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ABSTRACT 

In the past the lateral wave has been investigated for the cas? of a 

sharply bounded transition layer and a layer with a linear velocity variation. 

The interpretation of the lateral wave given in these instances cannot be extend- 

ed to an arbitrary smooth layer, and in many cases,  the exact nature of the 

lateral wave contribution becomes unclear.    It is our purpose to clarify these 

matters and to present the characteristics of lateral wave propagation on a 

layer of arbitrary variation.    The models employed can simulate an inhomoge- 

neous plasma having a number density profile, n{2), which varies continuously 

between two homogeneous half spaces.    An integral representation for the 

scattered field in the optically denser half space is found and evaluated 

asymptotically in the high frequency limit.    This asymptotic evaluation is car- 

ried out in two parameter ranges:   first, whe'i the layf-r is thick compared with 

wavelength; and second, when the layer thickness is arbitrary but the observa- 

tion point's distance along the interface is large compared with layer thickness. 

When the la/er thickness is large compared with wavelength, the asymp- 

totic analysis of the scattered field shows that the interpretation of the lateral 

wave depends markedly upon the gradient of n(z) at the junction with the optically 

rarer homogeneous half space.   It is found that when a finite gradient of n(z) 

exists,  the conventional interpretation of the lateral wave contribution is correct; 

however, the lateral wave mec&anism is different in the case of a zero gradient. 

For observation points situated at a large distance along a layer of arbitrary 

thickness,  the asymptotic expression for the lateral wave contribution has an 

amplitude dependence on distance identical with that for the lateral wave on an 

abrupt interface.    In addition, the lateral wave expression reduces to the thick 

layer result for large layer thickness and it reduces to the abrupt interface 

result for thin layer thickness. 
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INTRODUCTION 

This report is a study of the fields reflected from diffuse plasma 

interfaces with particular emphasis on lateral wave excitation and guid- 

ing.   It was motivated to a large extent by the general lack of knowledge 

concerning lateral wave behavior on diffuse transitions.   From an exam- 

ination of the literature it became apparent that Nakamura      was the only 

investigator to treat lateral waves excited on a diffuse transition and,  in   . 

his case,  only a linear velocity profile was considered.   The diffraction 

effect in question is relevant for such applications as the scattering of 

waves by inhomogeneous dielectric or plasma ducts and the radiation 

from antennae in the presence of ionospheric irregularities.   In the latter 

case, the presence of a magnetic field may introduce additional compli- 

cations ; however,  the results obtained here for the isotropic problem 

should provide a basis for future ^tudy of lateral wave effects when a 

magnetic field is present. 

The transition layers to be considered have a monotonically 

stratified number density profile,  n(z), which varies continuously 

between two homogeneous half spaces.   The width or average width of 

these layers is proportional to the parameter L; as L becomes small 

compared with wavelength, the transition layers tend toward an abrupt 

transition.   The equivalent dielectric constant for the medium is given by 

2 2 2 
^(z) =   l-(uu  /UJ) , uu    = n(z) e   /mC       , p p o 

and is representative of a cold electron plasma with a background of 

positively charged immobile particles.   In the above formulae uu is the 

applied frequency,  m   is the plasma frequency,  e and m are the charge 

and mass of an electron,  respectively,  and c    is the free space permit- 

tivity.   The field incident upon the layer is produced by an electric line 

current source placed parallel to the transition in the optically denser 

half space. 
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Before proceecing, a review of the past research concerning 

reflected fields from stratified transition layers will be useful.   The 

ma^or portion of this research can be divided into two sections.   These 

are : first, the formulation and investigation of the reflection coefficients 

from transition layers ; second, the investigation of the reflected fields 

due to a point source located above these layers.   The general problem of 

relating the dielectric profile of the layer to its reflection coefficient has 

been dealt with in a number of ways.   BrekhovskiVh       has derived two 

representations for the reflection coefficient.   One of these converges 

rapidly when the layer is thin compared with wavelength, while the other 

makes use of the geometrical-optics approximai-ion and converges rapidly 

when the layer is thick compared with wavelength.   Since an explicit form 

of the reflection coefficient from an arbitrary layer is difficult to obtain , 

many investigators have studied particular profiles.   Hartree        has 

studied the linear layer, and Epstein       has devised a layer which is 

completely continuous.   He then studied the reflection properties from it. 

Heading       has recently generalized Epstein's results, and Wait       has 

summarized the results of many other studies. 

Although the above reflection coefficient formulae are useful, 

they can only be employed to calculate the reflected field when a plane 

wave is incident upon the layer.   When the excitation is in the form of 

a line source,  a complete spectrum of plane waves is excited.   The 

-cflef*cd field in this case can be represented as a continuous sum or 

integral over the plane wave spectrum weighted by the appropriate ampli- 

tude coefficients for each spectral component.    These amplitude coeffi- 

cients will depend on the reflection coefficient of the layer and, as a 

result, piSvious investigations of reflection coefficient properties 

become useful.   It will be the main purpose of this report to approximate 

asymptotically the integral representation for the reflected field in the 
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bigh reequency limit.   The asymptotic approximations will then be 

interpreted geometrically as rays, and the results will be conpared 

with the classical theory of geometrical-optics.   This comparison will 

clearly distinguish the diffracted rays from those which are predicted 

solely by calssical geometrical optics. 

As has been mentioned previously, all the layers considered 

here depend on the width parameter L.   As  L decreases, the layer 

approaches an abrupt transition.   Since this is the case we should 

expect all of our results to approach the field reflected from an abrupt 

transition as k  L becomes small (k    is the free space wavenumber) . 
o o r 

The requirement that k  L be small implies that the field does not vary 

appreciably over the layer's width.  Lateral waves excited on abrupt 

transitions were first observed and studied by seismologists.   Jeffery 
(8) 

and Muskart       investigated the observed waves theoretically by evalu- 
(9) 

ating the transient field from a point source.   Later Ott     and Brekhov- 
(10) 

skikh        investigated  the time harmonic point source problems.    Other 

investigators who contributed to the understanding of lateral waves on 

abrupt interfaces were Kruger       ,  Gerjouy       , and Tamir and Felsen 

Tamir and Felsen considered the lateral wave excited by a line source 

and they found that the lateral wave had essentially the same behavior 

as the lateral wave excited by a point source. 

All of the above investigators found that the reflected field from 

an abrupt interface consisted of two contributions : a reflected and a 

lateral wave.   In Fig. I  the ray interpretation of both of these contribu- 

tions is shcvn.   We see that a ray,  emitted from the source toward the 

layer,  is reflected from the interface at the angle of incidence and then 

proceeds to the observation point.   The ray contribution for a line source 

excitation has an amplitude dependence of 0(k       ) .   The lateral wave, 
o 
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on the other hand, can be interpreted in terms of a ray that is emitted 

from the source at the critical angle (6    * sin'   -/cT) .   This ray is 

refracted along the interface, and it then sheds energy into the reflected 

field.   Its contribution to the reflected field for a line source excitation 

is given by 

^~Ü 
iko[L1+Lp + L2] 

<k„LJ o   p 
yi 

where the constant a  is the excitation coefficient, and L. , L   , L, are 
a 1      p      Z 

defined in Fig. L   We >' ould note that the wave has an algebraic decay 

with distance along the interface.   This decay results from the continual 

shedding of energy into the reflected field as the lateral ray progresses 

along the interface. 

«(ZM 

Fig.   I 

Reflected Field From an Abrupt Interface 

t 



An examination of the two contributions to the reflected field chow« 

that the lateral wave contribution is smaller by a factor of k~    than the , o 
reflected wave contribution ; nevertheless, in many physically meaningful 

situations, the lateral wave effect is of importance.   For instance, when 

the transient field is observed at points located a large number of wave- 

lengths along the interface, the lateral wave contribution is seen as a 

first arrival.   For this reason it is sometimes known as a head wave.   The 

lateral wave also becomes important in the time harmonic case when the 

medium containing the source has a slight amount of loss.   The wave spends 

most of its time in the lower, lossless medium and, as a result, becomes 

the dominant effect for observation points located a large distance along 

the interface.   In our study of lateral waves we shall restrict ourselves to 

time harmonic problems ; however, the results can be related to transient 

phenomena. 

In an attempt to understand the nature of lateral waves excited on 

transition layers, the reflected field from four profiles is investigated 

here.   These profiles are : linear, parabolic, Epstein and double exponen- 

tial ; they are considered in Chapters 1 through 4,  respectively.   The 

profiles have not been chosen at random, but instead are selected 

because the wave functions for the transition can be related to well known 

functions, and because each successive transition demonstrates an aspect 

of lateral waves not shown by the previous profiles.   Finally, in Chapter 

5, the conclusions drawn from the first four chapters are extended to an 

arbitrary layer when possible .   The general method of investigation is: 

first, to formulate the integral representation for the reflected field ; 

second, to evaluate the formal solution asymptotically for thick layers 

(k L»l); and third, to perform an asymptotic analysis for arbitrary 
o 

layer thickness.   It has been found that in order to obtain an asymptotic 

estimate of the reflected field for arbitrary layer thickness,  it is 

necessary to assume that the observation point is far from the source. 
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CHAPTER 1. 

THE LINEAR TRANSITION LAYER 
1.1       InttodnctioD 

To begin our investigation of lateral waves w« rrUi study the 

reflected field from a linear transition.   This transition is composed of 

a ramp dielectric variation between two homogeneous dielectric half spaces. 

A source, placed in the denser half space, illuminates the transition and 

causes a reflected field.   This reflected field, which will be the main object 

of our investigation, can be represented by a continuous sum or integral 

over the reflection coefficient of the layer times the spectral components 

excited by the source.   The formulation and some of the properties of the 

reflection coefficient have been investigated by Hsrtree .        However, no 

attempt fans been made by him to investigate the source problem. 

The integral representation for the reflected field is too complex to be 

directly integrated and therefore it must be asymptotically approximated. 

Two separate asymptotic evaluations of the integral representation are 

carried out: first, when the layer thickness,  L, is large compared to wave- 

length, i. e., k L»l, and second, when the observation point is far from 
o 

the source.   In the first case we will obtain an asymptotic approximation to 

the reflected field for all observation points for large k L.   The asymptotic 

approodmation obtained by the second procedure, on the other hand, will be 

valid for observation points which are far from the source compared to the 

layer thickness.   In both evaluations of the reflected field,  special emphasis 

will be placed on lateral wave contributions and their interpretation. 

Before proceeding with our investigation, some of the pertinent work 
(14) 

that has been done on similar problems should be mentioned.   Orlov 

has found the ray trajectories which are reflected from a ramp dielectric 

variation as shown in Fig. 1.1 when k zT »I.   Here z. is the width of 
O     Li Lt 

thr*       Men of the dielectric layer which supports propagating waves. 

..gat modification, these results can be used to give the structure 

of the reflected ray trajectories for the linear layer when k L is large. 
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In the text we have not used Orlov's results directly, but instead, have 

rederived them.   An investigation of the lateral wave which is excited in a 

medium with a linear velocity transition, has b',en considered by Nakamura 

when the observation point is far from the source.   Because of the analogous 
I 

behavior of acoustic and electromagnetic waves in media of the type being 

(considered here, Nakamura's profile is equivalent to an inverse square 

dielectric profile as shown in Fig.  1.2.   / comparison between Nakamura's 

lateral wave and our results will be made in an attempt to determine some 

of tiie invariants of transition layers. 

; 

1.2 Formal Solution 

An electric line current source of amplitude J is placed in a stratified 

dielectric medium,  e(z)9at x = 0 , z = z' and parallel to the y axis, as is 

shown in Fig.  1. 3.   Under these conditions the only field components 

excited are E   , H   and H   .   The electric field obeys the inhomogeneous 
7(15)X 

wave equation»*-*' 

[v2 + k2e(z)]E    = - iiau   J6(x)6(z-z/)   . (1.2.1) 
o y o 

We will assume that 

J =  l/(ia)u ) (1.2.2) o 

to simplify Eq. (1. 2.1).   The particular dielectric variation to be used is 

given by 

e(z) = 

1 ,     z>0 

Az/L+1      ,     -L<z<0     ,        A=l-c (1.2.3) 

e. ,     z<-L 

and is shown in Fig. 1. 2. The dielectric constant of the homogeneous region, 

z >0, has been chosen to be unity, but if the dielectric constant of this region 

is not unity, Eq. (1. 2.1) can be scaled to produce an equivalent dielectric 
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►Z 

Fig.   1.1 

Orlov^s Dielectric Variation 

(o) LINEAR PROFILE 
(b)  INVERSE  SQUARE 

PROFILE 
(b) 

/•> 

Fig.   1.2 

Comparison of Nakamura's and Linear Dielectric Variation 
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constant which is unity. 

Since the medium is uniform in x, we will represent £   by mean« of 

its Fourier transform ♦(*, p),   i. e.. 

k      +• ik px 
Ey =   IT J   *(e'p) e   0      dP- (1.2.4) 

By using the above representation for E   , Eq. (1. 2.1) reduces to the one- 

dimensional Green's function problem 

-~   + k^ [e(x)-p2]|  »(8^) = - fi^-z') (1.2.5) 

with the boundary conditions that *(z,p) must be an out-going wave as 

s-«±». 

In Appendix A the formal solution for the Green's function i{z, p) is 

obtained for an arbitrary layer variation in terms of a pair of independent 

homogeneous solutions to the wave equation in the layer region.   For a 

layer with a linear variation such as the one under consideration here, 

two independent solutions to the wave equation in the layer region are 

A.(§2ei:iTT/3)whert Ajis the Airy function ind 52 = (k^L/A)2/3 (Az/L + 1-p2). 

By using these independent solutions in Eq. (A" 13) and in Eq. (A-7) we obtain 

an explicit expression for i (z, p).   We then substitute i (z, p) into Eq. (1. 2. 4) 

and obtain an integral representation for the field.   It is 

E    = E ^ + E (1.2.6) 
y yf yr 

i     r     ^ Cpjz-z'l+px] 
E^'^rJ    _£_ dp (1.2.7) 

-   P2 

+-    F     iko[P2(z*z') + px] 
E       -iff      — dP yr      4TT    J        p, r yr      4i.     Jw     p2 

(1.2.8) 
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where 

with 

t 
h 

'-£ (1.2.9) 

/    2 -in/3. . ,    i5n/6A ..2 -iTT/3.| j.,.^ +in/3,A_   iTT/64  ._2   iTT/3%| A.C?^ ) + ?1e A-^?!« Hpl^i* , + ?le       Ai(?le        'j 

i5Tr/6    #p2 -in/3M   ,   2 +in/3-. _   in/6.   „2 in/sj 
Ai(?2e Hri^Z6 ,±?2e       Ai(?2e       M A^^^h 

.1/3 ^j =  (T/A) '    pj       .        T = koL    , 
2 2 (1.2.10) 

r 2^ pl  = CVP 3 = [1-P2]*    . 

In the above expression for the reflection coefficient,   T ,   the symbol 

A'.{z)= dA.(z)/dz  .      The branch cuts for the square root functions p. and 

p   must be specified if the integrals in Eqs. (1. 2. 7) and (1. 2. 8) are to be 

completely defined.   This specification has been made in Fig.  1. 4 where 

the top sheet of a four sheeted Riemann surface is shown.   To clarify the 

designation of the top sheet, the sign of the real and imaginary parts of 

p   and p    have been given in each quadrant.   On any particular sheet of 

this Riemann surface the integral is a single-valued function,  however, 

the integration path was chosen on the top sheet so that the integral would 

converge properly as p-*±<*> . 

The expression for th?. field has been divided into two parts : E  . and 

£      as shown in Eq. (1. 2. 6) .   The motivation for this i« that E  , is the 
yr yf 

direct field from the source,  that is,  it is the field which would exist if 

the entire medium were homogeneous while E      is the reflected field from 
yr 
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the layer.   As expected, the direct field integral, Eq. (1.2. 7} integrates to 

=^=7   H^d^y^ + Ca-a')2) (1.2.11) 

where H      is the Ibnkel function of the first kind and zero order.   We see o 
that E      can he interpreted as a cylindrical wave propagating away from 

the source.   The integral for the reflected field is too complicated to be 

• integrated directly, so approximate techniques must be used. 

Before proceeding with the approximate evaluation of the reflected 

field,  E    , we will transform the integral from the p to the p. plane. 

The result is 

c      £ 

where the square roots p= Je. - p.    and p   = yA + p    must again be defined 

en a four sheeted Riemann surface. The upper two sheets of this surface are 

shown in Figs.  1. 5  and 1. 6 along with the transformed integration path, C. 

This transformation was motivated by the fact that the interesting contribu- 

tions to E      come from the region near the branch point p-JtT .   By trans- 

forming the integral to the p. plane, this branch point and the branch point 

at p = «/c7 are eliminated.   The disappearance of these two branch points is 

accompanied by the appearance of two new branch points at p   a  ±A/e1 .   For 
(13) a more detailed explanation of the transformation, consult Tamir and Felsen1     '. 

1. 3 Evaluation of Reflected Field for k L»l o 

1.3,1.     Geometrical Optics 

Before attempting a rigorous asymptotic evaluation of the reflected 

field when k L»l, we shall investigate the rays which are emitted from 
o 
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Top Sheet of a Four Sheeted Riexnann Surface, p. - plane 
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th« source  when the layer it thick compared to wavelength.   The<>e rays 

divide into three basic types : direct, transmitted and returning.   The direct 

rays are emitted from the source in the angular range   -n/2<-3<0 where 6 

is the angle of emission of the ray from the source ana is shown in Fig.  1,7. 

The returning and transmitted rays are emitted from the source in the angu- 

lar ranges 0<6<8    and 6   <e<rr/2 respectively, where the angle 6   is the 

critical angle.   This angle is defiued >s the angle whose corresponding ray 

* (critical ray) has its turning point on the lower interface.   The three basic 

types of rays and the critical ray are shown in Fig.  1. 7. 

An examination of this figure shows that the direct and transmitted rays 

are of a much simpler character than the reflected rays.   The simplifying 

feature of these ray types is that neighboring ray trajectories do not cross 

one another, thus making the formation of caustics impossible.   No such 

statement can be made about the returning rays which shall now be exam- 

ined in further detail. 

The returning ray trajectories for x>x   can be found by integrating 

the ray equation 

s 
= xt+l 8^= (-.3.1) 

*t   J*{r)'P 

where zt 
f        pdr  . 

♦ =- / ^ •       P = 8in9 
V    MrhV 

and 

e(2t) = p 

The ray parameter p is the same as the integration variable in Eq. (1. 2. 8). 

We will not investigate the returning rays in the region before they turn 

(x<x ) since the rays do not cross one another in this region.   Upon inte- 

grating Eq. (1. 3.1) , for x>xt we obtain 
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►X 

Fig.   1.7 

Typical Ray Types for Linear Layer 
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r »  T' + 
P2X 

"    -»P. «>0 

• = ^ -2^ -P2> -p2 ,^
0 (1.3.2) 

where 

* =  Az/L    ,     x    = Ax/L,    ,     z    = AzVL 

2 2 
and «| 5 P  <^ *   ^ is interesting to note that p   = e. is the critically 

2 
reflected ray.   When the ray parameter p < e. , the rays correspond to 

transmitted rays and are no longer given by Eq. (1.3. 2) . 

An inspection of Eq. (1. 3. 2) shows that it appears in a normalized form 

in terms of barred coordinates, i. e., x , 7 and z' . As a function of these 

new coordinates, the ray trajectories depend only on the source coordinates 

t', however, the equations are still only valid for C  <p   < 1 .   Since we 

would like to investigate the nature of the rays for arbitrary e   ,   i. e., 
2 

0<ej <1 we will assume 0<p < 1.   This corresponds to a layer with e   = 0 . 

If we are considering a layer where e   is finite, then we just use the results 
2 

of the C   = 0 case and eliminate those rays with 0<p  < c   . 

The returning rays for x>x  cross over one another in such a way that 

they form a caustic.   This caustic can be found by solving the constraint 

equation, 

3 
0 = x 

0 = x2 + 

2p2p- 

z/x(2P   -p) 2px n2-' P    Z 

z > 0 

z < 0 

(1.3.3) 

simultaneously with the ray equation (1. 3. 2).   The constraint equation can be 

found by taking the partial derivative of the ray equation with respect to p. 
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The elimination of the ray parameter p between Eqs. (1. 3. 2) and (1. 3. 3) 

can be accomplished only when z>0 .   The result is quite complicated and 

will not be preuented here. 

As an alternative method of finding the equation of the caustic directly 

we shall investigate its behavior near 6 = 0 and 9=n/2 .   With this information 

and with the location of the focal points, we shall have a fair understanding 

of the caustic's configuration. 

From the -ay and constraint equation we find that the point on the 

caustic,  corresponding to 9 = 0 ,  is located at x= 0,   z = - z'{l -1'/4) . 

The slope of the caustic at this point is zero, i. e.,    dz/dx = 0.  As the 

angle 6 -n/2 ,   the parameter p   becomes small and the equations simplify 

which allows us to obtain an asymptote to the caustic in this region.   It is 

z = - —        ,       P2 « 0. (1.3.4) 
x 

To complete the description of the caustic, the second constraint equation 

must be found.   This equation, together with the ray and first constraint 

equation, will give the location of the foci.   The second constraint equation, 

obtained by taking the partial derivative of Eq. (1. 3. 3)   with respect to p, is 

0 = 4p2 - 1 , z^O 

.-.2     3 (1-3-5) 

0 =3E-     *Z      P- r , z<0, 
p2[z

/(4p   -l)-2p2] 

For ¥>0 ,   the location of the focus can be found explicitly ina simple form. 

It is 

x =  3^1/2    .     z =  | - I'       ,       P2 = |   ' (1.3.6) 
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From these equations we see that there i« one focus when z'< 1/2 while 

no foci exist for ?>0 when z' > 1/2 . For z<0 we find that the foci occur 

at ray parameters 

99 2     1      ST'* 3       J   * 2 2     I      ST'+ 3       J   ' (1.3.7) 

When s' >2/3 , the ray parameters p   are complex and no foci occur. 

&k tiie interval l/2< ?/<2/3 ,   two real p   exist and two foci occur for c<0 . 

When 0<c/<l/2 ,   two real p   still exist but one of the ray parameters leads 

tea «>0 . 

To summarise our investigation of the foci, we have found: first, for 

large z', no foci exist; second,  as z" becomes less than 2/3, two foci 

appear in the layer; and third, as z' becomes less than 1/2 , one of the 

two foci in the layer region moves into the homogeneous region.   It is also 

interesting to note that at ?' = 2/3, two foci are located at the same spot. 

A check shows that the third constraint equation is zero at this point. 

A graph of the caustic has been plotted for each of the three cases 

given above.   These graphs appear in Figs.  1.6,  1. 9. and 1. 10 along with 

the locus of turning points and the critical ray.   The portion of the caustic 

near p = 0 is not shown in these figures since t. >0 .   To alleviate this, we 

have presented a sketch of the caustic for €   =0 and Is/>2/3 in Fig.  1.11. 

The behavior of the portion of the caustic,  corresponding to rays with small 

9 , remains essentially the same when z^ 2/3 . 

1.3.2 Asymptotic Evaluation 

As mentioned in the previous section, the integral representation for the 

reflected field, appearing in Eq. (1. 2. 8), is too complicated to be integrated 

directly.   To effect its evaluation we will expand the reflection coefficient in 
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-1.0 

Fig. 1.11 

Sketch of Caustic for e =0 and"z,>2/3 

a geometric series and then make use of asymptotic techniques to integrate 

each term of the series individually.   This will result in a representation for 

the reflected field, E     ,  which can be interpreted in terms of geometrical- 

optic ray contributions. 

The reflection coefficient given by Eq. (1. 2. 9) can be written as 

r = r    + 
ca 

r   rT (r , 
oa   L    ob r   ) 

oc 
rT   r 

L  o. 
(1.3.8) 
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where .,,.2   ITT/3. . _     i*/6 .   .,2   iTT/3. 

roa =    A/..2   iTT/3.       .     iTT/6 A .-2   in/6, (1.3.9) 
W       ,  -?2e       Ai(?2e       > 

A//_2 -iTT/3.     _     i5TT/6 .   .,2 -iTi/3. 
i^2e ^ '?2e i^'2e ^ 

^ ='A'^2 ^^     .r     iTT/6 A ,.2 +iTT/3. (1.3.10) 
A.^e )-?2e        A^e ) 

/  -2 -iTT/3.   .  _     i5Tr/6        2 -iTT/3. 
A (57e ) + ?7e A (?   e » 2" '      ^2 i^2 

,IC1   +iTT/3%   "   I      i5TT/6.   ,Jl +iTT/3% (1.3.11) 
A. (5, e ) + ?, e A (?   e ) 

1     2 Z 1    Z 

A//-2   in/3.      -     in/6A   ..2   in/3. 
A.C^j e       ) + Sj e       A^^j e       ) 

rL   =    .,.,1 -in/3     _     i5n/6A ..2 -in/3.       * (1.3.12) 
i^l e        ) f §i e Ai(?i e ) 

The denominator of the second term in Eq. (1. 3, 8) can be expanded in a 

geometric series if |r  T . !< 1.    This condition must be met at all points 

along the integration path C.   An evaluation of F  F     shows that its magnitude 

is less than one, except for the portion of the path Re p. = 0 , v^-Irap <» . 

