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ABSTRACT

In the past the lateral wave has been investigated for the cas= of 2
sharply bounded transition layer and a layer with a linear veloc<ity variation,
The interpretation of the iateral wave given in these instances cannot be extend-
ed to an arbitrary smooth layer, and in many cases, the exact nature of the
lateral wave contribution becomes unclear. It is our purpose to clarify these
matters and to present the characteristics of lateral wave propagation on a
layer of arbitrary variation. The mcdels employed can simulate an inhomoge-
neous plasma having a number density profile, nf{z), which varies continuously
between two homogeneous half spaces. An integral representation for the
scattered field in the optically denser half space is found and evaluated
asymptotically in the high frequency limit. This 2eymptotic evaluation is car-
ried out in two parameter ranges: first, whe: the layer is thick compared with
wavelength; and second, when the layer thickness is arbitrary but the observa-

tion point's distance along the interface is large ccmpaired with layer thickness,

When the layer thickness is large compared with wavelength, the asymp-
totic analysis of the scattered field shows that the interpretation of the lateral
wave depends markedly upon the gradient of n(z) at the junction with the optically
rarer homogeneous half space. {tis found that when a finite gradient of n(z)
exists, the conventional interpretation of the lateral wave contribution is correct;
however, the lateral wave mechanism is different in the case of a zero gradient,
For observation points situated at a large distance along a layer of arbitrary
thickness, the asymptotic expression for the lateral wave contribution has an
amplitude dependence on distance identical with that for the lateral wave on an
abrupt interface. In addition, the lateral wave expression reduces to the thick
layer result for large layer thickness and it reduces to the abrupt interface

result for thin layer thickness,
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INTRODUCTION

This report is a study of the fields reflected from diffuse plasma
interfaces with particular emphasis on lateral wave excitation and guid-
ing. It was motivated to a large extent by the general lack of knowledge
concerning lateral wave behavior on diffuse transitions. From an exam-

(1)

ination of the literature it became apparent that Nakamura' ' was the only
investigator to treat lateral waves excited on a diffuse transition and, in .
his case, only a linear velocity profile was considered. The diffraction
effect in question is relevan: for sucn applications as the scattering of
waves by inhemogeneous dielectric or plasma ducts and the radiation
from antennae in the presence of ionospheric irregularities. In the latter
cage, the presence of a magnetic field may introduce additional compli-
cations ; however, the results obtained here for the isotropic problem

should provide a basis for future study of lateral wave effects when a

magaetic field is present.

The transition layers to be considered have a monotonically
stratified number density profile, n{z), which varies continuously
between two homogeneous half spaces. The width or average width of
these layers is proportional to the parameter L; as L becomes small
compared with wavelength, the transition layers tend toward an abrupt
transition. The equivalent dielectric constant for the medium is given by

2 2 2
a(z) = l-(mp/m) , wp = n(z) e /mi:0 ,
and is representative of a cold electron plasma with a background of
positively charged immobile particles. In the above formulae w is the
applied frequency, wp is the plasma frequency, e and m are the charge
and mass of an electron, respectively, and €, is the free space permit-
tivity. The field incident upon the layer is produced by an electric line

current source placed parallel to the transition in the optically denser

half space.




Before proceecing, a review of the past research concerning
reflected fields from stratified transition layers will be useful. The
ma or portion of this research can be divided into two sections. These
are : first, the formulation and investigation of the reflection coefficients
from transition layers ; second, the investigation of the reflected fields
due to a point source located above these layers. The general problem of
relating the dielectric profile of the layer to its reflection coefficient has
been dealt with in a number of ways. Brekhovskil»'h(z) has derived two
representations for the reflection coefficient. One of these converges
rapidly when the layer is thin compared with wavelength, while the other
makes use of the geometrical-optics approximaiion and converges rapidly
when the layer is thick compared with wavelength. Since an explicit form .
of the reflection coefficient from an arbitrary layer is difficult to obtain ,
many investigators have studied particular profiles. Hartree(3) has
studied the linear layer, and Epstein(*) has devised a layer which is
completely continuous. He then studied the reflection properties from it.

(5)

Heading has recently generalized Epstein's results, and Wait(6) has

summarized the results of many other studies.

Although the above reflection coefficient formulae are useful,
they can only be employed to calculate the reflected field when a plane
wave is incident upon the layer. When the excitation is in the form of
a line source, a complete spectrum of plane waves is excited. The
.<flected field in this case can be represented as a continuous sum or
integral over the plane wave spectrum weighted by the appropriate ampli-
tude coefficients for each spectrél component. These amplitude coeffi-
cients will depend on the reflection coefficient of the layer and, as a
result, p.oevious investigations of reflection coefficient properties
become useful. It will be the main purpose of this report to approximate

asymptotically the integral representation for the reflected field in the

—
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high reequency limit. The asymptotic approximations will then be
interpreted geometrically as rays, and the results will be co npared
with the classical theory of geometrical-optics. This comparison will
clearly distinguish the diffracted rays from those which are predicted

solely by calssical geometrical optics.

As has been mentioned previously, all the layers considered
here depend on the width parameter L. As L decreases, the layer
approaches an abrupt transition. Since this is the case we should
expect all of our results to approach the field reflected from an abrupt
transition as koL becomes small (ko is the free space wavenumber) .
The requirement that koL be small implies that the field does not vary
appreciably over the layer's width. Lateral waves excited on abrupt
transitions were first observed and studied by seismologists. Jetfery”)
and Muskart(s) investigated the observed waves theoretically by evalu-
ating the transient field from a point source. Later Ott(g)and Brekhov-
skikh(w) investigated the time harmonic point source prcblems. Other
investigators who contributed to the understanding of laterai waves on

(1) (12)’ and Tamir and Felsen(B

abrupt interfaces were Kruger , Gerjouy
Tamir and Felsen considered the lateral wave excited by a line source
and they found that the lateral wave had essentially the same behavior

as the lateral wave excited by a point source.

All of the above investigators found that the reflected field from
an abrupt interface consisted of two contributions : a reflected and a
lateral wave. In Fig.I the ray interpretation of both of these contribu-
tions is shown. We see that a ray, emitted from the source toward the
layer, is reflected from the interface at the angle of incidence and then
proceeds to the observation point. The ray contribution for a line source

H

excitation hag an amplitude dependence of O(ko- ) . The lateral wave,

—

)
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on the other hand, can be interpreted in terms of a ray that is emitted

from the source at the critical angle (Oc = g;in.l ./cl ) . This ray is )

refracted along the interface, and it then sheds energy into the reflected i

field. Its contribution to the reflected field for a line source excitation

is given by

11:0[1,l + LP + Lz]

ae

E,L ~ a
L 3R

(koLp)

where the constant C!.a is the excitation coefficient, and Ll . LP, LZ are

defined in Fig. I. We : “ould note that the wave has an algebraic decay

Pobe Tl

with distance along the interface. This decay results from the continual H
shedding of energy into the reflected field as the lateral ray progresses
along the interface. : §

LINE SOURCE

6(2)4%1

t——— =
v
Lp

Fig. 1
Reflected Field From an Abrupt Interface
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An examiration of the two contributions to the reflected field chows
that the lateral wave contribution is smaller by a factor of k;l than the
reflected wave contribution ; nevertheless, in many physically meaningful
situaticns, the lateral wave effect is of importance. For instance, when
the transient field is observed at points iocated a large number of wave-
lengths along the interface, the lateral wave contribution is seen as a
first arrival. For this reason it is sometimes known as a head wave. The
lateral wave also becomes important in the time harmonic case when the
medium containing the source has a slight amount of loss. The wave spends
most of its time in the lower, lossless medium and, as a result, becomes
the dominant effect for observation points located a large distance along
the interface. In our study of lateral waves we shall restrict ourselves to
time harmonic pfoblems ; however, the results can be related to transient

phenomena.

_ In an attempt to understand the nature of lateral waves excited on
transition layers, the reflected field from four profiles is investigated
here. These profiles are : linear, parabolic, Epstein and double exponen-
tial ; they are considered in Chapters 1 through 4, respectively. The
profiles have not been chosen at random, but instead are selected
because the wave functions for the transition can be related to well known
functions, and because each successive transition demonstrates an aspect
of lateral waves not shown by the previous profiles. Finally, in Chapter
5, the conclusions drawn from the first four chapters are extended to an
arbitrary layer when possible. The general method of investigation is:
first, to formulate the integral representation for the reflected field ;
second, to evaluate the formal solution asymptotically for thick layers
(koL>>1): and third, to perform an asymptotic analysis for arbitrary
layer thickness. It has been found that in order to obtain an asymptotic
estimate of the reflected field for arbitrary layer thickness, it is

necessary to assume that the observation point is far from the source.
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CHAPTER 1.
THE LINEAR TRANSITION LAYER

1.1 Introduction

To begin our investigation of lateral waves we i study the
reflected field from a linear transition. This transition is composed of
a ramp dielectric variation betweer two homogeneous dielectric half spaces.
A source, placed in the denser half space, illuminates the transition and
causes a reflected field. This reflected field, which will be the main object
of our investigation, can be represented by a continuous swn or integral
over the reflection coefficient of the layer times the spectral components
excited by the source. The formulation and some of the properties of the
reflection coefficient have been investigated by Hartree . However, no
attempt has been made by him to investigate the source problem.

The integral representation for the reflected field is too complex to be
directly integrated and therefore it must be asymptotically approximated.
Two separatc asymptotic evaluations of the integral representation are
carried out: first, when the layer thickness, L, is large compared to wave-
length, i.e., k°L>>l. and second, when the observation point is far from
the source. In the first case we will obtain an asymptotic approximation to
the reflected field for all observation points for large koL. The asymptotic
approximation obtained by the second procedure, on the other hand, will be
valid for observation points which are far from the source compared to the
layer thickncss. In both evaluations of the reflected field, special ermiphasis
will be placed on lateral wave contributions and their interpretati-a.

