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ABSTRACT

An automated general purpose system for analysis is presented. This system,
identified by the acronym "MAGIC" for '"Matrix Analysis via Generative and Inter-
pretive Computations,' provides a flexible framework for implementation of the
finite element analysis technology. Powerful capabilities for displacement, stress
and stability analyses are included in the subject MAGIC System for structural
analysis. The matrix displacement method of analysis based upon finite element
idealization is employed throughout. Six versatile finite elements are incorporated
in the finite element library. These are: frame, shear panel, triangular cross sec-
tion ring, toroidal thin shell ring, quadrilateral thin shell and triangular thin shell
elements. These finite element representations include matrices for stiffness, in-
cremental stiffness, prestrain load, thermal load, distributed mechanical load and
stress. The MAGIC System for structural analysis is presented as an integral part
of the overall design cycle. Considerations in this regard include, among other
things, preprinted input data forms, autcmated data generation, data confirmation
features, restart options, automated output data reduction and readable output dis-
plays. Documentation of the MAGIC System is presented in three parts: namely,
Volurre I: Engineer's Manual; Volume II: User's Manual; and Volume III: Pro-
grammer's Manual. Volume I is the primary technical document. Included 2re a
general technical discussion of the MAGIC System, an outline of the theoretical
framework, statement of the individual finite element representations, and illustra-
tive analyses for evaluation of each finite element representation. Volume II contains
instructions for the preparation of input data and interpretation of output data with
examples drawn from the illustrations presented in Volume I. Volume III is designed
to facilitate implementation, operation, modification and extension of the MAGIC
System.
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1, INTRODUCTION

Bell Aerosystems has been active in the development of automated structural
analysis tools based upon the finite element technology since the late 1950's, In a con-
tractual outgrowth of this internal development activity, Bell furnished a series of com-
puter programs to the Air Force Flight Dynamics Laboratory (AFFDL) in 1963, These
programs, described in References 1 through 6, became an integral part of structural
analysis practices at AFFDL and at numerous other recipient governmental and pri-
vate organizations,

Advances in computer software and hardware signaled the impending obselescence
of the foregoing computer programs for structural analysis in 1966. Attempts to sal-
vage these programs by direct modifications to the coding proved discouraging. More-
over, newly established technological advances strongly recommended development of
a second generation finite element capability for structural analysis.

In the light of the situation just described, Bell undertook, in March of 1967, to
implement an advanced general purpose system for Matrix Analysis via Generative
and Interpretive Computations (MAGIC) at AFFDL, This MAGIC System for struc-
tural analysis, de~cribed herein, was planned to provide, as a minimum, the capability
of the prior set of Bell computer programs, The capability ultimately built into the
MAGIC System is actually far more powerful than the former prograrans taken collec-
tively. For example, structures characterized by '"on the order of" 2000 degrees-of-
freedom canbe accommodated in conirast to the former 500 degrees-of-freedom limit.

Documentation of the MAGIC System for structural analysis is presented in
three volumes. The subject volume (Volume 1) is the primary technical report. The
major sections of this report are described in the following paragraphs. Separate
supplementary volumes are provided to facilitate utilization of the MAGIC System.
Volume 1, the User's Manual(”), includes detailed specifications for the preparation
of input data, along with 1llustrat1ve examples. Volume III, the Programmer's Manual (8),
presents information on the organization of the computer program as well as its
operational characteristics.

A general description of the MAGIC System for structural analysis is included
in Section 2. Particular attention is given to definition of the overall organization of
the system, A key element of this organization is seen to be the versatile, AFFDL
sponsored, FORTRAN Matrix Abstraction Technique (FORMAT II) described in Refer-
ences 9 through 12. Emphasis is also given in this section to special data management
features which facilitate efficient utilization of the MAGIC System such as preprinted
input data forms.

Secticn 3 of this primary technical report outlines the theoreticai bases employed
in derivation of the finite element representations and in development of the analysis
procedures. A total of six finite elements are incorporated in the Element Library of



3 the MAGIC System; namely, frame, shear panel, triangular cross section ring, toroi-
' dal thin shell ring, quadrilateral thin shell and triangular thin shell elements. The

3 computational procedures outlined in Section 3 include d:splacement, stress and

- stability analyses.

3 Sections 4 through 9 present statements of the matrices which comprige the in-
dividual finite element representations, In general; stiffness, incremental stiffness,
pressure load, thermal load, and stress matrices are provided. Sections 4 through 9
also include numerical evaluations of the respective finite elements, These evalua-
tions take the form of series of selected example problems,

Py

The body of this technical report is concluded with a general retrospective dis-
cussion in Section10. The MAGIC System is given critical review, Limitations are
discussed and guidelines for utilization are presented.

b
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2. TECHNICAL DISCUSSION

A. INTRODUCTION

Automated general purpose capabilities promise to revolutionize analysis and
design practices. The matrix methods of analysis based upon discrete element ideal~
ization provide the suitable theoretical basis. High speed data processing devices
establish the economic feasibility. Powerful automated tools for analysis and design
have already been derived from these resources. Experience accumulated in the de-
velopment and application of these tools has evolved a conceptual framework suitable
for generalization.

Expansions which traverse traditional boundaries between the specialized disci-
plines of mechanics, improvements which provide firm theoretical bases for consist-
ent mathematical models(13), and extensions which automate design iterations(14) are
now well defined. New data management concepts which facilitate data handling(15),
maftrix abstraction instructions which simplify programming(g), and hardware devices
which enable convenient display (and communication) 16) have also emerged. The im-
plementation of all these generalizations within the framework of realistic hardware
design poses a stimulating challenge.

The advanced general purpose system for Matrix Analysis via Generative and
Interpretive Computations (MAGIC) which is described herein was developed in ac-
ceptance of the foregoing challenge. This MAGIC System furnishes the specific
structural analyses capability sought and, at the same time, provides a versatile con-
ceptual iramework to facilitate the foregoing generalizations. Accordingly, general
concepts are given consideration in the following discussion as well as specific fea~
tures of the MAGIC System for structural analysis.

B. ANALYSIS TECHNOLOGY

The finite element approach to structural anaiysis is consisienily siated in
Section 3 within the framework of the variational methods of continuum mechanics.
Within this framework, discretization can be referenced to zones designed to facilitate
the construction of admissible displacement function mode shapes. Elementary illus-
trative physical models arising from such an idealization into zones are shown in
Figures 1la and lc. Admissible assumed displacement functions written individu-
ally for each zone, when taken collectively, form admissible assumed displacement
functions whose field of definition is the entire structure.

