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ABSTRACT

An automated general purpose system for analysis is presented. This system,
identified by the acronym "MAGIC" for "Matrix Analysis via Generative and Inter-
pretive Computations," provides a flexible framework for implementation of the
finite element analysis technology. Powerful capabilities for displacement, stress
and stability analyses are included in the subject MAGIC System for structural
analysis. The matrix displacement method of analysis based upon finite element
idealization is employed throughout. Six versatile finite elements are incorporated
in the finite element library. These are: frame, shear panel, triangular cross sec-
tion ring, toroidal thin shell ring, quadrilateral thin shell and triangular thin shell
elements. These finite element representations include matrices for stiffness, in-
cremental stiffness, prestrain load, thermal load, distributed mechanical load and
stress. The MAGIC System for structural analysis is presented as an integral part
of the overall design cycle. Considerations in this regard include, among other
things, preprinted input data forms, automated data generation, data confirmation
features, restart options, automated output data reduction and readable output dis-
plays. Documentation of the MAGIC System is presented in three parts: namely.
VoluTre I: Engineer's Manual; Volume II: User's Manual; and Volume I: Pro-
grammer's Manual. Volume I is the primary technical document. Included are a
general technical discussion of the MAGIC System, an outline of the theoretical
framework, statement of the individual finite element representations, and illustra-
tive analyses for evaluation of each finite element representation. Volume II contains
instructions for the preparation of input data and interpretation of output data with
examples drawn from the illustrations presented in Volume I. Volume III is designed
to facilitate implementation, operation, modification and extension of the MAGIC
System.

iii



CONTENTS

Section Page

1. INTRODUCTION ................................ 1

2. TECHNICAL DISCUSSION ......................... 3
A . Introduction ................................ 3
B. Analysis Technology .......................... 3
C. Finite Elements ............................. 7
D. Programming Technology ...................... 9
E. Program/Analyst Interfaces ..................... 17
F. Size Characteristics .......................... 20
G. Special Features ............................ 21

3. THEORETICAL FRAMEWORK ...................... 23
A. Introduction ................................ 23
B. Discrete Element Matrices ..................... 23
C. Linear Stress Analysis .......... .................. 33
D. Stability Analysis ............................ 37

4. FRAME ELEMENT .............................. 41
A. Introduction ................................ 41
B. Formulation ............................... 42
C. Evaluation ................................. 56

5. QUADRILATERAL SHEAR PANEL ELEMENT ............... 59
A. Introduction ................................ 59
B. Formulation ............................... 59
C. Evaluation ................................. 64

6. TRIANGULAR CROSS SECTION RING ELEMENT ............ 71
A. Introduction ................................ 71
B. Formulation ............................... 73
C. Evaulation ................................. 84

7. TOROIDAL THIN SHELL RING ELEMENT .............. 89
A. Introduction ................................ 89
B. Formulation ............................... 91
C. Evaluation ................................. 108

8. MALLET QUADRILATERAL THIN SHELL ELEMENT ..... 113
A. Introduction ................................ 113
B. Form ulation ............................... 114
C. Evaluation ................................. 151

iv



CONTENTS (CONT)

Section Page

9. HELLE TRIANGULAR THIN SHELL ELEMENT............ 163
A. Introduction................................... 163
B. Formulation.................................. 165
C. Evaluation.................................... 192

10. DISCUSSION AND CONCLUSIONS...................... 205
A. Discussion................................... 205
B. Conclusions................................... 209

11. REFERENCES.................................... 211

v



LIST OF FIGURES

Figure Page

1. Illustrative Structural Idealizations ..................... 4
2. Structural Analysis Computational Flow .................. 6
3. MAGIC System Finite Elements ....................... 8

4. General Purpose Program Organizational Chart .......... 10
5. Illustrative Abstraction Instruction Listing ................ 18
6. Frame Element Representation ........................ 42
7. Displacement Function Mode Shapes ..................... 43

8. Displacement Coordinate Transformation ................. 44
9. Frame Element Eccentricity .......................... 45

10. Displacement Coordinate Transformation ................. 46
11. Stiffness Matrix ................................... 49
12. Prestrain Load Vector ............................... 50
13. Pressure Load Vector ............................... 50

14. Incremental Stiffness Submatrices ...................... 52
15. Incremental Stiffness Parameters ....................... 53
16. Three Member Portal Frame Description ............... 56
17. Idealizations, Three Member Portal Frame ............. 57
18. Quadrilateral Shear Panel Representation ............... 60
19. Displacement Coordinate Transformation ................. 63
20. Displacement Coordinate Transformation ................. 63
21. Cantilever Beam with Uniformly Distributed Load ......... 65

22. Cantilever Beam Idealizations ......................... 66
23. Tip and Center Deflections for Uniformly Loaded Cantilever

Beam ....................................... 67
24. Bending Moment Distribution for Two Element Case ........ 68
25. Bending Moment Distribution for Four and Eight Element

Cases ....................................... 69
26. Triangular Cross Section Ring

Element Description ................................ 72
27. Displacement Coordinate Transformation ................. 74
28. Matrix of the Elastic Constants ........................ 76
29. Stress and Strain Transformation ....................... 77
30. Displacement to Strain Transformation ................... 79

31. Stiffness Matrix ................................... 81
32. Pressure Load Vector ............................... 82
33. Prestrain Load Submatrix ............................ 83
34. Stress Submatrix ................................... 85
35. Thick Walled Disk Subjected to Radial

Thermal Gradient ............................... 86
36. Thick Disk Idealizations .............................. 87
37. Stresses and Displacements in Thermally Loaded Disk ...... 88

vi



LIST OF FIGURES (cont)

Figure Page

38. Toroidal Thin Shell Ring Representation ................... 90
39. Displacement Coordinate Transformation ................. 95
40. Displacement Coordinate Transformation ................. 96
41. Displacement to Strain Transformations ................... 99
42. Notation ..................................... 102
43. Stiffness Matrix ................................... 103
44. Element Prestrain Load Vector ........................ 104
45. Pressure Load Matrix ............................ 105
46. Stress Matrix ................................. 107
47. Cylinder Subjected to End Loads ........................ 109
48. End Loaded Cylinder Idealizations .................... 110
49. Meridiunal Moment Distribution ..................... 111
50. Quadrilateral Thin Shell Element Representation ............. 113
51. Displacement Mode Shapes ......................... 116
52. Displacement Mode Shapes ......................... 116
53. Flexure Displacement Mode Shapes ...................... 116
54. Membrane Displacement Coordinate Transformation ......... 117
55. Flexure Displacement Coordinate Transformation ........... 118
56. Membrane Displacement Transformation ................. 120
57. Flexure Displacement Coordinate Transformation ......... 121
58. Membrane Displacement Coordinate Transformation ....... 122
59. Flexure Displacement Coordinate Transformation ........... 123
60. Flexure Displacement Coordinate Transformation ........... 125
61. Eccentric Connection Transformation .................... 126
62. Membrane Coordinate Transformation ................. 128
63. Flexure Displacement Coordinate Transformation ........... 129
64. Plane Stress/Strain Option ............................ 131
65. Strain Transformation ............................... 133
66. Displacement Function Transformations .................. 136
67. Membrane Displacement Derivative Matrices ............ 138
68. Flexure Displacement Derivative Matrices .............. 139
69. Zone 1 Membrane Stiffness Parameters .................. 139
70. Zone 2 Membrane Stiffness Parameters .................. 140
71. Zone 3 Membrane Stiffness Parameters .................. 140
72. Zone 4 Membrane Stiffness Parameters .................. 141

73. Definition of Notation ............................ 141
74. Stiffness Submatrices ............................... 143
75. Zone 1 Flexure Stiffness Parameters .................. 144
76. Zone 2 Flexure Stiffness Parameters ..................... 144
77. Zone 3 Flexure Stiffness Parameters ..................... 145
78. Zone 4 Flexure Stiffness Parameters .................. 145

vii



LIST OF FIGURES (cont)

Figure Page

79. Pressure Load Vector ............................ 148
80. Stress Resultants ............................... 149
81. Parabolically Loaded Membrane ......................... 151
82. Idealization ................................... 152
83. Membrane Displacement at the Middle

of the Plate's Edge versus Degrees-of-Freedom ............ .153
84. Membrane Displacement and Stress Behavior versus

the Plate's Edge Span ............................ 154
85. Shape Study Idealizations .......................... 156
86. Membrane Displacement at the Middle of the

Plate's Edge versus the Shape of Elements
Used in the Idealization ........................... 157

87. Simply Supported Square Plate with Uniform
Normal Load .................................... 158

88. Transverse Displacement at the Center of
the Plate versus Degr3es-of-Freedom .................... 159

89. Transverse Displacement and Stress Behavior
versus the Plate's Center Span ...................... 160

90. Transverse Displacement at the Center of the

Plate versus the Shape of Elements used in
the Idealization ................................ 162

91. Triangular Thin Shell Element Representation ............... 163
92. Displacement Mode Shape Matrices ...................... 166
93. Flexure Displacement Interzone Transformation ............ 167
94. Flexure Displacement Interzone Transformation ............ 168
95. Flexure Displacement Interzone Transformation ............ 169
96. Membrane Displacement Coordinate Transformation ....... 171
97. Flexure Displacement Coordinate Transformation ........... 172
98. Flexure Displacement Coordinate Transformation ........... 173

99. Flexure Displacement Coordinate Transformation ........... 174
100. Flexure Displacement Coordinate Transformation ........... 175
101. Eccentric Connection Transformation .................... 176
102. Membrane Displacement Coordinate Transformation ....... 178
103. Flexure Displacement Coordinate Transformation ........... 179
104. Displacement Coordinate Transformation .................. 180
105. Membrane Displacement Derivatives Matrix ................ 183
106. Flexure Displacement Derivatives Matrix .................. 184

107. Definition of Notation ............................ 184
108. Definition of Integral Notation ....................... 185
109. Definition of Notation ............................ 187
11 . Definition of Notation ............................ 188

viii



LIST OF FIGURES (cont)

Figure Page

111. Pressure Load Vector ............................ 189
112. Parabolically Loaded Membrane ......................... 192
113. Idealization ................................... 193
114. Membrane Displacement at the Middle of the

Plate's Edge versus Degrees-of-Freedom .................. 195
115. Membrane Displacement and Stress Behavior

versus the Plate's Edge Span ....................... 196
116. Shape Study Idealization ........................... 197
117. Membrane Displacement at the Middle of the

Plate's Edge versus the Shape of Elements

Used in the Idealization ........................... 198
118. Simply Supported Square Plate with Uniform

Normal Load .................................. 199
119. Transverse Displacement at the Center of the

Plate versus Degrees-of-Freedom ................... .200
120. Transverse Displacement and Stress Behavior

versus the Plate's Center Span......................... 201
121. Transverse Displacement at the Center of the

Plate versus the Shape of Element Used in the
Idealization ................................... 202

ix



TABLES

Number Page

1. Comparison Solutions for Three Member Portal Frame ....... 58

Ix



LIST OF SYMBOLS

pPotential EnergyP

{u(} Displacement Functions

[B()] Assumed Mode Shapes

f / } Field Coordinate Displacement Degrees-of-Freedom

[1" ]8 Transformation from Field Coordinates to Gridpoint Displacement
Coordinates

{ g} Gridpoint Displacement Coordinates Referenced to Element Axes

(x g, y , Zg) Coordinate Axes Defined on a Finite Element

[,gs] Transformation from Element Axes to Global Axes

(x s Ys z s) Global Coordinate Axes

{ f 8q } Gridpoint Displacements Referenced to Gridpoint Coordinate Axes

[r sq] Transformation from Global Axes to Gridpoint Axes

[173] Collective Transformation from Field Coordinates to FinalRq Displacement Coordinates

{fT()} Vector of Stresses

{E()} Strain Vector

{ /J Prestrain Vector

[E] Matrix of Elastic Constants

{a} Coefficients of Thermal Expansion

A T Difference between Element Temperature and Ambient Temperature

[C (] Field Coordinate to Strain Transformation

P () Pressure

Indicates Matrix Referenced to Field Coordinates

xi



LIST OF SYMBOLS (CONT)

{Fe} Prestrain Force

fFp I Pressure Load

I F T1~, Thermal Load

Fc} Concentrated Gridpoint Load Vector

1 6N} Nonlinear Contributions to Total Strain

[N] Incremental Stiffness

{ Sq} Vector of Element Degrees-of-Freedom for Assembly

{s} Stress Correction Vector

[S] Stress Matrix

U Strain Energy

[K] Stiffness Matrix

[KSI] Inflated Stiffness Matrix

{ I } Inflated Displacement Vector

W External Work

{Pel} Total Element Load Vector, System Level

1Pc } Concentrated Load Vector, System Level

{ &a} Displacements of Assembled Structure

[ra] Assembly Transformation

[rr] Boundary Condition Transformation

A s } Final Displacement Vector System Level

[ ] Collective Assemble and Bound TransformationKrI

{P } Total Applied Load Vector, System Level

xii



LIST OF SYMBOLS (CONT)

[s ] Stress Matrix, System Level

fj s} Stress Correction Vector, System Level

SFnet Element Force Vector, System Level

{ R } Reactions and Force Balance Vector

[N s] Inflated Incremental Stiffness, System Level

IN ] Assembled and Reduced Incremental Stiffness

Pcr Critical Load Intensity

p Prescribed Load Intensity

[ re] Eccentric Connection Transformation

[T] Coordinate Axis Transformation

[ ] Rectangular Matrix

F] Diagonal Matrix

{ I Column Matrix

LJ Row Matrix

u Displacement in the x or ) Direction

Displacement in the y or 0 Direction

w Displacement in the z Direction

{q} Vector of Displacement Functions

0 Slope of Element Side from i tho thGridpoint
n..

xiii



This Document Contains

Missing Page/s That Are

Unavailable In The

Original Document

BEST
AVAILABLE COPY



1. INTRODUCTION

Bell Aerosystems has been active in the development of automated structural
analysis tools based upon the finite element technology since the late 1950's. In a con-
tractual outgrowth of this internal development activity, Bell furnished a series of com-
puter programs to the Air Force Flight Dynamics Laboratory (AFFDL) in 1963. These
programs, described in References 1 through 6, became an integral part of structural
analysis practices at AFFDL and at numerous other recipient governmental and pri-

vate organizations.

Advances in computer software and hardware signaled the impending obselescence
of the foregoing computer programs for structural analysis in 1966. Attempts to sal-

vage these programs by direct modifications to the coding proved discouraging. More-
over, newly established technological advances strongly recommended development of
a second generation finite element capability for structural analysis.

In the light of the situation just described, Bell undertook, in March of 1967, to
implement an advanced general purpose system for Matrix Analysis via Generative
and Interpretive Computations (MAGIC) at AFFDL. This MAGIC System for struc-
tural analysis, de'-cribed herein, was planned to provide, as a minimum, the capability
of the prior set of Bell computer programs. The capability ultimately built into the

MAGIC System is actually far more powerful than the former programs taken collec-
tively. For example, structures characterized by "on the order of" 2000 degrees-of-
freedom can be accommodated in contrast to the fUrmer 500 degrees-of-freedom limit.

Documentation of the MAGIC System for structural analysis is presented in
three volumes. The subject volume (Volume 1) is the primary technical report. The
major sections of this report are described in the following paragraphs. Separate
supplementary volumes are provided to facilitate utilization of the MAGIC System.

Volume II, the User's Manual( 7 ), includes detailed specifications for the preparation
of input data, along withillustrative examples. Volume III, the Programmer's Manual( 8 ),

presents information on the organization of the computer program as well as its

operational characteristics.

A general description of the MAGIC System for structural analysis is included
in Section 2. Particular attention is given to definition of the overall organization of
the system. A key element of this organization is seen to be the versatile, AFFDL

sponsored, FORTRAN Matrix Abstraction Technique (FORMAT II) described in Refer-
ences 9 through 12. Emphasis is also given in this section to special data management

features which facilitate efficient utilization of the MAGIC System such as preprinted

input data forms.

Section 3 of this primary technical report outlines Lhe theoretica, bases employed

in derivation of the finite element representations and in development of the analysis
procedures. A total of six finite elements are incorporated in the Element Library of



the MAGIC System; namely, frame, shear panel, triangular cross section ring, toroi-
dal thin shell ring, quadrilateral thin shell and triangular thin shell elements. The
computational procedures outlined in Section 3 include d'splacement, stress and
stability analyses.

Sections 4 through 9 present statements of the matrices which compriee the in-
dividual finite element representations. In general; stiffness, incremental stiffness,
pressure load, thermal load, and stress matrices are provided. Sections 4 through 9
also include numerical evaluations of the respective finite elements. These evalua-
tions take the form of series of selected example problems.

The body of this technical report is concluded with a general retrospective dis-
cussion in Section 10.. The MAGIC System is given critical review. Limitations are
discussed and guidelines for utilization are presented.

2



2. TECHNICAL DISCUSSION

A. INTRODUCTION

Automated general purpose capabilities promise to revolutionize analysis and
design practices. The matrix methods of analysis based upon discrete element ideal-
ization provide the suitable theoretical basis. High speed data processing devices
establish the economic feasibility. Powerful automated tools for analysis and design
have already been derived from these resources. Experience accumulated in the de-
velopment and application of these tools has evolved a conceptual framework suitable
for generalization.

Expansions which traverse traditional boundaries between the specialized disci-
plines of mechanics, improvements which provide firm theoretical bases for consist-
ent mathematical models(1 3), and extensions which automate design iterations (1 4) are
now well defined. New data management concepts which facilitate data handling( 1 5),
matrix abstraction instructions which simplify programming(9 ), and hardware devices
which enable convenient display (and communication)( 16 ) have also emerged. The im-
plementation of all these generalizations within the framework of realistic hardware
design poses a stimulating challenge.

The advanced general purpose system for Matrix Analysis via Generative and
Interpretive Computations (MAGIC) which is described herein was developed in ac-
ceptance of the foregoing challenge. This MAGIC System furnishes the specific
structural analyses capability sought and, at the same time, provides a versatile con-
ceptual framework to facilitate the foregoing generalizations. Accordingly, general
concepts are given consideration in the following discussion as well as specific fea-
tures of the MAGIC System for structural analysis.

B. ANALYSIS TECHNOLOGY

The finite element appi'oacl to structural analysis is consisternly stated i1ir
Section 3 within the framework of the variational methods of continuum mechanics.
Within this framework, discretization can be referenced to zones designed to facilitate
the construction of admissible displacement function mode shapes. Elementary illus-
trative physical models arising from such an idealization into zones are shown in
Figures la and 1c. Admissible assumed displacement functions written individu-
ally for each zone, when taken collectively, form admissible assumed displacement
functions whose field of definition is the entire structure.

These physical models, formed by subdivision into zones, may be equivalently
viewed as assemblies of discrete structural elements interconnected such that ap-
propriate interclement continuity is maintained. For example, the pilysical models
shown in Figures la and 1c may be equivalently viewed as assemblies of the discrete
structural elements of Figures lb and id, respectively. It is this latter viewpoint,
taken herein, which makes evident the generality of the finite element methods of

3
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analysis. Idealization into zones or structural components enables the systematic
treatment of large scale complex structures as assemblages of large numbers of
common elementary structural components.

Mathematical models are formulated for selected elementary structural com-
ponents of parametrically specified shape. These finite element representations are
then given specific dimensions to form building blocks appropriate to structures of a
general problem class. Interconnection of adjacent elements is provided for by the
construction of displacement function mode shapes with gridpoint displacement func-
tion quantities as undetermined coefficients. Taking these gridpoint displacement
degrees-of-freedom common to adjacent elements establishes their Interconnection.

The referencing of the structural idealization to elementary physical components
leads naturally to specification of descriptive data with respect to these individual
elements. Variations in dimensions such as thickness are accommodated by the
specification of distinct values for individual elements. Material property variations
arising from lamination or temperature degradation are accommodated by element
related characterizations of materials.

Distributed loadings are also processed by element in order to account for
variations. Elementary distributions are assumed over individual elements in much
the same way that displacement function mode shapes are constructed. Intensities of
distributed loadings such as pressure, temperatures and prestrain are prescribed at
gridpoints. These intensities are then transformed into work equivalent forces via
the assumed distributions.

The foregoing comments have indicated the facility with which finite element
idealization accommodates problematical variations in geometry, material and applied
loading. It is useful to emphasize this point further by examination of the overall
computational process.

The basic computational flow of a finite element stress analysis is illustrated
in Figure 2. The important feature to he noted in this flow chart is that the mathe-
matical description of a structural system (Block 2) is generaied independently of the
construction of the objective mathematical model for the structural system (Block 3).
That is, physical description (elastic constants, pressures, etc.) is referenced to the
individual zones or finite elements and transformed to appropriate element mathemat-
ical representation without regard to total structure configuration and boundary con-
ditions. It is primarily this separation which accounts for the generality of the dis-
crete element method in regard to both complexity and broad applicability.

Regarding complexity, referencing of problem description to individual discrete
elements enables convenient consideration of variations in geometry, sizing dimen-
sions, material properties, applied loadings, and boundary conditions. Regarding ap-
plicability, this is limited only by the suitability of the discrete elements made avail-
able for idealization.

5
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A variational point of view is maintained throughout the subject analysis proc-
ess. Specifically, the principle of potential energy is employed. The well known
Rayleigh-Ritz assumed mode method of analysis is invoked to generate the desired
algebraic expressions for the element energy functions. Then, these are summed to
obtain the energy function for the total structure. The objective governing equations
follow immediately by executing the variation of the total energy. The principal ad-
vantage of maintaining the variational viewpoint throughout this process is that the
matrices involved enjoy explicit and complete labeling at every step. The theoretical
framework is outlined in detail in Section 3. Therein, the analysis processes are
given explicit definition in terms of matrices.

C. FINITE ELEMENTS

The MAGIC System incorporates the six finite elements shown in Figure 3;
namely, frame, shear panel, triangular cross section ring, toroidal thin shell ring,
quadrilateral thin shell and triangular thin shell elements. These elements, taken
collectively, enable the idealization of most structures.

The set of matrices embodied in each element representation determines the
type of analyses which can be performed. In the MAGIC System, a complete element
representation is taken to include matrices for stiffness, incremental stiffness, pres-

sure load, prestrain load, thermal load and stress. Moreover, provision has been
mp.de for additional element matrices such as consistent mass matrices.

The frame element is a conventional "beam theory" finite element. This ele-
ment is well suited to the idealization of planar and space frames. An eccentric con-
nection feature is incorporated in this fraie element representation to facilitate
utilization as a shell stiffener element. The frame element is also appropriate to
planar and space trusses.