Before proceeding with our investigation, some of the pertinent work
that has been done on similar problems should be mentioned. Orlov (14)
has found the ray trajectories which are reflected from a ramp dielectric
variation as shown in Fig. 1.1 when kozL>> 1. Here z is the width of
the* tien of the dielectric layer which supports propagating waves.

M .-gnt modification, these results can be used to give the structure

of the reflected ray trajectories for the linear layer when koL is large.




In the text we hive not used Orlov's results directly, but instead, have
rederived themn. An investigation of the lateral wave which is excited in a
medium with a linear velocity transition, has b..en considered by Nakamura
when the observation point is far from the source. Because of the anmalogous
behavior of acoustic and electromagnetic waves in media of the type being
considercd here, Nakamura's profile is equivalent to an inverse square
dielectric profile as shown in Fig. 1.2. # comparison between Nakamura's
lateral wave and our results will be made in an attempt to determine some
of the invariants of transition layers,

1.2 Formal Solution

An electric line current source of amplitude J is placed in a stratified
dielectric medium, €(z),at x=0,z=z" and parallel to the y axis, as is
shown in Fig. 1.3. Under these conditions the only field components
excited are E , Hx and Hz . The electric field obeys the inhomogeneous

wave equation( 15)

[v + ki ¢@)]E = - ou T o) blz-2') . (1.2.1)

We will assume that

J = 1/(iwu°) (1. 2. 2)

to simplify Eq.(l.2.1). The particular dielectric variation to be used is

given by
1 » 220
€(z) ={ Az/L+1 , -L<z<0 , A=1-el (1.2.3)
el » 2z<-L

and is shown in Fig. 1.2, The dielectric constant of the homogeneous region,
z>0, has been chosen to be unity, but if the dielectric corstant of this region

is not unity, Eq. (1. 2. 1) can be scaled to produce an equivalent dielectric




)a

-8~
tc(z)
i
A . o 4
Fig. 1.1
Orlov's Dielectric Variation
(o) LINEAR PROFILE ?G (2)
(b) INVERSE SQUARE
PROFILE 1
(b)
(a)
€,
-L >
Fig. 1.2

Comparison of Nakamura's and Linear Dielectric Variation
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constant which is unity.

Since the medium is uniform in x, we will represent Ey by means of
its Fourisr transform #(z,p), i.e.,

ko te ikopx
T e— ¢
E * 3 L (z.p) e dp. (1.2.4)

By using the above representation for Ey » Eq.(1.2.1) reduces to the one-
dimensional Green's function problem

2
d—z + K [C(z)-pzl #(z,p) = - 8(z-2') (1.2.5)
d: o

with the boundary conditions that #(z, p) must be an out-going wave as

z‘.*.o

In Appendix A thc formal solution for the Green's function ¥(z, p) is
obfained for an arbitrary layer variation in terms of a pair of independent
homogeneous solutions to the wave equation in the layer region. For a
layer with a linear variation such as the one under consideration here,
two independent solutions to the wave equation in the layer region are
A (g2 e*1m/3)where A, is the Airy functidn dnd €2 = (koL/A)?/3 (bz/L + 1-p%).
By using these independent solutions in Eq.(A-13) and in Eq. (A-7) we obtain
- an explicit expression for #(z,p). We then substitute & (z, p) into Eq. (1. 2. 4)
and obtain an integral representation for the field. It is

E =E . +E 1.2.6)
y yf yr (

Gl iko[pzlz-z'l +px]

Eyf = _e dp (1.2.7)
P2
4o = iko[pz(zoz')+px1
o d T e
E, & f dp (1.2.8)

P,




!»o

R e o O e

el s

11~
where %
T=- T (1.2.9)
b
with

gA;(gf & P)rg & A (g2 Ji“”)z ’A;(gf &™) rg dMop (2 e‘“’:’)t

re

el =iM/3 i5m/6 2 -i ’ i i i
daieg e Mg, oo ‘“’3)§ §Ai(gg iMByag s (g2 é“”)*

B = (1/b) p, . T=kL ,
(1.2.10)

=11a-
, pz[p

In the above expression for the reflection coefficient, T, the symbol
A;(z)= dAi(z)/dz . The branch cuts for the squzre root functions P, and
P, must be specified if the integrals in Eqgs. (1. 2. 7) and (1.2. 8) are to be
completely defined. This specification has been made in Fig. 1.4 where
the top sheet of a four sheeted Riemann surface is shown, To clarify the
designation of the top sheet, the sign of the real and imaginary parts of
P, and P, have been given in each quadrant. On any particular sheet of
this Riemann surface the integral is a single-valued function, however,
the integration path was chosen on the top sheet so that the integral would

converge properly as p~t®,

The expression for the field has been divided into two parts : Eyf and
Eyr as shown in Eq. (1.2, 6) . The motivation for this i« that Eyf is the
direct field from the source, that is, it is the field which would exist if

the entire medium were homogeneous while Eyr is the reflected field from

e,
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the layer. As expected, the cirect field integral, Eq.(l.2.7) integrates to

= A ) ne
Eyf- " Ho (ko x +(z-2') ) (1.2.11)
(1) . - . .
where Ho is the Hankel function of the first kind and zero order. We see
that Eyr can be interpreted as a cylindrical wave propagating away from
the source. The integral for the reflected field is too complicated to be

- integrated directly, so approximate techniques must be used.

Before proceeding with the approximate evaluation of the reflected
field, Eyr’ we will transform the integral from the p to the P, Plane.

The result is
. p.T ik (p.(z+2')+px]
i 1 o 2
E_=-— — e dp (1.2.12)
yr 4n £ PP, 1

where the square roots p= Jel P, and P, = A+_pf_ must again be defined

on & four sheeted Riemann surface. The upper two sheets of this surface are
shown in Figs. 1.5 and l. 6 along with the transformed integration path, C.
This transformation was motivated by the fact that the interesting contribu-

1
forming the integral to the p 1 plane, this branch point and the branch point

tions to Eyr come from the region near the branch point p=,/¢, . By trans-

at p=./EI are eliminatel. The disappearance of these two branch points is
accompanied by the appearance of two new branch points at P, - iJcl . For
(13)

a more detailed explanation of the transformation, corsult Tamir and Felsen

1.3 Evaluation of Reflected Field for koL»l

1.3.1. Geometrical Optics

Before attempting a rigorous asymptotic evaluation of the reflected

field when koL >>1, we shall investigate the rays which are emitted from
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Second Sheet of a Four Sheeted Riemann Surface, P, - plane
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the source when the layer is thick compared to wavelength. These rays
divide into three basic types: direct, transmitted and returning. The direct
rays are emitted from the source in the angular range -m/2<3<0 where 6

is the angle of emission of the ray from the source ang is shown in Fig. :.7.

The returniné and transmitted rays are emitted from the source in the angu-
lar ranges 0<9<9c and Gc <@<m/2 respectively, where the angle Gc is the
critical angle. This angle is defied s the angle whose corresponding ray

* (critical ray) has its turning point on the lower interface. The three basic
types of rays and the critical ray are shown in Fig, 1. 7.

An examination of this figure shows that the direct and transmitted rays
are of a n;uch simpler character than the reflected rays. The simplifying
feature of these ray types is that neighboring ray trajectories do not cross
one another, thus making the formation of caustics impossible. No such
statement can be made about the returning rays which shall now be exam-

ine8 in further detail.

The returning ray trajectories for x>x_ can be found by integrating

t
the ray equation

piclr B N (".3.1)

wbere

) p=8inf
¢ 2’ Je(r)-p

and
2
c(zt) =p .

The ray parameter p is the same as the integration variahle in Eq. (1. 2. 8).
We will not investigate the returning rays in the region before they turn
(x<xt) since the rays do not cross one another in this region. Upon inte-

grating Eq.(1.3.1), for x>xt we obtain

o

o




-15-

DIRECT RAY

/GLANCING RAY
: >

REFLECTED RAY

CRITICAL RAY

TRANSMITTED Rf_w“

Fig. 1.7

Typical Ray Types for Linear Layer
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P, X

== 2 2

z = z ¢ = 4p2 , 2>0

T (L . E 2. a0 1.3.2

2p 2p, Py} - P, 22 )

where

z=A8z/L , x =Ax/L , Z' =a2'/L

2 <. . 2 . .
and €&, <p <1 . It is interesting to note thatp = €, is the critically

reflected ray. When the ray parameter pz< € the rays correspond to

transmitted rays and are no longer given by E?q. (1.3.2).

An inspection of Eq. (1. 3. 2) shows that it appears in a normalized form
in terms of barred coordinates, i.e., X, Z and Z’. As a function of these
new coordinates, the ray trajectories depend only on the source coordinates
¥’ ,however, the equations are still only valid for clﬁpz <1. Since we
would like to investigate the nature of the rays for arbitrary € i.e.,
<] we will assume 0§p2<l . This corresponds to a layer with €, =0,

1 1
H we are considering a layer where € is finite, then we just use the results

0<e

of the ¢, =0 case and eliminate those rays with 05p2< € -

The returning rays for x>x, Cross over one another in such a way that

they form a caustic. This caustic can be found by solving the constraint

equation,
- 3 —
0=x - ZPZP o zzo
(1.3.3)
2. z'x(2 2 ) 2pXx 22-'
0=x°+ 2P -P) _ £PX 2 , 250
3 . P, 4
P, P,

simultaneously with the ray equation (1. 3.2). The constraint equation can be
found by taking the partial derivative of the ray equation with respect to p.




e N ———

«-17-

The elimination of the ray parameter p between Eqgs. (1. 3.2) and (1. 3. 3)
can be accomplished only when Z>0. The result is Quite complicated and
will not be preusented here.