These physical models, formed by subdivision into zones, may be equivalently
viewed as assemblies of discrete structural elements interconnected such that ap-
propriate interclement continuity is maintained. For example, the piiysical models
shown in Figures 1a and 1c may be equivalently viewed as assemblies of the discrete
structural elements of Figures 1b and 1d, respectively. It is this latter viewpoint,
taken herein, which makes evident the generality of the finite element methods of
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analysis. Idealization into zones or structural components enables the systematic
treatment of large scale complex structures as assemblages of large numbers of
common elementary structural components.

Mathematical models are formulated for seclected elementary structural com-
ponents of parametrically specified shape. These finite element representations are
then given specific dimensions to form building blocks appropriate to structures of a
general problem class, Interconnection of adjacent elements is provided for by the
construction of displacement function mode shapes wiih gridpoint displacement func-
tion quantities as undetermined coefficients. Taking these gridpoint displacement
degrees-of-freedom common to adjacent elements establishes their interconnection.

The referencing of the structural idealization to elementary physical components
leads naturally to specification of descriptive data with respect to these individual
elements. Variations in dimensions such as thickness are accommodated by the
specification of distinct values for individual elements. Material property variations
arising from laminaticn or temperature degradation are accommodated by element
related characterizations of materials,

Distributed loadings are also processed by element in order to account for
variations. Elementary distributions are assumed over individual elements in much
the same way that displacement function mode shapes are constructed. Intensities of
distributed loadings such as pressure, temperatures and prestrain are prescribed at
gridpoints. These intensities are then transformed into work equivalent forces via
the assumed distributions.

The foregoing comments have indicated the facility with which finite element
idealization accommodates problematical variations in geometry, material and applied
loading. It is useful to emphasize this point further by examination of the overall
computational process.

The basic computational flow of a finite element stress analysis is illustrated
in Figure 2. The important feature to he noted in this flow chart is that the mathe-
matical description of a structural system (Block 2) is generaied independently of the
construction of the objective mathematical model for the structural system (Block 3).
That is, physical description (elastic constants, pressures, etc.) is referenced to the
individual zones or finite elements and transformed to appropriate element mathemat-
ical representation without regard to total structure configuration and boundary con-
ditions. It is primarily this separation which accounts for the generality of the dis~
crete element method in regard to both complexity and broad applicability.

Regarding complexity, referencing of problem description to individual discrete
elements enables convenient consideration of variations in geometry, sizing dimen-
sions, material properties, applied loadings, and boundary conditions. Regarding ap-
plicability, this is limited only by the suitability of the discrete elements made avail-
able for idealization.
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A variational point of view is maintained throughout the subject analysis proc-
ess. Specifically, the principle of potential energy is employed. The well known
Rayleigh-Ritz assumed mode method of analysis is invoked to generate the desired
algebraic expressions for the element energy functions. Then, these are summed to
obtain the energy function for the total structure. The objective governing equations
follow immediately by executing the variation of the total energy. The prinzipal ad-
vantage of maintaining the variational viewpoint throughout this process is that the
matrices involved enjoy explicit and complete labeling at every step. The theoretical
framework is outlined in detail in Section 3. Therein, the analysis processes are
given explicit definition in terms of matrices.

C. FINITE ELEMENTS

The MAGIC System incorporates the six finite elements shown in Figure 3;
namely, frame, shear panel, triangular cross section ring, toroidal thin shell ring,
quadrilateral thin shell and triangular thin shell elements. These elements, taken
collectively, enable the idealization of most structures.

The set of matrices embodied in each element representation determines the
type of analyses which can be performed. In the MAGIC System, a complete element
representation is taken to include matrices for stiffness, incremental stiffness, pres-
sure load, prestrain load, thermal load and stress. Moreover, provision has been
meade for additional element matrices such as consistent mass matrices.

The frame element is a conventional "beam theory" finite element. This ele~
ment is well suited to the idealization of planar and space frames. An eccentric con-
nection feature is incorporated in this frame element representation to facilitate
utilization as a shell stiffener element. The frame element is also appropriate to
planar and space trusses.

The truss specialization of the frame element is particularly useful in combi-
nation with the quadrilateral shear panel element. The quadrilateral shear panel ele-
ment simulates the action of a thin panel in diagonal tension. The effective extension-
al stiffness is allocated to truss elements. Such axial force member-shear panel
idealizations have found extensive application in the analysis of airframe structures.

The triangular cross section ring element is one of the earliest and best known
finite element models. This versatiie element enables realistic idealization of thick-
walled axisymmetric structures of arbitrary profile.

The representation of the triangular cross section ring incorporated inthe
MAGIC System is basically the same as the original model(17) although several useful
generalizations have been introduced. One of these is the orthotropic material cap-
ability with data specified orientation of material axes.

-]
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The integrations conducted in formulating this element also serve to set it apart.
A precise integration is carried out when the radial dimension of the cross section is
not small relative to the diameter of the ring. When the radial dimension of the ring
is small relative to the diameter, an approximate integration is carried out in accord
with that in the conventional representation.

The MAGIC System representation of the triangular cross section ring embodies
matrices for pressure and prestrain load as well as for stiffness and stress. A par-
ticularization of the prestrain load vector is included to facilitate thermal loading.

The thin shell elements incorporated in the MAGIC System are particularly
noteworthy since they have not been presented previously in the open technical litera-
ture. The toroidal thin shell ring represents a substantial improvement over the
predecessor conic thin shell ring(ls). In contrast to the latter, the toroidal ring yields
accurate predictions of stresses for relatively coarse idealizations. In applications
where the double curvature of the toroidal ring is not required, it specializes to conic
and cylindrical configurations. Moreover, the toroidal ring reduces easily to a cap or
end closure element.

The quadrilateral and ‘{riangular sets of thin shell elements incorporated in the
MAGIC System provide an unprecedented capability for the analysis of thin membrane,
plate and shell structures. The arbitrary shape of these elements enables efficient
idealization of complex configurations and gridwork refinement. Supplementary mid-
side gridpoints are optionally available to facilitate local gridwork refinement.

Interelement continuity is assured between elements of common and companion
type. As a consequence, recourse to convergence criteria is often permitted, The
variation in strains built into these elements yields accurate stress predictions rela~
tive to predecessor elements(4).

Many additional special features are included in this set of thin shell elements
and in the other elements as well; for example, arbitrary material axes, arbitrary
stress axes, plane strain option, etc. It is features such as these which establish the
MAGIC System as a practical analysis tool as opposed to simply a large scale finite
element computer program.