The truss specialization of the frame element is particularly useful in combi.-
nation with the quadrilateral shear panel element. The quadrilateral shear panel ele-
ment simulates the action of a thin panel in diagonal tension. The effective extension-
al stiffness is allocated to truss elements. Such axial force member-shear panel
idealizations have found extensive application in the analysis of airframe structures.

The triangular cross section ring element is one of The earliest and best known
finite element models. This versatiie element enables realistic idealization of thick-
walled axisymmetric structures of arbitrary profile.

The representation of the triangular cross section ring incorporated in the
MAGIC System is basically the same as the original model(1 7 ) although several useful
generalizations have been introduced. One of these is the orthotropic material cap-
ability with data specified orientation of material axes.

7
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The integrations conducted in formulating this element also serve to set it apart.
A precise integration is carried out when the radial dimension of the cross section is
not small relative to the diameter of the ring. When the radial dimension of the ring
is small relative to the diameter, an approximate integration is carried out in accord
with that in the conventional representation.

The MAGIC System representation of the triangular cross section ring embodies
matrices for pressure and prestrain load as well as for stiffness and stress. A par-
ticularization of the prestrain load vector is included to facilitate thermal loading.

The thin shell elements incorporated in the MAGIC System are particularly
noteworthy since they have not been presented previously in the open technical litera-
ture. The toroidal thin shell ring represents a substantial improvement over the
predecessor conic thin shell ring(1 8 ). In contrast to the latter, the toroidal ring yields
accurate predictions of stresses for relatively coarse idealizations. In applications
where the double curvature of the toroidal ring is not required, it specializes to conic
and cylindrical configurations. Moreover, the toroidal ring reduces easily to a cap or
end closure element.

The quadrilateral and triangular sets of thin shell elements incorporated in the
MAGIC System provide an unprecedented capability for the analysis of thin membrane,
plate and shell structures. The arbitrary shape of these elements enables efficient
idealization of complex configurations and gridwork refinement. Supplementary mid-
side gridpoints are optionally available to facilitate local gridwork refinement.

Interelement continuity is assured between elements of common and companion
type. As a consequence, recourse to convergence criteria is often permitted. The
variation in strains built into these elements yields accurate stress predictions rela-

tive to predecessor elements( 4 ).

Many additional special features are included in this set of thin shell elements
and in the other elements as well; for example, arbitrary material axes, arbitrary
stress axes. plane strain option, etc. It is features such as these which establish the
MAGIC System as a practical analysis tool as opposed to simply a large scale finite
element computer program.

A separate section of this report is devoted to the presentation of each of these
finite element representations. The reader is directed to the introductions within
these sections for further description of the finite elements and their representations.

D. PROGRAMMING TECHNOLOGY

Useful insight into the nature of the finite element based MAGIC System for
stress analysis can be gained from examination tf the conceptual organizational chart
shown in Figure 4. This chart illustrates the modularization which is fundamental to
general purpose program organization. Overall efficiency is achieved by this modular-
ization in much the same way that complex electronic, mechanical, and even structural
systems are modularized to maximize versatility and maintainability.

9
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The Libraries shown in Figure 4 are particularly noteworthy. These represent
a higher level in a hierarchy of modularization in that they build in entire series of

optional modules. The simultane.us availability of alternatives, achieved by standard-
ized module interfaces, prov-des numerous benefits. The most obvious benefits are
those derived from flexibility. Standardization also gives a repetitiveness to program
developmental phases that enhances efficiency and reliability. Engineering Interfaces
reflect this standardization to advantage as well. These factors contribute importantly

to the favorable cost effectiveness of the MAGIC System which is discussed in Section

11.

The conceptual organization shown in Figure 4 reaches slightly beyond that of

the subject MAGIC System. This enables a more comprehensive discussion of the
relevant programming technology and gives perspective to the actual organization of

the MAGIC System. Variances between the organization of Figure 4 and that of the
MAGIC System are delineated clearly.

The nature and function of the individual program modules are described in the
following paragraphs. These descriptions also indicate the position of the modules in

the logical flow of an analysis. As a consequence, the individual module descriptions,
taken collectively, yield the objective overall picture of the programming technology
intrinsic to the MAGIC System.

1. Resident Operating System

The Resident Operating System controls and coordinates job processing. It
normally contains such subsystems as input/output routines, external storage super-

visors, language compilers and assemblers and system accounting routines. Example
Resident Operating Systems are: IBSYS for IBM 7090 and 7094, OS for the IBM
System/360, EXEC for the UNIVAC 1108 and SCOPE for the CDC 6600.

Machine compatibility has been insured by the exclusive use of FORTRAN

IV in the MAGIC System. The absence of machine or assembler language from every
portion of the program eliminates most problems of machine dependency and imple-
mentation difficulties. Thus, even though the program is a system in itself, it is de-
signed to function under the control of the normal operating system resident on a
machine.

Avoidance of machine dependency also prevents optimum utilization of aux-

iliary direct access storage units. However, the overall organization of Figure 4 is
designed to accommodate this generalization. The conceptual logic implied in the

chart implir . the addition of more modules under the Executive Monitor than just the

FORMAT Monitor. In this way, direct access dependency could be incorporated Into a
monitor on the same level as the FORMAT Monitor. Other matrix control systems

could also be placed under the Executive Monitor. Every addition would also auto-

matically inherit the capabilities of the underlying modules.

11



2. Executive Monitor

The Executive Monitor is the highest level of control within the MAGIC
System. This module controls location of the Problem, Execution, and Material
Libraries. In addition, the Executive Monitor has sole control over maintaining and

accessing the Execution Library. The primary function of the Executive Monitor is to
coordinate the Libraries in conjunction with selection of the appropriate submonitor
as directed by the application. Since, at the present time, the FORMAT Monitor is the

only submonitor, the alternative Libraries are placed under its control and the Execu-

tion Monitor is not required.

3. Problem Library

The Problem Library takes the form of a magnetic tape prepared for the
Analyst. Multiple problems are accumulated on the Problem Library tape. An entry
in the Problem Library includes a complete record of the input data specification,
selected intermediate results, and the output data specification. Control of the tape as
regards access for subsequent additions, deletions, calculation, or displays resides

with the Analyst. The Problem Library serves as a flexible interface between pro-

gram and Analyst thereby providing an opportunity for effective data management.

Input data sets are made self generating insofar as is possible. This is

effected in a preprocessing phase and the complete data set is recorded in tl 2 Problem

Library. After approval of the input, the Analyst can invoke the Problem Library to

continue the execution. Placement of intermediate results in the Problem Library
provides, in the same way, for economical recovery at certain milestones in the
solution process.

Localized design modifications and gridwork refinements can be accom-
modated without dealing with the entire structure. This is particularly important

where multiple thermal loads are considered. Partitioning can sometimes be designed
to circumvent ill conditioning. Very large, very sparse matrices are avoided, as are
long continuous executions. Generally it can be said that the Problem Library, partic-

ularly when coupled with substructuring, allows analysis operations to be broken into

manageable units.

In summary, the Problem Library (Block 3) of Figure 4, is accessible from

any module below it to obtain data from previous problems and store data for the cur-
rent problem. A Problem Library may be generated in the present MAGIC System to

the extent provided by the availability of restart points in the analysis process as de-

scribed under the FORMAT Monitor. No provision is built in to conduct analyses by
substructures.

12



4. Execution Library

The Execution Library is designed to build in alternative abstraction in-
struction sequences. Entries in this module represent procedures such as displace-
ment, stress and stability analyses. In addition to standard built-in analyses, non-
standard analyses can be conducted simply by defining an entry in the Execution
Library. Revision or deletion of this module is controlled by the Executive Monitor.

The broad variety of analyses encountered in practice actually embody
relatively few computations which are unique; rather, an extensive commonality
exists. It is this commonality that enables the efficient development and operation of

automated capabilities which are general purpose in the sense of multiple types of
analyses.

This module is not built into the present MAGIC System. Abstraction in-

struction sequences are included in the input data deck to effect the desired type of
analysis.

5. Material Library

The specification of mechanical and physical material properties can be a
burdensome task. This is particularly true in the case of laminated materials or in

the presence of thermal degradation of material properties. Accordingly, the Material
Library is a very useful feature of the vLAGIC System. This Material Library is sim-
ple in concept; yet, its availability can save time measurable in man-days against a
single problem. In contending with design changes and multiple thermal load condi-
tions, the Material Library is virtually indispensible.

The Material Library takes the form of a magnetic tape which is a perma-
nent data set available for interrogation by the MAGIC System. The Executive Monitor

is the natural control level for additions, modifications and deletions to the Material
Library. In the absence of the Executive Monitor, this function is served by the

Structural System Monitor in the present MAGIC System. Updating of the Material
Library may be conducted as a separate execution or as an integral part of the
analysis process.

A complete set of temperature referenced properties for a material con-
stitutes an entry in the Material Library. Each entry in the Material Library is taken
to include material designation, lock code, elastic constants, coefficients of thermal

expansion and mass density. Provision is made for data at up to nine temperature
levels. Linear interpolation is employed in interrogation of the Material Library for

material property values at a specified temperature level. Material anisotropy is
assumed as well as temperature dependence.
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6. FORMAT Monitor

In the absence of an Executive Monitor, the control functions and respons-
ibilities of the Executive Monitor are handled by or delegated to the FORMAT Monitor.
In addition, the FORMAT Monitor carries out its normal functions.

The FORMAT Monitor controls the selection and usage of the underlying
modules within the confines permitted by the Execution Monitor. At each transfer
point between the underlying modules the FORMAT Monitor will make a logical de-
cision, based upon information returned from the module, regarding the continuance
or discontinuance of processing. Termination of processing is determined voluntarily
by the Analyst unless unrecoverable error conditions are encountered by a module.

The FORMAT Monitor contains the correlation table between external
storage devices and their respective FORMAT functions. The Analyst has at his
command the option to revise the correlation table for any given application. The
FORMAT Monitor has the assignment of processing any such revisions.

Restart capabilities are also controlled by the FORMAT Monitor as directed
by the Analyst. By generating the desired abstraction instruction sequence and re-
questing pertinent information to be saved, the Analyst has at his command flexible
restart capabilities. For example, in the contexts of a structral system, element
matrices may be generated, saved and the problem restarted at a later level of anal-
ysis. Another example of restart would be to utilize the option of termination after
the Structural System Input Data has been read and interpreted. Saving of this inter-
preted input would allow the Analyst to examine the input printout and restart the
problem without the necessity of reinserting the original data for reading and inter-
pretation.

Operating under the FORMAT Monitor, the basic computational flow of the
program starts at the Preprocessor Monitor, passes the Execution Monitor and then
to the Structural System Monitor which ends the cycle by returning control to the
Execution Monitor. In this way, multiple data decks may be batched in a single
MAGIC System execution.

7. Preprocessor Monitor

The Preprocessor Monitor interprets problem specification data pertinent
to program setup. The processing involved includes specification of (a) master input
tapes, (b) master output tapes, (c) analysis header labels, (d) problem header labels
and (e) page size for printout. Matrices provided via input data cards are read and
stored within the Preprocessor Monitor. Other functions of the Preprocessor Monitor
are accomplished through its three underlying modules.
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8. Abstraction Instruction Compiler

The Abstraction Instruction Compiler interprets the abstraction instructions

and extracts matrix names, operation codes, scalars and statement numbers in the
process. These quantities are stored in packed form and returned to the Preprocessor
Monitor for use by the Instruction Logic Supervisor. Serious compilation errors may

terminate execution at this point.

9. Machine Resources Allocator

The Machine Resources Allocator partitions the available internal storage
into a program area and work area. This module also assigns program functions to
the external storage facilities available. The four possible program functions for an
external storage device are instruction storage, master input unit, master output unit
and input/output utility unit. These allocations of storage areas are based upon pro-
gram and application requirements. If no master input or master output units are
needed, their function reverts to input/output utility.

10. Instruction Logic Supervisor

The Instruction Logic Supervisor scans the information assembled by the
Abstraction Instruction Compiler and the Machine Resources Allocator and creates a
logical path for the Execution Monitor. At the same time an optimum external storage
assignment is made for each matrix named in an abstraction instruction in the know-
ledge of the logical path to be followed. The Instruction Logic Supervisor takes into
account, in this process, such consideration as the channel addresses of external

storage facilities, number of external storage facilities, capacities of external storage
facilities and combinations of input and output matrices of abstraction instructions.
The result is an optimum utilization of available machine resources for the sequence
of operations released to the Execution Monitor from the Preprocessor Monitor.

11. Execution Monitor

The Execution Monitor follows the path specified by the Preprocessor Moni-
tor accessing the underlying modules to perform the prescribed operations. Operations
can be performed on matrices up to the order 2000. The efficient utilization of machine
storage resources is assured by the setup passed from the Preprocessor Monitor.

The Execution Monitor will terminate processing if any of the rules of
matrix algebra are violated. Matrices are stored by columns complete with matrix
name, dimensions and sign. If a column of a matrix is less than 50% dense, it is
stored in compressed format. The modular form allows ease of insertion of additional
matrix manipulative or generative operations.
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12. Algebraic Matrix Operation

The Algebraic Matrix Operation module is essentially a library of routines
for matrix manipulation. This library includes routines for addition, subtraction,
multiplication, transposed multiplication, scalar multiplication, transposition, inver-
sion, equation solving by elimination, equation solving by iteration, and eigenvalue/
eigenvector extraction.

Each of the above operations is incorporated into a separate module and

all except the eigenvalue operation have out of core capability.

13. Nonstandard Matrix Operation

The Nonstandard Matrix Operation is essentially a library of routines to
effect nonstandard matrix manipulation. Included in this library are routines to raise
each element within a matrix to a specified power, locate maximum or minimum

values in a row or column, adjoin two matrices column wise, and multiply two matrices

element by element.

.4. Special Function Modules

The Special Function Modules constitute a library of routines to effect non-
algebraic operations. Included in-this library are routines to print, skip ahead upon
encountering a null matrix, select the best condition columns from a triangular
matrix, and solve the selected set of simultaneous equations, form a diagonal matrix
from a row or column matrix, and rename a matrix.

15. Structural System Monitor

The Structural System Monitor is the matrix generator of the structural
analysis capability provided by the MAGIC System. Machine storage resources are
allocated to this module by the Preprocessor Monitor. Matrices describing a struc-

tural system are released from this monitor for the conduct of the matrix manipula-
tion phase of the structural analysis process. The Structural System Monitor together
with its underlying modules comprise the major portion of the MAGIC System for
structural analysis.

16. Structure Data Preprocessor

The Structure Data Preprocessor is the principal input data interface be-

tween the MAGIC System and the Structural Analyst. As such, the nature of this
module is described in the subsection E, "Program/Analyst Interfaces."

The basic function of the Structure Data Preprocessor is to read and inter-
pret all data describing the idealized structral model and to make this data available

for the generation of structural matrices via the Structural System Monitor. The
interpretation function carried out by the Structure Data Preprocessor is substantial
since data sets are designed to be internally generated insofar as is possible.
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An optional execution interruption is provided at completion of the structural
data preprocessing. The completed set of structural data is printed for examination by
the Analyst. Then, upon approval of the input data, the analysis process is restarted.

17. Utility Library

The Utility Library is an elementary interpretive system in the form of a
collection of FORTRAN subroutines. Computational routines which are common to
several element matrix generation procedures are placed in the Utility Library to
avoid a duplication of programming. An extensive commonality exists among the
generation procedures even for diverse types of discrete elements. Exploitation of
this commonality via the Utility Library contributes measurably to the efficient de-
velopment of the Element Library in the MAGIC System. Included in the Utility
Library are routines for numerical integration, interpolation, specialized structural
print and algebraic operations for small size matrices.

18. Element Library

The Element Library is the heart of the MAGIC System for structural anal-
ysis. Each entry in this library represents a finite element model. A call on the Ele-
ment Library causes numerical generation of certain matrices of a complete element
representation.

The availability in the Element Library of suitable elements for idealization
determines the applicability of an analysis system to different classes of structure.
Moreover, the set of matrices embodied in each element representation determines
the type of analyses which can be performed. In the absence of versatile Element
Libraries, even the best matrix and tape interpretive systems yield sterile analysis
capabilities.

The six finite element models incorporated in the Element Library of the
MAGIC System and the set of element matrices provided were described in the pre-
ceding subsection C. Experience has shown this Element Library to provide a power-
ful capability for structural analysis.

E. PROGRAM/ANALYST INTERFACES

Discussion of the MAGIC System fr structural analysis is not complete without
some comment on the program/Analyst interfaces. The acceptance of automated
analysis tools by stress analysts hinges importantly on the simplicity of these inter-
faces. The first interface encountered by the Analyst is with the Preprocessor Moni-
tor. The basic instruction sequence to be executed passes through this interface from
the Analyst to the program. These instructions consist of a sequence of mathematical
equations to be performed. An abstraction instruction sequence for linear stress
analysis is illustrated in Figure 5. Such instruction sequences may be constructed at
the volition of the Analyst and executed to perform a wide variety of computations.
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FORMAT ABSIRACTION INSTRUCTION LISTING PAGE I

'INSTRUCTION SCURCE BELLOOOn

C BELLOOO
C DISPLACEMENT AND STRESS ANALYSIS INSTRUCTION SEQUENCE BELLOO20
C BELLOO30

MATLBAtLOACStTRtTAtKELtFELtSELtSZALEL, t , = t USER049 BELI.0046
C NELL0050
C PRINT OLTPUT MATRICES BELL0460
C BELL0070

PRINT (D.O.F.,CONDo. E6,) LOADS BELLOO80
PRINT 4REDCOFtC.O.F*,E6) TR BELLOO90
PRINT (N4tS",NORSUME6,) TA " 6tLL "f
PRINT (ROW #COL 9E.,#) KEL BELLO1O
PRINT (ROW tCOL ,E6,) FEL BELLO120
PRINT (ROW #COL 9E69) SEL BELLO130
PRINT (ROW ,COL 9E60) SZALEL BELL014O

C BELL0150
C FORM TAR MATRIX fASSEMBLY AND APPLICATION OF BOUNDARY COND)" BELLO 'O
C BELL0170

TRT x TR .iRANSP. BELL.O180
TAR = TA ,INULT. TRT BELLOI90

C BELL0200
C ASSEMBLE ANC REDUCE ELEMENT STIFFNESS MATRICES BELLO021

KTEMP - KEL .TPULT* TAR BELL0230
STIFF - TAR .TMULT. KTEMP BELLO240 -

PRINT tFORCE t£ISP, ) STIFF BELL0250
BELL0260

C ASSEMBL.E ANC REOUCE ELEMENT APPLIED. LOADS .. BELLO2"0_
C BELL0280

FTELAR = TAR ,TMULT. FEL BELLO29O
PRINT (REDDOFCOND.. 0 ,) FTELAR "BELC03O

C BELL031O
C APPLY BOUNDARY CONDITIONS TO SYSTEM LOADS 6EL1OW20" -
C BELL0330 '

* :~C - -LOADR = TR AULT. LOADS -ELL33-

PRINT (REODOFpCONOo t ,) LOADR BELL035n
C BEL.036OD
C COMBINE ELEMENT AND SYSTEM LOADS BELLO3TO
C aELL0300

TLOAD = FTELAR .ADD. LOADR BELL0390
PRINT (REDOF.COND. , -)" TLOAD .. ELL0 .

C BELLO41O
C SULVE FCR DISPLACEMENTS BELLO40
C BELL0430

DISPR - STIFF ,SEQEL. TLOAD 6ECL04O
PRINT IREOCOFCOND., ;)DISPR BELL0450

C SOLVE FOR ELEMENT STRESSES BELLO4Oc BEC04O79O
STREL • SEL ,MLLT. TAR BELL0490
STRESF STREL .MULT. DISPR BELL0500 -

STRESS * SIRESF .SUBT. SZALEL BELLO5O
PRINT (NRSEL tCOND. , ,) STRESS BELL0520

C BELL0530

C SOLVE FOR ELEMENT FORCES BELL056O-

c BELL055O__

"ORCEL - KIEMP .MULT. DISPR BELL0560

FORCES a FORCEL oSUBT. FEL BELL0570

PRINT (D0.FtCOND.-, ) FORCES- ELLO580
C BELL0O90

C SOLVE FOR SYSTEM REACTIONS *ELLO600
C BELLO610

VEACTN TA *MLLT, FORCES BELL-620

REACT = REACTN ,SUB1. LOADS BELL0630

PRINT 4D.O.F,CONO , ) REACT BELL0640O

Figure 5. IUustrative Abstraction Instruction Listing
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Executions may be terminated and restarted at the corresponding exit and entry
points of any abstraction instruction. Input data, intermediate results or final results
can be automatically saved in this way. Then, with the retrieval of this data, comput-
ation can be resumed.

The second program/Analyst interface encountered is with the Structural
System Monitor. This is the primary input data interface of the MAGIC System for
structural analysis. Experience has shown that significant portions of the labor and
computer costs of analyses are occasioned by incomplete or improper specification of
problem input data. In recognition of this, snecial features are associated with the
MAGIC System to facilitate the confirmation of problem data prior to execution. In-
cluded are annotated input forms, data consistency checks, and an option to read, com-
plete and write the input data prior to attempting execution.

Preprinted input data forms are essential to the reliable specification of data.
These forms provide a labeled entry position for all data items which gives engineer-
ing definition to the quantities requested. Control options are selected simply by a
mark (X). These provisions help to minimize occurrences of incomplete specifications
of problem data.

The printed input forms take advantage of a special MODAL data card feature.
The MODAL card feature enables data-prescribed initialization of tables. Explicit

data requirements are thereby limited to specification of exceptions to the MODAL

initialization.

In addition to the MODAL card, a data Repeat option is available. When utilized,
data from the previous point is retained for the indicated point. The combination of

the MODAL card and the Repeat option significantly reduces the volume and complexity
of input.

The input forms also embody permanent label cards which automatically precede
subsets of data, thereby allowing flexibility in the arrangement of the subsets of data
to form the total input data deck. Data associated with options not exercised are
simply omitted. This is particularly useful when a problem is being restarted at an
advanced stage of computation.

A data confirmation preprocessing phase, with problem execution suppressed,
is a recommended practice in utilization of the MAGIC System. In this data process-
ing execution, explicit data is read and implied data is generated. For example,
MODAL card completions are conducted and material properties are Interpolated
from the Material Library. Consistency of all the data is checked and a complete
record of the data is recorded for restart and printed for inspection.

There are basically two types of output provided by the MAGIC System. The
first is matrix print provided from the Special Function Print Module. This encom-
passes all output external to the Structural System Monitor. A standard format is
employed to print matrices.
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The second basic type of output is that provided from within the Structural
System Monitor. Output from this module includes a list of the completed input data
with self-explanatory engineering labels. In addition, intermediate results employed
in checkout are optionally available in the completed program.