As an alternative method of finding the equation of the caustic directly
we shall investigate its behavior near 6=0 and 6=1/2. With this information
and with the location of the focal points, we shall have a fair understanding

of the caustic's configuration.

From the ~ay and constraint equation we find that the point on the
caustic, corresponding to §=0, is located at x=0, z=-z'(1-Z'/4).
The slope of the caustic at this point is zero, i.e., dz/dx=0. As the
angle 6§ ~n/2, the parameter P, becomes small and the equations simplify

which allows us to obtain an asymptote to the caustic in this region. It is

'

5 , P, ~ 0, (1.3.4)

|n

Z = -

]|

To complete the description of the caustic, the second constraint equation
must be found. This equation, together with the ray and first constraint
equation, will give the location of the foci. The second constraint equation,

obtained by taking the partial derivative of Eq.(l.3.3) with respecttop, is

0=4p:-l , z20
l..
.2 (1.3.5)
0=%x- —=>—2P , zZgo0,

) 2 2
p,[Z'4p - 1)-2p,]

For 220, the location of the focus can be found explicitly ina simple form.
It is

¥=343/2 , z=+-3%2" p2=%- (1.3.6)

— - e ————
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From these equations we see that there is one focus when z'< 1/2 while
no foci exist for >0 when T'>1/2 . For T<0 we find that the foci occur

at ray parameters
(1.3.7)

Whent'>2/3, the ray parameters P, are complex and no foci occur.

* In the interval 1/2<Z’'<2/3, two real P, exist and two foci occur for T<0 .
When 0<Z'<1/2, two real P, still exist but one of the ray parameters leads
toaT>0.

To lmrue our investigation of the foci, we have found: first, for
large T, no foci exist; second, as Z' becomes less than 2/3, two foci
appear ir the layer; and third, as Z’' becomes less than 1/2, one of the
two foci in the layer region moves irto the homogeneous region. It is also
interesting to note that at z'=2/3, two foci are located at the same spot.

A check shows that the third constraint equation is zero at this point.

A graph of the caustic has been plotted for each of the three cases
given above. These graphs appear in Figs. 1.8, 1.9. and 1.10 along with
the locus of turning points and the critical ray, The portion of the caustic
near p=0 is not shown in these figures since 3 >0 . To alleviate this, we
have presented a sketch of the caustic for ¢, =0 and z'>2/3 in Fig. 1.11,
The behavior of the portion of the caustic, corresponding to rays with small

8, remains essentially the same whenz'<2/3 .

1.3.2 Asymptotic Evaluation

As mentioned in the previous section, the integral representation for the
reflected field, appearing in Eq. (1. 2. 8), is too complicated to be integrated
directly. To effect its evaluation we will expand the reflection coefficient in
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Fig. 1.11

Sketch of Caustic for e1=0 and 2'>2/3

a geometric series and then make use of asymptotic techniques to integrate
each term of the series individually, This will result in a representation for
the reflected field, Eyr » which can be interpreted in terms of geometrical-

optic ray contributions.

The reflection coefficient given by Eq. (1. 2.9) can be written as

I‘oa 1‘L (rob - I‘oc )

(1. 3.8)
oca 1- I‘L 1‘0

b
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where A (gZ iﬂ'/3) 5 g ei1'r/6A (gz in/3
By © (1.3.9)
I ¥ (§Z ™) . L A(§2 infe,
Al (g /3) e, 1517/6A.(g2 e-in/3)
I\ob =" 2 +inf3 i1/6 - 22+1ﬂ/3 (1.3.10)
Al(Be )-8 A(Se )
AL i) v, ot @2
B (1.3.11)
“oc Al (gl +1ﬂ/3) se, e1511/6A (gz +1n/3)
A (52 ™y 4 §leiﬂ/6A (gz RN
o= . — . (1.3.12)
L A (§ 1“/3) + gl elf’:t‘l"l’/6Ai(gl . 1Tl/3)

The denominator of the second term in Eq. (1. 3. 8) can be expanded in a

geometric series if |I‘LI‘

along the integration path C. An evaluation of rLrob shows that its magnitude
is less than one, except for the portion of the path Re P = 0, JA-<Impl<°° .
Along this portion of the path |I‘ I‘ |

. This condition must be met at all points

, however, we can show that a slight

deformation of the integration path C to the right of the Impl axis in this

region makes 'rLrobl <1 ., The use of this series expansion in the reflection

coefficient gives us

where

L =T (T _-T )rb

(1.3.13)

n+l

L (1.3.14)
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We now use the series expansion forT in Eq. (1. 2.8) and interchange the
intergration and summation signs. We obtain

(-]
E _=E + E E (1.3.15)
yr ro [, n
where
i plroa iko[pz(z-l'z') + px]
E -- o ‘[ e dp, (1.3.16)
& PP,
and
o i AL e
= - e dp, . (1.3.17)
n 4n L PP, |

The integrals Ero and En will now be evaluated by the method of steepest
descents when ko is large. Before doing this however, we will assume
k°L>>l 2nd replace roa and I‘n by their asymptotic approximations. These
approximations are obtained by using the asymptotic expansions for the Airy

function and its derivative. The expansion for Ai(z) is given by

1 -1/ -C T -
Ai(z)~-z—TTT-z /4e C,,Zo(-l)kckck , |argz|<n (1. 3. :8)

where

3/213

¢ = 2z , c=1,cl=5/7z

o

while A;(z) can be obtained by formally differentiating Eq. (1.3.18) . The
additional coefficients Ck can be found in Abramawitz(”). When the argz

is close to £ Eq. (1. 3.18) is no longer valid and another asymptotic
expansion including this sector of argz must be used (18) . The expressions

for roa and I‘n contain the Airy functions with four different arguments.
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The locus of possible p 1 values, when the argument is constrained to
bave an angle of 17, have been drawn in Fig. 1.12 for the four °iry
functions. This figure serves to make the region of validity of Eq. (1. 3.18)
in the P, plane clear. The curves shown in Fig.1.12 are the same on both
the top and on the second sheet of the Riemann surface since the Airy

functions are even functions of p.

~ The asymptotic approximations for roa. and I‘n on the integration path
between p, = Je_l' and p, = iJ/A are

A .
r o~ L i (1.3.19)
oa kK L 3
o pZ
and
Anrli‘“ i4(n+1)§g/3 +inm2
W7~ am (1.3.20)
(k L) p,

1
where An= (-l)nT (154 CI/Z)n . I we restrict P, to lie between the origin
andp, = isA , making sure that p, does not come too close to the origin,
then Eq. (1. 3.20) reduces to
. 3 .
A 14(n+1)§2/3 + i(n-2)1/6

r ~—2_— . (1.3.21)

n 3n
(koL) P,

while if we restrict p, to the real axis (0<Rep, <J€;) and again keeping
p, away from the origin, Eq. (1.3, 20) reduces to

A i4(n+l)(§: - g? )/3 +i (n-2)/6
2ntl 3n 3(ntl) °© )
(koL) P, P (1.3.22)

T
n
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Fig. 1.13 Fig. 1.14
Deformed Path for I (Top Sheet)

Deformed Path for Ir (Second Sheet)
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By using the asymptotic approximation for I‘o‘ in the integral Ero'
the saddle point equation can be determined by taking the derivative with
respect to P, of the argument of the exponential term in the integrand.
The result is

- top sheet

+ f
(=% %)=0 (1.3.23)
1Y p P
2 + second sheet .,

There are two relevant solutions to this equation on the top sheet which
are denoted by D and E in Fig. 1. 13; there are no relevant solutions on

the second sheet. The saddle point D can occur anywhere on the integra-
tion path between P, =Je—l andp, = iJ/A while the saddle point E is always
located at P, = 0. I we restrict the saddle point D to lie on the imaginary
axis and deform the integration path C into the decay regions, {Figs. 1.13
and 1. 14), the field Erois asymptotically approximated by the two saddle
point contributions D and E. The contribution of E is exponentially small
however, since the integrand is an odd function of P, integrated over a
symmetric interval. The contribution from D can be interpreted as a ray
reflected from the z =0 interface as shown in Fig.1.19. The asymptotic
order of contributions of D and E are shown in Table 1.1. If now we
restrict the saddle point D to the real axis, the saddle point E is not inter-
cepted when the integration path C is deformed and the total contribution
to the integral comes from D. The interpretation of D is as before. We
should mention at this point that the assumption has been made that no
isolated pole singularities exist between the original and deformed paths
which contribute to the asymptotic evaluation of Ero . This same assumption

will apply to the other path deformations which shall occur in this chapter.
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Type Asymptotic Order
-(n+1/2)
An 0(k° )
-(2n+3/2)
Bn O(ko )
-{n-17/6)
Cn O(ko )
-3/2
D C>(ko )
-ak
E Ooe 9),a>0
Table 1.1

Asymptotic Order of Geometrical

Optic Contributions

The asymriotic evaluation of the integral En can be treated in a

similar way to Ero . The asymptotic approximations for I‘n given in
Eqgs.(1.3.20), (1.3.21) and (1. 3. 22) are substituted ir. the integrand of

En and the saddle point equations are then obtained. They are:

4(n+l)p, L
g+z' = x 2
X —_—t ) = < < .
pl(pz ¥ p+ A ) 0, Rep =0, 0<Imp /Y (1.3.24)
) 4(n+l)(p, -p,) L
P, P (1. 3. 25)
and

) 3
P =C . koL|pl| <1 (1.3.26)
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where the upper sign in Eqs. (1. 3. 24) and (1. 3. 25) refers to the top
sheet and the lower sign to the bottom. Equation (1. 3. 26) is valid on
both sheets.