A separate section of this report is devoted to the presentation of each of these
finite element representations. The reader is directed to the introductions within
these sections for further description of the finite elements and their representations.

D. PROGRAMMING TECHNOLOGY

Useful insight into the nature of the finite element based MAGIC System for
stress analysis can be gained from examination of the conceptual organizational chart
shown in Figure 4. This chart illustrates the modularization which is fundamental to
general purpose program organization. Overall efficiency is achieved by this modular-
ization in much the same way that complex electronic, mechanical, and even structural
systems are modularized to maximize versatility and maintainability,

9
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The Libraries shown in Figure 4 are particularly noteworthy. These represent
a higher level in a hierarchy of modularization in that they build in entire series of
optional modules. The simultaneous availability of alternatives, achieved by standard-
ized module interfaces, provides numerous benefits. The most obvious benefits are
those derived from flexibility. Standardization also gives a repetitiveness to program
developmental phases that enhances efficiency and reliability. Engineering interfaces
reflect this standardization to advantage as well. These factors contribute importantly
to the favorable cost effectiveness of the MAGIC System which is discussed in Section
11.

The conceptual organization shown in Figure 4 reaches slightly beyond that of
the subject MAGIC System. This enables a more comprehensive discussion of the
relevant programming technology and gives perspective to the actual organization of
the MAGIC System. Variances between the organization of Figure 4 and that of the
MAGIC System are delineated clearly.

The nature and function of the individual program modules are described in the
following paragraphs. These descriptions also indicate the position of the modules in
the logical flow of an analysis. As a consequence, the individual module descriptions,
taken collectively, yield the objective overall picture of the programming technology
intrinsic to the MAGIC System.

1. Resident Operating System

The Resident Operating System controls and coordinates job processing. It
normally contains such subsystems as input/output routines, external storage super-
visors, language compilers and assemblers and system accounting routines. Example
Resident Operating Systems are: IBSYS for IBM 7090 and 7094, OS for the IBM
System/360, EXEC for the UNIVAC 1108 and SCOPE for the CDC 6600.

Machine compatibility has been insured by the exclusive use of FORTRAN
IV in the MAGIC System. The absence of machine or assembler language from every
portion of the program eliminates most problems of machine dependency and imple-~
mentation difficulties. Thus, even though the program is a system in itself, it is de~
signed to function under the control of the normal operating system resident on a
machine.

Avoidance of machine dependency also prevents optimum utilization of aux-
iliary direct access storage units. However, the overall organization of Figure 4 is
designed to accommodate this generalization. The conceptual logic implied in the
chart impli- > the addition of more modules under the Executive Monitor than just the
FORMAT Monitor. In this way, direct access dependency could be incorporated into a
monitor on the same level as the FORMAT Monitor. Other matrix control systems
could also be placed under the Executive Monitor. Every addition would also auto-
matically inherit the capabilities of the underlying modules.

11
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2. Executive Monitor

The Executive Monitor is the highest level of control within the MAGIC
System. This module controls location of the Problem, Execution, and Material
Libraries. In addition, the Executive Monitor has sole control over maintaining and
accessing the Execution Library. The primary function of the Executive Monitor is to
coordinate the Libraries in conjunction with selection of the appropriate submonitor
as directed by the application. Since, at the present time, the FORMAT Monitor is the
only submonitor, the alternative Libraries are placed under its conirol and the Execu-
tion Monitor is not required.

3. Problem Library

The Problem Library takes the form of a magnetic tape prepared for the
Analyst. Multiple problems are accumulated on the Problem Library tape. An entry
in the Problem Library includes a complete record of the input data specification,
selected intermediate results, and the output data specification. Control of the tape as
regards access for subsequent additions, deletions, calculation, or displays resides
with the Analyst. The Problem Library serves as a flexible interface between pro-
gram and Analyst thereby providing an opportunity for effective data management.

Input data sets are made self generating insofar as is possible. This is
effected in a preprocessing phase and the complete data set is recorded in tl 2 Problem
Library. After approval of the input, the Analyst can invoke the Problem Library to
continue the execution. Placement of intermediate results in the Problem Library
provides, in the same way, for economical recovery at certain miiestones in the
solution process.

Localized design modifications and gridwork refinements can be accom-
modated without dealing with the entire structure. This is particularly important
wnere multiple thermal loads are considered. Partitioning can sometimes be designed
to circumvent ill conditioning. Very large, very sparse matrices are avoided, as are
long continuous executions. Generally it can be said that the Problem Library, partic-
ularly when coupled with substructuring, allows analysis operations to be broken into
manageable units.

In summary, the Problem Library (Block 3) of Figure 4, is accessible from
any module below it to obtain data from previous problems and store data for the cur-
rent problem. A Problem Library may be generated in the present MAGIC System to
the extent provided by the availability of restart points in the analysis process as de-
scribed under the FORMAT Monitor. No provision is built in to conduct analyses by
substructures.

12
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4, Execution Library

The Execution Library is designed to build in alternative abstraction in-
struction sequences. Entries in this module represent procedures such as displace-
ment, stress and stability analysés. In addition to standard built-in analyses, non-
standard analyses can be conducted simply by defining an entry in the Execution
Library. Revision or deletion of this module is controlled by the Executive Monitor.

The broad variety of analyses encountered in practice actually embody
relatively few computations which are unique; rather, an extensive commonality
exists. It is this commonality that enables the efficient development and operation of
automated capabilities which are general purpose in the sense of multiple types of
analyses.

This module is not built into the present MAGIC System. Abstraction in-
struction sequences are included in the input data deck to effect the desired type of
analysis.

5. Material Library

The specification of mechanical and physical material properties can be a
burdensome task. This is particularly true in the case of laminated materials or in
the presence of thermal degradation of material properties. Accordingly, the Material
Library is a very useful feature of the MAGIC System. This Material Library is sim-
ple in concept; yet, its availability can save time measurable in man-days against a
single problem. In contending with design changes and multiple thermal load condi-
tions, the Material Library is virtually indispensible.

The Material Library takes the form of a magnetic tape which is a perma~
nent data set available for interrogation by the MAGIC System. The Executive Monitor
is the natural control level for additions, modifications and deletions to the Material
Library. In the absence of the Executive Monitor, this function is served by the
Structural System Monitor in the present MAGIC System. Updating of the Material
Library may be conducted as a separate execution or as an integral part of the
analysis process.