F. SIZE CHARACTERISTICS

The size characteristics of the MAGIC System are twofold: first, there are the

size characteristics of the program itself and second, those associated with the prob-
lem solving capability. Considering the former, the MAGIC System contains 212 sub-
routines (approximately 25,000 FORTRAN IV source cards) logically designed into 89

overlay links on an IBM 7090 with 32,000 words of storage. The overlay design re-
flects the optimum use of available storage yet maintains respectable execution effi-
ciency.

The MAGIC System offers large scale capability with no penalties to small
applications due to the fact that out of core operations are not utilized unless the mag-
nitude of the application requires them. The size of the program has necessitated use

of SUBSYS, a package which improves the loading capabilities of IBSYS, on the 7090/
94. In addition to allowing the program to be loaded, SUBSYS allows the program

overlay load tape to be saved, thereby improving execution time. Also, SUBSYS allows
programs to be executed back to back without passing through the IBLDR section of
IBJOB for each program. On the 7090 under SUBSYS the program is actually divided
into three segments: Preprocessor? Execution and Structural System. Third genera-
tion computers, such as System/360 and UNIVAC 1108, have the capabilities of
SUBSYS incorporated into their resident operating system.

The scale of the analysis capability provided via the MAGIC System can be

characterized as "on the order of" 2000 displacement degrees-of-freedom. Other
relevant maximum size characteristics are 1000 discrete elements, 1000 grid points

and 10 applied load conditions. Matrices which -.re card input may be of order 2000
x 2000 and contain up to 4500 single precision real non-zero elements on a 32,000 word
machine.

The MAGIC System needs a minimum of eight external storage units to operate,
distributed into the following functions: one unit assigned as Instruction storage for
the Execution Monitor, one unit assigned as a Master Input Unit, one unit assigned as
a Master Output Unit, and five units assigned as Input/Output Utility Units. Every
effort should be made to make the most external storage units possible available,

since any increase in the available storage units increases execution efficiency.

The stated maximum size characteristics apply to the linear stress analysis

capability of the MAGIC System. A stability analysis capability is also included in the
MAGIC System, as with the linear stress analysis, and explicit matrix statement of

the stability analysis procedure is given in Section 3. The number of displacement
degrees-of-freedom which can be accommodated in the eigenvalue stability analysis is
limited to 130. The other size characteristics stated for the stress analysis remain
applicable.
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G. SPECIAL FEATURES

Many features have been built into the MAGIC System which are not fundamental
to a finite element computer program but which are essential to a general purpose
analysis system for practical structures. Foremost among these features is a great
variety of transformation matrices. Material axes transformations are provided to
accommodate arbitrary axes of orthotropy. Stress axes transformations enable the
referencing of output displays to convenient axis systems. Grid point axes transform-
ations account for irregular boundary conditions and allow pseudo-curvilinear dis-
placement variables. Eccentric connection transformations provide for realistic

modeling of frame joints and shell stiffeners. Finally, grid point suppression trans-
formations are included to eliminate unwanted element grid points prior to assembly.

A second feature of special interest is the element repeat feature. There are
actually two levels of element repeat. The first is a repeat of element data. Undcr
this option, all calculations proceed as usual, but the repeated provision d_^ identical
element extra data cards is avoided. The second level of element repeat is element

matrix repeat and this is the more powerful option by far. Under this option, the ele-
ment matrices of the prior element are simply carried forward as those of the present
element; no balculation is carried out. tlearly under this option, a great saving in

input data specification is realized and important savings in calculation can be realized
as well. The extent to wich the input data can be reduced by the element matrix re-
peat feature is made clear in the UserIs Manual.

A useful element load condition scalar is associated with the multiple load con-
dition capability of the MAGIC System. Element load conditions arise in load condition
number one. A multiplicative constant is then data prescribed for all subsequent load
conditions. This scalar controls the participation of the element loading. With this
feature, a total load system can be decomposed into several parts and behavior pre-
dictions can be obtained conveniently against these as well as against the total load
system. This feature is particularl, useful in separating effects of thermal and
mechanical applied load combinations.

The majority of the special features embodied in the MAGIC System are explained
best within a specific context. Accordingly, with the exception of the few included here
for special emphasis, such features are treated as an integral part of other report
sections. Many are disclosed in Volume II of this report in the process of explaining
items of input data and interpreting example problem output data.
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3. THEORETICAL FRAMEWORK

A. INTRODUCTION

The matrix methods of analysis based upon discrete element idealization have
been the subject of an extensive body of technical literature and, more recently,
entire books as well. (19, 20). This documentation obviates the need for detailed
theoretical development herein. Nevertheless, in the interest of clarity and com-
pleteness, presentation of the discrete element representations incorporated within
the MAGIC System is Drefaced in this Section by general symbolic statement of the
analysis processes. This gives explicit definition to the methodology and notation
employed.

Statement of the analysis processes is separated into three parts, Firstly,
consideration is given to the discrete element representations. Then, having given
definition to the discrete element matrices employed, the steps executed by the
MAGIC System in the conduct of a linear stress analysis are described. Lastly, the
stability analysis process, which is an extension of the linear stress analysis, is
presented.

B. DISCRETE ELEMENT MATRICES

1. Fundamental Requirements

The development of a discrete element representation is essentially a
problem in elasticity. Accordingly, the fundamental requirements to be satisfied
are those of:

(a) Equilibrium,

(b) Material Behavior,

(c) Compatibility, and

(d) Boundary Conditions.

It is convenient to approach the satisfaction of these requirements for a discrete
element variationally by way of the principle of potential energy( 2 1 ) which states
that:

Of all possible displacement states within
as given admissible class 1 1 , that which
makes the total potential energy 4: p 1 I
stationary, satisfies the equilibrium re-
quirements and is t _ actual displacement
state {a}*,i.e.
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Furthermore, if

oP aI <opal (2)

for all 1 in some neighborhood of then associated equilibrium position
is stable.

2. Discretization

The foregoing statement of the principle of potential energy is expressed
in terms of a finite number of displacement variables f 1 implying prior discreti-
zation of the potential energy functional. Discretizatioh ol the potential energy
functional is effected in accordance with the well known Rayleigh--Ritz techniques
by the introduction of assumed displacement mode shapes. Admissibility conditions
must be imposed on the characteristics ,f these diplacement mode shapes to assure
satisfaction of certain fundamental requirements.

The fundamental requirement of compatibility of strains is provided for
subsequently in this development by expression of the strains in terms of displace-
ments. Since the functional dependence of strains upon displacements involves
differentiation, continuity requirements arise as criteria of admissibility to be
satisfied in the construction of displacement mode shapes. It should be emphasized
that these continuity requirements remain applicable across discrete element
boundaries (22)

The foregoing interelement continuity admissibility conditions are peculiar
to the discrete element method of analysis. The admissibility requirements associated
with conventional applications of the Rayleigh-Ritz techniques apply as well. The
definition of general systematic procedures for constructing displacement functions
within the collective confines of these fundamental requirement related admissibility
conditions has proved to be an elusive goal. However, significant progress in this
direction has been made by the use of unconventional and curvelinear coordinate
systems and interpolation formulae( 2 3 , 24, 25).

Practical considerations involved in the selection of assumed displacement
functions go beyond the problem of admissibility. Of particular importance is the
number of displacement degrees-of-freedom to be associated with an element, The
provision of degree-of-freedom in excess of the number required to establish ad-
missibility is attractive in that it reduces the number of elements required in ideali-
zations in order to maintain a certain level of precision and correspondingly reduces
the input data preparation.
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Improvement in stress predictions is also realized as a consequence of
including additional degrees-of-freedom in an element representation. Furthermore,
it has been demonstrated on certain example problems that improved predictions of
displacement behavior can be obtained with fewer total degrees-of-freedom if the
number of degrees-of-freedom associated with an individual element are increased (2 6 ) "

These attractive advantages of higher order assumed displacement functions
are achieved at the expense of simplicity, which has been a primary recommendation
of the discrete element methods. This characteristic has been somewhat obscured by
the trend toward advanced geometrically complex discrete elements pursued in the
interest of eliminating structure idealization errors. The additional increment in
complexity of mode definition, formulation, checkout, specification, and numerical
expression introduced by extra element degrees-of-freedom severely handicaps
attempts to achieve the aforementioned advantages.

As a final comment regarding criteria for selection of assumed displacement
functions it is pertinent to note that many practical structures have obvious physical
definition in terms of panels and stiffners. A lesser element gridwork would require
prohibitively complex, problem orientated, stiffened panel discrete elements. At the
same time the increase in accuracy afforded by a higher order panel element repre-
sentation is unwarranted in most problems of this type. Thus, it is concluded that
the most significant advancements in element representations will continue to stem
from elimination of structure idealization error rather than reduction of element dis-
cretization error.

The actual process of constructing displacement mode shapes begins with
the definition of a convenient set of coordinate axes for the discrete element model.
Then, the boundaries of the element are given parametric description. Polynomial
mode shapes are the type customarily chosen to represent the displacement functions
within the parametrically described boundaries of a discrete element. With reference
to the selected element coordinate axes, such assumed displacement functions can be
written symbolically as

{u()} = [BO]{B (3)

where

u } is the vector of displacement functions,

B] is the matrix of mode shapes, and

{,1} is the vector of mode shape participation coefficients.

The participation coefficients {.} in the assumed displacement modes are referred
to as "field coordinate' displacement degrees-of-freedom. These field coordinates

are commonly retained throughout the algebraic development of a discrete element
representation; however, in order to effect assembly of elements (establish interelement



continuity) it is necessary to transform to gridpoint displacement degrees-of-freedom
J 1 . This transformation results from a straightforward application of inter-

polaion theory. The displacement functions are particularized to the selected grid-
point quantities I S} thereby yielding,

{8Sg }I [f8 ] 81 (4)

The objective transformation is then obtained by the inversion of this relation, i.e.

f13 rr ]{g (5)

The gridpoint displacement degrees -of-freedom {8} are generally defined
with respect to coordinate systems on the individual discrete elements. Frequently,

a number of further displacement coordinate transformations are then necessary to
obtain degrees-of-freedom which are suitable for assembly and convenient for inter-

pretation. All such transformations are given explicit definition within the individual
discrete element representations; however, two are common to most elements and

are described here.

Generally, it is necessary to transform to a global Cartesian set of co-

ordinate axes. This system, common to all discrete elements of an idealized
structure, is suitable for interconnection of the elements. The transformation re-
lation to obtain gridpoint displacement degrees-of-freedom { slreferenced to global
axes takes the form

{ Bg [ rg. ]I s } (6)

in which the transformation matrix [ rgs] consists of submatrices of direction
cosines.

Boundary conditions on displacement quantities not aligned with the global
axes require special point-related coordinate axes for these gridpoints. Taking the
associated coordinate axes transformation for a gridpoint as,

x sl~{q (7)

the transformation to gridpoint axis displacement degrees-of-freedom is given by

{a. }[r q ]{8Sq}1 (8)

Transformations of this type are employed simply to facilitate interpretation of
the results in many cases.
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It is useful to conclude comment on the construction of displacement
function mode shapes by collecting the foregoing transformations. The result is

{~}~ r~ ]Bq }(9)
where

[q ] r~]rg [ sq ](10)
Customarily, the formulative process :s carried forward using the

field coordinate displacement degrees-of-freedom 1 8 1 and then Equation 9 is invoked
to obtain the discrete element matrices with respect to the gridpoint displacement
degrees-of -freedom is q }" The matrices which actually participate in this collective
transformation [r$ q v ary from element to element.

3. Equilibrium

The principle of potential energy was introduced to facilitate satisfaction
of the fundamental requirements for a discrete element. Having examinled the
nature of the discretization implied in the statement of the energy principle,
attention is returned to assuring satisfaction of these fundamental requirements.

It is clear from the statement of the principle of potential energy that this
variational approach circumvents explicit consideration of equilibrium requirements.
The equilibrium requirements arise naturally in the Euler equations of the variation
process. This is an important advantage of the method.

4. Material Behavior

Preceeding in the order listed at the outset, the second fundamental re-
quirement to be satisfied in the elasticity problem posed by a discrete element is
that of material behavior. Linear elastic behavior, governed by a generalized Hooke's
law, Is assumed, i.e.

f{0- ()}=[ E] {{it) t{ j}(1

where

{or} is the stress state,

{6} is the state of strain

[ E] is the elastic property characterization, and

{ i } is the prestrain state.
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In recognition of the increasing utilization of high performance particulate
and fibrous composite materials, material anisotropy is provided for in defining this

stress-strain relation. The availability of material property data generally limits
material specifications to orthotropic, at most. However, the application of a rotational
transformation in order to reference the material characterization to the geometric
coordinate axes of a discrete element tends to fill the material property matrices.

For this reason, no terms in elastic [E3 and thermal { a} property characterization
matrices are assumed zero.

5. Compatibility

Satisfaction of the third fundamental requirement, compatibility, is provided
for by expressing strains in terms of the displacements. Interpretation of this require-
ment in terms of admissibility conditions on displacement mode shapes was discussed
previously and appropriate functions are assumed available at this point. The intro-
duction of these displacement mode shapes (Equation 3) into the relevant strain-dis-

placement equations enables expression of the strains in terms of the discrete element

field coordinate displacement degrees-of-freedom, i.e.

t's(}4= [C ( ]{f40 (12)

Nonlinear terms have been omitted in this set of strain-diplacement
relations. These will be given special consideration subsequently.

6. Boundary Conditions

The final fundamental requirements which must be established are the
boundary conditions. Force boundaries need not be given explicit consideration

since these are accommodated implicitly by the variational process. Displacement
boundary conditions, on the other hand, must be imposed. Expression of the element
displacement mode shapes in terms of boundary displacement provides for the simple

imposition of these boundary conditions.

7. Potential Energy

Proceeding toward algebraic expression of a discrete element representa-
tion, it remains to give definition to the potential energy function. The strain energy
density, dU, which is basic to the potential energy, is defined as

dUI (13)

Invoking the relation governing material behavior obtain expression of the
total strain energy as,
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u=f (±'[,FJ[E]{e}-[C ][E]{ eiJd (14)
AV

Substituting the relation governing compatibility (Equation 12) obtain, in the pre-
sence of distributed mechanical loading, { p } the total potential energy function in

the form I'

8 j[C f E]LCU I

-[P] [ B( )]{Tfp) (15)

This substitution of the assumed displacement functions into the element
total potential energy functional and the subsequent integration over the volume
comprise a major part of the effort associated with the derivation of a discrete
element representation. The procedure is conceptually simple though algebraically
complex. Indicating the integration symbolically, obtain an algebriac expression for
the element total potential energy as

where [K]= [ c(] [ E][ C( )]dV (17)

{ }F [E ] { }dV (18)

{i p}= f[B( )]T{p( )} ()

These element m. trices in the potential energy expression are referenced
to the field coordinate disnlacement degrees-of-freedom. The previously defined
transformation (Equation 9) is introduced to obtain the element matrices in the
potential energy expression with reference to selected gridpoint displacement
degrees-of-freedom, i.e.

IF.- iLq[]- - }-18q l{Fp 1 (20)

JI 8J~q iLaq (20)

29



where

T

{p4 q]Fp } (23)

At this point the objective matrices governing behavior of a discrete
element follow immediately by executing the variation of the potential energy
function, i.e.

[K]{8 q I{IF e}{-Fp> { Fc} (24)

where

K] is the element stiffness matrix,

F}I is the element prestrain load vector,

{ Fp} is the element distributed load vector, and

I Fc} is the concentrated gridpoint load vector.

8. Incremental Stiffness Matrix

The representation for the frame element incorporated in the MAGIC
System is written to include an incremental stiffness matrix. These matrices stem
from avoiding a complete linearization of the mathematical models for the discrete
elements. The formulative process is outliaed below. Conceptual examination of
this process is deferred to the presentation of the stability analysis procedure.

As a first step, the total strain induced at a point is decomposed into a
contribution linearly related to displacement quantities { } and one which is second
order in the displacement quantities { eN } ,i.e. f 1

{ET ~ e )+feN ( )1 (25)

Using this notation, the potential energy contribution which leads to the
objective incremental stiffness matrix takes the form,

~ ~ [() ] EN)dV (26)
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All other energy terms associated with the nonlinear cor.cribution to the total strain
are assumed to be negligible in comparison.

The knowledge that each term of fle( )} has a linear dependence on the dis-
placement functions and that the dependence 6f each term in { 4EN( ) is quadratic
allows alternative expression of Equation 26 as

Dc =i.j f Xj fi ( ) gJ ( )hj ( )dV (27)

The term Xij is simply a multiplicative constant and the fi, gj and hj are dis-
placement function forms. These displacement quantities are expressible in terms
of the assumed displacement functions thereby accomplishing the discretization of
the energy functional. Symbolically, this expansion in terms of the assumed dis-
placement function mode shapes can be written

[, Bf ( a } , (28)

gj = Bg b j (29)

h.i B (30)
j

The {B} matrices contain the independent variables of the mode shapes which
are common to each term of a given element respresentation and the ai,

Sb}, and [c}i are the coefficient matrices. The discretized potentiaenergy
function which results frcon the introduction of these assumed mode shapes is cast

into matrix form

cD 6x []i I Erc] j , N ,[BN] {R} (31)

whr L " , [ J c[ANid [AN]j
{Bgjj [Bh dV (32)

[ B N I .- f gi ( ) {B j~ 1 Bbhj dV (33)
V

[cNli =Lhi f {Bf}j [Bg<j dV (24)
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Now in any given application the vectors a I b}1 and c}Imustbe
specified for the contributing energy terms. his is done by listing Xii together with
the following items for each term:

Ial [A ]i{ai(35)

{b }j = [Ab Ij 1 {b j (36)

{ c }j [Ac 1j 13 c Ij (37)

The knowledge of these terms y4elds each typical energy contribution as
a function of the field coordinate displacement degrees-of-freedom and the sum of
the typical energy t, rms can be carried out to obtain

=~ 6 NH '~ (38)

The matrix IN ] is the element incremental stiffness matrix referenced
to the field coordinate displacement degrees-of-freedom. The previously defined
transformation (Equation 9) is introduced to obtain the element incremental stiffness
matrix with reference to selected gridpoint displacement degrees-of-freedom, i.e.

=}L[8 JNfB (39)
c 6 q -q

where T

[N] dr[ q] [N][i'q] (40)

The matrix [ N ] is the objective incremental stiffness matrix. It is
clear from the foregoing development that the elements in this matrix are functions
of the unknown displacement quantities 1, 1 . It follows that this matrix serves to

introduce the effects of finite displacements. The utilization of this nonlinear matrix

is discussed a6, an integral part of the stability analysis procedure,

It is recognized by the authors that the foregoing outline of the development
of an element incremental stiffness matrix is lacking in clarity. Matrix notation is
not weil suited to expression of nonlinear relations. Recourse to the explicit state-
ment of the incremental stiffness matrix for the frame element in Section 4 is suggest-
ed for clarification of this general symbolic statement of an element incremental
stiffness matrix.
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9. Stress Matrices

Having completed expression of the total potential energy based element
matrices, it is appropriate to define the element stress matrices. The element stress
matrices stem directly from the governing equations. The stress-displacement
relation is obtained upon substitution of the strain-displacement equation (Equation
12) into the stress-strain equation (Equation 11), i,e.

E C( ){ }[E] {E~ (41)

Transformation to gridpoint coordinates and particularization to specific points with-
in the element yields

0- }= [S ]{Bq]~A (42)

where the element stress matrices are given by

{d=' E]{I C} (44)

Stress resultants rather than point stresses are sought in the thin shell and

slender prismatic elements. Resultants corresponding to deformations not consider-
ed may be obtained directly from the governing differential equations of equilibrium.
In general, a rotational transformation is applied in order to exhibit stress values
with reference to coordinate axes which simplify interpretation.

This completes statement of the method employed in deriving the discrete
element representations incorporated in the MAGIC System. The matrices of the
individual discrete elements are recorded in Sections 4 through 9.

C. LINEAR STRESS ANALYSIS

1. Stiffness Equation

The mathematical model for the total structure is traditionally constructed
by forming equilibrium equations corresponding to the gridpoint displacement degrees-

of-freedom. A more general systematic approach to constructing the mathematical
model for the total structure is realized by carrying forward the variational view-
point. Specifically, the energy functions for the total structure can be constructed by
effecting a nonconformable sum of the individual element matrix energy forms. This
nonconformable sum, in which common gridpoint degrees-of-freedom are employed

for adjoining elements, imposes continuity over the entire structure. Application of
the Euler equation (Equation 1) then yields the objective governing equations for the
structure. This variational approach to the assembly of elements to form a total
structure representation is particularly attractive when generalized nonphysical dis-

placements degrees-of-freedom such as "wxxy" are retained (26).
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The element matrices for a structural system are generated from the in-
put data to the MAGIC System without regard to their interconnection as indicated in
Block 2 of Figure 2. Since knowledge of these individual element matrices is required
during subsequent analysis phases, they are released from the generation of the
MAGIC System as distinct submatrices of system level matrices. For example, the
linear strain energy stored in all the elements is written as

where
T T T T

4l K], (47)

:K]
n

The element column matrices afe also stacked individually in system level
vectors. For example, the external work of all the element loads applied to all
elements takes the form,

W [A ]{PeI} (48)

where T T T T

{ Pel}= [{F +Fp}i ' F + Fp} 2  "',{FE+ Fp}n ] (49)

Several additional system level matrices are generated from the input data.
Firstly, the matrix of the gridpoint loading at every degree-of-freedom in all loading
conditions is provided, i.e.

{ c I }j '1 { } J2P (50)

The input data describing the interconnection of elements is processed to
obtain a system level assembly matrix. This assembly matrix takes the form of a
transformationmatrix beLween all possible gridpoint degrees-of-freedom o 
and those graidpoit degrees-of-freedom which remain after interconnection of the

elements to form the objective structural system {Aa i.e.