Upon obtaining the saddle point locations from the above equations,
we deform the contour C through these saddle points and into the decay
regions. Since the contribution due to the portion of the integral lying in
the decay region is exponentially small, the integral IEZn will be asymptotic-
ally equal to the sum of the saddle point contributions. The contributions
arising from saddle points obeying Eq. (1. 3. 24), (1.3.25) and (1. 3. 26) will
be known as type An , Bn and Cn contributions respectively. The subscript
n indicates the integral in which the saddle points occur. It can be shown
that no relevant saddle points occur on the second sheet for any n and there-

fore the deformned path will be the same as that shown in Fig. 1. 14,

At this point we shall focus our attention on the relevant saddle points
on the top sheet, their contributions to the reflected field and the geometrical
interpretation of these contributions. We shall first consider the integral
Eo since Eo contributes the dominant terms to the reflected field for koL

large and then, at a later time, we shall consider the integrals En' n=1,2,3,..

Saddle point contributions of type Ao will be considered first. A
comparison of Eq. (1. 3. 24) with the ray equation for returning rays (z>0),
Eq.(1.3.2), shows that the two are identical. This means that saddle *
point contributions in the interval Re P)" 0, 0< Il'np1 < .ﬁcorreapond' to
returning ray contributions. At this point we can use our knowledge of the
returning ray trajectories to find the location and number of saddle points
in the interval Re P o, 0<Imp1 <A . Before proceeding however, we
shall divide the portion of the x-z plane with z>0 in two parts separated by
the critical ray as shown in Fig. 1.19. To the right of the critical ray

(region 2) there is either one or there are three returning rays passing
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through an observation point. If the observation point is iocated inside

the cusp region there are three rays while outside, there is only one.

To the left of the critical ray (region 1) there are either two saddle points
in the interval Re P, =0, 0<Impl< JB or there are none. The two saddle
points occur when the cusp region lies to the left of the critical ray, and the
observation point is located inside the cusp region. The saadle points are
lhqwn for the four cases, considered above in Figs. 1.15 - 1,18, where
they are denoted by An(n=0) . The contributions to the reflected fis .d at
these saddle points are of O(RO- 1/2) as would be expected since they repre-
sent returning ray contributions.

Saddle point comtributions of type Bo will be considered next. An
examination of Eq. (1. 3. 25) shows that one saddle point exists in th:: interval
0<Re pl</e-; 0 Impl=0 when the observation point is in region 1 hile no
saddle points exist in the interval when the observation point is in r. gion 2.
The saddle point contributing to region 1 can be interpreted as a rav reflected
from the interface at z=-L . A ray of this type is shown in Fig. 1.19. Its
asymptotic contribution to the reflected field is of O(ko' 3’2) which is 1%
lower than the returning ray contribution. This is expected, howeve: since
the ray under consideration is reflected at an interface when the die:: ctric

profile has a discontinuous first derivative.

Finally, the saddle point contribution of type Co will be conside -d.
An examination of Eq. (1. 3.26) shows that only one saddle point exist: and
its location (pl= C) is independent of the location of the observation ¢ »int.
An analysis of the decay regions, the results of which are presented in
Fig. 1.15 - 1, 18,has shown that the saddle point is only intercepted when

the observation point is located in region 2.

We will now attempt to asymptotically evaluate Eo . The integral Eo

—

Ly
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Fig. 1.15 Fig. 1.16
Deformed Path for In(Region 1) Deformed Path for Iu (Region 1)

TOP SHEET
P, PLANE

Fig.1.17 Fig. 1.18
Defornmied Path for In (Region 2) Deformed Path for In (Region 2)
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in the vicinity of the origin does not appear to be a simple steepest
descent integral since F is a complicated function of k . The situation
can be clarified by maldng the change of variables § ('rIA) p; in the
integral. The portion of the integral in the vicinity of the origin, EL ,

becomes
E -~ 575 J‘ o e at (1.3.27)
4T 2
where

- aremPe L b=, - 0 PE

and C’ is the transformed path C in the vicinity of the origin. Now PL is no

longer a function of k but p and p, are. Because of the simpler dependence

of p and P, upon k , it becomes possible to show that the standard steepest
descent techniques ( ) can be applied to Eq. (1.3.27) . Upon the application
of these techniques we find

iko[JA'(z+z’) + ./e_lx +4/ALMBI+iMT/12
A e
E, ~ —= (1.3.28)

= (L + ‘gJe—lL/A/A')y2

where

Z/ e (1/3) ¢ 1/4 1/3

AL = 372 5/6 7/6 , Lp = x-~/€l7A (Z+Z ) (l. 3.29)
0

2(2m)

and I'(z) is the gamma function of argument z. This result can be inter-
preted as the contribution f{rom a ray which is excited by the critical ray
at the z= - L interface. This newly formed rav travels along the lower

interface for a distance Lp+4J€—l L/J/A and sheds energy into the upper region.
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A typical ray trajectory is shown in Fig. 1.19. The lateral wave exicted
on an abrupt transition has a similar ray interpretation and amplitude
dependence with distance along the interface. The two lateral waves,
however, have different excitation coefficients. The excitation coefficient,
AL » for a lateral wave on a thick linear transition, depends on k°'7/6 while
the excitation coefficient for a lateral wave on an abrupt transition has a

dependence of k°-3/2 5

Now we will not require n to be zero and we will investigate the asymp-
totic contributions to the integral l':‘.n . To do this we must locate the relevant
saddle points and then find their contributions to the reflected field. As men-~
tioned earlier, the general saddle point equations are given by Eqs. (1. 3. 24)
(1.3.25\ and (1.3.26) . By replacing (n+1) L by L in the first two of these

~ saddle point equations we see that the equations are the same as the n=0 case

with L replaced by L. Since the n=0 case was done for arbitrary L, the
location of saddle points of type A and B has already been investigated.
However, there is one basic change. The demarcation between region #1 and
region # 2 {s no longer the critical ray reflected from a layer of thickness L
but is rather the critical ray reflected from a layer of thickness of L. This
cirtical ray is shown for n=2 in Fig. 1.20. The third saddle point equation
given in Eq. (1. 3. 26) has one saddle point at | 2 0 for any n. From the
above argument we conclude that the basic structure of the deformed paths

are again given by Figs. 1.15 - 1,18 .

The method of steepest descents can then be used to evaluate the
asymptotic contributions at each saddle point. Those contributions of type
An correspond to returning rays reflected n times from the z =0 interface
while those of type Bn correspond to rays reflected n+1 times from the
interface atz=- L . The Cn are lateral wave contributions. These are

excited by the critical ray which is reflected n times frem the z = 0 interface.
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The ray trajectories for these contributions are shown in Fig. 1. 20 for

n=2 . The order of each type of contribution is given in Table 1. We see
from this table that as n increases, the order of the asymptotic contribution
decreases. This results from the fact that the order of a ray contribution is
reduced by 0(l/k°) each time the ray is reflected from the z=0 orz=-L
interface.

To summarize briefly we have found that the reflected field from a
gradual linear layer (koL >>1) can be decomposed into a geometric - optic
series. The dominant terms of this series in region # 2 are the returning
rays which are of O(k -1z
otk y

o
occurring on an abrupt transition except for a difference in its excitation

coefficient.

), and a lateral wave contribution which is of

) . This lateral wave has a great similarity to the lateral wave

1.4 Evaluation of Reflected Field for Large kL

In this section we shall explore the connection between the lateral wave
contribution observed on a thick linear transition (section 1.3) and the
lateral wave excited on an abrupt interface. The linear layer provides an
excellent opportunity to do this, since for small koL ,» the layer appears to
be an abrupt transition, while for large koL the layer thickness is large
compared with wavelength, It can be shown, in fact, that the reflected coe-
fficient, Eq. (1.2.9), reduces to the reflection coefficient for an abrupt

transition as koL-oO .

Our investigation of the lateral wave's character shall be carried out
by performing an asymptotic evaluation of the reflected field for observation
points which are far from the source compared with layer thickness. To be

more specific we shall assume that koLp >>1 and Lp>>L . This says that we
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shall consider those observation points which are a large number of

wavelengths and a large number of I2yer thicknesses to the right of the
reflected ray, x=J¢17A (s+2').

The integral representation for the reflected field is given by

plf iko[pz(z+z')+ px]

i
Er*" @ ,[ PP, ° dp, (1.4.1)
C
where A
Tz B
=- T (1.4.2)
.- t
with

1, o2 2 1, g2 2
’Ai(-gl) - 18, Ai(-gl)z ;Bi(-gl) - i§l Bi(-gl)i
A =

’ 1, pt o 2 1; pl, =~ 2
3 *Ai(-;z) Fi "ZAi(-gZ’i ,Bi(-gz) + i§z Bi(-ﬁz) z

The representation given in Eq. (1.4.1) is the same as that presented in
Eq. (1. 2. 12) except that a different form of the reflection coefficient has
been used. The alternate form of this reflection coefficient was obtained by
choosing !l(z) and !z(z) in Appendix A as Bi(-gz) and Ai(-ﬁz) respectively.
These two functions are independent of one another and thus satisfy the
requirement for choosing !l(.z) and Oz(z) . The Bi(-gz) not encountered
previously, is the Airy function of the second kind. The reason for using an
alternative form of reflection coefficient is that it will allow us to put our

*
results in a form which is more suitable for computation.

* The advantage of the original form of the reflection coefficient was that
it contained Airy functions whose asymptotic expansions were of a simpler
form in the vicinity of the integration path.

s mey:

gt e
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if we now use the assumption that koL«koLp then the reflection
coefficient in Eq. (1. 4. 1) is slowly varying compared to the exponential
in the integrand, and the standurd steepest descent techniques can be uced
to asymptotically evaluate the integral representation. The saddle points
are found by taking the derivative with respect to P of the argument of the
integfand's exponential and setting it equal to zero. The result is

z+z’ x, _ - top sheet '
P ( P, ¥ p) =L + second sheet , (1.4.3)

This {s the same saddle point equation encountered in the asymptotic
evaluation of E.,: The relevant saddle points whick occur on the top

sheet of the Riemann surface are located at

P, = o , P = i ../sz- (z+z')zo:1 (1. 4. 4)

where we have assumed that x>./¢ /8 (z+2') or Lp>° . The original
integration path is deformed through the two saddle points given above

and into the decay regions. We will assume that there are no singular-
ities of importance lying between the two paths. The decay regions and the

deformed path are shown in Figs. 1.13 and 1.14.

