—

685631

/

THE UNIVERSITY OF MICHIGAN

Technical Report 15

CONCOMYP

AN EXECUTIVE SYSTEM FOR A DEC 339
COMPUTER DISPLAY TERMINAL

James H. Jackson

¥oc
A !
APR1 71969

. 4

T HE

UNIVERSITY OF MICHIGAN

Technical Report 15

AN EXECUTIVE SYSTEM

FOR A DEC 339 COMPUTER DISPLAY TERMINAL

CONCOMP :

J :mes H. Jackson

Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

Supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA CRDER NO. 716

Administered through:

OFFICE OF RFSEARCH ADMINISTRATION ANN ARBOR

December 1968

ABSTRACT

This report describes a real-time multiprogramming
software system for a DEC 339 computer display terminal, which
may communicate with an external computer tarough a serial-
synchronous data set. The system is designed to support both
programs which require the attention of an external computer
while they are being executed and programs which are independent
of external computation service. For either type of program,
the entire graphics support is provided by the 339 system, but
the interpretation of the relations implied by the graphics
may be performed either in the 339 or in an external computer.
Multiprogramming facility is provided to facilitate effective
use of I/0 devices in order to cope with the demands of a real-

time environment.

iii

TABLE OF CONTENTS
Page
ABSTRACT.O.. iii

lo INTRODUCTION.OOooooooo..oo..ooo.oo.oo....t.....O...0.0n. l

w

2. SYSTEM ORGANIZATION.....................................

2.1 Bootstrap Arrangement..cccecececccsscrssoscsssosssnosns 3
2.2 TaSKSiceesseessosossossossssssssosssssssssssossosossssse 4
2.3 States of the System...ccvveversecssesscccsssensens 4
2.4 Entering System State....ceceececcssccssosossocscns 5

3. SYSTEMSUBROUTINES...O......o.oo..oooo.o.ooo.o.ooooooooo 7

Word QUEUES . ccosessesessssssasssssesasesns
Task Scheduling and I/0 Device Allocation
Format CONVEerSiONS.ccsesssseesssscssonsss
Buffered I/0...:ccececesscscssssssssosccns

e et o0 s 00 ll
. 16
. 17

Wwww
=W N -

® o 0 0 00 00 000 0 0 18
e o0 s 00 0 0 22
e 9 00 0 000000000 25

1 Dataphone I/O....coeeeesesnns
2 Paper Tape I/0...ccieeescnnss
3

3.4.
3.4.
3.4. Teletype I/o..............-..

3.5 Nonbuffered I/O...cicesecesscssscsessscosssssssssss 26
3.6 Push-Button Processing.....csceeecescossssosssssecsses 29
3.7 Display Control CommunicatiOn.:...esoseeesoessossesss 31
3.8 Light Pen Tracking....cceeeeeeesccesoccssossscssnsess 32
3.9 Display Structure TopOlogYy..cceesceecssssscesssesses 35
3.10 Level ModificatiON...sseeeesessssoosscccocsssessecss 40
3.11 Text List Manipulation.....eeevseesssccnccssscesees 61

4, IDLE-TIME TASK. .. cctseeecccsossseacncsscssasssossseascsncccecs 04

. 64
. 67
67
. 68
. 68

Copy FUNCtiONS . v eesesvesscsssscoasocsassssssnsans
Scheduling of User TaskS:.::ieeeeeesssnscsncnsssns
Clearing the Task Queue or Display Storage.......
Teletype to Dataphone Transmission......ceoeseess
Entering User State....iceeseeeecrosnsansensesnenas

[- - CS
N WN -

S. SYSTEM CAPABILITY...ccccceoceosccscosscosaossccsssnsaossss 69
BIBLIOGRAPHY cvcveeeveesecssscesossocsssossssscosssssscasscssess 10
APPENDICES

A LISTING OF THE EXECUTIVE SYSTEM.....cccceeeeceeccccsesssse A-1
B SUMMARY OF SYSTEM SUBROUTINES...:ccsccessocscccssnssosess B-l
C SUMMARY OF IOT INSTRUCTIONS...:.:eeocsesssossesesseassocss C=1

D ASSEMBLY LANGUAGE. ... c0oceeoeeescscossacsossccscsssasssseas D=1
v

1. INTRODUCTION

The objective of this report is to describe the con-
ceptual organization of the SEL (Systems Engineering Laboratory's)
Executive System for a 339 computer display terminal, as well
as to provide a manual for its use. More specifically, the hard-
ware configuration for which the System was designed consists of
the following items (plus necessary interfaces, multiplexors,
etc.):

DEC PDP-9 with at least two 8192-word

memory banks

DEC KEO9A extended arithmetic element

DEC 338 display control (less PDP-8)

DEC AF0l1lB A/D converter

DEC AAOlA D/A converter

AT&T 201A data set
The System provides both a multiprogramming capability (based
on I/0 slicing, rather than time-slicing) and a complete set
of operators for maintaining a highly structured display file
and for interrogating it for relational properties.

Since an on-line operator tends to produce a burst of
inputs and then to be idle for a relatively long period of time,
appropriate feedback to each input must be provided rapidly if
the operator is to be allowed to proceed at his own rate. If
the terminal were not multiprogrammed, the processing of one
input would have to be completed before processing of the next
could be begun. Consequently, bursts of operator activity
could not be effectively handled by this scheme. However, if
a multiprogramming system (where the users of the system are
programs which respond to various inputs) were used, feedback
to each input could be produced almost immediately, and the
remaining (and usually time-consuming) part of the processing
could be deferred until a later time.

-2-

Bandwidth limitations on the data link between the
remote computer and the central timesharing system suggest that
programs be distributed between the central computer and the
remote computer such that dataphone traffic is minimized (sub-
ject to the constraint of the capacity of the remote machine).
In terms of a remote display terminal, this usually means that
the relations implied by a display file, rather than the display
file itself, be transmitted. For this reason, the remote system
should provide a facility for constructing a display file based
partly on relational information, and for interrogating a dis-
play file for relational information.

A general discussion of the organization of the System
and detailed discussions of the various system subroutines and
the idle-time task follow. A complete listing of the System is
given in Appendix A, a summary of system subroutines is given
in Appendix B, a summary of all IOT instructions pertinent to
the hardware configuration is given in Appendix C, and a brief
description of the assembly language used in the examples is
given in Appendix D.

2. SYSTEM ORGANIZATION

2.1 Bootstrap Arrangement

The System should be loaded by the following procedure:

1) Place the system tape in the reader.
2) Set all switches to 0 (down).
3) Depress the read-in key.

This procedure causes the first record, which is written in
hardware RIM format, to be read, and the computer to be started
at the last location loaded. The record read is the bootstrap
loader represerited by the following assembly code:

$ORG 0

IOT 144 SELECT READER IN BINARY MODE
IOT 101 SKIP ON READER FLAG
JMP Wl WAIT FOR READER FLAG
IOT 112 READ READER BUFFER
DAC* 10 LOAD A WORD

JMP 0 READ NEXT WORD

HLT

HLT

$DC 17731 INITIAL INDEX VALUE
JMP 0 START BOOTSTRAP LOADER

The bootstrap loader is capable of loading one binary
block (Section 3.4.2) starting at location 177328' but is not
capable of detecting the end of the block. However, the block
which immediately follows the bootstrap loader on the system
tape is loaded into locations 177328,...,177778, 0. The word
loaded into location 0 is a JMP instruction to the beginning of
a more sophisticated loader, which is contained in the block
read by the bootstrap loader.

The loader loaded by the bootstrap loader is capable
of loading an arbitrary number of binary blocks, and it is this

-3-

-4-

loader which loads the System. Immediately following the last
block of the System is a one-word block which modifies the
loader and causes execution of the System to begin.

At the end of the loading process, the System occupies
locations 0-117778, and the bootstrap loader and system loader
are no longer usable. (The storage occupied by the system loader
is salvaged by the System for display structure use at a later

time.)

2.2 Tasks

Each program written to run with the System is called
a "task" and is identified by its entry point. The System
maintains a task queue, each entry of which consists of the
entry point for the task, together with other information re-
quired to determine the eligibility of the task or to restore
the contents of certain registers before the task is executed.
Whenever execution of a task is begun, the task is removed from
the task queue.

A task is entered by a JMP instruction (rather than
a JMS instruction, as in some other similar systems) and is

subject to the following restrictions:

1l) No user task may contain an IOT instruction.

2) No user task may store in core bank 0. (No user
task should be loaded into core bank 0. Locations 120008—177778
are used by the System to store the display structure.)

3) A task which uses an allocatable I/0 device
(via system subroutines) must allocate the device before calling
the system subroutine to use it, and must release the device
before terminating. (The task may allocate and/or release the
device implicitly by insuring that another task is scheduled to

perform the function.)

2.3 States of the System

At any instant, the System is operating in one of

two states:

l) System state--A special system task, called the
idlé-time task (Section 4), is executed. However, an incoming
message from the 201A dataphone which is not directed to a user
task will cause the 20l1-to-teleprinter task (Section 3.4.1) to

be scheduled.
2) User state--All scheduled user tasks are exe-

cuted and the idle-time task is not executed. The 201-to-tele-
printer task is scheduled when necessary as in system state.

The states of the System may be depicted by the follow-

ing diagram:

201-to-teleprinter task

Idle-time
task

Set of tasks which may Set of tasks which may
be executed in system be executed in user
state state

2.4 Ertering System State

Whenever one of the following events occurs, the System
is reinitialized (i.e., all I/O activity is stopped, the task
queue and all buffers are cleared, and all 1I/0 devices are

-6-

released), and system state is entered:

1) The Systemn is reloaded.

2) The currently executing user task terminates
with the ° _k queue empty, and all output buffers become empty.

3) An unidentifiable interrupt occurs.

4) The manual interrupt button is pressed. (The
manual interrupt is used by the operator to reinitialize the
System in case of emergency.)

5) The task queue overflows.

6) The program is started at location 228 via the
panel switches.

7) An illegal instruction (operation code 008) is
executed.

Immediately after system state is entered, a comment describing
which one of the above events occurred is typed on the teletype,
and, if enough free display storage remains, it is displayed

on the screen. Reinitializing the System does not include clear-
ing the display storage area, but it does cause the active
structure to be detached from the highest active level (Section
3.9).

3. SYSTEM SUBROUTINES

Sections 3.1 through 3.11 describe the various system
subroutines which are callable from user tasks. The entry point
to each subroutine occupies a fixed position in a vector such
that the actual code for the subroutine may be relocated (by
some future modification of the System) without requiring user
tasks to be reassembled. Since the System occupies core bank
0 and user tasks cannot be loaded into bank 0, system subroutines
must be called via an indirect reference, i.e.,if a 1is the
symbolic name of a system subroutine, a call to a 1is written

in the following form:
JMS* =q

Most of the system subroutines return immediately after
the JMS instructions which call them. (Parameters are passed
in the AC and MQ.) However, several subroutines have "failure
returns," i.e., a return is made immediately after the location
containing the JMS .instruction if the function which the subrou-
tine must perform cannot be performed. If the subroutine succeeds,
return is made to the next location. The two types of calling

sequences may be illustrated as follows:

Subroutine with no failure return:

------ (return)

Subroutine with failure return:

______ (failure return)

...... (success return)

A subroutine which has a failure return is denoted by an aster-
isk (*) appended to its symbolic name in Sections 3.1 through
3.11. (Tne asterisk is not part of the symbolic name.)

3.1 Word Queues

The basic structure which supports cyclic I/0 buffer-
ing and task scheduling in the System is a word queue. This
structure consists of a block of three words, called control
words, followed by n data words and has the properties of
both a first-in first-out (FIFQO) queue and a last-in first-out
(LIFO) queue.

A word queue is represented in core as shown by the

following diagram:

CH kb1
q;

3 control words
q3

n data words

The symbols in the diagram are interpreted as follows:

q, = Address of the word queue. By convention, this
is the address of the first control word.

q, = Pointer to the physically last data word in the
queue.

q, = Pointer to the last word put into the queue
(FIFO sense).

q, = Pointer to the last word taken out of the queue.

-9-

The word queue is empty whenever d, = d3 . and it is
full whenever q;3 = q, + 1 or 93 = g, + 3 and 4, = q; - The
maximum number of words which may be stored in the queue is then
n-1.

The cyclic nature of the word queue requires that the
terms incrementing and decrementing a pointer be defined
for this structure. A pointer g 1is "incremented" if it is

modified so that it takes on the value

q+1l, if q#ql
q' =
q, + 3, if g = q;
A pointer g 1is "decremented" if it is modified so that it

takes on the value

q-1, if g#q +3

9, if g=gqg + 3
The following system subroutines have been defined

for managing word queues:

Q.C - The word queue whose address is given in bits
3-17 of the AC is cleared. (q2 and qy are both
set equal to q .)

Q.I*- The word given in the MQ is added in LIFO fashion
to the word queue whose address is given in bits
3-17 of the AC. (The word to be queued is stored
in the location which a5 references, and d3
is decremented.) A failure return is made if
the queue is full before the operation is at-
tempted.

Q.A*- The word given in the MQ is added in FIFO fashion
to the word queue whnse address is given in bits
3-17 of the AC. (q2 is incremented and the word
to b2 queued is stored in +the location which the

resulting a, references.) A failure return is

-10-

made if the queue is full before the operation
is attempted.

Q.F*- A word is fetched from the word queue whose
address is given in bits 3-17 of the AC and is
returned in the AC. (q3 is incremented, and
the word stored in the location which the result-
ing q, references is fetched.) A failure re-
turn is made if the word queue is empty before

the operation is attempted.

A word queue may be constructed by defining only the
pointers qs and q; since, if the queue is cleared (via Q.C)
before it is used, the pointers q, and d3 will be automati-
cally established. For example, the word queue whose address
is Q may be constructed by the following two statements, where

€ 1is an expression whose value is n + 2:

Q $DC *4e
$DS €

As an example of the manipulation (but not application)
of word queues, consider a task, whose entry point is TASK, which
stores sequential integers on a first-in, first-out basis in
the word queue FIFO until the queue is full, and then copies
words from FIFO into another word queue LIFO on a last-in, first-
out basis. Both FIFO and LIFO will be assumed to have a capacity
of X words, where X is a predefined symbol. An algorithm for

this task is given below. (T.F 1is described in Section 3.2.)
TASK LAC =FIFO GET ADDRESS OF FIFO QUEUE

JMS* =Q.C CLEAR FIFO QUEUE

LAC =LIFO GET ADDRESS OF LIFO QUEUE

JMS* =Q.C CLEAR LIFO QUEUE

DZM COUNT START COUNTING AT ZERO
LOOP1 LAC COUNT GET VALUE OF INTEGER

LMQ SET UP PARAMETER

LAC =FIFO GET ADDRESS OF FIFO QUEUE

-11-

JMS* =Q.A ADD INTEGER TO QUEUE
JMP LOOP2 COPY INTO OTHER QUEUE
ISZ COUNT INCREMENT COUNTER
JMP LOOP1 QUEUE NEXT INTEGER

LOOP2 LAC =FIFO GET ADDRESS OF FIFO QUEUE
JMS* =Q.F FETCH WORD FROM QUEUE
JMS* =T.F TERMINATE TASK
LMQ SET UP PARAMETER
LAC =LIFO GET ADDRESS OF LIFO QUEUE
JMS* =Q.I INSERT WORD ON QUEUE
$DC 0 PROGRAM SHOULD NEVER GET HERE
JMP LOOP2 COPY NEXT WORD

FIFO $DC *+X+3
$DS X+3

LIFO SDC *+X+3
SDS X+3

3.2 Task Scheduling and I/O Device Allocation

The following system subroutines have been defined for

controlling task scheduling:

T.S - The task whose address appears in bits 3-17 in
the AC is scheduled for execution.

T.P - The task whose entry point is the location
immediately preceding the call to T.P is sched-
uled for execution, and execution of the task
which called T.P is terminated.

T.F - Execution of the task which called T.F is

termina‘ted.