A complete set of temperature referenced properties for a material con-
stitutes an entry in the Material Library. Each entry in the Material Library is taken
to include material designation, lock code, elastic constants, coefficients of thermal
expansion and mass density. Provision is made for data at up to nine temperature
levels, Linear interpolation is employed in interrogation of the Material Library for
material property values at a specified temperature level. Material anisotropy is
assumed as well as temperature dependence,
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6. FORMAT Monitor

In the absence of an Executive Monitor, the control functions and respons-
ibilities of the Executive Monitor are handled by or delegated to the FORMAT Monitor.
In addition, the FORMAT Monitor carries out its normal functions.

The FORMAT Monitor controls the selection and usage of the underlying
modules within the confines permitted by the Execution Monitor. At each transfer
point between the underlying modules the FORMAT Monitor will make a logical de-
cision, based upon information returned from the module, regarding the continuance
or discontinuance of processing. Termination of processing is determined voluntarily
by the Analyst unless unrecoverable error conditions are encountered by a module.

The FORMAT Monitor contains the correlation table between external
storage devices and their respective FORMAT functions. The Analyst has at his
command the option to revise the correlation table for any given application. The
FORMAT Monitor has the assignment of processing any such revisions.

Restart capabilities are also controlled by the FORMAT Monitor as directed
by the Analyst. By generating the desired abstraction instruction sequence and re-
questing pertinent information to be saved, the Analyst has at his command flexible
restart capabilities. For example, in the contexts of a structral system, element
matrices may be generated, saved and the problem restarted at a later level of anal-
vsis. Another example of restart would be to utilize the option of termination after
the Structural System Input Data has been read and interpreted. Saving of this inter-
preted input would allow the Analyst to examine the input printout and restart the
problem without the necessity of reinserting the original data for reading and inter-
pretation.

Operating under the FORMAT Monitor, the basic computational flow of the
program starts at the Preprocessor Monitor, passes the Execution Monitor and then
to the Structural System Monitor which ends the cycle by returning control to the
Execution Monitor. In this way, multiple data decks may be batched in a single
MAGIC System execution.

7. DPreprocessor Monitor

The Preprocessor Monitor interprets problem specification data pertinent
to program setup. The processing involved includes specification of (a) master input
tapes, (b) master output tapes, (¢) analysis header labels, (d) problem header labels
and (e) page size for printout. Matrices provided via input data cards are read and
stored within the Preprocessor Monitor. Other functions of the Preprocessor Monitor
are accomplished through its three underlying modules.

14




8. Abstraction Instruction Compiler

The Abstraction Instruction Compiler interprets the abstraction instructions
and extracts matrix names, operation codes, scalars and statement numbers in the
process., These quantities are stored in packed form and returned to the Preprocessor
Monitor for use by the Instruction Logic Supervisor. Serious compilation errors may
terminate execution at this point.

9. Machine Resources Allocator

The Machine Resources Allocator partitions the available internal storage
into a program area and work area. This module also assigns program functions to
the external storage facilities available, The four possible program functions for an
external storage device are instruction storage, master input unit, master output unit
and input/output utility unit, These allocations of storage areas are based upon pro-
gram and application requirements. If no master input or master output units are
needed, their function reverts to input/output utility.

10. Instruction Logic Supervisor

The Instruction Logic Supervisor scans the information assembled by the
Abstraction Instruction Compiler and the Machine Resources Allocator and creates a
logical path for the Execution Monitor. At the same time an optimum external storage
assignment is made for each matrix named in an abstraction instruction in the know-
ledge of the logical path to be followed. The Instruction Logic Supervisor takes into
account, in this process, such consideration as the channel addresses of external
storage facilities, number of external storage facilities, capacities of external storage
facilities and combinations of input and output matrices of abstraction instructions.
The result is an optimum utilization of available machine resources for the sequence
of operations released to the Execution Monitor from the Preprocessor Monitor.

11. Execution Monitor

The Execution Monitor follows the path specified by the Preprocessor Moni~
tor accessing the underlying modules to perform the prescribed operations. Operations
can be performed on matrices up to the order 2000. The efficient utilization of machine
storage resources is assured by the setup passed from the Preprocessor Monitor.

The Execution Monitor will terminate processing if any of the rules of
matrix algebra are violated., Matrices are stored by columns complete with matrix
name, dimensions and sign. If a column of a matrix is less than 50% dense, it is
stored in compressed format. The modular form allows ease of insertion of additional
matrix manipulative or generative operations.

15
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12, Algebraic Matrix Operation

The Algebraic Matrix Operation module is essentially a library of routines
for matrix manipulation. This library includes routines for addition, subtraction,
multiplication, transposed multiplication, scalar multiplication, transposition, inver-
sion, equation solving by elimination, equation solving by iteration, and eigenvalue/
eigenvector extraction.

Each of the above operations is incorporated into 2 separate module and
all except the eigenvalue operation have out of core capability.

13. Nonstandard Matrix Operation

The Nonstandard Matrix Operation is essentially a library of routines to
effect nonstandard matrix manipulation. Included in this library are routines to raise
each element within a matrix to a specified power, locate maximum or minimum
values in a row or column, adjoin two matrices column wise, and multiply two matrices
element by element.

14, Special Function Modules

The Special Function Modules constitute a library of routines to effect non-
algebraic operations. Included inthis library are routines to print, skip ahead upon
encountering a null matrix, select the best condition columns from a triangular
matrix, and solve the selected set of simultaneous equations, form a diagonal matrix
from a row or column matrix, and rename a matrix.

15. Structural System Monitor

The Structural System Monitor is the matrix generator of the structural
analysis capability provided by the MAGIC System. Machine storage resources are
allocated to this module by the Preprocessor Monitor. Matrices describing a struc-
tural system are released from this monitor for the conduct of the matrix manipula-
tion phase of the structural analysis process. The Structural System Monitor together
with its underlying modules comprise the major portion of the MAGIC System for
structural analysis.

16. Structure Data Preprocessor

The Structure Data Preprocessor is the principal input data interface be-
tween the MAGIC System and the Structural Analyst. As such, the nature of this
module is described in the subsection E, "Program/Analyst Interfaces."

The basic function of the Structure Data Preprocessor is to read and inter-
pret all data describing the idealized structral model and to make this data available
for the generation of structural matrices via the Structural System Monitor. The
interpretation function carried out by the Structure Data Preprocessor is substantial
since data sets are designed to be internally generated insofar as is possible.

16
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An optional execution interruption is provided at completion of the structural
data preprocessing. The completed set of structural data is printed for examination by
the Analyst. Then, upon approval of the input data, the analysis process is restarted.