We see now that when k Lp is large, the reflected field is composed

of two contributi~ns. The first of these occurring at P = i ﬁ (z+z')z €

is a reflected ray from the interface at z=0. When 1<< k°L<< koLp this

reflected ray corresponds to a returning ray that has its turning point
close to the z =0 interface. When koL is small the coutribution is the same
as a reflected ray from an abrupt interface. The contribution from the

saddle point is of O(ko-llz) as would be expected.

The second contribution to the reflected field comes from the saddle

noint at P, " 0 and is the lateral wave contribution. This contribution was
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obtained by the application of steepest descernt methods and is given by

va iko[JA-(:+z')+JE;x] +1i $(g) +i3m/4
€ Afo) e

13
E. »~ —————— , 0=Wht)
S FY R
(1.4.5)
where .
2
dar
Afo) =~ ’Zg ; = -ZL_Z-—Z (1. 4. 6)
1 Pl'o n (D1+D2)
and ., D
V(o) = 2tan D— (1.4.7)
2
with
’ ’ ’ ’ 2
D, = B} (0)A! (-°) - AL(0)B! (-0°) (1.4.8)
and .
D, o [ B{(0) Ayf-o) - A1(0) B,-0%)] (1.4.9) |

In the above we have denoted the lateral wave contriubtion by EL as was :
done in the previous lection,Eq. (1.3.27) . The amplitude, A(o) and phase
¥(o) functions have been plotted by computer and are shown in Figs. 1.21
and 1,22. Those figures also show the approximate lateral wave amplitude
and phase when the layer is thick compared with wavelength.

The physical interpretation of the lateral wave contribution can best
be gotten from examination of small and large limits. When r is small or
when the layer appears to be abrupt, we find A(c)~1 and ¥(o)=0 . By using

these limits in Eq. (1. 4.5), we find that E_ reduces to the lateral wave

L
contribution on an abrupt interface. On the other hand, when 1<< k°L<< 1::‘:,Lp

then E, reduces to

L

S
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ik [JA(z+2) +./§x+ 4/LB) + 1mMN2
£ - AL e-o
L L 32
P

(1.4.10)

where AL is given by Eq. (1.3.29). When this result is compared with
Eq. (1. 3.28) and use is made of the fact that koL<<koLp , we find that the

“wo expressions are identical.

As was stated in the introduction, Nakamura has obtained a uniform
expression for the lateral wave excited on an inverse square dielectric
profile which is valid under the same conditons assumed in this section.

A comparison between our resultyEq. (1. 4.5),and Nakamura's shows that

a lateral wave is excited for all layer thicknesses in both cases and both
have amplitude dependences of LP.3/2 . However, the excitation coeffi-
cient as a function of layer thickness appears to depend on the detailed
behavior of the wave functions in each particular medium, and nothing in
general can be said. When the layer thickness becomes large compared
with wavelength, the excitation coefficient simplifies and both results have

a wavenumber dependence which is O(ko-7/6) .
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CHAPTER 2,

THE PARABOLIC TRANSITION LAYER

2.1 Introduction

In Chapter 1 a detailed study of the reflected field from a linear
transition layer was made. There, it was found that a lateral wave was
excited on the layer for all layer thicknesses. In this chapter, we will
continue our study of lateral waves by considering the reflected field from
a parabolic transition. Other parameters influencing the reflected field,
such as source location and orientation, will remain the same as in Chapter

1. The dielectric profile to be considered is given by

1 z>0
2, .2
¢(z) =(A(z+L) /L te -L<z<0 , A=1--cl (2.1.1)
cl z<-L

and is shown in Fig. 2.1 . The basic similarities between the parabolic
and linear transitions are their thickness L, height A and finite slope at
z=0 . Their fundamental difference, on the other hand, is the slope of the
profiles at z=- L . The linear layer's slope at that point is finite while the

parabolic profile has zero slope there.

Our investigation of the parabolic transition has been motivated by the
behavior of the critical ray trajectory when the layer is thick compared to
wavelengtli,. "J.[‘his critical ray, unlike the critical ray in a linear transition,
never becomes tangent to the lower interface but oniy approaches it asymptot-
ically as x~+® ., In the previous chapter the lateral wave contribution has
been interpreted as a wave excited at the point that the critical ray becomes
tangent to the lower interface. If this supposition is true for the parabolic
transition, no lateral wave will be excited when the parabolic transition

thickness is large compared to wavelength. In an attempt to clarify the above
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question we shall asymptotically approximate the formal solution first for
large koL and then for large koLp with Lp >>L. Here Lp is the same as

that defined in Chapter 1 . When k°L>>1 or the layer thickness is large
compared to wavelength, a knowledge of reflected ray trajectories will be
necessary to carry out an asymptotic evaluation of the integral representation.
These ray trajectories have been considered in some detail by Orlov(zo)

for z>0 ; his results will be used in the text .

2.2. Formal Solution

The integral representation for the field, due to a line source located
above a parabolic transition, is obtained in an analogous way to the integral
representation found in Chapter 1 . The only component of the electric field

which ig excited is Ey which obeys the inhomogeneous wave equation

[v2 + k:e(z)] E = - iuwu J8(x) 8(z-2) (2.2.1)

where €(z) is given by Eq.(2.1.1).

The application of Fourier integral techniques to the above equation
reduces it to a one-dimensional Green's function problem. The formal
solution to this Green's problem has been presented in Appendix A in
terms of two independent solutions to the wave equation in the layer
region. For the parabolic transition which is being considered in this
chapter, two independent solutions to the wave equation in the layer region
are E(-af , &) and its conjugate, E*(-af , &) . These two functions which

(

are defined by Abramowitz Zl)have an order -2, and an argument £ given by

.1=(¢/z./zr)*pl , §=[zkeJE/LJ*(z+L) , Tk L (2.2.2)
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In the above P is related to the}Fourier transform variable p as it was
in Chapter 1, i.e., pl=(€1 - pZ)_, . By using these independent solutions
in Eq. (A-13) and in Eq. (A-7) we canobtain an explicit expression for
the one-dimensional Green's function and, from this, an integral repres: -

tation for the field. The representation for EY is given by

E =E _+E (2.2.3)

where Eyf is given in Eq. (1. 2. 7) and represents the direct field from the

source in the region z>0 . The second term in Eq.(2.2.3), E . is given
by

I ik [p (z+z')+ px]
~ . i r T o "2
bvr S ‘im >, e ap (2.2.4)
where
T =- 8 /8 (2.2.5)
with
gE'(-ai’, 0)+ia1E(-ai’, O)z 3}:* (-ai, 0) + iaIE*(-a‘:‘ , 0)§
AE -
,E’(-af, c)tiaZE(-af, c)z gE*(-af, c)= iaZE*(-a':' , c)§
a, = (/2mip, L b= (0 L es@rf (2. 2. 6)

2
In the above expressions for A, the symbol E'(-a1 , ) = dE(-af , £)/dE .
The square roots P, are defined as in Chapter 1 by Fig. 1. 4. The integral
for the reflected fiezeld, Eq. (2.2.4) is transformed to the P, plane. The result

is given in Eq. (1. 2.12) where the integration path C and the square roots are

defined as in Chapter 1, Fig. 1.5 and 1.6 .
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2.3 Ewvaluation of Reflected Field for Large Layer Thichness (k°L>>l

2.3.1 Geometrical-Optics

Before performing the asymptotic evaluation of the reflected field for
k°L>>l we shall make use of the method of geometrical-optics to predict
the ray contributions to the reflected field. Then, in the next section, we
shall asymptotically evaluate the integral representation for the reflected
field and compare the two results. In this way we will see the limitation

on the theory of geometrical-opticse when applied to a parabolic layer.

The rays emitted from the source can be divided into three types:
direct, transmitted and returning. They are defined in the same manner as
in Chapter 1. There the reflected and transmitted ray types have been
separated by a critical ray. This is also the case here, however the critical

ray has a different behavior as is shown in Fig. 2.1.
The trajectory for this ray is obtained by integrating the ray equation

Z

- pdT___ (2.3.1)

?‘ i J;' Je(r)-p

with the appropriate value of p for the critical ray (p=:fe§) . The result is
x = Je/a [2'+Lin ()] (2.3.2)

where we see thatas z~-L , x=>,

The difference between the behavior of the critical ray in a linear
transition and its behavior in - parabolic transition can be understood better

by applying the reciprocity prinicple. Consider a ray that is progressing
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along the z = - L interface of a linear transition. * This ray will be

forced to turn away from the interface since it has a finite radius of
curvature, (de(z)/dz 2=-L #0). The situation is not the same for a

ray travelling along a parabolic interface. There de(z)/dz o i, 0

and the radius of curvature is infinite. In this case the ray continues to
propagate along the interface. Now, applying the principle of reciprocity
to the parabolic layer, we see that if a ray starting in the interface, cannot
escape then a ray outside the interface cannot become tangent to the inter-

face unless it has an infinite radius of curvature. The critical ray in the

parabolic layer only obtains an infinite radius of curvature as x -,

As in Chapter 1 we shall now focus our attention on the returning rays.
By substituting the parabolic dielectric variation into the ray equation for

returning rays, Eq.(l.3.1), and integrating it we obtain

ZEL -1 ﬁZA
(z'+2z)/p, + i cosh , z2>0

]
"

(2. 3.3)

Pz'/p2 + % cosh | JPL + *slgr cosh™ " _[A%(_z_*{_l_;} , z<0
1 1

where P, =i |pl' and el<p2<l . A typical ray is shown in Fig. 2.1 .