Along this portion of the path  |F  F   | =1 , however, we can show that a slight 

deformation of the integration path C to the right of the Imp. axis in this 

region makes  KT ^ ul <^ •   The use of this series expansion in the reflection 

coefficient gives us 

00 

F = F     + 7     F (1.3.13) 
oa       Z^ .    n n= 0 

where 

F   = F      (F     - F    ) Fn
u FT

n+1 • (1.3.14) 
n        oa      oa      oc      ob    L 
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We now use the series expansion for T in Eq. (1. 2. 8) and interchange the 

intergration and summation signs.   We obtain 

m 

E      = E      +  Y       E (1.3.15) yr        ro      Z. Ä     n » •  •    / yr ro 
n = 0 

where 

E 
i       r     Piroa      i^o^^^ + Px] = " ^T J Ttre dpi        (1•3•i6, 

ro 4TT       J       pp 
C 2 

and 

i   r   
pirn    ik0tp2(2+«') + px3 

C 2 

The integrals E     and E   will now be evaluated by the method of steepest 

descents when k   is large. Before doing this however, we will assume 

k L»l and replace T     and T   by their asymptotic approximations.   These 

approximations are obtained by using the asymptotic expansions for the Airy 

function and its derivative.   The expansion for A.(z) is given by 

00 

AjCz) --2-7=z"1/4e*Cy   (-l)kCkC"k    .     |argz|<TT (1.3.18) 
v n=0 

where 
3/2 

C =  2z '  /3       ,        C    = I ,   Cl= 5/72 

while A.(z) can be obtained by formally differentiating Eq. (1. 3. 18) .   The 
(17) additional coefficients C.  can be found in Abramawitz      '.   When the argz 

is close to ±TT  Eq. (1. 3.18) is no longer valid and another asymptotic 
(18) expansion including this sector of argz must be used .   The expressions 

for F    and T  contain the A'.ry functions with four different arguments, 
oa n 
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The locus of possible p. values, when the argument is constrained  to 

have an angle of ±TT , have been drawn in Fig. 1.12 for the four ' iry 

functions.   This figure serves to make the region of validity of Eq. (1. 3.18) 

in the p. plane clear.   The curves shown in Fig. 1.12 are the same on both 

the top and on the second sheet of the Riemann surface since the Airy 

functions ar«; even functions of p. 

The asymptotic approximations for F    and F   on the integration path 

between p   = JT. and p. = iv^T are 

A, 

oa 

and 

F      ~ - 
oa 

"1              -inß 

"o1** 

F   ~ 
n 

vr i4{n+l)§2/3 +inTT/2 

K^T 
e 

(1.3.19) 

(1.3.20) 

where A   =(-1)        (ISAC./Z)   .   If we restrict p. to lie between the origin 

and p   = in/K , making sure that p   does not come too close to the origin, 

then Eq. (1. 3. 20) reduces to 

A i4(n+l)d/3 + i(n-2)TT/6 
F    ~  ~—     e (1.3.21) n       .       .   jn 

<koL,P2 

while if rve restrict p. to the real axis (0<Rep1 <//eT) and again keeping 

p   away from the origin, Eq. (1. 3. 20) reduces to 

A i4(n+l)(r;-d)/3 + i(n-2)Tr/6 
r    „  2    e 

2      l 

n      /t   T 42n+l  3n   3(n+l) ..   _  -„. 
(koL)        P2   Pi *      (1.3.22) 
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Deformed Path for Ir (Top Sheet) 

Fig. 1.14 

Deformed Path for I   (Second Sheet) 
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By «sing the asymptotic approximation for T    in the integral E   , 

the saddle point equation can be determined by taking the derivative with 

respect to p   of the argument of the exponential term in the integrand. 

The result is 

/ top sheet 
pl (~   T      ")= 0 1 (1.3.23) 

2 |+ second sheet  . 

There are two relevant solutions to this equation on the top'sheet which 

are denoted by D and E in Fig. 1.13; there are no relevant solutions on 

the second sheet.   The saddle point D can occur anywhere on the integra- 

tion path between p   s^/e7 and p   = iJK while the saddle point E is always 

located at p   = 0 .   If we restrict the saddle point D to lie on the imaginary 

axis and deform the integration path C into the decay regions, (Figs. 1.13 

and 1.14), the field E    is asymptotically approximated by the two saddle 
ro 

point contributions D and E.   The contribution of E is exponentially small 

however, since the integrand is an odd function of p   integrated over a 

symmetric interval.   The contribution from D can be interpreted as a ray 

reflected from the z = 0 interface as shown in Fig. 1.19.   The asymptotic 

order of contributions of D and E are shown in Table 1.1.   If now we 

restrict the saddle point D to the real axis, the saddle point E is not inter- 

cepted when the integration path C is deformed and the total contribution 

to the integral comes from D.   The interpretation of D is as before.   We 

should mention at this point that the assumption has been made that no 

isolated pole singularities exist between the original and deformed paths 

which contribute to the asymptotic evaluation of E     .   This same assumption 

will apply to the other path deformations which shall occur in this chapter. 
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1       Trpe Asymptotic Order       1 

*. 
oo^"2») 

B 1          n o(ko-'
2"t3/2>) 

o^-'-7'", 

D i           O^-"2' 
-ak 

1       E 0(e      0).a>o           | 

Table    1.1 

Aaymptotic Order of Geometrical 

Optic Contributions 

The asymptotic evaluation of the integral E   can be treated in a 

similar way to E     .   The asymptotic approximations for T   given in 

Eqs. (1. 3. 20),  (1. 3. 21) and (I. 3. 22) are substituted in the integrand of 

E  and the saddle point equations are then obtained.   They are : 

/   J.   ' 4(n+l)p L 

»i(nr- Tf + —A     >0' Repi=0' O^Pl^ (1.3.24) 

4(n+l)(p   -p )L 
pi     +i+  r-^ )»0,    0<Rep 1<^. Imp   =0 
Fl V    P2 P A ' 111      (1<3 25) 

/ajjV 

and 

p   = C   ,    k Lip. <I (1.3.26) 
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where the upper sign in Eqs. (1. 3. 24) and (1. 3. 25) refer* to the top 

sheet and the lower sign to the bottom.   Equation (1. 3. 26) is valid on 

both sheets. 

Upon obtaining the saddle point locations from the above equations, 

we deform the contour C through these saddle points and into the decay 

regions.   Since the contribution due to the portion of the integral lying in 

the decay region is exponentially small, the integral E   will be asymptotic- 

ally equal to the sum of the saddle point contributions.   The contributions 

arising from saddle points obeying Eq. (1. 3. 24), (1.3. 25) and (1. 3. 26) will 

be known as type A   , B   and C   contributions respectively.   The subscript n       n n 
n indicates the integral in which the saddle points occur.   It can be shown 

that no relevant saddle points occur on the second sheet for any n and there- 

fore the deformed path will be the same as that shown in Fig.  1.14 . 

At this point we shall focus our attention on the relevant saddle points 

on the top sheet, their contributions to the reflected field and the geometrical 

interpretation of these contributions.   We shall first consider the integral 

E   since E    contributes the dominant terms to the reflected field for k L o o o 
large and then, at a later time, we shall consider the integrals E ,n= 1, 2, 3,., 

Saddle point contributions of type A  will be considered first.   A 

comparison of Eq. (1. 3. 24) with the ray equation for returning rays (z >0) , 

Eq. (1. 3. 2) ,    shows that the two are identical.   This means that saddle 

point   contributions in the interval Rep^O, 0<lmp.< JK correspond to 

returning ray contributions.   At this point we can use our knowledge of the 

returning ray trajectories to find the location and number of saddle points 

in the interval Rep = 0 , Q<'hnp.<JK.   Before proceeding however, we 

shall divide the portion of the x-z plane with z >0  in two parts separated by 

the critical ray as shown in Fig.   1.19.   To the right of the critical ray 

(region 2) there is either one or there are three returning rays passing 
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throagb mn observation point.  If the obeervatton point is located inside 

til« cusp region there are three rays while outside, there is only one. 

To the left of the critical ray (region 1) there are either two saddle points 

In the interval Re p  = 0 , 0 < in p  < ^T or there are none.   The two saddle 

points occur when the cusp region lies to the left of the critical ray, and the 

observation point is located inside the cusp region.   The saodle points are 

shown for the four cases, considered above in Figs. 1.15 - 1.18 ,  where 

they are denoted by A (n=0) .   The contributions to the reflected ti» d at n . ^ 
these saddle points are of 0(k        ) as would be expected since they repre- 

sent returning ray contributions. 

Saddle point contributions of type B will be considered next.   An 

examination of Eq. (1. 3.25) shows that one saddle point exists in th«  interval 

0 < Re p. < yicT ,   bn p. = 0 when the observation point is in region 1    hile no 

saddle points exist in the interval when the observation point is in r gion 2. 

The saddle point contributing to region 1 can be interpreted as a ray reflected 

from the interface at z = - L .  A ray of this type is shown in Fig. 1.19.   Its 

asymptotic contribution to the reflected field is of 0(k        ) which is ifk 

lower than the returning ray contribution.   This is expected, howev« t   since 

tiie ray under consideration is reflected at an interface when the die < ctric 

profile has a discontinuous first derivative. 

Finally, the saddle point contribution of type C   will be conside   -d. 

An examination of Eq. (1. 3. 26) shows that only one saddle point exisU and 

its location (p.-O) is independent of the location of the observation p >int. 

An analysis of the decay regions, the results of which are presented in 

Fig.  1.15 - 1. 1 Si has shown that the saddle point is only intercepted when 

the observation point is located in region 2. 

We will now attempt to asymptotically evaluate E   .   The integral E 
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in the vicinity of the origin doe« not appear to be a simple steepest 

descent integral since T    is a complicated function of k   .   The situation 
o       ... 

can be clarified by making the change of variables ?, = (T/A)     p. in the 

integral.   The portion of the integral in the vicinity of the origin, EL  , 

becomes 

^'-■^7^1^' «•      (l•3•27, 

where 

P2 
jL + (Lh)m%\ , p = Jtx~(Ll'r)mi\ 

and C' is the transformed path C in the vicinity of the origin.   Now P    is no 

longer a function of k  but p and p   are.   Because of the simpler dependence 

of p and p   upon k   , it becomes possible to show that the standard steepest 
0(19) descent techniques can be applied to Eq. (1. 3. 27) .   Upon the application 

of these techniques we find 

ik lJK(z + z) + jr,x + 4v^"L/3] + i7TT/12 
o 1 

(L + VTLA/S")
372 

A
L   e 

EL ~         _ (1.3.28) 

where 

^mtfL1'3 
A

T 
=—TB vi hfc— •   L^x-yrTzrcz + z') (1.3.29) 

L      2{2TT)
3/2

A
5/
V

/6 P ' 
o 

and r{z) is the gamma function of argument z. This result can be inter- 

preted as the contribution from a ray which is excited by the critical ray 

at Äe z = - L interface.   This newly formed ray travels along the lower 

interface for a distance L   +Ajt'. L/^/^Tand shedd energy into the upper region. 
p 1 
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A typical ray trajectory is shown in Fig.  1.19.   The lateral wave exicted 

on an abrupt transition has a similar ray interpretation and amplitude 

dependence with distance along the interface.   The two lateral waves, 

however, have different excitation coefficients.   The excitation coefficient. 
-7/6 

A, . for a lateral wave on a thick linear transition, depends on k while 
li o 

the excitation coefficient for a lateral wave on an abrupt transition has a 
-3/2 

dependence of k 

Now we will not require n to be zero and we will investigate the asymp- 

totic contributions to the integral E   .   To do this we must locate the relevant 

saddle points and then find their contributions to the reflected field.   As men- 

tioned earlier,   the general saddle point equations are given by Eqs. (1. 3. 24) , 

(1. 3. 2^ and (1.3. 26) .   By replacing (n+l) L by X   in the first two of these 

saddle point equations we see that the equations are the same as the n = 0 case 

with L replaced by X.   Since the n = 0 case was done for arbitrary L , the 

location of saddle points of type A   and B   has already been investigated. 

However, there is one basic change.   The demarcation between region # 1 and 

region # 2 is no longer the critical ray reflected from a layer of thickness L 

but is rather the critical ray reflected from a layer of thickness of L.   ^his 

cirtical ray is shown for n = 2 in Fig.  1. 20 .   The third saddle point equation 

given in Eq. (1. 3. 26) has one saddle point at p = 0 for any n .   From the 

above argument we conclude that the basic structure of the deformed paths 

are again given by Figs.  1.15 - 1.18. 

The method of steepest descents can then be used to evaluate the 

asymptotic contributions at each saddle point.   Those contributions of type 

A   correspond to returning rays reflected n times from the z = 0 interface 
n 

while those of type B   correspond to rays reflected n+l times from the 

interface at z = - L .   The C   are lateral wave contributions.   These are 
n 

excited by the critical ray which is reflected n times frem the z = 0 interface. 
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The ray trajectories for these contributions are shown in Fig.  1. 20 for 

n= 2 .   The order of each type of contribution is given in Table 1.   We see 

from this table that as n increases, the order of the asymptotic contribution 

decreases.   This results from the fact that the order of a ray contribution is 

reduced by 0(l/k ) each time the ray is reflected from the z = 0   or z = - L 

interface. 

To summarize briefly we have found that the reflected field from a 

gradual linear layer (k L» 1) can be decomposed into a geometric - optic 

series.   The dominant terms of this series in region # 2 are the returning 

rays which are of 0(k        ) , and a lateral wave contribution which is of 
-7/6 0 

0(k ) .   This lateral wave has a great similarity to the lateral wave 

occurring on an abrupt transition except for a difference in its excitation 

coefficient. 

1.4     Evaluation of Reflected Field for Large k Lp oT» 

In this section we shall explore the connection between the lateral wave 

contribution observed on a thick linear transition (section 1. 3)   and the 

lateral wave excited on an abrupt interface.   The linear layer provides an 

excellent opportunity to do this,  since for small k L , the layer appear« to 

be an abrupt transition, while for large k L the layer thickness is large 

compared with wavelength.   It can be shown, in fact, that the reflected coe- 

fficient,  Eq. (1. 2. 9) ,  reduces to the reflection coefficient for an abrupt 

transition as k L->0. 
o 

Our investigation of the lateral wave's character shall be carried out 

by performing an asymptotic evaluation of the reflected field for observation 

points which are far from the source compared with layer thickness.    To be 

more specific we shall assume that k L   »1 and  L »L .   This says that we 
o   p p 
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•hall consider those obaervation points which are a large number of 

wavelengths and a large number of layer thicknesses to the right of the 

reflected ray, x = v^7Ä (« + »') . 

The integral representation for the reflected field is given by 

i pjf       ik[p (« + «')+pr] 
C      * ~   "TZ   \ '           •                                   dp, 4n   J pp                                           Kl 

C c y* 
(1.4.1) 

where 

with 

V 

r = - 
tb 

(1.4.2) 

A;(-?J)-i51A1(-?J) jB;^>-i5lBi<-?l) 

iA;<-52,Ti?2Ai(-#|     |B;<-52,7i?2Bi<-52J 

The   representation given in Eq. (1.4.1) is the same as that presented in 

Eq. (1. 2.12) except that a different form of the reflection coefficient has 

been used.   The alternate form of this reflection coefficient was obtained by 
2 2 choosing ft. (s) and f9(z)   in Appendix A as  B.(-?  ) and A.(-5  ) reapectiveiy. 

These two functions are independent of one another and thus satisfy the 
2 

requirement for choosing ♦,(*) and t.fz) .   The B.(-£ ) not encountered 

previously, is the Airy function of the second kind.   The reason for using an 

alternative form of reflection coefficient is that it will allow us to put our 

results in a form which is more suitable for computation. 

The advantage of the original form of the reflection coefficient was that 
it contained Airy functions whose asymptotic expansions were of a simpler 
form in the vicinity of the integration path . 

- «.Jr-^.^-.^ 
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IF we now use the aasuznption that k L«k L   then the reflecttaa 
o o p 

coefficient in Eq. (1.4.1) is slowly varying compered to the exponential 

in the integrand, and the standard steepest descent techniques can be u*ed 

to asymptotically evaluate the integral representation.   The saddle points 

are found by taking the derivative with respect to p. of the argument of the 

integrand's exponential and setting it equal to sero.   The result is 

«    /*±*1    T   x\    A       i-top sheet -.   .  , " 
Pl  (—    T   ^ = 0       }+.econd sheet, (1-4-3) 

This Is the same saddle point equation encountered in the asymptotic 

evaluation of E     .   The relevant saddle poii ro r 

sheet of the Riemann surface are located at 

evaluation of E     .   The relevant saddle points which occur on the top 

P^O     , p1=iyx2A-(2 + z')2€1 (1.4.4) 

where we have assumed that x> JeTTK (z + c')   or L  >0 .   The original 

integration path is deformed through the two saddle points given above 

and into the decay regions.   We will assume that there are no singular- 

ities of importance lying between the two paths.   The decay regions and the 

deformed path are shown in Figs.  1.13 and 1.14 . 

We see now that when k L   is large, the reflected field is composed 
0 p /I T1— of two contributions.   The first, of these occurring at p. = i yx A -(z+c')   e. 

is a reflected ray from the interface at z = 0 .   When l«k L«k L   this 7 o o   p 
reflected ray corresponds to a returning ray that has its turning point 

close to the z = 0 interface.   When k L is small the contribution is the same o 
as a reflected ray from an abrupt interface.   The contribution from the 

-1/2 saddle point is of 0(k        ) as would be expected. 

The second contribution to the reflected field comes from the saddle 

noint at p. = 0   and is the lateral wave contribution.   This contribution was 
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obtaiMd by the application of ateepast descent method« and is given by 

1/4 l k0^/S'(»+«/)+^«3 + i ♦(o) + i 3TV4 
Cj   A(a) e 

o  p 

1/3 

(1.4.5) 

where 

A(a) = £ dT 

Pl = o       *lV>Wz) 
(1.4.6) 

and 
-1    Dl 

Her) = 2tan       -^ 
2 

(1.4.7) 

with 

Dj = B[(0)A;(-a2)-A;(0)B;(-a2) (1.4.8) 

and 
D2 - a [ Bj (0) A.(-a2) - A;(0) B.(.a2) ] . (1.4.9) 

In the above we have denoted the lateral wave contriubtion by E    as was 

done in the previous sectionJCq. (1. 3. 27) .   The amplitude, A(a) and phase 

t(a) functions have been plotted by computer and are shown in Figs.  I. 21 

and 1. 22.   Those figures also show the approximate lateral wave amplitude 

and phase when the layer is thick compared with wavelength. 

The physical interpretation of the lateral wave contribution can best 

be gotten from examination of small and large limits.   When T is small or 

when the layer appears to be abrupt, we find A(a)-1 and t(a)"*0 .   By using 

these limits in Eq. (1.4. 5), we find that E     reduces to the lateral wave 
Li 

contribution on an abrupt interface.   On the other hand, when l«k L«k L 
o o   p 

then E. reduces to 
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ik [vSV»-*')+ ,/c7x +4,/S"L/3] +  17TT/12 
o l 

ALe 

La 
p 

where A     is given by Eq. (1. 3. 29).      When this result is compared with 

Eq. (1. 3. 28) and use is made of the fact that k L«k L   ,  we find that the o op 
two expressions are identical. 

As was stated in the introduction, Nakamura has obtained a uniform 

expression for the lateral wave excited on an inverse square dielectric 

profile which is valid under the same conditons assumed in this section. 

A comparison between our resultfEq. (1. 4. 5)yand Nakamura's shows that 

a lateral wave is excited for all layer thicknesses in both cases and both 

have amplitude dependences of L .   However, the excitation coeffi- 
P 

cient as a function of layer thickness appears to depend on the detailed 

behavior of the wave functions in each particular medium, and nothing in 

general can be said.   When the layer thickness becomes large compared 

with wavelength, the excitation coefficient simplifies and both results have 
-7/6 

a wavenumber dependence which is 0(k ) . 
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CHAPTER 2. 

THE PARABOLIC TRANSITION LAYER 

2.1       lateodactiop 

Jn Chapter 1 a detailed study of the reflected field from a linear 

transition layer was made.   There, it was found that a lateral wave was 

excited on the layer for all layer thicknesses.   In this chapter, we will 

continue our study of lateral waves by considering the reflected field from 

a parabolic transition.   Other parameters influencing the reflected field, 

such as source location and orientation, will remain the same as in Chapter 

1.   The dielectric profile to be considered is given by 

e(«)   = 

1 z>0 

A(z+L)2/L2 + Cj -L<z<0       ,     A = l-e (2.1.1) 

e. z<-L 

and is shown in Fig. 2. 1 .   The basic similarities between the parabolic 

and linear transitions are their thickness L ,  height A and finite slope at 

z = 0 .   Their fundamental difference, on the other hand, is the slope of the 

profiles at z= - L .   The linear layer's slope at that point is finite while the 

parabolic profile has zero slope there. 

Our investigation of the parabolic transition has been motivated by the 

behavior of the critical ray trajectory when the layer is thick compared to 

wavelength,.   This critical ray,  unlike the critical ray in a linear transition, 

never becomes tangent to the lower interface but only approaches it asymptot- 

ically as x-*<B .   In the previous chapter the lateral wave contribution has 

been interpreted as a wave excited at the point that the critical ray becomes 

tangent to the lower interface.   If this supposition is true for the parabolic 

transition, no lateral wave will be excited when the parabolic transition 

thickness is large compared to wavelength.   In an attempt to clarify the above 
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question we shall asymptotically approximate the formal solution first for 

large k L and then for large k L   with L  »L.   Here L   is the same as Oo Oop p P 
that defined in Chapter 1 .   When k L»l or the layer thickness is large 

compared to wavelength, a knowledge of reflected ray trajectories will be 

necessary to carry out an asymptotic evaluation of the integral representation. 
(2.0) 

These ray trajectories have been considered in some detail by Orlov 

for z>0 ; his results will be used in the text . 

2. 2. Formal Solution 

The integral representation for the field, due to a line   source located 

above a parabolic transition, is obtained in an analogous way to the integral 

representation found in Chapter 1 .   The only component of the electric field 

which is excited is E   which obeys the inhomogeneous wave equation 

[72 + k2e(z)3E    = - iüuu   J6(x) fifc-z') (2.2.1) 
o y o 

where e(z) is given by Eq. (2. 1. 1). 

The application of Fourier integral techniques to the above equation 

reduces it to a one-dimensional Green's function problem.   The formal 

solution to this Green's problem has been presented in Appendix A   in 

terms of two independent solutions to the wave equation in the layer 

region.   For the parabolic transition which is being considered in this 

chapter, two independent solutions to the wave equation in the layer region 
2 *      2 

are E(-a1    ,  ?) and its conjugate, E  (-a. , §) .   These two functions which 

are defined by Abramowitz       have an order -a. and an argument 5 given by 

a    =  (T^VSTp,       ,       I = [2k V^7Lr(z+L)    .     T = kL (2.2.2) X x c o 
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In the above p.  is related tc the Fcurier transform variable p as it was 

in Chapter I ,  i, e., Pi^v*-! " P )* •   Sy using these independent solutions 

in Eq. (A'13) and  in   Eq. (A-7)  we can obtain an explicit expression for 

the one-dimensional Green's function and, from this, an integral repre^ r- 

tation for the field.   The representation for E   is given by 

E    = E r + E 
y       yf       yr 

(2.2.3) 

where E     is given in Eq. (1. 2. 7) and represents the direct field from the 

source in the region z>0 ,   The second term in Eq. (2. 2. 3),  E     .is given 

by 
i    T   f       ik tp2(a+a') +pxl 

E      =   — —    e dp (2.2.4) vr       4n    J      p r x ' 

w here 

r=.   At/4b (2.2.5) 

with 

b 

JE/(-aj,0) + ia1E(-aj,0)|      1 

jE'Htj ,  c)±ia2E(-aJ. c )(      \E*{-^\. c) 

E*(-aj, 0) + ia1E*(-aj , 0) 

*      2 
± ia2E  (-aj . c) 

{T/2jSfp2    ,     p2 = (l-p2)^    ,      C = (2T^)        • (2.2.6) 

In the above expressions for A*     the symbol E'(-a   , £) = dE(-a   , §)/d§ . 

The square roots P^   are defined as in Chapter 1 by Fig. 1.4.   The integral 
2 

for the reflected field, Eq. (2. 2.4) is transformed to the p    plane.   The result 

is given in Eq. (1. 2. 12) where the integration path C and the square roots are 

defined as in Chapter 1, Fig.   1. 5 and  1.6. 
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2. 3    Evaluation of Reflected Field for Large Layer Thichneis (k L» 1 

2. 3.1      Geometrical-Optics 

Before performing the asymptotic evaluation of the reflected field for 

k L»l we shall make use of the method of geometrical-optics to predict 

the ray contributions to the reflected field. Then, in the next section, we 

shall asymptotically evaluate the integral representation for the reflected 

field and compare the two results. In this way we will see the limitation 

on the theory of geometrical-optics when applied to a parabolic layer. 

The rays emitted from the source can be divided into three types : 

direct, transmitted and returning.   They are defined in the same manner as 

in Chapter 1 .   There the reflected and transmitted ray types have been 

separated by a critical ray.   This is also the case here, however the critical 

ray has a different behavior as ie shown in Fig. 2. 1 . 

The trajectory for this ray is obtained by integrating the ray equation 

x=    J       ^M^ (2.3.1) 
z'   Jt (T) - p 

with the appropriate value of p for the critical ray (p= /T) ,   The result is 

x=   yTjTÄ     [z' + Lin (^-J] (2.3.2) 

where we see that as z-*- L , x-»00 . 

The difference between the behavior of the critical ray in a linear 

transition and its behavior in l parabolic transition can be understood better 

by applying the reciprocity prinicple.   Consider a ray that is progressing 
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along the z = - L interface, of a linear transition.        This ray will be 

forced to turn away from the interface since it has a finite radius of 

curvature, (de(z)/dz     _    .1*0).   The situation is not the same for a 
(z = - JJ 

ray travelling along a parabolic interface.   There de(z)/dz r  =® 
I z = - L 

and the radius of curvature is infinite.   In this case the ray continues to 

propagate along the interface.   Now, applying the principle of reciprocity 

to the parabolic layer, we see that if a ray starting in the interface, cannot 

escape then a ray outside the interface cannot become tangent to the inter- 

face unless it has an infinite radius of curvature.   The critical ray in the 

parabolic layer only obtains an infinite radius of curvature as x-»00. 

As in Chapter 1 we shall now focus our attention on the returning rays. 

By substituting the parabolic dielectric variation into the ray equation for 

returning rays, Eq. (1. 3. 1),   and integrating it we obtain 

x = p(z/ + z)/p,  +     JC-      cosh'       -'* -r , z>0 2       /^ IPil (2.3.3) 

pL ,-1      ^       .    pL ,-1   JEU+U .c__    ^naVi        -a    +    rM!_      Cosh       T. *   ,   '   ,     z< 0 
|PllL 

x = pz /p_  +    "Tsp-    cosh        -*—r   +    'wi- V      V2        JE IpJ -/T 

where p   = i Ip. |   and  e, <p   < 1 .   A typical ray is shown in Fig.  2. 1 . 

