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ABSTRACT 

A realization for digital filters using block-floating-point 

arithmetic is proposed.   A statistical model for roundoff 

noise is presented and used to compare block-floating-point 

with fixed-point and floating-point realizations. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 

iii 



BLOCK-FLOATING-POINT REALIZATION OF DIGITAL FILTERS 

Recently, the realization of digital filters by means of fixed-point and floating- 

point arithmetic have been compared on the basis of roundoff noise.       In this note, 

an alternative realization called block-floating-point is proposed.   In block-floating- 

point arithmetic the input and filter states (i.e. the inputs to the delay registers) 

are jointly normalized before the multiplications and adds are performed with fixed- 

point arithmetic.   The scale factor obtained during the normalization is then applied 

to the final output to produce a fixed-point output.   To illustrate, consider a first- 

order filter described by the difference equation 

y    = x   + a, y     . (1) 
•'n      n       1 -'n-l v 

To perform the computation in a block-floating-point manner, we define 

An     ^Flmaxflx   |, ly     ,1 H (2) 
11 n      ' n—1' - - 

where  JIP TM]   is used to denote the largest integer power of 2 which is less than 

or equal to M.   Thus,    A     represents the power-of-two scaling which will jointly 

normalize   x     and  y     , .   We may then write  y     as 
n 'n-l ' 'n 

1 
yn 

= A- n 
A   x   +a, A   y     .1 (3) n   n       In'n-lj 

or alternatively as either 

'"'i [A"x-+a(i) v.vi] (4) 



or 

7»-^[(£lK^+*(£i)viV.] 
The representation of (4) is preferable to (3) since (3) implies that   y _,    is stored 

in the delay while (4) implies that   A     . y     .is stored in the delay.    Since   A     is r n-1 • n-1 ' n 
always greater than or equal to unity,    A _. y _.   is represented more accurately 

than   y _. .   A disadvantage with the representation of (4) is that   y _.   must first 

be obtained to compute   A   , and ( A /A     .   )  must then be obtained.    Equation (5) r n V  n     n—ly ^ 
represents an alternative.   Specifically, we note that 

A i n 1 
A n-1 '    n-1    n       '    n-1 7n-l ' 

(6) 

Consequently, if we first scale x by A _ then the incremental scaling can be 

determined as specified by (6). If we consider the general case of an N order 

filter of the form 

y=x+a1y1+a0y0 + ...+a._yN1 (7) 'n       n        1 'n-1        2 ;n-2 N 'n-N 

then  the block-floating-point realization corresponding to (5) and represented in the 

direct form is depicted in Fig.  1.   For the general case 

A„ = .tnr^v f 16   i—nr;—i—r^—I nr,—n (8) V      ^PTmaxf | XR |, |wlnl, [ w2n | ,  ..., |wNn|] 

and 

An = ^ImaxflxJ, ly^J, | yn_2 | ,  ...,|yn_Nl}l = An-1 An       (9) 



In evaluating the performance of the block-floating-point realization in the presence 

of roundoff noise we will restrict attention to first and second order filters.   Further- 

more we assume in the analysis that   A     is not constrained to be a scaling by a 

power of two.    Finally, we assume that for the first and second order case one bit 

will be provided in the output register of the adder for overflow.   This will always 

be sufficient for the first order filter, and is taken to be sufficient in a practical 

sense for the second order filter.   Therefore, for the purpose of analysis we 

replace (8) and (9) by 

An =   2max[|£n|, |wJn |w2n | , ... , |wNn |} (10) 

and 

A   = o i i„   I—rrT 1—rr; 1 rr, n (u) n      2max[ |xj, ly^J. lYn_2l' •••• IV-N ^ 

In the case of a first order filter a roundoff noise source is introduced in the 

multiplication by A   , the multiplication by   a, , and the multiplication by  -r— . 

Denoting these noise sources by   f]   , f2    and   e3    respectively, the resulting 

output noise  v     is, from (5), 

7?    = -T— (Ci    + €o   )+Co   +a,T7     i 'n     A    x   In        2n 3n       1   n-1 n 

Assuming that   c,   , c2    an(3   fo    are independent from sample to sample, and are 

independent of each other and   -r— , then  T) = o   and 
n 

"   =   \ * 1 +  f2 ) —-1 + c3 (12) 

1 



/    \     2 
where   k.   is the expected value of (   -r— )    as specified by (11).    In a similar 

1 V Ans 
manner, for the second order case, there are five noise generators as depicted in 

Fig.  2.    Assuming that the noise generators are white, and independent of each 
2 

other and   A   , and that all the noise generators have variance  a    , 

"~2" 2 2 2        2 4 
v
z = a^ + a    (2 + 4r   cos   q + 2r ) k„G 

€ f l 
(13a) 

where   k^   is the expected value of  ( -r~ J     and  G   is given by 

m 3        2        2" 2" 
1+r  -4r   cos   fi + 2r 

(13b) 

