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SUMMARY

The purposes of this research program were to extend or develop analytical
methods for determining rotor blade aeroelastic stability limits and to
perform stability calculations over a range of design and operating vari-
ables for articulated and nonarticulated configurations. The usefulness of
simpler analytical methods is investigated by comparing results with oper-
ating boundaries from the more e'.aborate analysis.

In this volume the differential equations of motion for a linearly twisted
rotor blade having chordwise mass unbalance and operating under steady
flight conditions are derived. The motions include flapping and lagging for
the articulated blade, as well as flatwise, edgewise,and torsional defor-
mations for the articulated and nonarticulated blades. The fully coupled
aerodynamic forcing functions are based on quasi-steady theory. The dif-
ferential equations of motion are expanded in terms of the uncoupled vibra-
tory modes of the blade in order to facilitate their numerical solution on
a digital computer.
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FOREWORD

The work presented in this volume is part of an effort which is contained
in five volumes. The work was performed under Contract DA 44-177-AMC-332(T)
with the U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia.
The work was monitored for USAAVLABS by Mr. Josepb McGarvey.

This volume contains a presentation of work performed by Mr. Peter
Arcidiacono, of the United Aircraft Research Laboratories. The resulting
equations of motion were prepared and programmed for computer solution by
Mr. Russell Berquist of Sikorsky Aircraft. The method of computer solution
was generated independently for earlier versions of the equations of motion,
and was extended under this contract to include non-coincident blade elastic
axis and section center of gravity locations.

Volume II presents a linearized discreet azimuth classical flutter analysis
for rotor blades, with an appropriate parameter variation study, a com-
parison with test data, and a comparison with results calculated by using
the method of Volume I.

Volume III describes a stall flutter analysis based on the calculation of
aerodynamic work during a cycle of blade torsional vibration, using two-
dimensional unsteady airfoil test data. The analysis was used to generate
stall flutter boundaries.

Volume IV contains the results of a study of static torsional divergence.
A set of design charts were generated and the effects of a range of par-
ameter variations are presented. The results of the static divergence
calculation are compared with results calculated by using the method of
Volume I.

Volume V is concerned with flapping, flatwise bending, and coupled flap-lag
instability. A single degree of freedom flapping or flatwise bending
analysis was used to investigate a vwde range of parameters. Comparisons
were made with the results of the more elaborate method of Volume I. The
method of Volume I was also used to determine the coupled flap-lag response
of a rotor to a number of sudden control changes.
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LIST OF SYMBOLS '

0acceleration of any point on the rotor bWade, ft/sec
2  l

ao distance from mid-chord to pitch axis divided by c/2, positive
when pitch axis is downstretm (see Eq. (131))

C blade chord, ft

Cd  section drag coefficient, d / (I/2 pU c)

Cm C/4 section pitching moment coefficient about the quarter-chord,

mc/4 /1/2 p U2 c 2

C/ section lift coefficient, /(I/2pU 2c)

C rotary viscous damping coefficient, ft-lb-sec/rad

CO-14pj blade modal constants (see Appendix IV)

C linear viscous damping coeffic.ent, lb-sec/ft

d section drag force per unit span, lb/ft

e X2 coordinate of coincident flap-l].g hinge, ft

coordinate of centroid of spar area, ft

E Young's modulus of elasticity, lb/ft2

g acceleration of gravity, ft/sec
2

G shear modulus of elasticity, lb/ft
2

i,j,k unit vectors

1y ,[ z  spar area moments of inertia about an axis parallel to
and Y10 but passing through the spar and counterweight
centroid, ft h

1a mass moment of inertia of blade about flap and lag hinges
(see Eq. (93)), lb-ft-sec

2

torsional stiffness constant of blade section, fth

k radius of gyration of blade section mass, ft

kA radius of gyration of spar, ft

2 lift force per unit span, lb/ft
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m blade mass per unit span, lb-sec
2/ft2

mA section aerodynamic pitching moment per unit span about

elastic axis, ft-lb/ft

/m 4  steady-state section pitching moment per unit span, ft-lb/ft

M"c " m counterweight mass per unit span., lb-sec
2/ft2

md quasi-steady section damping moment per unit span
(see Eq. (130), ft-lb/ft

O m o  blade mass per unit span at some reference stat:on,
lb-sec

2/ft2

M moment, ft-lb

MA moment due to aerodynamic forces, ft-lbzMA

M blade mass, Ib-sec2 /ft

M moment due to dynamic forces (including moments due to flapO damper, ldg damper, and pushrod), ft-lb

Me moment due to elastic deformation of blade, ft-lb

p vector from origin of reference frame to point on rotor
blade, ft

q amplitude of ( )th edgewise deflection mode (equals blade
Sv() tip deflection in Z direction divided by R when y.

at tip is defined as 1.0) )

qtj amplitude of ( )th flatwise deflection mode (equals blade
tip deflection in Z direction divided by R when y.)
at tip is defined as'1.0)

amplitude of ( )th elastic torsional mode (equals elastic
8 twist angle about x. axis in radians at tip when ye

at tip is defined as 1.0)

r blade spanwise coordinate, measured from flap hinge in x
direction, ft

rT value of r at blade tip, ft

rcg value cf r at blade center of gravity, ft

roc value of r at inboard end of courterweight, ft

R rotor radiuu ( e+r T ), ft
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S shear force per unit span, 1b/:'t

aerodynamic shear force per unit span, lb/ft

SD dynamic shear force per unit span, lb/ft

t time, sec

U resultant velocity of blade section ( UT2 +U 2  ), ft/sec

up velocity component of blade section, normal to X10  axis
and UT , ft/sec

UT  velocity czmp-nent of baae section parallel to the plane
of rotation ( x.3 - Y3  plane) and normal to x,, , ft/sec

V velocity, ft/sec

Ve local edgewise elastic displacement of elastic axis in Y6

direction, ft

V0  translational velocity of axis system, ft/sec

V forward velocity of ai±Lcraft, ft/sec

We local flatwise clastac displacement of elastic axis in Z6
direction, ft

x,y,z axis system coordinates

as rotor shaft angle of attack, angle between ZI  axis and
remote airstream velocity vector, positive when Z, axis
tilted aft, radians

ar local section angle of attack, radians

G blade flap angle (see Figure 1), radians

( )th edgewise uncoupled mode shape, deflection shape
Hv( assumed by a rotating blade when vibrating at its ( -)h

uncoupled edge'wise f"requency

SW() ( )th flatwise uncoupled mode shape

y8 H ( )th torsional uncoupled mode shape

blade lead angle (see Figure 1), radians

pitch flap coupling angle, deg83

A nondimensional spanwise distance over which a concentrated
force is applied to the blade
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AeAcw distance between chordwise location of counterweight andchordwise location or spar centroid, positive when former

is between centroid and leading edge, ft

E local blade section pitch angle (see Figure 5), radians

local blade pitch angle due to control system input and
built-in twist (see Eq. (147)), radians

local blade pitch angle due to built-in linear twist

(see Eq. (148)), radians

local elastic twist angle (see Figure 1), radians

80 blade pitch angle due to control system input (see Eq. (149)),
0 radians

6 r rate of change of 8. with respect to ? , radians

total local blade pitch angle (see Eq. (147)), radians

s  ratio of relative air velocity component in direction

bending rotation angles (see Figure 1), radians

ratio of relative air velocity component in x, direction

to SIR (see Eq. (137))

V .- r.ctor induced velocity, ft/sec

dummy variable of integration along x5  axis, ft

p air density, ilb-sec2/ft 
4

4. local inflow angle (see Figure 5), radians

blade azimuth angle (see Figure 1), radians

w angular velocity of axis system, rad/sec

4 )v  uncoupled natural frequency of ( )th edgewise vibratory
..') 'mode, rad/sec

w., uncoupled natural frequency of ( )th nlatuis i r VI. y
.) mode, rad/sec

Wq uncoupled natural frequency of ( )th torsional vibratory
I mode, rad/sec

rotor angular velocity about Z1  axis, rad/sec
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SUBSCRIPTS

1-10 indicates axis system under considerationC/4 indicates quantity evaluated at 25% chord

3C/4 indicates quantity evaluated at 75% chord

c.g. indicates quantity evaluated at local chordwise

center of gravity

[ ea indicates quantity evaluated at elastic axis

FD indicates flap damper or quantity evaluated at
flap damper attachment point, as appropriate

m flatwise mode subscripts (maximum value = 5)

j j,/ k torsional mode subscrirts (maximum value = 3)

LD indicates lag damper or quantity evaluated at[lag damper attachment point, as appropriate

PR indicates pushrod or quantity evaluated at
pushrod attachment point, appropriate

p, p n edgewise mode subscripts (maximum value = 2)

F = 0 indicates quantity evaluated at T =0

x,y,z indicates quantity evaluated in x , y, or z direction(Eqs. (29) and (30)

X,),y( ,Z() indicates quantity evaluated in x , y, or z direction
of ( ) axis system

YIOcg() indicates quantity evaluated at Yiocg 0

DERIVATIVE NOTATION

d( )/dr indicates derivative of ( ) with re~pect to r

indicates derivative of ( ) with respect to T
() indicates derivative of ( ) with respect to 

U ) indicates derivative of ( ) with respect tot

(i. e. , )

d- differential operator defined on page 9
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MISCELLANEOUS

( ) indicates vector quantity

indicates quantity nondimensionalized through the
-use of factors, R , m o , and

A indicates an approximate equality
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INTRODUCTION

The development of analyses for the prediction of rotor performance, blade

motions, stresses and loads has been progressing for many years. The
equations of motion derived in this part represent an important additional
step in the refinement and generalization of these methods.