{ a } [ra]{AI  } (51)
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T T T T
{Aa I =l'faf, , L~a 12  'A 'af Il'IAa Im j (52)

A further system level matrix is generated to extract the degrees-of-
freedom which actually exist from all those associated with the gridpoints of the
assembled structure. This matrix takes the form of a transformation between the com-
plete set of degrees-of-freedom } and the actual or reduced set { A I, i.e.plt eto ereso-fedm A a Isj

where {Aa}=[r r ]{ AsI (53)

T
IASIT ASI ' A s2' ASm J (54)

Provision of the foregoing sysLem level matrices enables execution of a
linear stress analysis. The first step taken is to combine the assembly and reduction
transformations of Equations 51 and 53 to obtain

where IA I  = [Par ]{As} (55)

[ear ]=I'a ][f r] (56)

This combined transformation is introduced into the energy expressions of
Equations 45 and 48 to obtain the desired system matrices, i.e.

where p=' [A s  [ Ks]{A s }-s [ s J{P } (57)

[Ks ] [Par]T[KsI ][Par ] (58)

{Ps }-[ar]T{ PeI }+ [1r ]T{ Pc} (59)

The variation of this potential energy function now yields a governing stiff--
ness equation which takes the form

[ K S]{AS}={IP} (601

TIs equation is presently solved by inversion. In general, multiple load conditions
exist and a corresponding multiplicity of solutions is obtained.
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2. Element Stresses

As in the case of stiffness and load matrices, the element stress matrices
are stacked individually in system level matrices, i.e.

I{c = S1 } s ] A }I{ 4} (61)

where

T T T T T

f a's} I Ia-1 1 Ia- 2 011 ,{a'j ,{ iLn]  (62)

T T T T 7r

'" {1 &h}nJJ (63)[s] . ,[s]

[s ]- 2 (64)

:[] .
Stresses are 0secondary variableQ obtained subsequent to the solution for

the primary variables f As j . Equation 55 enables direct expression of the de-
sired stress quantities in terms of the primary displacement variables, i.e.

{s}= [s] [rar ] {As}-{ s} (65)

3. Element Forces

Element forces are useful results in many applications. This is particularly
true when the element employed is a simulation of the actual component. The back
substitution for element forces takes the form

{Ft} [KsI ] [sa, {As} {eI } (66)

where

{Fnet }= {Fnet {Fnet} 2  .t {F It} nt ,{F ItJ(G7)

4. Reactions

The final step is to calculate the force balances and the reactions. These
are readily available from thJ element forces, i.e.,

{Rs }= [ra ] T {Fnet }- {Pc} (68)
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D. STABILITY ANALYSIS

An analysis procedure is incorporated in the MAGIC System to examine the
stability of flexible lightweight structures. The structural stability phenomena associ-
ated with structures of this type inevitably involve g3ometrically nonlinear behavior,
while, in con t rast, material behavior remains linearly elastic. Thus, it is somewhat
fortuitous that geometric nonlinearities are most readily incorporated in the subject,
displacement methods of analysis.

Th ere exists a hierachy of geometric nonlinearities which mjy be incorporated.
Associated with each level of nonlinearity is a degree of complexity and a range of
applicability. The stability analysis provided in the MAGIC System is restricted to
the prediction of critical load values and buckling mode shapes. The prediction of
nonlinear pre- and post-buckling behavior is not attempted.

The "classical" approach to buckling analysis is based upon the assumption that
the membrane force distribution induced in a structure is known ab initio as a linear
function of the applied loading. The intensity of the given membrane force distribution
that causes the effective flexure stiffness to vanish implies a critical applied load
intensity or buckling load.

The behavior of thin-shell and slender prismatic structural components of
zero curvature is, within the scope of linear mechanics, naturally completely un-
coupled into membrane and flexure behavior. A similar uncoupling of membrane and
flexure behavior can be obtained for components of non-zero curvature subjected to
certain types of boundary and applied load conditions. This uncoupling of membrane
and flexure behavior is employed to advantage in the subject general instability
analysis. However, the nature of the instability phenomena associated with practical
built-up structures of complex configuration and applied loading transcends the scope
of the preceding classical buckling analysis assumption. In general, membrane and
flexure behavior can only be uncoupled within certain components or zones of the
total structure. Linear coupling, which occurs at the junctures, cannot be avoided and
is accounted for in the subject general staoility analysis.

Geometric nonlinearities are introduced into the analytical model for stability
analysis via the previously defined element incremental stiffness matrix. In the
presence of the incremental stiffness matrix, the potential energy for a discrete
element takes the form

_D I [K]r f +-q I +_ IF 8q N laq a J fPI (69)

The element incremental stiffness matrices, like the stiffness and load matrices,
are made available from the matrix generator in the form
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2 , [
Nsl =,N j .. (70)

[ N[N]

The total potential energy for a structural assembly of discrete elements can
be indicated symbolically as

4 -_ [As ][ Ks]{JAs5 + -L [As J[NsJAs}- [AS]{IrP} (71)

in which the definition of the one new symbol introduced, [ N ] , follows immediate-
ly from the statement of the linear stress analysis, i.e.

[N] [ar ] T[Ns, ] [ar] (72)

Equation 71 represents a geometrically nonlinear mathematical model suitable
for the prediction of certain types of nonlinear behavior. The stability analysis in
the MAGIC System is directed toward the more modest goal of predicting critical
buckling loads. Reference 27 is recommended as a useful source of information
regarding the prediction of nonlinear pre- and post-buckling behavior.

The vanishing of the second variation of the total potential energy is invoked as
the buckling criterion. Executing the second variation of the potential energy of
Equation 71 obtain,

[ Ks] {8st j~+ [Ns] 18A31 0} (73)

in which the vector { 8 AS } represents an arbitary variation from the displace-
ment state { A}

The computational utilization of Equation 73 for predicting critical loads is
based upo)n the assumption that the incremental stiffness matrix appropriate to the
critical load level Pcr can be expressed as a function of its value at any given load
level T i.e.

SPcr) ]Pcr 
(74)

This is interpretable as assuming that the intensity of the internal force state changes
linearly with changes in the applied load without affecting the relative distribution of
the internal forces. Invoking this assumption transforms Equation 74 into the form,
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[K] i5 ( r[N] { s}(75)

Clearly, the availability of a linear solution at any load level enables specification of
the matrices of this governing equation. The prediction of the critical load level is
then reduced to the solution of an eigenvalue problem. The incorporation of this
approach in the MAGIC System provides a powerful tool for stability analyses of
general frame and thin shell structures.
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4. FRAME ELEMENT

A. INTRODUCTION

A conventional frame discrete element is incorporated in the MAGIC System.
This element, shown in Figure 6, is suitable for the idealization of structural compo-
nents which are adequately characterized by "beam theory." Having established
basic procedure and notation in Section 3, the mathematical model for the frame ele-
ment is summarized in this section in terms of element matrices. The formulation
is presented in detail in Reference 28.

The frame element is broadly applicable to space frame and stiffened shell
structures. Connection eccentricities can be accounted for in shell stiffener applica-
tions of the frame element. Space trusses can be accommodated as a special case of
space frames. The truss specialization is particularly useful in combination with the
shear panel element of Section 5.

Geometric specification of the straight slender prismatic frame element is
given, in part, by the end point coordinates. A third coordinate point in the positive
quadrant of the element axis system (xg, yg) is required to specify the twist orienta-
tion.

The cross section of the frame element is assumed doubly symmetric with
respect to the element coordinate axes. It is characterized by stiffnesses Ixx, Iyy and
Izz about the three element axes together with the cross sectional area.

A linear Hooke's law is assumed to govern material behavior. Cross sections
initially orthogonal to the element axis are assumed to maintain orthogonality with the
deformed axis. It is further assumed that deformations are sufficiently small to allow
superposition of element loading.

Linear polynominal axial and torsional displacement mode shapes are construc-

ted. A cubic polynominal displacement mode shape is constructed for flexure in each
of the two principal planes of bending. These mode shapes lead to a total of 12 unde-
tormined coefficients for the element which are chosen to correspond tn three trans-
lational and three rotational displacement degrees-of-freedom at each end of the ele-
ment. Description of stress behavior is accepted as the definition of the 12 forces
acting at the two gridpoint connections.

Element matrices are provided for stiffness, incremental stiffness, stress, dis-
tributed loading, and axial thermal loading. Certain of these participate in the evalu-

ative application to a portal frame structure presented in this section.
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Figure 6. Frame Elemern Representation

B. FORMULATION

1. Displacement Functions

The polynomlnal mode shapes assund for the displacement functions are
wrlUen

(U ,) (; 6 ) (76)

where u,() } T I ,( ), v( w (77)
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Figure 7. Displacement Function Mode Shapes EB ( )]

and [BO)] , the matrix of mode shapes is defined in Figure 7. Elementary interpo-
lation theory is invoked to obtain a transformation to gridpoint displacement degrees-
of-freedom, i.e.

[ros]{g} (79)

where
T

f8g1} lIUg1s Vg1I91 xgl' 8  ygl' Gzg1 u g2 t vg29 w g2' Oxg2' eyg2' 6zg2I](80)

and [rga1 is defined in Figure 8.

Assuming the ends of the frame element are positioned as shown in Figure
9 relative to the offset gridpoint, an eccentric connection transformation is provided
via

f{Bg} [rel I{Be} (81)

where
T

{ e = [UelVel' We ' xel' yel' zel' Ue2' ve 2 'we 2 ' 9Ye2' Oye2' 8ze2I(82)
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and [Fe] is defined in Figure 10.

Since the eccentric connection is translational only, the subsequent trans-
formation to system coordinates { xs } is based upon the original direction cosines
of the element. This transformation relation takes the form

{Be}JrsjBs}(83)

Ugi Ug1  wgl 0 gxi 0gyl Ogz ug2 Vg2  wg 2  
0 gx2 6gy2 0gz2

131 1 , . . . . , , ,

1 1132 -i.f' ' ' , +

3 1 , , , I

184 , , , 1 ,T

3 2 3
95 ' -2' L_ ' + 'L '-

LL

2 1 2136''+ T ' ' T' '+3' ,+'
6 L L3  L

138 -1

3 2 3 1
9 '2' '+L +"L2" +-L

2 1 2 1

R10 +3 '  '2 ' 3' ' L2 'L0 L L

1 1

1312 ' '+T

Figure 8. Displacement Coordinate Transformation
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Figure 9. Frame Element Eccentricity

where

{ 8}T=[u~v.w 1  
6  sl' 0 ysl' ' Us2 , s2 ' ws2 ' s2f ys2' (84

Tgs],

rfg,3 TTg ]. (85)

~[Tggs]

The matrix [T gs] is the direction cosine transformation between element {Xg }
and global { x}s coordinate axes, i.e.

I x g} T [gsIIx s} (86)

45



u 1 V'91 '1 6 xi 0 5 yl O~zl Ug2 Vg2 '2 O6x2 gy2 Ogz2

m1
u 1 , +e ,

gi y

gl

wegw 1 ,-e ,
gl ' y

6 gxl , 1 ,, ,, ,, ,

0 gyl 1 ,

9 gl , 1

Ug2 
+ey

Vg2  , 1

1 ,-eg2  ey

6 gx2 , 1

8gy2, , , , , ,

6 gz2

Figure 10. Displacement Coordinate Transformation [e]

The final transformation builds in the option to employ degrees-of -freedom
referenced to gridpoint axes. Transformations between the gridpoint axes and system
axes are known from the input to the MAGIC System. For the two gridpoints of the
frame element these take the form

x [T ] X 4 1,2 (87)
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Given these axes transformations, the objective gridpoint displacement degrees-of-
freedom are introduced via the relation

{Bs} -[rq] {Bq} (88)

where (89)

T
q uq' 1 wql 9X1P yII zql' q2 'vq2 w xq2s y2'9q

[Tq] I

[rs] =[Tq]t (90)

~[T~q '2

In summary, displacement functions are as sumcd in terms of field coordi-
nate displacement degrees-of-freedom. These are retaizied for the algebraic develop-
ment. Then, the foregoing sequence of transformations is invoked to yield the desired
displacement degrees-of-freedom. Collectively, this set of transformations is written
as

1.1= [ rqJ {bq} (91)

where

[rqJ = [r J [re [r ] [rsqJ (92)

2. Linearized Potential Energy

Ihe assumption of linear material behavior governed by

a = E (d -Ei) (93)

leads to a strain energy of membrane and flexure given by

Uf(-EC- Ee.e) dv (94)
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The linearized strain-displacement relation for the frame element is,
E~ v zw (95)

x YVxx xx

The prescribed prestrain c is taken to be constant over the cross section and over the
length.

The linear potential energy functional which arises in consequence of these
strain relations is

)plf 2 1(EAU+E2  v E2 w 2 E 0x2 (96)=p f 1( + EI v '+ El w '+ El (6

xzxx y xx xx

-EAciux - P V-P W)dxy z

Note that torsion and distributed load terms have been incorporated in the
above energy expression. The distributed loadings P y and Pz are assumed to be
linearly varying over the length of the element, i.e.

P()= 11-(L)] 1+( P2(97)

Substituting the displacement mode shapes into the linear potential energy
tunctional and integrating over the cross-section obtain,

1 (98)

where the matrices [K], {FC and {F} are given in Figures 11, 12, and 13, re-
spectively. In conformance with the notation of Section 3, the foregoing are the element
stiffness [ K ], prestrain load {f4e , and pressure load {Fp} matrices referenced
to field coordinate displacement degrees -of-freedom.

It is convenient to define a distinct prestrain load vector for strains induced
by thermal expansions. Since flexure prestrains are omitted in the absence of know-
ledge of the cross section geometry, specialization of the prestrain F load to
thermal load { F T} is accomplished by the relation,

,i= aAT (99)

3. Incremental Stiffness

The retention of quadratic displacement terms in the strain-displacement
relation for the frame element yields the strain contribution,

1 2 1 2 (100)EN()=vX +- w
x x
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Figure 11. Stiffness Matrix [K]

This nonlinear strain term leads to two incremental stiffness energy contributions, i.e.

2 (101)
c cj

where

c = fx1EAuV 2 dx (102)

f EA 2 d (103)

x
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Each of these terms is of the general form constructed in the symbolic development
of Section 3. The general form is stated here in the context of the frame element as

dD = fX X g i h x (104)

where

f= [] 2a (105)

g. = 1 9x I x 2 ] {b} (106)

h = [Ix, x 2j{c} (107)

The matrix form of a typical contribution to the incremental stiffness
energy now follows immediately in consequence of the theoretical development of
Section 3, i.e.

Tc= XL{} {b}T {} , [c, I[IT] {a}

[ONT, ,N] {b} (108)

[BN.T,[fANI T,{}

The three matrices [AN] , [ ] ,d [CN] are given exlicit definition in Fig-
ure 14. Particularization of this general form to the individual energy contributions
of Equations 102 and 103 is given in Figure 15 by specification of X and the quantities:

{ al = [Aaj { a} (109)

{ b}j = [A b] {oblj (110)

{ c}. = [Ac] {$Rclj (111)

The knowledge of these quantities enables the execution of a nonconformable sum of
the individual contributions to obtain the total incremental stiffness energy in terms
of the field coordinates, i.Le,

;D = ;;. N{/} (112)
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Figure 14. Incremental Stiffness Submatrices [AN] , {BN} and {CN}

The matrix I N I is the objective element incremental stiffness matrix referenced
to field coordinate displacement degrees-of-freedom. Transformation to the selected
gridpoint displacement degrees-of-freedom is accomplished via the previously de-
rived transformation;

1.8 = [r138q] {Bq} 13

Since the elements of the incremental stiffness are functions of subsets of the{j}

via the {a }, {b}j, and Ic 1j, they are indirectly functions of the independent prim-

ary displacement variables {A}.I Thus, expression of the incremental stiffness for

a stability analysis required the availability of the displacement results from a prior
analysis.

The incremental stiffness matrix for the frame element has been stated
here in accord with the standard form outlined in Section 3. Proper interpretation is
very important and, for this reason, a typical term for the frame element is resur-
rected here and examined in detail.
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Figure 15. Incremental Stiffness Parameters

Beginning from Equation 102, this energy contribution is rewritten as

(J =f 1 EA u v v' dx (114)

to obtain the appearance of the more general form in which all these functions are

different. This form is rewritten, in turn as

cZ J 4EA ("' v v' + u ' v" + u v v'(115
cl J x + xxx xxx (115)

The over-symbol - requires definition. Matrices are the natural notation of multi-

dimensional linear algebra. As a consequence they have become the language of the

finite element analysis technology. Recognizing this, the subject nonlinear formula-

tion is cast into matrix form to facilitate interpretation and implementation. The

over-symbol - serves to idcntify variables which will be imbedded in coefficient
matrices to accommodate matrix notation. With this explanation, Equation 115 is

rewritten again as
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0 , ,v ul=', 2 x, v vx  0 x , ux

Vt 0 1 - V I
x x x

v u x J (116)

At this point the assumed mode shapes are introduced into the vectors in
which ux, Vx, and v'x correspond to the f, g and h of Equations 105, 106 and 107, i.e.

Sv = , { ax }x b
S=}(117)

x ,I xx {c

Substitution of these mode shape quantities into the energy functional
yields

22 2
x x x x a

22

"1 1 ,x ,x

V, X X X x
2
,2 

3  J b {
Vx x ,X X0

V 2 x 3

IL

2 234

21 2 3 4
L x J ,x ,x (118)
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The integrated form of this relation corresponds to the symbolic form
exhibited in Equation 108. The remaining step is to bring in the field coordinate dis-
placement degrees-of-freedom. The transformation relation required takes the form

j P

1

b , ,R, -

b2 )5

b 3  3= )9 ,
b. , 1 ,

bl

b3. , , 3 (119)

This relation is equivalent to the symbolic relations of Equations 109, 110 and 111
taken collectively. Introduction of this relation into Equation 118 yields the objective
incremental stiffness contribution. These individual contributions are accumulated
to obtain the total as expressed in Equation 112. Beyond this point, the symbolic
statement of the analysis process requires no further clarification.

4. Stress Matrix

Stresses for a frame discrete element are represented by the end point
forces. These "stress" quantities are exhibited with respect to element axes. Calcula-
tion is based upon the relation

{o} q (120)

where I Cr }T [F 1l, Fy1 , F 1l, M 1I, My,. M 1l, F,~ Fy , F z2 , My, Mj

(121)

[s]_- [r88 ]T [iK] [rq] (122)

Expression of this stress matrix completes the specification of the matrices which
comprise the frame discrete element representation.

55



C. EVALUATION

As an illustration of the use of the frame element in a structural evaluation,

consider the following problem.

A three-member portal frame is shown in Figure 16, along with the loading,
pertinent dimensions and material properties. The two idealizations used in this
analysis are shown in Figure 17. A comparison solution is given in Reference 29
for this portal frame. Table I presents the results obtained from this analysis and
the reference solution. It should be noted that the alternate finite element solution
neglects axial deformation, thus producing a slightly stiffer structure.

1
AA

Section A-A

i 7M 77)7M /r

E = 107 psi

= 0.30

A 18 in.-

10 = 13.5 in. 4

G 3.846 x 106 psi

P = 550 lb

Figure 16. Three Member Portal Frame Description
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Figure 17. Idealizations, Three Member Portal Frame
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TABLE I

COMPARISON SOLUTIONS FOR THREE MEMBER PORTAL FRAME

Deflection, 1 (inches) ..... Rotation, 8, x 10 - 3

Node MAGIC MAGIC MAGIC MAGIC
Point (3 Elem) (6 Elem) Reference (3 Elem) (6 Elem) Reference

2 0.01143 -0.7564

3 0.02691 0.02691 0.02682 -0.2382 -0.,J82 -0.3350

4 0.02687 -0.1648

5 0.02684 0.02684 0.02682 -0.3376 -0.3367 -0.3350

6 0.01140 -0.7544
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5. QUADRILATERAL SHEAR PANEL ELEMENT

A. INTRODUCTION

A quadrilateral shear panel is incorporated in the discrete element library of
the MAGIC System. This element, shown in Figure 18, is suitable for the represen-
tation of thin membranes which carry load primarily by diagonal tension. The direct
load carrying capacity of such membranes is delegated to surrounding axial force
members available via the frame element of Section 4.

The general quadrilateral shape of the shear panel is defined by the coordinates
of the four corner points. The geometric definition is completed by specification of
an effective uniform thickness.

In contrast to the usual approach, the principle of complementary energy is
employed to derive the representation for the quadrilateral shear panel. Using this
approach, stress rather than displacement distributions are assumed. In particular,
a constant shear stress state is employed.

Deformation behavior of the shear panel is described by the displacements of
its four corner gridpoints. Description of stress behavior is accepted as the con-
stant shear stress value.

The complete element representation for the quadrilateral shear panel is taken
to consist of a stiffness matrix and a stress matrix. These matrices are employed
in combination with axial force members in an evaluative application to a deep canti-
levered beam in this section. Additional illustrative applications are included in
Section 10.

B. FORMULATION

The element representation for the quadrilateral shear panel is derived using
the principle of complementary energy. Only shearing energy is considered. The
governing energy functional is given by

(Dc fv _ (T, ) 2dv -Pg j{Sg} (123)
= 21 X2

The matrices {Pg} andog} are available from observation of Figure 18, i.e.

{ pg}T = [ ~'gx1' Fgyi F gx2 ' Fgy2 Fgx3 F gy3 F F gy 4 J (124)

1. f 0 g r f ugtvg~ 3 v g3 ,ug 4 ' v g4 J (125)
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The shear stress function r XY is chosen as the statically independent force
quantity and is assumed constant over the element, i.e.

T ( x, y) T = Constant. (126)

Recourse is made to Figure 18 to obtain expression for the complete force
set in terms of the constant shear stress. The statically equivalent corner grid-
point force set is readily written as

I{Pg} {r~ } Ir (127)

where

r T 1 t(x 4 -x 2 ) y 4  tx3 ty3  t* 4 -x2) + ty42'r-- - 2 ' 2
2 2 2 22

2 (128)

tx 3  ty3

Substitution of Equations 126 and 127 into the potential energy functional
yields

d f 2 { -r} T{g}

v 2 G (129)

At this point an algebraic expression for the total complementary energy follows
by integration, i.e.

T
= At r 2  T {F} {g} (130)

2G

The variation of Equation 129 yields the basic force-deformation relation for
the shear panel in the form

T

71 i-){ } fg }8 (131)

The Introduction of Equation 127 now yields the desired form of the stiff-
ness matrix for the quadrilateral shear panel referenced to the (xg, yg) coordi-
nate axis. This result is

{Pg} [KgIS (132)
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where
T

[Kg]{~{ (133)

Statement of the element matrices for the quadrilateral shear panel is com-
pleted by introduction of coordinate axis transformations. Writing the direction
cosine transformation between element and global axis as

{Xg, = Tgs] I{x} (134)

leads immediately to the force and displacement transformations, i.e.

{Bg} [rgs ] a {8 1 (135)

{Pg}I [r gjs } (136)

The transformation matrix [F g] is given in Figure 19. The transformation
to gridpoint coordinate axes forlows similarly, except that a distinct direction
cosine transformation is associated with each gridpoint, i.e.

[sjTsq ]j f{x.qj (137)

The resultant displacement and force transformations take the form

{8. 1= [r 5q] 18q}1 (138)

I{ s}I = I rs ] {Pq} (139)

The matrix Ir sqj is defined In Figure 20.