As an example of the use of these system subroutines,
consider a task, whose entry point is SCHED, which schedules the
two tasks TASK1l and TASK2 after a nonzero value is stored (by
some other task) in location SWITCH. One algorithm for this
task is the following:

-12-

SCHED JMS CHECK SKIP IF SWITCH IS SET
JMS* =T7.P WAIT FOR SWITCH TO BE SET
LA =TASK1 GET ADDRESS OF FIRST TASK
JMS* =T.S SCHEDULE FIRST TASK
LAC =TASK2 GET ADDRESS OF SECOND TASK
JMS* =T.S SCHEDULE SECOND TASK
JMs* =T.F TERMINATE TASK

CHECK $DC 0
LAC SWITCH GET SWITCH VALUE
SZA SKIP IF SWITCH NOT SET
IS2 CHECK INDICATE SUCCESS
JMP* CHECK RETURN

The call to T.P is given whenever the subroutine CHECK produces
a failure return (in the same sense that some system subroutines
produce failure returns) to reschedule the call to CHECK. Be-
cause tasks are scheduled on a first-in first-out basis, the
rescheduled call to CHECK is not executed until each other eli-
gible task in the task queue has been executed.

A task allocates and releases I/0 devices by calling
appropriate system subroutines, supplying them with "allocation
masks." An allocation mask is a representation of the set of
I/0 devices which are involved in an allocation operation. Each
bit position in the mask is associated with one I1/0 device. 1If
a bit position contains a 1, the corresponding I/0 device is
involved in the operation; otherwise, it is not. The bit posi-
tion assignments are given by the following table:

Bit Position I/0 Device
9 201 Dataphone Input
10 201 Dataphone Output
11 Reader
12 Punch
13 Keyboard
14 Teleprinter
15 D/A Converter
16 Push Buttons

17 Display

-13-

The following system subroutines have been defined

for controlling I/0 device allocation:

T.A - The I/0 devices

specified by the allocation mask

in bits 9-17 of the AC are allocated. The

calling task is terminated,

and the return from

this subroutine is scheduled as a task to be

executed after the specified devices become

available. Bits 0-4 of the AC are ignored.

The I/0 devices specified by the allocation mask
in bits 9-17 of the AC are released. Bits 0-4

of the AC are ignored.

In order to guarantee that all scheduled user tasks

become eligible for execution in a finite amount of time, I/0

device allocation must be performed according to the following

rule:

Whenever an I/0 device is allocated, all other I/0

devices which are to be allocated before it is

released must also be allocated.

As an example of I/O device allocation, consider two
tasks, which are scheduled one immediately after the other,

whose I/0 device allocation activity is summarized by the fol-

lowing tables (where ti,k+l > ti,k):

Task #1l:
Time
t

11
12
13
14
15

t

Task #2:

Time

21
22
23

Devices Allocated

Devices Released

A
B

C

Devices Allocated

C
B

-14-

Assume the rule given above is ignored, and the I,/0 devices
are allocated precisely as shown in the above tables. Then,
if t22 > t

not release device B until it can allocate device C, and Task

12 > t21 t14 + o and t22+ © because Task #1 will

#2 will not release device C until it can allocate device B.
By applying the allocation rule to the above tables,
the following new tables are obtained:

Task #1:
Time Devices Allocated Devices Released
t'll A,B,C =
t'o - B.C
L} —
th13 B,C
t'4 - A.C
L} -
t 15 C
t' 6 - B.C
Task #2:
Time Devices Allocated Devices Released
L} -
t 21 B,C
' -
t 22 B
L} —
t 23 B
t'oa - B.C

With this modification, all tasks will become eligible for
execution. (A new task is scheduled and the calling task is
terminated each time I/0 devices are allocated.)

A subroutine which may be called by several concurrent-
ly executing tasks and which allows tasks other than the one
which called it to execute before it returns is in danger of
being reentered from one task while it is servicing another.

This event results in the loss of the return address for the
subroutine and perhaps some of the data upon which the sub-
routine operates. To facilitate the writing of reentrable sub-
routines (i.e., subroutines which are protected against reentry),

the following system subroutines have been defined:

-15-

T.L - Lock subroutine against reentry. If the loca-
tion which immediately follows the call to T.L
does not contain zero, the call to the subroutine
whose entry point immediately precedes the call
to T.L is rescheduled. Otherwise, the content
of the location which immediately precedes the
call to T.L is copied into the location which
immediately follows the call to T.L.

T.U - Unlock reentrable subroutine. The location
whose address is the address contained in the
word which immediately follows the call to T.U
plus 2 is zeroed, and a JMP to the address which
was stored in that location before it was zeroed

is executed.

Because both T.L and T.U must preserve the contents
of the AC and MQ, these subroutines have the following special

calling sequences:

Calling sequence for T.L:

-—-- $DC 0 (reentrable subroutine entry
point)
JMS* =T.L
$DC 0 (save location for T.L)
-—-- (return)

Calling sequence for T.U:

JMS* =T.U
$DC Soos (subroutine entry point)

As an example of the use of T.L and T.U, consider the
reentrable subroutine WAIT which returns to its calling task
after all tasks on the task queue have had a chance to execute.

An algorithm for this subroutine is the following:

WAIT $DC 0
JMS* =T.L SET REENTRY LOCK

$DC 0 SAVE LOC FOR T.L

-16-

SKP SCHEDULE NEXT LOC AS TASK

SKP RETURN

JMS* =T.P SCHEDULE PREVIOUS LOC AS TASK
JMS§* =T.U UNLOCK SUBROUTINE & RETURN
$DC WAIT SUBROUTINE ENTRY POINT

3.3 Format Conversions

Characters are represented internally in the System
by 6-bit codes to facilitate storage of three characters per
word. Since ASCII character codes must be available for tele-
type, paper tape, and dataphone I/0, conversions between ASCII
and 6-bit codes must be frequently performed. In addition,
the ll-bit sign-magnitude coordinates required by the display
control's vector mode must often be converted to and from 18-
bit two's complement representation. To satisfy these require-

ments, the following system subroutines have been defined:

C.B6 - The binary number given in the AC is converted
to its corresponding 6-bit octal representation,
which is returned in the AC and MQ (high-order
digits in AC, low-order digits in MQ).

C.6A - The 6-bit code given in bits 12-17 of the AC
is converted to the corresponding ASCII code,
which is returned in bits 10-17 of the AC, with
bits 0-9 cleared and the parity bit of the
ASCII code (i.e., bit 10 of the AC) set, re-
gardless of the parity. Bits 0-11 of the AC
are ignored on entry.

C.A6 - The ASCII code given in bits 10-17 of the AC
is converted to the corresponding 6-bit code,
which is returned in bits 12-17 of the AC,
with bits 0-11 cleared. Bits 0-9 of the AC
and the parity bit of the ASCII code (i.e.,
bit 10 of the AC) are ignored on entry.

-17-

C.CB - The vector mode sign-magnitude display coordi-
nate given in bits 7-17 of the AC is converted
to the corresponding two's complement represen-
tation, which is returned in the AC. Bits 0-6
of the AC are ignored on entry.

C.BC - The two's complement number in the AC is con-
verted modulo 210 to the corresponding vector
mode sign-magnitude display coordinate repre-
sentation, which is returned in bits 7-17 of

the AC with bits 0-6 cleared.

The 6-bit codes used by the System may each be repre-
sented by two octal digits as shown by the following table:

Second Octal Digit

0 1 .2 3 4 5 6 7
o 0l0 1 2 3 4 5 6 1
18 9 A B C D E F
Q@ 2]/]6 H I J K L M N
—
S 3]0 P Q R S T U \Y
g 4|w x Y 2z * / + -
500)y €1 < = > 4
R o6« 0 5 5 ? ! '
b
71" $ # & cr f sp

cr = carriage return

Lf = line feed

sp = space

All ASCII characters which do not appear in the table
are mapped into 778 . The only printing characters which are

treated in this manner are "g%", "@", and " ".

3.4 Buffered 1/0

Input data from the dataphone, the paper tape reader,
and the keyboard, as well as output data to the dataphone,

-18-

paper tape punch, and teleprinter, are buffered by the System.
In the event that an input buffer is empty or an output buffer
1s full and the system subroutine which transfers data between
the buffer and a task is called, the return from the subroutine
is scheduled as a task to be executed only after the state of
the buffer changes, and execution of the calling task is termi-

nated.

3.4.1 Dataphone I/0

The Zollowing system subioutines have been defined

for managing the 201 dataphone buffers:

B.FI* - An image is fetched from the 201 dataphone
input buffer and is returned in bits 10-17
of the AC. Bits 0-9 of the AC are cleared,
unless the image is an end-of-record charac-
ter in which case bits 0-4 are set and bits
5-9 are cleared. A failure return is made
if the data set is not connected.

B.FO* - The image in bits 10-17 of the AC is sent to
the 201 dataphone output buffer. If bit 0
of the AC is set, the image is interpreted
as an end-of-record character, and transmis-
sion is begun. A failure return is made
before the image is buffered if the data set

is not connected.

Since actual dataphone transmission is record-oriented
(although transfer of data between the dataphone buffers and
tasks is not), the return from B.FI to the calling task is de-
layed until the dataphone input buffer contains a complete re-
cord, and the return from B.FO is delayed until the last record
transmitted has been affirmatively acknowledged by the other
party. In simpler terms, the dataphone input buffer is con-
sidered to be empty whenever it does not contain a complete
record, and the dataphone output buffer is considered to be
full whenever the last transmitted record has not been affirme-

tively acknowledged.

-19-

Dataphone records are formatted according to the
conventions ador :~d by The University of Michigan Computing
Center at the time of this report. Each record is formatted
(if transmitted) or interpreted (if received) by the System

and consists of the following sections:

1. Several synchronous idle (SYN) characters (0268).
(At least two are required when receiving; eight are trans-
mitted.)

2. A data link escape (DLE) character (2208).

3. Data. The 8-bit images in this section are arbi-
trary binary, with the exception that a DLE character (with
either parity) is preceded by a DLE. The first DLE is ignored
when the record is received, and serves only to cause the second
one to be interpreted as data. (A pair of characters consisting
of a DLE followed by a SYN is ignored when receiving, although
this sequence is never transmitted.)

4. A DLE character.

5. An end-of-record character.

6. The high-order 8 bits of the block check (des-
cribed below).

7. The low-order 8 bits of the block check (des-
cribed below).

8. A pad character (3778).

In order to facilitate detection of burst errors, a
16-bit cyclic block check is included in each dataphone record.
For purposes of computing this block check, the data sequence
(consisting of the concatenation of the second through the
last data images, plus the end-of-record character) is regarded
as a cyclic polynomial code. The block check is obtained by
simultaneously multiplying the polynomial representation of
the data sequence by X16 and dividing it by x16 + X15 + X2 +1
(where the coefficients of the polynomials are taken from the
field of two elements). The following diagram illustrates this

operation:

R e el U
kol /*@

l6-bit block check at end of operation (shift
register initially clear)

] -

end-of-record last data third data second
character image image data image

NG _

V

Data Sequence
(low-order bits of each image used first)

Whenever a dataphone record is received by either
party, the block check is computed and compared with the re-
ceived block check. If the two block checks match, the data-
phone record is assumed to have been received correctly, and
an affirmative acknowledgment is returned when the receiving
party is ready for the next record. However, if the two block
checks do not match, a negative acknowledgment, which is a
request for the record to be retransmitted, is returned, and
the incorrectly received record is discarded. The System
assumes complete responsibility for managing acknowledgments
and retransmissions for the 339.

Whenever a dataphone record is received with a cor-
rect block check, the first data image is examined. If it is
zero, user tasks are given access to it via the system subrou-
tine B.FI. Otherwise, a special 20l1-to-teleprinter task is
scheduled to type the record (interpreting it as a sequence of
ASCII codes) as soon as the teleprinter becomes available. 1In

-21-

this way, unsolicited messages from the remote party are typed
and routed clear of tasks which are using the dataphone.

Whenever the end-of-record character for either a
transmitted or received record is an enquiry (0058) or an end-
of-transmission (2048), both dataphone buffers (input and out-
put) are cleared, and the last record transmitted is considered
to have been affirmatively acknowledged. Note that transmitted
records of this form will be processed normally by the System
(except that immediate acknowledgment will be assumed), but
received records of this form will be discarded once the end-
of-record character is detected.

As an example of the use of B.FI and B.FO, consider
the task MIRROR which receives 64 dataphone images in an arbi-
trary number of records (rnot including the zero images required
to route records to tasks), transmits all of them in one data-
phone output record, and ignores the remainder of the last data-
phone input record which it examined. An algorithm for this

task is the following {(L.T is described in Section 3.11):

MIRROR LAW 600 GET ALLOCATION MASK

JMS * =T.A ALLOCATE 201 INPUT & OUTPUT

LAW 17700 LOAD AC WITH -64

DAC COUNT INITIALIZE IMAGE COUNT
START JMS* =B.FI GET REDUNDANT IMAGE

JMP HELP DATA SET NOT CONNECTED
READ JMS* =B.FI GET INPUT IMAGE

JMP HELP DATA SET NOT CONNECTED

SPA SKIP IF NOT END OF RECORD

JMP START READ NEXT RECORD

JMS* =B.FO PUT IN OUTPUT BUFFER

JMP HELP DATA SET NOT CONNECTED

ISz COUNT SKIP IF RECORD LONG ENOUGH

JMP READ READ NEXT IMAGE

JMS* =B.FI GET INPUT IMAGE

JMP HELP DATA SET NOT CONNECTED

SMA
JMP
JMS*
JMP
LAW
JMS*
JMS*
HELP LAW
JTMS*
LAW
JMS*
LAC
JMS*
LAW
JMS*
JMS*
TEXT $DC
STEXT
$DC

-22-

SKIP IF END OF RECORD

*-3 READ ANOTHER IMAGE
=B.FO TERMINATE OUTPUT RECORD
HELP DATA SET NOT CONNECTED

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT
=T.F TERMINATE TASK

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT
10 GET ALLOCATION MASK

=T.A ALLOCATE TELEPRINTER
=TEXT GET ADDRESS OF TEXT LIST
=L.T TYPE TEXT LIST

10 GET ALLOCATION MASK

=T R RELEASE TELEPRINTER

=T.F TERMINATE TASK

20

' ATA SET NOT CONNECTED. 'MIRROR' TERMINATED."
747577 '

3.4.2 Paper Tape 1/0

The following system subroutines have been defined

for managina the

B.R* -

B.p* -

paper tape reader and punch buffers:

An image is fetched frcm the reader buffer and
returned in bits 10-17 of the AC. Bits 0-9 of
the AC are cleared. Only one end-of-record
character (zero) may be returned by two succes-
sive calls to B.R. A failure return is made
if the reader is out of tape and the reader
buffer is empty.

The image in bits 10-17 in the AC is sent to
the punch buffer. A failure return is made

if the punch is out of tape and the punch
buffer is full.

-23-

Paper tape formats are arbitrary, subject to the re-
striction that a zero image (i.e., a line of blank tape) which
immediately follows a nonzero image is interpreted as an end-of-
record character and all other zero images are ignored. However,
the format which is read and punched by the data transfers of
the idle-time task (Section 4.1) is recommended for compatibil-
ity reasons. 1In this format, the two high-order bits of each
8-bit tape image are interpreted as control information, and
the remaining 6 bits are interpreted as data. The two control

bits are interpreted as follows:

00 mode change

01 binary origin

10 binary data

11 alphanumeric data

There are 64 possible mode changes (designated by
the low-order 6 bits of a mode change tape image), only one of
which has been defined at the time of this writing, i.e., the
end-of-record character 0008. (An example of possible future
mode change assignments is a set of relocation modes for relo-
catable binary records.)

A binary block consists of three binary origi.. images
followed by a multiple of three binary data images. The block
represents a set of 18-bit words to be loaded starting at the
address indicated by the data bits of the three origin images.

For example, the binary block which indicates that location

235728 should contain 6213658 and that location 235738 should
contain 1762348 is the following:

102

135 origin 23572

172

262

213 data 621365

265

217

262 data 176234

234

-24-

A binary record is a concatenation of binary blocks, followed

by the end-of-record character (0008).