The analysis used to develop the performance charts of Reference 1 deter-
mines rigid blade flapping motion by a step-by-step timewise integration
of the flapping equation of motion. The solution finally converges to a

cyclic pattern if a steady-state condition is being analyzed. The analysis
is fully capable of handling a transient condition, however, since the
equations of motion are solved with arbitrary starting values.

Following the development of a rigid blade analysis continued improvements
in helicopter performance objectives and the need for prediction of flex-
ible blade loads and stresses made the development of a solution for flex-
ible blade motions necessary. The result of this development utilized
rotating blade natural vibration modes as elastic degrees of freedom. The
use of these orthogonal or "normal" modes gave rise to the designation
"Normal Mode Transient Analysis". The analysis is similar to the rigid
blade analysis mentoned above, in that its essentially a so-called start-
ing value r2oblem, in which the differential equations of motion are inte-
grated on the basis of some set of starting boundary values. When a
steady-state condition isbeing analyzed the integration proceeds in small
but finite timewise steps; 'after a number of rotor revolutions, the pre-___
dicted motions will become cyclic within a desired tolerance. This is the
usual solution desired, and performance, load, and stress calculations are
usually based on these cyclic motions. On the other hand, the prediction
of rotor behavior following an arbitrary initial disturbance is a basic
capability.

For the purposes of this investigation, the above analysis was extended to
provide for noncoincident blade elastic and center-of-gravity axes. The
basic differential equations are supplied in detail, in order to define and
document all assumptions completely. The provision for noncoincident axes
opens entirely new areas of investigation to the Normal Mode Transient
Analysis.



ASSUMPTIONS

Nondimensional quantities are used extensively throughout this report.
Nondimensionalizing factors are rotor radius, rotor angular velocity, and
mass per unit span at some blade reference station. The principal assump-
tions which were made in the analysis presented herein are listed below.

1. The aircraft is in steady flight with constant rotor angular
velocity.

2. The blade has an elastic axis so that blade deflections can be
considered as the superposition of two orthogonal translations
of and a rotation about the elastic axis.

3. Quasi-steady aerodynamic theory is applicable with the exception

that apparent-mass aerodynamic effects are assumed to be neglig-
ible.

4. Radial flow effects on aerodynamic forces are negligible.

5. Principal blade flexibility effects can be accounted for by con-
sidering only five flatwise, two edgewise, and three torsional
vibrat nry modes.

6. Blade flap and lag hinges are coincident for articulated rotors.

7. Tie local center of gravity is assumed to lie on the major
principal axis of the section.

8. The blade is linearly twisted along its span.

9. The following quantities can be assumed to be small in
comparison to unity:

a. Flap and lead angles (in radians) and their derivatives.

b. Ratio of elastic deflections to rotor radius and their
derivatives.

c. Ratios of chordwise distances (i.e., chord, center-of-
gravity offset, etc.) to rotor radius.

d. Built-in twist (in radians).

e. Ratio of flap-lag hinge radial distance from a center
of rotation to rotor radius.

f. Reciprocal of Froude number based on rotor radius
(g/ 2zR ).

g. Ratios of blade thickness dimensions to chord.

2



10. On the basis of assumptions 8 and 9, the following types of terms

in the equations noted can be neglected as higher order:

a. Flatwise and edgewise bending equations:

(1) Second-order products of elastic coordinates.

(2) Third-order products of elastic coordinates,
chordw-ise distances, flap angle, lead angle,
built-in twist, and flap-lag hinge offset.

iib. Torsional equation:

(1) Third-order products of elastic coordinates.

1 (2) Fourth-order products involving elastic coordinates,
chordwise distances, flap angle, lead angle, built-I in twist, and flap-lag hinge offset.

c. Flap angle and lead angle equations:

Second-order terms involving products of elastic
I coordinates, chordwise distances, and built-in

twist.

d. Section velocity equations:

(1) Second-order products of elastic coordinates.I

(2) Third-order products involving the elastic coor-
dinates, chordwise distances, flap angle, lead
angle, built-in twist, and flap-lag hinge offset
as factors.

e. All equations:

The spanwise component of acceleration due to
gravity.

I.4
IJ
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AXIS, SYSTEMS

The axis systems employed in the analysis are shown schematically in
Figure 1 and are discussed below.

NONROTATING ROTOR HUB AXIS SYSTEM: x,,Y i zl

This axis system has its origin at the rotor hub center and is nonrotating
with respect to the aircraft. Z, lies along the rotor shaft, positive
up; x, is normal to the rotor shaft, lies in the plane formed by Z, and
the remote air velocity vector, and is positive aft; Y, is orthogonal to
XI  and z, and is pcsitive toward the advancing side of the rotor. This
axis system is Newtonian in nature,having at most a steady translational
velocity.

ROTATING ROTOR HUB AXIS SYSTEM: x 2 y. ,2

This axis system has its origin at the rotor hub center and rotates with
the rotor. Its coordinates are related to those of the 'T' axis system
above by the following equations:

X I X2CO!'i - y2 sin* (1)

Y1 = Y2cOs' + x2 sin* (2)

21 = z2 (3)

OFFSET AXIS SYSTEM: x 3 ,Y 3 ,z 3

This axis system has its origin at the coincident flap and lead-lag hinge
radial position. Its coordinates are related to those of the "2" axis
system by the following equations:

x2  = x3  e (4,)

Y2 Y3 (5)

z2 z3 (6)



BLADE LEAD ANGLE AXIS SYSTEM: x4 ,Y4 ,z4

This axis system rotates about the Z3  ais with an angular velocity

dS/dt . Its coordinates are related to those of the "3" axis system by

the following equations:

X3 x 4 cos8 - y4 sin8 (7)

Y3 Y4 COS8 + x4 sin F (8)

z 3 =Z4 (9)

Note that 8 is equal to the built-in lead angle for nonarticulated

rotors.

RIGID BLADE AXIS SYSTEM: x, ,Y5 ,Z5

This axis syste:1 rotates about the Y4  axis with an angular velocity

d/31dt . Its coordinates are related to those of the "4" axis system by

the following equations:

X4  = x5 cOs/ - z5 sinR3 (10)

Y4  = Y5  
(11)

Z4  = z5cosP + x5sinG (12)

Note that the flap angle a is equal to the built-in coning angle for

nonarticulated rotors.

RIGID BLADE SECTION AXIS SYSTEM: X6 , Y6 ,z6

This section axis system is obtained by a translation along X5  through
a distanc v and -+ol. o .t " throgh the loa r oca1 rivid !_e pb . .it.h

angle 8 , where e includes the pitch angle resulting from control

system inputs as well as that resulting from built-in twist. The "6" axis

coordinates are related to those of the "5" axis system by the following
equations:

5



xs  X6  + r (13)

y5 = ycos8 - z6 sin8 (1h)

z5  z6 cos8 + y6 sin8 (15)

BENDING TRANSLATION AXIS SYSTEM: X 7 ,Y 7 ,Z T

This axis system is obtained by bending translations of the elastic axis
in the Y6  and Z6 directions (section principal axis directions beforeelastic deformation). The ' axis coordinates are related to the "6"
axis coordinates by the following equations:

% X7  (16)

Y6 Y7 + Ve (17)

6e (8)

Eq. (16) implies that the change in length of the blade due to elastic
displacements is negligible.

-BENDING ROTATION AXIS SYSTEM: X 9 1 y 9 1 z 9

This axis system is obtained from two small rotations which occur when the
blade undergoes the elastic be"ding translations, We and Ve . The rota-
tions are assumed to be small, so that the order in which they occur is of
no consequence. The "9" axis system coordinates are related to those of
the "7" axis system by the following equations:

K?, = 9 - zQX!. - o('9

Z7 = Z9 + X, (20)

6



Y7 Y9 + x9X2  (21)

where

'\, _dw + Vededr " d"(

d + e (23)

Since X, and X 2  are very small argles, terms involving their products
are neglected.

