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ABSTRACT 

Items arrive at a processing plant at a Folsson rate X . 
At time T , all Items are dispatched from the system. An 
Intermediate dispatch time Is to be chosen to minimize the 
total wait of all Items. It Is shown that If the dispatch 
time must be chosen at time 0 then T/2 not only 
minimizes the expected total wait but it also maximizes the 
probability that the total wait is less than a for every 
a > 0 .  If the intermediate dispatch time is allowed to be 
a (random) stopping time, then It is shown that the policy 
which dispatches at time t iff N(t) >_ X(T - t) is 
optimal, where N(t) denotes the number of items present at 
time t . The distribution of the optimal dispatch time and 
the optimal expected total wait are determined. A generali- 
zation to the case of a nonhomogeneous Folsson Process, a 
time lag, and batch arrivals is given.  Finally, the case 
where the process goes on indefinitely and any number of 
dispatches are allowed (at a cost K per dispatch) is 
considered, i r 
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OPTIMAL DISPATCHING OF A POISSON PROCESS 

by 

Sheldon M. Ross 
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1. INTRODUCTION 

Items arrive at a processing plant at a Polsson rate X  ,    At time T , 

all Items are dispatched from the system. An Intermediate dispatch time, at 

which all Items arriving up to that time are dispatched, Is to be chosen so as 

to minimize the total wait of all Items. 

2. CONSTANT DISPATCH TIME 

If we suppose that the intermediate dispatch time must be chosen at time 

0 , then It is easy to see that the dispatch time minimizing the expected total 

2   + 
waiting time Is T/2 , and the minimal expected waiting '_lme Is XT /A .  In 

fact, we can say more than this, as the following argument shows. Let t(0 < t < T) 
N(T) 

be any Intermediate dispatch time. Then the total waiting time is  £  W (1) , 
1-1 

where N(T) denotes the number of items arriving in (0,T] , and 

(1) wt(i) 

t - -^ if T < t 

T - T1 if T > t 

where    T  ,i ■ 1,  .... N(T)    are the arrival epochs.    Now conditional on    N(T) - n , 

the  (unordered) points    T. ,   ...,   T      are Independent and identically distributed 
1 " N(T) 

(lid)  as uniform random variables on    (0,T)   .    Thus,       £      W (1)    has the same 

P 
r 

distribution as  ^ Z (1) , where P is distributed as a Polsson random variable 
1-1 C 

with parameter XT , and the 2 (i) are lid independent of P having 

The expected number of arrivals in (0,T/2) is XT/2 , and each arrival is 
uniformly distributed on (0,T/2) and thus has expected delay T/4 . Similarly 
for arrivals in (T/2,T) . 

-i.'ifM.idtoi'-W.i 



m.'.liT" 'ir-Unmi.i.1., i..,s:::T:'i;...,.;rir". 

>W ^,)!>.,'r «tmmtim'mmmxtmmim-ie- 

(2) Pr(2t(l) < a) 

2a/T for a<t,a+t<T 

a+T-t , 
j for a<t,a+t>T 

a+t , 
— for a>tta+t<T 

1 for a>t,a+t>T, 

From (2), it follows that for fixed a , Pr(Z (1) < a) Is maximized by t - T/2 and 

(3) Pr(2T/2(l) < a) 

!2a/T for a < 

1  for a > 

2a/T for a < T/2 

T/2 . 

Since the distribution of P Is Independent of t It follows that not only does 

T/2 minimize the expected total waiting time, It also maximises the probability 

that the total wait Is less than a for every a > 0 . 

N(T) 

;;  W (1) also has the same distribution as I   U. (1) + l    V^l) , where 
1  .  . 1  t    1  ' 

Pj Is Polsson (Xt) , T2 Is Polsson (X(T - t)) , üt(l) are lid with 

'a/t for a < t 'a/T-t for a<T-t 

> 
for a>T-t 

Pr(üt(l) < a) I . V (1) are Ud with Pr (7^.(1) < a) - 
[   1     for   A > t       z z 1 

and all of the P]^ . Pj • V1* ' Vt(i) are lndePendent' 

3. DYNAMIC VERSION 

The problem becomes more Interesting If we allow the Intermediate dispatch 

time A   to be a (random) stopping time.  We shall say that a policy (I.e., stopping 

time) Is optimal If It minimizes the expected total wait. Let &    be the policy 

which dispatches at T - Mln {t > 0 : N(t) > X(T - t)} . 