An alphanumeric record consists of an arbitrary

number of alphanumeric tape images (where the 6 data bits in

each image represent a 6-bit character code), followed by an

end-of-record character (0008).
As an example of the use of the paper tape I/O system

subroutines, consider a task COPY which copies one record of

paper tape:

COPY LAW
JMS*
JMS*
JMP
SMA
JMP
JML*
JMP
JMP
JMS*
JMP
LAW
JMS*
JMS*
RERR LAC
SKP
PERR LAC
DAC
LAW
JMS*
LAW
JMS*
LAC
JMS*
LAC

140

RERR

*4+4
=B.P
PERR
COPY+2
=B.P
PERR
140
=T.R
=T.F
=RERRT

=PERRT
TEXT
140
=T.R
10
=T.A
TEXT
=L.T
=END

GET ALLOCATION ![IASK
ALLOCATE READER & PUNCH
GET IMAGE FROM READER
READER OUT OF TAPE

SKIP IF NOT END OF RECORD
END OF RECORD

PUNCH IMAGE

PUNCH OUT OF TAPE

READ NEXT IMAGE

PUNCH END OF RECORD
PUNCH OUT OF TAPE

GET ALLOCATION MASK
RELEASE READER & PUNCH
TERMINATE TASK

GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC

GET ADDRESS OF TEXT LIST
SAVE ADDRESS OF TEXT LIST
GET ALLOCATION MASK
RELEASE READER & PUNCH
GET ALLOCATION MASK
ALLOCATE TELEPRINTER

GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC

GET ADDRESS OF TEXT LIST

-25-

JMS* =L.T TYPE TEXT LIST
LAW 10 GET ALLOCATION MASK
JMS* =T.R RELEASE TELEPRINTER
JMS* =T.F TERMINATE TASK
RERRT $DC
STEXT "READER"
PERRT $DC 2
STEXT "PUNCH"
END $DC 15

STEXT "OUT OF TAPE"

$DC 747577

STEXT "COPY TASK TERMINATED"
$DC 747577

3.4.3 Teletype I/0

The following system subroutines have been defined

for managing the keyboard and teleprinter buffers:

B.K - A 6-bit character is fetched from the keyboard
buffer and returned in bits 12-17 of the AC.
Bits 0-11 of the AC are cleared.

B.T - The three six-bit characters in bits 0-5, 6-11,
and 12-17 of the AC are sent to the teleprinter
buffer to be typed in respective order. (The
null character 778 will not be typed, even as

a non-printing character.)

As an example of the use of these subroutines, con-
sider the task ENCODE which accepts characters from the key-
board and types the octal representation of the corresponding
6-bit codes. When a null character is typed, the task is
terminated. An algorithm for this task is the following:

ENCODE LAW 30 GET ALLOCATION MASK
JMS* =T.A ALLOCATE KEYBOARD & TELEPRINTER
JMS* =B.K GET CHARACTER FROM KEYBOARD
SAD =77 SKIP IF NOT NULL CHARACTER

JMP END TERMINATE TASK

-26-

JMS* =C.B6 CONVERT TO 6-BIT OCTAL CODE
LACQ GET LOW-ORDER DIGITS
XOR =770000 REMOVE HIGH-ORDER ZERO
JMs* =B.T TYPE ENCODED CHARACTER
LAW 17475 GET CARRIAGE RETURN, LINE FEED CODE
JMS* =B.T TYPE CARRIAGE RETURN, LINE FEED
JMP ENCODE+2 PROCESS NEXT CHARACTER
END LAW 30 GET ALLOCATION MASK
JMS* =T.R RELEASE KEYBOARD & TELEPRINTER
JMS* =T.F TERMINATE TASK

3.5 Nonbuffered I/0

Three devices which might appear to require buffering
are not buffered: the clock, the A/D converter, and the D/A
converter. The clock, which is normally used in an interactive
system to check for the occurrence of certain events within
specified time intervals, is often programmed in a multiprogram-
ming system such that any task may use it at any time. This
is accomplished through the use of a buffer into which entries
(each consisting of a return pcinter and a time interval) may
be inserted at arbitrary points. Since the buffer required is
considerably more complicated than those used by other devices,
the cost of programming the clock in this manner was found to
be excessive.

Since A/D converter data should be interpreted in
real time, these data are not buffered. Instead, whenever a
task calls the system subroutine to obtain data from the A/D
converter, the device is selected, the return from the subrou-
tine is scheduled as a task to be executed after the conversion
is complete, and execution of the calling task is terminated.

The D/A converter requires only two microseconds to
produce an output after it is selected, whercas the minimum
time between selections of a particular D/A channel is four
microseconds. Conscquently, the System does not buffer D/A

converter data.

-27-

The following system subroutines have been defined

for nonbuffered 1/0:

N.C - Execution of the calling task is terminated and
the return from N.C is scheduled as a task to
be executed at least the number of sixtieths
of a second later which is the two's complement
of the number given in the AC.

N.A - The channel of the A/D converter specified in
bits 12-17 of the AC is selected, and the con-
verted value, when obtained, is returned in
bits 0-11 of the AC. Bits 12-17 of the AC are
cleared. The returned value, if interpreted as
an ordinary two's complement number, is -2111+V/5),
where V is the applied input voltage (which
ranges from 0 to -10 volts).

N.Dl- D/A converter channel #l1 is selected. The out-
put of the channel is set to -5(1+2-17A) volts,
where A is the content of the AC.

N.D2- D/A converter channel #2 is selected. The out-
put of the channel is set to -5(1+2"17a) volts,
where A is the content of the AC.

N.D3- D/A converter channel #3 is selected. The out-
put of the channel is set to -5(1+2_17A) volts,
where A is the content of the AC.

As an example of a use of N.C, consider the task
PROMPT which types "PLEASE TYPE NOW" once 2bout every eight
seconds until the operator types something on the keyboard,
and types "THANK YOU" when the operator finishes typing a line.
An algorithm for this task is the following:

PROMPT LAW 30 GET ALLOCATION MASK
JMS* =T.A ALLOCATE KEYBOARD & TELEPRINTER
DZM DONE INDICATE NO KEYBOARD RESPONSE

LAC =POLITE GET ADDRESS OF KEYBOARD CHECKER

JMS*
LAC
JMS*
LAW
JMS*
LAC
SNA
JMP
JMS*
JMS*
XOR
DAC
SAD
JMP
JMS*
JMP
LAC
JMS*
LAW
JMS*
JMS*
$DC
STEXT
$DC
$uC
$DC
STEXT
$DC

POLITE

TXT1

TXT2

=T.S
=TXT1
=L.T
-1000
=N.C
DONE

PROMPT+5
=T.F
=B.K
=777700
DONE
=777774
*+3
=B.T
POLITE
=TXT2
=L.T

30

-28-

SCHEDULE KEYBOARD CHECKER
GET ADDRESS OF TEXT LIST
TYPE "PLEASE TYPE NOW"

GET TIME PARAMETER

WAIT ABOUT 8 SECONDS

GET KEYBOARD RESPONSE SWITCH
SKIP IF RESPONSE OBTAINED
PROMPT OPERATOR AGAIN
TERMINATE EXECUTION

GET KEYBOARD CHARACTER
PRECEDE WITH NULL CHARACTERS
SET KEYBOARD RESPONSE SWITCH
SKIP IF NOT CARRIAGE RETURN
END OF INPUT LINE

ECHO CHARACTER ON TELEPRINTER
GET ANOTHER CHARACTER

GET ADDRESS OF TEXT LIST
TYPE "THANK YOU"

GET ALLOCATION MASK

RELEASE KEYBOARD AND TELEPRINTER
TERMINATE EXECUTION

"PLEASE TYPE NOW"

747577
5
747577

"THANK YOU"

747577

As an example of the use of N.A, consider the task

COMPAR which samples channels 0 and 1 of the A/D converter until

the inputs on the two channels are close enough to each other

that the same value is read from each channel.

When this condi-

tion is satisfied, the comment "ANALOG INPUTS MATCH" is typed

on the teletype.

An algorithm for this task is the following:

-29-

COMPAR CLA GET CHANNEL 0 PARAMETER
JMS* =N.A CONVERT CHANNEL 0 VALUE
DAC VALUE SAVE CHANNEL 0 VALUE
LAW 1 GET CHANNEL 1 PARAMETER
JMS* =N.A CONVERT CHANNEL 1 VALUE
CMA FORM 1 COMPLEMENT
TAD VALUE ADD CHANNEL 0 VALUE
CMA FORM DIFFERENCE IN VALUES
sza SKIP IF VALUES EQUAL
JMP COMPAR OBTAIN NEW SAMPLES
LAW 10 GET ALLOCATION MASK
JMS* =T.A ALLOCATE TELEPRINTER
LAC FOUND GET ADDRESS OF TEXT LIST
JMS* =L.T TYPE "ANALOG INPUTS MATCH"
LAW 10 GET ALLOCATION MASK
JMS* =T.R RELEASE TELEPRINTER
JMS* =T.F TERMINATE EXECUTION

FOUND $DC 10

$TEXT "ANALOG INPUTS MATCH"
$DC 747577

3.6 Push-Button Processing

The following system subroutines have been defined
for managing the push buttons which are associated with the

display control:

P.T - The task whose address is given in bits 3-17 of
the AC is declared to be the service task for
manual operation of the push buttons (i.e.,
this task is scheduled whenever the state of
the push buttons is altered by the operator).
If the 3C contains zero when P.T is called, a
null s¢ svice task (i.e., one which calls P.E
and tecminates) is used.

P.E - Manual operation of the push buttons 1s enabled
(i.e., the state of the push buttons may be
changed by the operator).

-30-

P.D - Manual operation of the push buttons is dis-
abled (i.e., the state of the push buttons may
not be changed by the operator). A call to P.D
is <effected whenever the operator changes the
state of the push buttons.

P.R - Push buttons 0-1l1 are read into bits 6-17 of
the AC, and bits 0-5 of the AC are cleared.

P.S - Push buttons 0-1l1 are set according to bite
6-17 of the AC.

As an example of the use of these subroutines, consider
the task BUTTON which enables manual operation of the push but-
tons and sets the button numbered one creater (modulo 1Z) than
the number of the one pushed by the operator. The procedure is
terminuted and all push buttons are cleared when a keyboard

character is struck. An algorithm for this task is the fcllow-

ing:

BUTTON LAW 22 GET ALLOCATION MASK)
JMS* =T.A ALLOCATE KEYBOARD & PUSH BUTTONS
LAC =SERV GET ADDRESS OF SERVICE TASK
JMS* =pP.T DECLARE SERVICE TASK
CLA GET INITIAL PUSH BUTTON STATE
DAC STATE SAVE FOR USE BY SERV
JMS* -=P.S SET INITIAL PUSH BUTTON STATE
JMS* =P.E ENABLE MANUAL OPERATION
JMS* =B.K GET KEYBOARD CHARACTER
JMS* =P.D DISABLE MANUAL OPERATION
CLA GET FINAL PUSH BUTTON STATE
JMS* =P.S CLEAR PUSH BUTTONS
CLA GET NULL SERVICE PARAMETER
JMS* =pP.T DECLARE NULL SERVICE TASK
LAW 22 GET ALLOCATION MASK
JMS* =T.R RELEASE KEYBOARD & PUSH BUTTONS
JMS* =T.F TERMINATE TASK

SERV JMS* =P.R READ PUSH BUTTONS

-31-

STATE ISOLATE LAST BUTTON PUSHED
FORM MASK FOR SETTING BUTTONS
SKIP IF NOT BUTTON #11

=4000 SEYT RITTON #0 BIT

ETATE SAVE NEW PUSH BUTTON STATE
S SET NEW PUSH BUTTON STATE
=p.T ENALGUE MANUAL OPERATION
=T.% TERM1INATE TASK

3.7 Display Control Communication

The following system subroutines have been defined

for communicating with the display control:

D.E - Display interrupts are enabled (i.e., a light

pen flag interrupt or an internal stop inter-
rupt will cause the System to read the display
status information required for D.A, D.Y, D.X,
and D.0O and to schedule the appropriate ser-
vice task).

Display interrupts are disabled (i.e., the
System will ignore light pen flag and internal
stop interrupts). A call to D.D 1is effected
whenever a display interrupt occurs.

The task whose address is given in bits 3-17
of the AC is declared to be the service task
for light pen flags. This task is scheduled
whenever the light pen sees an intensified
portion of the display on which the light pen
is enabled (see Section 3.10), providing that
display interrupts are enabled (via D.E). 1If
the AC contains zero when D.P is called, a
null service task (i.e., one which calls D.E
and terminates) is used.

The address of the display on the last display
interrupt is returned in bits 3-17 of the AC
with bits 0-2 clear.

-32=~

D.Y - The v coordinate of the display (measured
relative to the center of the screen in scalc
x1l) on the last display interrupt is returne
in the AC as a two's ccmpiement number.

D.X - The x coordinate of the display (measured
relative to the center of :tne screen in scal«
x1l) on the last display interrupt is returned
in the AC as a two's complement number.

D.O*- The address which is the operand of the push
jump instruction which was the number of entr:.cs
given in bits 12-17 of the AC above the last
entry in the display control's push-down list ¢
the last display interrupt is returned in bits
3-17 of the AC with bits 0-2 clear. (A more
meaningful interpretation of this subroutine
may be obtained from the examples in Section
3.10.) A failure return is made if the indicat~d

push jump instruction does not exist.

The external stop interrupt and the edge flag inter-
rupt are not used. The function of the external stop interrupt
may be performed via an unconditional internal stop interrupt
(via S.LU, which is described in Section 3.10). Since the
virtual display area established by the System is 75 inches by
75 inches, the edge flags, if used, would occur on the left
and lower edges of the screen, but not on the upper or right
edges. Because of this inconsistency, the edge flags are not

used.

3.8 Light Pen Tracking
A light pen tracking algorithm is supplied with the

System to enable user tasks to follow the motion of the light
pen. This algorithm has been empirically determined to track
the light pen at any attainable speed, and it is insensitive

to changes in direction because it does not involve prediction.

-33-

The tracking algorithm may be described with the aid

of the following diagram:

12

——
11
it
10
-
9
-
8
~iffl
L
6
-
5
™ 4
o
34| 2

When the display for the tracking algorithm is begun,
strokes 1 and 2 are drawn. (Strokes 1 and 2 are actually coin-
cident.) The x coordinate of the first light pen hit on each
stroke is recorded. 1If both X coordinates are obtained, a new
x coordinate for the tracking cross is computed as their aver-
age. Strokes 3 and 4 are then drawn, and a new y coordinate
for the tracking cross is computed in similar manner if both

y coordinates are obtained.

-34-

I1f any one of the four coordinates required to com-
pute a new positioﬁ of the tracking cross is not obtained, a
search pattern consisting of concentric squares 5 through 12
is drawn. When a light pen hit is detected on any one of these
squares, the search pattern is terminated, and the tracking
cross is placed at the coordinates of the hit. If square 12
is completed and no light pen hit is detected, the tracking
process is terminated. '

Whenever the tracking cross is positioned via the
search pattern, rather than by averaging coordinates, the
tracking display is immediately repeated. The remainder of the
active display structure (Section 3.9) is not displayed until
the tracking cross can be positioned by averaging coordinates.
In this way, the tracking display is given priority over all
other displays whenever the light pen is being moved rapidly
and tracking is in process.

The following system subroutines h:e been defined

for controlling the tracking process:

X.I - The tracking cross is placed at the y coordinate
given in the AC and the x coordinate given in
the MQ, and the tracking process is begun. The
coordinates, which are given as two's complement
numbers, are interpreted modulo 210 measured
in scale x1 relative to the center of the screen.

X.R - The tracking process is resumed with the track-
ing cross at the coordinates where tracking was
last terminated (by X.T or by completion of
square 12).

X.T - The tracking process is terminated. (The track-
ing cross is removed from the screen.)

X.S*- A failure return is made if tracking is in
process.

X.Y - The y tracking coordinate is returned in the AC
as a two's complement number measured in scale x1

relative to the center of the screen. If tracking

-35-

is not in process, the y ccordinate where track-
ing was last terminated is veturned.

