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ABSTRACT

The corrosion characteristics of nineteen structural
aluminum alloys were studied in quiescent sea water. Some
alloys were exposed with and without cladding, and others
at more than one strength level for a total of twenty-six
material conditions. The response to cathodic protection
of all the alloys studied was also determined.

The electrochemical potentials of the alloys were
monitored during the experiment and a relationship was
developed between the electrode potential and the corro-
sion characteristics of the alloys. These mean poteantial
values were found to differ significantly in many instances
from the electrochemical potential values determined by
other investigators from laboratory measurements in sodium
chloride-hydrogen peroxide solution.

Cathodic protection from galvanic anodes was effective
in reducing the corrosion damage to acceptable limits

except edge attack was not eliminated on one of the high
strength 7XXX series aluminum alloys.

PROBLEM STATUS

This report completes one phase of the task; work is
continuing on other phases.

AUTHORIZATION

NRL Problem No. 63M04-02
Task No. SF 51-542-602-12431
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INTRODUCTION

Aluminum alloys are finding increased use in marine
and ocean engineering applications because of their favor-
able strength-to-weight ratio. Although a number of
investigators (1-7) have reported on the corrosion behavior
of aluminum, only limited information is availahle on the
behavior in quiescent sea water of the higher strength
alloys hitherto used principally for aircraft applications,
and almost no quantitative information is available as to
the effectiveness of cathodic protection.

-

It was also desired to establish reliable electro-
chemical potential data for aluminum alloys in sea water.
Most of the previously reported electroche ical poten~
tials (8) were measured in short-term lab tory experi-
ments in sodium chloride solutions contai: 3 hydrogen
peroxide.

Electrochemical potential data are required for
several reasons: The values so measured (1) establish
the potential for a given alloy and any galvanic anode
used for cathodic protection must have a more negative
potential, (2) offer an initial guide to the selection
of compatible alloys, i.e., alloys none of which will
suffer accelerated corrosion when coupled in a multi-
alloy structure, and (3) provide a basis for developing
a means for predicting long-term corrosion behavior
from short-term electrochemical measurements.

For these reasons a broad-spectrum study of alumi-
num alloys was initiated. Nineteen structural alloys
were included in this study. Some alloys were available
with Alcladding or in several hardness levels. A total
of twenty-six material conditions were studied (Table 1).
In addition, one proprietary aluminum alloy anode with a
known stable electrochemical potential was included as a
control.

PROCEDURES

The experiment was conducted at the Naval Research
Laboratory's Marine Corrosion Research Laboratory,




Key West, Florida. The exposure racks were suspended under
a pier in quiescent, but not stagnant, sea water. The water
characteristics during the period of interest were as
follows:

Temperature: 16.5 to 32.5°C (81.7-90.5°F)

Resistivity: 16 to 21 ohm-centimeters

pH: 8.2

Oxygen: Not measured, but assumed to be saturated

The specimens used in the study measured 6 x 12 in,
except for the 5052-H32 panels which were 5-in. wide, and
the 7079-T6 panels which were 4-in. wide. Specimens weie
cut from commercially supplied stock which varied in thick-
ness from 0,050 to 1 in. To expedite the experiment mate-
rials were exposed in the as-rolled thickness. Specimens
were attached to painted aluminum racks with nylon bolts,
nuts, washers, and insulating strips. The artificial
crevices formed at the attachment points were utilized
to assess the susceptibility of the aluminum alloys to
crevice corrosion. Duplicate specimens were exposed for
each material condition. One specimen was exposed un-
protected and the second specimen was provided with a
1/2 x 1 1/4 x 6-in. aluminum alloy anode. An anode of
this size was sufficient to polarize the protected speci-
men to approximately minus 1.1 volts to a Ag/AgCl reference
electrode. The crevices formed at the interfaces of the
anodes and the aluminum specimens were sealed to prevent
a build-up of corrosion products benind the anodes which
could hi.ve caused mechanical detachment of the anodes.

An insulated electrical test lead was attached to
each specimen to allow the measurement of the electro-
chemical potential relative to a remote Ag/AgCl reference
electrode. The potential of each specimen was measured
weekly for the first 63 days. The potentials of selected
specimens were measured for longer times, in some instances
up to 360 days of the 368-day experiment.

At the conclusion of the exposure period, the gross
marine fouling was removed from the specimens with a
high-pressure water jet, and the specimens were chemically
cleaned in a 2 percent chromic acid-5 percent phosphoric




acid solution maintained at 80-85°C. The corrosion on all
specimens was characterized by visual inspection and by
measurement of the depth of attack with a di~l gage
micrometer.