17, Utility Library

The Utility Library is an elementary interpretive system in the form of a
collection of FORTRAN subroutines. Computational routines which are common to
several element matrix generation procedures are placed in the Utility Library to
avoid a duplication of programming. An extensive commonality exists among the
generation procedures even for diverse types of discrete elements. Expleitation of
this commonality via the Utility Library contributes measurably to the efficient de-
velopment of the Element Library in the MAGIC System. Included in the Utility
Library are routines for numerical integration, interpolation, specialized structural
print and algebraic operations for small size matrices.

18. Element Library

The Element Library is the heart of the MAGIC System for structural anal-
ysis. Each entry in this library represents a finite element model. A call on the Ele-
ment Library causes numerical generation of certain matrices of a complete element
representation.

The availability in the Element Library of suitable elements for idealization
determines the applicability of an analysis system to different classes of structure.
Moreover, the set of matrices embodied in each element representation determines
the type of analyses which can be performed. In the absence of versatile Element
Libraries, even the best matrix and tape interpretive systems yield sterile analysis
capabilities.

The six finite element models incorporated in the Element Library of the
MAGIC System and the set of element matrices provided were described in the pre-
ceding subsection C. Experience has shown this Element Library tc provide a power-
ful capability for structural analysis.

E. PROGRAM/ANALYST INTERFACES

Discussion of the MAGIC System f.r structural analysis is not complete without
some comment on the program/Analyst interfaces. The acceptance of automated
analysis tools by stress analysts hinges importantly on the simplicity of these inter-
faces. The first interface encountered by the Analyst is with the Preprocessor Moni-
tor. The basic instruction sequence to be executed passes through this interface from
the Analyst to the program. These instructions consist of a sequence of mathematical
equations to be performed. An abstraction instruction sequence for linear stress
analysis is illustrated in Figure 5. Such instruction sequences may be constructed at
the volition of the Analyst and executed to perform a wide variety of computations.

17
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FORMAT ABSTRACTION INSTRUCTION LISTING PAGE
CINSTRUCTION SCURCE

OISPLACEMENT AND STRESS ANALYSIS INSTRUCTION SEQUENCE
MATLBALOACS TRy TAJKELyFELySELySZALELy + » ¢+ = JUSERD4G,

PRINT OLTPUT MATRICES

anc OO0

PRINT (D+0+FsCONCs +E6,) LOADS
PRINT (REDLOF,C.0.FoeE6y) TR
PRINT TINSYY ohORSUH E6e) TA
PRINT (ROM 2COL 1€} KEL
PRINT (ROW +COL vE6y) FEL
PRINT (ROW +COL vE6s) SEL
PRINT (ROW 2COL vE69) SZALEL

FORM TAR MATRIX (ASSEMALY AND APPLICATION OF BOUNDARY COND.)

[sNaK e}

TRYT = TR iRANSP,
VAR = TA ~TMULT. TRTY

_ASSEMBLE ANL REDUCE ELEMENT STIFFNESS MATRICES

[xX s X g}

KTEMP = KEL .TPULT, TAR
STIFF = TAR TMULT, KTEMP
PRINT «FORCE +CISP, 4 ) STIFF

ASSEMBLE ANL REDUCE ELEMENT APPLIED LOADS

FTELAR = VAR ,TMULT. FEL
PRINT (REDDOF,COND..- » ») FTELAR

APPLY BOUNDARY CONDITIONS TO SYSTEM LOADS

(X g1l o]

" LOADR = TR .MULT. LOADS
PRINT (REDDOF,COND. o, o) LOADR

COMBINE ELEMENT AND SYSTEM LOADS

[a X 2K g

TLOAD = FTELAR oADD. LOADR
PRINT (REOCOF,CONB, » ») TLOAD

SOLVE FCR DISPLACEMENTS

OO0

DISPR = STIFF ,SEQEL. TLOAD
PRINT (REDCOF,COND. , :) DISPR

SOLVE FCR ELEMENT STRESSES

OO

STREL = SEL MLLT. TAR
STRESF = STREL +MULY. DISPR

STRESS = STRESF ,SUBT. SZALEL
PRINT (NRSEL +CONB. 4 o} STRESS

SOLVE FOR ELEMENT FCORCES

(2 X aN g

" FORCEL = KTEMP .MULT, DISPR
FORCES = FORCEL ,SUBT, FEL i
PRINTY (DeOsFesCOND. o ¢) FORCES

SOLVE FOR SYSTEM REACTIONS

ano

REACTN = TA JMLLT. FORCES
REACY = REMCTN .5UBV. LOADS
PRINT (DeOsFsyCUOND, ¢ +) REACT
Figure 5. Hlustrative Apstraction Inatruction Listing
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Executions may be terminated and restarted at the corresponding exit and entry
points of any abstraction instruction. Input data, intermediate results or final results
can be automatically saved in this way. Then, with the retrieval of this data, comput~
ation can be resumed.

The second program/Analyst interface encountered is with the Structural
System Monitor. This is the primary input data interface of the MAGIC System for
structural analysis. Experience has shown that significant portions of the labor and
computer costs of analyses are occasioned by incomplete or improper specification of
problem input data. In recognition of this, snecial features are associated with the
MAGIC System to facilitate the confirmation of problem data prior to execution. In-
cluded are annotated input forms, data consistency checks, and an option to read, com-
plete and write the input data prior to attempting execution.

Preprinted input data forms are essential to the reliable specification of data.
These forms provide a labeled entry position for all data items which gives engineer-
ing definition to the quantities requested. Control options are selected simply by a
mark (X). These provisions help to minimize occurrences of incomplete specifications
of problem data.

The printed input forms take advantage of a special MODAL data card feature.
The MODAL card feature enables data-prescribed initialization of tables. Explicit
data requirements are thereby limited to specification of exceptions to the MODAL
initialization.

In addition to the MODAL card, a data Repeat option is available, When utilized,
data from the previous point is retained for the indicated point. The combination of
the MODAL card and the Repeat option significantly reduces the volume and complexity
of input.

The input forms also embody permanent label cards which automatically precede
subsets of data, thereby allowing flexibility in the arrangement of the subsets of data
to form the total input data deck. Data associated with opiions not exercised are
simply omitted. This is particularly useful when a problem is being restarted at co
advanced stage of computation.