X.X - The x tracking coordinate is returned in the
AC as a two's complement number measured in
scale x1 relative to the center of the screen.
If tracking is not in process, the x coordinate

where tracking was last terminated is returned.

The tracking algorithm is independent of D.E and D.D.

3.9 Display Structure Topology

Each entity to be displayed is represented in the
display structure provided by the System as a position in the
hierarchy of the entities which constitute the picture. Each
position in the hierarchy is implemented as a display subrou-
tine which is called a level. A level which is being executed
by the display control at least once on every frame is called
an active level. One particular level, which is always active
and is an integral part of the system, represents the 75 inch
by 75 inch virtual display area of the display control and is

called the highest active level.

A display subroutine which is not itself e level ard
which contains no calls to levels is called a leaf. All of
the drawing of visible portions of the picture is accomplished
by leaves. A leaf is subject to the restriction that the state
of the display (coordinates, light pen status, scale, intensity,
blink status, light pen sense indicator) must be the same when
the subroutine returns as when it is entered. Consequently,
because the display control's POP instruction does not restore
coordinates, the only data modes which are useful in leaves
are vector mode, short vector mode, and increment mode.

The set L of all levels and leaves (both active and
non-active) is partially ordered, i.e., there exists a relation

“i" defined on L such that

-36-

(1) VxeL < x
(2) Vx, yeL X <y and y < x=>x =y
(3) Vx, y, zel X <y and y <z =>x <z

The semantic interpretation of the expression x <y is that
any modification of the entity represented by the level x (or
in the drawing produced by the leaf x, if x 1is a leaf) will
effect a corresponding modification in the entity represented
by the level y. When x <y , the level y ic said to own the
level or leaf x. An attribute of a level y is a level or
leaf x such that x <y and there does not exist a level 2z
different from x and y such that x <z and 2z <y

As an example of this interpretation of the relation
"<", consider a triangle which is to be represented internally

as a set of three lines:

a

A display structure for this triangle may be represented by
the following diagram. (In the diagram, x < y 1is represented
by a line joining x and y such that y appears above x

in the diagram.) triangle

line a line b 1line c

Note from the diagram that the triangle owns each of its
sides (lines a, b, and c). If line b is now deleted, the

display structure assumes the following form:

triangle

. line c
line a

-37-

The triangle is obviously modified by this operation (in fact,
it is no longer a triangle). However, the fact that the tri-
angle has been modified does not imply that all of its attributes
have been modified. 1In this example, lines a and ¢ remain un-
changed.

The set X of all active levels and the leaves which
they own is also partially ordered, since X <UL and L is
partially ordered. Because the highest active level represents
the virtual display area of the display control, it owns every
element of X. Consequently, if the operator "+" is defined
by the conditions

(1) vx, yeX + yeX
(2) ¥x, yeX <X +y and y < x +y
and (3) vx, y, 2eX X<z and y<z==x+y <z,

the pair (X,+) is a semilattice. The semantic interpretation
of the expression x+y 1is that x+y is a level which repre-
sents the most primitive entity which owns both of the entities
represented by the levels x and vy .

As an example of the interpretation of the operator
"+", consider the folloving drawing of one exterior wall of a

house:

For purposes of illustration, assume that all three windows in
the picture are identical, each instance of each entity in the
drawing is represented by a separate level, and the drawing
shown is the only one being displayed. The display structure,
then, assumes the following form:

-38-

highest active level

wall of house

perimeter
of wall

window in perimeter
door of door

window drawing

Assume that a task which records two references to the picture
with the light pen is being executed, and that the most primi-
tive entity which owns both items referenced is to be deleted.
Clearly, the portion of the structure which should be removed
consists of everything which x+y owns, where x and y are
the two levels which represent the entities referenced with
the light pen. For example, if the door perimeter and a win-
dow in the wall of the house are referenced, the entire wall
of the house is deleted, but if the door perimeter and the
window in the door are referenced, only the door is deleted.

A level is implemented as the data structure shown

by the following diagram (all numbers are octal):

Head 4
Node
Tail <

for managing the display structure topology.

-39-

clear LPSI or no operation

count parameters or no operation
set parameters

enter vector mode

y coordinate (no intensity bit)
x coordinate and escape bit

jump instruction

pointer to first node or tail

push jump instruction
pointer to attribute

jump instruction

pointer to next node or tail

conditional skip

internal stop

address of service task

blink off or no operation

enter vector mode

-y coordinate (no intensity bit)
-x coordinate and escape bit
pop instruction

76----

763000

-

The following system subroutines have been defined

their use are given in Section 3.10.)

S.TL*- A level is created and its address

(Examples of

(i.e., the

address of the first location in its head) is
returned in bits 3-17 of the AC with bits 0-2
clear. A failure return is made if the level

cannot be created because of insufficient free

display storage.

S.TD*- The non-active level whose address is given in

bits 3-17 of the AC is destroyed.

A failure

return is made if the level has attributes.

S.TI*- The level or leaf whose address is given in
bits 3-17 of the MQ is inserted into (i.e.,
made an attribute of) the level whose address

is given in bits 3-17 of the AC.

The created

node is inserted immediately after the head

S.TR*-

-40-

in the level data structure. A failure re-
turn is made if the required node cannot be
created because of insufficient free display
storage.

The attribute whose address is given in bits
3-17 of the MQ is removed from the level

whose address is given in bits 3-17 of the

AC. This subroutine does not return until

the display control has completed the current
frame. (Tasks other than the calling task are
executed during this delay.) A failure return
is made if the specified attribute is not

found in the specified level.

3.10 Level Modification

The following system subroutines have been defined

for modifying existing levels:

S.LH -

S.LY -

S.LX -

The address of the highest active level 1is
returned in bits 3-17 of the AC with bits 0-2
clear.

The y coordinate of the level whose address

is given in bits 3-17 of the AC is set to the
value given in the MQ. The given coordinate
is interpreted as a two's complement number in
the scale of the specified level, measured
relative to the y coordinate of each level of
which the specified level is an attribute.
This subroutine has no effect on the highest
active level, where the coordinates are at

the center of the screen.

The x coordinate of the level whose address is
given in bits 3-17 of the AC is set to the
value given in the MQ. The given coordinate

is interpreted as a two's complement number in

S.LP -
Bits
9
10-11
12
13
14
15-17
S.LBE-
S.LBD-

-41-

the scale of the specified level, measured
relative to the x coordinate of each level

of which the specified level is an attribute.
This subroutine has no effect on the highest
active level, where the coordinaics are at the
center of the screen.

The scale, intensity, and light pen status are
set on the level whose address is given in bits
3-17 of the AC according to bits 9-17 of the MQ.
The content of the MQ is interpreted as follows:

Interpretation

set scale according to bits 10-11
n, where scale is x2"
set light pen status according to bit 13
light pen status (1 = enabled, 0 = disabled)
set intensity according to bits 15-17

intensity value

This subroutine has no effect on the highest
active level, where the scale is x8, the
intensity is 7, and the light pen is disabled.
The displays generated by calls (either direcct
or indirect) to leaves from the level whose
address is given in bits 3-17 of the AC are
caused to blink with a 0.5-second period. Be-
cause the 339 POP instruction does not restore
the blink status, care must be taken to insure
that this blink is not simultaneously effec-
tive on any level of which the given level is
an owner. This subroutine has no effect on
the highest active level, where blink is dis-
abled.

Blinking of the level whose address is given
in bits 3-17 of the AC is disabled (i.e., the
effect of a call to S.LBE is removed).

Bit
12
13

14
15

-42-

S.LC - The scale and/or intensity is counted up or
down one unit on the level whose address is
given in bits 3-17 of the AC according to bits
12-15 of the MQ, which are interpreted as
follows:

Interpretation

Count scale according to bit 13

1l =

multiply scale by 2, 0 = divide scale by 2

Count intensity according to bit 15

1

S.LS -

S.LL -

increment intensity by unity,

decrement intensity by unity.

This subroutine has no effect on the highest
active level.

“n unconditional scheduling of the task whose
address is given in bits 3-17 of the MQ is
effected whenever display interrupts are en-
abled (via D.E) and the tail of the level whose
address is given in bits 3-17 of the AC is
executed. This subroutine has no effect on

the highest active level.

The task wilose address is given in bits 3-17 of
the MQ is scheduled whenever display interrupts
are enabled (via D.E), the tail of the level
whose address is given in bits 3-17 of the AC
is executed, and the coordinates of that level
are on the screen. This subroutine has no
effect on the highest active level.

The task whose address is given in bits 3-17

of the MQ is scheduled whenever display inter-
rupts are enabled (via D.E), the tail of the
level whose address is given in bits 3-17 of
the AC is executed, and the light pen sense
indicator has been set during execution of that
level. This subroutaine has no effect cn the

highest active level.

-43-

S.LN - The effect of S.LU, S.LS, or S.LL is removed
from the level whose address is given in bits
3-17 of the AC.

Whenever the scale, light pen status, intensity, blink
status, or coordinates are not set on a level, the quantities
which are not set on that level are the same as those on the
level of which it is an attribute.

Some user subroutines which call these system subrou-
tines, as well as those in Section 3.9, are given below. LVL
generates a level, inserts a specified attribute into it, sets
the x and y coordinates and display parameters on the generated
level, and inserts the generated level into a specified owner
level. BUTN calls on LVL, and then establishes a task to be
scheduled whenever the light pen sense indicator is set while
the display control is executing the generated level. BUTX
generates a text leaf from a specified text list, and then calls
on BUTN, using the generated text leaf as the attribute para-
meter. CHEW (which calls on ATTR to find the first attribute
of a level) destroys a given display structure, and salvages
all storage from the destroyed levels and text leaves. The
display structure on which CHEW operates must satisfy two con-
ditions:

(1) It must assume the form of a semilattice.

(2) The maximum element of the display structure must
not be owned by any level (other than itself, if it itself
is a level). (L.D and L.L are described in Section 3.11.)

*CALLING SEQUENCE:

.J JMS LVL

* $DC ———— (LOC CONTAINING POINTER TO OWNER)

* $DC -——-- (Y COORDINATE)

* $DC -——-- (X COORDINATE)

* $DC -———- - (DISPLAY PARAMETER)

G cooo (RETURN IF DISPLAY STORAGE EXCEEDED)

* coo= (RETURN)

-44-

*AC CONTENT ON ENTRY:

* POINTER TO ATTRIBUTE
*AC CONTENT ON RETURN:
* POINTER TO CREATED LEVEL
LVL $DC 0
JMS* =T.L SET REENTRY LOCK
$DC 0
DAC LVL4 SAVE POINTER TO ATTRIBUTE
JMS* =S.TL CREATE A LEVEL
JMP LVL3 DISPLAY STORAGE EXCEEDED
DAC LVL5 SAVE POINTER TO LEVEL
LAC LVL4 GET POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.TI INSERT ATTRIBUTE
JMP LVL2 DISPLAY STORAGE EXCEEDED
LAC* LVL+2 GET FIRST PARAMETER
DAC LVL4 SAVE FIRST PARAMETER
152 LVL+2 ADVANCE TO NEXT PARAMETER
LAC* LVL+2 GET Y COORDINATE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVE
JMS* =S.LY SET Y COORDINATE
1S2 LVL+2 ADVANCE TO NEXT PARAMETER
LAC* LVL+2 GET X COORDINATE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.LX SET X COORDINATE
152 LVL+2 ADVANCE TO NEXT PARAMETER
LAC* LVL+2 GET DISPLAY PARAMETER
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.LP SET DISPLAY PARAMETER
LAC LVLS5 GET POINTER TO LEVEL

LMQ SET UP PARAMETER

-45-

LAC* LVL4 GET POINTER TO OWNER
JMS* =S.TI INSERT CREATED LEVEL
JMP LVLl DISPLAY STORAGE EXCEEDED
LAC LVLS GET POINTER TO CREATED LEVEL
JMP LVL3+2 RETURN

LVL1 LAC LVL5 GET POINTER TO LEVEL
JMS ATTR GET FIRST ATTRIBUTE
$DC 0 LVL PROGRAMMING ERROR
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.TR REMOVE ATTRIBUTE
$DC 0 LVL PROGRAMMING ERROR
LAC LVL5 GET POINTER TO LEVEL
JMS* =5.TD DESTROY LEVEL
$DC 0 LVL PROGRAMMING ERROR
JMP LVL3+3 RETURN

LVL2 LAC LVL5 GET POINTER TO LEVEL
JMS* =S5.TD DESTROY LEVEL
$DC 0 LVL PROGRAMMING ERROR

LVL3 1S2 LVL+2 INCREMENT RETURN POINTER
1SZ LVL+2 INCREMENT RETURN POINTER
152 LVL+2 INCREMENT RETURN POINTER
1SZ LVL+2 INCREMENT RETURN POINTER
JMS* =T.U UNLOCK LVL & RETURN
$DC LVL

*CALLING SEQUENCE:

* JMs BUTN

* $DC -—— (LOC CONTAINING POINTER TO OWNER)

* SDC -—— (Y COORDINATE)

* $DC -——- (X COORDINATE)

* $DC -—— (DISPLAY PARAMETER)

* $DC ———— (SERVICE TASK ADDRESS)

* -———- (RETURN IF DISPLAY STORAGE EXCEEDED)

* -———- _ (RETURN IF SUCCESSFUL)

*AC CONTENT ON ENTRY:

-46-

B POINTER TO STRUCTURE FOR BUTTON DISPLAY
*AC CONTENT ON RETURN :
B POINTER TO LIGHT BUTTON LEVEL
BUTN $DC 0
JMS* =T.L SET REENTRY LOCK
$DC 0
DAC BUTN3 SAVE POINTER TO STRUCTURE
LAW -4 GET LVL PARAMETER COUNT
DAC BUTN4 INITIALIZE COUNTER
LAC =BUTN1 GET ADDRESS OF FIRST LVL PARAMETER
DAC BUTNS INITIALIZE POINTER
LAC* BUTN+2 GET BUTN PARAMETER
DAC* BUTNS STORE AS LVL PARAMETER
IS2 BUTN+2 INCREMENT BUTN PARAMETER POINTER
IS2 BUTNS INCREMENT LVL PARAMETER POINTER
ISZ BUTN4 INCREMENT COUNTER & SKIP IF DONE
JMP *-5 COPY NEXT PARAMETER
LAC BUTN3 GET POINTER TO STRUCTURE
JMS LVL GENERATE INTERMEDIATE LEVEL
BUTN1 $DC 0 LOC CONTAINING POINTER TO OWNER
$DC 0 Y COORDINATE
$DC 0 X COORDINATE
$DC 0 DISPLAY PARAMETER
JMP BUTN2 DISPLAY STORAGE EXCEEDED
DAC BUTN3 SAVE POINTER TO LEVEL
LAC* BUTN+2 GET ADDRESS OF SERVICE TASK
LMQ SET UP PARAMETER
LAC BUTN3 GET POINTER TO LEVEL
JMS* =S.LL SENSITIZE LEVEL TO LPSI
LAC BUTN3 GET POINTER TO LEVEL
IS2Z BUTN+2 INCREMENT RETURN POINTER
BUTN2 IS2 BUTN+2 INCREMENT RETURN POINTER
JMS* =T.U UNLOCK BUTN & RETURN

$DC BUTN

*CALLING SEQUENCE:

*

*

*

*

*

JMS
$DC
$DC
$DC
$DC
$DC
$DC

BUTX

*AC CONTENT ON RETURN:
POINTER TO LIGHT BUTTON LEVEL

*

BUTX

BUTX1

BUTX2

$DC
JMS*
$DC
LAC*
JMS*
JMP
DAC
LAW
DAC
LAC
DAC
ISZ
IS2Z
IS2
SKP
JMP
LAC*
DAC?*
JMP
LAC
JMS
$DC
$DC

0

=T.L

0
BUTX+2
=L.D
BUTX4
BUTX7
-6
BUTX5
=BUTX2
BUTX6
BUTX+2
BUTX6
BUTXS

BUTX2-1
BUTX+2
BUTX6
BUTX1
BUTX7
BUTN

0

0

-47-

(ADDRESS OF TEXT LIST)

(LOC CONTAINING POINTER TO OWNER)

(Y COORDINATE)

(X COORDINATE)

(DISPLAY PARAMETER)

(SERVICE TASK ADDRESS)

(RETURN IF DISPLAY STORAGE EXCEEDED)
(RETURN IF SUCCESSFUL)

SET REENTRY LOCK

GET ADDRESS OF TEXT LIST
CREATE TEXT LEAF

DISPLAY STORAGE EXCEEDED
SAVE POINTER TEXT LEAF
LOAD AC WITH -6

SET PARAMETER COUNTER

GET ADDRESS OF BUTN CALL
SET PARAMETER POINTER
ADVANCE TO NEXT PARAMETER
INCREMENT PARAMETER POINTER
SKIP IF NOT PARAMETER
MOVE PARAMETER

CALL BUTN

GET PARAMFETEFR

STORE PARAMETER

MOVE NEXT PARAMETER

GET POINTER TO TEXT LEAF
CREATE LIGHT BUTTON

- LOC CONTAINING- POINTER TO OWNER

Y COORDINATE

-48-

$DC 0 X COORDINATE
$DC 0 DISPLAY PARAMETEK
$DC 0 SERVICE TASK ADDRESS
JMP BUTX3+2 DISPLAY STORAGE EXCEEDED
1S2 BUTX+2 INDICATE SUCCESS

BUTX3 JMS* =T.U UNLOCK BUTX & RETURN
$DC BUTX
LAC BUTX7 GET POINTER TO TEXT LEAF
JMS* =S.LL DESTROY TEXT LEAF
JMP BUTX3 RETURN

BUTX4 LAC BUTX+2 GET RETURN POINTER
TAD =6 ADVANCE PAST PARAMETER LIST
DAC BUTX+2 SET FAILURE RETURN POINTER
JMP BUTX3 RETURN

*CALLING SEQUENCE:

* JMS CHEW

* -———- (RETURN)

*AC CONTENT ON ENTRY:

* POINTER TO MAXIMUM ELEMENT IN THE STRUCTURE

*70 BE CHEWED

*THE MAXIMUM ELEMENT SPECIFIED MUST OWN ALL LEVELS
*WHICH OWN ELEMENTS OF THE STRUCTURE.