BLADE SECTION AXIS SYSTF4: X10 y10 , Z10

The final blade section axis system is obtained by a rotation about the
x9  axis through the elastic twist angle e  . The Y1O and Zlo

axes lie in the plane of the airfoil section of the deformed blade, y1O "
coinciding with the major principal axis (which is also assumed to be
coincident with the reference chord line of the airfoil section). The "10"
axis coordinates are related to those of the "9" axis system by the follow-
ing equations:

X 9  X 10o (24)

Y9 Y - Zioee (25)

z9  yo8e (26)

7*



NONROTATING AND ROTATING HUB OFFSET AND BLADE LEAD ANGLE

Z Z3 , Z4

Z1 ) z

t ,"Y 4

Y2K 2  yK
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S 5 
Z4  Z

1y 6

6 V

S da '  . Y5 -------- Y 7

" Xr ve _w

_ X5;-J' Y6

BENDING ROTATION BLADE SECTION

Z9jI Z 7 , z8  ZlO Z9

ye, Y9

X2 

Y7

Y9

Figure 1. Axis Systems.



VELOCITY AND ACCELERATION VECTORS IN THL RIGID BLADE AXIS SYSTEm

To develop the blade equations of motion, the velocity and acceleration
vectors for a blade mass element in an appropriate reference axis system
are required. A convenient reference system and one used herein is the
Rigid Blade Axis System ("5" system). Inasmuch as this is a reference
frame moving relati-'e to Newtonian space, care must be exercised to account
for all velocity and acceleration components. The approach employed herein
assumes that the linear and angular velocity vectors of the Nonrotating
Rotor Hub Axis System ("1" system) arc known along with the gravity vector
(from specification of the trim flight condition of the aiecraft). The
velocity and acceleration vectors in any other axis system can then be
derived by classical vector techniques as discussed, for example, in
Reference 2 (Article 12.3). The velocity and acceleration of any point
defined by coordinates measured in a frame of reference which is both
translating and rotating can be shown to be

V+ (27)

a - + XV+ g (28)

where

P is the vector from the origin of the reference frame to the
point in question, X1 + yj zk

is the reference frame translational velocity vector,

VOXI + V0 Y + vok

W is the reference frame angular velocity vector,

woi + Wyj + wzk

is defined as dU. 4. d- "- j--I " dt ;+" dt

9 is the gravity acceleration vector

,j, k are the usual unit vectors

9
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Eqs. (2T) and (28) can be expanded, if the above definitions are used, to
yield the following general expressions for V and O:

" z'(i + + wyz wzy) +jvY +Y + Wo U&Z)

+ k(voz + z + WXy- WyX)

(29)

o i 'z--~ WV.+x - 2CLzy + (Wy + wxwzz

14VO .WVoz+ wvo0+ * - 2wz + + ww 1 )x2 2 W + 1x~

+' [2 , + o(_ Wy +  CwV) - 4Wz2+ Wf,, + ,
-. 0  0+iL~wv +wv, z-2 + ((Wz WY )Y

+'2,Wz ++(- W+ ,C)z- (+ W.) + gz] (30)

where (o(0 d(
d(

Eqs. (29) and (30) apply to any axis system. For application to the Rigid
Blade Axis System all quantities should be sub,.cripted 5, and expressions
for w. Y5, , and 25 are required. These are derived
below. 5

'The velocity vectors V0 5  and w. can be obtained from the correspond-
ing vectors for the "" axis system ( ' and ) which, for steady
flight, are ol

V *V i f- v k

l01o 1  V , (31)

and

= =0 (32)

.0



When Eqs. (31) and (32), and the coordinate relations of Eqs. (1) through
(12) are employed, and when Eq. (29) is successively applied, the follow-ing expressions for Vo and % result:

5 W5

2O 2 N', a.
Cos 41 sin e I 4s-, G I

1{-vOx(I- 8)sin* 4eR2-v,8cosj/}

---(i, - ) - Vo ,Cos p +Vo,, ,8 SinlkP} (s3)

CA 1I/,~L+)I- 1 XI(.I...1 +~-(334)

W5 5 J5+ -L +2 k5 (4

If Eqs. (13) through (26) are used, the coordinates X5  , Y5  and

can be expressed in terms of the blade section coordinates ( X10  Y1OZ10 ) as follows (assuming blade secbions having infinitesimal spanwise
thickness so that X10 =0 ).

K5: r - X- y1o 2  (35)

Y5 (Ve+ ylo-zloecos 8 - (We+Zio+yoe) sin8 (36)

z 5  (we Z o+Yioe)COSG+ (Ve+ Ylo Z1o8e)sin 8 (37)

11
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Substitution of Eqs. (33) through (37) into Eq. (30) yields the folloving
expression for the acceleration vector in the "5" axis system:

0 5 2 - , e _ 2 9 1 [ -Z o d s e V + N
05: is{~S22~z,,~dr - YI0 dr -d~VeZoeCS&(e i

00
- z~ee) sin e -(;, e+oe) sine-(we+ zi + Y,)oe 8

- 2g[ecose 8 e Obsne- s - (we+ z) j~os

+ G [-3/2 [(we+ z0 ) COS e + (y~ y,) sine] -2I3*[ wIecos e

- (we+zIO)esifl + Oesifl + (ve+ y10)eOcos8] 40II(ve+ylo) COS 8

(we+zio) sinOl-r[/3 +S2II2)22+

- n 2 L-ZI-Tr- - Y02eI+ g2Cx e1 R -8+(1 ,

+ ~ ~ ~ d +i~~~~ 2(J54i~e8O8W +Z A)yo~)8 S CO i8

2~~~~~[~~C0Sin +'W+j~~~l +~Sf8(e yoCOS e ] W

+(e-I be0 ) si n ] - (~ (Ve+ Yo -Zice)O (We+o Yoe)sn8

+ Yoe+ in~e- CS2 (/e+ yio6e)o eS - (w+ Z10+ Y 8e)(&S~ l e+8 - O 8o-sn)

7 (Ve a- zioesn 8-(e+zsn + 2(vZie) Csin + (ve + yoZe) bSo 2si 8)

+ 2/3S2 [isie 8 a (Ve+ y,in-po We~i 8 (we+ zj0)jee csie]

+ v r /+ y3(S22+ e2 - (w + gzOsi e] (38) k ,8

12 0



EQUATIONS OF MOTION FOR BLADE ELASTIC DEGREES OF FREEDOM

Details of the derivation of the equations of motion for the blade elastic
degrees of freedom are given below. Briefly, the equations were ierived

from consideration of the equilibrium of aerodynamic, dynamic, and elastic -
moments at a given section of the blade. The resulting moment equilibrium
equations were differentiated as required to express them in terms of thelocal blade loadings; the elastic deflections cf the blade were replaced

by summations of appropriate uncoupled blade vibratory modes, of which a
finite number were retained in the final analysis. Stiffness terms, both
structural and c-ntrifugal, appearing in the equations were replaced by
equivalent natural frequency terms, and the orthogonality properties of the
assumed modes were employed where possible to eliminate modal dynamic cou-
pling terms.

MOMENT EQUILIBRIUM EQUATIONS

The basic moment equilibrium eoaations for any blade section are of the
following general form:

(Me)x 1°  (MA)x, 0  + (Mo)x, (39)

(Me)yo, (MA)y O  + (MD)yjo (40)

(Me)z1o (MA)z + (MO)zo (41)

where Me , MA and MD represent moments due to elastic defor-
mation, applied aerodynamic forces, and dynamic body forces respectively. 4
It is convenient to express the latter two moments with reference to the
Rigid Blade, or "5" Axis System. When the axis transformation relation-
ships given in Eqs. (1) through (26) are employed, Eqs. (39) throaigh (41)
are as follows:

(Me) M + X rMy cose + Mz sine] + X (Mz COs.8-My sin 8)102 5 5 5

C.42)
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(Me)Y1o= M y5sOS- esin 8) + Mz 5 ( s in 8 + e e Co s ) - x 2 M x5 (43)

(Me)z, ° = M z5 (cose- 8e sin 8) - m y. (sin 8 + 8e cos 6)- x i M x (44)

where Mx 5 My5 and Mz5 represent the sum of the aerodynamic and dy-
namic moment components i'n the X 5  , V , and Z 5  direction, respec-
tively (e.g.,Mx - (M A)x 5 

+ ( MD)x5 ). Solving for Mx 5 from Eq.
(42), substituting the result into Eqs. (43) and (44), neglecting higher
order terms, and defining a total pitch angle

®=8+ ee  (45)

yields the following forms of Eqs. (43) and (44):

(MeYlo =My5 cosOH + MZ5 sinG - XMe), °  (46)

(Me)zo =0 Mz s s - M y5sin@ -h- Xi(Me)xo (47)

It is now convenient to nondimensionalize Eqs. (42), (46),and (47) by using

as nondimensionalizing factors the rotor radius, R , the rotor angular
velocity, S2, and a reference mass per unit length, MO  . All such
nondimensionalized quantities will h reafter be indicated by means of a bar
(e.g., 7= r/R, FAy5 = My ' "I o S 9 R3 , etc.); further, xdifferentiation
with respect to nondimensionhl time will be indicated by ( ), while dif-
ferentiation with respect to nondimensional radial distance will be indi-
cated by ( ). If these conventions are employed and Eqs. (22) and (23)

are used, the moment equilibrium equations are then

(Melxo= MX5 + (Ve-O;/e (MY, cos 8+VMz5sin e)+(we' + /e M - v 8-ysine)