]
n

Since these rays cross over one another, we shall require the constraint
equation for the caustic. This is obtained by taking the derivative with

respect to p of Eq. (2. 3. 3). The result is

To be more accurate, we maust say that the ray is not exactly on the inter-
face but just a small amount above it. This removes the ambiguity in
dc(z)/dzlz -.1
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0= (z+z')/P; + -Zf cosh™ ' -l‘pﬂll - ZLPZ/IPIIZP s 220
1
0= z'/P: + = [c:osh-1 o cosh”! M]
JE lp, | eyl L (2.3.4)
i L 2 -—1- . v+ L ] z<0
lp, |2 P 2 2 28l T
pl 2 [A(Z+L~) - lpll L ]

The caustic is obtained by choosing a value of p and solving for z; then by
using the ray equation to find x . We see that the first equation, z>0, can

»

ve solved explicitly for z while the equation for z<0 cannot.

It will also be of interest to know the number and the location of the foci
formed by the returning rays. The constraint equation for the foci is obtained

by taking the derivative of Eq. (2. 3. 4) with respect to p. Upon doing this, we

obtain
2L()p, |-2¢) 2
3(z+2z') 1 1 2Lp
0 = - - z>0
> lp, |4 lp, 1% -
P, Pl P, Pt P
(| |2- 2¢)) (2.3.5)
0 = 32 Py YL, z+ L ] "
- - 4
oy lp, | P2 L)’ |p, 171
i L;gz 1, (z+ L)L L <0
| |2 3 [ 3 l |2 2-3/2 . ‘
P, P, A(z+l) - P,

To obtain the location of the foci we must solve Eq. (2. 3. 4) in conjunction with
Eq. (2.3.5). This will give us the z coordinates of the foci; then the ray

equation can be used to obtain the x coordinate.
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As has been mentioned in the introduction, Orlov b~ - studied these
returning rays. To be more specific, he has made a det ! analytic
study of the caustic and foci for z>0 . He has then plotted the causti: for
some typical values of parameters when both 220 and z<0. We have
redrawn two of his graphs which are representative of the caustic's general
behavior. These are shown in Fig. 2.2. In the upper graph (a) we see that
five cusps appear on the caustic while, in the lower graph, two of the cusps
disappear when 2A>(1.076) L.. We note that the bow tie configuration which
was observed in Chapter 1 occurs twice in ° and once in (b). As L
becomes smaller the remaining bow tie configuration disappears and only
one focus is left. This is shown in Fig. 2.3 where the caustic has been

plotted rather than just sketched for L= .1,

The caustic appearing in the three previous graphs share two character-
istics in common. We see that at large distances from the source, the lower
branch of the caustic approaches the interfu;e while the upper branch appears
to have corrdinates that become urbounded. The asymptote to the lower
branch of the caustic can be obtained from Eq. (2. 3. 4) with 2<0 if we assume
that p2~0 as z~0. By usir, this procedure we find the asymptote to be

%

x = 2' JL/(20(-2) ) (2.3.6)

In addition we can also find an asymptote to the upper branch of the caustic
by assuming that as P, -0, z~®, By using this assumption in Eq. (2. 3. 4)
with z>0 , we find that

X & J;;n(z+z') + ./51715 Lln (;Zz;_‘) (2.3.7)

1

with 2
z+e' w 2L¢ A/ lp, | . (2.3.8)
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Twn Sketches of Caustics in a Parabolic Medium
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We see that as the rays are emitted closer to the critical angle (pl -oO)‘.
the caustic formed by these rays tends closer to x= ./t:l Ja (z+2'). We

note that this equaticn represents the reflected critical ray irom an abrupt
trangition.

When L is small the asymptote giver in Eqs. (2. 3. 6) and (2. 2.7)
dascirios the crustic except for the region near the focus. The approximate
13cation of the focus can be obtained by assuming

32 12 L

s~ - LAl pleBi™ | J<a (2.3.9)

whets A and B are convtants tc e determined. When these assumptions
are used in Eqs. (2. 3.4) and (2. 3.5) they lead to az asymptotic approximation
fos the focus. The appioximate locaticn .of the focus which is obtainedlis
given by '

x=Je 78 [+ + -f,_-= 1n t2'/3¢,1] (2. 3.10)
and
z=-L+2 cl/z Lm . (2.3.11)

As L~8 the raya that make up the lower and upper branches of the caustic
appeay to have the same ray trajectories respectively as the reflected and
lateral rays associated with an abrupt transition, We also note that the
fo¢us tends toward the point at which the critical ray is reflected from an
abrupt transition. The comparison made above, says nothing about the ray
contridutions but only states that the two layers being compared have similar
ray trajectories.

S S . T
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2.3.2 Asymptotic Evaluation

We will now asymptotically evaluste the formal solution for the

reflected field, Eq. (2.2.4) when k°L>>l and compare our results to the

predicticn of geometrical-optics given in the last section. To effect the

avaluation of the integral in Eq. (2. 2. 4) in physical ¢erms we will expand

the reflection coefficient in a geometric series and then asymptotically

evaluate each term individuaily. The manner of development of this section

will parallel section 1. 3. 2. quite closely.

The reflection coefiicient given in Eq. (2. 2. %) can be written as

= roa I‘I.. (rob ” I~oc)
s roa * 1-T_ T
L ob
where E* (-a? » 0) +ial E*(-ai » 0)
T =
L ; 2 . 2
E (-al , 0) + ia ]E:(-al , O)
' 2 . * 2
E (-a ,c)+ia E -a_ ,c)
P 2 1
oa * 2 . * 2
E (-al , C)- 1azE (-al » C)
E'(-af. c) - ia E(-az. c)
r 2 1

ob _*'_ 2 . * 2
E (-al,c)-zazE (-al,c)

0, 2 . 2
E (-al ,c)+ 1azE(-al , €)
*f

2
E (-al ,

r =
ocC

. * 2
c)+ xazE (-al , C)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)
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It lrLrob| <1 along the integration path C, the denominator of the gecond

term in the retlection coefficient, Eq. (2.3.12), can be expanded in a geo-

metric dories. A c§1culaﬁon of 'rLrob' shows that in the intervals

0<Pep <=, Imp, =0 and Rep =0, 0<Im< VB, the term is less than one,

how«ver, for the interval Re P, =0, \,/A-Impl<° , we find lrLrob =1l. In

Chapter 1 a simiiar problem had arisen and it was circumvented by deform- $
ing the integration path C a slight amount to the right of the Im P, axis, We

will perform a similar deformation of the path C at this point, however it

must be assumed that ko L>>1 in order to show that 'rLrob' <1 along the

deformed path.

We will make use of the series expansion in Eq. (2.3.12). The
result is

1‘=I‘m + z 1‘n (2.3.17)
n=0

)

where I‘n is defined in Eq. {:.3.14) and where it is assumed that the
“1,

fL . I'“ ’rob and roc of Crapter 1 are replaced by those of Chapter <. :

By substituting the series form of the reflection coefficient given above i

in the integral representation for the reflected field, Eq. (2.2.4) and inter-

changing orders of summaticn and integration, we find that

E_=E_ + 2 E_ (2.3.18)
yr T =0

where Ero and En are defined by Egs. (1.3.16) and (1.3.17) respectively.

Before evaluating Ero and En by the method of steepest descents we
will asymptotically approximate roa and rn to reduce the complexity of the
integrands. These expressions, roa and l'n , are composed of parabolic
oylinder functions whose asy nptotic approximations a}ong the integration

* L
path C appear in Table 2.1. The functions E and E do not appear in
the table, however, their asymptotic approximations can be obtained by
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taking the complex conjugate of the asymptotic expanrions for E and E* o0

The asymptotic approximatious for E and & will be needed close
to the integration path C when subsequent path deformations are made.
These asymptotic approximations can be obtained by analytically contin-
uing the formulace in Table 2.1 if we exclude the regions near P = 0, /A .

In these regioas we can use

2
nalla+in/8+id_ 2
E(-af. x)=ZFe ! 2 U(-nf, xe ™y (2.3.19)
2
-ma_ /4-in/3 + i8_[f2
E*(-af, x)= e ! z mﬂaf. x4 5320

where U is another form of parabolic cylinder function, x=0 or x=c and
§z=arg T2 - iaf) , iz =0. Olver(Zlb) hag obtained the asymptotic
expansions of U and U’(dU (a,x)/dx=U’(a, x) ) for large a, , and any x and
: arga, . His expansions for U and U’ can be used near p,*0 and p, =8 ,
, however, we cannot come too close to p, =0 since a, = (r_2/B) p, and the

asymptotic parameter a, will tend to zero. The functions U and U’ could

1
have been used over the whole integration path, however, their asymptotic

| expansions are mor: complex and unwieldy.