A data confirmation preprocessing phase, with problem execution suppressed,
is a recommended practice in utilization of the MAGIC System. Ia this data process-
ing execution, explicit data is read and implied data is generated. Yor example,
MODAIL card completions are conducted and material properties are interpolated
from the Material Library. Consistency of all the data is checked and 2 complete
record of the data is recorded for restart and printed for inspection.

There are basically two types of output provided by the MAGIC System. The
first is matrix print provided from the Special Function Print Module. This encom-
passes all output external to the Structural System Monitor. A standard format is
employed to print matrices.

19
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The second basic type of output is that provided from within the Structural
System Monitor. Output from this module includes a list of the completed input data
with self-explanatory engineering labels. In addition, intermediate results employed
in checkout are optionally available in the completed program.

F. SIZE CHARACTERISTICS

The size characteristics of the MAGIC System are twofold: first, there are the
size characteristics of the program itself and second, those zssociated with the prob-
lem solving capability. Considering the former, the MAGIC System contains 212 sub-
routines (approximately 25,000 FORTRAN IV source cards) logically designed into 89
overlay links on an IBM 7090 with 32,000 words of storage. The overlay design re-
flects the optimum use of available storage yet maintains respectable execution effi-
ciency.

The MAGIC System offers large scale capakility with no penalties to small
applications due to the fact that out of core operations are nct utilized unless the mag-
nitude of the application requires them. The size of the program has necessitated use
of SUBSYS, a package which improves the loading capabilities of IBSYS, on the 7090/
94. In addition to allowing the program to be loaded, SUBSYS allows the program
overlay load tape to be saved, thereby improving execution time. Also, SUBSYS allows
programs to be executed back to back without passing through the IBLDR section cf
IBJOB for each program. On the 7090 under SUBSYS the program is actually divided
into three segments: Preprocessor. Execution and Structural System. Third genera-
tion computers, such as System/360 and UNIVAC 1108, have the capabilities of
SUBSYS incorporated into their resident operating system.

The scale of the analysis capability provided via the MAGIC System can be
characterized as '"on the order of" 2000 displacement degrees-of-freedom. Other
relevant maximum size characteristics are 1000 discrete elements, 1000 grid points
and 10 applied load conditions. Matrices which 7.re card input may be of order 2000
x 2000 and contain up to 4500 single precision reai non-zero elements on a 32,000 word
machine,

The MAGIC System needs a minimum of eight external storage units to operate,
distributed into the following functions: one unit assigned as Instruction storage for
the Execution Monitor, one unit assigned as a Master Input Unit, one unit assigned as
a Master Output Unit, and five units assigned as Input/Output Utility Units. Every
effort should be made to make the most external storage units possible available,
since any increase in the available storage units increases execution efficiency.

The stated maximum size characteristics apply to the linear stress analysis
capability of the MAGIC System. A stability analysis capability is also included in the
MAGIC System, as with the linear stress analysis, and explicit matrix statement of
the stability analysis procedure is given in Section 3. The number of displacement
degrees-of-freedom which can be accommodated in the eigenvalue stability analyzis is
limited to 130. The other size characteristics stated for the stress analysis remain
applicable.
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G. SPECIAL FEATURES

Many features have been built into the MAGIC System which are not fundamental
to a finite element computer program but which are essential to a general purpose
analysis system for practical structures. Foremost among these features is a great
variety of transformation matrices. Material axes transformations are provided to
accommodate arbitrary axes of orthotropy. Stress axes transformations enable the
referencing of output displays to convenient axis systems. Grid point axes transform-
ations account for irregular boundary conditions and allow pseudo-curvilinear dis~
placement variables. Eccentric connection transformations provide for realistic
modeling of frame joints and shell stiffeners. Finally, grid point suppression trans-
formations are included to eliminate unwanted element grid points prior to assembly.

A second feature of special interest is the element repeat feature. There are
actualiv two levels of element repeat. The first is a repeat of element data. Under
this option, all calculations proceed as usual, but the repeated provisior. <{ identical
element extra data cards is avoided. The second level of element repeat is element
matrix repeat and this is the more powerful option by far. Under this option, the ele-
ment matrices of the prior element are simply carried forward as those of the present
element; no calculation is carried out. Clearly under this option, a great saving in
input data specification is realized and important savings in calculation can be realized
as well, The extent to wkich the input data can be reduced by the element matrix re-
peat feature is made clear in the User's Manual.

A useful element load condition scalar is associated with the multiple load con-
dition capability of the MAGIC System. Element load conditions arise in load condition
number one. A multiplicative constant is then data prescribed for all subsequent load
conditions. This scalar controls the participation of the element loading. With this
feature, a total load system can be decomposed into several parts and behavicr pre-
dictions can be obtained conveniently against these as well as against the total load
system. This feature is particularlv useful in separating effects of thermal and
mechanical applied load combinations.

The majority of the special features embodied in the MAGIC System are explained
best within a specific context. Accordingly, with the exception of the few included here
for special emphasis, such features are treated as an integral part of other report
sections. Many are disclosed in Volume II of this report in the process of explaining
items of input data and interpreting example problem output data.
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3. THEORETICAL FRAMEWORK

A, INTRODUCTION

The matrix methods of analysis based upon discrete element idealization have
heen the subject of an extensive body of technical literature and, more recently,
entire books as well, (19, 20). This documentation obviates the need for detailed
theoretical development herein. Nevertheless, in the interest of clarity and com-
pleteness, presentation of the discrete element representations incorporated within
the MAGIC System is prefaced in this Section by general symbolic statement of the
analysis processes. This gives explicit definition to the methodology and notation
employed.

Statement of the analysis processes is separated into three parts, Firstly,
consideration is given to the discrete element representations. Then, having given
definition to the discrete element matrices employed, the steps executed by the
MAGIC System in the conduct of a linear stress analysis are described. Lastly, the
stability analysis process, which is an extension of the linear stress analysis, is
presented.

B. DISCRETE ELEMENT MATRICES
1. TFundamental Requirements

The development of a discrete element representation is essentially a
problem in elasticity. Accordingly, the fundamental requirements to be satisfied
are those of:

(a) Equilibrium,

(b) Material Behavior,
(c) Compatibility, and
(d) Boundary Conditions.

It is convenient to approach the satisfaction of these requirements for a discrete
element variationally by way of the principle of potential energy(zl) which states
that:

Of all possible displacement states within
as given admissible class { S 1, that which
makes the total potential energy Qp 5
stationary, satisfies the equilibrium re-
quirements and is t . actual displacement

state {St 7, i.e.
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for all {8} in some neighborhood of {8 i then associated equilibrium position
is stable.