The collective influence of the foregoing transformation yields

f PI [K] {Bq (140)

wher [K] [r.,] T [rg.] [ g ] [rgs] [Fq ]
(141)
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Figure 20. Displacement Coordinate Transformation [rsq]
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Equation 139 is the objective form of the stiffness relation for the quadri-
lateral shear panel. Once the displacements have been calculated, the single stress
quantity r is available from a form of Equation 130 extended to accommodate the
transformation relations, i.e.

= sf{q (142)

where

[At = (s)[J [r 5 I["q 1(143)
This completes the statement of the element matrix representation for the

quadrilateral shear panel.

C. EVALUATION

As an illustration of the use of the quadrilateral shear panel element in a
structural evaluation consider the following problem.

A cantilever beam subjected to a uniform load of 2 x 10-2 kg per mm is shown
in Figure 21 along with its pertinent dimensions and material properties. The three
idealizations employed in the finite element analysis are shown in Figure 22. Axial
force members are used along with the subject shear panels for idealization of this
structure.

A solution to this problem was obtained in Reference 47 utilizing "equilibrium
spar elements" for the web and "bar" elements for the caps. Solutions were also
obtained utilizing spar elements with linear as well as quadratic displacement fields.

Figure 23 displays the tip and midpoint deflections for the three idealizations
used in this analysis along with the displacements obtained in Reference 47. Figure
24 shows the bending moment distribution for the two element case and Figure 25
shows the moment dis Abution for the four and eight element cases. It is to be noted
that the agreement of the bending moment distributions with the reference solutions
are excellent.
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6. TRIANGULAR CROSS SECTION RING ELEMENT

A. INTRODUCTION

A triangular cross section ring element is incorporated in the MAGIC System.
This element, shown in Figure 26, is suitable for the idealization of thick walled
axisymmetric structures of arbitrary shape. A detailed development of the subject
element representation is presented in Reference 30.

The ring element representation is written with respect to cylindrical coor-
dinate axes. Its configuration is completely defined by specifying the radial and
axial coordinates of the three corner points. Anisotropy is provided for in the
physical and mechanical properties of the ring element. Orientation of orthotropic
material axes in the r, z plane is data specified.

Linear polynomial functions are employed for displacement mode shapes
leading to constant element strain and stress states. Interelement continuity is
maintained among triangular cross section ring elements without explicit consider-
ation in virtue of the straight edge displacement behavior permitted by the linear
polynomial mode shapes employed. The constant strain and stress states within the
element lead to a r( iuirement for relatively fine idealization gridworks when de-
tailed stress behavior is desired. Relatively coarse idealization gridworks are
suitable for the prediction of stiffness, displacement states and vibration character-
istics.

Distributed loading is assumed to exist against one side of the ring element
which provides for convenient consideration of pressure loading. A prestrain load
vector is included in the ring element representation to accommodate directly pre-
strain and indirectly prestress and thermal loading as well.

Deformation behavior of the triangular cross section ring element is taken to
be described by the six displacement degrees-of-freedom associated with the grid-
points which the element connects. The stress behavior induced in the element
includes radial, circumferential, axial and shear stress values.

Utilization of the triangular cross section ring element is restricted to hollow
structures. Generally, simulation of a solid configuration can be achieved simply by
leaving a relatively small hollow cylinder.

The discrete element technique was first applied to the analysis of axisymmet-
rical solids by Clough and Rashid (171. This initial formulation of the triangular
cross section ring was extended by Wilson in Reference 31 to include nonaxisymmet-
ric as well as axisymmetric loading. The subject development follows Wilson's
approach, but is restricted to the axisymmetric case. The formulation is extended
beyond that of Wilson, however, in several ways. One of these generalizations is
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that the integration over the volume of the ring is effected analytically under normal

circumstances. Recourse is had to the approximate integration technique when the
radial dimension of the ring is small relative to the ring diameter.

The complete representation for the triangular cross section ring is taken
herein to include matrices for stiffness, pressure load, prestrain load, thermal load
and stress.

B. FORMULATION

1. Displacement Functions

Linear polynomial mode shapes are taken to approximate the radial "ull
and axial "w" displacement functions over the triangular cross section ring element.
With respect to the global coordinate axes shown in Figure 26, these mode shapes
are written as

fu } [B( ]13' (144)

where

{u} T [u (),w( )J(145)
[B (]I [ItxY: :9xyo ] (146)

and thei{} are simply the polynomial coefficients. These are referred to as the
field coordinate displacement degrees-of-freedom. Utilization of the linear assumed
modes of Equation 146 yields straight-line edge displacements and assures satis-
faction of interelement continuity requirements.

The foregoing assumed displacement functions are particularized to
corner point values and the resulting relationships inverted to yield a transformation
between the field coordinate displacement degrees-of-freedom 1 and gridpoint
displacement degrees-of-freedom { q } . The results are expressed collectively
as

[r.., [ I 5 {8g} (147)

where

{8 Sg}T [ug1 , wg1  u g2 w g2 ' u g3 ' Wg3J (148)

The transformation matrix [re ] is defined in Figure 27. No further displacement
coordinate transformations are required since the { 91 are suitable for assembly
of triangular cross section ring elements. gJ
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Figure 27. Displacement Coordinate Transformation i s -1
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2. Potential Energy

Linear elastic material behavior is assumed. This behavior is taken to be
governed by the relation

f. E [] {{e EE.} (149)

where

{o} 0L-tO 6  oz r J (150)

- [E r  E, z , E J 5rz

The matrix of orthotropic elastic constants [ E ] is specified in Figure 28. The

vector { E } is the initial strain state.

The element potential energy is derived as the sum of strain energy and
external work contributions. Invoking the stress-strain relation of Equation 149, the
strain energy is given by

u=f (1/2 [e] [E] {e} [e] [E] {e.}) dV (152)

In general, the material property characterization is known with reference to axes
orientated at an angle Ym with respect to the geometric axes. For this reason, it
is necessary to introduce a matrix for the transformation of stress and strain states.
The desired transformation relations are

{ ,} = [,.] {e(g,} (153)

{m)} [., {, . (g)} (154)

These stress and strain vectors may be interpreted according to Equations 150 and
151. The transformation [T4o. ] is given in Figure 29.

Invoking the transformation to convenient element axes, the strain energy

becomes

U f (1/2 [(g) j [E I{) dV (155)
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where

T

{Wi I = [TE(l T [(mn)] {ei(m)}1 (157)

The strain-displacement relations appropriate to the axisymmetric ring
element are given by

=r (158)

C = u/r (159)

f = w (160)

E = u +w (161)
rz z r

Introducing the assumed displacement function mode shapes, the strains are obtained
in terms of the field coordinate degrees-of-freedom, i.e.

e (g)>< I= [o<(j ,1 (162),
where the matrix [C ] is given in Figure 30. This relation enables statement of
a discretized potential energy function as

CD f ( 1/2 1 8j [Co() T) ] [C< f {8

T

- LJ [o> ] {) .() 1))V

- [(-psin a )u + (pcos a )w 2r dr (163)

The last term included in this energy function is the external work con-
tribution. This arises in consequence of a linearly varying pressure distribution
applied between element gridpoints 1 and 2 as shown in Figure 26. The functional
form of this loading is

p (r, z) = pI + a r - a2 z (164)

where

a - (rlz Zl r2z1) (P 9 -PI) (165)
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r1

a2 2 r 2 zl) (P 2 -Pl) (166)

Two algebraic forms are utlimately given for the pressure load vector to account for
the special case when r 1 is equal to r 2 .

The objective algebraic form of the total potential energy for the triangular

cross section ring follows via integration. It is convenient to preface statement of the

integrated form with the definition of additional symbolic notation. All integrals
arising out of Equation 163 are of the general form

f( i zj
= f r dzdr (167)ij z, r)

This symbol ij is employed to indicate the result of the integration. With this
result, the integrated form of Equation 163 is given by

P = 1/2 [.83K ]{fI-[JfJF e}- [138]{F} (168)

The matrix [K] and {Ip} ,given in Figures 31 and 32 are the objective

triangular cross section ring stiffness and pressure load matrices referenced to

field coordinate displacement degrees-of-freedom. The corresponding prestrain load

vector is stated under the assumption of a constant prestrain over the corss section as

T(m

{FE} = [C'][r"0] [E(m)]{i(m, } (169)

where the single new matrix [ C'] is given in Figure 33. It is convenient to have a
distinct load vector for prestrain due to temperature. The desired modification of

Equation 166 is

{ (m ) }= AT{a(m)} (170)

where { a (m) I is the vector of thermal expansion coefficients. It follows that the

triangular cross section ring thermal load vector, referenced to field coordinate dis-
placement degrees-of-freedom, is given by

FET} AT [C] T r] [E(m)] {(n (171)
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-k 1 2 [(p ' a2 in1 2 ) 81 + a 1 + a2 k1 2 ) 82]

-k12 [(PI' 2 ' 1 2 ) 82+(a,.a 2 k 1 2) 83]

f~F}I= 21  -k 1 2 [ (pl+ 2m' 1 2)m12 81 ' pk 12 m12 ( 1 2 a2 k1 2))8 2 +(a 1 +a 2 k 12 ) k1 2 83]

( P +a m 2 8 1 +(a +a 1) (1 2k 1 2 ) 82
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Figure 32. Pressure Load Vector {p}
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3. Stress Matrices

The element stress matrices stem directly from the stress-strain relation
of Equation 149. The strains are eliminated from this relation using Equation 162 to
obtain a set of stress-displacement relations, i.e.

{~} [T2.(] T[E(m)1 { I C~ [C ()] {p - {*,(m)} } (172)

Parttularization of the matrix [( )] to the centroidal position (xc, y.) on the
element as shown in Figure 34 yields the objective stress matrices for the triangular
cross section ring. Symbolically,

{0.}= [-']{/3 A- {, (173)

where

[S] [Te<]T [(m)] [T".] [C (xc Y] (174)

J }= [T,] T [E(m)] {.(m)l (175)

This completes specification of the element representation for the
triangular cross section ring element.

C. EVALUATION

As an illustration of the use of the triangular cross section ring element in a

structural evaluation, consider the following problem.

A thick walled circular disk in the plane stress subjected to a radially varying

thermal load of the form T = To (1 - r 2 ) is shown in Figure 35 along with the load-
ing, material properties and pertinent dimensions. The three idealizations used in
the finite element analysis are shown in Figure 36. Reference 32 provides an
alternative analytical solution for this problem which is based on the theory of
elasticity. Figure 37 shows the results for radial and circumferential stresses along
with radial displacements for the discrete element idealization shown in Figure 36 (c).
Note that the solid lines represent the alternate analytical solution.
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7. TOROIDAL THIN SHELL RING ELEMENT

A. INTRODUCTION

A toroidal thin shell ring element is incorporated in the MAGIC System. This
element, shown in Figure 38, is suitable for the idealization of axisymmetric thin
shells of arbitrary profile. The element configuration considered is that of an arb-
itrary section of revolution of a right circular toroidal shell. Perforn,ance of this
toroidal ring element is outstanding relative to the well known conic ring element.

The first thin shell discrete element model put forward was the singly c .. d
ring discrete element formed by a section of revolution of a thin conical shell
This element has since been the subject of numerous research investigations and re-
ports (18, 34, 35). The reasons for this widespread attention are twofold. Firstly,
there exists a broad and important class of axisymmetric thin shell structures with
problematical axial variations which are amenable to formulation and solution as
assemblies of ring elements. Secondly, behavior predictions based on the polygonal
idealization afforded by the conic ring have proved, in some cases, to be meaningless.

Several papers have attempted to lay down guidelines for avoiding the ideali-
zation pitfalls (36, 37) and for interpreting the predicted behavior (38). These papers
identify the primary sources of difficulty in using the conic ring with the discontinu-
ities in slope and stress which occur along element circumferential interface lines.
Having made this identification, it follows that the best response is an element model
which eliminates the troublesome discontinuities.

Several discrete element models have been reported which seek to eliminate
idealization discontinuities by incorporating curvature of the meridian in the element

model (39, 40). These doubly curved elements have virtually eliminated the erratic
stress predictions characteristic of the conic ring. The subject doubly curved ring
element representation differs from these primarily in the utilization of generalized
displacement functions which yield high precision stress predictions. This element
representation is developed in detail in Reference 41.

The toroidal thin shell ring discrete element is formulated with respect to a
toroidal coordinate system. In general, the cross section profile of the toroidal seg-
ment is circular. Specialization to conic and cylindrical shapes is automatically pro-
vided for within the MAGIC System.

The geometric shape of the element is specified by the coordinates and surface
orientation at its edge grid ring. The thickness of the element is assumed constant.
The subject element is written to accomodate orthotronic materials. Axes of ortho-
tropy are assumed to coincide with the principal axes of the element.
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The mathematical model for the toroidal ring embodies a coupled representation
of membrane and flexure behavior. A state of plane stress is assumed in formulating
the element representation. Discretization is affected by tb,' construction of polynom-
ial displacement mode shapes. An osculatory axisymmetric polynomial interpolation
function is taken to represent membrane displacement within the element. Trans-
verse displacement is represented by a hyperosculatory interpolation function. Dis-
placement behavior is taken to bc described by the ten displacement degrees-of-freedom
which are obtained from the polynomial mode shapes at the two grid rings connected
by the element. These degrees-of-freedom provide a relatively high order of vari-
ation in stress and strain within the element. For this reason, stress resultants are
exibited at the two boundary rings as well as at the midpoint of the element.

The toroidal axes provide a suitable set of coordinate axes for assembly of
smoothly connected toroidal ring elements. If idealization discontinuities are present
at element junctures, then it is necessary to reference the element represent:-,tion to
a set of global coordinates. Global coordinates may be used optionally when the tor-
oidal ring elements are smoothly interconnected. The toroidal ring element is readily
specialized to yield end enclosure elements. This is a particularly useful feature
which was not available in the predecessor conin ring element.

The complete representation of the toroidal thin shell ring element is taken
herein to include matrices for stiffness, pressure load, thermal load and stress. The
toroidal ring element is somewhat more complex algebraically than the conic ring
element. This increment in complexity is given justification in terms of improved
accuracy with fewer elements in the set of evaluation problems included in this section.

B. FORMULATION

1. Geometric Specification

The toroidal shell parameters are obtained by reference to Figure 38. The
basic coordinate system employed is toroidal. This is a right-handed orthogonal cur-
vilinear system. The midplane of the shell is defined by the ( C , 77 ) coordinate sur-
face. The principal curvatures of the shell are aligned with the coordinate axes.
Complete characterization of the system is achieved by specification of the metric
parameters and the principai curvatures.

The definition of an element of length (ds) is

2 (d 2 2
(ds) (d + (d)77 (176)

where

d - Ad 0 < _ a( - a ) (177)
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d77 = BdP (178)

This leads immediately to the metric parameters, i. e.

A =1 (179)
[sin( al + i a)sina ]

B I a (180)

1/a

The principal curvatures are also found from Figure 38,

1 1 (181)

R a

sin( a + C/a)
p 1 (182)

P3 R B

These expressions for the general toroidal configuration readily degener-

ate to conical and cylindrical ring cases, i. e.

(a) Conical Ring A = 1 (183)

B = r, + cos a (184)

p =0 (185)

sin G

P si 1 (186)

9 B

0_ : e< [(r 2  r1 )2+(z2 z 1 )2] 1/2 (187)

(b) Cylindrical Ring

A = 1 (188)

B = r 1  (189)

P = 0 (190)

p =1 /B (191)

0 _ _ (z - z ) (192)
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This multiplicity of parameter sets increases formulative effort since

integrations must reflect the alternatives; however, an automated select feature
eliminates any impact of this multiplicity in utilization of the operationnl capability.

The foregoing sets of parameters, taken collectively, enable exact idealiza-

tion of cylindrical, conical, and piece -wise circular shells of revolution. More gen-

eral shell profiles can be realistically approximated by combinations of these elements.

2. Displacement Functions

The construction of qdmissible displacement functions is straightforward

since the functions are essentially one-dimensional. Polynominal mode shapes are
assumed. The membrane displacement is taken to be cubic in the meridianal arc

length. A quintic polynomial is qssumed for normal displacement. These assumed

modes are expressed in matrix form as

B( )]I{B( }(193)

where

{uO}= Lu,wJ (194)

[B 1)]=, 1E,: ,'e, . .,~ (195)

and the {1} are simply the polynomial coefficients or, alternatively, the field coor-

dinate displacement degrees-of-freedom. Transformation from the {} to gridpoint

displacement degrees-of-freedom } is required to enable proper interconnection

with adjacent toroidal thin shell ring elements. This transformation is effected by

imposing the following conditions on the assumed functions.

u (= u 1  u() =u9 (196)

W wW wW2(C) C 0 Wo 1  W" s (197)

C K s (199)

98 I s - CC2 (2001
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This set of conditions can be expressed collectively in matrix form as

{S} [r [i 89 {1,8 (201)

where{8 T ul, u U2  , w , w , w w , w 1(202)

Specific definition of [fp] is not included since it is the inversion of this
relation which is desired. The inverted relation is written as

{}= [r'l 8 ] { } (203)

where the Er 3]is now given explicit definition in Figure 39.

The gridpoint degrees-of-freedom { } are common to adjacent toroidal thin

shell ring elements and are, therefore, suitable for the assembly process. On some
occasions it is convenient to use degrees-of-freedom referenced to a rectangular
global set of coordinate axes. Moreover, such a system must be employed if adjacent
elements do not interconnect smoothly. This further transformation relation is given
by:

f8}= [r gs] {Ss (204)

where

{8} ~Ui 0, , 0, W1,0, u 0, w (

u2 , 0, w2 ,0, w e 2 , 0, u. 2 , 0, Wt2

and the transformation [rgs I is specified in Figure 40.

The two foregoing transformations may be collected symbolically to obtain
a single transformation between the field coordinate f.1and gridpoint { } dis-
placement degrees-of-freedom.

I1} [ 1  8 s} (206)
where

[ [r ]s] (207)

This completes the explicit statement of the displacement functional employed for
the toroidal thin Thell ring discrete element.
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3. Potential Energy

Linear elastic material behavior is assumed. In accordance with this
assumption, a generalized Hooke's law is employed, i.e.

{o ( )I--[ E] {{eA)I-{fei (}} (208)

where

t cr ([ 0 -c -(2 0 9 )T

f fEI[C 6J8 (210)

The term { is prestrain state and can be interpreted in accord with Equation 210.

In virtue of the assumption of linear material behavior, the strain energy

can be written as

U= f (,1/2 [fJ [ E] {} - [eJ [E]{E.}) d , (212)

The next step in proceeding toward the potential energy functional is to ex-
press the strains in terms of displacements. These equations, recorded from Reference
42, are written

I+ ZA,} 
(213)

where { Ta}T= [ u 1v ] u+X wI (214)

1 1(215)

The quantities X. arc defined as
J

(216)

2 - 1/B XB

These are given explicit definition by the element configuration according to Equations
179 through 192.
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Based on these strain-displacement relations, the total potential energy

functional is given by S

Op 0o (1/2 [ m[K] m

+ 1/2 [Af I [K ]{,, 1 (217)

- [Am] {,'}

- [Af] {,}

- 7rPw ) BdC

where [I = 2 7r [t ] (218)

[ K] = 2 [E] (219)

E2]rt [E] {i} (220)

{r =} 2T [E]{fK. 7rt (221)

This completes the statement of the potential energy functional for the toroi-

dal thin shell ring element. The next step in proceeding toward the objective element
representation is to effect the discretization of the functional. Invoking the strain-
displacement relations of Equation 214 and 215 against the assumed mode shapes of
Equation 193 accomplishes the discretization of the displacement functions. The results
may be written symbolically as

{A U} DmU]( (222)

{Af )}= [Dfi ]{j } (223)

The displacement to strain transformation matrices [Din] and [Df] are defined in

Figure 4 1.

The applied load functions also require discretization by the assumption of

mode shapes. Considering first the pressure load, a linear variation is assumed.
Translating this assumption into functional form yields
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Ss (224 )

Compressing the notation, this expression is rewritte(

P P = (0) + (t p0)Pz " s z (225)

A similar linear form is assumed to approximate the prestrain load distri-
bution. The corresponding functional form is given by

={ El E(0)} 4- z {Ki (0) 1

+ tf {e~ (s)}- {e (0)} +z (.){{jK(5)}-fKino)}} (22 i)

Notational convenience is realized by rewriting this relation as

{~} {e ()} z{.(0)} (4 e( 10)} (k {. (10)}1 (227)

A distinct prestrain vector is provided in the MAGIC System for prestrains
due to temperature. Specification of the temperature load is accepted via for tempera-
tures, i.e.,

T H - internal surface temperature at gridpoint no. I

Tl1 - external surface temperature at gridpoint no. I

T2i - internal surface temperature at gridpoint no. 2

T - external surface temperature at gridpoint no. 2

The thermal prestrain quantities follow immediately from this data. These
quantities are defined as follows:

{e (0)} = 1/2 (T i + Tlo){a} (228)

{e 10}-1/2 (Tp.+ T T Tr - {a} (229)i i 2o li 10

{K, 0 }= 1/2 (Tli - T1. -l + (230)

{ I0} i" r9  2  r.+'r)a (231)
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This completes the definition of assumed functions. Invoking these, obtain
the discretized potential energy functional, i. e.,

( -- f( 1/2 [13][Dm]T[IK [Dim] {r3D

+ 1/2[.8] [Df ]T[JK] Df]{}

L [3] Din]T•[i "] { 'e()} _ 13] [Dm] T ['K] {(l0 (232)

- 13] [Df ] [JK I - f. 1][Df ]T[] 10

-- (10)
.2r(p (0 ) + p(0 w) Bd

Integration now yields the objective potential energy form of the representa-
tion for the toroidal thin shell ring element. The symbolic result is

(pp = 1/2 [81[ {If

- [1] I-e I- [9 I-Fp 1(233)

Presentation of these matrices is prefaced by definition of additional notation in Fig-
ure 42. Then, matrices [K] , {Ft1 arid 1F_} are given explicit definition
in Figures 43, 44, and 45, respectiveiy. 'he matrix [K] is the element stiffness
matrix referenced to field coordinate displacement degrees-of-freedom { 1)9 . The

matrices {Fp} and Fe are the corresponding element pressure and prestrain
loads.

The transformation of Equat-vn 206 is introduced to reference thr element
matrices to degrees-of-freedom amenable to assembly of the elements. The result is

D 1/2 [Sq j [K] {3q} I [8J IF 1- [8. ] {F,} (234)

where

[K] [Jq K] [rpq (235)

I F')= [r ] 1 ; (236)
T

IF}= [r IIF}1 (237)
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This completes the statement of the stiffness and applied load matrices for

the toroidal thin shell ring element.