By using the asymptotic expansions found in Table 2.1 to calculate
1‘“ ahd l‘n in the region Rep, ~0, ./lT<Imp1 <o, and then by substituting
these spproximations in the appropriate integrals, we find the Ero and En
have no asymptotic contribution (k°L>> 1) from this section of their integra-
tion path on the top or second sheet. In a similar manner by the use of Egs.
(2.3.19) and (2.3.20) along with Olver's asymptotic expansions, we can
sbow that the integration path in the region of the branch point, P =/,

gives no asymptetlic contribution.
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If we again use the asymptotic approximations from Table 2.1,
we find that |

. 3
I‘oa ~ 1A/41’pz (2.3.21)

when P, is on the integration path between P, =,./e:_l and P, = ivA . We now
use this approximatior in the integral for Ero and apply the method of
steepest descents. We will not go into the details since they exactly
paraliel ‘he asymptotic evaluation of Ero in Chapter 1. Tt will suffice to

say that there are two relevant saddle points denoted by D and E, as before.
The contribution from E is exponentially small while the contribution from
D can be interpreted as a ray reflected from the z=0 interface as showr in
Fig. 1.19. The asymptotic order of these contributions are shown in Table

2'2'

We now asymptotically approximate En . First, the formulae in Table
2.1 will be used to simplify rn along the portion of the integration path
between P =.\/E-l and p, =i /3. Wken O<Re P, < el,hnpl =0 we find that

i[2(n+1)8, -nn/2]
i e ! (2.3.22)

n 2n+l 3n 4n+4 3n+2
4 pZ pl T

and when Re P, = o, 0<Impl <./A we find that

n/2 :
r - - el 2(nt1) 3, (2. 3.23)
n n 3n n
8 p2

where 6, and 62 are defined in Table 2.1.

|




Type Asymptotic Order
n : o
-(3n+5/2)
B Ok )
-3/2
D Ok )
-ak
E o °),a>0
Table 2. 2

Asymptotic Order of Geometrical-Optic Contributions

The above approximations are good in the vicinity of the integration path
except near the origin, i.e., (r/2/8) pf<< 1.

K we now replace the 1‘n appearing in the integrand of Eq. (1.3.17),
by its asymptotic approximation and find the saddle point equations as in
the previous chapter, we obtain

!
(”‘- T X, 2(n+1)L.inh'lé@) =0 (2. 3. 24)
1\ p, P P,

o<Rep1<./§ , Imp =0

and
z+z' - x 2(n+l) L -1 L
+ = 4 h =0 2.3.25

Rep, =0 . o<rmpl<./A'

P
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where the upper sign in the above equations refers to the top sheet

while the lower sign refers to the second sheet.

Upon obtaining the saddle point locations from the abcve equations,
we deform the contour C through the saddle points and into the decay
regions. Since the contribution due to the portion of the integral lying
in the decay regicu is exponentially small, the integral En will be asymp-
totically equal to the sum of the saddle point contributions. The contribu-
tions arising from saddle points obeying Eqs. (2. 3. 25) and (2. 3. 24) will be
known as type An and Bn cortributions, respectively. It can be showrn that
no relevant saddle points occur on the second sheet for any n and therefore

the deformed path will be the same as that shown in Figs.1.13 and 1. 14.

We shall now focus our attention on the relevant saddle points on the
top sheet and their contributions to the reflected field. The integral Eo will
be considered first, since it contributes the dominant terms to the reflected

field for large koL s

We will now investigate the saddle points of type Ao . A comparison
of Eqs. (2.3.3) and (2. 3.25) shows us that the two are identical. This means,
as in Chapter 1, that each saddle point corresponds to al returning ray. If
we now recall our discussion of returning rays, we will remember that there’
are two basic regions divided by a caustic. To the right of the caustic there
are twc refurning rays; to the left there are none. For certain parameters,
the caustic can assume a bow tie configuration for z>0 as shown in Fig. 2. 2(a).
Inside the bow tie there are four returning rays while outside the bow tie there
is the same number of returning rays as before. With the above information
we see that there are 0, 2 or 4 solutions, depending upon the location of the

observation point, to Eq. (2. 3. 25) .
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We shall next examine saddle points of the.type Bo . An investigation
of Eq. (2. 3.24) shows that there is one saddle point for any given observa-
tion point. The saddie point contribution can be interpreted as a ray reflected

from the lower intsrface. The ampiitude factor of this ray has O(ko-slz) .

As stated previously, the reflected field, Eo » is composed of a sum of
Ao and Bo type contributions. The deformed path on the top sheet is shown
in Figs. 1.15and 1,16 when there are no saddle points or there are two
saddle points of the Ao type, respectively. When there are four saddle
points of type Ao the path is similar to the cnes shown, but it is not shown
here. An approximation of the deformed path shows that it can be deformed
around the origin for any given observation point and, therefore no contri-
bution, similar to type Co , arises as we observed in Chapter 1 . This
means that thers is no lateral wave contribution. However, there are two
(assume that the bow tie is not present) rays through each point to the right
of the caustic while in a similar region, in Chapter 1, there is only one ray
through each point. When the observation point is located far from the source
compared to layer thickness we observe: first, that the returning ray in
Chapter | has a similar trajectoy to one of the returning rays of Chapter 2;
and second, that the trajectory of the lateral ray in Chapter 1 is similar to the
trajectory of the other returning ray observed in Chapter 2 .

We will now evaluate explicitly the contribution due to the ray whose
trajectory is similar to a lateral ray. The evaluation will be limited to
~Yservation pointe which are located far from the source compared to
layer thickness and also those observation points where Lp>>L . Here Lp
is defined as in Chapter 1. The last condition has the following physical
explanation. When the observation point is located far from the source, the
upper branch of the caustic is approximately described by Lp= 0. The
condition, Lp>> L, says that the observation point should be many layer‘

thicknesses from this portion of the caustic.
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By using the above approximations on the saddle point equation,
Eq. (2.3.25) , we obtain the approximate location for the two saddle
points in question. They are :

-J/aL _/2J¢ L
- Z '20 = P !
Piy © Kb (z42) 3 : lpyy =24 e . (2.3.26)

The notation used is motivated by the fact that the contributions from saddle
points Py, and Py 2Te similar to reflected and lateral rays from an abrupt
transition. The first saddle point Py is obtained by assuming that the last
term in Eq. (2. 3. 25) is small while the saddle point Py is obtained by
assuming P, w0 . From Eq. (2. 3.25) we see that there appears to be a saddle
point at P = 0 , however the asymptotic approximations used to simplify the
integrand are not valid there.

Now by evaluating the integral Eo at the saddle point Py, e obtain

-JAL /2./e L
Al/4 e P

ik (Bz+z)+Je. x+ B L)+i3n/4
E ~ e o 1 (2.3.27)
L 2J/m el EOL e ;

where EL is the contribution fron; E0 which is due to the saddle point p iL
The phase of the above contribution corresponds to a lateral ray, however

=12
the amplitude is of O(k0 ”) which makes this contribution a classical geo-

metrical-optic result.

An examination of Eq. (2. 3. 26) reveals one basic difficulty. As Lp/L
becomes increasingly large IplLl -0 . In order for the asymptotic forms
of Table 2.1 to be valid a§>>l or using Eq. (2. 3. 26) we find

-JBL_/2/e L
Te P >1 . (2. 3.28)
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 This inequality essentially says that as LPIL gets very large compared to

7, the geometrical-optic result, appearing in Eq.(2.3.27), is no longer
valid. We see rays emitted from the source close to the critical angle
resemble geometrical-optic rays with lateral ray type trajectories, but,
as the emission angle becomes closer to the critical ray, the geometrical-
optic interpretation can no longer be given.

An evaluation of En for arbitrary n will show Eo to be the dominant
term in the series. We will not go into detail since the evaluation exactly
parallels a similar development in Chapter 1 . It will suffice to say that
the contributions of types An and Bn will be encountered. Those of type
An are returning rays reflected from the z =0 interface n times. On the
other hand, the B contributions are those rays reflected n+1 times from
the £ = - L interface. The asymptotic order of those contributions is shown
in Table 2.2 .

2.4 Ewaluation of Reflected Field for Large koLp

In this section we will investigate the reflected field from the
parabolic transition when koLp >>1 and Lp>> L. From this investigation
we hope to learn what the pertinent field contributions are, when the layer
is thick compared to wavelength, i.e.: koLp >> k°L>>l . In addition, we
want to relate these contributions to the field constituents that occur when
koL»koLp»l and when koLp>>l , kK L<<1.

The integral representation for the reflected field is given by Eq. (1. 4.1)

where the reflection coefficient used there is replaced by

f:-A/A

tn (2.4.1)

tb
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where

: w'(-.f, 0} - iai'(~af. o)i ‘-w'(-.f, 0) - iaiW(-:f,O)f

Atn.
bn

{ W'(-af ,=c} ¥ iazW{-af s -c’)i "W'(-af ,c) ¥ ilzwi"f . C)g

W(-lf . 28) are another form of paradolic cylinder functions which are
defined by Abramowitz'>2! and W(-al Q= awW (-2l £1/d2. We see that the
integral representation employed here is the same as that used in the last
section, except with a differeat reflection coefficient. 'I"his reflection coeff-
icient is derived via Appendix A. by choosing # ;z) N(-g‘ » £} and

] (:) W(-ai , &) where 2 s been defined in the beginning of Chapter 2.
'l'hio alternative form of reﬁactﬁos czoefficient makes the computations, that

will follow, easier sincs the W{-g , 223 are real functions .

K w~ now use the assumption that k .ﬂ<e( L then the reflection coefficient
in Eq. (2.4.1) is slowly varyinz °crrpared to ¢ exponentul in the integrand,
and the standard steepest descent techriques can be used to asymptotically
evaulate the integral representation. We will not go into detail since the
develupment parallels Chapter 1, Secticn 1.4,

The results of this asymptotic analysis are that there are two saddle
noint contribations which rmake up the reflected field. The firs: of these is
siznply the reflected ray contribution. The contribution has an O(ko-uz) for

21l layer thicknesses considered here.