(48)



4 i
~~~(Me)Ylo My Cos@®+ z sin@®-O(M)xj ( e -e 91) (4,9)'

(Me)z = Mz5 CoS -M y sin ® - (Me)xo ( e + Ve) (50)

The moments associated with the elastic deformation of a section of a beam

having a finite rate of twist along its span and a center of tension dis-
placed in the chordwise direction from the elastic axis have been derived
in Reference 3. Expressing the results of Reference 3 in terms of the we
and Ve elastic coordinates employed in this analysis and neglecting e
higher order terms in accordance with assumptions 8 and 10 lead to the
following expressions for the elastic deformation moments:

*

(Pi) (51)
-E0 y We +2 V I

(M e) z 2 W d +

(52)

ni el+(,+F
(e)l 2 -- (53)
eX10  eA 

)5
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The last term in Eq. (52) is not contained in the results of Reference 3
but rather arises when, for blade balance purposes, a counterweight is
employed which is so mounted as to be restrained radially by the blade's
tip structure and laterally by the blade's local structure. This type of
counterweight is then constrained to bend with the blade and is in com-
pression under the action of centriftgal force.

Combining Eqs. (51) through (53) with Eqs. (48) through (50) and neglecting
higher order terms in accordance with assumption 10, results in the final
form of the moment equilibrium equations below:

j8,+ (0,+e')A ~dC MV + (v e ee)(M cos e +m~ sine)

+(WeI+ lve) (Mz 5cos e - Pysine)

(54)

-'y(' + 2e) = osCO + Mzsin 8-(e)xo (v - e')

(55)

I I ~~ T 'CW dr e f7 x X5 1~+ 5x mwFO

zs cos (- ysn®-e)Xlo( + e)

(56)

The last two terms in Eqs. (55) and (56) are always comparatively small,

and are ueglected hereafter.

LOADING EQUILIBRIUM EQUATIONS

Flatwise Loading Equilibrium Equation

The desired flatwise loading equilibrium equation can be obtained by dif-
ferentiating Eq. (55) twice with respect to the spanwise coordinate 7 (if
techniques described in Reference It, pp. 352-353 are used). The resulting
equation is

16



[VT, (We"+ 2-g6'e)J @[IySn + WZ5COS®91

+ (B)2 [-Kry'cose- Mz 5 Ine + 28 "w/sin@f c So]

+ M cosE + i'ssin@ (57)

To proceed further, expressions for the "5" axis moment components are re-
quired. These are derived in Appendix I along witn their derivatives with
respect to ? . The derivatives of My5  and Mz in Eq. (57) are
replaced by the expressions given in Eqs. (110) through (114) of AppendixI. Then by employing the relations

ZYesine + Yeacose - Wee / + Ve' (58)

Zseo c Os® -7seaSin® W ' + Ve 8 /  (59)

sin -E) of 11 A I/+ A I2i
5eCOS@ W (e') We - - vee"

(6o)

75/ COS® + 5 ,sinea Ve Ve(O') 2 - 2We-WeO
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and by neglecting higher order terms in accordance with assumption 10,
Eq. (57) becomes

-2®si®f Szsd + --,, W"T -

- 'z 5 os + Sy5sinfl + ,, + Ved) + 2ecose [fi-,ol'

+ 'YI 0cg( D)xsYIocg:o + @"[My Si@+ CS

+8 0-W si -iPy Cos ® +2®9] 2®[sin @ (iinA) Y5-iA)z5 COO

-(mA)' cos G - (mA)l sin ®

(62)

The flatwise loading eauation can now be expressed in the desired form if
the 0" and (9,)2 terms are expanded through use of Eqs. ('5), (55)
and (56), and if higher order terms are neglected in accordance with
assumption 10.

/rT T FT-Ery(W 2Ve) =-2®'{ sin ED z 9dZ +cs CS Sy d}- We -§ xsd
f- 5 f_1 / x§Y--51

OS@o + SySin G + Sx5lwe'4veG) .2Ocose[lky,o]

+'5:O , Sx dC + tYeAe/o -d
rT 5 cw ?SII

rcw

+26' [ffA) sinO@- (MAi)z cos] -(ii) cos 8 -UA sinA)

(63)
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Edgewise Loading Equilibrium Equation

The desired edgewise loading equilibrium equation is obtained by differ-
entiating Eq. (56) twice with respect to T . The resulting equation is

[gz(V- 2W-e'8') - A gnX , d ] //

-E / []zsin@ + i~cosGe + (BY [ 5Cos ® + y 5sin 8]

20.[19zMzsin® +-WCos ] + _zcos 8 - 1y sin (

(64)

Substituting (from Appendix I) for the derivatives of My5 and Mz
uising Eqs. (58) to (61) as required, and neglecting higher order terms5

where necessary, allows Eq. (64) to be expressed as

ve -" ,, , / e--e FT F - Cd1,

- _ @"[ 5sin ® + "ycos @ + (1Y)2 [ Cosz s CO ® sin 61

FT r

+S-z5 sin®0 - (-Wee+ Sx + 2YoaS)eyoO 8iSTzo) -

+ 29'[ (M")zsin E + (mAin O® (~);CS®a ~ sin@

(65)
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I- 
Or, expanding the 9" and (®) terms through the use of Eqs. (45),
(55), and (56) and neglecting higher order terms permits Eq. (65) to be
placed in the desired form, as follows:

F'T F" -

[(Ve -Wee A 7, + , -+ Mcz d }

2' - sinf dJd+ COS @ TSz d +Ve Sx +- OS

Sz5Sin @-(-Wee'+Ve)Sx 5+ [o) , sin ek10M

+ 2®[ (Th)z sin ® + (IA) cos - (M)/ cos @ 4- (nA)/ sin®5 
Y5

(66)

Torsional Loading Equilibrium Equation

The desired torsional loading equation is obtained by differentiating
Eq. (54) once with respect to r . Prior to differentiation, however, it
is convenient (1) to sibstitute for M with the use of Eq. (106) of
Appendix I, and (2) to simplify the and i5 terms in Eq. (54)
with the use of the definitions below:

Y5@ 0 V eCOS 6-WeCOS Os -ein e-8'V, sin e (67)

5 vesi 8- Wesine +Wecose+ Vecos 8 (68)

The resulting expression for the torsional moment equation is then

rT .

- ,,,i,'/ /- -2

GIJ e+ 6~e kA J, Sd~ J:f (FnA~) + 7z( 5eoYe()

' - -'5 M)dT+ 7 ID

, r mT 0 I0i V2O -22x I'll Xlr'

S(6e-I3) COS2 d -2Ji kz, e+S d-2f yo2~eCosid"'

Y5 75 ea+ Vz5 Y5eo

(69)

20



Note that all quantities appearing in the various 
integrands above are

functions of the dummy variable of integration z , unless explicitly

indicated to be a function of T . Differentiating Eq.,(
69/ with re-

spect to F and using the definitions of Y." and Z. along with

Eqs. (55) and (56) to eliminate M, and eo results en the final

torsional loading equation below: 5 Y5

[G4Se+( ( 5 d I (.t-5  I 5COS® (9Y 5 sin .(

2 -- 2 Xx X -2 -2

-;2 X/ X 2i X
+ 2M k sine(Ve -87e) + 2mfkyocos(we +e) + x(KD)x,5yo(eVe8)

Z10 Y1 - oc

+ %e42~'' e Xd + 6 . M~ 5 df]
ccw

+ (EIz-Ey) (We Ve - 2 We e+ 2Ve"1e:') (70)

MODAL EQUATIONS OF MOTION

The preceding sections of this report have been directed toward the der-

ivation of the fundamental differential equations of motion (Eqs. (63),
(66), an (70))governing the forced response of the elastic motion of a

twisted rotating beam. These equations have generally been derived in

terms of the local dynamic and aerodynamic shear forces and moments. Ex-

pressions for the dynamic shear forces are given in Eqs. (102), (103) and

(108) of Appendix I, while the aerodynamic shear forces and mechanical

damping forces are derived in Appendixes II and III respectively. Examin-

ation of the dynamic and aerodynamic shear force expressions indicate that

closed-form solutions to the blade equations of motion are not possible

because of the nonlinearities present. Therefore solutions must be ob- I
tained by approximate means. The particular approach employed herein is a

modal approach wherein the elastic coordinates We , , and e

are expressed as finite series --unmations of assiuned radial shape functions

(mode shapes) with each suitably sraled by time-dependent generalized coor-

dinates. The series expansions employed are

5
= I (7) q,(71)

2
'e (7, iY(F ) (72)
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3
8, ,)=T=,Ye (T)qe 4') (73)

Note that the number of terms retained in the expansions of We , Ve