4. Stress Matrices

An element stress matrix is required to transform the solution for the pri-

mary displacement unknowns to a solution for the secondary stress resultant unknowns

as well. Stress resultants corresponding to deformations considered are available

directly from integrations of Equation 208, i. e.,

T 3 C zT 1 3rdfo- dz (238)
Z

M fu zTdz M $s dz (239)

The calculation of shear stress resultant which is associated with deformation not
considered is based upon equilibrium iequirements, i. e.,

Q X2 [M/ +M ] + (240)

The integrated form of the discretized stress-displacement relations may be written

symbolically as

{x} = [s] {}- {} (241)

where

and [ ] is given explicit definition in Figure 46. The final form of the element stress

matrix is obtained by transformation to boundary displacement degrees-of-freedom, i.e.,

[ ] [s] [r ] (2,13)

This completes specification of the matrices which comprise the toroidal

thin shell ring element representation.
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C. EVA LUATION

As an illustration of the use of the Toroidal Thin Shell Ring Element in a struc-
tural evaluation, consider the following example problem.

A thin walled circular cylinder, cantilevered at one end, is subjected to the
action of bending moments, M, and shearing forces, Q, both uniformly distributed
along the free edge of the cylinder. This cylinder is shown in Figure 47 along with
the loading, pertinent dimensions and material properties.

Five finite element idealizations shown in Figure 48 were employed in obtain-
ing results for distribution of meriodional moment in the cylinder. The results shown
in Figure 49 were obtained from the 16 element idealization shown in Figure 48 (e).
Reference 37 provides an alternate analytical solution and it is designated by the solid
line in Figure 49.
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8. MALLET QUADIULATEIRAL THIN SHELL ELEMENT

A. INTRODUCTION

A quadrilateral thin shell element is incorporated in the discrete element library
of the MAGIC System. This element, shown in Figure 50, is recommendecd for use as
the basic buIlding block for membranes, plates, and shells. Thc Ilelle triangular thin
shell elemert is a compatible companion element useful in regions of irregularity and
prominent doubie curvature. The Mallett quadrilateral thin shell element reprcsentI-
tion Is developed in detail in Reference 43.

The shape of the general quadrilateral element Is delinedl by the coordinates of
the four corner points. It is a zero curvature element.. 'he plane of the element is
determined by its first three corner point coordinates.

The subject element is a thin shell element in that both membrane and flexure
action are represented. Referenced to axes in the plane of the element, the membrane
and flexure representations are uncoupled. (Qtional generation of either or both of the
representations is controlled by the provision of associated effective thicknesses. The
distinct membrane and flexure effective thicknesses are assumed constant over the
plane of the element.

Yn~g I

()

x

Figure 30. Quadrilateral Thin Shell Element Representation
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Under normal circumstances, four corner points and four midside points partici-
pate in establishing continuous connection of the Mallett quadrilateral thih shell element
with adjacent elements. Used in this way input data volume is reduced and accuracy is
enhanced. An option is provided to suppress the midside nodes individually if associated
complexities arise in grid refinement or nonstandard connections with adjacent elements.
Invokingthis suppression option causes linear variation to be imposed on the specified
midside variables.

The Mallett thin shell element is written to accommodate anisotropy of mechani-
cal and physical material properties. Orientation of material axes is data specified.
Temperature referenced material properties, selected from the materials library, are
assumed constant over the element.

A linear generalized Hooke's Law is employed for the equations of state. Three
options are provided; conventional plane sti-ess, generalized plane stress, and restric-
ted plane strain.

The element formulation is discretized by the construction of mode shapes.
Membrane displacements within the subject element are approximated by quadratic
polynomials. Transverse displacement is represented by cubic polynomials. A linear
variation is provided for midplane and gradient variations in thermal loading. Other
element !oadings, such as pressure, are assumed constant over the element. Deforma-
tion behavior of the Mallett quadrilateral thin shell element is taken to be described
by the displacement degrees-of-freedom associated with the gridpoints which it connects.

The variation in strain within the element which is permitted by the assumed dis-
placement functions, leads to similar stress variation. Advantage is taken of this by
exhibiting predicted stress resultants at the four corners as well as at the center of the
element. Inplane and normal direct, shear, and bending stress resultants are included.
The display of stress implies a set of axes of reference. These axes are data specified.

B. FORMULATION

1. Displacement Functions

The displacement functions for the quadrilateral thin shell element are
constructed with reference to the oblique coordinate axes (xo, yo) shown in Figure 50.
The origin of this system is taken at the intersection of the diagonals of the quadrila-
teral. The orientation of these axes coincide with the diagonals. The xo -axis goes
through gridpoint number 1. The yo -axis goes through the first gridpoint in the counter-
clockwise direction which is designated as number 2.
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Polynominal mode shapes are assumed for each of the four zones shown in
Figure 50. With respect to the oblique coordinate axes these mode shapes are written
as

ui [B~c~ ,I j=1, 2, 3,4. (244)
Uo() = Bu f em} j 1, 2, 3, 4. (245)

w [B B {.8 1 ,~ jl2, 3,4. (246)

where

{f ,}IT = lm' m .2' ' m16 (247)

1&8f I T 1: f V Rf2' ... ,f6 (248)

and the mode shape matrices {Bu) , {B ] ) and {B wj)} are given in Figures
51, 52, and 53, respectively. It is apparent from these matrices that the mode shapes
employed for each zone are complete up to the order of truncation.

Elementary interpolation theory is invoked to obtain transformation to
gridpoint displacement degrees-of-freedom, i.e.

{m}= [r om)] { oml (249)

{of}= [r~o~f ] {0of} (250)

where

t om U,0 2' Uo ,o U , u , U o7 ,V 8

V ol, Vo2, Vo3 , Vo4 , Vo5, Vw, 61 , w 4Vo8 (251)

{of) 'tol' 'o2' '03' wo4' Woxl' Wox2' Wox3' Wox4'

Woyl' woy2 'Woy3' Woy4' W on5' Won6 w on7 ' W 8on (252)

and r(in) and [r(c)] are defined in Figures 54 and 55.
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The next step is to intrx.uce a transformation to gridpoint degrees-of-
freedom referenced to the element orthogonal axes (x g, yg). The transformation
relations take the form

{ Bo [r}g(m) {Bgm} (253)

{8of} Of1~~ {agf} (254)

where

{ Tg.}'' = [ t , .g.l..g2t u. g8  v, V g2 , v g 8  (255)

8gf } T = lwgl'NWg 2 ' wg3 4 ,w glwgx2' ~wgx3 gx4'

(256)

Wgy1 Wgy2$ Wgy3' W 5 W 6' wn 7'  W n8]

and the transformation relations [ro(m)] and [r M(f) are given in Figures 56
and 57. og og

At this point the optional transformations for the suppression of midpoint

displacement degree.3-of-freedom are introduced. This feature provides flexibility
in idealization and facilitates eccentric connection of elements. The transformations
take the form,

{ag} = [ros m] {() 8 } (257)

{f [r~ ~ M Bf (258)

The degrees-of-freedom {8'gm } and 18', f may be interpreted accord-

ing to Equations 255 and 256. The suppression transformations [rsup(m)] and

[ Vsup (f]are defined in Figures 58 and 59. The effect of these transformations is to

build in linear variations in place of the degrees-of-freedom suppressed.
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Figure 56. Membrane Displacement Transformation Irg
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80O 16 . . .. .. ..

Figure 37. Flexure Displacement Coordinate rransrormation JIr (]
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Figure 58. 2Membrane Displacement Coordinate Transformation []
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At this point a transformation is defined to eststblish a vectorial sign con-
vention for the rotational degrees-of-freedom associated with the four corner grid-
points. In addition, the mldside rotations, if not previously suppressed, are assigned
to be vectorially positive from the corner point with the smaller gridpoint number
toward the corner point with the larger gridpoint number. This transformation is
written symbolically as

{ = [r ] (259)

where

8f} j'gl W g2' wg,' wg4 , 8g.1' 8gx2' 8gx3' 9gx4'

9 11 6 9 6 6 20gy' gy2' gy3' gy4' On5 On6' On7' 8(20

and the transformation matrix [rsgn J) is exhibited in Figure 60.

A second set of optional transformations is introduced to enable eccentric
connection of the quadrilateral thin shell element to a surface which is a distance e
above the element. This transformation takes the form z

m"}" d] ord (261)

The degrees-of-freedom { 8 } and { 8 may be interpreted according to

Equation 255, and the transformation matrix [re I is shown in Figure 61. Note
that utilization of this transformation requires the presuppression of midpoint dis-
placement degrees-of-freedom.

Global or "system" displacement degrees-of-freedom are obtained by the
introduction of further transformations of the form:

{8 [r (m) (262)
gm Igs If ,

where

f} = s Bs] (263)
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Figure 60. Flexure Displacement Coordinate Transformation r1'gu]
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Figure 61. Eccentric Connection Transformation. [re]
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S1, [ 1, wsx j  syl' sz s2, v s2, w2 9 2' ,sy2' sz2'

V 583US6' ' VS6' s 6 n6' ' s4'

Vs7' WS7 ' 0n7 0, 0,u 8  s 8 ' 3 n8  0, 0, J (264)

The transformation matrices [rgs(m)] and [rgs(f ) ] are given in Figures

62 and 63. Assembly of the thin shell element can be referenced to these system dis-
placement degrees-of-freedom; however, it is convenient in many cases to employ

special gridpoint coordinate axes. Accordingly, a final transformation to gridpoint

displacement degrees-of-freedom is provided, i.e.

{as}= [r s] {q} (265)

where

{gT - uqi, Vq1 , Wq1 ' q xql' yql' zql'

u q2,v ,2'w 6 6 6q2 q2 q2 xq2 yq2 zq2'

u ,v ,w 6 0 6
q3' q3' q3' xq3' yq3' zq3'

q41q4'Wq4' xq4' yq4' zq4'

q5 q5' q5' nq5' 0, 0,

uq61 Vq6, wq6' nq6' 0' 0,

Uq7' vq 7 Wq7 1 anq7' 0,

Uq8' 1q8 Wq8 Inq8' 0. OJ (266)
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The matrix [r sq ] Is made up of the individual gridpoint axes direction
cosine transformations from the relations

= [T,] {xqIj (267)

positioned along the major diagonal as shown in Figure 64.

The foregoing transformations may be collected symbolically to obtain a
singie transformation between the field coordinate displacement degrees-of-freedom

S nd the final gridpoint displacement degrees-of-freedom {q }. The results
a Fe a t id lows:

{Rm}I = [r q(m)]{q} (268)

{,f } = [r q(f)] {q} (269)

where (MI

(m . [rom m) r ()g (270)
Pq 0 og sup L eJ[(f

gs

[rq (f)] = [ ro ] [ rgM ]  [r ap(f)]  [r gn (0 ]  [ r(f) ] ] fr() rsj (271)

This completes the explicit statement of the displacement functions employed for the

Mallett quadrilateral thin shell element.

2. Potential Energy

The strain energy density for a thin shell element of zero curvature isI defined as

L dU fjde]{r (2'72)

wbere

{6I 1t6 e .,J (273)

{I,-} = to- , J (274)
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Given:

C' S11S 2S 3 11 I 12 C ~ 13 IT
S 1 2 2 2 3 C y~ 4 -C 1 2 C 2 2 C 2 3 v

L 13 "23 S33j" J L itC'1 '23 33
Known:

Plane Stress W* 0
z

by definition

Plane Strain 417 0

Observe:

For both plane stress and plane strain

dU f [d edxy d z.d xy 17X -f[d d I]d [ dc x W

7xy

Specialize:

For plane Stress 2

S S S0 4S SS11 12 13 x 33 x 3

'y S12 S22 S23 0 y 14l2Y S S22 3 22

_ - 13 S 23 3 33 _
$ 33 $33

I-C 13C , C2 C323 '

Cy F 12 , C212 ' C213 10 r 1 ) C2 33 17C 33

~2
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12 22' C2 0y C12Sc 22SC3

: : : 13 C2 3 L S

L 33 33C3

-- e - - I V x x V z x x  E
1II' 12 13 EiT y "1z S 12 C 313 V32 V - y 3, V

eC iC Ij C-CC C2 3  0

22 22-- - 2 22 2 23 ( - yx

C12 C C3 YM I

13 23 33 SYMM EZ Is 23 S3 3  Gxy

Also x  a y xy

,{,) a .dy),(a +V dx), oj

Figure 64. Plane Stress/Strain Option
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Linear elastic material behavior is assumed to take place from an initial

state of Arkin {i I to a final state of stress { } and strain 3 C ,

{ 0() Em]{{ }- {ej } (275)

The matrix of elastic constants [E] is given explicit expression for the
special case of orthotropy in Figure 64. The superscript m indicates the coordinate
axes of reference.

Substitution of the assumed constituitive relation into the strain energy
density definition yields, after integration, an expression for the strain energy of
elastic deformation in terms of the strains.

dU I LC (m) [E(m) I e} - [E(m) Em) {EjM) (276)

If the material axes (in) are orientated at an angle with respect to the
chosen element geometric axes (g) a transformation must be introduced.

f f(m)}I [T ,a I {(g)} (277)
T

1 oT,}-- [.] {c')} (278)

The transformation o is defined in Figure 65. Transforming the
axes of reference of the strain energy density and the constituitive equation obtain

a dU IC(g)j I E(g)3 f (g [4(g)] {(g)}(79
and

where

[E(g)] [Teo.] T [E(m)] [TCo.] (281)
T

iiJ (g [T a] [ E(m)I ff1 ~ I [M I IE~g)I tJ(g { 1 ~ (282)
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(9)(in) " x y xy

x  + cos ++ sin y, + sinycosy
y + sin2y , + cos2y , -sinycosy

xy -2 sinycos y, +2 sinycosy, + cos 2Y- sin2 y

Figure 65. Strain Transformation [TCf,.]

The well known strain-displacement relations for a thin shell element of
zero curvature can be written as a sum of membrane { e I and flexure { K } contri-
butions.

f= {e(g)} + z {K (g ) } (283)

It is convenient to separate the membrane strain into linear and nonlinear parts.

{e ()} = {e.()} + {e w (g )} (284)

Explicit definition of the strain contributions in terms of the displacement is given by

T

{eu(g) =[ ux , v ,u +vJ (285)

(g) = Wx ' 2.w ,ww J (286)
1 -F y wx Wy

T

{K (g ) } [-Wxx , wyy -2w xy (287)

It is convenient to carry forward the separation of membrane and flexure
strains into the strain energy expression prior to introducing these strain-displace-
ment relations. In so doing it is assumed that f ei} is a linear function of the z
coordinate.

{i} {Ci}+ z {Cf } (288)
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The resulting expression for the strain energy is written as a sum of mem-
brane ) , flexure Of, and coupling ')c contributions. Including an external work
term 4Pp as well, the set of four energy contributions is written as,

A . [eu(g) [ E(g)] f,(g)} -m D e~J ~g dA (289)

0 f (.3[() E~]{() [K~g) {i}) dA (290)

c= fA (t [eu(g)J [E(g)] {ew(g)}) dA (291)

4P f ( p W~g) dA (292)

This set of energy functions is employed as the point of departure in deriving
the companion triangular thin shell element reprasentation in Section 9.

In order to realize the algebraic simplification afforded by oblique coordi-
nates axes, it is necessary to transform the displacement functions of Equations 285,
286 and 287 before substituting into the strain energy. Given the transformation relation

Xo ' s in C1 Xg
and :I [ 1 : iit {Z}.(293)

and using the chain rule for partial differentiation, the following transformation rela-
tions are derived.

f = f (294)
x xg o

f = cosa f 1 f (295)
yg sin a x0 sin a yo

f f (296)Xgx = x X
gg 00

f Cos2 1 2 cosa f (297)

ygyg x sin 0 sin 2 sina xoYo

f cosf +-- f (298)x 9 y 9 sin a ""x -iaf~
Xgyg sinG X sin oYo

134



Invoking these transformation relations, 285, obtain the strains expressed in
terms of displacement functions defined with reference to the element oblique coordinate
system:

{e )(g' [T {Au (299)

{e(w)}g = [T ] {A }w (300)

{Ka [T [' ]A } (301)

where
T

Amu} = [ u, Uv x , vy (302)

T 2

Mw} = T Wx 2  Wy , wwx y (303)

{Afw} T= [-w -w , -2w J (304)

The matrices [Tu] and [Tw] are given in Figure 66.

Introducing these strain-displacement relations obtain the energy functionals
in terms of displacements referenced to the oblique coordinate system.

D =f ( I [A ] ['k] {AIu} - m J {'m)) dxdy (305)

Of f -1 [Af J [Ifk ] {A fI- [Af]J f} ) dx dy (306)

c = f (IAmuJ [I c ] {Amw}) dxdy (307)

xI

) p w sinra)dxdy (308)

where

T

[ k] t sin a IT] [E(')] [T] (309)
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(0) u
x "y xy _(g) -

U +I , 0 , 0 , 0x

[T1 0 cos a + 1
V ' sin a sina

11
(U +V) a '+1 +0

y x sin a sina

(0)
(g) 1 2 1 2 -2w www w-2W ,

g xx'- 2Wx -yy, y X y

-W - W2 +1 , 0 , 0
'oc 2 x

[T a 1 2 cosa
Tw  -WyyWy sin2 a sin2a sin2 a

91

-2w cw wos a 0 1
xy xy sin C' sin a

Figure 66. Displacement Function Transformations

T

{ I t sina [T ] { 1.j(g)} (310)

[Ibk] t31sing [Tw]T [E(g )] [Tw] (311)

{If.} t3 sina [T ] T ffi (g )  (312)

[Ic ] = tsina [Tu ] T[E(g)] [Tw] (313)

Equations 303, 304, 305 and 306 are the desired form of the energy functional.
It should be noted that, in expressing the nonlinear coupling energy, the second order
terms in the prestrain have been assumed small relative to the corresponding first
order terms in the total potentiai energy functional.
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The next step in constructing the element representation is to effect the
discretization by introducing the previously derived mode shapes into Equations 300,
303, and 304. This results in the relations.

{A} = [D In'j'] f{Sm} (314)

{Afw }= [Df()] {.8} (315)

The matrices rDm0)] and [Dfo)] are presented in Figures 67 and 68,
respectively. The vector f A mw } is a quadratic function of the coordinates { f }
and symbolic representation is not httempted at this point.

Algebraic statement of the membrane energy contribution of Equation 305
is considered first. Examination of the component relations of Equation 314leads to
identification of a typical form for each element of the vector { A mul , i.e.

(Amu) k) [dj [cm] (k) {o am (316)

where

{ I}T = [i,x,yJ (317)

For example, focusing on the first zone (k = 1), the first element (/ = 1) is given by

,2$ RM4(318,

Explicit statement of the r cm J and { m } matrices for each of the four zones is
given in Figures 69 through 72.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ux  -0, 1, 0, 2x, y, 0, O, 0,

u 0, 0, 1, 0, x, 2y, 0, 0,

vx  0, 1, 0, 2x, y, 0, 0, 0

v , O, 01, 0, x, 2y, 0, 0y

u "0, 1, 0, 0, y, 0, 0, 2x,

u y0, 0, 1, 0, x, 2y, 0, 0,

v. 0, 1, 0, 0, y, 0, 0, 2x
x

V L0, 0, 1, 0, x, 2y, 0, 0y

u 0, 1, 0, 0, Y, 0, 0, 2x,x

[31 Uy 0, 0, 1, 0, x, 0, 2y, 0,

v 0, 1, 0, 0, y, 0, 0, 2xx

v 0, 0, 1, 0, x, 0, 2y, 0y

u 0, 1, 0, 2x, y, 0, 0, 0,
x

[ )0, 0, 1, 0, X, 0, 2 y, 0,

Vx , 0,. 1, 0,2x, y, 0, 0, 0

y 0, 0, 1, 0, x, 0, 2 y, 0

Figure 67. Membrane Displacement Derivative Matrices
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

xx 24x , 8v .

2wxv4 , , , 4 1 16y J

Wxx . .. ,2 2 ,24x S y

[.f(')] wy 8xz:24y

2Wxy 4 ,,16y, , . , , 16X

w *2 .24x ,8y

2Wxy4, . , 16y. 16

wxx , 2 , , ,2 ,. 8y. .. , ,x,

-[12,4 .. 24Y

2Wxy L 4 , , ,16x . .. 16y, , , ,

Figure 68. Flexure Displacement Derivative Matrices

(AM,) 1  rcm] = r I, , j

{ (Ie T  w 1m 'a 4 '-8m5 J

(Au 2  [c [. 1 = 1 * 2J

{ }T Im 3 -0-5 Pam ]

(A 3  [ CJ = 12 *1

{m IT: [ mlo,,m12,m,3J

(Amu) 4  r',mI r I , , 2 J
a"m r I ami,,"o, 3"nT] 4J

Figure CO. Zone I Membrane miffres Parametrs
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The general form identified with the elenients of the vector { A mu } leads

naturally to a general form for the associated energy contributions. Firstly, the mem-
brane energy is expressed in indicial notation.

4 4 4
(k)

OX (Om) (319)
k=1 j=l i _ 1

where

)I ( ) (k)

zone k

- (Ie)(Amu)i(k)) dxdy (320'

The general contributing energy form now follows directly by introducing

the general form for the elements defined in Equation 316, i.e.

(k) (k) _(k) (k) (k) (k)

O~M) ~(mk) ij [Gm~iJ rm~iI [k] [0m]J {'m}

(k) (k) (k) (321)

(Im e)jI a mJ. [c raI I {CE}

where

[C = f {d} [djdxdy (322)

zone k

{C.} fzone k d Idx dy (323)

Presentation of these matrices is prefaced by definition of notation in

Figure 73. Then, [ Ck] and C.are given in Figure 74. The knowledge of these mat-

rices together with that of the [emi and {tam} matrices specified in Figures 69 through

72 enables explicit algebraic expression of each of the (0 ),). These Individual energy

contributions are summed to obtain the objective algebraicmelxression for the total inem-

brane potential energy, I. e.

[m tM ] {JmI - [.m] Ff} (324)
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(k)88 8
00 ' 10 ' 01

ICk ()10 20 ' 11

01 , 11 , 02

[cEc(k) [ 0 , 01 (k)

Figure 74. Stiffness Submatrices

As disclosed by the notation employed, [ Km] and { Fe} are the membrane stiffness
and prestrain matrices referenced to field coordinate displacement degrees-of-free-
dom { 8 } . Explicit statement of these matrices is redundant since they are simply

the assembled results of explicitly specified contributions.