CHEW $DC
JMS*
$DC
DAC
LAC
JMS*

CHEW1 LAC*
SNA
JMP
SAD
JMP
LAC
AND
SAD

n

=T.L

0
CHEW6
=CHEWQ
=Q.C
CHEW6

CHEWS
=762010
CHEW4
CHEW6
=70000
=10000

SET REENTRY LOC¥F

SAVE POINTER TO STRUCTURE

GET ADDRESS OF WORD QUEUE
CLEAR WORD QUEUE

GET FIRST WORD FROM STRUCTURE
SKIP IF ITEM NOT ALREADY DELETED
GET NEXT ITEM FROM QUEUE

SKIP IF NOT TEXT LEAF

DESTROY TEXT LEAF

GET POINTER TO STRUCTURE

GET BREAK FIELD BITS

SKIP IF NOT LEVEL

~49-

SKP DESTROY LEVEL
JMP CHEW5 GET NEXT ITEM FROM QUEUE
CHEW2 LAC CHEW6 GET POINTER TO LEVEL
JIMS ATTR GET FIRST ATTRIBUTE FROM LEVEL
JMP CHEW3 LEVEL IS EMPTY
DAC CHEW7 SAVE POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC CHEW6 GET POINTER TO LEVEL
JMS* =S.TR REMOVE ATTRIBUTE
$DC 0 CHEW PROGRAMMING ERROR
LAC CHEW? GET POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC =CHEWQ GET ADDRESS OF WORD QUEUE
JMS* =Q.A ADD ATTRIBUTE TO QUEUE
SDC 0 WORD QUEUE NOT LARGE ENOUGH
JMP CHEW2 PUT NEXT ATTRIBUTE IN QUEUE
CHEW3 LAC CHEW6 GET POINTER TO LEVEL
JMS* =S.TD DESTROY LEVEL
SDC 0 CHEW PROGRAMMING ERROR
JMP CHEWS CHEW UP NEXT ITEM
CHEW4 LAC CHEW6 GET POINTER TO TEXT LEAF
JMS* =L.L DESTROY TEXT LEAF
CHEW5 LAC =CHEWQ GET ADDRESS OF WORD QUEUE
JMS* =Q.F GET NEXT ITEM FROM QUEUE
JMP *+3 QUEUE EMPTY
DAC CHEW6 SAVE POINTER TO ITEM
JMP CHEW1 CHEW UP ITEM FROM QUEUE
JMS* =T.U UNLOCK CHEW & RETURN
SDC CHEW
CHEWQ $DC *+200
$DC 200
*CALLING SEQUENCE:
* JMS ATTR
* ———- (RETURN IF NO MORE ATTRIBUTES)

* —=-- (RETURN IF ATTRIBUTE FOUND)

-5G-

*AC CONTENTS ON ENTRY:

X ADDRESS OF LEVEL

ATTR $DC 0
TAD =7 FORM POINTER TO POINTER TO NODE
DAC ATTR2 SAVE POINTER TO POINTER TO NODE
LAC* ATTR2 GET POINTER TO NODE (OR TAIL)
DAC ATTR2 SAVE POINTER TO NODE (OR TAIL)
LAC* ATTR? GET FIRST WORD FROM NODE (OR TAIL)
AND =777770 TRUNCATE BREAK FIELD
SAD =762010 SKIP IF NOT NODE
SKP NODE FOUND
JMp* ATTR NO MORE ATTRIBUTES
IS2 ATTR2 FORM POINTER TO SECOND LOC IN NODE
LAC* ATTR2 GET POINTER TO ATTRIBUTE
ISz ATTR INDICATE SUCCESS
JMP* ATTR RETURN

As an example of how these subroutines might be used,
consider a task called SELGI which alilows the operator to draw
unrelated straight lines on the display with the light pen.
More specifically, when the task is begun, it allocates the

display and displays the following:

-
SELGI 7 title

(insensitive
to light pen)

- threshold
/,/’//’ (imaginary
‘(,/’ZL//' line)

- - DRAW ~ ERASE ESCAPE

= I 7

light buttons

-51-

The elements of this display are arranged in the following
structure:

highest active level

SELGI display level

line escape title
level level level leaf
draw leaf erase leaf escape leaf

The SELGI display level is set to scale x2, each light button
level is sensitized to the light pen sense indicator, and the
line level (into which all lines drawn by the operator will be
inserted) has coordinates at the center of the screen.

When the light pen is pointed at the DRAW light
button, the task DRAW is scheduled. The task DRAW then starts
tracking on the DRAW light button, and waits (through the use
of T.P) until the operator loses tracking. Then, if the Y
tracking coordinate is above the threshold line, a line of
length one point (which appears as a point on the display) is
inserted into the line level such that it appears at the coor-
dinates where tracking was lost. Otherwise, no line is gener-
ated. (The DRAW light button blinks while tracking is in
process for this operation.) Up to 64 lines may be created
in this manner.

If the light pen is now pointed at any of the unit-
length lines (points) on the screen, tracking is started, and

one end of the line is affixed to the tracking cross. The line

-52-

then may be stretched by moving the affixed end point to some
other position on the screen. If the light pen is now pointed
at any line which 1s longer than one point, tracking is started,
and the end poirt of the line which is closer to the tracking
cross 1s affixed to the tracking cross and may be moved to any
position on the screen.

If the light pen 1s pointed at the ERASE light button,
this light button starts blinking. 1If, while the ERASE light
button is blinking, the light pen is pointed at some line on
the screen, the line is removed from the line level, the stor-
age which 1t occupied 1s salvaged, and the blinking of the
ERASE light button 1s stopped.

If the light pen 1s pointed at the ESCAPE light but-
ton, the entire display structure created by SELGI is destroyed
via the subroutine CHEW. The task SELGI then releases the
display and terminates.

Lines are represented internally in this program by
leaves which have the following format:

VEC ENTER VECTOR MODE
DISPLACEMENT (NONINTENSIFIED)

DISPLACEMENT (NO ESCAPE)
DISPLACEMENT (INTENSIFIED)
DISPLACEMENT (NO ESCAPE)
DISPLACEMENT (NONINTENSIFIED)

DISPLACEMENT (ESCAPE,
POP END OF LEAF

XK X K XK K

Each leaf actually represents a triangle with two nonintensified
sides. This scheme permits the end points of the line to occur

anywhere on the screen:

first vector :? 4

V////second vector

(0,0) —~—

j\‘\\
third vector T -

SELGI

LAW
JMS *
LAC
DAC
LAW
DAC
DZM*
1S2
1S2
JMF
JMS*
DAC
LAC
JMS*
JMP
DAC
JMS
$DC
$DC
$DC
$DC
JMP
DAC
JMS
$DC
$DC
$DC
$DC
$DC
$DC
JMP
JMS
$DC
$DC
$DC

=T.A
=LINES
DIS
-1000
FRM
DIS
DIS

END
DIS
LVL
HAL
360
-34
500
FAIL
FRM
BUTX
TXT1
FRM
-750
-344

DRAW
END
BUTX
TXT2
FRM
-750

-53-

GET DISPLAY ALLOCATION MASK
ALLOCATE DISPLAY

GET ADDRESS OF LINE STORAGE AREA
SET STORAGE POINTER

LOAD AC WITH -512

SET STORAGE COUNTER

CLEAR STORAGE LOCATION

INCREMENT STORAGE POINTER

SKIP IF STORAGE AREA CLEARED
CLEAR NEXT STORAGE LOCATION

GET ADDRESS OF HIGHEST ACTIVE LEVEL
SAVE ADDRESS OF HIGHEST ACTIVE LEVEL
GET ADDRESS OF TITLE TEXT LIST
CREATE TEXT LEAF

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO TITLE LEAF
GENERATE SELGI DISPLAY LEVEL
POINTER TO HIGHEST ACTIVE LEVEL
Y COORDINATE

X COORDINATE

SCALE X2

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO SELGI DISPLAY LEVEL
GENERATE DRAW LIGHT BUTTON

DRAW TEXT LIST

POINTER TO SELGI DISPLAY LEVEL

Y COORDINATE

X COORDINATE

NULL DISPLAY PARAMETER

DRAW SERVICE TASK

DISPLAY STORAGE EXCEEDED
GENERATE ERASE LIGHT BUTTON
ERASE TEXT LIST

POINTER TO SELGI DISPLAY LEVEL

Y COORDINATE

$DC
$DC
$DC
JMP
JMS
$DC
$DC
$DC
$DC
$DC
$DC
JMP
JMS*
JMP
DAC
LMQ
LAC
JMS*
JMP
LAW
LMQ
LAC
JMS*
LAW
LMQ
LAC
JMS*
LAC
LMQ
LAC
JMS*
LAC
JMS*
JMS*
D2ZM

10

0
ERASE
END
BUTX
T:T3
rrit
-750
354

0
LSCAPE
LU
=5.7TL
END

LTS
=G5.LP
=360

DIS
=5.1X
=MOVE
=D.P
=D.E
FCC’ PE+1

-54-

X COORDINATE
NULL DISPLAY PARAMETER
ERASE SERVICE TASK
DISPLAY STORAGE EXCEEDED

GENERZ "5
ESCAPE TEXT

LIST

LSCAPE LIGT BUTTON

POINTER TO SEI.GI LISPLAY LEVEL
Y COORDINATE
X COCRDINATE
NULL DISPLAY PARAMETER
ESCAPE SERVICE TASK
DISPLAY STORAGE EXCEEDED
CREATE LINE LEVEL
DISPLAY STORAGE EXCEEDED

SAVE POINTER TO LINE LEVEL

SET

UP PARAMETER

GET POINTER TO SELGI DISPLAY LEVEL
INSERT LINE LEVEL i
DISPLAY STORAGE EXCEEDED

GET LIGHT PEN ON PARAMETER

SET
GET

UP PARAMETER
POINTER TO LINE

ENABLE LIGHT PEN ON

GET
SET
GET
SET
GET
SET
GET
SET
GET
SET

Y COORDINATE
UP PARAMETER
POINTER TO LINE
Y COORDINATE OF
X COORDINATE
UP PARAMETER
POINTER TO LINE
X COORDINATE OF
ADDRESS OF LINE

LEVEL
LINE LEVEL

LEVEL
LINE LEVEL

LEVEL
LINE LEVEL
MOVING TASK

LIGHT PEN FLAG SERVICE
ENABLE DISPLAY INTERRUPTS
CLEAR ESCAPE SWITCH

FAIL

END

DRAW

LAC
SZA
JMP
SKP
JMP
JMS*
Lac
JMS
LAC
JMS
CLA
JMS*
LAW
JMS*
JMA*

LMQ
LAW
JMS*
CLA
JMS*
$DC
JMS*
JMS*
JMS*
JMS*
TAD
SPA
JMP
LAC
DAC
LAW
DAC
LAC*
SNA

ESCAPE+1

DIS
CHEW
HAL
CHEW

=T.R
=T.F
-720

-730
=X.I

=S.LBE
=X.S8
=T.P
=X.Y
=700

DRAW1
=LINES
FRM
-100
CNT
FRM

-58-

GET ESCAPE SWITCH

SKIP IF ESCAPE NOT PENDING
TERMINATE SELGI

PREPARE TO SCHEDULE NEXT LOCATION
CHECK ESCAPE SWITCH

SCHEDULE PREVIOUS LOCATION

GET POINTER TO NONACTIVE STRUCTURE
DESTROY NONACTIVE STRUCTURE

GET POINTER TO HIGHEST ACTIVE LEVEL
DESTROY ACTIVE STRUCTURE

GET NULL LIGHT PEN FLAG SERVICE
SET NULL LIGHT PEN SERVICE

GET DISPLAY ALLOCATION MASK
RELEASE DISPLAY

TERMINATE

GET INITIAL X TRACKING COORDINATE
SET UP PARAMETER

GET INITIAL Y TRACKING COORDINATE
INITIALIZE TRACKING

PREPARE TO READ OWNER 0 LEVELS BACK
READ ADDRESS OF DRAW LEVEL
PROGRAMMING ERROR IF D.O FAILS
ENABLE BLINK ON DRAW LIGHT BUTTON
SKIP IF TRACKING HAS BEEN LOST
CHECK TRACKING AGAIN

READ Y TRACKING COORDINATE

FORM THRESHOLD CHECK

SKIP IF LINE IS TO BE CREATED
IGNORE ATTEMPT TO CREATE LINE

GET POINTER TO LINE STORAGE

SET STORAGE POINTER

GET MAXIMUM LINE COUNT

SET LINE COUNTER

GET FIRST WORD OF LINE BLOCK

SKIP IF LINE BLOCK IN USE

DRAW1

MOVE

JMP
LAC
TAD
DAC
Is2
JMP
JMP
ILAW
DAC*
LrC
TAD

%47
FRM
=10
FRM
CNT

*-7
DRAWL
1121
FRM
FRM
=7
CNT
3000
CNT
FPM
FIXBGN
FRM
FIXEND
FRM

DIS
=S5.TI

=S.LBD
=D.E
=T.F
=D.Y
MOVEY
=D.X

MOVEY
=X.I

-56-

LINE BLOCK IS AVAILABLE
GET STORAGE POINTFR

FORM ADDRESS OF NEXT LINE BLOCK
SET STORAGE POINTER TO NEXT BLOCK
SKIP IF NO MORE LINE STORAGE

CHECK AVAILABILITY OF LINE BLOCK
IGNORE ATTEMPT TO CREATE LINE

GET VEC INSTRUCTION

STORE IN FIRST LOCATION OF LINE BLOCK
GET POINTER TO LINE BLOCK

FORM POINTE’ TO LAST WORD "N BLOCK
SAVE POINTER TO LAST WORD IN BLOCK
GET POP INSTRUCTION

STORE IN LAST WORD IN BLOCK

GET POINTER TO LINE BLOCK

SET 1ST END POINT TO TRACKING COORD
GET POINTER TO LINE BLOCK

SET 2ND END POINT TO TRACKING COORD
GET POINTER TO LINE BLOCK

SET UP PARAMETER

GET POINTER TO LINE LEVEL

INSERT LINE BLOCK

DISPLAY STORAGE EXCEEDED

PREPARE TO READ OWNER 0 LEVELS BACK
READ ADDRESS OF DRAW LEVEL
PROGRAMMING ERROR IF D.O FAILS

STOP BLINK OF DRAW LIGHT BUTTON
ENABLE DISPLAY INTERRUPTS

TERMINATE

READ Y DISPLAY COORDINATE

SAVE Y DISPLAY COORDINATE

READ X DISPLAY COORDINATE

SET UP PARAMETER

GET Y DISPLAY COORDINATE

INITIALIZE TRACKING

WATCH

CLA
JMS*
$DC
DAC
DAC
I1S2
TAD
DAC
LAC*
XOR
JMS*
LLSS
TAD
GSM
DAC
LAC*
JMS*
LLSS
TAD
GSM
CMA
TAD
SMA
JMP
JMS
JMS
JMS
JMsS
$DC
LAC
XCT*
JMS*
JMP
LAW
JMS*