and 8e are 5, 2, and 3, respectively. The radial shape functions
(hereinafter referred to as mode shapes) employed in this analysis cor-
respond to the natural vibratory mode shapes of an untwisted blade mounted
on an unaccelerated rotor hub and operating at zero pitch, flap, and lead
angles and at a rotor angular velocity, S . As indicated in the anal-
ysis which follows, the substitutions of Eqs. (71) through (73) into Eqs.
(63), (66), and (70) permit these equations of motion to be expanded into
a system of simultaneous differential equations with the generalized co-
ordinates as the unknowns. Further, because of the orthogonality prop-
erties of the particular mode shapes employed, the resulting system of
equations can, to a large extent, be dynamically uncoupled as far as the
blade elastic degrees of freedom are concerned. As a result, solution of
the equations through numerical integration techniques is greatly facil-
itated. Details of the procedures followed are given below.

Flatwise Modal Equation

Substituting Eqs. (71) through (73) into Eq. (63), setting (FA)y5
(RA and (SA), equal to zero in accordance with the results of

Appendix II, and employing the uncoupled free vibration form of Eq. (63),
i.e.,

E.yWn M Ynr

(72)



r.

permits Eq. (63) to be expressed in the following form:

+ co @ fT yd'}- yw'q [ 'Tt )xsd -j4m(e+)d "]

- F cos®+ sin@+ n 'q [ -d n (j+C) e_

Zoato is5 use yhrb th uain limis areno exprlic+tlyD idicated v

2cos 0 ( e t + o yiO :bo 8 e f.

+ AeA Oe"J f-Mw Dxs 75

Note that in Eq. (75) and in succeeding equations, a shorthand summation
notation is used whereby the summation limits are not explicitly indicated
but rather are understood to be those of Eqs. (71) through (73).
The integrals containing the Z5  and y. shears can be simplified con-
siderably by noting that when the response of a beam is represented by a
summation of modes, the shears at amy point on the beam may be expressed
in terms of the modal inertial loadings and, hence, in terms of the modal
amplitudes and associated modal natural frequencies (Reference 5, p. 641).
Thus, the following relations are valid for a limited mode analysis:

Z5 d wwdq r w .wn cos8d +Z (1+ Wv )qv.f my, sind,
r r (76

(76)

T T
i (3=- I-Wwj myw sin8d + (i +Z.v,)qv' J~ffxV COS~r r

(77)
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The '' n the second surmations above result from the centrifugal sb~ears
associated with the uncoupled edgewise modal displacement. Employing Eqs.
(t6) and (77) and the definitions of tz 9Y 1 (DX

(90)X 5,yIcOC-0 ad0fo Appendixes I and5II permits Eq. (5 ob
expressed in the following form (after higher order terms have been e'.im-
inated):

r

+ I ye fq 6 k +8B(-r))c+ q ( + +-2 T~jy

+ 22y 9 Wq fryw, (-8eB+e8B F))d + + -, v M/,n~

X

mr- y -2 os 80( 2)'-(6+~ - -q

-Mr61 Zy M 80C 10 k kq 8 k)' 10 Cr

+SA- FD- PR )Z5 Co SA- LdY 5 sin - e13Cos 8-j 8 sin 8o

+2:) w q "(-e X2P6+ s X In2 -I(I - coS 280I- 2e8siri280~

-8(i- cos280 ) )]+C71 +Zy q )[,S( I-coS2eO)+±(sin28 +2 8COS28 0)

KS9 M r..V 2 0

+Bsin280 +q1 ;Ymv [28+ 2)3] + 2:yv qv.2y1 0 sin 0

rr8+r +cwdr]+q
-YA Cos 20 -)G(co n 0 -86 sINn k )

q238co8 0 gCos8- + 6 Tky d +r os +)) cos e6 8si n O

(78)
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L

F The equations of motion for each flatwise mode can be obtained by consid-

ering the work done during a virtual displacement of each mode. Formally,

this invloves multiplicaion of Eq. (78) by Ywi  . integration over the
blade span, and application of the orthogonality property of the assumed
uncoupled natural modes, namely,

Zf n y w4  w dT= ffy2 (79)
n 0

This procedure yields the following equation of motion for the ith flatwise
mode:

0 
r oLi ~ Y - rT 1S~cs - sinJ dr-MPRCOs 8 PR(YW'L +sinLDMD W,'1

-CSFDMFD(YW/1=o-Cl [qiql<W-O-/0 sin2eo- (

x 
2

2 2q -e w +8 sifl2eo +28(C - C)
2 x . i/I/ I i ii 1 I 81, I/ 7

-29o 0(c 65 -C69 ),,, ] + _ Vq, [-o- (,-cos20oo)I(,+28)sin2oP

-I Cos 28 0 (C-0.75 C3 ) 1 C2 7  + 2e(W, ) 8 I,,- ,91c5 ,}

jI I,i id+ -
2[&si -2) + sin 20o q8 j co2v :i+-(!V'c753)8Co

-c 6 +[Oo+ ,, -cos2o + 6 ((

2 +2 ) sG )s(80)
where the various modal integration constants (e.g., i  ) ae defined

in Appendix IV. Eq. (80) above is the final flatwise modal equation of
motion. Note that in this equation, as in the final edgewise and torsional
modal equations to follow in the next sections, the modal subscript nota-
tion has, for convenience, been standardized so that the i subscriptrefers to flatwise modal quantities, the p subscript to edgewise modal
quantities, and the j subscript to torsional modal quantities. Where
products of flatwise modes appear, I' subscripts are introduced to dif-

eo+ I

'werenitbewetemasoitdwh the various moalinegations cosatTh~. h a e e

mon. Not subhrit inthisil equatios io theia edgewise and torsional

quaties, andrtheoreuEscrp to5) torsinanl modal uabnsbtis.ted
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for the flap damper, lag damper, and pushrod forces, respectively; and the
integrations over 7 have been performed to obtain the corresponding
moment contributions defined below:

CLD / x X

MLD: CL l8 X V !(qVcosO0 q
MJR R3  8+ P) SLD qeosi LD)

0(T ) ( qw, sin 8D+ qw,8oSe, 0 )]
I :0

(81)

CFD x
MFD m091 R3  + Y(wi),(qw COSFo-iW o sineFD)

tx

+ Y (P)o(qv DSin8FD + 80COS8FD)P F

(82)

M PR ton 83 (-4.o. 6ei )rxo q6j (83)
IJ

Edgewise Modal Equation

The desired edgewise modal equation is derived in a manner entirely anal-
ogous to that followed in deriving the flatwise modal equation. The free

vibration identity and the orthogonality condition for the uncoupled edge-

wise modes used in the derivation are

// FT

Svo] + Fn iff -R+F) d M

(84)

rT  F T

M 0 0 (85)

The resulting edgewise modal equation is (with the standardized ,

p modal subscripts)

O fT [SAy 3 COS 9+ (SA)zsinE)] d-F (v/)FZ0 MPR sinlPR

-(DV/) sin8FD MFD -(Y COSeF.L - C14p ['Ivp + q vP

P ?.0 VP F: 0 2

26



S- 2 Ro -/s~ 2Go -s-\2 1

0 80 R( 82)(It-COS28 0 )+I
+ qvp,,-C 34  ' sjn 280 + 28 (Ca0-Ci 8 ),-24,sin8o(C +C+ p
+ 26, C21,, (,cv2] + 0+, .cos. 0 (C51+C98,2c 7 ,.

-22,
-2 Zj x q,, q.,.., c75,,., + Zj qw, [c2.. -261,,, c,0w ,,, C22

-C3 (e 0 G (I+cos2eo)+ a(+2S)sin26°)+OiC 5

X

- e cos28(C 5-0.75C3);,p- 2 0 cose° ( C53+ C9 9+ C81 )1 ]
+ q 8 (+)g)-sin8(C +C + C, J + 2 q8, 74

+ g r-c sin2 (8 /,+,C)cos °  si n8o )] -C,, ,+ e-c K -Sifl~ ~] c 5 Leqssn

4p,i  0 Pi P

+(-2d +)C O - 3+ )cOSeo -[(3x+,9+2 o8)sin 8,

+(8- 2/f) cosO~ - C3 [~P )cos60 - 8sinGj+ c 8o +2p38o

+ sin2o +-L (I+28)(I+cos2% )]-sin2C68C + -(Co+CT

II

+ C23) +( 1+ 28 )(C5 2+ C7 3 +C + C2 4 2eO sinoc 1 86

aThe modal integration constants are defined in Appendix IV.

Torsional Modal Equation

The torsional modal equation is derived as follows: First, Eqs. (71)
through (73), (l7), and (148) are substituted into Eq. (70) and k 2is neglected compared to 2 (a valid assumption for blades havingtin neg lectedcopredt rs (a Next, a sum ional fr e avionthin aPi'.oil-type cross sec'tions). Next, the torsional free vibration

identity for uncoupled vibration,

i [~~~I GJ'j k+TY/ kA4 rm(e+([)d ]'-kzy )' -rnkZy)8 , -2

(87)
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and the shear force definitions of Appendix I are substituted into the

resulting equation. The final torsional modal equation is then obtained by

