment
about the VY5 .axis and thus influences the flapping and bending motions

of the blade as well as the torsional motion.

Pushrod effects in the torsional equation are introduced by representing
the torsional deformation by a series of uncoupled modes determined on the
basis of appropriate rco: boundary conditions (i.e., fixed or partially
fixed). To determine the effect of the pushrod force in the blade flap-
ping and bending equations,an expression for the pushrod force is required.
With the representation of the torsional response of the bliode in terms of
uncoupled modes, the required force is approximately given by

[a—d >1:7'fll qel]on

Yspr ' (159)

3 .o
{ PR)Zs'T

(Serly ;70 (160)

~

where - yspR is the distance from the X5 axis to the pushrod. The
corresponding pushrod force per unit span is

(161)

51




APPENDIX IV
MODAL CONSTANTS
The various constants appearing in Egs. (80), (86), (89), (91) and (96)
are given below:
C
c - (162)
° moﬂ°R!
R
¢y z fo m x2df (163)
¥y
C31|p = ,fo vaqug dr (161&)
. £ *
Cargt = f ﬁr.,iy,',i,?df . (165)
- : Cs,p * f Y Yo ? & (166)
‘ o .
Cript = f Yw,'f.,lﬁ mEdE dr : (167)
Cs;, * j; % ﬂr g 0E F (168)
' Cs /I = Y3 - F:r.. -
hi .[7\'|[f Mxpd€ - r./; myw',df]df (169)
Gor = -& M Yo 97 (170)
Coy = f o p (271)
C . :
13; # e = y ge
i GJ; mr ):'i-(r-O.7:>)dr (172)
e _ .
Ciap = o myv df (173)
r1:_ . X
Cisp ~ m)’vpdr (17h)
Cigp,p = f m)'vpy; ;rdr (175)
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p

i

(176)
d€ dr
C20p * fn,rv,,f Mg d€ N
X
c 2 97v fmru(f 7) o€ d7
2lp,p’ P N
> f s dé dr
Cazy,, o%plr My ? .
T —-—
i M - & ﬁ'\']d? + Lx, [Aék,‘”-’- My dé
= f [efmdf - 2gm — €, . :
¢ - ¥p A
- ! (179)
-2 Mklwﬁ‘cw - A-éAcwmo]dr
f II[CW -
— 5" | W TdE
T or_u T -2 ﬁ?—e (m r+m)]dr + f %, [AeAcvlr -
C24, = .L‘X/p eAf mE o€ - 28, A b Y
B {TonT + M) | (180)
-ZAEA;EW? -AeAcﬁs gy T My ]
T- I A [EI;))’I + EIz 7”] (181)
. (ETx) df 2 -28) ¥/
Cas 26, J 7, \ETix, A
o0 229 '(EI,))", + ELyy,)df
Canp = 26, [ne(Eyph) o 2 -26 [
" (183)
Fy P30T~ 0.75Ca)
Cazp = 9|[j;myvpr
i 184)
8 [y %, (F-075) 07 (
ot = By Py (185)
t_2 2
E m or
A ' (186)
T
2 v __ a
Car. =9L [ f mE o | o
) (187)
Cait; = Zfo ng)’w r,,i/ ET, - EL,)d7
" (188)
/ dF
C39j o,p' = - Zf ye); 7v (EI EIy) r
r (189)
T )
c“i - j:) mk’loyaidF
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Cagp; = T Wl
46';9,»1 .{) )6 Yw 7\" ( Iz'E y)dF

i Y%
- r_
C”P - _/; M X dr
C50 = LI- -
P -/; M Y1047 A7
-r'—l—' -
. Tt — _
Cs2p = '/c; Yy, 10,97
B : f‘:;. ) )
53; = m v T
Fip LT % Y i
T'l'
Csslpi = o) YW‘ m ng r dr
Ty Tr _ T o
= “lg | médeE- M dr
ey = [ gy B Mg, [ mE]
Tr ]
c = g | my.T(F-075dF
59 1o ™0,
- f—z_ .
60, 2 om-ywl ylocgr r
[
Cor,; = Wy vy J. TOF
TT
c y =_ . &
52, jc;mYWi 8; Nogg
—T
Ce3, = Lmymy'ochr
—T
, ) T P
Cea,'p = jc-)mywi va ylocgdr
-Y ?T
C - " R dF
85,y * _{;Ywi Yy, L y|och£

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(20k)




r

T 2%
: | ™y dEdF
¢ = y _ My
67i,p,j '/; ywi 9] j; Vp

s

cee. - ,l;

3

T-0.75)dF
Y, T, T -075)

T -
- Z f My dE dF
= .. m r
Cr7p T 7"9 yvp’ 3 ywcq
?T
c = f My v/ ‘_ dr
N A A
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(205)

(206)

(207)
(208)
(209)
(210)
(211)
(212)

(213)

(214)

(215)

(216)

1217)

(218)




A

D N e R

W

5J R + a3, ,4: m,, £ dF | oF
. cw

]?'('r'— 0.75)dF

ywl(F -0.75)dr
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rT_ _ _ _ I’r‘ . _]d_
jr_' ME+EIOE + 08, y m (€ +81dE | oF

(219)

(220)

(221)

(222)

(223)

(22k)

(225)

(226)

(227)

(228)

(229)

(230)

(231)

(232)
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