D.O

MOVEl
MOVE2
MOVE2

MOVE3
MCVE2
=2000
-C.CB

MOVEY

MOVE4
MOVE3
=C.CB

MOVEY

MOVE4

*+3
WATCH
FIXBGN
WATCH
FIXEND
0
MOVE1l
WATCH
=X.8

*+6
-40
=N.C

-57-

PREPARE TO READ OWNER 0 LEVELS BACK
READ ADDRESS OF LINE LEAF
PROGRAMMING ERROR IF D.O FAILS

SAVE POINTER TO LINE LEAF

SAVE COFY OF POINTER TO LINE LEAF
FORM POINTER TO FIRST Y DISPLACEMENT
FORM POINTER TO THIRD Y DISPLACEMENT
SAVE POINTER TO THIRD Y DISPLACEMENT
GET FIRST Y DISPLACEMENT

INVERT SIGN BIT

CONVERT TO TWO'S COMPLEMENT

MULTIPLY BY 2

ADD Y DISPLAY COORDINATE

FORM ABSOLUTE VALUE

SAVE FOR LATER COMPARISON

GET THIRD Y DISPLACEMENT

CONVERT TC TWO'S COMPLEMENT

MULTIPLY BY 2

ADD Y DISPLAY COORDINATE

FORM ABSOLUTE VALUE

FORM NEGATIVE OF ABSOLUTE VALUE

ADD DISPLACEMENT FROM OTHER END

SKIP IF CLOSER TO FIRST Y DISPLACEMENT
CLOSER TO SECOND Y DISPLACEMENT
ENTER UPDATING TASK

PARAMETER FOR UPDATING TASK

ENTER UPDATING TASK

PARAMETER FOR UPDATING TASK

GET POINTER TO LINE LEAF

UPDATE AFFIXED END POINT

SKIP IF TRACKING NOT IN PROCESS
SCHEDULE NEXT UPDATING

LOAD AC WITH -32

WAIT ABOUT HALF A SECOND

ERASE

DELETE

ESCAPE

FIXBGN

JMS*
JMS*
JMP
JMS*
LAC
JMS*
CLA
JIMS*
$DC
DAC
JMS*
JMS*
JMS*
LAC
JMS*
CLA
JMS*
$DC
DAC
LMQ
LAC
JMS*
$DC
DZM*
LAC
JMS*
LAW
JMS*
JMS*
JMS*
JMS
$DC
JMS*
$DC
JMS

=D.E
=T.F
WATCH+1
=T.P
=DELETE
=D.P

-58-

ENADLE DISPLAY INTERRUPTS
TERMINATE

UPDATE END POINT

SCHEDULE PREVIOUS LOCATION

GET ADDRESS OF LINE DELETE TASK
SET LIGHT PEN FLAG SERVICE
PREPARE TO READ OWNER 0 LEVELS BACK
GET POINTER TO ERASE LEVEL
PROGRAMMING ERROR IF D.O FAILS
SAVE FOINTER TO ERASE LEVEL
START BLINKING ERASE LIGHT BUTTON
ENABLE DISPLAY INTERRUPTS
TERMINATE

GET POINTER TO ERASE LEVEL

STOP BLINKING ERASE LIGHT BUTTON
PREPARE TO READ OWNER 0 LEVELS BACK
GET POINTER TO LINE LEAF
PROGRAMMING ERROR IF D.O FAILS
SAVE POINTER TO LINE LEAF

SET UP PARAMETER

GET POINTER TO LINE LEVEL

REMOVE LINE LEAF

PROGRAMMING ERROR IF S.TR FAILS
DESTROY LINE LEAF

GET ADDRESS OF LINE MOVING TASK
SET LIGHT PEN SERVICE

LOAD AC WITH -32

WAIT ABOUT HALF A SECOND

ENABLE DISPLAY INTERRUPTS
TERMINATE

SET ESCAPE SWITCH

ESCAPE SWITCH

TERMINATL

SET UP POINTERS FOR FIXING LEAF

FIXEND

FIXRD

LAC
DAC*
LAC
DAC*
JMS
JMP*
$DC
JMS
LAC
XOR
DAC*
LAC
XOR
DAC*
JMS
JMP *
$DC
TAD
DAC
TAD
DAC
TAD
DAC
TAD
DAC
TAD
DAC
TAD
DAC
JIMS*
LRSS
JMS *
DAC
JMS*
LRSS

FIXY
FIX1
FIXX
FIX2
FIXFIX
FIXBGN
0
FIXRD
FIXY
=2000
FLX5
FIXX
=6000
FIX6
FIXFIX
FIXEND

=C.BC
FIXY
=X.X

-59-

GET Y TRACKING COORDINATE
SET FIRST Y DISPLACEMENT
GET X TRACKING COORDINATE
SET FIRST X DISPLACEMENT
CORRECT INTENSIFIED VECTOR
RETURN

SET UP POINTERS FOR FIXING LEAF
GET Y TRACKING COORDINATE
INVERT SIGN BIT

SET THIRD Y DISPLACEMENT

GET X TRACKING COORDINATE
INVERT SIGN BIT, SET ESCAPE BIT
SET THIRD X DISPLACEMENT
CORRECT INTENSIFIED VECTOR
RETURN

FORM POINTER TO FIRST Y DISPLACEMENT
SAVE

FORM POINTER TO FIRST X DISPLACEMENT
SAVE

FORM POINTER TO SECOND Y DISPLACEMENT
SAVE

FORM POINTER TO SECOND X DISPLACEMENT
SAVE

FORM POINTER TO THIRD Y DISPLACEMENT
SAVE

FORM POINTER TO THIRD X DISPLACEMENT
SAVE

READ Y TRACKING COORDINATE

DIVIDE BY 2

CONVERT TO DISPLAY COORDINATE

SAVE

READ X TRACKING COORDINATE

DIVIDE BY 2

FIXFIX

TXT

TXT1

JMS*
DAC
JMP*
$DC
LAC*
JMS*
DAC
LAC*
JMS*
TAD
JMS*
SZA
JMP
LAC*
JMS*
TAD
JMS*
DAC*
LAW
XOR
DAC*
LAC*
JMS*
DAC
LAC*
JMS*
TAD
JMS*
XOR
DAC*
JMP*
$DC
STEXT
$DC
STEXT

=C.BC
FIXX
FIXRD

FIX1
=C.CB
FIXY
FIX5
=C.CB
FIXY
=C.BC

*47
FIX5
=C.CB
=1
=C.BC
FIX5

1
=6000
FIX3
FIX2
=C.CB
FIXX
FIX6
=C.CB
FIXX
=C.BC
=2000
FIX4
FIXFIX
2
"SELGI"
2
"DRAW"

-60-

CONVERT TO DISPLAY COORDINATE
SAVE
RETURN

GET FIRST Y DISPLACEMENT

CONVERT TO TWOS COMPLEMENT

SAVE

GET THIRD Y DISPLACEMENT

CONVERT TO TWOS COMPLEMENT

ADD FIRST Y DISPLACEMENT

CONVERT TO DISPLAY COORDINATE

SKIP IF Y DISPLACEMENTS WERE EQUAL
CONVERTED VALUE IS NONZERO

GET THIRD Y DISPLACEMENT

CONVERT TO TWOS COMPLEMENT

MAKE DIFFERENT FROM 1ST Y DISPLACEMLNT
CONVERT TO DISPLAY COORDINATE
STORE MODIFIED THIRD Y DISPLACEMENT
GET DISPLACEMENT OF 1

SET ESCAPE BIT, INVERT SIGN BIT
STORE SECOND Y DISPLACEMENT

GET FIRST X DISPLACEMENT

CONVERT TO TWOS COMPLEMENT

SAVE

GET THIRD X DISPLACEMENT

CONVERT TO TWOS COMPLEMENT

ADD FIRST X DISPLACEMENT

CONVERT TO DISPLAY COORDINATE
INVERT SIGN BIT

SET SECOND X DISPLACEMENT

RETURN

-61-

TXT2 $DC 2

STEXT "ERASE"
TX73 $DC 2

STEXT "ESCAPE"
LINES $DS 1000

SEND

3.11 Text List Manipulation

A structure which may be used to represent efficviently
strings of text in core is called a "text list." A text list
consists of a word which contains a number m which represents
the length of the list, followed by m words, each of which
contains three 6-bit characters. As an example, a text list

which represents the string
A SIMPLE EXAMPLE
is the following (in octal form):

000006
127634
222631
251676
164112
263125
167777

This text list may easily be represented in assembly language
via the TEXT pseudo-op:

LIST $DC 6
$TEXT "A SIMPLE EXAMPLE"

The address of the text list 1s the address of its first word.
In this example, LIST is a symbol whose value is the address
of the text list.

A "text leaf" is a representation of a text list as
a display leaf. The leaf is composed of a series of push jumps
to various character generation subroutines within the System.

-62-

A carriage return, however, is represented explicitly in the
text leaf by three words which generate a vector which restores
the X coordinate to its value just before the display control
enters the text leaf. An additional vector is included at the
end of the text leaf to restore both he X and Y coordinetes.
The high-order six bits of the second word of each push jump
contain the 6-bit code for the character which the push jump
represents. Each character is drawn in increment mode and is
7 points high by 5 points wide. The trailing space, which is
produced by each character generation subroutine, is 3 points
wide.

As an example of & text leaf, consider the following

text list:

LEAF $DC 10
STEXT "EXAMPLE OF"
$DC 747577
$TEXT "2 LINES"

The text leaf which would be produced from this text list is

the following:

762010
16----
762010
41----
7620190
12----
762010
26----
762010
31----
762010
25----
762010
16----
762010
76----
762010
30----
762010
17----
761121
400000
006120

-63-

762010
75-~--
762010
02----
762010
76-=--
762010
25----
762010
22----
762010
27-=--
762010
16----
762010
34----
761121
400020
005070
763000

The following system subroutines have been defined

for manipulating text lists and text leaves:

L.T -

L.D*-

The text list whose address is given in bits
3-17 of the AC is typed on the teletype.

A text leaf is generated from the text list
whose address is given in bits 3-17 of the AC.
The address of the generated text leaf is re-
turned in bits 3-17 of the AC. A failure re-
turn is made if the text leaf cannot be gener-
ated because of insufficient free display
storage.

The text leaf whose address is given in bits
3-17 of the AC is destroyed, and the storage
which it occupied is salvaged by the System.

4. IDLE-TIME TASK

The idle-time task, which is executed whenever the
System is in system state (Section 2.3), interprets vurious
keyboard commands which provide some functions which are useful
for testing and modifying user tasks. These commands are des-
cribed in Sections 4.1 through 4.5. Each command is given by
typing only the underlined characters; the System will type all
other characters shown.

4.1 Copy Functions

The command

TELETYPE TELETYPE
FROM (PAPER TAPE TO PAPER TAPE
CORE CORE
DISPLAY

allows the operator to transfer data from teletype, paper tape,
or core to teletype, paper tape, core, or the display. Many
of these copy functions normally are specified by other names.
For example, a copy from paper tape to core is called loading,
a copy from core to teletype or from core to display is called
a dump, a copy from teletype to core is called altering, etc.
When a transfer from teletype to any device other
than core is specified, everything typed on the teletype up to
the next character which maps into a 6-bit null character (Sec-
tion 3.3) is transferred to the device specified. After a null
character is typed, the iile-time task is ready for a new
command. When copying from teletype to core, the following

sequence of events occurs:

(1) The operator types a 5-digit octal address on tue
keyboard. If one character which he types is not an octal
digit, it is interpreted as the first character of a new com-
mand, and the copy from teletype to core is terminated.

-64-

-65=-

(2) The idle-time task types the content of the loca-
tion specified on the current line of text.

(3) The operator types a 6-digit octal content to
replace the content of the location specified on the current
line of text. If he types a carriage return in place of one
of the octal digits, the content of the location is left un-
changed. If he types a character which is neither an octal
digit nor a carriage return, the copy task proceeds with Step 1.

(4) The address of the location which immediately
follows the oine which was just examined (and perhaps modified)
is typed. The copy task then proceeds with Step 2.

As an example of a copy from teletype to ccre, con-
sider setting the content of location 235718 to 5475218 and
the content of location 23574

8 to 6072138. This may be accom-
plished by either of the following procedures:

FROM TELETYPE TO CORE

23571 172356 547521

23572 543125 (carriage return)
23573 601241 (carriage return)
23574 760001 607213

23575 127123 (rubout)

FROM ---- (new command)

FROM TELETYPE TO CORE

23571 172356 547521

23572 543125 (rubout)
23574 760001 607213

23575 127123 (rubout)
FROM ---- (new command)

When a copy from paper tape to any device other than
core is specified, the next alphanumeric record (Section 3.4.2)
is read, and all binary records which are encountered before it

-66—-

are ignored. (However, if the alphanumeric record is too long

for the display, and a copy from paper tape to display is speci-

fied, only part of the alphanumeric record is read. The next

part of the record may be displayed by another copy from paper

tape to display.) Similarly, whenever a copy from paper tape

to ccre is specified, the next binary record is read, and all

alphanumeric records which are encountered before it are ignored.
When a copy from core to any device is specified, the

specification of a block of core locations is requested from

the operator. For example, the operator may dump locations

23571, through 23602, on the teletype as follows:

8 8
FROM CORE TO TELETYPE

23571 172356 543125 601241 760001 127123 127124 000200 000001
23601 000236 777777

A copy from core to core will also request the address of the
first location in the block into which the information is to be
moved. For example, locations 200528 through 200568 may be
moved into locations 215218 through 215258 by the following

command :

FROM CORE TO CORE

Since the words in a block to be moved by a copy from core to
core are moved one at a time, starting with the lowest address
of the specified block, the following sequence of commands may
be used to store zeros in all of core bank 1. (This is some-
times a useful operation to perform before loading a program
to be debugged, since it stores illegal instructions througout

core bank 1.)
FROM TELETYPE TO CORE

20000 172132 000000

20001 172312 (rubout)

-67-

FROM CORE TO CORE
BLOCK (20000, 37776) TO 20001

The copy from core to core in this example moves the zero from
location 200008
from location 200018 into location 200028, etc.

into location 200018, then it moves the zero

Copy functions to the display are constrained to a
maximum of 64 characters per line and to 10 lines. For this
reason, a maximum of 1008 locations may be dumped on the screen
at one time, ard a copy from paper tape or teletype to display
will be terminated ¢.: the end of 10 lines.

4.2 Scheduling of User Tasks

User tasks may be scheduled while in system state,
but they will not be executed until user state is entered (Sec-
tion 4.5). The command which accomplishes this is the following:

SCHEDULE

In the blanks after the word "schedule" the operator should type
a 5-digit octal address where the task which he is scheduling
begins. For example, a user task which starts at location

205718 may be scheduled by the following command:

4.3 Clearing the Task Queue or Display Storage

The command

CLEAR TASK QUEUE
DISPLAY STORAGE

allows the operator to remove all user tasks scheduled by the
command described in Section 4.2 from the task gqueue, or to
clear the display storage area. When a copy function to the

display is performed, the comment

NOT ENOUGH DISPLAY STORAGE

-68-

may be printed on the teletype, and the copy function will not
be completed. The facility of clearing the display storage
area is provided to allow the operator to destroy all display
structures to provide display storage for copy functions to

the display.