CORROSION CHARACTERISTICS

Criteria for Corrosion Resistance

The choice of the most meaningful parameter to charac-
terize the corrosion behavior of an alloy is in large part
dependent upon the end use contemplated for the material,
Although weight loss or "average corrosion rates" in
inches penetration per year might be quite useful in
estimating the life of a massive pier structure constructed
of mild steel, the same type of data would be meaningless
if used to esiimate the life of an aluminum instrument
package in which the most likely mode of failure would be
perforation due to preferential attack or pitting.

In many instances it is, therefore, meaningless to
report data based on weight loss for materials which do
not corrode uniformly, because such data are of little or
no value to the designer and might readily mislead an
unwary novice into a poor material choice.

Thres parameters were used to character ize the corro-
sion attack on the aluminum alloys of the present study.
They were:

1. The deepest attack in the crevice formed by
the plastic mounting attachments.

2. The deepest attack on the surface of the
specimen not associated with any known
crevice,

3. The mean value of the five deepest points
of attack regardless of location.

In addition, some of the alloys studied developed edge
cracking in the form of exfoliation or delamination. The




depth of this type of corrosion could not be accurately
determined, but the presence of such attack has been noted.

Depth of Attack on Aluminum Alloys in 368 Days in Quiescent
Sea Water

Quantitative depth of attack data for each material are
shown on Fig. 1-5. These data are arranged using The
Aluminum Association's designation for the alloys.

The figures show not only the depth of attack on the un-
protected alloy, but also the degree of reduction of attack
obtainable through the use of cathodic protection.

Alloys X7002-T6, 7178-T6, and Alcad 7178-T6 developed
edge cracking during the exposure period. These data are
noted on Figs. 4 and 5, but no quantitative estimate of the
degree of attack was feasible. Edge cracking of the X7002-T6
alloy was eliminated by either Alcladding or cathodic pro-
tection (Fig. 6), but neither of these techniques was ade-
quate to completely eliminate this type of attack on the
7178--T6 alloy (Fig. 7).

The corrosion behavior of the aluminum alloys and their
response to cathodic protection are summarized in Table 1
where the alloys have been separated into groups according
to the mean depth of attack. The group of alloys showing
the greatest inherent corrosion resistance includes many
of the 5XXX series alloys. However, the X7005-T63 and
7106~-T63 alloys were more corrosion resistant than had
been expected and the data from this study place them
in the most corrosion resistant group.

The effect of the hardness condition of aluminum
alloys on their corrosion characteristics is demonstrated
by the 6061 alloy. In the T651 condition, this alloy was
among the most corrosion resistant studied with a mean
depth of attack of less than 1 mil and with no evidence
of crevice corrosirn. In contrast, in the more common
T-6 condition the mean depth of the five deepest points
of attack was 8 mils with a maximum depth of attack of
over 10 mils. These same effects were not evident in the
strain hardened alloys, i.e., the 1100 and 5XXX series
alioys.




Cathodic protection virtually eliminated the localized
corrosion on all the aluminum alloys studied with the
exception of 7178-T6 where it did not eliminate the edge
corrosion. For example the mean depth of attack on 7079-T6
was reduced from over 15 mils to less than 1 mil., For
2024-T351, the mean attack was reduced from 40 mils to
3 mils, and for the alloy for which cathodic protection
was least effective (7178-T6) all corrosion except for
edge cracking was reduced to a maximum of 4 mils.

ELECTRODE POTENTIALS

This phase of the investigation included the deter-
mination of the open circuit electrochemical potential of
each specimen when immersed in quiescent sea water. Within
the scope of this study it was not feasible to investigate
the complex factors on which the electrochemical potentials
of passive metals are dependent. For a detailed discussion
of factors which affect the electrochemical potentials of
film-pore type electrodes, the reader is referred to the
papers by Akimov (9,10).

The electrochemical potential of each alloy (negative
to a A;/AgCl reference electrode) and the values reported
by other investigators (8,11,12) are shown in Figs. 8-10.
In addition to the maximum (most electropositive), minimum
(most electronegative), and mean values of the observed
potential of each unprotected specimen, the potential
range observed on the cathodically protected specimen is
also shown.

It will be noted that the potential values measured
in this study are in most cases significantly electro-
negative to the values reported for sodium chloride
solutions containing hydrogen peroxide (8) or those for
highly aerated sea water flowing «t 13 feet per second
reported by LaQue (11). However, more recent data from
INCO (12), also developed under velocity conditions, are
in most instances more compatible with those data de-
veloped in the present study.