Since these rays cross over one another, we shall require the constraint 

equation for the caustic.   This is obtained by taking the derivative with 

| respect to p of Eq. (2. 3. 3).    The result is 
I 

* 
To be more accurate, we mast say that the ray is not exactly on the inter- 
face but just a small amount above it.   This removes the ambiguity in 
de(z)/dz^ 
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0=  (. + «/)/p^    +  -^    co.h'1   -^    -    ZLp^lpjS     ,     z>0 

0 = x /p, +  -ss     cosh       T3—,     +    cosh        *   * .     '■   I 
2      -Al Pj p     L     J 

(2.3.4) 

üE!   fj.    +        _-Lt  1    . z<o. 

The caustic is obtained by choosing a value of p and solving for z ; then by 

using the ray equation to find x . We see that the first equation, z >0 , can 

be solved explicitly for z while the equation for z<0 cannot. 

It will also be of interest to know the number and the location of the foci 

formed by the returning rays.   The constraint equation for the foci is obtained 

by taking the derivative of Eq. (2. 3. 4) with respect to p .   Upon doing this, we 

obtain 

z>0 0        3(z-^) 2L(|Pl|2-2€l)    .    ZlJL 

F, IPJ      P., Ip, I  p. 

o =   3z __ Ulpj^li!   ri    +        z + L j (2-3-5) 
P2

5       " IpJ4 tp2       yMz+L)Z-|Pl|
ZLZi 

jifiij-L.+ (2+yL
2
       (   z<o 

IPJ
2
   lp2

3   ' [MZ+I^-IPJV]
3
^ 

To obtain the location of the foci we must solve Eq. (2. 3. 4) in conjunction with 

Eq. (2. 3. 5).   This will give us the z coordinates of the foci ; then the ray 

equation can be used to obtain the x coordinate. 
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As has been mentioned in the introduction, Orlov b* - studied these 

returning rays.   To be more specific, he has made a del       1 analytic 

study of the caustic and foci for z^O .   He has then plotted the caust^ for 

some typical values of parameters when both z^jO and z<0 .   We have 

redrawn two of his graphs which are representative of the caustic's general 

behavior.   These are shown in Fig. 2. 2 .   In the upper graph (a) we see that 

five cusps appear on the caustic while, in the lower graph, two of the cusps 

disappear when 2A >(1. 076) L.   We note that the bow tie configuration which 

was observed in Chapter 1 occurs twice in      '  and once in (b).   As L 

becomes smaller the remaining bow tie configuration disappears and only 

one focus is left.   This is shown in Fig.  2. 3 where the caustic has been 

plotted rather than just sketched for L= . 1. 

The caustic appearing in the three previous graphs share two character- 

istics in common.   We see that at large distances from the source, the lower 

branch of the caustic approaches the interface while the upper branch appears 

to have corrdinates that become unbounded.   The asymptote to the lower 

branch of the caustic can be obtained from Eq. (2. 3. 4) with z<0 if we assume 

that p   -*0 as z -«0 .   By usic _, this procedure we find the asymptote to be 

x =    z' /L/(2A(-z) )*      • (2.3. 6) 

In addition we can also find an asymptote to the upper branch of the caustic 

by assuming that as p. -*0 ,  z-** .   By using this assumption in Eq. (2. 3. 4) 

with z>0 , we find that 

x «^/eJ7Ä(z + z/) +    ^V^ Lln ("fry (2.3.7) 

with 
z + z' -  ZhzlM IpJ2 . (2.3.8) 
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Fig.   2.2 

Two Sketches of Cauatics in a Parabolic Medium 



51- 

! 

CM 

ca J 

<o. 

I- z 
o 

V/ 
M-l 

OJ 

u. 
o o 
1- (0 
<0 3 
z> Ü 
< o 
Ü -J 

o — « 

isi _* <j 

©J 

a)J 

^-1 

cviH 

« 

N       O 

OR      U 

3 
4 
u 

(0 m K> w 



-52- 

W« •«• that a» the rmy« ere emitted closer to the critical angle {p  -0) . 

she cauetic formed by these ray» tend« cloerr to x= JtTIt (« + z') .  We 

note that thie equation represent« the reflected critical ray from an abrupt 

traa«itloti. 

Whan  L i« small the asymptote given in Eqs. (2. 3. 6) and (2. ?. 7) 

dssCftae the caustic except for the region near the focus.   The approximate 

location of the focus can be obtained by assuming 

s  «  -    L+AI/^    ,     Ipji^BI.1^    ,     ^«1 (2.3.9) 

wbers A and B are constant» tc   e determined.   When these assumptions 

are Used in Eqs. (2. 3.4) and {2.3.5) they lead to aa asymptotic approximation 

foy the focus.   The appioximate location .of the focus which is obtainediis 

glvtaby 

x = jrpi ^^ ^   "2    1a i*l**ii*rt (2.3.10) 

and 

a * -L ^Zjt^t,' ir^ . (2.3,11) 

As L-»§ the rays that make up the lower and upper branches of the caustic 

appear to have the same ray trajectories respectively as the reflected and 

lateral rays associated with an abrupt transition.  We also note that the 

locu« tends toward the point at which the critical ray is reflected from an 

abrupt transition.   The comparison made above, says nothing about the ray 

contributions but only states that the two layers being compared have similar 

ray trajectories. 
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2.3.2      Aaymptotic Evaluation 

We will now asymptotically evaluate the formal solution for the 

reflected field, Eq. (2. 2. 4) when k L» 1 and compare our results to the 
o 

prediction of geometrical-optics given in the last section.   To effect the 

«valuation of the integral in Eq. (2. 2. 4) in physical terms we will expand 

the reflection coefficient in a geometric series and then asymptotically 

evaluate each term individually.   The manner of development of this section 

will parallel section 1. 3. 2.   quite closely. 

The reflection coefficient given in  Eq. (2. 2. S) can be written as 

r rT    ^   K  "  r       > T?        T- oa   Li     OD       oc ._  _  ._. 
r   =roa   +  1 - rT r    <2-3-12) 

L  ob 

where „♦'.    2      ...      _*     2      . 
E    (-a   , o) +xa  E (-a   , o) 

r     =     ~ r-i  (2.3.13) 
E'C-a^ o) + ia1E(-a1,o) 

*'      Z *      2 
E    {-a   , c) + ia   E    -a   , c) 

E    (-aj, c) - ia2E (-aj , c) 

E'C-aj, c) - ia2E(-a1 , c) 

E    (-aj, c) - ia2E (-aj . c) 

E,(-aj.c) + ia2E(-aj.c) 
roc=      *'      2      .     . ♦      2      . (2-3-16) 

E    (-alf c) + ia2E (-aj . c) 
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II i 
if ir. r . I <! along the integration path C, the denominator of the second 

term In the reflection coefficient, Eq.  (2. 3. 12), can be expanded in a geo- 

metric iaries.   A calculation of   T. F ,    shows that in the intervals 
Li   OD 

0*f ^ep. <•,  Imp. =0 and Re p   « 0 , 0<Jm<ll/E', the term is less than one, 

ho%«veff, for the interval Rep. =0, JElxnp. <» , we find |rT T J = 1.   In 
11 Li  ob I 

Chapter 1 a similar problem had arisen and it was circumvented by deform- 

ing the integration path C a slight amount to the right of the Imp   axis.   We 

will perform a similar deformation of the path C at this point, however it 

must be assumed th&t k L»l in order to show that \T, F   I < 1 alone the o L ob' B 

deformed path. 

We will make use of the series expinsion in Eq. (2. 3.12).   The 

result is ta 

F = F       +    Y      F (2.3.17) 
n=0 

|| 
where F   is defined in Eq.  (i. 3.14) and where it is assumed that the £ n 
I*.  , F      , F ,   and F     of Chapter 1 are replaced by those of Chapter c. 

Li       oa      ob OC i\ 
By substituting the series form of the reflection coefficient given above p 

in the integral representaiicn for the reflected field, Eq.  (2. 2. 4) and inter- 

changing Orders of summatien and integration, we find that 
SB 

E      = E        +    Y       E f2.3.18) 
y*       ro       n4o     n 

where E      and E    are defined by Eqs. (1. 3. 16) and (1. 3. 17) respectively, ro n 

Before evaluating E      and E    by the method of steepest descents we ro n j, 
will asymptotically approximate F     and F   to reduce the complexity of the 

integrands.   These expressions, F     and F   , are composed of parabolic 

cylinder functions whose as\ nptotic approximations along the integration 

path C appear in Table 2.1.   The functions E    and £     do not appear in 

Obit table, however, their asymptotic approximations can be obtained by 

,- 
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taking the complex conjugate of the asymptotic expanriona for E and £   ., 

The asymptotic approximations for E and i2    will be needed close 

to the integration path C when subhequent path deformations are made. 

These asymptotic approximations can be obtained by analytically contin- 

uing the formulae in Table 2.1 if we exclude the regions near p. = 0, JK . 

In these regions we can use 

-TTaf/4 + iTT/8 + i« /2 
E(-aj , x) »^/Fe Z        U(-iaj.xe'iTI/4) (2.3.19) 

EVaj.x) = 1^re       1 2        U(+ia*.xe+in/4)        (2.3.20) 

where U is another form of parabolic cylinder function, x = 0 or xsc and 

i2 = argr(l/2-ia1) , i2 = 0 .   01ver(      ' has obtained the asymptotic 

expansions of U and Ui(dU(afx)/dx-U/(a>x) ) for large a    , and any x and 

arga. .   His expansions for U and U' can be used near p. * 0 and p. =JK , 

however, we cannot come too close to p   = 0 since a   « (rßJK)   p.   and the 

asymptotic parameter a    will tend to sero.   The functions U and U' could 

have been used over the whole integration path, however, their asymptotic 

expansions are mor^ complex and unwieldy. 

By using the asymptotic expansions found in Table 2.1 to calculate 

F      stad F    in the region Rep. «0, v^<Imp  <• , and then by substituting 

these approximations in the appropriate integrals, we find the E_    and E 

have no asymptotic contribution (k L»l) from this section of their Integra* 

tlon path on the top or second sheet.   In a similar manner by the use of Eqs. 

(2. 3.19) and (2. 3.20) along with Olver's asymptotic expansions, we can 

show that the integration path in the region of the branch point, p   -JK, 

gives no asymptotic contribution. 
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If we again use the asymptotic approximations from Table 2. 1, 

we find that 

roa    ~    iA/4TP2 (2.3.21) 

when p   is on the integration path between p   ->f^,   and   p   = iJR .   We now 

use this approximation in the integral for E     and apply the method of 

steepest descents.   We will not   go into the details since they exactly 

parallel the asymptotic evaluation of E      in Chapter 1.   Tt will suffice to 

•ay that th.»re are two relevant saddle points denoted by D and E, as before. 

The contribution from E is exponentially small while the contribution from 

D can be interpreted as a ray reflected from the z = 0 interface as shown in 

Fig.   1. 19.   The asymptotic order of these contributions are shown in Table 

2. 2 . 

We now asymptotically approximate E   .   Firnt,  the formulae in Table 
n 

2. 1 will be used to simplify V   along the portion of the integration path 

between p   =.yir   andp   =i^5".   When 0<Rep.<-s/riJImp= 0 we find that 

2n+1 iUCn+UGj-nn/z] 
r    _  A       e (2.3.22) 
n ^n+l    3n   4n+4    3n+2 

4 Pz    Pl T 

and when Rep   = Ü ,   0<lmp   <v^we find that 

r  -      —^     ei^.)32 
8np3„ Tn 

where 6.   and  9- are defined in Table 2. 1 . 
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i. 
Type Asymptotic Order 

A 
n O 

B n 
o^-O»«/«, 

D o^2, 
-ak 

£ 0(e     O),a>0 

Table 2. 2 

Asymptotic Order of Geometrical-Optic Contributions 

The above approximations are good in the vicinity of the integration path 
2 

except near the origin, i. e. ,(T/2^)P1 « 1 . 

S we now replace the T   appearing in the integrand of Eq. (1. 3. 17) , n 
by its asymptotic approximation and find the saddle point equations as in 

the .previous chapter, we obtain 

>.(- 
z+s'   -     x +     -  ■¥ 2(n+l)L 

P.     / 
(2. 3. 24) 

and 

0<Rep1<v'^'    ,     Impj = 0 

|     | (-ÜL-  T   i   +    Zteß±  cosh"1 ^A - 0 (2.3.25) 

Rep^O   .    0<lmpl<l/K 
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where the upper sign in the above equations refers to the top sheet 

while the lower sign refers to the second sheet. 

Upon obtaining the saddle point locations from the above equations, 

we deform the contour C through the saddle points and into the decay 

regions.   Since the contribution   due to the portion of the integral lying 

in the decay regien   is exponentially small, the integral E  will be asymp- 
n 

totically equal to the sum of the saddle point contributions.   The contribu- 

tions arising from saddle points obeying Eqs. (2. 3. 25) and (2. 3. 24) will be 

known as type A   and B   contributions,  respectively.   It can be shown that 

no relevant saddle points occur on the second sheet for any n and therefore 

the deformed path will be the same as that shown in Figs. 1.13 and 1. 14. 

We shall now focus our attention on the relevant saddle points on the 

top sheet and their contributions to the reflected field.   The integral £  will 

be considered first, since it contributes the dominant terms to the reflected 

field for large k L . o 

We will now investigate the saddle points of type A   .   A comparison 

of Eqs. (2. 3. 3) and (2. 3. 25) shows us that the two are identical.   This means, 

as in Chapter 1, that each saddle point corresponds to a returning ray.   If 

we now recall our discussion of returning rays, we will remember that there 

are two basic regions divided by a caustic.   To the right of the caustic there 

are two returning rays ; to the left there are none.   For certain parameters, 

the caustic can assume a bow tie configuration for z>0 at? shown in Fig. 2; 2(a). 

Inside the bow tie there are four returning rays while outsiie the bow tie there 

is the same number of returning rays as before.   With the above information 

we see that there are 0, 2   or 4 solutions, depending upon the location of the 

observation point, to Eq. (2. 3. 25) . 
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We «hall next examine saddle point« of the type B . An investigation 

of Eq. (2. 3. 24) shows that there is one saddle point for any given observa- 

tion point.   The saddle point contribution can be interpreted as a ray reflected 
-5/2 from the lower interface.   The amplitude factor of this ray has 0(k        ) . 

As stated previously, the reflected field, E   , is composed of a sum of 
o 

A   and B   type contributions.   The deformed path on the top sheet is shown 

in Figs.  1. 1 Sand 1.16 when there are no saddle points or there are two 

saddle points of the A   type, respectively.   When there are four saddle 

points of type A   the path is similar to the ones shown, but it is not shown o 
here.   An approximation of the deformed path shows that it can be deformed 

around the origin for any given observation point and, therefore no contri- 

bution, similar to type C   ,   arises as we observed in Chapter 1 .   This o 
means that thev? is no lateral wave contribution.   However, there are two 

(assume that the bow tie is not present) rays through each point to the right 

of the caustic while in a similar region, in Chapter 1, there is only one ray 

through each point.   When the observation point is located far from the source 

compared to layer thickness we observer first, that the returning ray in 

Chapter 1 has a similar trajectory to one of the returning rays of Chapter 2; 

and second, that the trajectory of the lateral ray in Chapter 1 is similar to the 

trajectory of the other returning ray observed in Chapter 2 . 

We will now evaluate explicitly the contribution due to the ray whose 

trajectory is similar to a lateral ray.   The evaluation will be limited to 

observation points which are located far from the source compared to 

layer thickness and also those observation points where L »L .   Here L 7 P P 
is defined as in Chapter 1.   The last condition has the following physical 

explanation.   When the observation point is located far from the source, the 

upper branch of the caustic is approximately described by L  = 0 .   The 

condition,  L »L,  says that the observation point should be many layer 
P 

thicknesses from this portion of the caustic. 
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Ey luing the above approximation* on the saddle point equation. 

Eq. (2. 3.25) , we obtain the approximate location for the two saddle 

points in question.   They are : 

« 5— -^L /zJTl, 
p^^A-fc + s')^ . Ipj = 2^e P {2lU) 

The notation used is motivated by the fact that the contributions from saddle 

points p.    and p..   are similar to reflected and lateral rays from an abrupt 

transition.   The first saddle point p     is obtained by assuming that the last 

term in Eq. (2. 3. 25) is small while the saddle point p.     is obtained by 

assuming p    mO .   From Eq. (2. 3. 25) we see that there appears to be a saddle 

point at p   = 0 , however the asymptotic approximations used to simplify the 

integrand are not valid there. 

Now by evaluating the integral E  at the saddle point p.    we obtain 

EL 2>e1kL «    0 1 (2.3.27) 
1  o 

where E.   is the contribution from E   which is due to the saddle point p,_ 

The phase of the above contribution corresponds to a lateral ray, however 

the amplitude is of 0(k ) which makes this contribution a classical geo- 

metrical-optic result. 

An examination of Eq. (2. 3. 26) reveals one basic difficulty.   As L /L 

becomes increasingly large  jp.    I -0 .   ID order for the asymptotic forms 

of Table 2. 1 to be valid a» 1  or using Eq. (2. 3. 26) we find 

- J&IJ IZJTL, 
T e P »1 . (2.3.28) 



-42- 

This inequality ••••ntially saya that aa L / L geta very Urge compered to 

T .   the geometrical-optic reault. appearing   in Eq. (2. 3. 27). ia no longer 

valid.  We aee raya   emitted from the aoorce doae to the critical angle 

resemble geometrical-optic raya with lateral ray type trajectories, bat, 

a« tiie emission angle becomea closer to the critical ray. the geometrical- 

optic Interpretation can no longer be given. 

An evaluation of E   for arbitrary n will ahovr E   to be the dominant 
n ' o 

term in the aeries.  We will not go into detail aince the evaluation exactly 

parallels a similar development in Chapter 1 .   ft will suffice to say that 

the contributions of types A   and B   will be encountered.   Those of type n n 
A   are returning rays reflected from the s = 0 interface n times.  On the n 
other hand, the B   contributiona are thoae raya reflected n+ 1 thnea from n 
the s - • L interface.   The aaymptotic order of thoae contributiona ia shown 

in Table 2.2 . 

2.4      Evaluation of Reflected Field for Large k L 
        0P 

In thia section we will investigate the reflected field from the 

parabolic tranaition when k 1> »1 and 1> >>L.   From this investigation 

we hope to learn what the pertinent field contributiona are, when the layer 

is thick compared to wavelength, i.e.: k L  »kL»l .   In addition, we 

want to relate these contributions to the field constituents that occur when 

k L»k L >>! and when k L » 1 ,  k L« 1 . 
o        o p op o 

llie integral representation for the reflected field ia given by Eq. (1. 4.1) 

where the reflection coefficient uaed there ia replaced by 

f    =    -    Atn   /Atb (2.4.1) 
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wher« 

to 
bn 

j W'(-*J , -c) T i»2w(-»j. -c)j     |-w'(.*j 

0) iajWC-Äj. o,j 

c) + i*2W( <-H 
W(-»* t ±t)  ar« «aotiaer form of parabolic cylinder functions which are 

defined by Abramowitr^1 and w'(-a^ .^= dW (-a^ . ?)/d§.   We eee that the 

integral representation employed here is the »«me as that used in the last 

section, except with a different radection coefficient.   This reflection coeff- 

icient is derived via Appendix A. by choosing •I(a)«W{-a   , ?)  and 
2 I (a)-W(-a   , ?) where I has been defined in the beginning of Chapter 2. 

This alternative form of reflection coefficient makes the computations, that 

will follow,   easier since the W(>a~, *') are real functions . 

& w- now use the assumption that k L<<k i.     then the reflection coefficient r o o   p 
in Eq. (2. 4.1) i* slowly varying con?.pared to tl J exponential in the integrand, 

and the standard steepest descent techniques can be used to asymptotically 

avaulate the integral representation.   We will not go into detail since the 

development parallels Chapter 1, Section 1.4. 

The results of this asymptotic analysis sre that there are two saddle 

point contributions which make up the reflected field.   The firs; of these is 

simply the reflected ray contribution.   The contribution has an 0(k        ) for 

all layer thicknesses considered here. 

The second contribution to the reflected field comes from the saddle 

point occuring at p   = 0 and it reduces to the lateral wave contribution on an 

abrupt interfa 

it is given by 

abrupt interface when k L-*0 .   The contribution will be denoted by E    and 
O Li 
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^"  vr <2-4-2> 
o 

wh»TO 

A(/äT)«^J^J       =.^r(V4) [w-(ofcyw(o,-c) ^ w(o,c}w-{ot-c)3  
1 p s0 [(w'co.-^-w'co.c))2* jfwco.o+wco.-c))2] 

C2. 4. 3) 

The amplitude A(^T) and the plmee ♦ (V^TT) have been plotted by computer 

and are shown in Fig«. 2.4 and 2.5.   In these figure« the thick layer 

approximation« to A(^~T)and %{JKI) are also shown . 

The physical interpretation of E     can best be found from an investigation 

of the small and large T limits.   When T is small, as we have already stated, 

E     reduces to the later.xl wave on an abrupt interface.   We «ee this from the 

fact that as T-'O,  A(VS"T)-«1 and ♦(^rT)-O.   WhenkL»!, or the layer is o 
large compared wavelength, E.  reduces to 

r2 (1/4) e}/4 L1/2 i ^[^"(s + s') +  -v^ r + L^] + in/2 

L    2(2tT)3/!2AV4L1/2(koL ) .(2.4.5) 

H we compare the lateral wave contributions excited on a linear and 

parabolic layer for k L large, as given in Eqs. (1. 4.10) and (2.4. 2) 
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-esitectively. we observe tfa&t both heve a •imilar phase dependence and 
-3/2 an amplitude dependence on distance of 0(1.       ) .   The outstanding difEsr- 

enc? between the two contributions is that the lateral wave, excited on a 

linear layer, has an excitation coefficient of 0(k '     ) while the lateral 
0 ,i 

wave, found on a parabolic layer, has a coefficient of 0(k     ) .  We see 
o 

for high frequency that the parabolic layer wave is excited more strongly. 

The lateral wave contribution given in Eq. (2. 4. 5) also sheds some li^ht 

on another area,   hi the previous section, a geometrical-optic ray contribu- 

tion was found.   It has a ray trajectory similar to a lateral ray, however, 

-as the observation points move away from the source,  L » L. ,   the geo- 

metFÄial-optlc contribution becomes invalid.   We see now that this contribu- 

tion transforms into a true lateral wave contribution when k L. »k I»l. 
op      o 

The transition between the two regions of validity for the E.   contribution 

is quite complex and, as yet, transition functions have not been found. 
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CHAPTERS. 

TBC STUMETRICAL EPSTEIN TRANSITION LATER 

3.1 

la Chapters 1 and 2 the reflected field from a linear end parabolic 

tzeaeltioB he« been atadied.   liiere it waa found that a lateral wave was 

eacctted for all layer tUckneaaes, and that its character waa cfaaaged a a 

the aormaliaed layer thickneaa. k L , waa varied.  For both of the above 

m—tioaed caaes the thick layer limit waa particularly interesting.   In this 

limit the lateral wave discoaaed in Chapter 1 appeared to be excited at the 

point that the critical ray waa tangent to the lower interface,    hi Chapter 2, 

no mtch Interpretation waa posaible, but instead, the lateral rays resulted 

from returning rays emitted dose to the critical angle. 

& an examination of the above problems, we had noted that the continuity 

of the layer at the lower interface waa the critical factor in determining the 

type of lateral wave that could be excited.  A logical extension of the studies 

undertaken in the first two chapters could consist of an investigation of the 

refiacted field from a layer that was completely continuous at the lower inter- 

laee*o Wave functiona for the layer mentioned above could not be found, there- 

lore we re« *rted to the study cf a layer of infinite extent.  The symmetrical 

£psteia layer, to be considered in this chapter, ia such a layer.   Its dielectric 

profile ia given by 

Ma) 

1 , «>0 

A^l-c      . (3.1.1) 
2 

c. + Asech  z/L        , „<0 

Thic layer has the property that as a -- » ,  efa) * e   and all derivatives of 

c(s) approach aero.   Thus, we see that the layer ia completely continuous 



»t th« lower homogeneous roedtasn which occur« et minus infinity.   The 

dielectric leyer elso hes the required property that «• L-O  the layer 

approaches an abrupt interface. 

In this chapter we will first investigate the structure of the returning 
t - 

ray trajectories when k L»l.   Following this, a uniform asymptotic 

approximation for the reflected field will be derived which will be valid for 

abritrary values of k L>.   By means of this approximation we can relate the 

lateral wave on a sharp interface to the geometric«optic rays observed when 

the layer is thick compared with wavelength. 

3» 2 Formal Solution 

f The integral representation for the reflected field in the region z >0 is 
I 

obtained in a manner similar to that used in Chapters 1 and 2.   The source 

eonfiguraticn is the same as before and again only the E    component of the 

electric field is excited.   This component satisfies the wave equation. 

£q« (1* 2.1), where the source amplitude has been assumed to be normalised 

as in Eq. (1.2.2).   The representation for £    is obtained by the application 

of Fourier integral techniques to Eq. (1.2.1).   The result is given by a sum 

of direct and reflected fields 

E   = E     + E 
y       yf       yr 

where 
-H»      ik  [pJz-zl +px3 

and 

E 
1        f JT        ikoCP2(z + Z,) + px]dP      .     z>0   . (3.2.3) 

-■4Tri      j.  p        e 
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with 

lkoP2 + ©/(0)/Ö{0) 
r *   *kop2 -«'(01/9(0) ' (3.2.4) 

The £«actio& e(s) a«ed in the reflection coefficient f is defined a* the solution 

el the differential equation 

[—    +    *l    ( A sech2(,/L) + p^ ) J 8(«} = 0 (3.2.6) 

which satisfies the radiation condition as »-»-f.   The derivative of e(z) with 

respect to a will be denoted by e'(*K   I» order to dsfine the integrals 

appearing in (3.2.2) and (3.2.3) completely, the square roots p    and p 

moat be specified.   This specification is shown in Fig. 1.4 where the four 

branch cuts have been chosen.   The integration path P is also shown in the 

same figure. 