To compare the effects of roundoff noise in the block-floating-point realization 

to the effects in floating-point and fixed-point, we consider the input to be uniformly 

distributed white noise in the range 

00 

2   lh 
n=o 

< x    < n 

n=o 

where   h     is the filter impulse response.   This then guarantees that the output will 

fit within a register.   With these considerations, the normalized output noise-to- 

signal ratios for the first and second order filters are respectively 

first order: V  
2    2 
f   y 

I 
~2 
CTy 

I + 
2k, 

1-a 
(14) 



12        0 r   , 12   Gk, 
second order: •:   -V7=^UiTT¥    Z rn|sin(n+l)6|      +_1£(2+2r4+4rZcosZe)    (15) 

CT  a L        n=o -la 

To compare (14) to the corresponding expressions for floating-point and fixed-point 

we will consider the high gain case and approximate   A     as given by (11) by 
1 n 

A   =  yi r .    Assuming that   y     has a symmetric probability density about zero, 

we then have that   k, = 4cx    .    Representing   a.   as   1 — 6   with  6   small we then 

approximate (14) by 

T) 10 
—^2—7 = 7T (block-floating point) (16) 
a   a 

( y 

The corresponding approximations for floating-point and fixed-point are, respectively 

(-F)   and f —-K ) .   We observe, then, that for this high-gain approximation block-floating- 

point is approximately one bit worse than floating-point and, for the same size 

mantissas, better than fixed-point.    Furthermore as   6 _ o  the noise-to-signal ratio 

for both floating-point and block^loating-point increase at a slower rate than fixed- 

point. 

For the second order case we will restrict attention to a high gain filter 

(r close to one) and furthermore choose   A   small enough to assume that   A   ~ -?n 1 
2 n   2|yn' so that   k9 ^40*    .   Again, letting   r = 1-6 , we introduce the high gain approxima- 

z      j y 
tion  G ~  K— .   We can approximately bracket the expression 

46 sin   0 

^    Srn |sinr(n+l)e]| sin A 
n=o 

by noting that an upper bound is 

v    n 
2 r    = 

sin Q    _ (1-r) sin A 



A lower bound is obtained by noting that the sum of the absolute values of an impulse 

response is the maximum attainable output value from a filter if the maximum input 

value is unity.   Since the maximum output of the second order system at resonance 

is    x yn '    th*s Provides a lower bound on the sum of the absolute 
i (H&(A+r2 - 2r cos 2 ej 72 

values crfThe impulse respons lse.   For the high gain case this is approximately  -jx—!—n 

Thus we will consider 

AA   
1   n g -J—    2   rn |sin(n+l)ol s  .   l _ 26sinft      smp '       x '     6sinft 

v   n=o 

With these approximations, we have for the second order case that 

d 12+—^- (17) 
sin 

For comparison, the corresponding expressions for the floating-point and fixed- 

point cases are: 

-%-Z 1 = 1 + 1—T- <18) 
a   a    I 46 sin   9 

e   " / floating-point 

and 

6 /    T)       \ 6 

46   sin   ft     \a_ a„   / 6   sin   6 
fixed-point e   y 

Consequently as in the first-order case block-floating is only slightly worse than 

floating-point and better than fixed-point.   Again, as  6 — o  the noise-to-signal ratio 

for both floating-point and block-floating-point increase at a slower rate than fixed- 

point.    An additional consideration is that (17), (18) and (19) compare noise-to-signal 



ratios for equal size mantissas.   Floating-point arithmetic requires additional 

bits in each word to represent the characteristic while block-floating-point 

requires additional bits to represent the characteristic for the entire block.   Thus 

it is reasonable to speculate that in some cases for the same total number of bits 

per word, block-floating-point is the least noisy realization.   While it is clear that 

the implementation of block-floating-point is more difficult than fixed'point it is 

almost certainly simpler than floating-point.   Thus block-floating-point appears to 

warrant serious consideration as a means for implementing digital filters with 

hardware or on a digital computer with limited word size. 

An additional consideration,  is that,  in block-floating-point final quantization 

of the input can be carried out just before the summer.    If this is done, the variance 

of the output noise due to input quantization is reduced by a factor (  ~J~ J    • 
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Fig.  1.   Network for block-floating-point realization of an N1-*1 order filter 



M*> 

"2n 

0 

,-1 

A, 

2r cos  6 
+   )« »  

•5n 

Q 

1 

« < 

•4n 

<t>^ 

©-—°*« 

+ H o € 3n 

Fig.  2.   Network for block-floating-point realization of a second order filter 
including roundoff noise sources. 
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