2. Discretization

The foregoing statement of the principle of potential energy is expressed
in terms of a finite number of displacement variables S l implying prior discreti-
zation of the potential energy functional. Discretizatioh of the potential energy
functional is effected in accordance with the well known Rayleigh-Ritz techniques
by the introduction of assumed displacement mode shapes. Admissibility conditions
must be imposed on the characteristics of these displacement mode shapes to assure
satisfaction of certain fundamental requirements.

T

The fundamental requirement of compatibility of strains is provided for
subsequently in this development by expression of the strains in terms of displace-
ments. Since the functional dependence of strains upon displacements involves
; differentiation, continuity requirements arise as criteria of admissibility to be
' satisfied in the construction of displacement mode shapes. It should be emphasized
that these continuity requirements remain applicable across discrete element
boundaries

The foregoing interelement continuity admissibility conditions are peculiar
to the discrete element method of analysis. The admissibility requirements associated
1 with conventional applications of the Rayleigh-Ritz techniques apply as well, The
definition of general systematic procedures for constructing displacement functions
within the collective confines of these fundamental requirement related admissibility
conditions has proved to be an elusive goal. However, significant progress in this
direction has been made by the use of unconventional and curvelinear coordinate
systems and interpolation formulae(23, 24, 25),

T

Practical considerations involved in the selection of assumed displacement
, functions go beyond the problem of admissibility. Of particular importance is the
; number of displacement degrees-of-freedom to be associated with an element. The
E provision of degree-of-freedom in excess of the number required to establish ad-
missibility is attractive in that it reduces the number of elements required in ideali-
zations in order tc maintain a certain level of precision and correspondingly reduces
the input data preparation.
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Improvement in stress predictions is also realized as a consequence of
including additional degrees-of-freedom in an elcment representation. Furthermore,
it has beer demonstrated on certain example problems that improved predictions of
displacement behavior can be obtained with fewer total degrees-of-freedom if the
number of degrees-of-freedom associated with an individual element are increased (26)-

These attractive advantages of higher order assumed displacement functions
are achieved at the expense of simplicity, which has been a primary recommendation
of the discrete element methods. This characteristic has been somewhat obscured by
the trend toward advanced geometrically complex discrete elements pursued in the
interest of eliminating structure idealization errors. The additional increment in
complexity of mode definition, formuiation, checkout, specification, and numerical
expression introduced by extra element degrees-of-freedom severely handicaps
attempts to achieve the aforementioned advantages.

As a final comment regarding criteria for selection of assumed displacement
functions it is pertinent to note that many practical structures have obvious physical
definition in terms of panels and stiffners. A lesser element gridwork would require
prohibitively complex, problem orientated, stiffened panel discrete elements. At the
same time the increase in accuracy afforded by a higher order panel element repre-
sentation is unwarranted in most problems of this type. Thus, it is concluded that
the most significant advancements in element representations will continue to stem
from elimination of structure idealization error rather than reduction of element dis-
cretization error.

The actual process of constructing displacement mode shapes begins with
the definition of a convenient set of coordinate axes for the discrete element model.
Then, the boundaries of the element are given parametric description. Polynomial
mode shapes are the type customarily chosen to represent the displacement functions
within the parametrically described boundaries of a discrete element. With reference
to the selected element coordinate axes, such assumed displacement functions can be
written symbolically as

{u0} = [po]{g @

where

{ u} is the vector of displacement functions,

[ B] is the matrix of mode shapes, and

{ B} is the vector of mode shape participation coefficients.
The participation coefficients { }in the assumed displacement modes are referred
to as "field coordinate'’ displacement degrees-of-freedom. These field coordinates

are commonly retained throughout the algebraic development of a discrete element
representation; however, in order to effect assembly of elements (establish interelement




continuity) it is necessary to transform to gridpoint displacement degrees-of-freedom

. This transformation results from a straightforward application of inter-
polafion theory. The displacement functions are particularized to the selected grid-
point quantities {Sg} thereby yielding,

{Sg}=[r8£]{ﬁ} (4)

The objective transformation is then obtained by the inversion of this relation, i.e.

{B}- [1"38] {8¢} )

The gridpoint displacement degrees —of—freedom{ 8} are generally defined
with respect to coordinate systems on the individual discrete elements. Frequently,
a number of further displacement coordinate transformations are then necessary to
obtain degrees-of-freedom which are suitable for assembly and convenient for inter-
pretation. All such transformations are given explicit definition within the individual
discrete element representations; however, two are common to most elements and
are described here.

Generally, it is necessary to transform to a global Cartesian set of co-
ordinate axes. This system, common to all discrete elements of an idealized
structure, is suitable for interconnection of the elements. The transformation re-
lation to obtain gridpoint displacement degrees-of-freedom { § s}referenced to global
axes takes the form

{oc}=[ e J{2. ) ®

in which the transformation matrix [Pgs] consists of submatrices of direction
cosines.

Boundary conditions on displacement quantities not aligned with the global

axes require special point-related coordinate axes for these gridpoints. Taking the
associated coordinate axes transformation for a gridpoint as,

{xs} i [qu] j {xq}i “

the transformation to gridpoint axis displacement degrees-of-freedom is given by

(.} 1)

Transformations of this type are employed simply to facilitate interpretation of
the results in many cases.
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It is useful to conclude comment on the construction of displacement
function mode shapes by collecting the foregoing transformations. The result is

{8} [Pﬁq ]{Sq} ©)
[Fﬁq]=[FBS][PgS][ Tsq ] (10

Customarily, the formulative process i's ¢arried forward using the
field coordinate displacement degrees-of-freedom { ﬂ} and then Equation 9 is invoked
to obtain the discrete element matrices with respect to the gridpoint displacement
degrees-of-freedom {8 } The matrices which actually participate in this collective
transformation I'B q ] vary from element to element.

where

3. Equilibrium

The principle of potential energy was introduced to facilitate satisfaction
of the fundamental requirements for a discrete element. Having examiaed the
nature of the discretization implied in the statement of the energy principle,
attention is returned to assuring satisfaction of these fundamental requirements.

It is clear from the statement of the principle of potential energy that this
variational approach circumvents explicit consideration of equilibrium requirements.
The equilibrium requirements arise naturally in the Euler equations of the variation
process, This is an important advantage of the method.

4. Material Behavior

Preceeding in the order listed at the outset, the second fundamental re-
quirement to be satisfied in the elasticity problem posed by a discrete element is
that of material behavior. Linear elastic behavior, governed by a generalized Hooke's
law, is assumed, i.e.