We will now solve (3.2. 6) exactly    Transforming (3. 2. 6) by 

§ « tanh(«/L) (3.2.7) 

reduces it to 

{u-i2} ^Y - 2?if + [v(vfi)-w2/a-§2)] } e=o 
d5 

with 
(3.2.8) 

2     i 
U = tlTpj   ,   v = - l/2 + (l/4 + T  Ar , T = koL.       (3.2.9) 

This It the Associated Legendre equation whose two independent solutions are 

"r    (f) » Q    (§)•   If we represent K   (5) a« an hypergeometric function      and 

let M -*•• we see that it obeys the radiation condition.   The solution to (3. 2. 6) 

is then 

e(B) = Py [ - tanh(s/L)j (3. 2.10) 

—>—w-AAXÄMazgif 
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The initial value («=0) of this Associated Legendre function and its derivative 

(24) 
are given in terms of Gamma function     . Using these relations, one obtains 

B{Of Lr(v/2+U/2 + l/2)r(v/2-w/2+l/2)tanLTT(V + W,/t) 
or (3.2.11) 

e^O)    s     2r(l/2 - v/2 - U/2) r (v/2 - u/2 11) 
e (0)   "    Lr(-v/2-w/2) r(v/2-n/2 ♦  1/2) 

(3.2.12) 

In order to determine the asymptotic properties of the reflection co- 

efficient the location of the poles of the gamma function will be necessary. 

Consider the poles of F (v/2 + (i/2 + 1), for example.   They occur when 

1 2   * 
-1/4 + 1J   (1/4+ T'Ar +   iTp1/2+ 1 = -n, n=«, 1.2,  ...       (3.2.13) 

is satisfied.   Since 

T (Ar     <    3/2+{1/4+ TA)* (3.2.14) 

for all T(Ar .   the first pole lies in the range Repj « 0 ,  (A)   <^npl •   Pole8 

corresponding to n= 1 and higher have larger values of (p. | and therefore 

occur in the same range as the first pole.   The pole locations of the various 

gamma functiono appearing in (3. 2. 11) and (3. 2. 12) are shown in Table 3.1 . 

Since these poles occur on the Re p axis for |Re p | > (Cj)    they lie directly on 

the integration path.   If a small amount of loss is added to the dielectric 

medium, the poles with Rep>0 shift into the first quadrant of the p  plane 

while the remaining poles shift into the third quadrant.   With this information , 

the integration path can be deformed around the poles in the correct manner in 

the limit.of zero loss. 
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Gamma Functions Pole Locations 

r(v/2+ W/2+ 1) Re p. = 0 ilmp^A)8   I 

r(v/2+ü/2+ 1/2) Re p   = 0 

r(v/2 -M/2+ 1) Re p   = 0 Im p1<-(A)* 

r(v/2 -U/2+ 1/2) Re p   = 0 
4 

Imp1<-(A)E 

r(i/2- v/2 ~ U/2) Re p   = 0 Im p^A)* 

r(-v/2 - u/2) Re p   = 0 Im p <Ar 

Table 3.1 Tole Locations 
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B«fore procaeding we shall check the convergence of the integral. 

To do this we aaymptotically evaluate (3.2.10) as |p| ->• .  We find 

B'{0)/9{0) -   kjpjl (3.2.15) 

which gives a reflection coefficient 

_    lp2! - IPJ 
r  =— — (3.2.16) 

IP2!   ♦   iPj 

when p is large.   Since the exponential in the integral decays for large p. the 

integral converges. 

To simplify future calculations, the branch points at p = ±{e )   are 

now removed by means of the transformation 

2.i .. 2%i 
P = (e1-p1) .     P2 = (A + p1)      . (3.2.17) 

This transforms the integral in (3. 2. 3) to 

1 Pir      ik0fP2<z + z/> + Px] 

ER=+^   J     ??:    e dpj.^0        (3.2.18) 
C z 

where the multivalued functions P, P7 are defined on a four sheeted Riemann 

surface.   The first two sheets of this surface are shown in Figs. 1. 5 and 1. 6 . 

The multivalued character of the mapping (3. 2.17) leads to a transformed inte- 

gration path, C , in the p. plane.   Parts of this path appear on different sheets 

since any two points symmetrically located on path p lead to the same value of 
Z 

Pi  ' 

3,3 Ray  Trajectories 

When the parameter L of the Epstein layer is large in comparison with 

a wavelength, the medium can be considered slowly varying, and the methods 

of geometrical optics can be used to find the ray trajectories.   In this section, 

the ray family will be found by using the ray equation for a stratified medium 
(25) 

given in Kelio    .The caustics of this family of rays will also be found and the 

L 
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itfttOmi iMkaHer; ol HIM« cMrtlcs M I.-* 0 «111 b« iarrastigaUd mad reUtod 

t» MM iMlf «pAc« pvofalam. 

Itrat, fb» reflected ray« ia tfca hamogaaaoua madium, « > 0, wttl be 

caaaldarad.   Thaaa ray» ara atraigtat llaa« giraa by 

x/p - (a + «')/ p2 - Ln/|pl | = 0 (3.3.1) 

«hara p. U imagiaary for reflected ray», i.e., p   = i|p   |.   The same ray 

equation ia recovered from the exact ■olatioiB,(3.2J8) , if T is replaced by its 

asymptotic approshnatioa (k    L »I) aad then the saddle point condition is 

applied to til« resulting integrand.    The caustic is found by eliminating |p | 

between (3. 3.1) and the derivative of (3.3.1) with respect to jpj . We obtain 

.*" . (.,/Af3   (.♦02/3
+[WM]1/3.     (3.3.2) 

This caustic coincides with the critically reflected ray found in the half space 

problem ia the limit as L -• 0. 

The rays ia the medium s < 0 are divided into three types: transmitted 

rays; critical ray; and, totally reflected rays.   The transmitted rays are 

not of great interest to us.   The critical.ray is given by 

x = (tjMj* [«' - L sinh(a/L)J ,   jpj  = 0 .        (3. 3.3) 

This ray never turns since s is a monotonicaliy decreasing function of x. The 

totally reflected rays satisfy the equation 

CGüW = 1 - 2Ipj i 2p2'
2 sinh2(z/U (3. 3.4) 

where 

w« ZlpjIlpL)' (x-x,).   xo=P s'/p^ 0<W<2TT. 
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Thesc rays «ntcr the inhomogeneou* medium «t x = x , turn at x = x   + x , 
o o       t 

(x   = TipL(2 jp   I)'  ) and return tc the linear medium at x« x + Zx .   A 

typical ray is shown in Fig. 3.1. The rays have been plotted for some typical 

parameters in Fig. 3.2 . 

The caustic formed by these returning rays is found by eliminating 

|p   j between the derivative of (3. 3.4) with respect to |p  | , i. e.. 

e.x A #       e A 
"T     "      3  2  ^^'V (3.3.5) 
pL        p2L       \Vl\Vz 

and the ray equation, (3i3«4} .   The caustic is shown in Fig.  3. 2 .   It consists of 

two breaches:   one that crosees the z = 0 line and connects to the caustic 

in the homogeneous space, and another that tends asymptotically toward the 

z = 0 line as x -* *.   The ray and constraint equations can be solved exactly 

for the exit point of the first branch into the homogeneous medium.    A 

calculation shows the exit point lies on the beginning of the free space caustic. 

The asymptotic character of the second branch can be found by assuming 

p9«l.    Using this approximaticn in the ray and constraint equations gives 

the asymptote 

2/L = - zjjA^x]'     • (3.3.6^ 

This asymptote tends toward the interface as L -* 0. 

As the two branches progress deeper into the inhomogeneous medium 

they meet in a cusp.    The location of this cusp can be obtained with the 

additional constraint equation found by taking the derivative of (3. 3. 5) with 

respect to |p. I .    The result is 
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 i—5-=    »   -tan>/2). (3.3.7) 
A p L 

The simailaneous solution of (3. 3.4). (3. 3. 5) and (3. 3.7) .  will give ua the 

coordinate* of the cusp.   Unfortunately, they could not be solved explicitly ; 

however, an asymptotic solution was obtained as L-*0 .   The only nontrivial 

solution to this system of equations with small L is obtained when the tan(w/2) 

remains finite and non zero and |p  | is small.  From (3. 3. 7), we then have 

Ipjl   2   ßL1/3    . (3.3.8) 

where 6 !■ a constant to be determined.   Putting this into (3. 3.4) , (3. 3. 5) 

and (3. 3. 7) we find 8 obeys the transcendental equation. 

'■—-1[K^),/3]-^=-<3.'.lV
/V*   „.3.,, .   I 

and the approximate location of the cusp for small L is 

*= (e^A)    «   +0(L2/3) ; (3.3.10) 

as L •• 0 the caustics and cusp approach the interface and transition region of 

the half space problem. 

3.4 Uniform Asymptotic Solution 

Writing the reflection coefficient in exponential form 

r=ei* (3.4.1) 

and putting thin into (3. 2.18) gives us 

P     • , "i %[p2('
+''>+«»+c-t<v1.w*4 
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whera 

Th« multiT«luedne»a of the functioa tan'   does not appear in the overall integrand 

Zitan*1 

ainca • is single valued. 

The uniform asymptotic evaluation of the above integral is performed 

by first finding the aaddle points for all values of 0<T < » .   In general, these 

saddle point locations will depend on the large parameter k   and the normalized 
o 

length T,    The location of these saddle points can be found:   first, by the 

method of successive approximations and second, by using an asymptotic 

approximation to the function f for large T.   The first method is a generalized 

sharp interface technique and is valid when the length L is small compared to 

s     and k is large, while the second method gives the geometric-optic result 

and holds when T is large.   Since the two methods overlap for a restricted 

range of T, the saddle point locations can be found for any T. 

The saddle point equation is given by 

Pj  [(z + z,)/p2- x/p]  +ko"1(d*/dp1) = 0 (3.4.4) 

on the top sheet and 

Pj [(2 + z')/p2 +x/p j+k^W/dp^  =0 (3.4.5) 

on the second sheet     First,  we will apply the method of succeusive approxi- 

mations to (3. 4.4) and  (3.4.5).   The solutions to (3.4. 5) neglecting the 

perturbing term k~    (diir/dpj) are 

(0) <0) f  2 ,21* p.      = 0 ,        o      =±i    x  A - (z+z) c    ? 

1L lr L lJ (3.4.6) 
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where the saddle points p      and p    (+) correspond to the lateral and reflected 
li-" if 

waves found in the half space problem.   The superscript is used to denote the 

order of approximation.   The first approximation is obtained by evaluating 

the perturbing term in (3.4.4) with the unperturbed values given in (3.4. 6) and 

then assuming P.    - P,    * ^i  ***** 6Pi <<1*   The fir*t order «addle points 

are: 

P<1L =   ^l^oV"1^*7^^! , ^«-(Cj/A^s+z') (3.4.7) 
'Pl= 0 

1>li)sl>lr)"{[(A,\V'/P23 + x/p3){X<A,*+X(Cl,*)]    ^♦^l^L =p(0)  {3'4'8) 

where L   is the distance the lateral wave travels along the interface in the 
P 

half space  problem.   The approximate method is only valid when 5p «I. 

For this to be true it is sufficient to have 

o p 

^♦(p/CA?) 

% 

4 
«1» 0<T<«», Rep = 0, 0<hnp <(A)   .      (3.4.9) 

1, 
One can show for small and moderate values of T   that dt(p, (A) T) / ,    is 

1 /dpj 

bounded except at p?= 0 and for large values of T that dt/dp -+iTTT, 

With the aid of the above informaticn, wa sec the method of vueeef sivc 

approximations is valid when 

k L   »1 , L/L    <<1,     0<T<». (3.4.10) 
op /    p 

When the method of successive approximation  is appliec' to (3. 4. 5), one saddle 

point is found on the negative imaginary axis near the origin. 

Th« second method of finding the saddle points is to use the asymptotic 

approximations for the Gamma functions in (3. 4.4) and (3. 4. 5). The resulting 

saddle point equations are 

'•^•^^ammimma^i^if 
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Fig.   3.3 

Top Sheet of Riemann Surface-Decay Region« 
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Second Sh««t of Ri«maim Surface-Decay Regions 
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f z + z'    —   x\(_      _    f- top sheet 
Pl^—    +7)+irTLs0'i^econd.heet    ' <3-*-11) 

Here again, we obtain a similar arrangement of saddle points to those obtained 

by the method of successive approximation.    Three saddle points appear on the 

imaginary axis of the top sheet.    Two occur for 0<lmp < (A)   and one occurs 

for -(A)   < Imp   < 0.    On the bottom sheet we find only one saddle point on 

« 
the imaginary axis for -(A) < Imp   < 0.   Solutions to (3.4.11) give a good approxi- 

mation to saddle point location for arbitrary L/L   and   T»l.      The two 

approximate methods have a common region of validity when T» 1 and 

L/L «1. 
P 

The decay regions relative to the saddle points have been investigated 

in Appendix C.    They are shown in Figs. 3*3   and   3.4. .   The shaded areas 

correspond to decay regions of the integrand.    Ihe integration path, C, 

will now be deformed into the path C' as shown in Figs. 3. 3 and 3. 4.   The 

deformed path has been chosen to go through the two saddle points which 

lie on the integration path, and everywhere else to lie in a decay region. 

In Appendix B, an investigation of the singularities of the integrand f at lie 

between the original and deformed path is made.    There, it is fovui'1 that 

those singularities give rise to residue contributions which are, at most, 

an exponentially small order, and can be neglected.    As a result, the 

integrals over the two paths are asymptotically equivalent. 

Since the deformed path, C  , lies in a decay region except at 

the two saddle points, the integral 
* —~        -    - ____   _        _-__ 

The saddle points and decaying regions are for the dominant term of the 
asymptotic expansion of the integrand.   Other terms in the integrand's 
asymptotic expansion will not affect our results. 
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ER- ^r J   S7- o «3-4-12) 
C'        Z 

is uympCotlcally •qpxal to th« two «Lddle point cootribiitton«.   The method 

of ftoopost dotcant can bo -a»«d to evaluat« thi< integral if we generalize 

tha method to include f addle points whi-ih depend on the large parameter k'    \ 

The dominant term of the asymptotic expansion of the integral 

r   Pi uo#fcvy ISJ ^e dPl (3.4.13, 
S.D.«. 

where 

•(P1.y«P2(« + «/) + px+  -£-   ♦(p1.(A)*T) (3.4.14) 
o 

and the path of integration is the steepest descent path, S. D. P. is given by 

i^Mp^.kJ 
I - i k '" G(0) i o 

where 

L.* ^o   lpls'V I -iko
¥G(0)e (3.4.15) 

G(0) = =*[?!,/(P,P2i)] [2"/ I»'(?!,) I J^e*1"74. (3.4. 16) 

Here we denoted the second derivative of f(p,k) with respect to p   as f'(p.   ) 

and have assumed there is only one saddle point, p    , on the S, D. P.   The 

choice of the -I- or - sign depends on the direction of the path and sign of 

#'(p.  ).        The above evaluation is good only if no singularities of the integrand 

approach the saddle point ask becomes large.   For the saddle points treated 

in this paper this is the case as is shown in Appendix B. 

The asymptotic evaluation of (3.4.12) it. now performed. For L going to 

aero, we can identify the contribution of the lower saddle point as the lateral 

wave, while that of the upper saddle point is the reflected wave.   This 
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identtflcattan will b« retained for arbitrary ▼aloes of L, i.e.; 

where 

EL = 

E     -   E.   + E (3.4.17) 
yr L        r 

ilr   In       (* + *')+n   x  +k'1*<l»   . . (A)*Tn+ inM 
0{2£L,' ■     -1. O     ■ - I.L. J 

P1LC  

L       2L P2L  PL      0 

(3.4.18) 

and 

E    = 
r 

Plr« 

i^[P2r(z + z/, + PrX ^o^^lr'^    )]+ i 3TT/4 

*V2I [f'-f "^(^ T)^^u.'^ 2{2TT) 
2r     rr p_ p o r2r       rr 

(3.4.19) 

with f' being the second derivative of ? with respect to p .   The positive sign 

has been chosen for p,    in ( 3.4. 6) and rIr 

-.. ' "U • "* = " ^  "fr '* '   "r = te. " "it '*   • 

Since *'(p    , (A)T)/k   ~ O (k'  ) for all T, :t can be neglected in (3.4.18) and 

(3. 4.19) if only the dominant term of the asymptotic approximation is desired. 

It is interesting to see how these integrals reduce when T is in the range 

where the saddle points can be obtained by the method of successive approxi- 

mations, i.e.,  (3.4.7) and (3.4.8).   The contribution from the reflected wave 

part of the integral is 
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E    - 

I      |e
lko[P2,(»+8/, + PJt+^1*(Plr'(A)iT)]f in/4 

'2r   rr P2r  Pr 

(3. 4. 20) 

wnvre 

Plr S ^  Z*-<*+*')Z'J • 

TU« it the same contribution one would obtain from a sharply bounded half 

•pace problem except for the additional pteae term.   When the method of 

•ucceasive approximations is applied to E   , we find 

|       ih[A*(«+«') + («j)*x+ko"St(ArT]]+i3iT/4 

(3.4.21) 

where 

and 

♦[(A)*T] =t(0,(ArT) = 2 tan-1 2r   (v/2-h  1) .       .„ 
—   0  '   ' tan(n v/2) 
T(Arr   (v/2+1/2) 

(3.4,22) 

Pj-0    4tan (nv/2)l'  (V/2+1)+T AP  (v/2+1/2) 

Equation (3.4.21) in the limit of small T  reduces to 

1/4 

EL- 
(2^),, A (k L) 

o p 

ikiA*(B+z/)+ C*^ + i 3TT/4 

TTT* t l 'T <<1 (3.4.24) 

TU« is the same as a lateral wave on a dielectric half space.   On the other 

hand, if we assume T is large enough, the asymptotic approximation for the 

——Mi 
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Ganuna functions can be used and we obtain the geometric optical result. 

It is 

A l/4L ikJ&*{s+zV(g )^x4rTL(A)M4 iT7/4 
EL S le •     (3-4.25) 

2(2ÄrL (k L )¥ 

pop 

The lateral wave amplitude, AJ {&) T land phase,  m (A) T L have been 

plotted in Pigs.  3.5 and 3.6     respectively.    The straight line (shown dotted) 

appearing in both graphs is the approximate solution when the transition is 

slowly varying with respect to wavelength.    The dash-dot line is the approximate 

solution when the transition region is small compared with wavelength.    In this 

case the reflection coefficient has been approximated by the first few terms 

of the Taylor series expansion of T about T = 0, i. e. 

Pz-Pi         2iAP2               PlPzlVPj^^Pz      2     T       , /W7M r = +     r, T  -2 —    T    .  T «1 (3.4.26) 
VPl {Vrf (P2+Pi)3 

where 

v = 2Aln 2 + 0(p1
2) . 

f 1 

The lateral wave contribution to each term in (3. 4. 26) was found and then these 

three lateral wave contributions were cnt in the form of (3. 4. 21) to give an 

approximate lateral wave amplitude   Aj (£)  T I and phase w (£)  T I . 

3.5 CONCLUSION 

I For purposes of investigating the high frequency reflected field from 

the symmetrical Epstein layer the homogeneous half-space,  z £,0,  divides 

naturally into two regions:   first,  the region between the z axis and the 
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aHwtic(Fig. )*2) where the reflected field is expor eatielly small end , 

•ecoad, the region to the right of the caustic where there are two major 

contirubtiona to the field at each point.   The first of these contributions is 

the reflected ray contribution , (3.4.20) , whose amplitude variation with 

frequency is k    .   The frequency dependence does not change as T is varied. 

The second field contribution to the right of the caustic (3.4. 21) has an ampli - 

tude which is dependent on T .   For small T the contribution approximates a 
-3/2 lateral wave on a sh?*D interface whose amplitude dependence is (k L )        . 

"0P 
The caustic in Fig. 3. 2 provides the natural boundary for this contribution 

since for small T it coincides with the critically reflected ray in tK.; sharp 

interface probl-ar«-  When T becomes large, this second field contribution 

changes chaj?.cter from a lateral ray to a reflected ray contribution.   The 

amplitude dependence now has a (k L )   variation.  Approximate forms of the 0 P 
second contribution are given in (3.4.24) and (3.4. 25) for small and large T 

respectively.  An examination of these two expressions shows that the lateral 
-3/2 distance dependence L remains unchanged as T is varied. 

P 

The two field contributions to the right of the caustic correspond to the 

rays through each point in this region.  In the homogeneous region the ray« 

that make up the caustic are the rays that correspond to the contribution ET   , 

given in (3.4. 21) .   The rays that form the caustic which approaches the z » 0 

line asymptotically correspond to the contribution £   , or (3. 4. 20) . Identi- 

fication of contributions corresponding to rays that pass near the focus is more 

difficult and must be considered when L is small. 
j 

ID Chapters 1 and 2 we found that a lateral wave was excited on the layer 

for all values of T .   This lateral wave changed its amplitude dependence on 
- 3/2 m 7/6 - ^/2 

frequency from (k L ) to (k L )        for the linear layer and from (k L ) 
_j 0   P 0P 0P 

to (k L )~   for the parabolic layer as r went from small to large values.   This 
o p 

contribution, however, always remained a diffraction effect, not predictable by 
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classical geometric - optics.   In the Epstein transition treated in this chapter 

the lateral wave is excited for small T but as  r becomes large this contribu- 

tion becomes a reflected wave, which can be predictable solely on the basis of 

geometrical optics.   This shows that the added continuity of the dielectric trans- 

ition has a marked effect on the behavior of the lateral wave.   The transition 

chosen in this chapter has the drawback that it has an infinite width.   This has 

the effect that a ray which emerges from the inhomogeneous medium, having 

traveled a large distance along the interface, penetrates deeply into the strati- 

fied medium.   It would be of interest to investigate transitions with a finite width 

but more continuity than the layers treated in Chapters  1 and 2 . 
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CHAPTER 4. 

THE DOUBLE EXPONENTIAL TRANSITION LAYER 

4.1       latroduction 

In tha last chapter the reflected fields from half of a syrmnetrical 

Epstein layer were investigated for arbitrary layer thickness.  When the 

layer thickness was large in comparison to wavelength, the reflected field 

was composed of geometrical-optic rays forming a two branched caustic 

which met in a cusp.   As the layer thickness decreased, a portion of these 

reflected waves changed character and formed a lateral wave. 

As the next step in our investigation of the reflected field from 

transition layers, it would be ideal for us to study a dielectric profile that 

is completely continuous, i. e., one having all derivatives of c(z) continuous 
(4) for -•<*<•.   The Epsteinv    transition layer is an example of such a profile 

but the asymptotic properties of the wave functions have not been investi- 

gated in enough detail to make the problem manageable . 

Since this is not possible at present, we will study the double exponential 

medium instead.   This transition is composed of an exponential function which 

approaches e. as ■-*- • for z<0 and an exponential function whirh approaches 

1 as s«*** for B>0 .  At z = 0 the profile and its derivative are continuous.   The 

double exponential profile is similar to the Epstein profile since they are both 

composed of inhomogeneous medium for all z.   The two are different since 

tk« double exponential medium is not completely continuous for all z.   In fact, 

the double exponential medium has a discontinuous eecond derivative of e(z); 

this was the case for the symmetrical Epstein layer considered in Chapter 3. 

In this chapter we shall: first, evaluate the reflected fields when the 

transition is thick compared to wavelength, and second, evaluate the reflected 



-93- 

fields for arbitrary transition thickness where the source and observation 

points are man/ transition thicknesses from the layer.   We will determine 

if the lateral wave in this medium changes its character as observed in 

Chapter 3 and note what effects occur from the placement of the source in 

an tnhomogeneous medium. 

4. 2    Statement of Problem and Formal Integral Representations 

Consider a dielectric profile given by 

£(«) = 

!-[&&] -Zz/L 

cl +[A/2]eT r2z/L 

z .>ü 

z<0 
A = 1-e, (4.2.1) 

where an electric line current source is located atx = 0, z^z',  z'>0 and 

parallel to the y axis.   It is assumed, as before, that the e time 

dependence is understood.   Because of the source location only the y 

component of the electric field, E , is excited and it obeys the equation 

.2 .2 ? 

!"-—■+-—+    k   £{z)   1 E   = - 6{x) tiz-z') {4.2. Z) 
Ldx2        dz2 0 J     y 

The source magnitude has been adjusted to make the coefficient of the delta 

function -1 and is given by Eq. (1. 2. 2). Since the medium is uniform in the 

x direction, it becomes convenient to introduce the transformation 

k       +« ik p 
E =     ~   J     HZ,P)   e   0    dp (4.2.3) 

into Eq. (4. 2. 2).   The resulting equation for ^{z, p) is given by 

["~   +    k2 (€(z)-p2)] Hz,?) -- 6(z-z/) 
dz 

(4.2.4) 

where ^{z, p) must obey the radiation condition as z -* i00 .   The above 
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equation is a one dimen»iuiial Green's function problem.   The Green's 
(27) function Kz.p) is given by Friedman       as 

*(z.p) (4. 2. 5) 

where 7_ and if. are homogeneous solutions of Eq.  (4. 2. 4) which satisfy 

the radiation condition at plus and minus infinity iftspectively.   The notation 

z< means that z< is equal to the lesser of z or z' while z     means that z     is 

greater of z or z' .   The denominator of Eq.  (4. 2. 5) is the Wronskian of t 

and 4'   which is defined by 

W{*2'*i) =  *?.(z) d*i(2)/dz- M2) dt2(z)/dz  , (4.2.6) 

We will now restrict ourselves to finding t(z,p) in the region z>0. 

