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ABSTRACT

~ Items arrive at a processing plant at a Poisson rate A .,
At time T , all items are dispatched from the system. An
intermediate dispatch time is to be chosen to minimize the
total wait of all items. It is shown that if the dispatch
time must be chosen at time O then T/2 not only
minimizes the expected total wait but it also maximizes the
probability that the total wait is less than a for every
a >0, If the intermediate dispatch time is allowed to be
a (random) stopping time, then it is shown that the policy
which dispatches at time t 1iff N(t) > A(T - t) dis G
optimal, where N(t) denotes the number of items present at
time t . The distribution of the optimal dispatch time and
the optimal expected total wait are determined. A generali-
zation to the case of a nonhomogeneous Poisson Process, a
time lag, and batch arrivals is given., Finally, the case
where the process goes on indefinitely and any number of
dispatches are allowed (at a cost K per dispatch) is
considered. |
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OPTIMAL DISPATCHING OF A POISSON PROCESS

by

Sheldon M. Ross

1, INTRODUCTION

Items arrive at a processing plant at a Poisson rate A . At time T ,
all items are dispatched from the system. An intermediate dispatch time, at
which all items arriving up to that time are dispatched, is to be chosen so as

to minimize the total wait of all items.

2. CONSTANT DISPATCH TIME

If we suppose that the intermediate dispatch time must be chosen at time
0 , then it is easy to see that the.dispatch time minimizing the expected total
waiting time is T/2 , and the minimal expected waiting ~ime is AT2/4 .* In
fact, we can say more than this, as the following argument shows. Let t(0 <t < T)
th)
i=1

be any intermediate dispatch time. Then the total waiting time is Wt(i) s

where N(T) denotes the number of items arriving in (0,T] , and

§) W (1) =

where ri,i =1, ..., N(T) are the arrival epochs. Now conditional on N(T) = n ,

the (unordered) points Tys +ees T oare independent and identically distributed

N(T)
(1id) as uniform random variables on (0,T) . Thus, f W.(1) has the same
1
P .
distribution as | 2,(1) , where P is distributed as a Poisson random variable
i=] )

with parameter AT , and the Zt(i) are 11d independent of P having

fThe expected number of arrivals in (0,T/2) 1is AT/2 , and each arrival is
uniformly distributed on (0,T/2) and thus has expected delay T/4 . Similarly
for arrivals in (T/2,T) .
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2a/T for a <t,a+tc<T
a+T-t for a <t,a+t>T

(2) Pr(zt(i) <a) =
£¥£ for a>t ,a+t <T

1 for a>t ,a+t>T,
From (2), it follows that for fixed a 3 Pr(zt(i) < a) 1s maximized by t = T/2 and

2a/T for a < T/2
3) Pr(zT/Z(i) <a)=
1 for a>1T/2,

Since the distribution of P is independent of t 1t follows that not only does
T/2 minimize the expected total waiting time, it also maximizes the probability

that the total wait is less than a for every a >0 .

N(T) "1 Py
Ht(i) also has the same distribution as | U (1) + ) V.(1) , where
1l , 1 1l

Pl is Poisson (At) , Tz is Poisson (A(T - t)) , Ut(i) are iid with

a/t for ac<t i a/T-t for a<T-t
Pr(Ut(i) <a)m= { , Vt(i) are 1iid with Pr(Vt(i) <a) = 3
l for a»>t 1 for a>T-t

and all of the Pl , P2 . Ut(i) 5 Vt(i) are independent,

. DYNAMIC ION

The problem becomes more inferesting if we allow the intermediate dispatch
time 4 to be a (random) stopping time.+ We shall say that a policy (i.e., stopping
time) is optimal 1f it minimizes the expected total wait. Let 6 be the policy

which dispatches at 1 = Min {t > 0 : N(t) > A(T - t)} .,

his implies that {4 < t} 1s independent of ({N(s) - N(t) , s > t} .
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We note that N(1) = A(T - 1) unless N(t) has a jump at T (see Figure 1).

y = A(T - t)

y = N(t)

A -

FIGURE 1.

Theorem 1: .

§ 1is optimal,

Proof:
Let 61 be any policy, and let 62 follow 61 with the exception th-t if
1
; N(t) < X(T - t) and 61 dispatches at t then 62 dispatches at
t + }(T-t)l— N(e) = t+ h . The expected total wait from t wunder 61 is
A(T - t)2/2 , while the expected wait from t under 62 is N(t)*h + Ah2/2 +
AT -t - h)2/2 = A(T - t)2/2 ; and thus 61 and 62 have the same expected wait.
.i Now let & denote the policy which dispatches at T = Min {t > 0 : N(t) = \(T - t)}
Since N(t +h) > N(t) = A(T - t - h) it follows from the definition of 62 that !