It is convenient to have separate load vectors for prestrains due to temper-
ature. The desired modification is available immediately from Equation 310.

{04 =AT t sin a [Tu] [T, 0. ] [E(m) ] {a(m)} (325)

The objective algebraic statement of the flexural potential energy follows
in analogy with the development for the membrane potential energy. Examination of
the component relations of Equation 315 leads to identification of a typical form for
each element of the vector{Af} ,i.e.

(k) (k) (k)
Af} >  = IdJ [cfJe {JfJ (326)

For example, focusing on the first zone (k = 1), the first element (.e= 1) is given by

A f) -W 'x 1 , 2 94

-24, Rf7 ] (327)

Ei lcit e ent ol the r Cf ad If matrice for each of the four

zones is given in Figures 75 through 78.
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(Af), CfJ 2 ,-2 24 , 8]

{a}fI = [.8f4 ,1 '0 8 J a'

(Af )2 1 Cf] = 1-2 , 8 , 24J

~hf)3 a} [1f6 '1 f9 fl1~~

f)3 [CfJ = 4 .6 ,16

Figure 75. Zone 1 Flexure Stiffness Parameters

(f )1 : [Cf j =[ 2, 24, 8j

{f} f j f!4' '9f15' 13f16j

(A 0 2 :IC f] = 2, 8, 24]

( 0f3 :IC fJ = [ 4, 16, 16J

{o}y ['8f5' -8fl' 'e9.1

Figure 76. Zone 2 Flexure Stiffness Parameters
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(f) I [] [2 ,24 ,8

a {f[}T= [o 14 f I.' ,Gf16

"[Co ] = [2 , 24]

{ [,r} = [4 16 , 16 j

{ f} [05 RM f1' f12J

Figure 77. Zone 3 Flexure Stiffness Parameters

(,Y ), [ICrf] [2 24 , 8

(f) 2  [Cr] = 2 , 8 ,24 J

(Af) [cfj [4 ,16 ,16]

T
Icr a f['sf5 ,'Of8 , If12]

Figure 78. Zone 4 Plexure Stiffness Parameters
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The general form identified with the elements of the vector {A } leads
to a general form for the associated energy contributions. As before, the energy
function is expressed in indicial notation as

4 3 3
. (k)

ZD Z Z( ) (328)
¢f = X 2: % ). f3.

k=l j=1 j=1 1J

where

(k) (k) (k)

(f)ij Jzone k ( 2 'fk) (jAf) (Af) (329)

The general contributing energy form now follows directly by introducing the
general form for the elements { } defined in Equation 326, i.e.

k 1) (k) (k) (k) (k)

0 ~ ~ ~ f)) 'f C k I)f f
- (If). [fJ. [cfJ. {C} (330)

Particularization of this general form to the individual [ cf J and {af }
and summation yields the objective algebraic expression for the total flexural poten-
tial energy, i.e.

Of~ = 2~.[~][s {~ ~j{E (331)

As disclosod by the notation employed, [ f ] and {Fe are the flexure stiffness
and prestrain matrices referenced to field coordinate displacement degrees-of-free-
dom { . Explicit statement of these matrices is omitted since they are simply the
assenmbled results of explicitly specified contributions.

As in the case of the membrane prestrain load vector, the flexure prestrain
load vector is particularized to thermal loading. The desired modification follows
immediately from Equation 309, i.e.

S=,Tf 3 2 TT [' ] [E(m)] {a(m)} (332)
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Work equivalent gridpoint forces are provided for the case of a transverse
load uniformly distributed over the quadrilateral thin shell element. The external work
of this loading is defined by

= xv Pz w sin a dx dy (333)

The introduction of the assumed displacement modes into this expression yields
4

k foekpz sin a [flfJ {B}(kdx dy (334)k = 1 one k

Substitution from Equation 246 and integration then yield.3 an algebraic expression for
the external work, i.e.

O4=) e [~ f F PI (335)

The matrix {Fp J , referred to as the pressure load matrix referenced to field
coordinate displacement degrees-of-freedom, is given in Figure 79.

3. Stress Matrices

The stress resultants for a thin shell of zero curvature are defined in the
notation of Figure 80 as follows:

x = a-c x  = z N xY dz (336)

M x=f z c dz M =4 f z xy dz f z xr dz (337)

x x y

-QxJ z ax J +( y) dz (338)f;-z ax,) +z ay x
Q*z (+ dz (339)
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It was tacitly assumed in defining the stress resultants that nor:near mem-
brane flexure coupling contributions to the stress resultants are small relative to first
order terms. This assumption is carried forward in writing the stress resultants in
terms of the strains

{Nf(g)} = t[EI)] [T] {Anu( ° )m -t {m(g)+ t { o(g)} (340)
t3

M()} [E(g )] K(g) L (g)} L_ { fo (g )} (341)3M~) 3 {f

{Qf} = t [Q1] [E(g )] K +-!-[G2] [E()] { K(g) (342)

GI] = 0 0 , [G2] = 0 1 (343)

The stress resultants are expressed with reference to dispiacement functions
defined in the oblique coordinate system of the element by substituting from Equations
299, 300, and 301.
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{Nf(g) ;t [E>] [T( ] {Amw(o)} - {f (g)}+ t I MO (g)} (344)

335

{M(~} 4 [ Tw ] {Afw<°})- 3 { d(')+L{'

{Qf1} -w [1] [E (,] [T Af}(345)0

-. [G2] [Eg)] [T] {Cos{8 A(0)}
0

sina dy 0fw (346)

Introducing the displacement mode shapes assumed over the four zones of
the element, the stress resultants can be written collectively as

"(g)SNfN

Nf SNAN

M g f () SM  -(347)

(g)

f S

where

))} t [E( [) Df(J(

3

S :M 12 [ )Tw] D,] [rf.] (349

(S< =-L, [GI] [E.,,,] [Tw] [k a D> ,] [rf.]
0

1 [-- [-()] [r ] (350)
sin ay 0

{N} = (t{ mtj() (351)

t3

{ AM1 - { if (g)} (352)
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C. EVALUATION

1. Membrane Stress Analysis

The first illustration which uses the quadrilateral thin shell element in a
structural evaluation will be the following. Consider a thin square isotropic
plate loaded with a self equilibrating parabolic membrane load as shown in Figure 81.
The material properties and pertinent geometric data are also shown in the figure.

The idealizations used for the finite element analyses are shown in Figure 82.
Three different grid sizes were employed in this evaluation. One element, four element,
and 16 element solutions were obtained in order to evaluate convergence characteristics.
Due to conditions of symmetry it should be noted that only one quadrant of the plate was
analyzed. For the finite element idealizations employed in this evaluation, the midside
nodes which were loaded by the parabolic load were suppressed. This suppression
invokes a linear edge displacement under the load.

The results obtained from this set of convergence studies are presented in
Figures 83 and 84. Figure 83 is a plot of the membrane displacement, uq, at the middle
of the plate ts edge versus degrees-of-freedom employed inthe analyses. The reference
solution (Reference 44) is designated by the solid line. Figure 84 presents a curve of
the membrane displacement, ux, and stress resultant, Nx, versus the edge span of the
plate for the idealization siown in Figure 82 (16 element solution).

A

32 in.Analyzed

t .. 1in.

E =30 x 106 lb/in. 2  .

Figure 81. Parabolically Loaded Membrane
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Again it should be noted that the reference solution is designated by the
solid lines and no discernible difference between solutions can be detected.

2. Membrane Gridwork Influences

The second illustration which utilizes the quadrilateral thin shell element
in a structural evaluation will be the following. Again, consider a thin
square isotropic plate loaded with a self equilibrating parabolic membrane load as
shown in Figure 81. This illustration will involve the effect that the shape of the
elements used in the structural idealization has on the determination of the center
edge displacement of the membrane.

The six idealizations used for the shape study are shown in Figure 85.
It should be noted that due to symmetry only one quadrant of the plate was analyzed.
The midside nodes which were loaded by the parabolic membrane load were suppressed
in this solution.

The results obtained from the subject shape studies are shown in Figure 86.
These solutions indicate that the displacement values, uq, obtained for the middle of
the plate's edge, are fairly insensitive to the shape of the element for this -lass of
problem.

3. Plate Stress Analysis

The third illustration which utilizes the quadrilateral thin shell element in
a structural evaluation will be the following. A simply supported isotropic square plate
with a uniform normal pressure load of one psi is shown in Figure 87 along with its
material properties and pertinent dimensions.

The idealizations used for the finite element analyses are shown in Figure
82. Note that no node points are suppressed in this analysis. Three different grid
sizes were employed in this evaluation. One element, four element and 16 element solu-
tions were obtained in order to evaluate convergence characteristics. Due to condi-
tions of symmetry only one quadrant of the plate was analyzed.

Figure 88 is a plot of the transverse displacement at the center of the
plate versus degrees-of-freedom employed in the analyses. The reference solution
(Reference 45) is designated by the solid line. Figure 89 presents a curve of the
transverse displacement, Wx, and bending moment, Mx, versus the center span of the
plate for the idealization shown in Figure 82 (c) (16 element solution). Again, it should be
noted that the reference solution is designated by the solid lines and no discernible
difference between solutions can be detected.

4. Plate Gridwork Influences

The fourth illustration which utilizes the quadrilateral thin shell element in
a structural evaluation will be the following. A simply supported isotropic plate with a
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Plate Edges are Simply Supported

A

Iz
,,T T ,/
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t = 0.1in.

E = 30 x 106 lb/in.2

V = 0.3

Pz = I lb/in.
2

Figure 87. Simply Supported Square Plate with
Uniform Normal Load
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a uniform normal pressure load of one psi is shown in Figure 87 along with its
material properties and pertinent dimensions.

This illustration will involve the effect that the shape of the elements used
in the structural idealization has on the determination of the maximum displacement
of the plate.

The six idealizations used for the shape study are shown in Figure 85.
Due to conditions of symmetry only one quadrant of the plate was analyzed.

The results obtained from the subject shape studies are shown in Figure 90.
These solutions indicate that the determination of the platets center transverse
displacement is fairly insensitive to the shape of the element for this class of problem.
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9. IEILLE TRIANGULAR THIN SIIEIL ELEMENT

A. INTIIOICTION

A triangular thin shell element is incorporated in the discrete element library

ef the MAGIC System. This element. illustrated in Figure 91. is recommended for

use a the basic building block for most doubly curved shells. Additionally. it is

useful in combination with the Mallett quadrilateril thin shell element for dealing

with Irregular geometries of all membrane. plate. and shell structures. The Ilelle

tri:angular thin shell element representation is develotx.-d in detail in Reference 46.

V
"'C

( 2
(x.x2 yI) L

vt I{ . "v

6 ((xj x ))

.., .

X

Figure 91. Triangular *rhin Shell Element R.presentation
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The shape of the general triangular element is defined by the coordinates of the
three corner points. It is a zero curvature element. The plane of the element is
determined by the three corner point coordinates.

The subject element is a thin shell element in that both membrane and flexure
action are represented. Referenced to axes in the plane of the element, the membrane
and flexure representations are uncoupled. Optional generation of either or both of
the representations is controlled by the provision of associated effective thicknesses.
The distinct membrane and flexure effective thicknesses are assumed constant over
the plane of the element.

Under normal circumstances, three corner points and three midside points
participate in establishing continuous connection of the Helle triangular thin shell
element with adjacent elements. Used in this way input data volume is reduced and
accuracy is enhanced. An option is provided to suppress the midside nodes indi-
vidually if associated complexities arise in grid refinement or nonstandard con-
nections with adjacent elements. Invoking this suppression option causes linear
variation to be imposed on the specified midside variables.

The Helle thin shell element is written to accommodate anisotropy of mechani-
cal and physical material properties. Orientation of material axes is data specified.
Temperature referenced material properties, selected from the Materials Library,
are assumed constant over the element.

A linear generalized Hooke's Law is employed for the equations of state.
Three options are provided; namely, conventional plane stress, corrected plane

stress, and restricted plane strain.

The element formulation is discretized by the construction of mode shapes.
Membrane displacements within the subject element are approximated by quadratic
polynomials. Transverse displacement is represented by cubic polynomials. A
linear variation is provided for midplane and gradient variations in thermal loading.
Other element loadings such as pressure are assumed constant over the element.

Deformation behavior of the Helle triangular thin shell element is taken to be
described by the displacement degrees-of-freedom associated with the gridpoints
which it connects.

The linear variation in strain within the element which is permitted by the
assumed displacement functions leads to similar stress variation. Advantage is
taken of this by exhibiting predicted stress resultants at the three corners as well
as at the center of the element. Inplane and normal; direct, shear, and bending
stress resultants are included. The display of stresses implies a set of axes of
reference. These axes are data specified.
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B. FORMULATION

1. Displacement Functions

The displacement functions for the triangular thin shell element are con-

structed with reference to the coordinate system (Xg, yg) shown in Figure 91. The

origin of this system is located at the centroid of the triangle. The orientation of

the Xg axis is defined by corner gridpoint number 1. The yg axis of this right-

handed coordinate system is taken counterclockwise from the Xg axis in the plane

of the element.

Polynomial mode shapes are employed to represent the displacement

functions over the element. These mode shapes, for the membrane displacements,

take the form

u= [B u j{1, m }1 (353)

where v = {v8m } (354)

1{0m I [10ml Rm2' ... I1m12 ](355)
The mode shape matrices [Bu J and [Bv] are exhibited in Figure 92. It should

be noted that both of these represent complete quadratic polynominals.

The transverse displacement function is approximated by distinct polynomials

over each of the three zones of the triangular element identified in Figure 91. The

basic cubic polynomials may be written symbolically as

w'J) = [ Bw ] {(J)} j= 1, 2, 3. (356)

where the mode shape matrix [Bw]is given in Figure 92 and the Iy (J)I are simply

the undetermined coefficients.

Interzone continuity requirements impose interdependencies among these

undetermined coefficients, yielding

PrJ) [ a p)] {-8f} (357)

The resulting admissible displacement functions are given by

{w'i)} [B]j [r7'(i)] {j~f} (358)

where

{1f} IT = [Ief1 ' Rf2 )9~f12 J(359)
The transformation [ r7yia] to independent field coordinate displacement degrees-

of-freedom for transverse displacement 1.8f) are exhibited in Figures 93 through 95.

165



C-

CC >1 cqC4 c

CIL)

4-)

x N eq eqC-

C4-

:14c eq :4 q0

Q4 P44~ C

v.4 v-4 4 < .- r-4

166



fl Of2 f3 f4 f5 6 Of7 Of8 O9 Of10 Of1 I f12

(:1)

y1  1

)'

72 ( )
, 1 ,

y31  , ,

4(1) , 1

(1)

6(1) , ,

y7(I)  , 1

,, 1,

9 , 1 ,
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Figure 94. Flexure Displacement Interzone Transformation [r -P (2 ) ]

Elementary Interpolation theory is invoked to obtain transformations from field

coordinate to gridpoint { } displacement degrees-of-freedom, i.e.

= [rog(m) f {8}) (360)

{$}= [r.Bg(f)] {8f} (361)
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where { 8gm}T [Uq1 'Uq 2 'Uq 3 'Ug4l Ug5$ Ug6 $ (362)

Vg1 Vg2 9 Vg3 9 Vg4 t Vg5 9 Vg6

L gf Wgl Wgx1'gylWg2'Wgx2Wgy2' (363)
w, ,w w ,w ' wJ

Wg3 Wgx3' gy3 Wn4' Wn5, Wn6
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rr -1 (f) -.t.
It is con~(2iient to define the transformation matrices Irn8 m 1 and frog I
in terms of submatrices by writing

g ] = (364)

mm

g ' 0 0 [131 ] [r7,')
[ g ][B,,' 0 0 [r. 8 2)1 (365)

0 [B 3 ] 0 L~

o 0 B [12] r1~~
[B2 3 ]' 0 0

o 0 [1 3 1 ], 0

These submatrices are now given explicit definition in Figures 96 and 97.

At this point, optional transformations are introduced to enable suppression
of the midside displacement degrees-of-freedom. This feature provides flexibility
in idealization and facilitates consideration of eccentric connections. The transfor-
mations take the form

{gm}= [Irup(m).] {Bfgm} (366)

{ gm} = [rsup(f)] {gf } (367)

The degrees-of-freedom 18'gm } and {'gf} may be interpreted according to Equa-tions 362 arid 363. The suppression transformations r (m)] and r up(f), are

given in Figures 98 and 99. L sup p J

A transformation related only to flexure is defined to establish a vectorial sign
convention for the rotational degrees-of-freedom associated with the three corner
gridpoints. In addition, the midside rotations are signed so as to be compatible with
adjoining elements. Specifically, they are assigned vectorially positive in the direc-
tion from the corner gridpoint with the smaller gridpoint number toward the corner
gridpoint with the larger number. This transformation relation is written symbol-
ically as

{B[r (f f} (368)
where

where 8gf}=[Wgfj gxl gylW, ggx2, gy2 ,

w, , ,(369)
g3 gx3'n
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Figure 98. Flexare Displacement Coordinate Transformation ('])
L supJ

The transformation matrix [ rsg (,)] is shown in Figure 100.

The transformation introduced next is designed to enable eccentric connection
of the triangular thin shell element to a surface which is a distance ez above the ele-
ment. This transformation effects a coupling of the flexure degrees-of-freedom to
the membrane displacements and is written as

{8gm}= [H , [re]] P{{ gm (370)
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Figure 99. Flexure Displacement Coordinate Transformation rsup
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Figure 100. Flexure Displacement Coordinate Transformation [(f)]sgn

The degrees-of-freedom {8"gm} and {8"t'} may be interpreted according to
Equations 362 and 369 with the understanding that these quantities now refer to the
eccentric gridpoints. The eccentric connection tramisformation [re] is given in
Figure 101. Note that utilization of this eccentric connection feature requires the
presuppression of the midside gridpoint displacement degrees--of-freedom.

Global or "system"' displacement degrees-of-freedom are introduced via a
further set of transformation relations of the form

{s it gm} [rgs(m)] f8) (371)

{Stgf} r [g(f)] f{a} (372)
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where

8{ [}= u1 , V81 , w 1l, e X1, sl sl (373)

s2's2'ws2 S.1 sy2' 8Sz2'

s3 ' ~v. 3 'w. 3 . sx3' s3'~ sz3'

v , ,90 0 0,
s4' s4' s4 sn4'

U 5 p 5 W 5 , 9
5  0 0,

s5 0, 05 n
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The matrices [ rgs m  and [ gs f  which accomplish the transformation to
system displacements are given in Figures 102 and 103. These system displace-
ment degrees-of-freedom can be employed to assemble discrete elements; however,
in many applications, it is convenient to employ special gridpoint coordinate axes.
Accordingly, a final transformation relation is provided to reference the displacement
degrees-of-freedom to gridpoint coordinate axes, i.e.

{8a S}= [1'sq] {Sq} (374)

where

-S q IT 9 99v1 q1 qi qY10q (375)

Jt q29 q29 qxl' qyl' qzl'

q39 Vq31 q31 qx2 qy29 qz2'
q3 v 3 W,~ 8 99q4 Vq4, Wq4 qn4  y 0 z3

u v w , 0 0
q51 q5' q59 qn5 '

u v ,w 9 0,
q61 q61 q6' eqn6' 0

The matrix [rsg I is made up of the individual gridpoint axes direction

cosine transformations from the relation

{ Xs} = [T sq] { xq~j (376)

positioned along the major diagonal as shown in Figure 104.

The foregoing transformations may be collected symbolically to obtain a singke
transformation between the field coordinate displacement degrees-of-freedom 10BJ
and the final gridpoint displacement degrees-of-freedom IfM . The results are as
follows:

where [r(][i,[ rg")
r (m) qm){q ]

[1~qm)= [I g '' ] [r'u~ ) [ ]  [e] , gsf [r sq ]

7(379)
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Figure 104. Displacement Coordinate Transformation ["sq1

This completes the explicit statement of the displacement functions constructed for
the Helle triangular thin shell element.

2. Potential Energy

The total potential energy functional appropriate to thin shells of zero curva-

ture was stated in Equations 289 through 292 in terms of four contributions, i.e.

(I[eugJ [E(]{ed (381)

f .-()[K(g)] [E()] {K(g)} -(4 [)] {Ifi)) dA (382)
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c = J t e() [E()] {e(g)}) dA (383)

p -fA ( pw W(s)) dA (384)

Accepting the foregoing statement of the total potential energy functioui as
the point of departure, the first step is executed primarily for notational convenience.
The strains are written in terms of the displacement functions via the relations

f{e()}T = {A }IT [Tu] T x [uU, vv yJ 1, 0, 0 (385)
0, 0, 1

0, , 0

f eg) T =I{A} T w [ -w y , w w J (386)

{ K-) T -AT [_w, _wyy _2Wxy J (387)

The potential energy functional contributions for the triangular thin shell element
are now written in analogy with those for the quadrilateral thin shell element as

( A- [Amu] ['ink] {finu} [Amu] f Ine) dA (388)
A

' ) ( [A fwj [Il,]fAff)dA (3890

) = f (pw) dA (391)

where

[Ik] = t[TuJT [T e] T [E(m)] [To.] [Tu] (392)

,1 =- t[T.T [T7 T[E(m)] ei()l (393
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[1] t [T [ ] [To] (396)

The next step in constructing the element representation is to effect the dis-
cretization by introduction of the previously derived displacement mode shapes into
Equations 385, 386, and 387. This substitution yields

K ul 1[Dm] {m} (397)

{Af} = [DfJ ~() (398)

The matrices [ Dn l and [DJ are prepented in Fi ures 105 and 106. The vector
{Amwl is a quadritic function of the coordinates {y, and symbolic representation
is not atempted at this point.

Algebraic statement of the membrane energy contribution of Equation 388
is considered first. Examination of the component relations of Equation 397 leads to
identification of a typical form for each element of the vector {&mh },i.e.

(A =[d r i, { t (399)

where

{d}T =[1,x, y.] (400)

For example, focusing upon the first term (I = 1) obtain,

(AMU) 1X [ix.(41

2m5

Explicit statement of all of these rcm J and [amJ matrices is given in Figure 107.

