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Abstract 

Most of the world's computer centers use 

congruentlal random number generators. This note 

points out that such random number generators produce 

points In 2,3,4,... dimensions which are too regular 

for many Monte Carlo calculations. The trouble Is 

that the points fall exactly on a lattice with quite 

a gross structure.  The paper gives details of the 

degree of regularity of such generators in terms of 

sets of relatively few parallel hyperplanes which 

contain all of the points produced by the generator. 



Virtually all the world's computer centers use an arithmetic 

procedure for generating random numbers.  The most common of these 

is the multiplicative congruential generator first suggested by 

D. H. Lehmer.  In this method, one merely multiplies the current 

random integer I by a constant multiplier K and keeps the 

remainder after overflow: 

new I = K x old I   modulo M. 

The apparently haphazard way in which successive multiplications 

by a large integer K produce remainders after overflow make the 

resulting numbers work surprisingly well for many Monte Carlo problems. 

Scores of papers have reported favorably on cycle length and statistical 

properties of such generators. 

The purpose of this note is to point out that all multiplicative 

congruential random number generators have a defect—a defect which 

makes them unsuitable for many Monte Carlo problems, and a defect 

which cannot be removed by adjusting the starting value, multiplier, 

or modulus.  The problem lies in the "crystalline" nature of 

multiplicative generators—if n-tuples  (u. ,u_,.. . ,u ), (u0,u-,. .. ,u .,),., 
i £     n   e.    i n+1 

of uniform variates produced by the generator are viewed as points in the 

unit cube of n  dimensions, then all  of the points will be found to lie 

in a relatively small number of parallel hyperplanes.  Furthermore, 

there are many systems of parallel hyperplanes which contain all of the 
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polnts; the points are about as randomly spaced In the unit n-cube 

as the atoms In a perfect crystal at absolute zero. 

One can readily think of Monte Carlo problems where such 

regularity In "random" points In n-space would be unsatisfactory; 

more disturbing Is the possibility that for the past 20 years such 

regularity might have produced bad, but unrecognized, results In 

Monte Carlo studies which have used multiplicative generators. 

Some notation:    For any modulus    m.   and multiplier   k,    let 

rjj^.r,,... 0  < r.   < m 

be a sequence of residues of m generated by the recurrence relation 

r. . = kr. modulo m, 

m: and let UJIU-.U-,... be that sequence viewed as fractions of 

ul " rl^In, u2 " r2^m, u3 " r,/mf.., . 

Let T^ - (M^ un), T\2  - (u2 "n+i^» 1T3 " (u3 "i^^'*"  be 

points of the unit n-cube  formed from    n    successive    u's. 

Theorem.    If   c.,c2,...,c     is any ahoiae of integers such that 

c.  + c-k + c-k    +•••+ c k E  0 modulo m, 

then all of the points    tr. »ir,,...    will lie in the set of parallel 

hyperplanes defined by the equations 

CTX.  + c-x- +•••+ ex« 0,±1,±2,... 
11        2  2 n n 

There are at most 
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IcJ  +  |c2|  +•••+  icn| 

of these hyperplanes which intersect the unit n-cube, and there is 

always a choice of c1,c2,...,c such that all of the points fall 

in fewer than    (nlm) hyperplanes. 

Here Is a table of    (nlm) for the most common values of    m, 

powers of    2: 

Upper Bound for the Number of Planes Containing All n-tuples 

\ 

m=2 

m=2 

m=2 

m-2 

m»2 

m-2 

16 

24 

32 

35 

36 

48 

n»3 n=4 n-5 n-6 n-7 n-8 n-9 n-10 

73 35 23 19 16 15 14 13 

465 141 72 47 36 30 26 23 

2953 566 220 120 80 60 48 41 

5907 952 333 170 108 78 61 51 

7442 1133 383 191 119 85 66 54 

119086 9065 2021 766 391 240 167 126 

32 
For example, in a binary computer with 32 bit words, m-2  , 

fewer than 41 hyperplanes will contain all lO-tuples, fewer than 

566 hyperplanes will contain all 4-tuples, and fewer than 2953 places 

32 
will contain all 3-tuple8.  (The generator r - = kr mod 2   will 

produce 357,913,941 independent points in the unit 3-cube and 

theoretically, the smallest number of planes containing all these 
o 

points is about  10 ,  in contrast to the bound of 2953.) 