Upon introducing the dielectric profile € (z) for z >0 into Eq. (4. 2. 4) and 

using Abromowitz  '   ,we find that the homogeneous solution ty7{z) is given by 

Mz) =    J     (-iXe"z/:L) .   z>0 
2 

(4. 2. 7) 

where J (z) is the Bessel function of order V and argument z .   The symbols 

v? and X are defined by 

v^-ir/e^-p1 ,     X*T/|      .       T* k L o (4. 2. 8) 

The solution ^.(z) is given by 

tjOO   =• 

AJ    (Xez/L) 
Vl 

,z<0 

•»        # .•>    ~z/L .     ,  t?_     .  .,    -z/L. J        (-iXe )   + rj    (-iXe ) . z>0 
"2 2 

(4.2.9) 

where A is constant independent of z, Vj = - irjel p       and 
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J      (-iX) J'   (X) - ij    (X) j'    (-iX) 

f="   J   '-iX) j' \\).ij (i)j' (-u)       ' (4-2-10) 

2 1 1 2 

The prime over the Bessel function indicates differentiation with respect 

to the argument.   The solution   ^  (X e )  satisfies the radiation condition 
/ T / T 

as z--« while the functions ^.(-iXe"2'     ) and J_v  (-iXe ) are two 

independent homogeneous solutions of Eq. (4. 2. 4) for z >0 .   A linear comb- 

ination of these solutions is used for tji. (z) in such a way as to make (L (z) 

and d\jj   (z)/dz continuous at z = 0.   The Wronskian W(i|(_, f.) is found to be 

Wa2. tj) = {2/TTL) sinv^n (4.2.1i) 

(29) by using Abramowitz        . By substituting f. (z) ,   \|(_(z) and W()L, iL ) in 

Eq.   (4. 2. 5} and then using the resulting expression for if(zf p) in Eq. (4. 2. 3), 

the formal integral representation for E    is obtained.   It is 

+ » ik px 
E    =•£   J   [sin(TTV2)3"   Jv [-iXexpC-z^L)]^ [-iXexpC-z^DJe    0    dp 

* -» 2 2 

T t.00     f r n     r "i ikopx 
+ 4 J      sin(v,TT)    Jv | -^exp(.z</L)J J J-iXexpC-z^Dje dp # 

For these integrals to be completely defined,  the square roots 

»j  = vej-P        . ^2 = J[ 2 
2      v   2 F 

must be properly defined on a four sheeted Riemann surface which is shown 

in Fig.   1.4.   The multivalued character of the Bessel function need not 

concern us since the   integration variable is not contained in the argument 

of any of the Bessel functions in Eq.   (4. 2. 12) . 
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If we allow T -.0 , Eq. (4. 2. 12) reduces to 

+ -        iko(p2|z.z'| + px) 
_1    P e dp 
4TTi    J p^ E    = 

y     4TTi J«   P2 
(4.2. 13) 

+ . iko[p2(z+z')+px] 
'      r       i e .        =     r2 Kl 

" ^ L ~ p     p?^" * 
We see from the last equation that as T -0, or as the layer becomes thin 

compard to wave length, the formal integral representation,  given in Eq. 

(4. 2.12), reduces to the half space integral representation. 

As in Chapter 1, the branch points at p = ±^/cT  are now removed by 

means of the transformation 

/—T 177^ P = ve^Pj . Pj  = vA+ Pj      . 

This transforms the integral in Eq. (4. 2. 12) to 

T r        pl r -      r -  ikopx 
E    =-   7 ■  /^   »   Jvi    -iXexp(-z^/L)|J       -iXexp(-z  /L)|e dp. y 4J   psin(TTV2)    -v2L v     <       J   v2L K      >       J Fl 

P  r ik px      (4-2-14) 
T   C "l P it n        n^ 

-4if^^\l'iXeX^'z</LU\[-iXeX^'Z>/L)]e ^ 
^22 2 

where the multivalued functions p, pLare defined on a four sheeted Biemann 

surface.   The first two sheets of this surface are shown in Fig.   1.. 5 and 1.6. 

For reasons that will become obvious at a later point, it vould be 

advantageous to obtain a different form of Eq. (4. 2. 14).   This can be done by 

using the relation 

J_v(z) = e^1 Jv(z) - isin(TTv) H^z) (4. 2. 15) 
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in Eq. (4.2.14).   The resulting integral representation is 

| Ey = ^J -i  H^,[.lX«p<-.</L)] ^ [-iX^p^/DJe   oVXdpl 

■ 

+ ^"J   -~-f Jv[-4Xe«p(-VLI]Jv[-iU,*(-»>/L,3e   0   ^1 

(4.2.16) 

6 2~ 2' 

where HJ2)(-^) J/ (M -U . (X) H*   (-IX) 
-       V2 Vr V       V2 
r 'Jv (-iMJ; (X)-i^ (X)^ (-iX)    ' (4*2-17) 

2 1 i 2 

4. 3    Asymptotic Evaluation of Integral Representation for Large k^L 

4.3.1.     General Consideraticps 

Since the integral representations for 2   which have been presented in 

the last section are too complicated to be integrated directly, approximate 

procedures must be used to simplify the integrals further.   If we assume 

that the medium is slowly varying with respect to a wave-length and that the 

observation point is not near the source, we can asymptotically approximate 

the integral representation.   To be more specific : if the medium is slowly 

varying, i.e., k L»l,the uniform asymptotic approximations to the Bessel 

functions can be used to simplify the integrand of Eqs. (4. 2.14) and (4. 2. 16). 

By using this simplified form of the integrand, the integrals in Eqs. (4. 2.14) 

and (4. 2.16) can by asymptotically approximated by the method of steepest 

descents for large k r where T = ,/X  +ZZ . 

Before proceeding with the asymptotic evaluation of the exact solution, 

the methods of geometric-optics will be applied to .the problem in the next 

section, 4. 3. 2.   This will allow us to represent the field as a sum of  ray 

contributions.   The ray family will be investigated in detail with its assoc- 

iated caustics and foci.   A comparison of the field contributions,    obtained 
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from the asymptotic evaluation, will be performed in section 4. 3. 3., and 

tiie method of geometric-optics will clearly distinguish the geometric-optic 

from the diffraction effects. 

4. 3. 2 Rays in a Double Exponential Medium 

a.       Description of Ray Regions 

As stated in the last section, the methods of geometric-optics will now 

be applied to the double exponential medium.   We will assume k L»l 8in.-< 

the method requires the medium to be slowly varying with respect to wave- 

length.   By using this method, the field can be characterised by a family oi 

rays emanating from the source.   In this section the structure of this ray 

family will be studied including its associated caustics and foci.   Also a 

detailed investigation of this ray family will be made as L.-0 while keeping 

k L large.   This limiting ray family is important since a comparison, with 
o 

the ray family for a sharp interface problem, gives important clues to the 

changing nature of the lateral wave a L increases. 

The ray trajectories can be obtained by an integration of the ray 

equation i. e., 

X = :fc   f    -T^rSli (4.3.1) 
J/  L€(T)-p£J z 

where the plus and minus signs are used for rays with positive and 

negative slope respectively.   The symbol p,   used above, is the ray para- 

meter and is related to the initial ray angle 9    by p = Jc{z)sinB   ; the angle 

3   is measured between the tangent to the ray emerging from the source and 
o 

the line z = z', x>0, and is considered positive in the clockwise direction. 

The rays divide naturally into three types : direct, reflected and trans- 

mitted rays.   The direct rays are restricted to three regions of the x- z 

plane as shown by the Roman numerals in Fig. 4.1.   Region I is bounded by 

L 
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a portion of the z axis and the glancing ray,  i. e.,  the ray emitted from the 

source at Q0= 0.   The name,  ''glancing ray",   stems from the fact that the ray 

just glances along the interface in the limiting case of an abrupt interface 

{L-»0).   The glancing ray'a trajectory is given by 

/T          (l-A/2 e"2z,/L)* .  -If  (z-z')/lA tA  , ,» x/L =  -» rr; *—    cosh     'e ^ )    ' (4. 3. 2) 

Region II is bounded by the locus of turning points and the critical ray.   The 

equations, describing the locus of turning points, are given in Eqs. (4. 3. 4) 

and (4. 3. 8) and will be discussed in detail at a later point.   The critical ray 

is emitted from the source at the angle 6   where 6   is the critical angle given 

by 6   = sin   JT" /€(z') .   This ray is found by integrating Eq. (4. 3. 1) with 
c 1 

p = -/e7.  Its ray trajectory is 

t/L 
ifi cosh    (VTe I  -cosh    i^e        jj  , z>0 

(4. 3. 3) 

JT ["«h •1/   /r z'/LN  .    * -z/L      «- ,-1 
(jlez /L)+7?e"z/L-v/r-co8h'1^], z<0 . 

The direct rays are not the only rays existing in regions I and II,   They are, 

however,  the only rays emitted directly by the source into regions I and II . 

Region III is bounded by a portion of the x axis, the zaxis and the critical ray. 

Direct rays emitted in the angular sector 0<6<6   are called returning 

rays after they pass through the locus of turning points.   These returning 

rays have z coordinates that tend toward plus infinity as the observation 

point becomes far from the source.   Direct rays which have been emitted 

in the angular sector 9 "^Q^ n/Z and have passed through the interface 

(z = 0) are called transmitted rays.   These rays have  z coordinates that tend 

toward minus infinity when the observation point is far from the source. 

Because of the monotonic character of the dielectric profile,  the direct 
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rays never cross one another; the sam? is true for transmitted rays.   As a 

result,  these two ray types can never generate caustics or foci,  therefore 

making further analysis of these rays unnecessary.   The returning rays,  on 

the other hand, do cross one another and must be studied further. 

The returning rays can be subdivided into two ray types: those rays with 

turning points 3.n the upper half space and those rays with turning points in the 

lower half space.   The two ray types are divided by the tangent ray which has 

an initial angle denoted by 9   as shown in Fig. 4. I. 

b. Turning Points 

Before considering the caustics formed by the returning rays, an 

investigation of the locus of turning points will be useful.    The locus points, 

z  >0f  are found by integrating Eq. (4. 3. 1) and noting that p = </efa ) .    The 

resultant equation is 

xt/L = /ITA 
r -Zz /Li^      z /L r   (z'-z J/Li 
U-(A/2)e     l    J      e        cosh     Le J .   z 

t- (4. 3. 4) 

Some interesting leatures of this curve,  as illustrated in Fig.  4. 1,  are: 

first, the locus intersects the source point and has a zero slope at this point; 

second,  the curve has one maximum (dx /dz  = 0) when 

/I     -Zz'/L .-1     z'/L.   .    .,_ 
Jl-e cosh       e        -> l-A/2 (4.3.5) 

and is monotonically decreasing when inequality (4. 3. hi) is not fulfilled. 

The location of the maximum will be denoted by (x^. ., ziW) . 
tM     tM 

If (z'-z J/L«!   or  (z'-z )/L»l ,   Eq. (4. 3. 4) can be simplified.     By 

use of the former approximation,  the locus of the turning point reduces to 

z'/L 
t t 

(4.3.6) 



102- 

This describes the section of the locus of turning points near the z = z' 

line.   When (z'-z )/L»l ,   on the other hand, we obtain the approximate 

form of the locus of turning points in the region z'>z >o but not including 

those points close to z .   This approximation is 

_ -2z /L_J z /L 
xt = JÜi [l-(Ä/2) e j     (z'-zt) e . (4.3.7) 

Jf we now assume that L is small, we see from inequality (4. 3. 5) that 

the locus of turning points has a maximum.   As L-0 the x   coordinate of 

this maximum teuds toward infinity.   The approximate forms of the locus 

above and below the maximum are described by Eqs. (4. 3. 6) and (4. 3. 7) 

respectively.   As L-0 we see from Eq. (4. 3. 6) that the portion of the locus 

above z      tends toward the straight line z = z   with x>0,   while we see from 

Eq. (4. 3. 7) that the portion of the locus below z        tends toward the straight 
l tM. 

line z»0 with ,/2/A (l-A/2)   z'<x<a' .   A sketch of the locus for small L is 

shown in Fig. 4. 2 . 

The turning points when z <0, are obtained  in a similar manner as those 

for z >0,  i.e. , by integrating Eq. (4. 3. 1) but now z   must be considered as 

negative.   The resultant equation is 

xt/L =  (p/p2)|cosh"1[-v/2^p2ez/LJ-co8h'1[v/2^"p2j} 

+ (p/lpjhcosh'^lpjym] 

with +z /L 
IpJ   = JKJl   e . (4.3.9) 

As would be expected from the continuity of the dielectric constant 

and its derivative at z = 0, the locus of turning points and its derivative 

are also continuous there.   As we approach the critical angle, i. e. , |p. 1-0, 

we find from Eq. (4. 3. 9) that z - - • .   Using this limit in Eq. (4. 3. 8) show 

(4. 3. 8) 

L 



Fig.   4.2 

Sketch of the Locus of Turning Point« for Small L 
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that the locus o£ turning points approaches the critical ray, Eq^44 3. 3), 

as z -- «o.   The locus in the region z <0 has one extremum when inequality 

(4. 3. S) is satisfied, and it has no extremum when it is not satisfied. 

For small L inequality (4. 3. 5) is satisfied, and the locus of turning 

points has one minimum which is given asymptotically by 

x^   = JTjKz'    +0{L2J3)    ,     2^    ~0(LlnL1/3)   . (4.3a0) 
tm 1 tm 

In the limit of L-»0, we see xJ  -• JT~7bz' and z. -•0 .   If we assume tm i tm 
|z |/L »1, the portion of the locus, that approaches the critical ray, can 

be approximated by 

i         UJ/L 
x   w Js  /Az'  + n Jz  IlL   Le ,   L«l. (4.3.11) 

If we let |z I   ~ L.ln(6/L) ,   then x  becomes 

xt -   JTpKz   + v JTJÜ   9. (4.3.12) 

If ß is varied, all values of x   in the interval J ejä z'<x <• are obtained 

with the exception of the region close to the point x = Je./L z' .   In the limit 

of small   L, this section of the locus of turning points tends towards tae 

interface.   AU z   of order larger than Lln(8/L) lead to x  which approach 

infinity as L-»0 . 

The only section of the curve not investigated as yet,  is the section 

between the minimum and the z =0 crossing point.   Since |p   | is non zero 

from Eq.  (4. 3. 9) we see z -*0 as  L-.Ö, and as a result,  this section of 

the curve also approaches the interface as L->0,   To summarize, all 

portions of the locus of turning points, which lie in the finite x- z plane as 

L-»0, approach the interface and the z = z' line. 
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c.        Returning Rays,  z  > 0 

As mentioned previously,  those rays,  that are turned by the medium, 

cross one another after they have turned.   This leads, as shall be seen, to 

the formation of a caustic.   In this section we shall investigate the section 

of the caustic formed by those returning rays with turning points,  z. >0 . 

The ray equation for returning rays is found by choosing the minus sign 

in Eq. (4. 3. 1) and integrating from z'to z   and then,  choosing the plus sign 

and integrating from z    to  z .   The resultant ray equation is 

x/L =  (p/p2)-|cosh'1 [p2 Jlli eZ ^J + cosh"1[p2y27Ä eZ/IjJ j^       (4. 3. 13) 

To find the caustic,  the constraint equation will be needed.   This equation, 

found by taking the derivative of the above equation with respect to p,  is 

cosh   |p7v^/A  eZ     j r cosh    \y^flh  e?    J = p pj l/p^z') + 1/p (z)j 

(4. 3. 14) 

where 

P2(z) = \p\ - (A/2)e"2z/L]* ,   p2 = lim p2{z) , (4. 3. 15) 

Since both Eq. (4. 3. 13) and Eq. (4. 3. 14) are transcendental in p  ,  it appears 

impossible to eliminate the parameter directly between the two equations and 

obtain the caustic directly.   However,   It is possible to obtain an asymptote to 
'/T 

the caustic in the region where (z-z'j/L»!   and p_(z') e        « 1 .   By using 

these relations to simplify the constraint equation, a relation is obtained 

between z and p^Cz') .   When this  relation is substituted in the ray equation, 

the asymptote obtained is 

z«    xHZ/A)  e2z/L-lj^      +    z' - Lln2 , (4.3.16) 
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This asymptote is a straight line which is valid when z >z' . 

Another general feature of the caustic is its intersection ."ith the 

line z = z .   It is shown in Appendix D that the ray passing through an 

extremum of the turning point locus also passes through the caustic   at 

%-7.',   Thus,  if the rays forming a caustic have  a locus of turning points 

with an extremum, the caustic must cross the line z = z'.   The condition that 

the locus of turning points has an extremum for z >0, as expressed in 

Eq. (4. 3. 5) ,  is 

/ l-e"2z/L    cosh'1 (eZ,/L)>l-A/2 (4.3.17) 

and, if satisfied, the section of the caustic for z >0 crosses the z' = z 

line once. 

Because of the complex analyt.c character of the ray and constraint 

equations, a GE235 computer was used to plot the caustic for several 

different transition thicknesses,  L.   The basic procedure for doing this was 

to pick a particular value of p   ,   and then solve the constraint equation for 

z.   Since this equation is transcendental in z,  a Newton Raphson method 

was used to find z.   The complete caustic has been plotted for L= 10, 1,. 1 

and is shown in Figs.  4. 3, 4. 4 and 4. 5 respectively. 

For Li= 10, 1 the caustic consists of two branches meeting in a cusp. 

The cusp,  having the ray with z  =0 passing through its tip,  is not actually 
* 

a regular cusp since the focal condition    is not satisfied at its tip.   The 

cusped nature of the caustic is instead formed because of the discontinuous 

character of the dielectric distribution at z = 0.   The lower branch of this 

caustic,  having z   >0,  is the caustic described in this section. 

The focal condition states that the second partial derivative of the ray 
equation with respect to the ray parameter must be zero at the focal 
point. 
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In Fig.  4. 5 the structure of the caustir changes because of the 

appearance of two new cusps : one below the x axis and one above.   Both 

of these new cusps satisfy the focal condition at their tip.   An enlargement 

of Fig. 4. 5 in the area of the cusps is shown in Fig. 4. 6 .   We note   he 

regular cusp below tue x axis is shown clearly in this figure, while the two 

cusps appearing above the x axis occur too close to one another to be distin- 

guishable.   To rectify this situation a detail of Fig. 4. 6 has been plotted in 

the region of these two cusps.   This detail is shown in Fig. 4. 7.   The coord- 

inates used in this figure are RT and DL.   The quantity DL is the distance 

measured along a straight line passing through the tip of the irregular cusp ; 

DL is equal to zero at the point the straight line passes through the cusp's tip. 

The slope of this line is the same as the slope of the caustic at the irregular 

cusp's tip    .   The quantity RT is measured perpendicular to DL as shown in 

Fig. 4. 7 .   The coordinates of the irregular cusp's tip,  (x   , z   ),   and the angle , 

6, that the DL axis makes with the x axis are given at the bottom of Fig. 4. 7 . 

An examination of Fig. 4. 7 shows that the caustic forms a bow tie 

configuration similar to that observed in the linear layer (Chapter I).   The 

portion of the caustic tending toward the lower part of the graph is composed 

of rays with turning points z <0 , and,  if extended,  it would connect to the 

cusp shown in Fig. 4. 6 .   On the other hand, the portion of the caustic that 

appears to coincide with the DL axis corresponds to rays with turning points 

z >0,  if extended,  it would produce the lower branch of the caustic shown 

in Fig. 4. 5 .   We also note that the irregular cusp occurs at DL= 0 = RT as 

would be expected from the definition of the coordinates . 

The slope of the caustic exits at the cusp's tip and is unique. 
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As L becomes increasingly small, various approximations can be 

made which enable us to simplify Eqs. (4. 3. 13} and (4. 3. 14) that represent 

the lower branch of the caustic.   First, we note from section 4. 3. lb that 

for z  >0 and L small, a maximum of the locus of turning points always 

exists and as a result, the caustic crosses the line z = z'.   An asymptotic 

approximation to the caustic can be obtained below this line.   If we assume 

(z'-z)/!-»! and (z'-z )/L»l , the constraint equation, 4.3. 14,  reduces to 

-2z /L_ 
z-z   * L3 ^-(4/2) «       *     i2/2(z'-zj2. (4.3.18) 

t i- «It 

By using the above approximation in the ray equation, we find 

2z /L 
[(2M) e    t    -l]? (z'-z^   . (4.3.19) 

An examination of Eq. (4. 3. 18) as L-0 shows us that z-z  .   Equation 

4. 3. 19 divides naturally into two cases : first, those z RSCLL which lead to 

(2/i-l)   z^x <i:c while z   with a weaker dependence on L have x   coord- 

inates which tend toward infinity as L-0 .   With the above information and 

with the previous knowledge that z  -0 for finite x  , we conclude that this 

portion of the caustic coincides with the z = 0 line for (2/A-l)    z'<x<00. 

A comparison of Figs. 4. 3,  4. 4 and 4. 5 will show how this limit is approached 

as L-0 . 

The original asymptote,  Eq. (4. 3. 16),   still holds when L is small. 

From Eq. (4. 3. 16) we see that any z>z/ has a corresponding x coordinate 

which tends towards infinity as L-0 .    To summarize in the limit of L-'O , 

a portion of the caustic lies along the x axis, while other points on the caustic, 

corresponding to non-zero z values,  have x coordinr.tes that lie at infinity. 

The focal condit on for this section ul the caustic is 

3 [l/p2(z') +  l/p2(z)] + P2[l/P2(z') +  i/p^^j = 0 (4.3.20) 
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where p?(z) is defined in Eq. (4. 3. 15).   As can be seen this equation is 

never satisfied for real ray parameters and thus no foci exist on this 

section of the caustic.   In pa/ticular this equation is not satisfied at z  = 0 

which corresponds to the ray that passes through the tip of the irregular 

cusp. 

d.        Returning Rays,  z <0, z >0 

The rays with turning points,  z   <0,    penetrate :nto the medium z>0 . 

Their ray equation, as in previous cases,  is obtained by an integration of 

Eq. (4. 3. 1).   The ray equation is 

x/L =(p^2){-2co«h"1[/27Äp2]   + cosh"1 [jiH p2 eZ'/L\ (4  3  21) 

+ cosh'1^,2Mp2 eZ/L]   }+{Zp/\pl\)cOB'1[\p1\/27E   .  zt<0 ,  z>0. 

These rays form another section of the caustic found in the previous section 

4. 3. c.   The constraint equation for this caustic, 

0 = Zcosh   ijzfap j-coah.   {./zJEp   e        l-cosh   U/2Mp   e        j 

+ (2eip^/|p1|
3)cos-1[^Ä|Pll]+(4p2p2/|Pl|

2)[p^-A/2]* (4-3.22) 

+ P^j[p2-(A/2) e je    +    ^p2-(A/2)e J 

was obtained by taking the derivative of the ray equation with respect to p    . 

Since elimination of the parameter,  p   ,  between Eqs. (4. 3. 21) and (4. 3. 22) 

seems impossible, the caustic was plotted on the computer by a similar 

procedure to that described in the previous section. 
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The upper branch of the caustic shown in Figs. 4. 3 and 4.4 is the 

section of the caustic whose rays have z   < 0 ,  i. e., the part of the caustic 

described in this section.   In Figs.  4. 5 and 4. 6 , the part of the caustic, 

resulting from rays with z   <0,  z>0,  is more complicated.   It consists of 

the upper branch,  starting at the x axis, as shown in Fig. 4. 5 and the section 

between the tip of the irregular   cusp and the x axis, as shown in Figs. 4. 5 

and 4. 6.   Since the section of the caustic between the irregular cusp and the 

x axis is very small, an enlargement has been made in Fig. 4. 6 . 

As can be seen from an examination of Figs. 4. 3 - 4. 6 , the general 

structure oi the caustic changes as L decreases ; however, the irregular 

cusp always remains.   The analytic behavior of this irregular cusp can be 

understood better by noting; first,  the caustic and its first derivative, dx/dz, 

are continuous at the tip of the cusp,  2=0; second, as z  -»0 from the 

negative side,  z increases for all values of A and L>.   This behavior gives 

the caustic in this region a cusp-like appearance. 

As the transition thickness gets smaller, the irregular cusp approaches 

the x axis,  and two adv itional regular cusps appear.   One of these cusps is 

formed from rays with z <0 ,  z >0 which are being considered in this section. 

The exact location of the focus is difficult to find because of the complicated 

analytical character of the focal condition.   As L becomes small, the focal 

condition simplifies and an approximate location of the focus can be found. 

The general focal condition is 

.,    4^21?, |2p2 + 3€1(p$-A/2)l 

\p1 I    (p2 - A/2) 

(4.3.23) 

■3[l/p2(z')  +  l/p2(z)j   -p2[l/p2(z') +  1/P2^)J 
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whcre p (z) is defined in Eq. (4. 3. 15),   If we assume L is small and z -»0 , 

the constraint equation,  (4. 3. 22),  reduces approximately to 

z7L=(l-A/2)  [p^-(A/2)e-2z/L]  ^ (4. 3. 24) 

We now let p   = >/A/2 + 6 where 6« 1 sirce z   is small and use this with 

Eq. (4. 3. 24) in the focal condition Eq. (4. 3. 23).   We obtain 

6 =  32,yÄ7?.(l-A/2)6 (zT6L6 (4-3.25) 

We now see that our assumption of small z   was valid when L is assumed 

to be small.   By using this value of 6 in Eq. (4. 3. 24) we find the approximate 

focus location is given by 

z  =  2(l-A/2)2(zT2 L3 (4. 3. 26) 

When L is small, an approximate equation for the upper branch of the 

caustic can be obtained by using z/L»l and z'/L»l in Eqs. (4. 3. 21) and 

(4. 3. 22).   The equation obtained is 

x/L = vej/A (z+z )/L + n      e        A       (z+z }      L      . (4.3.27) 

The use of Eq. (4. 3. 27) in conjunction with Eq. (4. S. 23) shows that there 

are no focal points on the upper branch of the caustic for small L. 