4.4 Teletype tc Dataphone Transmission

Since most messages to be sent over the 20lA data-
phone to a remote computer from the teletype are record-oriented,
rather than character-oriented, and since ASCII codes are ac-
cepted as standards for this type of communication, a copy from
the teletype to the dataphone is handled in a different manner
from other copy functions. If the command "#" is typed, all
succeeding characters typed on the keyboard, up to the first
carriage return, are sent over the dataphone as one record of
ASCII characters. (0Of course, any response to such a record
which does not begin with the 8-bit character 0008 will be typed
by the 20l-to-teleprinter task.) However, a rubout will delete
a partially typed line, and the character "+«" will delete the
previous character on the line,if it exists. This command is
terminated when the line is terminated or deleted. A record
consistaing of an enquiry (used as an end-of-record character)
may be sent from the teletype by striking the "WRU" key when

the idle-time task 1s expecting a new command.

4.5 Enteraing User State

The command
RUN

causes all user tasks which have been scheduled by the command
described in Section 4.2 to become eligible for execution, and
the idle-time task to be terminated. This causes the System

to enter user state (Section 2.3).

5. SYSTEM CAPABILITY

The System was designed primarily to support user
tasks which provide communication between the operator and the
339 via network diagrams and between the 339 and a large time-
sharing system. As can be determined by examination of the dis-
play structure, the display support provided by the System is
easily applied to almost any display-oriented task which is two-
dimensional in nature (e.g., network diagrams, two-dimensional
Sketchpad programs, line-oriented text editing, etc.). The
System offers no support for tasks which involve three-dimen-
sional projection in that: (1) floating point arithmetic (which
is almost essential for this type of task) is not provided, and
(2) the display structure has no provision for storing the extra
information required for three-dimensional projection.

Because a timesharing system is not always available
to support preparation and testing of remote terminal programs,
the philosophy behind the design of the system was to consider
the remote terminal as an independent unit which considers the
large timesharing system to be an I/0 device. This differs
from the philosophy, which is commonly applied to the design
of remote terminal software systems, that the large timesharing
system must be available to support the remote terminal system

whenever the remote system is operating.

-69-

BIBLIOGRAPHY

339 Programmed Buffered Display, DEC-09-16FA-D, Digital
Equipment Corporation, Maynard, Massachusetts, May 1968.

Mills, David L., I/0 Extensions to RAMP, Memorandum 11, Concomp

Project, University of Michigan, Ann Arbor, October 1967.

Mills, David L., RAMP: A PDP-8 Multiprogramming System
for Real-Time Device Control, Memorandum, Concomp Project,
University of Michigan, Ann Arbor, May 1967.

Mills, David L., The Data Concentrator, Technical Report
No. 8, Concomp Project, University of Michigan, Ann Arbor,
May 1968.

PDP-9 User Handbook, F-95, Ligital Equipment Corporation,
Maynard, Massachusetts, January 1968.

Wood, David E., A 201A Data Communication Adapter for the
PDP-8: Preliminary Engineering Design Report, Memorandum
15, Concomp Project, University of Michigan, Ann Arbor,
February 1968.

-70-

APPENDIX A -~ LISTING OF THE EXECUTIVE SYSTEM

$ORG 17732

$TITLE SEL EXECUTIVE SYSTEM LOADER
10T SOPDM 700000
HLT SOPD 740040

10T 3302 CLEAR ALL FLAGS
JMP SYSTEM START SYSTEM
ol JMS .4 READ FIRST LINE OF 3-LINE BLOCK
SNA SKIP IF NONBLANK TAPE
JMP #-2 BLANK TAPE -- TFY AGAIN
DAC .5 SAVE FIRST LINE IMAGE
AND .7 REMOVE DATA BITS
SAD .8 SKIP IF DATA LINE
SKP ORIGIN LINE
JMP .2 DATA LINE
JMS .3 FINISH ORIGIN WORD
DAC .6 SET LOCATION COUNTER
JMP .1 READ NEXT BLOCK
2 JMS .3 FINISH DATA WORD
DAC* .6 LOAD DATA WORD
ISZ +6 INCREMENT LOCATION COUNTER
JMP .1 READ NEXT BLOCK
3 $DC o
JMS .4 READ SECOND LINE
LRS 6 SHIFT DATA BITS INTO M@
LAC -5 LOAD AC WITH FIRST LINE IMAGE
LLS 6 SHIFT CONCATENATED IMAGE INTO AC
DAC .5 SAVE CONCATENATED FIRST TWO LINES
JMS .4 READ THIRD LINE
LRS 6 SHIFT DATA BITS INTO M@
LAC .5 LOAD AC WITH CONCATENATED ‘IMAGE
LLS 6 SHIFT COMPLETED WORD INTO AC
JMP* .3 RETURN
.4 $DC o
10T 104 SELECT READER
10T 101 SKIP 1F LINE READY

S
'Y)
7
-8

JMP -1
10T 118
JMPes .4

sDC @
sDC o
sDC 300
SDC 100

JMP .1

WAIT FOR FLAG
OVERRIDDEN "JMP .1-2" WHEN LOADED
RETURN

OVERRIDES BOOTSTR~P LOCATION @

Q.C
QeA
Q.1
Q.F
TeS
T.P
TeF
T.A
TeR
T.L
T.U
C.Bé6
C.6A
CeAb

c.CcB

STITLE

$ORG 1}

JMP

SORG 21

JMP
JMP

$SORG 100

$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP

ET
ES

0
QC
0
QA
0
QI
0
QF
0
TS
0
TP
0
TF
0
TA
0
TR
0
TL
0
TV
0
CcBé6
0
C6A
0
CAé6
0
ccs

CONTROL DISPATCHER

INTERRUPT TRAP

ILLEGAL INSTRUCTION TRAP
SYSTEM RESTART

CLEAR QUEUE

ADD WORD TO BOTTOM OF QUEUE (F)
INSERT WORD ON TOP OF QUEUE (F)
FETCH WORD FROM TOP OF QUEUE (F)
SCHEDWE TASK

SCHEDUWE PREVIOUS LOC & TERMINATE
TERMINATE CURRENT TASK

ALLOCATE 1/0 DEVICES UNDER MASK
RELEASE 170 DEVICES UNDER MASK
LOCK REENTRABLE SUBROUTINE

UNLOCK REENTRABLE SUBROUTINE
CONVERT BINARY TO 6-BIT OCTAL
CONVERT 6-BIT TO ASCII

CONVERT ASCII TO 6-BIT

CONVERT DISPLAY COORDINATE TO BINARY

Cc.8C sOC o

JMP CBC CONVERT BINARY TO DISPLAY COORDINATE
B.Fl sDC @

JMP BFI GET IMAGE FROM 201 INPUT BUFFER (F)
B.FO SDC o

JMP BFO SEND IMAGE TO 20t OUTPUT BUFFER ¢(F)
BeR sSDC O

JMP BR GET IMAGE FROM READER BUFFER (F)
B.P sDC o

JMP BP SEND IMAGE TO PUNCH BUFFER (F)
BeK SDC @

JMP BK GET 6~-BIT CHAR FROM KEYBOARD BUFFER
BeT sDC o

JMP BT SEND 3 PACKED 6~-BIT CHARS TO TP BUF
Ne.A $DC ©

JMP NA CONVERT ANALOG TO DIGITAL
N.C SDC o

JMP NC SET CLOCK INTERVAL & SERVICE TASK
NeD1 sDC 0O

JMP ND1 SELECT D/A CONVERTER #1}
Ne.D2 sDC o

JMP ND2 SELECT D/A CONVERER #2
NeD?3 s$DC o

JMP ND3 SELECT D/A CONVERTER #3
PeT sDC 0

JMP PT SET PUSH BUTTON SERVICE TASK
P.E sDC 0O

JMP PE ENABLE MANUAL OPN OF PUSH BUTTONS
P.D $DC 0O

JMP PD DISABLE MANUAL OPN OF PUSH BUTTONS
PeR sDC 0O

JMP PR READ PUSH BUTTONS
P.S sDC o

JMP PS SET PUSH BUTTONS
D.E sSDC ©

JMP DE ENABLE DISPLAY INTERRUPTS
D.D $DC o

JMP DD DI SABLE DISPLAY INTERRUPTS

D.P $DC o
JMP DP SET LIGHT PEN FLAG SERVICE TASK

D.A
D.Y
De X
D.0
Xl
XeR
XeT
XS
KoY
XeX
S.TL
S.TD
STl
S.TR
SeLH
SeLY
S.LX
S.LP
S.LBE
S.LBD

$DC
JMP
$DC
Jup
$DC
JMP
$DC
JMP
SDC
Jup
sDC
JMP
$DC
JMP
$DC
JupP
$DC
JupP
$DC
JMP
$DC
JMP
sDC
JMP
sDC
JMP
$DC
JMP
sDC
JuP
sDC
JMP
$DC

$DC
JMpP
$DC
JHP
$0C

0
DA

DY

DX

X1
XR
XT
XS
XY
XX
STL
STD
STI
STR
SLH
SLY
SLX
SLP
SLBE

SL8D

READ DISPLAY ADR ON LAST INTERRUPT
READ Y DPY COORD ON LAST INTERRUPT
READ X DPY COORD ON LAST INTERRUPT
READ OWNER ON LAST INTERRUPT <F)
INITIALIZE TRACKING AT GI!VEN COORDS
RESUME TRACKING

TERMINATE TRACKING

SKIP IF TRACKING NOT IN PROCESS (F)
READ Y TRACKING COORDINATE

READ X TRACKING COORDINATE

CREATE A LEVEL (F)

DESTROY A LEVEL (F)

INSERT SUBSTRUCTURE INTO LEVEL (F)
REMOVE SUBSTRUCTURE FROM LEVEL (F)
GET ADDRESS OF HIGHEST ACTIVE LEVEL
TRANSLATE LEVEL IN Y DIRECTION
TRANSLATE LEVEL IN X DIRECTION

SET LEVEL PARAMETERS

ENABLE SBLINK ON LEVEL

DISABLE BLINK ON LEVEL

S C
S.LU
S.LS
S.LL
S.LN
LT
L.D
LeL

PDP)

PDP2

$DC
JMP
$DC
JMP
$DC
JMP
s$DC
JMP
s$DC
JMP
$DC
JMP
$S0C
JMP
s$DC
JMP

$DS

$DS

e
SLC

SLU
SLS
SLL
SLN
LT
LD
LL
204
204

COUNT SCALE AND/OR INTENSITY
INTERRUPT UNCONDITIONALLY ON LEVEL
INTERRUPT ON LEVEL IF ON SCREEN
INTERRUPT ON LEVEL IF LPSI SET
DISABLE INTERRUPT ON LEVEL

SEND TEXT LIST TO TP BUFFER
GENERATE TEXT LEAF (F)

DESTROY TEXT LEAF

STITLE DISPLAY CHARACTER GENERATOR

Doo INCR
$0C 1272
$DC 6251}
$DC 6057
$DC 7516
$DC 1570
$DC sS172
$DC 3726
s$DC 0
POP

DO1 INCR
$DC 5160
$DC 1472
$DC 7255
$DC 3737
$DC 0
POP

De2 INCR
$DC 5271
$0C 5152
$DC 5364
$DC 55317
$0C 2774
$DC 5417
$DC 3020
$DC 0
POP

De3 INCR
$DC 1252
$DC 5760
$DC 5152
$DC 5354
$DC 1051
$0C 5253
$DC 6455
$DC 3737
$0C 1000
POP

DOS

Do6

INCR

sDC 1110
sDC S072
$DC 7275
$DC 6010
$DC 5037
$DC 1600
POP

INCR

sDC 12352
$DC S760
sDC 5162
$SDC 5374
$DC 6270
$DC 5037
$DC 3616
sDC o
POP

INCR

$DC 1252
$DC 5760
sDC 5152
$DC 5364
$DC 5572
$DC S170
$DC 3736
$DC 1600
POP

INCR

$DC 5271
$DC 5162
SDC 7454
$DC 5637
$DC 3710
$DC o
POP

INCR

$DC 1252
$DC 5760
$DC 5152

D11

D12

D13

D14

$DC
$DC
$DC
$DC
$DC
sDC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
sDC
POP

INCR

$DC
$DC
$DC
$DC
$DC
sDC
$DC
$DC
$DC
POP

INCR

$DC
$DC
s$DC

5364
5512
6251
6057
56317
2600

5270
S162
7453
5251
6057
5637
2600

7272
5160
5766
7632
7437
1720
o

7272
5270
5756
5564
2057
5655
6430
1720
o

1272
6251
6057

D1S

D16

D17

$DC 3656
SDC $S564
SOC 3020
SDC 1700
POP

INCR

sDC 7272
SDC SC:60
$DC 6766
SDC 6554
SDC 3020
sDC 17060
POP

INCR

SDC 7272
$DC 5270
SDC 5025
SDC 5550
SDC 2516
SDC 7858
sDC 1720
$OC @
POP

INCR

SDC 7272
SDC 5270
SDC 5025
SDC 5550
$DC 3717
SDC 1000

$DC 1272
$DC 6851
$DC 6057
$DC 3570
$DC S65S
$DC 6430
s$OC 1720

be2

D23

D24

D25

POP

INCR

$DC 7272
$DC 5236
$DC 7050
$DC 7236
$DC 7620
$DC 1700
POP

INCR

$DC 5160
$DC 1472
$DC 7254
$DC 1050
$DC 3736
$DC 1700
POP

INCR

$DC 2252
$DC 5657
$DC 6051
$DC 7262
$DC 3636
$DC 1720
$DC o
POP

INCR

$DC 7272
$DC S230
$DC 5075
$DC 7720
$DC 1700
POP

INCR

$DC 7272
$DC 5236
$DC 3670
$DC %5020
$DC 1700
POP

A-11

D26

D3@

D31

D32

INCR

$DC 7272
$DC S267
$DC 6176
SDC 7620
SDC 1700
POP

INCR

$DC 7272
$DC 5277
$DC 23250
$DC 7676
$DC 1720
sDC o
POP

INCR

sDC 1272
$DC 6251
SDC 68357
$DC 7656
$DC 5564
$DC 3020
$DC 1700
POP

INCR

$DC 7272
$DC S270
$DC 5756
$DC 5564
$DC 3720
sSDC 1700
POP

INCR

$DC 1272
$DC 6251
$DC 6657
$DC 7656
$DC 5564
$DC 1022
SDC 7720

A-12

D33

D34

D35

D36

D37

sDC ©
POP

INCR

$DC 7272
sDC 5270
$DC 5756
$DC 5564
$DC 7720
$DC 1700
POP

INCR

$DC 1252
$DC 5760
$DC 5152
$DC 5364
$DC 5352
$DC 5160
$DC 5737
$DC 3600
POP

INCR

$DC 1150
s$DC 7272
$DC 6420
$DC 6036
$DC 1637
$DC 0
POP

INCR

£DC 1272
$DC 7230
$DC 5076
$DC 6655
$DC 6430
$DC 1720
$DC ©
POP

INCR

$DC 2272
$DC 6230

A-13

Dao

Dal

Da2

Da3

$DC S076
$DC 5665
$DC S327
sDC 3010
sDC o
POP

INCR

sDC 7272
sDC S230
$DC S@76
$DC 7663
$DC SS527
$DC J010
sDC o
POP

INCR

sDC 627
$DC 5152
$DC 3454
$DC 5657
$DC 1767
SDC S617
SDC 2e00
POP

INCR

$DC 1150
$DC 7261
$DC 5234
SDC 5456
$DC 5737
sDC 2710
sDC o
POP

INCR

$DC 6271
$DC S152
SDC 7454
$DC 3727
$DC S574
sDC 3020

A-14

Da4

DAS

Daé

Da?