The theorem can be proved in 4 steps: 

Step 1.  If 

c, + c0k + c,k +•••+ c V.        z  0 modulo m, 
12    3        n 



t'tit:* '.'itffiTfiMit^imm-*»-**' 

-it- 

then 

ClUi + c2ul+l
+,,,+ CnUi+n-l 

is an Integer for every    1,    and thus 

Step 2.    The point    IT.  -  (u1»u
1+1 

ui+n-l^    must lle in one 

of the hyperplanes 

c^ + c2x2 +••.+ cnxn - 0,±1,±2,±3,.. 

Step 3.    The number of hyperplanes, of the above type which 

intersect the unit n-cube,    0 < x.   < 1,...,0 < x    < 1    is at most 
'     1 r 

IcJ + |c2| +•••+ |cn|. 

and 

Step 4.    For every multiplier    k    and modulus   m    there is a 

set of integers    c.,...,c      (not all zero)  such that 
l n 

c,  + c0k + c,k    +•••+ c k        H 0 modulo m 12 3 n 

and 

1^1  +  |c2| +..•+  IcJ  1(n:m)1/n. 

To prOx2 Step 1,  note that  the sequence    r-.r-,...     can be put 

in the form,   using the greatest Integer notation   [   ], 

2 2 3 3 r1, kr1-m[kr1/m], k r,-m[k r^m], k r^mfk r./m],... 

and thus the sequence    u^u-,...    may be written 
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m 
\r_l kr1 "kr/ ^ri [^il k\ \*\] 

m *    m m '     m m '     m m 
L         J L            ^ L.                      J L 

n-l 
Clearly, If c. + c.k +•••+ c k    Is a multiple of m,  then 

c-u. +•••+ c u..  , will be an Integer. 
11 n i+n-1 

Step 2 follows immediately from Step 1, and Step 3 is easily 

verified. 

Now for Step 4. We want to prove that there are integers 

c, ,c0 c  not all zero such that 
12 n 

o n-l 
c, + c0k + c_k +•••+ c k   =   0  modulo m (1) 
1   z    j        n 

and 

^1 + |c2| +..-+ |cn| < (n:in)1/n. 

To do this we transform the problem so that it becomes a standard one 

in the geometry of numbers:  every solution to (1) can be expressed 

(uniquely) by the relation 

vC-i »•••»£/ = ^t1,...,t ) 
1     n     1     n 

m 0 0 0   • • • 0 0 

k 1 0 0   • • • 0 0 

0 -k 1 0   • • • 0 0 

0  0 0 0 -k  1 

A 

J 
where  the    t's    are integers.     Thus the problem is   to show there are 

integers    t.,...,t      not all  zero such that 
1 n 

Imt.-ktJ  +   |t0-ktJ  +•••+   It    ,-kt   I  +   It   I   <   (nlm)1     . 
i     ]_      2'        '   2       3' '   n-l      n'        '  n'   — 
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Thls follows from a general theorem on linear forms by Mlnkowski, using 

the basic result that a symmetric, convex set of volume 2  in n-space 

must contain a point (other than the origin) with integral coordinates. 

Elegant, elementary proofs are now available; see, e.g.. Hardy and Wright', 

p. 394-396, p. 413 or Cassels1, p. 150-153. 

Step 4 together with the steps 1-3 complete the proof of Theorem 1— 

every multiplicative random number generator produces n-tuples of uniform 

variates which lie in at most  (n.'m)    parallel hyperplanes.  Furthermore, 

any choice of  c..,...,c  which satisfies congruence (1) will provide a set 

of at most  jc-l +•••+ |c | parallel hyperplanes which contain all of the 

n-tuples produced by the generator.  Similar results can be established for 

congruential generators of the type r.+1 . kr.+c mod m. 

'Cassels, J. W. S., An Introduation  to Dtophcntine Approximation, 

Cambridge, 1965. 

2Hardy, G. H. and Wright, E. M. , An Introduction  tc the Thcoru of Numbers, 

4th Edition, Oxford, 1960. 