multiplying the torsional loading equation (as modified by the above oper-

ations) by S8 , by integrating over the blade in the F direction,

and by applyingJthe orthogonality condition for the assumed uncoupled

torsional vibratory modes, namely,

fT_ 2 _- 2 2 d (88)

k 0 ~ ~r~ 0  y6

The resulting torsional modal equation is (with standardized modal sub-

script notation being used)

rT
0- I (m ) dr+C +c.s26c8 - x" -C q8

78j Ax 5  C37+ • qwiC62 i,-361

+ C36 q8 0,-( -- co s2eo)-C 8 o+-2 (+2)sin2eo+ x (,-coe)]
1 0j 16j 2 ooj

-Zqwqv C4 6  +1,iel q--qw q 8 1 + eZqv qv ,C3 9
i p P - , "i lqwitC381,I; I  p p, p PP

+ Zqw, [20 osi n 80 C;110  P/P-C6  X%2- ,-,+2 ) c8 ,,o
x 1

-2/38 + . sin280 - 2 (0I+2)(I-c0S2eo)>+sin 280C95..

L 2 74 ,,(o J2v7p,, , ,
p )+ PI Pd 1 p 11 psi Pd c7
x I x]

+,8 (I -cos2e o  .-F (I +28) sin2o> -Cos 20Cii4Pei

-ZZ 2C,,,. q (qv cos8o -qv 80sine0)+Z2C,, 2 q, (q, sin80
i P X i'P'I I P - Pi il l

-qw,, 80 coS8 0 )-C92 [e (Pcose6- o Ssin8o) +_ -coseo-os ]

-C9 3 [(xK+R+ 2 j88)coS80 -( x-2/3 8)sino +c94[ (,3+,3)sin6 0

+8'cos e] + Zqe c, (x+/)sineo- xxcoseo]
Yo 113 ilL 2(89)
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EQUATIONS OF MOTION FOR BLAUE FLAP ANGLE
AND I EAD ANGLE DEGREES OF FREEDOM

FLAP ANGLE EQUATION

The flap angle equation can be obtained directly from Eq. (98) by setting
the F integration limit to zero to obtain the moment about the flap
hinge. This, in turn, is equated to zero. With the elimination of F
items in the integrand, (the dummy variable of integration in the
direction) can be replaced by F to yield the following equation:

IT

0 {(~Y 5  5~ 5~ ea +iCg Sin '0cg-

X 2 2 + ~2Si2)}r(o-26 m(kylocos 8+k sin0)l dr (90

Substituting the shear force and moment expressions from Appendixes I
through III, and the modal expansion equations (Eqs. (71) through (73)),
neglecting higher order terms in accordance with previously defined assump-tions, and noting that the uncoupled flatwise and edgewise mode shapes are,

for small hinge offset, essentially orthogonal with the function r
results in the following desired flap angle equation of motion:

r

-o f- -- e/3 +,-I ,+,8 (I + 2

c97[ecos e o-2sine Sineo-(1+28 )sineol

-tan (GJ), oC cos3 0 :Oe I 10

+j- q, C sine o+sinO oC9 6 1 (91)
P p 1p

where
r
T 

( 2MB rcg f mrdF (92)
0
r T

2-fi~ d (93)

0

29



LEAD ANGLE EUATION

The lead angle equation is obtained by setting moments about the Z4
axis to zero. This condition, expressed in terms of "5" axis moment com-
ponents, is

(MZ4 )70
= 0 = (MZ5 =O (I-/3 2,2 ) + (Mx5 )7=0I? (94)

Neglecting the latter term as higher order (because of the small magnitude
of MX5 and using Eq. (105) to evaluate the Z5  moment at the root of
the blade yields

0 :(I -1 2/2){fT (&M .~,.-S~s-~O®SDx5~I~0 6 5 Sr - x5he YIeo~gCs S 5 YlOcg : 0

+- 2- 2 r+emsin28 ( -k 0  Y0 )Jdr

(95)

With a procedure analogous to that followed in developing Eq. (91) the
following lead angle equation is obtained:

0= -MLD+ (1 ,-82/2) 0 r(SA)y5 dr-(e8+gY5 )M1rC9-IB(8-2/3,)

XX X
2  

X

+C 9 7 (o0sineo + oC°SOo + 2/38 0coseo + 2/3 sin8o) - [cos8o2 qv C1 5P

-sin8 o i qw, Coi +cosO 0 C9 6 ]

(96)
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SUMMARY OF PRI.NCIPAL EQUATIONS

In view of the length of the analysis described in this report, a summary
of the principal equations is given here.

The blade equations of motion are as follows:

Flap Angle - Eq. (91)
Lead Angle - Eq. (96)

ith Flatwise Bending Mode - Eq. (80)

pth Edgewise Bending Mode - Eq. (86)

jth Torsional Mode - Eq. (89)

The above equations of motion are given in terms of section aerodynamic
forces and moments, flap damper, lag damper and pushrod moments, and modal

natural frequencies and integration constants. The section aerodynamic
forces and moments are given by Eqs. (141). (142), and (146); the damper
and pushrod moments are given by Eqs. (81) through (83); and the modal
integration constants a-e defined in Appendix IV. The required uncouplad
blade mode shapes and frequencies can be determined from an appropriate
eigenvalue-eigenvector analysis.
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CONCLUDING REMARKS

The differential equations outlined in this volume are an extension of an
existinr Sikorsky Aircraft advanced method for the prediction of rotor
loads, stresses, and performance. In most cases, these predictions will
be gooL approximations of actual rotor behavior. In some instances, how-
ever, ansteady aerodynamic effects will be an important far'tor. Therefore,
the te.sk of including unsteady aerodynamic effects in the :ormal Mode
Trans;.ent Analysis should receive further attention.
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APPENDIX I
AERODYNAMIC AND DYNAMIC MOMENTS AND DERIVATIVES

IN THE RIGID BLADE AXIS SYSTEM

The expression for the acceleration vector developed previously (Eq. (38))
is employed herein, along with the force and moment diagrams presented in
Figures 2 through 4, to determine expressions for the total aerodynamic and
dynamic moments acting at a given blade station. These moments, for con-
venience, are expressed with reference to the Rigid Blade Axis System ("5"
axis system).

MOMENT ABOUT y! AXIS

The moment at a blade section at r about an axis which is parallel to
the Y5 axis and which passes through the elastic axis of the section
can be obtained by integrating the elemental moment contributions due to
the aerodynamic and dynamic forces acting on all sections of the blade
outboard of the section u,,er consideration. Thus, in Figure 2, the
desired moment at station r is

rT

Y(MA )Y5 +(M D )y rT{mA - [(SA 5 + (SLD~z 5 + (S~ FDZ 5

+(SpR)Zm ] (x5 -x 5  (r)) + (SA x (Z5 -Z5 (r))}d

+ frrjc {O 5[ x 5 - x 5.(r)] -x5[ZS -z5.o(r)]dmdC (97)

r C .LO j

where (S)z5  and (SA)x5  are the aer'gynamic forces per unit span in the
Z5  and X5 directions, (acting at the elastic axis) respectively, and

(mA)y is the y component of the aerodynamic moment per unit span.
The teri s (SF)z , LD)z , (SPR)Z represent the shear forces per
unit span in the5 Z5 dirction intr4duced by a flap damper, a lag damper,
and the control system pushrod. The precise nature of these forces is
described on p. h9 . All quantities on the right-hand side of Eq. (97) are
functions of the dummy spanwise variable, C , unless explicitly indicated
to be a function of r (i.e., the radial location of the blade section
for which the moment is being determined). Also, the differential, dm
denotes the local blade mass per unit area while the integral subscripted C
symbolically indicates integration over the chord of the blade section.
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Substituting Eqs. (35) through (38) into Eq. (97) and performing the inte-
grations over the chord, yields the following:

MY5: frT{f (MA )Y5 - [(SA) Z5 + (SL)Z 5 + (SPR)z 5+ (SF~z 5 (X~e_5.jr))
r

(S A (Z5*0-z! (r) )I dC +jTm(C - r ) leQI +(Oe+Y,ceekcose
- 2( e+Yiocgbe )b sin -(we+ y'ocg0 e) ('sine+ 2cos9) +vesin

+2Ve CeS8+ + YIOcg)(ecos e-e sine) + 28a[ecose

(Ve+ Yo,,g)4sin 8 - Wesin- we 6 cose] + r [/ +, (.j+ 23)]

r r vm [ws i e (r)cos 8 (r)

-ve (r)sin9(r)] {-eQ2+2Ryo,9 esin 6 - r (U12+ 22)+ gx 5 } dC
rT 2 8 2 rT

- 2QfT~k~-ec~ UOI+J m 10 
8 cosf rdJhyo sinfff-e&22r '10 r C9r C9

-21 [;ecos 8-ve sin 8 -WeSinl -We ecosS]-r (If+ 2n;) +g dC