If we now consider the limiting case as L-C we find : first,  ihe section 

of the caustic between the irregular cusp and the x axis shrinks to zero as 

L-Q ; second, the upper branch of the caustic approaches the line 

x = \/eT/A (z TZ')  which is the critically reflected ray from a sharply bounded 

interface of height A . 
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e.        Returning Rays z   <0 ,  z<0 

The returning rays with z<0 are given via Eq. (4. 3. 1) by 

x/L= (p/p2) f -cosh'1 [J2/Ip2j + co8h"1[v^7Äp2e
Z /Lj} 

+ (p/|p1l)|co8"1[|p1I^M] + co8"1[|p1|(^7Äe"z/L]}> 

(4. 3. 28) 

The constraint equation is obtained by taking the derivative with respect to 

p   of Eq. (4. 3. 28).   The result is 

0 = cosh"1 [VITAp2]- cosh"i[^7Äp2e
z/Lj + 2p2p2 (p2 - A/2r Ipj I"2 

+ (c^/lpj I3) ^cos"^ |p11 jm] + cos"^ Ipj | J2JE e"z/L ]} (4. 3. 29) 

.     2     r2     ..,,.   -2z7L-|-i.     2  3.      1-21--..,.   2z/L    |      |2n-i 
+ p P2'P2 - (A/2)e J     +pp2lp1l     ^(A/2)e -IpJ    j      . 

A computer calculation of this sector of the caustic was made.   An examina- 

tion of these results shown in Figs. 4. 3.  - 4. 6,  seems to indicate that if a 

focal point does not exist below the x axis, then there exists no caustic below 

the x axis.   Applying the focal condition to Eq. (4. 3. 28),  gives us the second 

constraint equation.   This equation, in conjunction with Eqs. (4. 3. 28) and 

(4. 3. 29),  enables us to find the focal points .   Nothing in general can be said 

because of the complication of the focal condition. 

When L is small,  Eqs. (4. 3. 28), (4. 3. 29) and the focal condition simplify 

substantially,  enabling us to locate the foci   if they exist.   We find that one 

focus exists which tends towards the interface as L-»0,  i.e., z-»0, x-»ve77Ä z' 

as L-»0.    The two branches of this cusp tend towards the interface also, as 

L-*0. 
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f. Sumnary 

The investigation of the rays emitted from a point source in a double 

exponential layer has led us to conclude : first, all rays,  except the 

returning rays,  have a simple character ; second, the returning rays form 

a caustic with an irregular cusp resulting from the discontinuity in the die- 

lectric ; third, as L becomes small,  two additional regular cusps appear 

one below the x axis and one above ; fourth, as L-0 ,   one portion of the 

caustic tends toward the interface while the other portion tends toward the 

critically reflected ray; fifth, the focus below the x axis tends toward the 

reflection point of the critically reflected ray ; and sixth, the two focii above 

the x axi« tend toward the turning point of the tangent ray as L-'O . 

4. 3. 3 Asymptotic Evaluation of the Formal Solution 

a. Introduction 

The asymptotic evaluation of the formal solution will now be carried out. 

As has been mentioned previously,  the integrands of Eq. (4. 2. 14) or Eq. (4. 2. lb) 

will be asymptotically evaluated for large k L and then the resulting integrals 

will be asymptotically approximated for large k r . 

b. Asymptotic Approximations for Large k L 

The integrands of the integrals appearing in Eqs. (4. 2. 14) and (4. 2. 16) 

contain the following Bessel functions : J     (-iXe ),   J.v (-iXe        ), 

H^7  (-iX.e        ) ,  H^_  (-iX e        ) , Jv_ (X) and the derivatives of thess functions 

with respect to their arguments.   A significant simplification of the integrands 

will occur if the above functions are replaced by their asymptotic approxima- 

tions for k L large.   These asymptotic approximations need only be known in 

a strip-like region centered around the integration path, C . 
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(30) ü) 
Olvei-     has derived uniform asymptotic expansions for J  (vz),  H*     (Vz) 

and H     (vz) and for their derivatives when v is large and    |argv| <n/2 . 

These expansions are valid in the whole z plane when a branch cu        intro- 

duced along a curve in the second quadrant, as described in Appeno     £. 

Since the asymptotic expansions will be required when  argv = - — , Olver's 

results have been extended in Appendix E to include this end point.   The 

extension shows that the same expansions, which are valid when | &rgv| <TT/2, 

are also valid when argv= - TT/2 .   These uniform asymptotic expansions are 

f .. ,     _   .l..|2/3 
Jv (.iXe^,-^ [<hill]V*   ^(Ivl2/3?) (4.3.30) 

v 1 -w 
2 2 

2 v* 1 - w« 

,     2 1-w 
K   ^'^—^ [ -kT    A'.dvl^, ,4.3.«, 

2 w2v2
e   w4|vr ? 

ll\' 1-w 
^2^ n   -«/L4         4 *4TTi/3r        2       "1/4   .,. ±2TTi/3.   .2/3.,           ..   ,   ,,, H   (-Ue"^)-  1 e                .   |?/,    I      A;(e           |v|     ?)          (4.3.33) 

2                      w,v* L4|vr',J         i 

where 

2.3/2      V2      r1 JT? .. .,     jLjzit/L IA * ^ 
3?   siv""il"t   dt   •   w2(z)8'^;— #    ^3-34> 

l~2l   ^   t ' Z" p. 

The branch cuts which define the correipondence between the 5 *nd w- 

planes are defined in Appendix E.   By using the definition for v   given in 

Eq. (4. 2. 8), and the fact that the above asymptotic approximations are valid 

for Rov  >0, we find that these approximations are valid in the first and 

third quadrants of the p.   plane including the real and imaginary axes. 
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In Fig. 4. 8, the regions of validity are shown by shaded regions composed 

of slanted lines.   No branch cuts due to the square root p = ye  +|p   }     are 

shown in this figure since these particular Bessel functions are independent 

of p. 

The Bessel functions ,  given in Eqs. {4. 3, 30) - {4. 3. 33), have turning 

points which are located at w   ~± I .   The turning point corresponding to 

w   = 1 appears in two places on the top sheet of the p    plane as shown in 
2       * 

Fig. 4. 8.   These two points are located at p   = ± v} (z) where v. (2) = (£-v (2)) 

vAz) =-/ETE exp {-z/h) .   The two points corresponding to the turning point 

located at w - - 1, are located on the bottom sheet. 

To ohfiuin thi asymptotic approximation of J_v-.(-i-e     *') in the same 

/egion of validity as described above, we will use the connection formula 

2  JL^t   v -z/L» •     z 
i        W    l-iA-e j + « v 

2 2 '2 
Jv(-iXe J =  le        H* '(-i^e ire H* t"»^« )'. / 2 (4.3.35) 

where the asymptotic approximations given by Eq. (4. 3. 31) are used for 
fit 'L 

H?? (-iX e ) .   Since it can be shown that in a region close to the integra- 

tion path, C, the second term of Eq. (4. 3. 35) is exponentially small.   The 
-z/L 

asymptotic approximation to J_v7(~^e ) *■ given by 

.,   -z/L,   .     I^"«3  ilhÜ!!!      Me^lv/^) j4|v r  n A.(e 
J     {-iXe-"*-) - e    "  rr-  r—:=  . (4,3.36) 
'V2 Ll - wM v, * 

2 < 

By a similar procedure, the asymptotic approximation for the derivative 

of Jv    can be obtained.   It is 

^     .  .,   -z/L.        2e 
rv (-iXe ) 

|v |nf4TTi/3   r        2 . 
2 1-w 1/4   A,/ 2m/3.     12/3 

2 A.(e v„ 

2 W2 L4!v|2/3§. 
H* 'V     ;)   .   (4.3.37) 

V/3 
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The asymptotic approximation for Jv (X) and its deri'vative can be 

found by using Oiver's results as were used before. 

The resultant asymptotic appioximat*ons are 

\ <»■) - 

;J 2—      -~~T L 3-w,        J v 
(4, 3. 38) 

and 

I 1 '  iVjl     £j v^ w,  I   i . |2A3_i 

where ? is definec as in Eq. (4.3.34) with w    being replaced by w  , w    = 

-JUfZlvp*   •   ^^ region of validity for these asymptotic approximations is 

the upper half of the p. plane including the Rep. axis as shown by the 

hozi^Qntal lines in Fig. 4. 8.   The turnirg point of Jv. corresponding to w = 1 , 

is located on the imp, axis ia the interval 0<lmp  <JK while the turning 

point corresponding to w = - 1 is in the conjugate position. 

The asymptotic approximation to the Bessel functions Jv   J_v   and 
il) 2     '  2 

Hy      will be needed in a narrow strip just to the left of the integration path, 

Cwhere 0<hnp  <-/K.   By making use of the formula relating different types 
(31) 

of Hesse! functions given by Watson     we can show that the asymptotic 

expansions, which are valid on the Imp. axis, are also valid in a small strip 

to the right of it.    These asymptotic expansions are not valid near the branch 

points, p. =±iJK since the large asymptotic parameter, v   tends to zero 

there. 

By applying these same idea«,  the asymptoti: approximations for Jv    , 

J_v-> » aa^ Jvi   are analytically continued to a narrow strip below the positive 

real p. axis .   As in the case of the Bessel functions of order ±v    , the asymp- 

totic approximations of Bessel functions of order v  , are not valid in a small 
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circular region about the origin of tne p    plane. 

The approximate forms of the Bessel functions previously mentioned, 

can be simplified   further by using the asymptotic formula for the Airy 

functions    .     This is only possible when the integration variable p.  is not 

loo close to a turning point of the particular Bessel function under   consider- 

ation.   This has been done in Tables 4- 1A and 4. IB for values of p. along 

the integration pathC .   These formulae, however, can be analytically 

continued, so that they will be valid in a narrow atrip, centered around the 

integration path.    The asymptotic approximations presented in Table 4.1A 

and 4. IB are valid in the neighborhood of p   = 0 and p   = 0.   Although Oiver's 
1 z (32) 

uniform expansions break down at these points, the Debye approximations       , 

which utilize the large parameter X, can be used to extend the range of 

validity of the approximations appearing in the tables to include the neighbor- 

hood of p. = 0 and p, = 0. 

c    Approximation of Formal Solution 

The asymptotic evaluation of Eq, (4, 2. 14) or its alternate, Eq. (4. 2.16) , 

will now be performed with the a     of the asymptotic approximations obtained 

in the last section.   Before proceeding with this evaluation, we would like to 

note some important characteristics of the integrands. 

The integrands as expressed in section 4. 2, are completely defined. 

There is no need to consider the multivalued nature of the cylinder functions 

contained in these integrands,  since the cylinder functions are only multi- 

valued with respect to their arguments whic'i are a constant along the path of 

integration.   These cylinder functions have turning points located on the Im p 

axis at Impj =   ±^l^<) > * v1(z>) , iv^O) where v1(z< ) >v1(z>)> v^O) .  The 

asymptotic formulae,  used to approximate the cylinder functions,  change 

characteristics upon the passage of the integration path through a turning point 
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and, as a result, the turning points separate different regions of importance 

along the integration path. 

The asymptotic approximation of the formal solution given in Eq. (4. 2. 14) 

along interval Rep. =0,  v. (a  ) < Imp  <00   is carried out on the top sheet by- 

introducing the approximate forms of the cylinder functions found in Tables 

4. IA and 4. IB,  into the two integrands and then integrating these integrands. 

Because of the exponentially increasing nature of Jv      and     J_v      in this 
2 "2 

region, both integrals in Eq. {4. 2. 14) are large for large k L.   Since the 

difference of the two integrals becomes indeterminate as k L-», the repre- 
o 

sentation, given by Eq.(4. 2. 14),cannot be used over this portion of the integra- 

tion path.   To alleviate this difficulty, we use the alternative representation 

given in Eq. (4. 2. '6).   Proceeding as before, we find that this portion of the 

integration path gives an exponentially small contribution to the field for all 

observation points with z>0 .   The integration path was defomed a small 

amount around the branch cut in order to facilitate the evaluation of the 

integral.   The same portion of the integration path, on the second sheet, gives 

a similar result since the asymptotic approximations used in the evaluation 

remain the same (they are independent of p), 

The original representation for the field,  i. e. , Eq. (4. 2. 14), will be used 

to evaluate the contribution from the remaining portion of the integration path. 

The only motivation for introducing the alternate representation, 4. 2. 16,  was 

to alleviate the difficulty encountered above .   Before proceeding further we 

shall divide the field E    , as represented in Eq. (4. 2.14),  in a sum of its 

individual integrals, i. e. , 

E    = E_.    +E_   . (4.3.40) 
y Dir        Ref 

where 

EDir  =  I'DK-VPI^PI   '     ERef = JVZ< ' S'P^P,   <4-3-41) 
c c 
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with 

Tp -Z-JL- -z   /L     ik px 
1 J     i-iXe '■ T     l-iXe le    0        {4.3. 

4psin(TTV  )    "  2 - v (4.3.42) 

and 

fT,(z^.z   f £».)=- R* <'   >f - i7 

•z  /L_   ik px TP, r -z /L, 
—. .  T-~ . J    j-iX e IJ       -iXe .e ^•3 8in(TTV )    v L J   VJ J (4.3.43) 

The choice of symbols E_.  and E„   .was motivated by the fact that the 
Dir Ref 

eiraluation of E        yields the direct ray contribution, while the evaluation of 

E fields the returning ray contributions. 

The asjTnptotic approximations for Jv   and J v    ,   listed in Table 4.1A, 
2 2 

are now used tc approximate ^(^tZ   .p.) along the section of the integration 

path from ^   - JL on the top sheet to p   = ^on the second sheet.   The inte- 

grand is appioximately given by 

y^'VPi*' 
i pic 

4Tr 

'Wi' 

..  2      1,    .-iUAr  2      2.     ., 
PLP2-V (z^]       Cp^v^z^] 

1/4 

where 

(4, 3. 44) 

W =  f2(z<'P2)-f2(z>'P2) ±PX 
upper sheet 

i-  lower sheet 
(4. 3. 45) 

For laree k , the main contributions to E^.    will be in the vicinity of the 0      o Dir 
saddle points of the integrand,  i. e., where dL_(p, )/dp1 = 0 .   By performing 

the    indicated differentiation on Eq. (4. 3. 45), the saddle point locations are 

given by 

x = ± L r 

v2(z<) 
pdt 

VZ>>   '-2 VP,-t 

+ upper sheet 

-   lower sheet 
(4.3.46) 
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The above saddle point equation is the equation for the direct rays when 

the plus sign is chosen.   A sketch of the different ray regions has been 

drawn in Fig. 4. 9.   The basic regions defined in this figure are valid when 

L is not too small.   We have drawn in the portion of regions B and C, 

appearing below the z = z   line, but these may not appear for some parameter 

ranges.   When L, is small, as we have seen in the section on rays, an add- 

itional c isp is introduced into the region just above the z = 0 line.    The 

sketch of Fig. 4. 9 cannot be used to find the ray regions in the immediate 

vicinity of this cusp, but the other ray regions, with minor modifications, 

remain essentially the same for small L. 

By using the nomenclature of Fig. 4. 9, these rays are located in regions 

A,B, and C of the z-z plane.   Since the rays do not cross,  only one solution 

of Eq. (4. 3. 46) exists for each point in the above mentioned regions.   The 

saddle point equation, 4. 3.46,  has no solutions on the lower sheet for any 

location in the x-z plane. 

The method of steepest descent can now be used to evaluate the integrrl 

[E-.   1 asymptotically.   Without go'ng into detail, we find that the integral 

ie approximated by the contribution due to the direct ray saddle point, when 

the observation point is located in regions A, B,  or   C.   On the other hand,  the 

integral is exponentially small when the observation point is located in regions 

other than A, B, or C. 

The reflected field integrand, f   (z   , z   , p  ) will now be asymptotically 

approximated along that portion of the integrand path from p   = i^"on the top 

sheet to p. = i.^on the bottom sheet.   The uniform asymototic approximations 

found in section b can be used for this purpose.   However,  an additional simp- 

lification of the integrand can be obtained by using the approximations given 

in Tables  1. 1A and 4. IB, but portions of the integration path lying close to 

turning points of cylinder functions must be omitted.   We will use the later 

■'""nHiCMW 0t 
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asymptotic approximationr, and then,  deform the integration path around 

the turning points. 

Before doing this,  it will be advantageous to divide the portion of the 

integration path under consideration into six inter/als :   three on the top 

sheet and three on the bottom sheet.   The intervals arc ; l)Rep.  = 0 . 

JEH< imp   < v.Cz  ) ,    2)Rep. =0.  0 <Itnp1 <JljZ   and 3) 0<ReD. <v^T • 

Imp. = 0 .   The intervals on the top and bottom sheets are the same.   If we 

recall that  v (z )  and -^VTare the locations of turning points.   Thea the 

approximations to be used fc* LAz   ,z   , p.) will not hold near these point«. 

By using the asymptotic approximations appearing in Tables 4. 1A and 

4. IB, the integrand for the first interval on the top sheet is given approxi- 

mately by 
ik  L 

o   R> 
P1 e 

V^'VPl*  ~- r  2      Z,    -Ml  2      2,     ^1/4   .^<^P1<v1(z>) 
4TTp[p2.v2(z>)]      Cp^v^z^] 

where 

(4. 3. 47) 

LR > = $2+(z>, p2) +  $2+(z< , p2) + px (4. 3. 48) 

with $      being in Table 4. IB.   The equation for saddle points of this integrand 

is given by   dL-   /dp. = 0 .   By performing the differentiation on Eq. (4. 3. 48), 

we find that the resultant equation is the equation for the returning ray with 

z  >0 given in Eq. (4. 3. 13).   The returning rays are located in regions D^ E 

and F of Fig.  4. 9 . 

Proceeding in a similar manner,  the integrand for the second interval 

on the top sheet is given by 
ikoLR<(V 

pl e dpl n- 
fR(Z<'Z>'Pl)\Tr   r   2      2,     nl/4r   2       2.     ^1/4     '    0<^P1<^ 

4Trp[p2.v2(z<)]      [p2-v2(Z>)] 
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where 

The saddle points for the above integrand are given by di^ ^/^Pi = 0 •   If we 

perform the indicated differentiation upon Eq. (4. 3. 50), we find i* to be the 

same as the equation for the returning rays with z <0, z>0, Eq. (4. 3. 21). 

Therefore saddle points appearing in this region correspond to returning 

rays with z <0.   These returning rays are located in regions B, C,D, E, 

and G of Fig. 4. 9. 

To show the correspondence between the number of saddle points in a 

particular interval and their associated regions in the x-z plane, we have 

prepared Table 4.2.   In the table, only saddle points of E        have been 

considered, while saddle points of E        have been omitted because of their 

simpler form. 

By using the asymptotic formulae to approximate the integrand in the 

third interval, we obtain 

Region in x-z pla^e Number of 
0<Imp1v'A/2 

Saddle Points 
JSJZ<Jmpl<JK 

A 0 0 

B 2 0 

C 1 1 

D 1 2 

E 2 1 

F 0 1 

G 1 0 

Table 4.2 

Correspondence between Saddle Points and Ray Regions of 

Integral ERef< 
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ik L (p ) 
Ki        \      o   r   I 

PjAKP,) e 
fR(r<-2>'Pi» -    ^      r  2      2,    ,,1/4.  2      2#     ^iM'^^Pl^ 

4TTp Lp2 - v2{«<.) J        P2-V2tz>,j 

(4.3.51) 

where 

Lr(P1) = »2+(«<.P2)+*2+(*>.P2)-2«2+(o.p2)     .    AC-.Pj) -OCT"2)   .     (4.3.52) 

We can show that the function A('r, p )   in the above integrand is of order 

k      .   This means that any saddle points, occurring in this interval, will 

rot give a dominant asymptotic contribution to E     , ;the.-efore, these contrib- 

utions can be neglected. 

It is, however, interesting to learn about the physical significance of 

these saddle points if they occur.   The saddle points are given by       ~T™1' = 0 
dPl 

An investigation of this saddle point equation shows that it represents 

the equation for direct rays which are reflected from the discontinuity at 

z = 0.   Only those direct rays, to the left of the critically reflected ray, shown 

in Fig. 4. 9, are obtained from integral 4. 3. 51.   ft is strongly suspected that 

direct rays, reflected from the interface and lying between the critically 

reflected ray and the tangent ray, would be found from a higher order asymp- 

totic analysis of integral 4. 3. 49 : however,  this has not been done. 

A similar asymptotic analysis of the integrand for the three intervals 

on the bottom sheet shows that no saddle points occur along this portion of 

this integration path. 

Since we now know the location of all the saddle points occurring on the 

integration path, the field E        can be evaluated by using the method of steep- 
Rei 

est descents.   We deform the original integration path into the adjacent decay 

region and through the appropriate saddle points.   The resultant field will 

then be given asymptotically as a sum of a relevant saddle point contributions 



 !  
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plus any contributions that come from singularities between the original 

and deformed paths.   At this point we will restrict our attention to cases 

where the observation point lies in regions B and C.   The evaluation of the 

field in these two regions will illustrate the main features of the reflected 

field and will be useful for comparison purposes in a later section. 

Two saddle points occur on the irtegratioa path when the observation 

point is located in either regions B or   C.   For region ä both these saddle 

points lie in the second interval,  i.e.,   Repf = 0,  0<imp1 < JEJz   and they 

are shown in Fig. 4. 10 where the lower saddle point is denoted by p      »nd 

the upper one by p .   The nomenclature has be^n motiv>ted by ti» fact 

that for small L the rays corresponding to p      and p look like the 

lateral and reflected rays on an abrupt interface respectively.   For region 

C one saddle point, p.     , lies in the second interval while the second saddle 
1X4 

point,  p.       .  is located in the first interval,  i. e. , v^/2<frnp <v (»  ), 
1R> — 1       1     > 

Re?,3 0.   The naming of saddle points in this region hac a similar motivation 
t 

to those saddle points associated with region B. 

The decay regions which are adjacent to the integration path on the top 

sheet nave been investigated by expanding L^   (p.).  Lp^CPi)   an^  ^ (Pi) 

about an arbitrary pwint in integration intervals one,  two and three respect- 

ively.   If p, is close to the: integration path the appropriate phase function can 

be approximated by its first one or two terms.   (Jse of the approximation in 

the integrands of Eqs. (4. 3. 47} ,  (4. 3. 49} and (4. 3. 51) yields the decay regions 

for Band C, shown in Figs. 4.10, 4.11 and 4. 12. 

The original integration path is then deformed and evaluated along this 

deformed path.   The portions of the integral passing through saddle points 

are evaluated by the method of steepest descents, while portions of the inte- 

gration path in decay regions are exponentially »mall. 
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The singularities that can occur between the original and deformed 

paths are of two types : branch cuts and simple poles.   There are no branch 

cuts intercepted by the deformed path as can be seen from Figs. 4. 10, 4. 11 

and 4. 12.   The asymptotic form of the reflection coefficient has no poles 

located between the two paths except possibly in the turning point region, 

p. = v- / 2 .   Because of the complicated nature of the reflection coefficient 

in this region, the singularities have not been investigated here.   We will 

assume that singularities, contributing other than exponentially small 

contributions, are .tot present. 

Upon applying the method of steepest descent when ehe observation 

point is located in region B, we obtain 

ERefL     " "l^l1 + ^PlM (4.3.53) 

where 

B ,P1=P1R< 

Ple 

Ij (Pj) =  ; ; pr; ; ; ^ ; ^7; (4. 3. 54) 

ikoLR<(Pl, + iTT/4 

and doing the same in region C, we obtain 

ERef -   iljCPi) + ^(Pj)! (4.3.55) 
IP1 = P1L ,P1 = P|R> 

where .,    .       ,     .      .    ,. 
^oV^l^1"74 

Ple   
11   l     iF^  r2    zi   n1/4r 2    2/   n^n, y   /   ii1^      '   (4•3•56, 

u^ P[P2 - v2(z<)j   [p2 - v2(z>)]  r^^Pj)] 

To find the total field for regions B and C, we shall have to add the 

contribution from the first integral in Eq. (4. 2. 14) due to the direct ray. 
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The asymptotic formulae obtained in Eqs. (4. 3. 54) and (4. 3. 55.) break 

down as the observation approaches the tangent ray.   Here a saddle point 

approaches the turning point at p   = Jtll   and the simple asymptotic analysis 

used,   can no longer be applied. 

d.     Conclusions 

We have taken the exact solution, Eq. (4. 2. 14), and approximated it for 

large k JL, i.e. f we have assumed that the medium is slowly varying with 

respect to wavelength.   The asymptotic approximations developed by Olver 

have enabled us to shew that the first integral in Eq. (3.. 2.14) corresponds 

to direct ray contributions while the second integral corresponds to return- 

ing ray contributions.   In addfeion, contributions due to direct rays, reflected 

from the interface, were fcund in the second integral but were of order 1/k 

lower than the dominant rontributions.   The above finding again confirms the 

method of geometric-optics since all of the above results can be predicted 

without resorting to the asymptotic approximation of the exact solution; this 

was demonstrated in section 4. 3. 2.   The reflected waves for tiie discontin- 
(33) 

uity were not mentioned in section 4. 3. 2, but Chester and Keller     have shown 

that, for a dielectric profile having a discontinuous second derivative, the 
2 

reflected waves will be 1/k   lower than the incident wave. 
o 

4. 4 Asymptotic Evaluation of the Field for Large k Lp 

a.     Introduction 

In the last two sections, 4. 3. 2 and 4. 3. 3, the high frequency field has 

been investigated when the transition profile is slowly varying with respect 

to frequency.   We shall now investigate the high frequency field for all trans- 

ition thicknesses, k L, with special attention placed upon the changing charac- 

ter of the lateral wave, as the transition thickness increases.   The method 
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used will essentially follow Chapter 3 , i. e., we will write the reflection 

coefficient in an exponential form and then use the method of successive 

approximations to find the saddle points. 

b. Restriction of Field Evaluation to Homogeneous Regions 

An examination of the field representation given in Eqs. (4. 3.40) , (4.3.41). 

(4. 3.42) and (4. 3.43) shows that both the integrals for the direct field. E 

and the reflected field E       are of a different generic type than the integrals 

that were uniformly evaluated in Chapter 3.   The basic difference is the 

presence of the Bessel functions Jv (-i^e'      ) and J_v (-iXe~      ) .   In order 
2 2 

to apply the methods of Chapter 3, the Bessel functions must be approximated 

and this will, in turn, limit the region in which the uniform asymptotic approx- 

imation is valid. 

Since the integral evaluated in Chapter 3 resulted from an exact field 

representation in a homogeneous region, it would seem likely that placing 

the observation and source points far from the interface (a = 0) might put 

the integrals for E        and E        in a more tractable form.  For large s and 

z' the arguments of the Bessel functions become small, and the Bessel 

functions can be represented approximately by the first term of their series 

representation. 