t(62) > 1, where t(62) denotes the time at which 6, dispatches. Thus,

2

t(62) = 1T+ ¢, where € 1s nonnegative and random. Therefore, the conditional

expected total wait from 1T under 62 is at least N(t)*e + A(T - 1 ~ c)2/2 4

which is strictly greater than A(T - 1)2/2 (= the conditional expected total |

wait under §6) whenever ¢ > 0 . From this it follows that & 1is at least as good

as ¢ 0
2 Q.E.D.
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It remains to determine the distribution of the optimal dispatch time and
the optimal expected total wait. Now T = Min {t < T : N(t) > A(T - t)} , and
thus
F(a) = Pr{t < a} = Pr(N(a) > A(T - a))
4) ' - L
- ehe ) aa) i/,
i=[A(T-a)]+1
smallest integer < x , for x >0
where [x] = : . We also note from (4) that
-1 , for x <0
(5) aj = Pt'G'- A§:1) = e-(AT_j) (AT - j)j/j! » 3= 0,1, oovp [AT] .
The optimal expected wait is given by
N(T) N(T)
(6) EW = E (t - Ti) + E (T - Ti) .
1l N(t)+1
Now,
N(T) 2
¢)) E (T-ri)lr-A(T-r)IZ,
(t)+1
and
j1/2 for T = A§:i 3§ = 0515 wonp [AT]
i N(1)
. (8) E (r - 1) | o] =
| | 1 AT={  AT-i+l
i (J - 1)1/2 for "t ¢ ( o o ) J =0, coas [AT] 4

where (8) follaws from the observation that (i) t = A§:1 is equivalent to

‘N(A§:1) = § and (i1) t ¢ (A§:1 . Aliiijﬁ implies that N(t) = j , and g 2 M

Thus, by combining (7) and (8) we arrive at
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[AT) [AT]
(9) EW= ] ja, %;—1 + f
§=0 i=1 xe(x{_i : xr;i+1)

(4-1)x/2 dF(x) + A/ZE (T-x) 2dF (x) ,

where aj and F are given by (4) and (5).

Equation (9) is rather unwieldly, but a simple and significant bound can be

determined as follows. From (7) and (8) we have that
(10) EW > E[(N(7) - 1)1/2] + EQ(T - D?%/2) .
However, by definition N(t) > A(T - 1) , and thus

B > E[MT - 1) - 1)7/2] + E A(T - D72
(11)

- ATZ/Z—'HZ:';LET »

Now it is easily verified that N(t) - At 1s a zero-mean Martingale, and thus
by a simple Martingale systems theorem (see [1), Chapter 5, Section 3), we have that

E[N(t) - At] = 0 . Using this and the fact that N(1) < A(T - 1) + 1 , we arrive at

(12) Er ¢ A5
By combining (11) and (12) we get
(13) W > AT2/4 - T/2 - 1/4) .

Equation (13) is especially significant as AT2/4 is just the total expected wait

when the (fixed) dispatch time T/2 1is used, and thus
(14) AT?/4 > BN > AT2/4 - T/2 - 1/6) .

It is interesting to note that the gain in choosing a random dispatch time
over a fixed dispatch time is of the order of T , while the wait is of the order
of T2 . Thus 1f T = 100 , X = 1/2 then the optimum wait is at least 1199.5,
while by using a fixed time procedure the expected wait would be 1250. Since, the

optimal procedure must continuously watch the process it hardly seems worth the gain, ;
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4, SOME GENERALIZATIONS

a. Nonhomogeneous Poisson Process

One generalization is to allow the arrival stream to be a norhomogeneous

Poisson Process. Letting A(t) be the arrival rate at t , we have

Theorem 2:

If A(t) 1s continuous and nonincreasing on [O0,T] , then the policy which
dispatches at the smallest t such that N(t) > A(t)(T - t) 4is optimal.

We first give a "pseudo'-proof

Proof: (Pseudo)

Suppose N(t) < A(t)(T - t) . The expected total wait (from t) of a policy

dispatching at ¢ is i (T - x)X(x)dx , while the expected total wait (from t)

tte
of a policy dispatching at t + ¢ is f A(x) (t+e-x)dx + eN(t) + } (T - x)rx(x)dx .
t tt+e
t+e Tetmi
Thus, waiting an additional time € 1s better whei.cver N(t) < { A(‘)S—)-e =~ dx .

t+e
Since f X(x)-sr—-z:-el dx + A(t)(T - t) as € + 0 , it follows that the inequality
t

holds for € small,
Now, suppose N(t) > A(t)(T - t) and consider a policy which dispatches at

t+e¢ (e6>0, ¢ random). The expected total wait from t of this procedure is

T t+e
at least eN(t) + } A (T - x)dx = f A(x)(T - x)dx + eN(t) - f A(x)(T - x)dx
t+e t t
T
l/ A(x)(T - x)dx -
t

by the monotonicity assumption and N(t) > A(t)(T - t) . Thus if we haven't
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dispatched before t = min {u > 0 : N(u) > A(u)(T - u)} , then we should dispatch at |

t . End of pseudo-proof.