The second contribution to the reflected field comes from the saddle
point occuriang at P; = 0 and it reduces to the lateral wave contribution on an

abrupt interface when k L-0. The contribution will be denoted by E, and

it s given by
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v {kO[JK'(z+z')+.,’c_;x} +ig(Jhr) +i3n/e
A(SBr)e
£ - (2. 4.2)
L /s (l:ox.)a"'2
where
AWET)= J_l«_r: | . _TAT(1/4) (W'(0,c)W(0,-c) + W(0,c) W'(0, -c)]
2|dp T(¥/4) 2 ot 2
-0 {(w’(0,-c)- W'(0,c))” + = tW(0,c) + W(0,-c))"]
pl- 4
[2. 4.3)
and
- -1[2 W/(0,-c) -W'(0,c)
#JBT1)= 2tan c W(0.2) + W(0, -c) . (2. 4. 4)

The ampiitude A(/3 1) and the phase ¥ (/B 1) have been plotted by computer
and are shown in Figs. 2.4 and 2.5. In these figures the thick layer
approximations to A(J/A T)and ¥(/AT) are also shown .

The physical interpretation of E L can best be found from an investigation
of the small and large 7 limits. When 7 is small, as we have already stated,
EL reduces to tke lateral wave on an abrupt interface. We see this from the
fact that as 70, A(JBT7)~1 and ¥(J/A7)=~0. When k L>>1, or the layer is
large compared wavelength, EL reduces to

(1/4) c1/4 12

1k[./_(z+z)+ f_v+LJ_]+1ﬂ/Z
o SR TN 3/4

|
|

|‘

l

I

|

2(2m) (kL) . (2.4.5) | "
|

|

|

I

I

If we compare the lateral wave contributions excited on a linear and

parabolic layer for koL large, as given in Egs. (1. 4.10) and (2. 4.2)
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espectively, we observe that both have a similar phase dependence and

an amplitude dependence on distance of O(L;m) . The outstanding differ-
encs between the two contributions is that the lateral wave, excited ona
linear layer, has an excitation coefficient of O(k‘, --”6) whilelthe lateral
wave, found on a parabolic layer, has a coefficient of O(ko ) . Ve see

for high frequency that the parabolic layer wave is excited more strongly.

The lateral wave contribution given in Eq. (2. 4.5) also sheds some light
on another ares. In the previous section, a geometrical-optic ray contribu-
tion was found. It has a ray trajectory similar to a lateral ray, however,

&8 the obn‘emtion points move away from the source, Lp>>L , the geo-

meh;ﬁhl-upﬁc contribution becomes invalild. We see now that this contribu-

-, tion transforms into a true lateral wave contribution when koLp>> kol..>>l.

The trarsition between the two regions of validity for the E contribution
is quite complex and, as yet, transition functions have not been found.
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CHAPTER 3,
THE SYMMETRICAL EPSTEIN TRANSITION LAYER

3.1 Jnfgoduction

In Chapters 1 and 2 the reflected field fzom a linear and ;arabolic
transition has been studied. There it was found that a lateral wave was
excited for all layer thickresses, and that its character was chauged 2s
the normalised layer thickness, koL , was varied. For both of the above
mentioned csses the thick layer limit was particularly interesting. In this
1imit the lateral wave discussed in Chapter 1 appeared to be excited at the
point that the ciritical ray was tangent to the lower interface. In Chapter 2,
0o such interpretation was possible, but instead, the lateral rays resulted
from returning rays ematted close to the critical.angle.

In an examination of the above problems, we Lad noted that the continuity
of the layer at the lower interface was the critical factor in determining the
type of lateral wave that could be excited. A logical extension of the stidies
underfaken in the first two chapters could consist of an investigation of the
reflacted finld from a layer that was completely continuous at the lower inter-
face.. Wave functions for the layer mentioned above could not be found, there-
fore we ro: orted to the study cfa layer of infinite extent. The symmetrical
Epstain luyer, to be considared in this chapter, is such a layer. Its dielectric
profile is given by

1 0 £>0
e (s) = , A=1l-e¢ (3.1.1)
€ +Alechzz/L , «<0
Thic layer has the property that as v - =, ¢(z) - ¢, and all derivatives of
¢(z) approach sero. Thus, we see that the laver is. completely continuous

T
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at the lower homogeneous medium which occurs at minus infinity. The
dielectric layer slso bas the required propesty that as L.«-8 the layer
approaches an abrupt interface.

In this chapter we will first investigate the structure of the retu-ning
ray trajectories when koL >>1. Following this, a uniform asymptotic
apnroximation for the reflected field will be derived which will be valid for
abritzary values of ltoL. By means of this approximatiorn we can relate the
lateral wave on a sharp interface to the geometric-optic rays observed when
ths layer is thick compared with wavelength,

3.2 ¥Formal Solution

The integral representation for the reflected field in the region z>0 is
ocbtained in & manner similar to that used in Chapters ! and 2. The source
configuration is the same as before and again only the F..y component of the
electric field is excited. This component satisfies the wave equation,
Eq.(1.2.1), where the source amplitude has been assumed to be normalized
as in Eq.{l.2.2). The representation ior l-.':y is obtained by the application
of Fourier integral techniques to Eq.(1.2.1). The result is given by a sum
of direct and refiected fields

E =E + E
y vy yr
where o | l
4o ik {p_lz-2'| +px]
1 o F2 dp
E D - omem— e ’ z_>_0 (3'2'2)
w™ [
and - i !
P B e Jolete ey 0 L a2y
yr 4T, P,

it Ao et
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with

ik p, + 8 (0)/8(0)

T=

L7y (""2)i » PG (‘1 - Pz)’ . (3. 2.5)

The function 8(z) used in the reflection coefficient T is defined as the solution

of the differential equation

d2

';3 + k (A sech’ (/L) + 1 )] 8(z) = (3.2.6)

which satisfies the radiation condition as z~<-®, The derivative of 8{z) with
respect to z will be denoted by 8’(z}. Is order to dafine the integrals
appearing in (3.2.2) and (3.2.3) completely, the squars roots P, and P,
must be specified. This specification is shown in Fig. i.4 where the four
branch cuts bave been chosen. The integration path P is also shown in the
sams figure.

We will now solve (3.2.6) exactly Trarsforming (3.2.6) by

€ = tanh (z/L) (3.2. 7‘)
reduces it to
{u—as; - 2ty + [wwn -ufia-g®] ] eso
(3.2.8)

with

3

B = +i'rpl , V== 1/Z+(1/4+12A) , 'r=k°L. (3.2.9)

- ik p, -0 ’(0)/6¢0) 2 (3.2.4)

This i3 the Associsted Legendre equation whose two independent solutions are

#\: (¢, Q: (8)s I we represent P‘: {€) as an hypergecmetric £uncti0n(23)-ahd

1st 8 <.® we see that it obays the radiation condition. The solution to (3, 2. 6)
is then

o(e) = P [ - tanhia/L) | (3.2.10)

!
%
7
!
4
;
s
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The initial value (2=0) of this Associated Legendre function and its derivative
(24)

are given in terms of Gamma function |, Using these relations, one obtains

8(0) _ _ 2r(v/2+y/241) T (v/2-u/2t1)
5 (0) IT(v/2+ K/2 + 1/2)T(v/2-u/2+1/2) "("*“’/"J

or (3.2.11)

’

8 (0) - 2T (1/2 - v/2 - u/2) T (v/2 = u/2+ 1)
8 (0) LT (-v/2-u/2) T (v/2 -u/2 & 1/2) )

(3.2.12)
In order to determine the asymptotic properties of the reflection co-

effi:ient the location of the poles of the gamma function will be necessary.
Consider the poles of T (v/2 + U4/2 + 1), for example, They occur when

$

1 o
'1/4'*': (1/4+ TZA) + iTp1/z+1=-n, n'-'o,l,Z, 200 (302.13)

is satisfied. Since

L %

T0)° < 3/2+(1/4+T12) (3. 2. 14)

for all 'r(t\)é , the first pole lies in the range Rep, = 0, .(A)é <Im P, - Poles
corresponding to n=1 and higher have larger values of lpll and therefore .'
occur in the same range as the first pole. The pole locations of the various
gamma functions appearing in (3.2.11) and (3.2.12) are shown in Table 3.1.

%

Since these poles occur on the Re p axis for |Re p| >(e1) they lie directly on
the integration path. If a small amount of loss is added to the dielectric

rmedium, the poles with Re p>0 shift into the first quadrant of the p plane

while the remaining poles shift into the third quadrant. With this information ,

the integration path can be deformed around the poles in the correct manner in

the 1imit.of zero loss.




Gamma Functions

Pole Locations

T(v/2 + /2 +1)
T{v/2+/2 4 1/2)
T(v/2 -u/2+1)
T{v/2 - /2 +1/2)
r{i/a2- viz ~ u/2)

r{-v/2 - Lu/2)

1
Re p, = O:Ir‘npl>(A)i
1

1

Re P, = OEIm pl>(A)é
]

Re P, = 0} Im Py -(A)i
1
]

Re P, = Oslmpl<-(A)§

\J

1]
0!Im p;<(A)
'

Re P,

1
Re P, 0!Im p1<(A)%
1

Table 3.1

o

I'cle Locations




Jgsustumnsatidin

ravwermy

.
L T R R T  m—— - -~

-73-
Before proceeding we shall check the convergence of the integral.

To do this we asymptotically evaluate (3.2.10) as Ipl -=_, We find

8’(0/8(0) ~ Kk |p, | (3.2.15)
which gives a reflection coefficient
=T . (3.2.16)
lpzl 4+ Ipll

when p is large. Sincz the exponential in the integral decays for large p, the
integral converges.

To simplify future calculations, the branch points at p = %(e l)* are
now removed by means of the transformation

2
p=(el-plz)* ’ pz=(A+pl )b . (3.2.17)

This transforms the integral in (3, 2. 3) to

p,T ik [p,(z+2z')+px]
E -+-—l— .. e ° 2 dp z>0 (3.2.18) °
R ~ 4ni PP, 1 & . 2.

where the multivalued functions p, P, are defined on a four sheeted Riemann
surface, The first two sheets of this surface are shown in Figs. 1.5 and 1.6 .
The multivalued character of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>