To put this on a more rigorous basis, the Bessel function can be repre- 

sented as 

J    (.iXe-z/L) =   ^    2 e    0 2     )     bJ       e    . (4.4.1) 
2 m=0     m! r(v   +m+l) 

The rate of convergence of the series can be measured by the absolute 

value of the ratio of adjacent terms in th« series.   The ratio of the (m+1) 
th 

to the m     term is 
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2    -2z/L 
R      =   —^ r TT^T (4.4.2) 

m       8mr(m + 2 + Tp..r + TV   f 

where p.    and p     are the real and imagniary parts of p    respectively. 

An examination of the above ratios shows that a sufficient condition for 

the Bessel function to be approximately equal to the first term in the series 

representation is R « 1.   A slightly more restrictive condition than R « 1 

is 

A      '22/L 

- « 1     . (4.4.3) 
IP2I 

This more restrictive condition can be expressed in a more physically 

understandable form, i. e., 

As z becomes large,  <:(z) tends toward unity, and the above condition 

requires that e/(z) must be small compared with p./T . 

This more accurately defines what is meant by assuming that the source 

and observation points lie in the "homogeneous" region.   We note that rays 

close to the glancing angle will have to be excluded from our treatment since 

these rays have p_ s.  0. 

It must be mentioned at this point that one representation for the field 

will be sufficient for an asymptotic calculation along the whole integration 

path.   If we recall in section 4. 3. 3, two different representations are 

necessary to calculate the field.   The representation given by Eq. (4. 2. 14) 

does not give an üideterminate asymptotic expression for the field if the 

source and observation points are located in the "homogeneous" region. 

As a result we will not need the alternative representation in Eq. 4. 2. 16 

in this section. 



139- 

By using the first term of the series representation for the Bes»*1 

function in the integral for E^.    , Eq. (4. 3.41), we have 
Dir 

l      ^    Pi       +ik  ip   U-z'l+pxj 
E^.    *    +    —    =    —   e       0    ^ dp,  - (4.4.5) 

Dir 4TTi   .     pp. Kl % 

C        Z 

We can recognize the above expression as the incident field emitted from 

a source located in a homogeneous medium ha vino a dielectric constant of 

unity.   The asymptotic evaluation of the above integral leads to an interpre- 

tation of the field as consisting of straight line rays.   It can be shown that 

the "homogeneous" approximation,  in general, limits us to the region where 

the rays are approximately straight lines. 

By substituting the same approximation for the Bessel function in the 

expression for E        , Eq. (4. 3. 42), we obtain 
Rex 

1      „     Pi r       ik„ LP^Z + Z' + px] 
EK.( - srj ;£- ' d»i '4-4-6' 

In the above expression T is the plane wave reflection coefficient as z-"0. 

Hers again the rays in the "homogeneous" region will be straight lines but 
A 

will have a phase delay due to T . 

c.     Asymptotic Evaluation of E 
xvel 

Following Chapter 3, we rewrite Eq. (4. 4. 6) as 

ik Cp (z + z') + px + i/k HP, .TS'T)] 
E^  ,   -    ~^ Pl   e   0     2 0       1 dp, (4.4.8) 

Ref 4TT i      j  c rl 
C PP, 
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where T has been represented as 

f=    e1*^!'^^ (4.4.9) 

With rt1-V2> X    2V2 
Mp^^T) =  -  i   ln{f   r(1+v -      (^-)        }. (4.4.10) 

The jnultivaluedness of the logarithm does not appear in the integrand 

since the function e        is single valued. 

The uniform asymptotic evaluation of the above integral will be per- 

formed by the method of steepest descents.   As was the case in Chapter 3, 

the saddle points will be found by the method of successive approximations 

and will have a location in the p   plane that varies with the large parameter 

k   . 
o 

The equation that describes the location of the saddle points is 

Pj [(z + z') /p2T x/p] + (1 /ko) df/dpj = 0 .   j   "t0p Bheet .      (4. 4.11) 
'   +second sheet 

We shall solve this equation in the region to the right of the critically 

reflected ray.   When T is small or moderate in value, the position of the 

critical ray is closely approximated by the critically reflected ray from 

an equivalent abrupt interface problem.   When T  is large, the position of 

this ray is shown in Fig. 4. 9.   For observation points in the "homogeneous" 

region, the critically reflected ray in Fig. 4. 9 and the upper branch of the 

caustic almost coincide.   Therefore, using the nomenclature of Fig. 4. 9 

for large T, we are finding the saddle points in regions B and C. 

By applying the method of successive approximations to Eq.  (4.4. 11) 

te upper sheet when V 

saddle points is given by 

on the upper sheet when k   is large, the first corrected location for the 
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P1L k L 
o   p PI = O 

L    -• x-*/cJk{zf z') 
P 1     ' ' 

£K C- a^/j^^^—')/P2+^P3'(^X+^(. + Z')[ 

(4.4.12) 

pl-plr 

(4.4.13) 

where the superscript is the order of approximation with pJ    - i^Ax -(z + z')   e, 

and dili/dp. = i|d\|(/dp   | for Rep   =0, 0<lmp  <>/K .   For this approximation to 

be valid we must have 

d^Pj.-v/SV) 

dP, 
«1 ,     0< T <« ,     Rep^O,   0<lmpl<JK.        (4.4.14) 

We can show for small and for moderate values of T that df/dp.  is bounded 

except at D    = 0 and for large values of T that dilt/dp.  ~ Tf(p  ) where ffp.) 

is a bounded function of p except at p   = 0.   This leads us to the conclusions 

that the method of successive approximations is valid when 

k   L   >•   1 
o   p 

L/ L   «1 
P 

(4.4.15) 

Since the critically reflected ray occurs at L   =0,   these conditions 
P 

essentially state that the observation point should be located a number of 

transition lengths L from the critically reflected ray, for the method of 

successive approximations to be valid.   No other saddle points occur in the 

remaining portions of the integration path on the top sheet or along any 

portion of the integration path on the lower sheet. 

The integration path will now be deformed in i,he adjacent decay regions 

and through the two saddle points just mentioned ; it can be shown that the 

decay regions for small or for moderate T are similar to those described in 
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Cfaapter 3 and also to those shown in Figs. 4. 10, 4. 11 and 4.12.   For 

large T, the decay regions have been calculated in the last section, 4. 3. 3.. 

and are shown in the three figures mentioned above.   No singularities of the 

branch type occur between the original and deformed paths.   The nature of 

pole singularities have not been investigated in detail except in the case of 

large T where a partial investigation shows that no singularities which have 

a substantial effect on the field are present.   We will  assume that any singu- 

larities which might occur between the two paths are unimportant and their 

residues can be neglected. 

The integral is now evaluated along the deformed path.   Portions of the 

path in the decay regions have exponentially szm.lL contributions while the 

dominant contributions come from the portions of the path near the two 

saddle points.   The asymptotic approximation for the reflected field is 

£„      =    E    + ET Ref r L. (4.4.16) 

where 

E 
lPll 

ik  Cp9(z + z') + px+(i/k )*{pI,^S"T)] + iTT/4 
o     c o 1 

^PMTT^ ■ ; ' pi v"T"+ T)l   ko n     -JV 
Pl-Plr 

(4.4.17) 

and 

EL~ 

, ik [v^"(z + z,)+ye7x+(l/k)t(v^'T)] + 3n/4 
eJ/4A(v^T)e    0 lo 

*/2nA (k L ) o   p 
3/2 (4.4.18) 

with 

HV^T)= H0,^T)=2tan'1 (|^) - 2^Tln(j)   , 

2nv^'T 
A(^T)=  f dj| 

dP, 

1 - 

p^O       TT^T|M|' 

(4.4.19) 

(4.4.20) 
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and 

M = rJ.^   (-iX) J'C))-iJ (X) J.'       (-i>.)]r(l+ivS"T)   . (4.4.21) 
1 v-J * o O 1 v<J ~ 

The notation E   and E    has been adopted since,  in the limit of small T , 
r J-f 

these terms correspond respectively to the reflected and lateral wave 

contributions on an abrupt interface. 

The contribution E    has the form of a reflected wave for an abrupt 

interface except for the presence of the phase term,   .(p.   , JEt) .   This 

phase term increases as the normalized transition thickness, k L , o 
increases.   For large T , the asymptotic approximations for the Bessel 

functions can be used in 4 (p.    , JEf).   We obtain 

2$1j!plrl)-2$2+{0.P2r)-2Lp2rln(2p2r>^)-2Lp2r     , 

(Plr.^
T)~( 0<|plrl<^72 (4.4.22a) 

2Lp ,ln(2n     ,/27S)-2Ln      .       ,/S72 < U    | < v. (z»       <4-4-22b) 
CT c.T Zr ir i 

where $      and  f       have been defined in Table 4. IB and p     - Jh - jp.   | 

The use of these approximations in Eq. (4. 4. 17) gives us a portion of the 

reflected wave when the transition is slowly varying with respect to frequency. 

This portion of the reflected field corresponds to contributions from raya 

that make up the section of the caustic close to the interface as shown in 

Fig.  4. 5. 

The contribution ET   has the form 
Li 

E     ~ A(i^T) e {conventional lateral wave contribution! 

(4.4.23) 
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Here A^JEt) and t(^T) form a transition function which modifies the form 

of the lateral wave.   For small T.E. is approximately represented by the 

conventional lateral wave contribution since A^/T-)«! and t(.fL -)=s0. As r 

increases, A^JK-r) and i{Jtf) increase    in such a way as to modify the lateral 

wave term and change it into a geometric-optics contribution.   For large T, 

the asymptotic forms of the Bessel functions can be used to approximate 

AiJKf) and «(«/S"-) .   We obtain 

1/4        % j^(« + z/) + ^ix + 2^t2/^-l-ln(-^)][ + iTT/4 
^ e       L e   0 • v        1 

E 1 . T» 1    . 
zjzKi. (k L r 

P    0   P (4.4.24) 

-3/2 
We note that the k dependence for small T  in Eq. (4. 4. 18) has now 

been replaced by a k dependence.   This signifies the change in the 

contribution E» from a diffraction effect to a geometric-optic effect.   The 

amplitude   A(.JKf) and the phase ii-JEi) have been plotted in Figs. 4. 13 

and 4.14 respectively.   The dash line in these figures represents the slowly 

varying approximation, i.e., when A (^T) and ♦CV^TT) are asymptotically 

approximated for large T . 

The approximate forms of E    and E    for large T can also be obtained 

from the results of section 4. 3.   There the field in region B is given by 

Eq. (4. 3. 53) while the field for region C is given in Eq. (4. 3. 55).   If we 

simplify the expressions by placing the source and observation points in 

the "homogeneous" region and assume L/L  »1 ,   these reduce to the large 

T results of this section.   To be more explicit,  the term i I (p ) _   _ 

reduces to Eq. (4. 4. 24); the term I. (p  ) _   __ reduces to (4. 4 J7) 
1    1   IPi -P1R< 

with i|i{p.    , -v/A T) approximated by Eq. (4.4. 22a) and finally the term 

1L 

Vp  ) _ reduce to Eq. (4. 4. 17) where in Eq. (4. 4. 17) is approxi- 
1    IP1= F1R> 

mated by Eq. (4. 4. 22b). 
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d.     Conclusions 

Our basic purposes for treating the double exponential medium were 

twofold: first, to see if the lateral wave behavior observed on the Epstein 

half space carried over to profiles where the source was located in the 

inhomogeneous medium, and second, to see the effect of relocating the 

second order discontinuity in the dielectric profile.   We found that by 

restricting the source and observation point locations to the "homogeneous" 

region,  results,  similar to those in Chapter 3 were found.   The lateral wave 

changed to a geometric-optics wave as the transition went from abrupt to 

slowly varying.   It was also observed here and in Chapter 3 that the depend- 

ence on the lateral distance L.    remained L       ,    independently of the trans- 
P p ^ y 

ition length.   The discontinuity in the dielectric profile did not affect the 

basic nature of the lateral wave expression but it did introduce a difficulty 

in the reflected field,  £    .   For large transition length,  the field close to 

the tangent ray could not be treated by the classical methods of geometric- 

optics. 
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CHAPTER 5. 

AN ARBITRARY TRANSITION LAYER 

5.1        Introduction 

To conclude our investigation of lateral waves which are excited on 

transition layers, we shall discuss and, in some cases, analytically 

formulate the dominant asymptotic contributions to the reflected field from 

an arbitrary monotonically increasing layer.   The layers to be considered 

are divided into two basic  classes : finite and infinite.   The finite layers of 

width L will consist of a dielectric medium varying continuously between two 

half spaces, one being composed of vacuum (z>0) and the other (z<- L) having 

a dielectric constant of C.<1 .   The dielectric variation of the layer should be 

strictly increasing, i. e: de(z)/Q.,.>0 except at the lower interface where 

(n-I) derivatives of e(z) may be zero.   To be more explicit, the dielectric 

profile e(z) has a series expansion at the lower interface which is given by 

e(z) =  e 
dlelzl 

1       ^ n 
dz 

^ . (5.1..) 
z = -L 

The infinite layer, on the other hand, will again consist ci a vacuum 

half space for z>0 and a strictly increasing dielectric profile (z<0) which 

approaches e    asymptotically as z-»- <» .   In addition, we will require that 

all derivatives of e(z) approach zero z-»-00 and that e(z)= e(z/L) where L 

is a parameter which is proportioned to the average thickness of the layer. 

Both classes of layers have this property: as L becomes small, the medium 

approaches an abrupt transition. 

The line source, as in previous chapters, will be located parallel to the 

z = 0 interface in the vacuum medium.   Sources placed in the inhomogeneous 
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portion of the layer will not be considered, since the results of Chapter 4 

indicate that such a source location has little effect on the basic character 

of the lateral wave excited. 

The structure of this chapter will be similar to previous chapters.   First, 

the reflected field from a layer that is thick comparci with wavelength will be 

discussed and then, an asymptotic evaluation of the reflected field representa- 

tion will be carried out when k L  »1 . 
o   p 

5. 2 Reflected Field from an Arbitrary Layer for k L»l 

The  reflected field from a layer that is thicr. compared with wave- 

length   can be obtained asymptotically by the clastncal methods of geometrical- 

optics with the exception of those regions where diffraction effects are import- 

ant.   In this section we would like to locate those diffraction regions for an 

arbitrary layer and try to predict, by using the results of previous chapters, 

what type of diffraction effects we can expect. 

Before doing this, however, the ray trajectories, as predicted by classical 

geometrical-optics,   will be investigated.   The rays emitted from the source 

toward the layer divide into two ray types : transmitted and returning ; the two 

ray types are separated by a critical ray.   The returning ray equation, as 
v    ^ i     (20)    . given by Orlov       ,  is 

x = x    + x. z/z'       ,        z>0 (5.2.1) 
o i — x ' 

where x. , the coordinate at which the ray enters the medium, can be related 

to the ray parameter p used in previous chapters.   Their relationship is 

x   =p   z'/p .   The coordinate x   is the point at which the returning ray leaves 

the layer,   as shown in Fig.  5. 1,  and is related to x.  by 

x    = x. + 2x.      . (5. 2.2) o        i t 
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Fig.   5,1 

Typical Returning Ray Trajectories 
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Here x. is the x coordinate of the turning point which is given by 

*. = ■ I* j^H- <5J-3» i Mi)-? 

in terms of the ray parameter p . 

The rays described by Eq. (5. 2. 1) usually cross one another in such a 

way as to form a caustic and foci.   The constraint equation of this caustic 

can be found by taking the derivative of Eq. (5. 2. 1) with respect to x. .   The 

result is 

dx /dx.  =  z/z'       . (5.2.4) 
o       i 

We see, frcm this equation, that the caustic goes into the layer at points 

given by dx /dx. = 0 .   An additional point or points on the caustic can be 

found by using the result of Appendix D where it has been shown that the 

maximum of the locus of turning points (dx /dz  = 0) corrasp^nds to points 

at which the caustic crosses the line z = z' , 

The locations of possible foci are given by the second constraint equation 

d2x /dx2 = 0 (5.2.5) 
o      i 

when used in conjunction with Eqs. (5. 2. 4) and  (5. 2. 1) .   The constraint 

equation was found by taking the derivative of Eq, (5. 2. 4) with respect to x. . 

Now that we have outlined the means by which we can obtain the structure 

of the reflected ray family, as predicted by classical geometrical-optics, we 

will discuss diffraction effects.   To simplify the following discussion,  it will 

be ejsumed that the profile of the arbitrary layer is completely continuous for 

-L<z<0 ,  i. e:  all derivatives of €(z) are continuous in the layer region. 
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Thi» assumption eliminates diffraction regions occurring in the vicinity 

of rays which have their turning points located at discontinuities of 

dn€(«)/d8n . 

Diffraction regions are those regions in which the classical theory of 

geometrical-optics gives a poor approximation to the field.   Typical regions 

of this type are caustics, foci and ray regions composed of rays emicted close 

to the critical angle.   It is the latter of these diffraction effects that we wish to 

discuss.   The class of layers, under discussion, will be divided into three 

parts : first,   layers with a discontinuity in slope, n=l ; second, layers with 

discontinuities in higher derivatives, n>2 ; and third, infinite layers.   Each 

sub-class of layers will be discussed individually. 

The layers with n= 1  have been singled out since these layers have 

critical rays whose turning points have finite coordinates.   The results of 

Chapter 1 indicate that a lateral ray should be exicted at this turning point 

and it should travel along the z = - L interface while shedding energy into the 
1/3 3/2   ii 

reflected field.   The general form of this wave would be A((k L)     /(k L )     }e   . 
O OS 

Here  if is the phase from the source to the observation point along the lateral 

ray;  L    is the distance that the ray travels along the z = - L interface and A 

is the excitation coefficient which will depend on the slope of the layer at 

z = • L .   We note that the k   dependence is smaller than the returning ray 

cont.ribution, however, the lateral wave contribution might be important if 

there were any loss in the layer.   The results of Chapter  1 also seem to 

indicate that the returning rays which lie close to the reflected critical ray 

have field contributions that are not predictable by the theory of geometrical- 

optics.,   The field in this region could be obtained by an asymptotic analysis of 

the integral representation for the reflected field. 

The next class of layers to be considered are those layers with n>2 . 

An examination of the critical ray in this class of layers shows that it is 
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similar to the critical ray observed in Chapter 2.   There the critical ray 

never becomes tangert to the lower interface but only approaches it 

asymptotically i. e., as z   --L, x -♦ + 00  where x    and z    are the coordin- 
c c c c 

ates of the critical ray.   Because this ray never becomes tangent to the 

lower interface, the geometrical interpretation,   rendered to the lateral 

wave in the n= 1   case, does not seem applicable here.   However, it does 

appear that returning rays,  emitted close to the critical angle,  form a 

diffraction region. 

To see the behavior of these returning rays for a special case, we 

have chosen 

e(z) =   el + A(z/L+ l)n    ,     n>3        . (5.2.6) 

We have not included n = 2 since an example of this case has been given 

in Chapter 2. The ray equation (5. 2. 1), when rewritten in terms of the 

ray parameter p,   becomes 

x = p(z + z')/p2  +  2xt     ,     P2=/l-p (5.2.7) 

where 
z. 

^ = '  -f   //V.n"    I     !^      '       ^ S P (5-2'8) 
o VMT/L+I)  - |p11 

and \p1\=Jp  -Cj   .   For |p   |   small, Eq. (5. 2. 8) can be written as 

Lp '  IP, l"^» dw 
t        .. n-2 

A1/n   IpJ — 
1' == (5.2.9) 

V w    - 1 

where we have used the change of variable w = A      (T/L+1) |p   | 
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The dominant asymptotic approximation for x   as   |p   | -0 is then 

given by 

n         .     ^,i     rO 
L/tl 

x   =    5 .     +    0(|p, |U)       .       n>3 (5.2.10) 
t ,, n-i 

A^IPJ" 

where I    is a convergent integral given by 

dw 
n 

yw    - 

We see as   Ip. I -»0 ,   the slope of the ray tends toward -Jhit^   while the 

intercept at the x axis tends toward infinity.   As in the n = 2 case, these 

rays have trajectories similar to the lateral wave observed in the linear 

layer in Chapter 1. 

We see that rays in this type of medium, which are emitted at angles 

close to the critical angle, contribute to the reflected field at large distances 

from the source.   The results of Chapter 2 would also indicate that the 

methods of geometrical-optics are not generally successful in computing 

the amplitudes of these ray contributions. 

The obvious step to take after considering profiles with n> 2,  is to 

investigate an analytic layer .   At present this has not been done for a finite 

layer,  since no analytic profile could be found which has known wave 

functions associated with it.   Recourse was taken to infinite layers,  such as 

the symmetrical Epstein transition, for which the wave functions were known. 

An examination of the critical ray in an infinite layer shows that as 

x   -•ao,z -»-•.    This differs from the finite layers where z   -• • L .   The results 
c c c 

of Chapters 3 and 4 have indicated that returning rays emitted close to the 

critical angle tend to act in a similar manner as the returning rays from 

finite layers with n>2 , with one exception.   This exception is that as 
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|p   I -0 ,   the turning point z   tends toward infinity.   The results of 

Chapters  3 and 4 also indicate that the method of geometrical-optics 

does not break down as the angle of ray emission from the source 

approaches the critical angle.   Therefore no diffraction region is observed. 

5. 3              Evaluation of the Reflected Field for k L  »1 
 o   P 

5. 3. 1       General Considerations 

In this section we will investigate the reflected field from an arbitrary 

transition when k L   »1  and  L   »L.   From this investisation we will 
op p B 

determine the nature of the diffraction field at large distances from the 

source when k L» 1 ,   and relate this diffraction field to the lateral wave 
o 

contribution v hich is excited on an abrupt interface.   The analytical treat- 

ment will be limited to finite layers ; infinite layers will be discussed by 

using the results of Chapters  3 and  4. 

5. 3. 2    Finite Layers 

The integral representation for the reflected field from an arbitrary 

finite layer is given by 

1 r    Pl^ iko[p2(z+z') + px] 
E       =    —r        e   " dp.     .     z>0 (5.3.1) yr 4TT i       .'     pp - i 

C 

her« wnere 

T = - \   /A (5.3.2) 
t     b 
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with 

t 
b 

ji;(-L)+ikp, M-DI 

j»'2(o)±ikop2*2(o)( 

|#'(-L) + ik D   f (-L)! 
I.1       ' o'1    l        \ 

H^±ikoP2
fl(o,| 

The integral representation is the same as the integral representation 

appearing in Eq> (1.4. 1) with one exception ; their reflection coefficients 

are different.   The reflection coefficient, appearing in £q. (5. 3. 1) ,   has 

been derived in Appendix A.   In this Appendix, we have defined *. (z) and 

$  (z) as two independent solutions to the reduced wave equation in the 

layer region.   The square roots p = ^/c. - p.    ,   p   = vA + Pi    and the path C 

are defined in Figs.  1. 5 and 1.6. 

If we now use the assumption that k L«k L   , then the reflection 
o o   p 

coefficient in Eq. (5. 3. 1) is slowly varying compared to the exponential 

in the integrand, and the standard steepest descents techniques can be used 

to asymptotically evaulate the integral representation for large k L        The 
o   p 

asymptotic evaluation parallels the evaluation of the integral in Eq. (1.4. 1) 

and, as a result, we will not present it here.   The results of this asymptotic 

analysis are that two saddle point contributions make up the reflected field 

when k L  »1 .   The first of these is a contribution from a ray reflected 
0   P -1/2 

from the z = 0 interface.   The contribution has a 0(k        ) for all layer 

thicknesses.   When k L»l, the contribution can be predicted by the class- 
o 

ical theory of geometrical-optics. 

The second contribution to the reflected field comes from the saddle 

point occurring at p. =0,   as shown in Chapter 1.   This contribution, which 

will be denoted by E      is given by 
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1/4 dP 

Pl=0 ik [^(z+z')+v^x] -in/4 

TTA <krt
LJ o   p 

3/2 
(5.3.3) 

where 

dT 
dp 

2T^/S"[«2(O)$J(O) - l^(o) IjCo)]' 

P^O K*^' L)f/1(o)-$/
1(-L)f^(o)].iko^[$2(-L)$1(o)-$'1(-L)$2(o)]P 

(5.3.4) 

T = k L and the prime indicates differentiation with respect to z/L.   The 

above contribution can be written in the following form 

~     T(T) 

the lateral wave 
contribution on 
an abrupt interface. 

(5.3.5) 

where 

T(T)     =- JE   dr 
2      dpj 

Pl=o 
(5.3.6) 

In the above T(T) is a transition function which is independent of the 

observation point if we keep within our original assumption that k L» 1 
o 

and  L   »L . 
P 

It would be interesting to learn what particular characteristics of the 

layer's profile affect the transition function T(T) ,   however the wave 

functions ^.(z) and  $-(z) are not known.   As a result,  we will limit our 

investigation of T(T) to values of  T which are small or large compared 

with unity. 
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We will proceed first with an investigation of T(T) for small  T . 

An approximate expression for T{T) when  T  is small can be obtained by- 

expressing F   in a power series in  T .   We can obtain this power series by 

considering the generalized reflection coefficient   r(z) in the layer.   This 

reflection coefficient obeys the Ricatti equation as given by Brekhovskikh       , 

i. e: 

df/dz  =  2ik p (z)f(z)  +  G(2) [l-r2(z)]/p2(z) (5.3.7) 
o  z z 

-/«■ z where p (z) = ve(z)-p    .   This reflection coefficient is the ratio of incident 
z 

to reflection wave fields at any point z .   As a result when z becomes less 

then -L,   the reflected wave disappears and r(-L) = 0.   We use this condition 

as the one initial condition necessary to make the solution to £q. (5. 3. 7) 

unique. 