It is tempting to replace "end of pseudo-proof" by Q.E.D., as we have shown
that (i)- if N(t) > A(t)(T - t) then it 1s optimal to dispatch at t , and (11) 1f
N(t) < A(t)(T - t) then it is not optimal to dispatch at t . However, the non-
optimality of dispatching at t when N(t) < A(t)(T - t) only implies that it is
optimal not to dispatch when an optimal policy is known to exist. Thus, the pseudo
proof could be made rigorous by proving the existence of an optimal policy. How-
ever, a direct proof showing that the optimal pc;licy is better than every other
policy may be constructed exactly as in Theorem l.'r

We note that monotonicity assumption was not used in the first part of the
"pseudo" proof, and thus it is never optimal to dispatch at t when

N(t) < A(e)(T - t) .

b. Batch Arrivals and a Time Lag

A second generalization is to assume that there is a time lag L(> 0) between
the time at which the decision to dispatch is made and the time of actual dispatch-
ment. In this case, it can be shown that under the conditions of Theorem 2 the

policy which orders a dispatch at the smallest t for which
' t+L
N() + [ A(x)dx > A(t + L)(T-t-1) , 1s optimal.
t
Finally, we may suppose that arrivals consist of batches of items. The batch

size is assumed to be a random variable with mean u . In this case, still
assuming a time lag L and also the conditions of Theorem 2 we have that the policy
which orders a dispatch at the smallest t for which

t+L

N(t) + f A(x)dx > uA(t + L) (T-t-L) , is optimal.
t

1’It: s interesting to note that under the conditions of Theorem 2 the optimal fixed
dispatch time is that t such that E(N(t)) = A(t)(T - t) .
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1 5. MULTIPLE DISPATCHES

In this section we suppose that the process continues indefinitely, and we
allow any number of dispatches. Each dispatch is assumed to incur a cost K , and
we also assume a cost C(1) per unit time when there are i items in the system.
(If there is a cost C per unit of waiting time, then C(i) = iC ; however, the

additional generality does not complicate matters.)

We assume a Poisson arrival rate A and seek to find a rule minimizing the
long-run average cost per unit time. We shall only consider rules whose actions
depend solely on the present number in the system. (These are the stationary
rules.)

It is well known (se¢ (2)) that, if a cycle is defined as the time between
successive dispatches, then the long-run average cost per.unit time is just
E[cost of cycle]/E[time of cycle]. Thus, the rule which dispatches when there are

n people in the system has a long-run average cost equal to

T
n

(15) (n/x)'1x+af Cc(N(t))dt| ,
0

which is easily seen to equal

(16) \/n[K + i(C(0)r; + CA) (1, = 1)) + vv #C(m - (7 -7 ,))] =

. n-1
-%+ /n [ c) .
1=0

The optimal value of n can then be found from (16).+ For example, if C(1i) = iC

*We are supposing that never dispatching is not optimal. Since the average cost
n
in this case would just be 1lim z C(k)/n , it is easily seen when this is non-

oo k=1
optimal. -
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then (16) equals AK/n + Ei&if_ll and treating n as a continuous variable, we
get by differentiable calculus that the optimal n is one of the two integers
adjacent to Y2)K/C .

The above problem was originally formulated in [3] but surprisingly was only
solved for certain special cases, as the equivalence between (15) and (16) was not
noted. |

Finally, let us assume a discount factor 1 - a (i.e., a cost b incurred at
time t 1is worth be-at at time 0); and look for the rule minimizing the expected
total discounted cost. Now, let 'Di be the cost (discounted to the beginning of
the cycle) incurred during the ith cycle, and let 'ri be the time of the ith
cycle. Then, the total discounted cost is

-a(T1+T2)
(17) D, + e D2 + e D3 (Moo

Now using the fact that the pairs (Di’Ti) are independent and identically

distributed, we have that the expected total:discounted cost‘equals

ED,

(18) -—-——-1:;EI .
1l - Ee

For the rule which dispatches whenever there are n people in the system,

(18) equals
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T
n t —a‘l’n
. E /' C(N(t))e ™ dt + KEe
0
-aT
l - E(e n)
° g -at n
} ci - 1)E e e | + K(A/2+a)
1=1
. i-1
I3
1 n -QaT -QT
KO/ 2+a)" + 1/a ] cd - l)E[e 23 IO i]
- i=]
1 - O/a+)®
n g 1-1 1
RO/M+a)™ + 1/ [ € - 1)[(/x+a) 0 = (AM/a+a) 7]
. i=] 4
l- (A/Hm)'n
} When C(1) = iC , we have that (19) equals
n 2 n n=-1
(20) K(A/Ma) + AC/a"[l+ (n = 1)(A/A+a) = n(A/ita)” "]
1 - (W 2+)®
1‘
1
{
i
i
| %
{
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