rT2%f r mkzo 6s ina8d C (98)

where the following definitions apply:

fc dm Em (mass per unit length in r direction)

f Z1O drn a o. (i.e., blade section c.g. lies on the
Y10 axis -- this is true for symmetric
sections, and errors introduced for rion-
symmetric sections are believed to be
negligible)

fY 10 d M (y6 ) (first moment of section mass about
C Icg elastic axis)

Yo Z10 dm --O (i.e., the y1O axis is an axis of
symmetry)

f 2 dm Emk 2 (second moment of section mass about
Y10 zZ, axis)
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f Z0 dm mk 2 (second moment of section mass about

Equation (98), after nondimensionalization, becomes

MY5  r8e

+ ee COS8) (SO) X5 Y 6C:O28m (kyIOcos8+kzjOsin8II dc

(99)
where the following definitions have been made:

S - (SA z+(S~) 5  ~ +(SDz+P 5  (a)

S X5 SA5 + S (101)5V

f+( I + 2 -2 10 sinO8

(102)

xx X xX

Z5 - W Y.O cos8 6-n

SID) e e(103)

Z~~~~~ea~~~ e)o eCS~Sf8~?)O sin~ sn8
2lu
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When (SD)x 5  is defined as in Eq. (102), it is recognized that upon sub-
stitution of Eq. (102) into Eq. (99) certain products will be neglected
as higher order in accordance with assumption 10.

MOMENTS ABOUT z5 AND x5 AXES

If a procedure is followed that is exactly analogous to that followed in
developing the Y5  moment and if Figures 3 and 4 are utilized, the
following expressions for the moments about section axes parallel to the
Z5  and x5  axes can be obtained:

T + - 2 2
5"5 0 -ky5o5e}de"

Ylocg (cos 8-esin 0) ( X5D)x- O0+8msin28(k 2  )d2

(105)
FT

MX 5 (A)X 5 +( iD):5 (Fn)X +Z 5 (Y5 ea y5 e a _§Y5 Z5 ea - Z 5 (a

+ Yo [ (§D), 5 ,Yocg'° (cose- esinO) - ( D)y ,,oOC90 (sine8 + ecoS8)]
W -2 ' xx xx x2 2

+F (Z10 +kY0)(--8 -,G) + Fn -Y,o- Zo)[ ('+28)sin 28
- 22 _x 2 i!

+(e-A)Cos 2 8] - V9i Z, sine + y0 iec0s 8] } d 16

where
Y5-- (§3A) Y5 

+ (§D) y5 'l" (S90)y 5 +t (SFD)y 5 + (SpR) y5  (107)

()Y5 {n f S + CO_8 2V -(e+ c)(s x2
(D { e eOsine 1 0 e cos8)

-(N Ye , ocgx e)sin 9-2W&e+ oc xe)eCOS)(W(e+ )Oc o,We 8e 9 e)(ecose- sine)
-3 [we cos8- Weesin+ in + (x + )ocose]+)

- X/ X

-Yo,- 2,63 I~COSG+R +Yiocg~Isifl8] - (1i +2a) L(Ve +iyocq) COS 8

-We sine]1 + Yiocg e Sin 8O- y5} (108)

Ys5 -75e, (T) = VeC°S 8-, 7e sine- e (Mcos8(T +_e( sin8(F)

(109)
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In Eq. (107), (LO)y , (FO) and ( PR)y5  represent Y5  components
of the lag damper, flip damper, and pushrod forces, respectively. These
are given in Appendix III.

SPANWISE DERIVATIVES OF MOMENTS

The following expressions, which represent the first and second derivatives
with respect to 7 of Eqs. (99) and (105) and the corresponding first
derivative of Eq. (106), are also required in the derivation of the final
modal equations of motion:

-M Zeo ( d 7 ,oc, sin8(9so)5,,

2_

+28 mi'i (ky1oCOS_ 2 + kzsin'8)

(110)

-) Z5e ( sinr, 0,, (Cg o + (miA)y5

-2 0 -2 \ l

-28rn k 8xosO +kz sin2 e)
(lll)

I : Yri- + )9} d +,o0COS (So) -,(,fio

Mz~ 5  ~e y 5+y 1  X5,E+IioY 10~ (D 0

x 2 _2

-F m sin 28 (kzo Y10 )

(112)

_. _ § _, _ _ X Sxd +[7,o¢gCOS ®(.D)., -(A) z

M= y5  50e S+ Y5o 5 yd A Y C [

(113)

_/ _+ Z5- _/ d_ - "fn~ 1c (DCS

~Z 1 )[ Y1

-2 -2 2\1-2 x

-kZ~o 2 +a)sin 2e+(ee-/3)cos 2 + 2i- kz~ove sine+ 2 Fyloe COS e

(ll,)

where the angle @ is given by Eq. (45).
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APPENDIX II
AERODYNAMIC SHEAR FORCES AND MOMENTS

To determine the aerodynamic shear forces and moments acting on the rotor
blade, a blade element approach was followed that utilized the quasi-steady
aerodynamic theory as developed in Reference 5. Quasi-steady theory neg-
lects the effect of the wake generated by the blade, and its use is dic-
tated by the lack of a generalized, variable-inflow theory applicable to
rotating wings in forward flight. In the analysis herein, the apparent-
mass terms appearing in quasi-steady theory have also been neglected as
second order. The primary differences between the resulting quasi-steady
aerodynamic expressions and those predicted by classical steady aerodynamic

theory are that (1) the aerodynamic forces are determined by the velocity
components at the 75% chord point and (2) an aerodynamic damping moment in
pitch, md , is predicted. The use of the blade element approach implies
that radial flow effects are also neglected.

When the aerodynamic shear forces and moments are derived, reference will

be made to Figure 5,which shows a cross section of the blade as well as

the relative air velocity components UT and UP . The tangential

velocity vector UT is parallel to the plane of rotation of the rotor

and normal to the local X10  axis while Up is normal to both the

local X10  axis and UT  . UT and Up thus lie in the plane formed

by the blade section axes, Y10  and Zo . Within the assumptions of

small elastic rotation of the blade section, the incidence angle E is

equal to the local total pitch angle ( . The aerodynamic force and

moment components in the "10" axis system are then

(SA)z10 = (.coso + dsinO)cose - (sino - dCos#)sinO

(1.5)

(SA)YlO = (tsin - dcos4 )cos® + (1coso + dsin4,)sin

(116)

oSA,0 (117)

(mA)z 0 =0 (118)

(mA)Y = (119)

I)Y0

(MA),O mc/4 + (.cosO + dsin))y 1oc/4cos9- (Rsino -dcos4 )ylOc/ 4Sin@+md

(120)
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The above forces and moments can be resolved into the desired "i5 " axi
components (using previously defined axis relationships) to obtain, after
nondimensionalization, the following:

(S4)s 4-I03 d sinc (121)

(SA 5 Oyssino - dCoso (122)

(§A )xg -(A cosc6 + dsino)(X~cos@ + X sinO)

-(Asino - dicoso)(- XsinO + X2COS@D)

(123)

(rnA)z1 s [ric/4+ ffid + (ICOS# + asi'nO)Vy04oS®

-(sinO - ;cos4M)o05ine][xCOS@D + X\2sin@]

(124)

(inA)Y5 [;C,4+ 'nd + (.7COSO + asN#)~z

-(7 sino - Ucoso) inlrx COSE@ - 'A, Sin(SJ

(125)

(rnA), FnCi4 + rnd + (7cosqS + dsino) OACOS()

-(7. sifl - CO ) inG

(126)
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In the above, P is the local lift, d the local drag, Fc/4 the
local pitching moment about the 25% chord predicted by steady-state aero-
dynamic theory, and md the damping moment predicted by quasi-steady
theory. With use of conventional aerodynamic notation, the following ex-
pressions are readily derived:

2o R(iC (127)

- = d I .,p_-_C (128)

____-_/ u \

mogf R2  2- £2fUR RCC 19

!I

_______ _M0 _ ) _Lc

- R
Md d 2- ___ _ -

MdR 8mo)R\42RR

(130)

In Eq. (130) the quantity ao  represents the nondimensional distance
(in terms of 50% chord lengths) from the mid-chord to the pitching axis of
the blade section. The quantity ac is positive when the pitch axis is
downstream of the mid-chord. For a rotor blade, the downstream direction
depends on whether the 1,2lade is in conventional or reverse flow. Hence, ao
is

C T2%I4 2 (conventional flow)

2 (reverse flow)

(131)
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The aerodynamic coefficients in Eqs. (127) to (130) are functions of the
section angle of attack and Mach number, as determined by the velocity
components at the 75% chord point. From Figure 5, the angle of attack is

a, : @ + tan- I Up (132)
UT

The relative air velocity components are given by

UT (VY-O)- cCos E VZIy sin 9 (133)
nR4 4

Up -- (7z0)_. Cose 19 - YOj sin@ (134)
4