This Implies that U < t]    Is Independent of {N(8) - N(t) , s > t} . 

- ■'- '' 
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We note that N(T) - X(T - T) unless N(t) has a jump at T (see Figure 1). 

y - X(T - t) 

y - N(t) 

FIGURE 1. 

Theorem 1: 

6 is optimal. 

Proof: 

» 

Let 6- be any policy, and let 62 follow 6^ with the exception th-'t If 

N(t) < X(T - t) and 6. dispatches at t then 6. dispatches at 

expected total wait from t under 6.  Is t + -X-^V *<*> E t + h .  The 
2 2 

X(T - t) /2 , while the expected wait from t under 6- Is N(t)*h + Xh /2 + 

2 2 
X(T - t - h) /2 ■ X(T - t) 12  ; and thus 6.  and 6- have the same expected wait. 

Now let 6 denote the policy which dispatches at T » Mln {t > 0 : N(t) - X(T - t)}. 

Since N(t + h) > N(t) » X(T - t - h) it follows from the definition of  6- that 

t(6-) > T , where t(6-) denotes the time at which 6„ dispatches. Thus, 

t(6?) ■ T + e , where e is nonnegative and random. Therefore, the conditional 

2 
expected total wait from T under 6- is at least N(T)«e + X(T - T - e) /2 , 

2 
which is strictly greater than X(T - T) /2 (= the conditional expected total 

wait under 6) whenever E > 0 , From this It follows that 6 is at least as good 

as (S2 , 
Q.E.D, 

1 
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It remains to determine the distribution of the optimal dispatch time and 

the optimal expected total wait. Now T « Mln {t < T : N(t) > X(T - t)} , and 

thus 

F(a) H Pr{T < a} - Pr(N(a) > X(T - a)) 

<4> -Xa    r        1 - e Xa    I (Xa)1/^ , 
l-[X(T-a)]+l 

I smallest Integer < x , for x > 0 
. We also note from (A) that 

-1 , for x < 0 

(5)   aj = Pr(T - ■^ - e"aT~J) (XT - J)j/j! , j - 0,1 [XT] . 

The optimal expected wait Is given by 

<«      E« . E^r (x - v]+«LXi (T ■Ti)] • 

Now, 

(7) t\    I        (T - T.)   |  T    - X(T - T)
2
/2  , 

bUT)+l 1 J 

and 

!JT/2    for    T -"P" , j - 0,1 [XT] 

(j  - 1)T/2    for    T e (^ , ^=±ti) j . i [XT]   . 

where  (8)  follows from the observation that    (1) T -       ■■'    Is equivalent to 

N^^llj - j    and    (11) T e ^j11 ,  XT^1+1)    Implies that   N(T) - j  , and    ^ - T  . 

Thus, by combining (7) and  (8) we arrive at 

-""■n   ' 
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[XT] ._ ,       [XT] 
(9)    EW-    I      Ja   ^+    I / 

j-0     3   ^     j-1  xe(xiii f xizj+n 
(j-l)x/2 dF(x) + X/2 I (T-x) «iF(x) , I«-, 

where a. and F are given by (A) and (5). 

Equation (9) Is rather unwleldly, but a simple and significant bound can be 

determined as follows. From (7) and (8) we have that 

(10) EW > E[(N(T) - 1)T/2] + E(X(T - T)^/2) . 

However, by definition    N(T)  > X(T - T)   ,  and thus 

(ID 
EW > E[(X(T - T) - 1)T/2] + E X(T - T)V2 

- XT2/2 - ^ Ex . 