The general form identified with the elements of the vector { A mu } leads
naturally to a general form for the associated energy contributions. Firstly, the mem-
brane energy functional is rewritten as

4 4

1 i=1 l ( (402)
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Figure 106. Flexure Displacement Derivatives Matrix [Df]

{a()} T = [m2, m4, )m5J

{0 (2)}T [13m3 , m5, m6

{a(3)}T= [ S 13m10, 13J

[I'~ m [1M , 2 0, 1]i

[a(4)y = , 1,2

[cm [.. r %11 2, 1 ]

Cm  = [

Figure 107. Definition of Notation, {a( )} and rC~m)J
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3
8ij = x 8 ij

' =1

Zone = 1:

x k x+m k x8(, ;xf m2jfOfk0 y
f3 = 32 x dydx+ 20 dydx

x 3 k30x x2 30 x

Zone J = 2:

2 fO fk3ox 30 
x, dJf

(2 xi y  
ydy dx + 0 x dx

3 3 1x 31 31 13

Zone i = 3:

( x2 k20x LX dy d

8 i0 x dy dx +

2 k21x +21

where:

k21 x -X 2 , k32 = xx' k20 x2, k31 x-x
1 22 3 2 x1 - 3

x1 Y3  _ x1 Y2  x2y3 - y2 x3

m 31 x X3 .21 x1 x 2 2 x3

Figure 108. Definition of Integral Notation, 8 (k)
ij
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where kijI (Amu) j(

A (403)=f[ (IMiJ ( )J xd[ ~-(,). (Amu)i]dxd

The general contributing energy form now follows directly by introducing
the general form for the elements defined in Equation 401, i.e.

.7,l .l (1 k)j[aI [c [mk] [ cmJ, j lam .,
QrnEi 1mii ~c~~c}(404)

where [k f{dlddxdy (405)

A

c.J= f {d dx:dy (406)

A

Presentation of these matrices is prefaced by definitions of notation in Figure 108.

Then, [cmk] and [cm,] are given in Figure 109. The knowledge of Lhese matrices,
together with the statements of the [cmkl and {am} matrices, enables explicit
expression of each of the (0m) ij" These individual contributions are summed to

obtain the objective algebraic expression for the total membrane potential energy, i.e.

"m= 2 [i3m] [KM] {IRm} [13m1 {F}46 (407)

The matrix is the element membrane stiffness matrix and the vector { ml
is the element membrane prestrain load representation. As disclosed by the
notation, both of these are referenced to the field coordinate displaeement degrees-
of-freedom. Explicit statement of these matrices is considered redundant since
they are simply the assembled results of known contributions.

It is convenient to define a special prestrain vector for thermal loading.
This is easily accomplished by rewriting Equation 393 to read

{Im,}= Tt [T]T [%..] T [E(m)] [(m)] (408)

The objective algebraic statement of the element flexural potential energy
follows in analogy with the development for the element membrane potential energy.
Examination of the component relations of Equation 398 leads to identification of a
typical form for each element of the vector {A f}, i.e.
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( 1 f )(okd) [cfJ F f~' le f} ) (409)

For example, focusing on the first zone (k = 1), the first element (1= 1) is given by

(A = -W ' () iX, yJ [2': ]?4} (410)

Explicit statement of all these [cf] and [af] matrices is given in Figure 110. It
should be noted that these matrices are common to the three zones of the element.

Having defined the foregoing quantities, the flexure energy is accountably
rewritten, i.e.

3 3 3
k= i=1 j 1

where

(Of i~k fIf) j k)1 ) i( k ) &fJ(k) O I(Af)i k ) ] dx dy

zone k (412)

The general contributing energy form now follows directly by introducing
the general form for the elements of {A f } defined in Equation 410, i.e.

~ [aii')[ciji[cfI(') j*cfjj{Gfj (413)
17a I,

-(,, )i [o,fi (k) [o j, {o,,}il (
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Particularization of this general form to the individual [Cf 1, { ac} I

[cfk] and { Cf} matrices and summation yields an algebraic expression for

the element flexural potential energy associated with the kth zone, i.e.

(k) = 1 (k)A ] (k) { _I}(k) [yJ {Ff } ((k)f 2 L [Kf F() )}k k (414)

Substitution from Equation 357 brings in the field coordinate displacement degrees-

of-freedom
=k I--k T A](k)

of ~ [f1A [r R I [Kf (k) [rY ]{f}
(415)

[ [fJ [r (k)1  {ff })

A final summation over the three zones yields the flexure stiffness [Kf ] and pre-

strain load {'f4} matrices referenced to field coordinate displacement degrees-of-

freedom. This result is written
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= 2jf f ~]{f FA {f} (416)

As in the case of the membrane prestrain load vector, the flexural prestr.in
load vector is particularized for thermal loading. The desired modification follows
immediately from Equation 395, i.e.

3 T
I'f.} Tf L [T~ ~ [E(m)] {ca(m)} (417)

The final element matrix which arises from the potential energy is the pres-
sure load matrix. The external work term of Equation 389 is expanded in terms of the
displacement mode shape for theAth zone to yield

W=p J ~ La {JBwI dAi (418)
At

Integrating this expression obtain

W F [pt]{~() (419)

wh , {Fp) is given in Figure 111. Summation over the three zones is accomplished
with the introduction of Equation 357. The result is an expression for the external
work which contains the pressure load vector 4 Fpj referenced to field coordinate dis-
placement degrees -of-freedom '

w d jF} (420)

00 , 1,01,2,11 0,3 0 2 , 03l
Figure 111. Pressure Load Vector

3. Stress Matrices

The stress resultants for a thin shell of zero curvature are defined, In the
notation of Figure 80, as follows:

N r f dz N , f dz Nxy J rxy dz (421)

z z z
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Mx  zO(x dz M xO dz M z1 r dz (422)
x xy y xy xy

f fz z z
do- ar c.y r

S f-- ) dz Q-z + ) dz (423)

z z

It was tacitly assumed in defining the stress resultants that nonlinear
membrane-flexure coupling contributions to the stress resultants are small rela-
tive to first order terms. This assumption is carried forward in writing the stress
resultants in terms of the strains

{ 9 N0 Ig} f e [u) {(g)} - t {1jg)} (424)

{Q(9) = 3 [ E( g] f { - (g)}} + t 3 [G2- tE g ) {.ifg( (4 }}

(426)
where

G1i 09 [ 1:0 (427)

G2 [0:1] (428)

The stress resultants are expressed in terms of the displacement func-

tions by substitution from Equations 383 and 384.

{N )}=t [E')] [T] { Amu} - t { 1t( )} (429)

3 3

{M1 = [E~g] {Lw f ( )J~ (430)
{Qr~ 12 12~ (E) {4{A}

t 3[G2] [] a(431)
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Introducing the displacement mode shapes assumed over the three zones of
the triangular thin shell element, the stress resultants can be written collectively as

{No- )} [NJ {I8m} f{-dm} (432)

and

} (433)

where

=t [E"] Tu [Dm] (434)

{ M} =_ 4 ,_}(48

This completes the statement of the matrices which comprise the Helle
triangular thin shell element.
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C. EVALUATION

1. Membrane Stress Analysis

The first illustration which utilizes the triangular thin shell element in a
structural evaluation will be the following. A thin square isotropic plate loaded with
a self equilibrating parabolic membrane load is shown in Figure 112 along with its
material properties and pertinent geometric data.

A

l Quadrant

Analyzed

32 in.

Yy q

xD

N
x

2
32 in. -N 100 1 6

A

t = 0.1 in.
, =0.3

6 .2
E = 30 x 10 lb/in.

Figure 112. Parabolically Loaded Membrane

The idealizations used for the finite element analyses are shown in Figure
113. Three different grid sizes were employed in this evaluation. Two element,
eight element and 32 element solutions were obtained in order to evaluate convergence
characteristics. Due to conditions of symmetry only one quadrant of the plate was
analyzed. For the finite element idealizations employed in this evaluation, the mid-
side nodes which were loaded by the parabolic load were suppressed. This suppres-
sion invokes a linear edge displacement under the load.
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Figure 113. Idealization
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The results obtained from this set of convergence studies are presented
in Figures 114 and 115. Figure 114 is a plot of the membrane displacement, ug
at the middle of the plate's edge versus degrees-of-freedom employed in the
analyses. The reference solution (Reference 44) is designated by the solid line.
Figure 115 presents a curve of the membrane displacement, ux and stress resul-
tant, Nx , versus the edge span of the plate for the idealization shown in Figure 113 (c)
(32 element solution). It should be noted thit the reference solution is again desig-
nated by the solid lines and no discernible difference between solutions can be detected.

2. Membrane Gridwork Influences

The second illustration which utilizes the triangular thin shell element in
a structural evaluation will be the following. Again, consider a thin isotropic square
plate loaded with a self equilibrating parabolic membrane load as shown in Figure 112.
This illustration will involve the effect that the shape of the elements used in the struc-
tural idealization has on the determination of center edge displacement of the mem-
brane.

The six idealizations used for theshape study are shown in Figure 116. Due to
conditions of symmetry only one qi.adrant of the plate was analyzed. Ths :idside
nodes whichwere loaded by the parabolic membrane load were suppressed in this
solution.

The results obtained from the subject shape studies are shown in Figure 117.
These solutions indicate that the displacement values, u , obtained for the middle
of the plate's edge are fairly insensitive to the shape ofhe element for this class of
problem.

3. Plate Stress Analysis

The third illustration which utilizes the triangular thin shell element in
a structural evaluation will be the following. A simply supported square isotropic
plate with a uniform normal pressure load of one psi is shown in Figure 118 along
with its material properties and pertinent dimensions.

The idealization.: used for the finite element analyses are shown in Figure
113. Note that no node points are suppressed in this analysis. Three different grid

Af sizes were employed in this evaluation. Two element, 8 element, and 32 element
solutions were obtained in order to evaluate convergence characteristics. Due to
conditions of symmetry only one quadrant of the plate was analyzed.

Figure 119 is a plot of the center transverse displacement at the center
of the plate versus the degrees-of-freedom employed in the analyses. The reference
solution (Reference45) is designated by the solid line. Figure 120 presents a curve
of the transverse displacement, wx and bending moment, Mx , versus the center span
of the plate for the idealization shown in Figure 113 (c) (32 element solution). Again,
it should be noted that the reference solution is designated by the solid lines and no
discernible differences between solutions can be detected.
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Plate Edges are Simply Supported

A

t 32 0.1in
6 2

E 30 x 10 6lb/in.2
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1z Ilb/in. 2

Figure 118. Simply Supported Square Plate with Uniform Normal Load
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4. Plate Gridwork Influences

The fourth illustration which utilizes the triangular thin shell element'in
a structural evaluation will be the following. A simply supported square isotropic
plate with a uniform normal pressure load of one psi is shown in Figure 118 along
with its material properties and pertinent dimensions.

This illustration will involve the effect that the shape of the elements used
in the structural idealization has on the determination of the maximum displacement
of the plate.

The six idealizations used for the shape study are shown in Figure.116. Due
to conditions of symmetry only one quadrant of the plate was analyzed.

The results obtained from the subject shape studies are shown in Figure
121. These solutions indicate that the determination of the plate's center transverse
displacement is fairly insensitive to the shape of the element for this class of problem.

203



This Document Contains

Missing Page/s That Are

Unavailable In The

Original Document

BEST
AVAILABLE COPY



10. DISCUSSION AND CONCLUSIONS

A. DISCUSSION

Integrated general purpose analysfs capabilities of the MAGIC System class sig-
nal a major advance in the state-of--the-art of automated tools for analysis. The
superior cost effectiveness of such systetns over conventional multiple special purpose
program capabilities is compelling.

This assertion of superior performance from large scale program systems may
well contradict conclu,'ions drawn from experience. Complexity and inefficiency have
long been concomitant with large size and versatility in computer programs. Indeed,
the elimination of these depreciating effects was prerequisite to realization of the
favorable cost effectiveness of the MAGIC System.

Large size and versatility, without excessive complexity, are assumed intrinsic
to the MAGIC System in subsequent paragraphs, as attention is focused upon the rela-
tive efficiencies of integrated general purpose analysis capabilities and multiple
special purpose computer program analysis capabilities. This is to presume the pre-
requisite elimination of the greater hindrance; namely, the excessive complexity
which choked off many early general purpose program developments. This problem-
atical complexity was encountered when programs of simple organization grew to
press upon the limi.ts of computer software and hardware capabilities. Extensions

beyond this point were accomplished by intricately coordinated multiple usage of
valuable names and locations, special program versions with omitted features and
other actions which accumulated to entangle the logic and data storage until further
modification became impractical.

In the face of this situation increasingly powerful analytical models and solution
methods were formulated and numerical implementation demanded. And, as is often
the case, sufficient pressure was built up to bring about the technological advances
needed in the computer technologies.

Advances were forthcoming in programming technology which established the
technical fea.ibility of a truly general purpose computer program system. Advances
in computer hardware insured the economic feasibility as the technical feasibility was
established through a number of contributing developments. The collective result of
these latter deve" nents is, in a word, "organization." Among those organizational
characteristics 'atures considered essential are, the breakdown into single func-
tion module . ,gram library concept, the matrix interpretive system, the
SUBSYS rout . In-depth discussion was given to these considerations in Section

2 and is not repeated here. Rather, attention is given to the benefits which accrue
from their fulfillment in the MAGIC System.
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It is appropriate to emphasize at this point, that the MAGIC System for structural
analysis is more than a discrete element computer program. It is, in one sense, a
Problem Oriented Language (POL) which enables various Analyst specified computa-
tional procedures. And, at the same time, it is designed with attendant structural
analysis practices evolved from applications experience. These practices are dis-
cussed in detail in subsequent paragraphs. The point of interest here is that the
efficiency of We MAGIC System is an overall efficiency governed more by men than
machines.

The more comprehensive the comparison, the greater the advantage shown by
the integrated general purpose analysis capabilities over multiple special purpose
program capabilities. In nearly all cases an equitable comparison must include con-
sideration of program development efforts since relevant technologies are continuously
advanced. On this basis the integrated approach enjoys the greatest relative advantage.
The integrated approach is also superior to the multiple program approach when con-
sidering only factors involved in utilization of operational capability. On the other
hand, shorter execution times are conceded to specidl purpose programs without dis-
pute, since execution efficiency is not essential to the case for the greater overall
efficiency of integrated analysis capabilities.

Attention is focused now on the impact of the integrated general purpose com-
puter program approach on the efficiency of the many processes involved in mainte-
nance and application of responsive analysis tools in support of a broad structural
design activity. Program maintenance efforts benefit from the highly modularized
organizational structure to an even greater extent than the initial development effort.

In the initial development, functional modules are established against the require-
ments of the alternative analysis procedures taken collectively. And, since an exten-
sive commonality exists, multiple repetitious coding is avoided. This same payoff is
derived again as existing modules are retired in favor of new modules which offer
improved performance. The introduction of a single improved module is reflected to
advantage throughout all pertinent analysis procedures of the computer program sys-
tem. The option exists to retain alternative modules for the same function without
sacrifice. This provides useful operational flexibility and a convenient testbed for
various candidate procedures. Alternative procedures can be evaluated within the
system without disrupting its operational status.

The foregoing has dealt with maintenance of existing analysis capability. Main-
tenance is also interpretable as generalization of, and addition to, the overall analysis
capability. Completely new analyses can be implemented with the addition of only
those functional modules absent in the existing capability. For example, finite element
heat conduction analyses are possible with relatively minor modifications to the
MAGIC System.
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The benefits derived from the organization of a general purpose computer pro-
gram system in development, maintenance, generalization and extension are simul-
taneously important disadvantages associated with multiple computer program analysis
capabilities. The extensive commonality among analyses leads in this latter case to
the repeated development of coding to perform a given function. The preparation of
special versions of new modules and the introduction of these into a multiplicity of
computer programs is often not justified and the overall capability is depreciated.

Another particularly important handicap borne by the separate programs of a
multiprogram capability is that these programs can not command, individually, the
provision of many useful special features. For example, useful options and diagnostics
are usually omitted from these special purpose program routines. Also, such pro-
grams frequently encounter obstacles such as machine storage capacity which must be
avoided rather than surmounted in view of the limited applicability of the program.
Advancements in computer software and hardware are further considerations of im-
portance in the maintenance of an analysis capability. Ti'ese advancements place
multiple program capabilities in special peril. Those programs not being actively
utilized at the time of transition in software or hardware are easily overlooked and in
this way are lost from the overall analysis capability.

No single factor is more important in the provision of a responsive analysis
capability than documentation. Engineering documentation must delineate analysis
procedure, input data and output data. Programming documentation must provide for
operation and modification of the program.

Consolidation of the analysis capability into a general purpose program results
in a corresponding favorable consolidation of documentation. Not only is volume re-
duced but the total capability is described uniformly as a whole. Small programs tend
to be the personal tool of the initiator. As a consequence, the documentation prepared
is generally inadequate to enable general ,sage. This situation leads to extensive
tutorial instruction to realize the benefits of the program development. At the very
least, multiple program capabilities place the burden of assimilating the overall
analysis capability from the individual manuals upon the user.

The foregoing has pointed out decisive advantages of general purpose program
systems in the context of development and maintenance of analysis capability. The
most compelling advantages, however, are found in operation. The greater efficiency
of the MAGIC System relative to multiprogram capabilities for analysis stems in
large measure from the extent of the analysis process which is covered. Time con-
suming, error prone, manual transfers of data between special purpose or single step
computer programs are avoided. The integration of heat conduction and thermal stress
analysis within a single system can circumvent the laborious preparation of tempera-
ture data. The integration of stiffness and vibration analyses can similarly circumvent
the manual transfer of stiffness and mass data. These eliminations of manual effort
yield reductions in calendar time which is often the paramount consideration for con-
tribution of analysis to design. This is not to say that long continuous executions are
desirable. Execution interruptions enter importantly into proper utilization of the
MAGIC System.
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The MAGIC System is designed to facilitate good structural analysis practices
in support of the overall structural design process. Individual design organizations
are best served by structural analysis practices and program versions which are, to
some degree, distinct. On the other hand, the extensive commonality which does exist
among design organizations provides strong motivation for reviewing the effective
structural analysis practices and supplemented program version which have evolved at
Bell Aerosystems.

The structural analysis process begins with the idealization of the structure into
an assemblage of finite elements. This is a multistep operation if the structure is
first separated into substructures. Generally, the separation into substructures is
governed by the phyeical interconnections of the major structural components. The
idealization into finite elements is governed by variations in geometry, dimensions,
material, applied loading and boundary conditions.

Preprinted input data forms are employed to simplify and thereby improve the
reliability of the input data specification. These preprinted input forms associated
with the MAGIC System are an important improvement over card image forms for
frequent as well as infrequent users since they incorporate automatic data generation
features. These built-in data generation features are supplemented at Bell by auxil-
iary (not integrated into the MAGIC System) data generation programs. Some of *hese
are employed routinely. Others are extremely simple programs written for a single,
problem related calculation. Such auxiliary programs are frequently employed to
advantage in the generation of gridpoint coordinates with reference to the global rec-
tangular coordinate axes, since '.xpreosion of these can require extensive tedious cal-
culation. This gridpoint coordinate data set should be interpreted here to include
points for specification of gridpoint axes transformations and stress and material
angles as well as points associated with degrees-of-freedom.

The first MAGIC System execution undertaken is to confirm the assembled input
data deck. This deck is read and the implied data is given explicit definition. For
example, material properties are extracted from the Material Library and gridpoint
axes transformations are generated from the coordinate table. The completed data
set is examined in this preprocessing execution. All data items are stored for execu-
tion restart and printed for further checking by the analyst.

The preprocessing execution is supplemented at Bell to include the generation of
a magnetic tape which, in turn, generates a plot of the s'ructural model on an automatic
plotting machine. This plot enables efficient and reliable confirmation of the two most
problematical data items; namely, the gridpoint positions and the finite element con-
nection arrangement. Beyond this point the structure plot is a useful identifying title
sheet for the printed problem output.

The next phase of the analysis process proceeds via a restart through the gener-
ation of the structural matrices for stiffness, stress, loads, assembly, boundary con-
ditions, etc. Built-in features control this matrix generation to selectively form only
those matrices required for the current analysis. Completion of the matrix generation
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phase signals exit from the Structural System Monitor. This is an Interface point be-
tween matrix abstraction instruction statements, and, therefore, a point for optional
interruption of the execution to examine the system level matrices. This interruption
is used only infrequently at Bell.

Calc.lation proceeds under the FORMAT System to the governing matrix equa-
tion and thence to the solution for the displacement vectors for all load conditions.
For some problems execution may be terminated at this point. For many other
problems the validity of the analysis can be assessed against these displacement
results and an execution interruption is justified by the computational invest-
ment required for the secondary results. Ideally, the deformed structure should
be plotted to facilitate interpretation of the predicted displacement behavior.

The analysis proceeds from the displacement solution, with or without interrup-
tion, to calculation and print of the remainder of the output data items; namely, reac-
tions, forces, stresses, etc. This is the conventional point of termination of finite
element analyses. However, a number of relatively simple auxiliary programs are
used to advantage at Bell to relieve the burden this output places on the stress engi-
neers. As in the case of the input data generation auxiliary programs, some of the auxi-
liary output data reduction programs are employed repeatedly and others are special
to a single problem. The functions of these programs include such things as principal
stress calculations and margin of safety determinations. Auxiliary programs which do
nothing but selectively print and label output data items are also helpful for large
problems.

Several comments on the evaluation of output data are warranted in concluding
discussion of good structural analysis practices. The examination of output by the
Analyst should be initiated under the presumption that an error exists with confidence
in the validity of the analysis accumulating as the examination proceeds. Given a com-
plete set of output, attention should first be given to the gridpoint force balances and
reactions. Assured that no unintended reactions exist and that residuals are negligibly
small, the displacement states should be examined. If the general deformed configura-
tion does not expose any inconsistencies, confirmation is completed by examination of
the more extensive presentation of force and stress data.

The foregoing discussion has focused upon development, maintenance and utiliza-
tion considerations important to the favorable cost effectiveness of the present MAGIC
System for structural analysis. Further evolution of this system can be expected
which will continue to improve its relative advantage. Updated versions of the MAGIC
System will be compatible with all features developed in connection with prior versions.

B. CONCLUSIONS

It is concluded that the subject MAGIC System provides a capability for structural
analysis equivalent to that of the predecessor programs delivered under Contract
AF33(657)8963, taken collectively. The satisfactory achievement of this overall objec-
tive is given substantiation by a number of subsidiary conclusions. Specifically, it is
concluded that:
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(1) The finite element library enables effective idealization of most linear
structures.

(2) Computational procedures attendant to the MAGIC System enable the conduct
of linear displacement and stress analyses in the presence of general pre-
strain and thermal loading as well as distributed and concentrated mechani-
cal loading.

(3) The stability analysis procedure provided in the MAGIC System enables the
prediction of critical load levels for general framed structures.

(4) The preprinted input data forms facilitate the rapid and reliable specifica-
tion of problem data.

(5) The computer program organization of the MAGIC System effectively
utilizes the FORMAT System and is well suited to generalization.
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