DsSe

D31

$DC 1700
POP

INCR

$DC 1251
$DC 7151
$DC 3454
$DC 5717
$DC 6727
$DC ©
POP

INCR

$DC 1252
$DC 7151
$DC 3736
$DC o
POP

INCR

sDC 1151
$DC 7252
$DC 1555
$DC 5010
$DC 6037
$DC 1600
POP

INCR

$DC 3252
$DC 7050
$DC 3716
$DC @
POP

INCR

$DC 1150
$DC 5372
$DC 5251
$DC 3727
$DC 2600
POP

INCR

$DC 1150
$DC S172

A-15

DS2

DS3

D54

DSS

DSé

D57

$DC 5253
$DC 3727
$SDC 2600
POP

INCR

$DC S172
$DC 7260
$DC 3636
$SDC 545¢
$DC 1730
sDC o
POP

INCR

$SDC S160
sDC 7272
$0C 6437
$DC 3716
$DC o
POP

INCR

$DC 3051
$DC 7371
$DC 3736
$DC 1600
POP

INCR

$DC 3150
SDC 7454
sDC 1252
SDC 7050
$DC 3706
$DC o
POP

INCR

$DC 5271
$DC 7337
$DC 3717
$DC o
POP

INCR

A-16

Déo

Dé1

D62

D63

D64

$DC 1150
$DC 7272
$DC 6520
$DC S187
$DC 3726
$DC o
POP

INCR

$DC 1151
$DC 6361
$DC 1655
$DC 7037
$DC 1600
POP

INCR

$DC 6250
$DC S630
$DC 1720
$DC 0
POP

INCR

$DC 6250
$DC 6655
$DC 1130
$DC 3000
POP

INCR

$DC 1262
$DC 1262
$DC S@56
$DC 1666
$DC 2710
$DC 3000
POP

INCR

$DC 1262
$DC 1262
$DC 5056
$DC 1676
$DC 5530

D65

D66

D67

D70

DT

SDC 3010
sDC @
POP

INCR

$DC 1158
$DC 1262
$DC 5851
$DC 5253
$DC 6455
$DC 3737
SDC 1000
POP

INCR

$OC 1150
$DC 1272
$DC 6237
$DC 2726
$DC @
POP

INCR

$DC 2122
$DC 7237
$DC 2726
$DC @
POP

INCR

$DC 1132
SDC 7210
SDC 5066
$OC 3717
SDC 1600
POP

INCR

$DC 1252
$DC 5760
$DC 5152
$DC 5364
$DC 5352
$DC 5160
$DC 5714

A-18

D72

D73

275

D76

$0C
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$D0C
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP
VEC
$DC
$DC
POP

SVEC

$DC
POP

5456
1666
2730
0

5172
7210
S076
7612
5314
5412
5210
5010
5016
5637
0

5153
S261
5355
1777
1454
1151
3700

2020
4000

50

A-19

XP

XPY
XPX

XPS

STITLE

LAW 3000
$DC 1105
$DC 1080
$DC Seeeo
SDC 1400
$DC X1
$DC 60
SVEC

SDC 24
SDC 4047
$DC 1400
$DC X2
$DC 60
SVEC

sDC 1
$DC 4067
SDC 1400
$DC X3
$DC 60
SVEC

$DC 2403
SDC 4740
$DC 1400
$DC X2
s$DC 60
SVEC

sDC 100
sDC 6700
$DC J40
$DC 1400
SDC X4
POP

SVEC

SDC 404
$DC 4030
$DC 7000
$SDC 4010
$DC 5S040

A-20

TRACKING PATTERN GENERATOR

VEC
sDC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
sDC

4000
2020
6020

4000
29
4020

4000
2030
6030

4000
30
4030

4000
2040
6040

4000
40
4040

4000
2050
6050

4000
50
4050

A-21

$DC
$DC
$DC
s$oC
$DC
$DC
sDC
$DC
$DC
$DC
sDC
$DC
$DC
$DC
$DC
$DC
sDC
sDC
$DC
$DC
$DC
sDC
$DC
$DC
$DC
sDC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

4000
2060
6060

4000
60
4060

4000
2070
6070

4000
70
4070

4000
2100
6100

4000
100
4100
4000
1400
XS

A-22

STITLE

DAC
LACQ
DAC
LACS

6

3

DAC 2

10T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
I0T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
10T
DAC
AND
SZA
JMP
10T
JMP
10T
JMP

1441

IF1
1401

IFO
101

IRD
1301

I1AD
301

IKB
201

I1PC
401

1TP
1

ICK
612
DSS
=20

1PB
702
*+3
724
IR

INTERRUPT DISPATCHER

SAVE AC CONTENTS

GET M@ CONTENTS

SAVE M@ CONTENTS

GET SC CONTENTS

SAVE SC CONTENTS

SKIP ON DATAPHONE RECEIVE FLAG
TEST NEXT FLAG

SERVICE DATAPHONE INPUT INTERRUPT
SKIP ON DATAPHONE TRANSMIT FLAG
TEST NEXT FLAG

SERVICE DATAPHONE OUTPUT INTERRUPT
SKIP ON READER FLAG

TEST NEXT FLAG

SERVICE READER INTERRUPT

SKIP ON A/D CONVERTER FLAG

TEST NEXT FLAG

SERVICE A/D CONVERTER INTERRUPT
SKIP ON KEYBOARD FLAG

TEST NEXT FLAG

SERVICE KEYBOARD INTERRUPT

SKIP ON PUNCH FLAG

TEST NEXT FLAG

SERVICE PUNCH INTERRUPT

SKIP ON TELEPRINTER FLAG

TEST NEXT FLAG

SERVICE TELEPRINTER INTERRUPT
SKIP ON CLOCK FLAG

TEST NEXT FLAG

SERVICE CLOCK INTERRUPT

READ DISPLAY STATUS

SAVE DISPLAY STATUS WORD 1|

GET PUSH BUTTON FLAG

SKIP ON NO PUSH BUTTON FLAG
SERVICE PUSH BUTTON INTERRUPT
SKIP ON EDGE FLAG

TEST NEXT FLAG

RESWME DI SPLAY

RETURN FROM INTERRUPT

IR

10T
SKP
JMP
10T
SKpP
JMP
10T
JMP
JMP
LAC
XOR
TAD
AND
DAC
HLT
LAC
LMO
LAC
10T
10T

642

ILP
721

118

722

El

EM

2

=77
=640 402
x840477
' TY|

3
6

42
3344

JMPe @

A-24

SKIP ON LIGHT PEN FLAG

TEST NEXT FLAG

SERVICE LIGHT PEN INTERRUPT
SKIP ON INTERNAL STOP FLAG
TEST NEXT FLAG

SERVICE INTERNAL STOP INTERRUPT
SKIP ON MANUAL INTERRUPT FLAG
INVALID INTERRUPT

EMERGENCY REINITIALIZATION
GET SC CONTENTS

COMPLEMENT SHIFT COUNT

FORM NORM INSTRUCTION
TRUNCATE CARRY

STORE NORM INSTRUCTION
RESTORE SC CONTENTS

GET MQ CONTENTS

RESTORE M@ CONTENTS

RESTORE AC CONTENTS

ENABLE INTERRUPTS

DEBREAK AND RESTORE

RETURN TO INTERRUPTED PROGRAM

SYSTEM

EE

El

EQ

STITLE

LAW
10T

LAW =1400

10T
LAC
JMP
sDC

4490
705

1605
2%+
E
5

SYSTEM DIAGNOSTICS

GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD

GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY

GET ADDRESS OF TEXT LIST
INITIALIZE SYSTEM

STEXT '"SYSTEM RELOADED"

10T
LAC
SZA
JMP
LAC
SZA
JMP
10T
AND
SZA
JMP
10T
LAC
JMP
sDC

42
BP3

*-2
BTI

*=-2
1412
=2

*-3
2
a+2
£

6

ENABLE INTERRUPTS

GET PUNCH STATUS SWI TCH

SKIP IF PUNCH IS IDLE

WAIT FOR PUNCH TO FINISH

GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER IS IDLE
WAIT FOR TELEPRINTER TO FINISH
READ 201 STATUS

GET TRANSMIT STATE BIT

SKIP 1F NOT TRANSMITTING
WAIT FOR END OF TRANSMISSION
DI SABLE INTERRUPTS

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT ""TASK QUEUE EMPTY"

LAC
JMP
$DC

z2%e+2
£
6

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT "INVALID INTERRUPT"

LAC =#%+2

JMP
$DC

E
6

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT '"MANUAL INTERRUPT”

LAC =3%+2

JMP

E

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

ES

ET

ETI!
ET2

$OC 7

STEXT '*'TASK QUEUE OVERFLOW"

DZM BP3
DZm BT
LAW 4400
ICT 78S
LAW =) 400
I0OT 1685
LAC see2
JMP E

$DC S

CLEAR PUNCH STATUS SWI TCH

CLEAR TELEPRINTER STATUS SWI TCH
GET BREAKX FIELD 1| PARAMETER
LOAD BREAK FIELD

GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY

GET ADDRESS OF TEXY LIST
REINITIALIZE SYSTEM

STEXT "PANEL RECOVERY"

IOT 2

CLC

TAD 20
JMS C.Bé6
AND 27777
TAD =760000
DAC ETI
LACQ

DAC ET2
LAC =#+2
JMP E

$DC 13

DISABLE INTERRUPTS

LOAD AC WITH -1

ADD PROGRAM COUNTER DURING TRAP
CONVERT TO 6-BIT CODE

TRUNCATE HIGH ORDER DIGIT

USE BLANK AS HIGH ORDER CHARACTER
STORE HIGH ORDER CHARACTERS

GET LOW ORDER DIGITS

STORE LOW ORDER DIGITS

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT ""ILLEGAL INSTRUCTION AT LOC"

sDC o
sOC o

STITLE

DAC
10T
10T
AND
SZA
JMP
10T
LAC
10T
LAC
SNA
JMP
10T
JMP
LAC
SNA
JMP
10T
JMP
10T
AND

25
7702
1412

*~3
1444
2440
1404
BP3

*+3
201
*-1
BTI1

3
401
*-1
612
=7400

SNA+CLA

JMP
JMS
10T
10T
DZM
DzZM
DZM
DZM
DZM
DZM
DZM
DZM
DZM
DZMm
DzZM
LAwW

*-3
PS1

4

3302
BP3
8BTI1
PE+1
DE+1
Dwv
NA+2
NC+2
STRD+2
STRR+2
SLY+2
SLX+2
10

SYSTEM INITIALIZER

SAVE ADDRESS OF DIAGNOSTIC
ENTER EXTEND MODE

READ 201 STATUS

GET RECEIVE STATE BIT

SKIP IF NOT RECEIVING

WAIT FOR END OF RECORD

CLEAR 201 INTERFACE

GET TERM RDY BIT & FRAME SIZE 8
SET INITIAL 201 INTERFACE STATE
GET PUNCH STATUS SWITCH

SKIP IF PUNCH ACTIVE

PUNCH NOT ACTIVE

SKIP ON PUNCH FLAG

WAIT FOR PUNCH FLAG

GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER ACTIVE
TELEPRINTER NOT ACTIVE

SKIP ON TELEPRINTER FLAG

WAIT FOR TELEPRINTER FLAG
READ DISPLAY STATUS

GET DISPLAY FLAG BITS

SKIP IF DISPLAY STOPPED

WAIT FOR DISPLAY TO STOP
CLEAR PUSH BUTTONS

DISABLE CLOCK

CLEAR ALL FLAGS

INDICATE PUNCH IDLE

INDICATE TELEPRINTER IDLE
DISABLE OPERATION OF PUSH BUTTONS
DISABLE DISPLAY INTERRUPTS
CLEAR TRANSLATION VALUE
UNLOCK N.A

UNLOCK N.C

UNLOCK S.TRD

UNLOCK S.TRR

UNLOCK S.LY

UNLOCK S.LX

GET TELEPRINTER MASK

El

DAC
DAC
LAC
DAC
DAC
DAC
pzM
LAC
DAC
DAC
LAC
DAC
DAC
LAC
DAC
DAC
LAC
DAC
LAC
DAC
LAW
DAC
LAC
DAC
LAW
I0T
LAW
10T
LAW
10T
LAW
I0T
LAC
JMS
10T
LAW
JMS
NOP
DZM
DzZM

STATUS
BFTTY2
T0
TO+1
TQ+2
BRS
BRO
BPO
BPO+1
BPQ+2
BKO
BKQ+ 1
BKQ+2
BTO
BTQ+1
BTO+2
sDN
DPT
sPN
PTT
3000
XP

=D
DHAL+7
PDP}
645
7763
665
4400
705

D

1605
aBFENQ
BFENGS
42
BFENG®
B.FO

26
27

A-28

ALLOCATE TELEPRINTER ONLY

SET BFTTY ALLOCATION MASK

GET POINTER TO END OF TASK QUEUE
RESET INPUT POINTER

RESET OUTPUT POINTER

SET RECORD SEEK SWITCH

INDICATE NEW RECORD NEEDED

GET POINTER TO END OF PUNCH BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET POINTER TO END OF KB BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET POINTER TO END OF TP BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET ADDRESS OF NULL DISPLAY SERVICE
SET NULL LIGHT PEN SERVICE

GET ADDRESS OF NULL PB SERVICE

SET NULL PUSH BUTTON SERVICE

GET POP INSTRUCTION

INHIBIT TRACKING PROCESS

GET ADDRESS OF HIGHEST ACTIVE LEVEL
REMOVE EVERYTHING FROM HAL

GET ADDRESS OF PUSH DOWN LIST

SET PUSH DOWN POINTER

GET INITIAL DISPLAY CONDITIONS

SET INITIAL DISPLAY CONDITIONS

GET BREAK FIELD 1 PARAMETER

LOAD BREAK FIELD

GET ADDRESS OF SYSTEM DISPLAY FILE
START DISPLAY

GET ENQUIRY CHARACTER

INITIALIZE 201 TASKS

ENABLE INTERRUPTS

GET ENQUIRY CHARACTER

SEND ATTENTION INTERRUPT

DATA SET NOT CONNECTED

CLEAR POINTER TO DIAGNOSTIC LEVEL
CLEAR POINTER TO DIAGNOSTIC LEAF

JMS
JMP
DAC
LAC
JMS
JMP
LMo
LAC
JMS
JMP
LAC
LMe
LAC
JMS
LAW
LMe
LAC
JMS
LAW
LMQ@
LAC
JMS
LAC
LMe
LAC
JMS
JMP
JMS
JMpP
DAC
LAC
LMQ@
LAC
JMS
LAW
LM@
LAC
Jus
LAW
LM@Q

S.TL
E2
EJ
=EF
L.D
E2

E3
S.TI
E2
=370

E3
S.LY
-144

E3
S.LX
500

E3
S.LP
E3

aDHAL
STl
E2
S.TL
E2

26
=200

26
S.LY
-4C0

26
S.LX
560

A-29

CREATE TITLE LEAF

USE TELETYPE ONLY

SAVE POINTER TO TITLE LEAF

GET ADDRESS OF TEXT LIST
CREATE TITLE LEAF

USE TELETYPE ONLY

SET UP PARAMETER

GET POINTER TO TITLE LEVEL
INSERT TITLE LEAF

USE TELETYPE ONLY

GET Y TITLE COORDINATE

SET UP PARAMETER

GET POINTER TO TITLE LEVEL

SET Y TITLE COORDINATE

GET X TITLE COORDINATE

SET UP PARAMETER

GET POINTER TO TITLE LEVEL

SET X TITLE COORDINATE

GET SCALE X2 PARAMETER

SET UP PARAMETER

GET POINTER TO TITLE LEVEL

SET TITLE SCALE

GET POINTER TO TITLE LEVEL

SET UP PARAMETER

GET ADDRESS OF HIGHEST ACTIVE LEVEL
INSERT TITLE LEVEL

USE TELETYPE ONLY

CREATE DIAGNOSTIC '.ITVEL

USE TELETYPE ONLY

SET POINTER TO DIAGNOSTIC LEVEL
GET Y DIAGNOSTI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>