The potential data summarized in Table 2 are the
mean values observed during the indicated time periods.




This table can be considered a galvanic series for the mean
value open-circuit potentials of aluminum alloys in quiescent
sea water. The potentials of analuminum-5% zinc anode, a
zinc anode (MIL-A-18001G), and a high potential proprietary
aluminum anode have been added for reference purposes.

The mean open-circuit potential of aluminum alloys
ranged from 0.69 volts to 1.24 volts negative to a Ag/AgCl
reference electrode. It is evident that an initial poten-
tial difference of approximately 0.5 volt could exist if
alloys from the two extremes of the table were coupled and
immersed in sea water. Thus, accelerated corrosion is to
be expected if certain combinations of aluminum alloys are
electrically bonded in a marine structure.

Table 2 alsco shows that some of the structural alumi-
num alloys are more electronegative than the common gal-
vanic anodes normally used in sea water. While this could
present a serious problem, the more electronegative struc-
tural alloys in this study all demonstrated excellent
corrosion resistance, and there was no indication that
coupling these alloys to the aluminum alloy "anode" used
in this experiment (minus 1.11 volts to Ag/AgCl) accel-
erated corrosion damage of the structural alloy. However,
considerable caution snould be used in coupling the more
electronegative structural alloys to galvanic anode mate-
rials such as zinc (minus 1.05 volts) or aluminum-5% zinc
(minus 0.95 volts).

CORRELATION BETWEEN ELECTROCHEMICAL POTENTIAL AND CORROSION
RESISTANCE

Analysis of the data showed that alloys with relatively
electropositive potentials, i.e., minus 0,69 to 0,89 volts
versus the Ag/AgCl reference electrode, were more susceptible
to severe localized corrosion than alloys with more electro-
negative potentials., In Fig. 11 the mean depth of the five
deepest pits 1is plotted as a function of the observed ele-~-
trochemical potential. The marked correlation is readily
evident.

The galvanic series for structural aluminum alloys in
quiescent sea water (Table 2) has been divided into two




columns with the less electronegative alloys on the left.
These alloys with potentials ranging from minus 0.69 to
minus 0.89 volts suffered relatively severe localized
corrosion and would not normally be suitable for use in
sea water without cathodic protection or unless protected
by a high quality coating.

In contrast, the alloys in the right-hand column, with
potentials from minus 0.92 to minus 1.%4 volts were essen-
tially unattacked during the experiment. The Alcad 7178-T6
is an exception to the rule because it suffered edge crack-
ing. In this case, however, the electrochemical potential
determined was that of the cladding and not of the base
metal. Considered in this light, the behavior of the
Alclad 7178-T6 is more reasonably viewed as a failure of
the cathodic protection provided by the electronegative
cladding.

SUMMARY AND CONCLUSIONS

The corrosion characteristics of the aluminum alloys
studied varied widely but the behavior can be conveniently
summarized by classifying the alloys by the observed elec-
trochemical potential. The more electronegative alloys
(minus 0.92 to minus 1.24 volts to the Ag/AgCl reference)
were inherently resistant to both surface pitting and
crevice corrosion.

Alloys less electronegative than minus 0.89 volts
suffered severe corrosion. In general, the severity of
the corrosion problem increased for the more electro-
positive (less electronegative) alloys. Alioys in this
group should not be used in sea water without some form
of supplementary protection.

Cathodic protection either from an external aluminum
anode or from Alcladding was effective in reducing the
surface pitting and crevice corrosion of the alloys
studied to tolerable limits. However, while cathodic
protection eliminated the edge cracking observed on
unprotected X7002-T6 alloy, it did not completely elimi-
nate this phenomena in the 7178-T6 alloy.
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Fig, 6 - Edge cracking (delamination) of
X7002-T6 aluminum alloy showing the
effectiveness of Alclad and cathodic
protection: (A) X7002-T6, (B) X7002-T6
with Cathodic Protection, (C) Alclad
X7002-T6, (D) Alclad X7002-T6 with
Cathodic Protection.
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Fig. 7 - Edge cracking (delamination)of
7178-T6 aluminum alloy showing the
ineffectiveness of Alclad and cathodic
protection: (A) 7178-T6, (B) 7178-T6
with Cathodic Protection, (C) Alclad
7178-T6, (D) Alclad 7178-T6 with
Cathodic Protection.
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Fig. 11 - Aluminum alloys: pitting characteristics vs. electrode

potentials in sea water at Key West, Florida,
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