Now It is easily verified that N(t) - Xt is a zero-mean Martingale, and thus 

by a simple Martingale systems theorem (see [1], Chapter 5, Section 3), we have that 

E[N(T) - XT] - 0 . Using this and the fact that N(T) < XCT - T) + 1 , we arrive at 

(12) 
r,      .   XT+l ET^"2r- 

By combining (11) and (12) we get 

(13) EW > XTVA - T/2 - 1/4X . 

Equation (13) is especially significant as XT /A is Just the total expected wait 

when the (fixed) dispatch time T/2 is used, and thus 

(14) XT2/4 > EW > XT2/4 - T/2 - 1/4X . 

It is interesting to note that the gain in choosing a random dispatch time 

over a fixed dispatch time Is of the order of T , while the wait is of the order 

2 
of T , Thus if T - 100 , X - 1/2 then the optimum wait is at least 1199.5, 

while by using a fixed time procedure the expected wait would be 1250. Since, the 

optimal procedure must continuously watch the process it hardly seems worth the gain. 
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A.  SOME GENERALIZATIONS 

a. Nonhomogeneous Polsson Procegg 

One generalization ia to allow the arrival stream to be a nonhomogeneous 

Polsson Process. Letting X(t) be the arrival rate at t , we have 

Theorem 2; 

If X(t)  Is continuous and nonlncreaslng on [0,T] , then the policy which 

dispatches at the smallest t such that N(t) ^X(t)(T - t) Is optimal. 

We first give a "pseudo,,-proof 

Proof;  (Pseudo) 

Suppose N(t) < X(t)(T - t) . The expected total wait (from t) of a policy 

dispatching at 'c    Is f (T - x)X'(x)dx , while the expected total wait (from t) 

of a policy dispatching at t + e Is J  X(x)(t+e-x)dx + EN(t) +  J  (T - x)X(x)dx . 
t O-e 

*¥ (T-t-'O 
Thus, waiting an additional time e Is better whenever N(t) <  f  X(x)-i—^—^ dx . 

Since  j  X (x) V1"^"6/ dx -► X (t) (T - t) as e + 0 , It follows that the Inequality 
t t 

holds for e small. 

Now, suppose N(t) >_ X(t)(T - t) and consider a policy which dispatches at 

t + c (c > 0 , e random). The expected total wait from t of this procedure is 

T T t+e 
at least eN(t) +  J  X(x)(T - x)dx - f X(x)(T - x)dx + eN(t) -  f  X(x)(T - x)dx 

tic Jt Jt 

r >_   I    X(x)(T - x)d> 

by the monotonlclty assumption and N(t) >^X(t)(T - t) . Thus If we haven't 

I^HIiniM mriiiiii in 
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dispatched before t - min {u >_ 0 : N(u) >^ A(u)(T - u)} , then we should dispatch at 

t . End of pseudo-proof. 

It Is tempting to replace "end of pseudo-proof" by Q.E.D., as we have shown 

that (i)"if N(t) >_ X(t)(T - t) then it is optimal to dispatch at t , and (ii) if 

N(t) < X(t)(T - t) then it is not optimal to dispatch at  t . However, the non- 

optimality of dispatching at t when N(t) < A(t)(T - t)  only Implies that It is 

optimal not to dispatch when an optimal policy is known to exist. Thus, the pseudo 

proof could be made rigorous by proving the existence of an optimal policy. How- 

i 

ever, a direct proof showing that the optimal policy is better than etrery other 

policy may be constructed exactly as in Theorem 1. 

We note that monotoniclty assumption was not used in the first part of the 

"pseudo" proof, and thus it is never optimal to dispatch at t when 

N(t) < Ut)(T - t) . 

b. Batch Arrivals and a Time Lag 

A second generalization is to assume that there is a time lag L(>_ 0) between 

the time at which the decision to dispatch is made and the time of actual dispatch- 

ment. In this case, it can be shown that under the conditions of Theorem 2 the 

policy which orders a dispatch at the smallest t for which 
t+L 

N(t) +  J  X(x)dx >_ X(t + L)(T-t-L) , is optimal. 