Or.,. expressing the "10" axis velocity components in terms of "5" axis
cnponxents, Eqs. (133) and (134) are

A = (VY5)3 c + (V5)3C (x sina - X2 Co S)

(135)

Up _ (VZ5) (VX)- ( XIcose + X'sin@)
nR 4 C 4

(136)

By using Eq. (29) to determine (VZ5)3 /4 C , etc., in terms of "1" axis
velocity components, by neglecting higher order terms, and by noting that

Vo x and V can be written more familiarly as
OOZI Vcos as

V6 nR - (137)

VOz - (Vsin as  (138)
S6R s
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Eqs. (135) and (136) can be rewritten as

UT + )LO

UT s 'P10 .)' + COS+ + -6 + (0-)+S )+ s
-V+ 7Io.s)esine - We + (7e+ o Neo- 4 0

Y~~oj~~ve (We 71o~se+~e)il

+(~si8.VeC ~W9 cue)0S~ - sn4)X8- 1  co s

-0 [;ie+We COS + (e YOc)si

' 4

+( i O e'sin) _1 (cs -anV_,se_/ocose)[I.(O

-e/os [ V, C~ si Wese1CSin q

(139)
Up 2 ~(-) ±(os' SnI~k

.N',inasmuch as the aerodynamic terms (S~5 ,(A 5 (i)
involve elastic coordinate factors, they can be neglected as higher order.
Thus, the final aerodynamic force and moment expressions are (after sub-stitution of Eqs. (127) to (130) into (121) to (125))

()' 2 2 mo

+ w+7=j~ sin -m)\/ (cjsin P -e+ C ecose~

(142)
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0 (1)43)

(m)Y - 0 (144)

*(mRA)z 0 (1)45)

~ (~.21[COS @ (CtCOS * + ddsino) ()6

-ie(Ci Sin4 CdCOS4)(146

The following pitch an6,.e relationships are al~so required in the aerody-

nemic expressions:.

Total section pitch angle

9 + ~e > 8o + e+ e (1.47)

Built-in pitch angle

=8 e,-(i+7-o.75) (1)48)

Control system pitch angle

I j~~~ - AsCOS *4 BIisin tanl 83  [3 4(~

1 (1)49)
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APPENDIX III
FLAP DAMPER, LAG DAMPER, AND PUSHIROD FORCES

FLAP DAMPER FORCE

in this analysis, it is assumed that the flap damper force is in the Z4
direction and is located at a distance rFO from the flapping hinge.
The damper thus provides a pure moment about the flapping axis y4
which can be expressed as

MFD= rFD c6s.8 (SFD)z4, (150)

where (SFo)T is the total damper force in pounds. For a pure viscous
damper

(SFD)Z4Tr- -CFD \ dt /FO (151)

where CFO is the line., damping coefficient of the damper in units
of lb-sec/ft and the bracketed expression represents the approximate
velocity of the blade in the 44  direction at the point of attachment
of the lag damper. By nondimensionalizing, and if Eqs. (12), (36) and (37)
are used, and if higher order terms are neglected, Eq. (151) becomes

r- xx

we eftne +ve sine +v e coseI FD
(152)

Resolving the above force into "5" axis components and neglecting higher
order terms yields the following:

(SFO)z 5 ,T (SD) Z4,T (153)

(SFD) T 0 (154)
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To obtain t~he flap damper force per unit span L FO)Z5  , it is ,ssumed [
that the total damper force is applied uniformly over the infinitesimal

interval A . Thus,

.Z5 . A for (A - -++

fr(TFFI 2 )~T(Fo-+) (155)

LAG DAMPER FORCE

The required lag, damper force per unit span, (L)y 5  , can be obtained

from ai analysis similar to that for the flap damper assuming, however,

,.that thedamper force acts in the y. direction. The following result is

obtained: f £~Y5Tfor rLD 2>r 2'~+

(§LD)y 5, = ,,

for + < <(rLD' 2) (156)

(D)5 0 o (157)

.where

(S LD)ysT A CLD' +- CO v sin -

Y5 ,T mo,2R 2 - mo0 R + e e
W sine-"We  cose]

LD

(158)
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PUSHROD FORCE

Rotor blades are generally restrained in pitch (i.e., the motion about the
X5  axis) by the moment exerted about the X5  axis due to the pushrod

nf the control system. For convtntional rotors, the pushrod force passes
through the y5  axis and is parallel to the Z4  axis. A pure pitching,
moment is thus provided. For rotors having pitch-flap coupling, the push-
rod is displaced from the Y5  axis in the direction of X5  by a dis-
tance rPR . In this position,the force of the pushrod exerts a moment
about the Y5 .axis and thus influences the flapping and bending motions
of the blade as well as the torsional motion.

Pushrod effects in the torsional equation are introduced by representing
the torsional deformation by a series of uncoupled modes determined on the
basis of appropriate roo', boundary conditions (i.e., fixed or partially
fixed). To determine thi effect of the pushrod force in the blade flap-
ping and bending equations, an expression for the pushrod force is required.
With the representation of the torsional response of the bloke in terms of
uncoupled modes, the required force is approximately given by

( zSPR)Z51T y Y JPR (159)

(§PR)y5T :0 (160)

where y~pR is the distance from the X5  axis to the pushrod. The
corresponding pushrod force per unit span is

for r pR +A <- r<-< (r AOor ( T ) (161)
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APPENDIX IV
MODAL CONSTANTS

The various constants appearing in Eqs. (80), (86), (89), (91) and (96)

are given below:

CC (162)

C1, - ?2d (163)

C.31,p. ff yw' , yvp df (164)

C4 .o i J d,-,r (165)

C51,p  y v , 7 dF (166)

C.T W (167)
f- ,. 'Y I , -!
f, oT vd d (168)

SC 101  5 m d (170)

0
C$,

Co =j f F yF M d]d(17)

(fTh
0fCi m WI(- (170)
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FT / r fn(176)

r ffrT.. (178)
c0,vT i-yyf7 cI ITr~w

-r 2 T d (179)

Cr. r +T fitFocw
Op r

23p vp A mnw AAe (180) v
Icw -Ecw(19

24 0fv(PIx)d 0. A A ~ * 0 0.81)AL

6'6A CW -2 1fxA[(I~ + (182)Od

0 33p e1  fci),?d - r.5C (183)

281,P T = p(l)y l (181)

0

C3 6  f ,2  2 (185)

c 3 1  rT ... ]I (186)
C 3 7j i' 2, Jo i rb Y 1  f , (E I Fn d I (1 8 7 )

-311, o X' (,'i (IF8

frT (188)
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C461 p,j frT r d-, (190)

C47p - o pr T d * (191)

c50 p - T xpd (192)

C51PIP f ,vogypv, (193)

C 52p frT mlvFI f(1911)

C53lp myvp , W,'Ioc dF(195)

C5 6 1  (196)

C5fi y ~ld (2-97)

e594, mT 0 T?- o.75) dT (198)

"6,fii g0 d (199)

my 1 (200)

0611 f cT (2010 1 cg

C631  fi d (202)

- rT VP 1c~'(203)

64,p f m. Y" /fmoc d d 201
0 W 1 W1  '

5h1



1 C67 '~ 4 p,, fi ld
C6 8 1 r frv~*(-.5d (206)o W1

68Ai 0 YW R 07) (207)

c fr
0 P g(207)

C70- JnvY ' dFle (2108)

0 p cg(29

0 p cgj

T Ff7 d~df (1i 
0 Vp

ft V 0 (jYv d.75d? (213)

v p r iocgdd(2 )

pi p Pt5  >cg d~(215)

C,80frTi kz (7 .5 r (216)
rT.

<dri~ m(v70 y~ f217)

82 YVP(218)
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F81 ~Ty 6  
(219)

C 84  ITm y 10 ) '6 T'd?' (220)

C85~~ 0 m ytc T'G rvd (221)

85pA~wr 0CW9

Ff d + A id,,f -M d?+WZ (223)

Y8 p r (225)
90~ 0:f r c dC

77li YyF +A ,fif ~ (226)

T -d ( 2 27 )

C f T 
(226)

TrY yTo.5d (229)

0 cJ

* 9 : 1 f "'*YeY r05 (23)

C9 6  m iogd 
(231)f

FT7  (232)

qq~i- e f floiy~jywi(-0. 5 6



98O ,0 pvP oe (233)

c 99 YWYV1 710c/gF(24

c lop. 0 v T ?P e d? (235)

rT (236)
.0 10ye Jw

fc ~ 0 6 y y dl' (237)

0 2i~pj: MY1cgoj vI I 28

cIII - ryoc- y6 ,d 29

cV (?-O.75)dl (238)

m Ylog YajYw57
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as well as flatwise, edgewise, and torsional deformations for the articulated and
nonarticulated blades. The fully coupled aerodynamic forcing functions are based
on quasi-steady theory. The differential equations of motion are expanded in terms
of the uncoupled vibratory modes, of the blade in order to facilitate their numerical
solution on a digital computer.( 'I
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