Actually the function r(z)  defined by this   equation has,  in general,  no 

physical meaning since incident and reflected waves are indistinguishable 

in an inhomogeneous medium.   However, when the medium is slowly 

varying,  compared to wavelength or  z  is located in an homogeneous region, 

this difficulty no longer occurs and the reflection coefficient takes on the 

meaning that we usually ascribe to it.   In our particular case, r(z) will be 

evaluated at z = 0     ,   a po'it where r{z) is physically meaningful.   Fora 

more complete discussion of Eq. (5. 3. 7) and its physical interpretation we 
(35) refer the reader to Schelkunoff 

Brekhovskikh and Wait have developed a procedure for expres 

i11? ^(z) "* terms of an ascending power series in k   which would be useful for 

our purposes.   Unfortunately the above series does not converge for p. = 0 

and it is at this point that we require the series development.   To alleviate 

this difficulty we have slightly modified Brekhovskikh1 s method and developed 

a series which does converge at p   = 0 . 
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At this point we will assume e(z)= c(z/L).   This assumption is not 

necessary but it will simplify the analysis to follow and, at the same time, 

allows for a sufficient amount of generality.   The transformations 

HI) = /-i    /-w    /-^       •       2 = Z/L (5.3.8) p  (z ) v( z ) + u( z ) 
z 

where p  ("z ) will now be used in Eq. (5. 3. 7) and an equation for vCz )   and 
z 

u(z^) will be obtained.   It is 

r p (z")v-| 
u'/u - v'/v =    irp  (z)       "-.        -    —  (5.3.9) rz Lp  (z)V u        J 

z 

where the prime indicates differentiation with respect to ? .   This equation 

can be satisfied by subjecting u and v to the two equations 

u' = - iTp2(z) v (5.3.10) 
z 

v' = - i TU     . (5. 3. 11) 

* 
The solutions of the above equations with the boundary conditions 

u(-l) = p1     ,     v(-l) = l 

yields Eq. (5. 3. 7) with the boundary condition that F     _    T 
= 0 •   Now 

combining the Eqs. (5. 3. 10) and (5. 3. 11) we obtain a second order equation 

for v(z).   It is 

v" = - T
2
P

2
(Z) v (5.3.12) 

z 

* 
The boundary conditions are imposed on the negative side of the 
discontinuity at z = - L . 
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with 

v(-l)=l       ,       v/(-l)=-iTp1       . (5.3.13) 

We will now convert Eq. (5. 3. 12) into an integral equation by considering 

the Green's function problem v" = - 6(z-z') and by considering the right hand 
(37) 

side of Eq. (5. 3. 12) as a source term.   By using Friedman's result for 

the Green's function, Eq. (5. 3. 12) becomes 

v(z) = l-ixpjZ - T2     [     p2(t)(7-t) v(t)dt     . (5.3.14) 

(38) With the aid of Tricomi ,  it can be shown that the method of successive 

approximations with 1 -irp-äT   , as the zeroth approximation,  converges 

to the solution of Eq. (5. 3.14).   The only requirements are that 1 - i T p."z 
2 2      _ 

and T p (t)(z-t) be square integrable in the interval -l<r<0 .   We take 
25 —    — 

special note that this solution will converge at p   = 0 . 

By applying the method of successive approximations to find v("z) and 

then by using Eq. (5. 3. 11) to find u(z"), we can obtain an approximation to 

r(0) for small T .   It is 

2iTp  f f (e(t)- eJdt-p2] 
-    - P2"P1 L-l J 2 
r = r(0)=-^-~+      — r  +0(T  )   ,     (5.3.15) 

P2 + Pl (P^p/ 

If we now take the derivative of F  with respect to p.  , we can obtain an 

approximate expression T(T) when T«1 .   This expression is 

T(T) = 1 +  -^-   je(7)- ej       + 0(T2) (5.3.16) 

where the term in the brackets is the average of c (z ) - e   , i. e. , 
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, i o .     o 
jeCz)-^^      =   f (e(t)-e1)dt=   -    f   {c{z/L) - c ^dz . (5.3.17) 
' 'av      -1 -L 

If we refer to Eq. (5. 3. 5) we see that as T -«0 ,   the lateral wave contribu- 

tion E     tends toward the lateral wave excited on an abrupt interface.   The 

first perturbing term, as can be seen from Eq. (5. 3. 16),   is proportional 

to the average amount that the dielectric constant exceeds e. . 

Since we have obtained the approximate form of T(T) when T«1 ,   we 

will now investigate T(T) when T»1 .   The general procedure for doing 

this will be to asymptotically approximate the function §.(z) and $-(z) 

appearing in Eq. (5. 3. 4).   The asymptotic approximations to these functions 
(39) will be obtained by using Langer's comparison method.   This method 

allows us to find the asymptotic solution to one equation in terms of the 

solution of another.   For the procedure to apply, the two equations must 

have turning points of equal order. 

The unknown functions $.(2) and  $-(z) obey a reduced wave equation 

^    f    T2 [e(z)-e1][ §1(z) = 0    ,     z -■ z/h (5.3.18) 
dz '    2 

with the boundary condition that $1 (z) and  $-(z) must be outgoing and 

incoming waves respectively, when k L is large.   We have assumed, as 
— th 

before,  that e(z) = e( z ).   Since Eq. (5. 3. 18 ) has one turning point of n     order, 

we choose as a comparison equation 

,2 
—2  +     T   § 
d§ 

tlr1(§) = 0 (5.3.19) 

where \|(.(z) must obey the same boundary conditions as $. (z).   The above 

2 2 
equation can be transformed into a Bessel equation and has the following 
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solutions : 

^ [4- 
i- • I     Ln+2 
2 n+2 

n+2 
2 

By applying Langer's method with Eq. (5. 3. 19) as the comparison equation, 

the asymptotic approximations f .(z)    are given by 
2 

V?) ~ 
Sf JWrJ-e/dr 

ii 

\ 

d» 
[e(£)-G|] 1/4 

H 
1 

n+2 

z 1 
T   f (e(T).e jVr 

1 
(5.3.21) 

We shall also require the asymptotic approximation for d$1(z)/dz     .    This 

2 
can be obtained by taking the formal derivations of Eq. (5. 2. 21) and retain- 

ing only the higher order term.   The result is 

d«^) 

dz 
-T[£(7).cJ1/4[^f(c(T).El)*dT] "4 

n+2 

^[(6(1)-^)^] 

(5.3.22) 

An examination of Eq. (5. 3. 4)  shows that we will require $.  ,   $    and 

their derivative at z = 0 .   When T  is large,  the argument of the Hankel 

functions in Eqs. (5. 3. 21) and (5. 3. 22) becomes large.   By using the 

asymptotic expansion for Hankel functions with large argument and fixed 

orders, we obtain 

±i 

\^-A n+2 
'JW'A-,**,. 

(5.3.23) 
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,'(„,- tiT JteM e    
l -' .     ,5.3.24) 

1 TTT 

The evaluation of Eq. (5. 3. 4) will also require knowledge of  i' (-L) .   This 

can be obtained by using 

C1) .     ,    -v 
H_2

v(z) »b 7    ^S^ r(v)    e±TTV    ,     z«l (5.3.25) 

in Eq. (5. 3. 22).   The result is 

il/n+2 +;„  Uli [i "ll/n+2 . . _ 

jC-L)   ~T   iT(n+2) I^M     | T'  -;-)   e n+2 (5.3.26) 

,n 
where e(n) = d    e(f)/dz     —_    ..   If we now use Eqs. (5. 3. 23),   (5.3.24) 

and (5. 3. 26) in Eq. (5. 3. 4) we find that T(T) is given by 

T(T) -   ATL"+2J
e ■' (5.3.27) 

when T»1 .   The constant A is given by 

A  = TT^S- 

(n+2)»c(„)J /       V°+2 
n+l\ 

(5,3.28) 

An inspection of Eq. (5. 3. 2 7) shows that as n increases, the order of 

T(T) rises.   This means that the more continuous the dielectric profile is 

at z = - L,   the stronger the lateral wave is excited.   In fact,  as  n   tends 
1/2 

toward infinity, the lateral wave contribution approaches an 0(k     ) .   This 
o 

means that the lateral wave contribution will be as strong as the geometrical- 

optic contribution. 
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It ii interesting to compare the lateral wave field with the 

reflected field discus a ed in section S.Z.   There, when n= 1, a lateral 
7/6 

wave is excited and has an 0(k     ) .   As the lateral distance,  L  , o p 
becomes great compared to wavelength, the lateral wave contribution 

found in section 5. 2 becomes identical with the lateral wave contribution 

given by Eq. (5. 2. 3) with Eq. (5. 3. 27) and n= 1 .   We also note in section 

5. 2 that when n>2 ,   the reflected field is composed of two contributions. 

One of these contributions can not be obtained by the methods of geomet- 

rical-optics when L    becomes large compared with wavelength.   In this 

section we see that the geometrical-optic contribution, observed in 

section 5.2, makes a transition to a lateral wave type contribution as 

k L »1.   We have made no attempt to find the transition function between 
op 

these two contributions. 

5. 3. 3. tofinite Layers 

We will not treat the class of infinite layers analytically, as has been 

done for finite layers in the last section, but instead, we will discuss the 

contributions that we might expe t on the basis of the results oi Chapters 

3 and 4.   The results of both of these chapters indicate that, as in the 

finite case, the reflected field for k L  »1   consists of two contributions. o   p 
One of these contributions appears to come from a ra/ reflected fvom the 

z = 0 interface while the other contribution has a ray trajectorv similar to 
-3/2 

a lateral ray.   The latter contribution has an algebric decav factor of L 

which is independent of k L .   This behavior is also observed in sections 

5. 3. 2.   The excitation coefficient of the contribution changes with T . For 

small T the contribution appears to reduce to a Isieral wave on an abrupt 

interface while, for large T ,   the concribution reduces to a geometrical- 

optic ray.   It is interesting to note that the lateral wave contribution, 
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investigated in the last section for arbitrary n ,   approaches a 0(k       ) 

as n-»00.   This is the same order as a geometrical-optic contribution.   The 

interesting contrast between the lateral type contributions on finite and 

infinite layers for k L   »k L»l   is that in the infinite case the methods 
op       o 

of geometrical-optics can be used to obtain the lateral contribution while 

in the finite cases it cannot. 

_ 
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APPENDIX A. 
•  I 

ONE-DIMENSIONAL GREEN'S FUNCTION 
PROBLEM FOR AN ARBITRARY LAYER 

The function l(z,p) is a one-dimensional Green's function.   It obeys 

the equation 

j-^+kf  [€(z)-p2]j «(z.p) = - 6(z-z') (A-l) 

e(«) ' 

€ ,       Z> 0 

■€(z)    ,     -L<z<0 (A-2) 

c ,     z<-L 

where r(z) is an arbitrary function of z .   The formal solution to Eq. (A-l) 

is well known and is given by 

«(z.P) =     iZT5  (A-3) 
wn .T) 

where z    is the greater of z or z' ; z    is the lesser of z or z' ;  f (z) 

and $ (z) are independent homogeneous solutions to Eq. (A-l) which satisfy 

the boudnary conditions at + and -  infinity respectively ; and the 

Wronskian W (* , T) is given by 

W(t,r)  =  f(z)    4^   ■^    ^       • (A-4) dz dz 

and must satisfy the radiation condition as z-»^00 .   We shall choose an 

C(z) which is given by 

•   1 
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At this point we will limit ourselves to finding the Green's function 

for  z>0 and z >0 .   In this region the function i (z) and #(z)   are given 

by 

-► ikoP2 Z 

* (z)  =     e .     z>0 (A-5) 

*(z)=e +re .     z>0 (A-6) 

wherep-2^*1^-?   • The coefficient T will be determined at a later point. 

By using Eqs. (A-5) and  (A-6) we can calculate  i{z,p) .   It is given by 

ik p z-z I /   ,   /» 
e    0 f lkoP2tz      ^ 

^-p1 = -zirr-      - innr e •  (A■7, 
orZ u 2 

All that remains to be done is to determine T . This can be accom- 

plished by imposing the boundary condition on $ (z) that it must be out- 

going at - 00 .   This gives 

■ik p, z ik p, z 
+       T e .     z>0 

^(z|    ^faf^z) +      6$  (z| .     -L<z<0 CA-8) 

-ik^z 
ye z<-L 

where $,(z) and  $.(z) are two independent homogeneous solutions of 
/ Z Eq. (A-l) for  -L<z<0 and p   = ve.-p    .    If we recall that the one-dimen- 

sional Green's function,  $(z,p) is related to the electric field via a Fourier 

transform, then we can conclude that $(z,p) and (d/dz)$(z,p) must be con- 

tinuous across the discontinuities of e(z)  since the tangential fields E    and 

H    are continuous across these discontinuities.   By applying these conditions 

at z = 0,   we obtain 



-168- 

i + r   = aijCo) +  ßf (o) 

i k p   + i k p 
o c o c 

= af,1(o) +  S^(o) 

(A-9) 

(A-!0) 

By imposing the same conditions at z = - L,   we also obtain 

ikp   L 
Ye =    a^C-L)    +     ß?2(-L) 

.ikoPlYe 
ikoPlL 

af^-L)    +    Sf^(-L) 

(A- ! 1 ; 

(A-12) 

where 

*'(z)    =     df.(z)/dz     .     i=lf2 

The solution of these four equations for T   gives 

r   = - — 

with 

t 
b 

jf^-D + ik^y-DJ        |f;(-L).ikop1$1(.L)j 

jf^o) ± ik^f^o) #2(0) ± ikoP2f2{o) 

(A-13) 

It must be emphasized at this point that ^.(z) and  $  (z) are any pair of 

independent solutions to the homogeneous equation.   For each different pair 

of solutions we obtain a different representation for the reflection coefficient. 
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APPENDIX B. 

INTEGRAND'S SINGULARITIES 

The pole singularities of the integrand are the singularities of the 

reflection coefficient,  (3.2.4) ,  or the roots of 

i Zr(v/2 + u/2+ l)r(v/2 -a/2+ 1) r w,1/1Tll 1     -    Tp  -^/2 —Z +l/2)r(v/2-u/2+l/2) tanL-(v+u)/2j.(lB) 
c 

2 t 
Since the square root (-:   -p   )    doesn't appear in the above equation,  a root 

of (IB) will correspond to a pole on the first and second sheet of the Riemann 

surface. 
! 

The poles lying on the integration path, C, (Hgs.U.S) and (1. 6) ) will be 

* 
examined first.    Consider roots of (IB) in the range Rep    =0,  0 <Imp <(i) . 

f 

The right-hand side of (IB) is real and, therefore, no roots exist in this 

range.   In the range 0<; Rep    < (e  )*. Im p = 0,  (IB) can be simplified. 

Using the simplified form 

„2 

■ = t (v/2+a/2-H) 

r2(v/2+u/2+l/2) 

-sinhrrlu [   + j sinny 
cos TT v + coshnlu I 

one sees the right hand side has an imaginary part when sin(rv)^ 0,    When 

sin(rv) = 0, the right hand side of the equation is less than zero.    Therefore, 

i no roots exist in the range 0< Re p    < (e  )  , Im p = 0.    The final range to 

consider is Rep  = 0 ,   (L\)<Imp<00.    Transform (IB) to 

,        2r(l/2- v/2-  lu|/2)r(v/2+ |u|/2+l) 
"T|p2lr(-v/2 +  |w|/2)r(v/2 +H/2+ 1/2) ^^^ 

where the gamma functions appearing in (3B) are greater than zero since 

|u(-v>0 for the range of p   under consideration.    As a result,   (3B) has no 

solutions on the integration path C. 



-170- 

Since no poles lie on the integration path,  the only other residue 

contributions lie between the original and deformed path.    If T has a small or 

moderate value, then for large k any residue contribution will be a rapidly 
o 

exponentially decay function which can be neglected asymptotically.    When 

T is large enough,  the asymptotic form of the reflection coefficient, 

R   .^T^.ipj)   , 

can be used.    Since the exponential function has no singularities in the finite 

p   plane,  the reflection coefficient is analytic there.    As a result,  we see 

no residues contribute to the asymptotic reflected field solution.    We also 

note that since the saddle points lie on the integration path C,  no singularities 

approach the saddle points as k increases. 
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APPENDIX C. 

DECAY REGIONS 

The decay regions of the integrand appearing in (3.4.12) are those 

regions where Im *(p ) > 0 with 

-        -1 * 
-(Pj) = P2z + px +ko      vte^  (^rT) . (1C) 

Since the integration path is on two sheets of a four-sheeted Riemann surface, 

the decay regions must be found for both of these sheets.    The method of 
t 

j 
finding the decay regions will be:    first,  to find the location of the saddle points 

and;   second,  to find the constant level paths through these saddle points, i. e, 

i 
paths on which Im ?(p  ) = 0.    Since the constant level paths separate the decay 

and growth  regions,  once these paths are found, the boundaries of the decay 

regions are known. 

The location of the saddle point can be found in the main part of 

the text.    On the top sheet of the Riemann surface three saddle points were 

i 
found.    Two were on the positive imaginary axis where 0 < Im p <(i)    and 

one was on the negative imaginary axis where -{?) < Im p   < 0.    On the 

second sheet there was only one saddle point.    It was located on the negative 

imaginary axis where -{£)  < Im p  < 0. 

Two constant level paths pass through each saddle point at right 

angles to each other.    The imaginary p    axis where (Im p   I < (A)     is one of 

the constant level paths.    The other paths cross the imaginary axis at the 

saddle point normal to the axis.    Since their functional behavior is complicated, 

only approximate path locations can be found.    The asymptotes of these paths 

as  (p   I-00 are found to be 

HPj,^)  T) «S in p^   ,    pi »  1   . (2C) 
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The expansion is valid on both the upper and lower sheet.    On the upper sheet 

the four asymptotes are: 

p     =1 (x-TTL)/z|p 1      quadrant {3Q 

p     = -  {X-TTL)/Z Ip 2      quadrant (4C) 

p     = -RX + TTD/ZIP 3r    quadrant (5C) 

p     = -| (x + TTL)/Z   p 4     quadrant ibC) 

where p.  = p.    + ip,.«    An examination of i (p ) for large k shows that a 
1        1 r li 1 o 

constant level path goes through the saddle point which is highest on the imaginarv 

p   axis and the path is asymptotic to (30 and (4C).    Similarly, a constant lev.l 

path goes through the saddle point which is lowest on the imaginary p   axis 

and the path is asymptotic to (5C) and (6C).    There are no asymptotes on the 

second sheet.    As a result, the constant level path always remains in the finite 

region of the plane. 

There is one constant level path on each sheet still to be found.    An 

investigation of $(p.) along the real p   axis shows that Im $(p )> 0 on both 

sheets for 0 < Re n < (e  )    and Im $(p )<0 on both sheets for {e  )    < Re n < 0. 

*     i i The equation for Im ^(p.) where (e.)    <|Rep  | is 

Im^p^j = - (Pj2- c^* x + lT1 Im ♦(Pj.iArT) (7C) 

i 
which is valid on both sheets.    This equation has one zero for Rep   > (e   ) 

and another for Rep < -(e.)   when T small or moderate and k large.    When 

T becomes large (7C) becomes 

2 £ 
Im ^(p^ =  - (pi - ej)   x+ n p^. 

i 

■ 

» 
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This equation has a similar arrangement of zeros, if x > nL.    This restriction 

does not hinder us since the caustic lies in this region.    With the above 

information, the trajectory of the remaining constant level paths becomes 

clear.    The path forms a complete circle crossing the two saddle points, one 

on each sheet,  at right angles to the imaginary axis and crossing the 

p   = ± (s )   branch cuts at the zeros of (7C).   The constant level paths and 

decay   regions are shown in Figs.  (3.3) and (3.4)   . 
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APPENDIX D. 

EXTREMUM OF THE LOCUS 
OF TURNING POINTS 

The purpose of this appendix is to show the relationship between 

the locus of turning points and the caustic formed in a stratified medium. 

Let us assume that there exists a stratified medium whose dielectric 

constant varies continuously in z between free space and e   <1 .   Rays 

emitted from a two-dimensional point source located at (o, z') divide into 

transmitted and returning rays.   The ray equation for the returning  rays 

after they have turned is given by 

j)dT 
x= - r -r 

j/ J J ÄT- 
e(zt) = p (D-l) 

where p is the ray parameter, (x , z ) are the coordinates of turning point 

of the ray and (x, z) are the coordinates of ray. The caustic formed by the 

rays given in Eq. (D-l) can be obtained by solving the constraint equation, 

d 
dz. 

«■        z 

J, - J »d T 

tJ vMO-p 
(D-Z) 

simultaneously with Eq. (D-l) .    The constraint equation , D-2 , was obtained 

by taking the derivative of Eq. (D-l) with respect to z  .   We see Eq. (D-2) 

will give p or z   in terms of z which,  in turn,  can be used in Eq. (D-l) to 

obtain the equation for the caustic.   For comparison purposes at a later 

time we will evaluate Eq. (D-2) at z = z'.    The result is 

zA 2i J, I 
pd; 

e(T)-p 
= 0 . (D-3) 
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The locus of turning points for the turning rays is given by 

The extremum of this equation is     given by dx /d? =0 .   By imposing 

this condition on Eq. (D-4), the resulting equation is Eq. (D-3) .    This 

shows that extremum of the locus of turning points correspond to points 

on the caustic which coincide with the z = z' line . 
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APPENDIX E. 

UNIFORM ASYMPTOTIC APPROXIMATIONS FOR BESSEL 
FUNCTIONS 

The uniform asymptotic approximations of the Bessel functions and 
(30) 

their derivatives are given by Olver      .   They are 

Jv(vw)    -    (- «IvlfV'4 Al(|v|2/3?' (E-l) 

H    (Vw) ~    2 e 
Tin/3   Mlvl^V74  yM^fj 

V   1-w2   ' v"2 
(E-2) 

,   ,,       2            1/4      Aldvl^f) 
j' (vw)    - - - (     v 1 —  

V 

(E-3) 

A\      .          4e:fc2TTi/3     /l-w2       N1/4       A^(|vi2/3?, 

H;.(vw) :     (—TTT-j 
^ivi2/3? v 1/2 (E-4) 

with 

3  ' ■   |v|   j t dt (E-5) 

The above transformation,  E-5 ,   is a relation between the w-plane 

and the ?-plane for a particular value of argv .   As can be seen,  the 

transformation is independent of the magnitude of v .   Olver has made 

a thorough investigation of the relationship between w and   | .   He has 

shown that by cutting the  ? plane as shown in Fig.  E-l , the asymptotic 

approximations given in Eqs . (E-l) - (E-4) are valid over the whole w 

plane,  cut as shown in Fig. E-2 with |argv|<TT/2 . 
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Imf        Q' 

Fig.   E-l 

The  «:   Plane 

Rew 

Fig.  E-2 

The w  Plane 
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The branch cuts in Fig. E-l   are constant level curves of 
3/2 3     2/3 

exp(-2/3 f      )   whose level is( —TT)      .   When these branch cuts are 

transformed into the w plane, they fall on top of one another and form 

a section of the w plane branch cut.   The parameter equations of this 

section of the w plane branch cut are 

w  =   sechc       ,   0<t<:o 

a-tanha = -iTT + te
i{3/2rT-argV, {E-6) 

It is interesting to note that the branch cuts change position as the 

argv is varied, however this will not concern us since the branch cuts 

will always remain out of the region of ou^- interest. 

In his paper Olver has obtained the asymptotic approximations to the 

Bessel functions for  |argv| < TT/2  .   We will now show that these formulae 

are valid when argV=-n/2 andO<w<OB.   To show this fact we will find 

the asymptotic approximations of J  (vw) in the region |TT - arg v | < TT/2 . 

If the asymptotic approximations from the right and left hand sides of 

the v plane yield the same results when evaluated at argv - - TT/2 , then 

Olver's formula is correct at arg v= -TT/2 .   If the two formulae differ by 

mo^-e than an exponentially small term along some sector of the Rew axis, 
(41) this will mean that the particular sector is an anti-Stokes line       and an 

oscillating term will be neglected if Olver's original formula is used at 

argv = -TT/2 .   We should not make the faulty conclusion,  however that if 

the two formulae agree, this sector of the Rew axis is not an anti-Stokes 

line. 

First,  evaluating Olver's asymptotic formula, E-l,  atargv = -TT/2 , 

w  real and 0<w<l ,   we have 
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2/3|r|   -iTT/3, 

J (vw) -   e 
v \      .       2      ) ,   .1/3 

1 - W V 
(E-7) 

Next, we want to find an expression for J (Vw) in the region jn - arg V^T^ 

This can be done by making use of the analytic continuation formula given 
(42) 

by Watson . The result is 

Jv(vw)  =  J_v(vwelTT)  =  e"V ^     J_-(vw) (£-8) 

—    i 
where v= v e       and then using the definition of J — (Vw) ,   we obtain 

VTTi   f _ _ _ _      1 
J  (vw)  =   e j cos VTT J_(vw) - sinvn Y—(vw)l    , (£-9) 

This will give us the asymptotic approximation of J (Vw) in terms of 

functions whose asymptotic approximations are valid in the right half of 

the v plane.   The asymptotic approximation to  Y— (vw) has not been 

given as yet but can be obtained from Eq. (E-2) since Y  (z)= H     (z)- H     (z) . 

We now evaluate Eq. (E-9) at arg v= -n/2 ,   0< w< 1 and neglect exponentially 

small terms.    The result is 

J (vw) =   -    (^(vw)  -  iY-(vw)] 
v 2    j.   v v J 

(E-10) 

Substituting the asymptotic approximations given in Eqs.(E-l) and  (E-2), 

in the right hand side of the above equation,  gives us 

J (vw)  ~  ^7 
vx      '       2 

2/3 iMflllJ 
1 -w 

•in/4 [\IM 2/3 + in/3i rJi?ie+1TT/J) 

v 
1/3 

(E-ll) 

+  i iB.(|v ,2/3 ?|e iTT/3 

)]• 
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Using the connection formula between Airy functions shows us that 

the asymptotic approximation for J (vw) is the same as Eq. (E-7) . 

The same procedure can be repeated for arg v = - -/2 ,   1 < w < » , 

which shows that Olver's formula can be extended to argv= - ~/2 for 

this section of the w plane also.   In addition it can be shown that the 
/lj / /!)' 

asymptotic formula for ^2  (vw) ,   j' (vw) and  ^2 (vw) are also valid 
Hv V H v 

for argv =-n/2  ,   0<w<". 
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