Finally, we may suppose that arrivals consist of batches of items. The batch 

size is assumed to be a random variable with mean y . In this case, still 

assuming a time lag L and also the conditions of Theorem 2 we have that the policy 

which orders a dispatch at the smallest t for which 
t+J. 

N(t) + y 
t 
j      X(x)dx >. wX(t + L)(T-t-L) , is optimal. 

It Is Interesting to note that under the conditions of Theorem 2 the optimal fixed 
dispatch time is that    t    such that    E(N(t)) - X(t)(T - t)   . 

■.^/■«■fcwM-idlrj^^i^^.yjjl 
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5. MULTIPLE DISPATCHES 

In this section we suppose that the process continues Indefinitely, and we 

allow any number of dispatches. Each dispatch Is assumed to Incur a cost K , and 

we also assume a cost C(l) per unit time when there are 1 Items In the system. 

(If there Is a cost C per unit of waiting time, then C(l) - 1C ; however, the 

additional generality does not complicate matters.) 

We assume a Polsson arrival rate X and seek to find a rule minimizing the 

long-run average cost per unit time. We shall only consider rules whose actions 

depend solely on the present number In the system.  (These are the stationary 

rules.) 

It Is well known (sec (2)) that. If a cycle Is defined as the time between 

successive dispatches, then the long-run average cost per unit time Is Just 

E[cost of cycle]/£[time of cycle]. Thus, the rule which dispatches when there are 

n people In the system has a long-run average cost equal to 

(15) (n/X) 
-1 n 

C(N(t))dt 

which Is easily seen to equal 

(16) \/n[K + ^(0(0)^ + C(1)(T2 - T^ + ... + C(n - 1)^ - T^))] 

XK 
n-1 

^ + 1/n I    C(l) . 
n     1-0 

The optimal value of n can then be found from (16).  For example. If C(l) - 1C 

We are supposing that never dispatching Is not optimal. Since the average cost 
n 

In this case would Just be 11m  ][ C(k)/n , It Is easily seen when this Is non- 
n-H»    k-1 

optimal. 

M^«fc:iM>.^«*&.«*««(M^ «IHM! irwii 
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then (16) equals    XK/n +    ^n j"—^     and treating   n   as a continuous variable, we 

get by differentiable calculus that the optimal   n    is one of the two integers 

adjacent to    /2XK/C . 
m 

The above problem was originally formulated in [3] but surprisingly was only 

solved for certain special cases, as the equivalence between (15) and (16) was not 

noted. 

Finally, let us assume a discount factor 1 - a (i.e., a cost b incurred at 

time t is worth be   at time 0); and look for the rule minimizing the expected 

total discounted cost. Now, let . D. be the cost (discounted to the beginning of 

the cycle) incurred during the 1   cycle, and let T  be the time of the i 

cycle. Then, the total discounted cost is 

(17) 
-oT.      -a(T +T,) 

D1 + e    D2 + e        D3 + ... 

Now using the fact that the pairs    (D1»T
1)    are Independent and identically 

distributed, we have that the expected total discounted cost equals 

(18) 
ED, 

1 - Ee 
-aT1  ' 

For the rule which dispatches whenever there are    n   people in the system, 

(18)  equals 

.■.v-w^-«**';,. ■ *i44B 
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(19) 

T n -at 
E    /      C(N(t))e~otdt + KEe      n 

/ 

x - EM 

I    C(i - 1)E 
1-1 /   •""" 

L'i-l 

+ K(X/X+o) 

1 -  (X/X+a)n 

n f -ax.  .        -OT.! 
K(X/X+a)n + I/o   I    C(l - DEJe      1"i - e      ^J 

1-1 

1 - (X/X+ar 

K(X/X+a)n + 1/a    J    C(i - DECX/X+o)1"1 - (X/X+a)1] 
 JW  

1 - (X/X+o)n 

When    C(i) - iC , we have that  (19) equals 

10 

(TO E 0) 

(20) K(X/X+a)n + XC/a2[l + (n - l)(X/X+a)n - n(X/X+a)n"1] 

1 - (X/X+o)n 

i« i immm^alttm^l^ im^mlmmmmm 
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