{e0}[=] {{fe0} _{‘i()}} (11)

where

{a’} is the stress state,
{} is the state of strain
E] is the elastic property characterization, and

{c } is the prestrain state.
i
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In recognition of the increasing utilization of high performance particulate
and fibrous composite materials, material anisotropy is provided for in defining this
stress~-strain relation. The availability of material property data generally limits
material specifications to orthotropic, at most. However, the application of a rotational
transformation in order to reference the material characterization tc the geometric
coordinate axes of a discrete element tends to fill the material property matrices.

For this reason, no terms in elastic [E] and thermal {a} property characterization
matrices are assumed zero.

5., Compatibility

Satisfaction of the third fundamental requirement, compatibility, is provided
for by expressing strains in terms of the displacements. Interpretation of this require-
ment in terms of admissibility conditions on displacement mode shapes was discussed
previously and appropriate functions are assumed available at this point. The intro-
duction of these displacement mode shapes (Equation 3) into the relevant strain-dis-
placement equations enables expression of the strains in terms of the discrete element
field coordinate displacement degrees-of-freedomn, i.e.

(e = o {8}

Nonlinear terms have been omitted in this set of strain~diznlacement
relations. These will be given special consideration subsequently.

6. Boundary Conditions

The final fundamental requirements which must be established are the
boundary conditions. Force boundaries need not be given explicit consideration
since these are accommecedated implicitly by the variational process. Displacement
boundary conditions, on the other hand, must be imposed. Expression of the element
displacement mode shapes in terms of boundary displacement provides for the simple
imposition of these boundary conditions.

7. Potential Energy
Proceeding toward algebraic expression of a discrete element representa-

tion, it remains to give definition to the potential energy function. The strain energy
density, dU, which is basic to the potential energy, is defined as

au = {e} de o {13)
f{o} [ a<]{<}

Invoking the relation governing material behavior obtain expression of the
total strain energy as,
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Substituting the relation governing compatibility (Equation 12) obtain, in the pre-
sence of distributed mechanical loading, { p } the total potential energy function in

MO g of 4 LelleufTsec] (8)
-|8Jfec] =) }
|8)[=0] {3}

This substitution of the assumed displacement functions into the element
total potential energy functional and the subsequent integration over the volume
comprise a major part of the effort associated with the derivation of a discrete
element representation. The procedure is conceptually simple though algebraically
complex. Indicating the integration symbolically, obtain an algebriac expression for
the element total potential energy as

o, -3 | BI[R]{B}-18]{%} -|BI{F,} o

[ E][ c( )]dv an
[e]{e; O}av (18)

F}- fV[B( ) T{p ()} 9

These element m. trices in the potential energy expression are referenced
to the field coordinate disnlacement degrees~of-freedom. The previously defined
transformaticn (Equation 9) is introduced to obtain the element matrices in the
potential energy expression with reference to selected gridpoint displacement
degrees-of-freedom, i.e.

@, —;«' '-qu[K]{sq }—lsq Hl‘e }"lsq J{Fp} {20)



h
where T

[<]-[r,)" [¥][Tg, ]
(v }[rg,] {F.)

{Fp}=[rﬁq: {;p } @

At this point the objective matrices governing behavior of a discrete
element follow immediately by executing the variation of the potential energy
function, i.e.

[x{s, }-{re}-{m}= {7} (24)

where

[ K] is the eleinent stiffness matrix,
{ Fe} is the element prestrain load vector,
{Fp} is the element distributed load vector, and

{Fc} is the concentrated gridpoint load vector,
8. Incremental Stiffness Matrix

The vepresentation for the frame element incorporated in the MAGIC
System is written to include an incremental stiffness matrix. These matrices stem
from avoiding a complete linearization of the mathematical models for the discrete
elements. The formulative process is outliiied below. Conceptual examination of
this process is deferred to the presentation of the stability analysis procedure.

As a first step, the total strain induced at a point is decomposed into a

contribution linearly related o displacement quantities {e } and one which is second
order in the displacement quantities {e N } , 1.,

{ex Oa}{e O} {e 1} (25)

Using this notation, the potential energy contribution which leads to the
objective incre:nental stiffness matrix takes the form,

o, = [ 0] ] {ey 0} v 2o




All other energy terms associated with the nonlinear corcribution to the total strain
are assumed to be negligible in comparison.

The knowledge that each term of {e( )¢ has a linear dependence on the dis-
placement functions and that the dependence of each term in €l )} is quadratic
allows alternative expression of Equation 26 as

‘1’c=212jfv A & () g On (av (27)

The term )‘ij is simply a multiplicative constant and the fj, g; and hj are dis-
placement function forms. These displacement quantities are expressible interms
of the assumed displacement functions thereby accomplishing the discretization of
the energy functional. Symbolically, this expansion in terms of the assumed dis-
placement function mode shapes can be written

fi=.Bf().{a}i (28)

g5=.Bg”4{b}j (29)

he |3 O){c} @0
J .

The {B} matrices contain the independent variables of the mode shapes which
are common to each term of a given element respresentation and the La is

{ b} ., and fe j are the coefficient matrices. The discretized potential energy
function whicl‘l resulis frcm the introduction of these assumed mode shapes is cast
into matrix form - — . }
1 l ] CN ’ BN ta .
- emwe (e ] l
P o TNy I,l.aJIleJl.lJ "\ (] 1] ®1)
[C |5 ) AN] {b}-
Nj .., j
B T A T c
where [ N] ? [ N] ’ {}J
-, N “ij
A = f B B ;
| %l ,/; i(){g}j Pady 4 (32)
B ls = j: g; () {Bf}j By J; av (33)
.CNAij =j;hi( ) {Bf}j _Bg”. dv (34)
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Now in any given application the vectors { a l i’ { b} ; and {c} . must be
specified for the contributing energy terms. This is done by listing >‘ij together with

the following items for each term:

{a};=]a, i {8}, ©)
{p}i=Ta, ] {Bu}, (36)

(), -1, | {2,

The knowledge of these terms y’elds each typical energy contribution as
a function of the field coordinate displacement degrees~of-freedom and the sum of

the typical energy t~rms can be carried out to obtain

o -+ | B][8}{8} (38)

C

The matrix ['I:I ] is the element incremental stiffness matrix referenced
to the field coordinate displacement degrees-of-freedom. The previously defined
transformation (Equation 9) is introduced to obtain the element incremental stiffness
matrix with reference to selected gridpoint displacement degrees~of-freedom, i.e.

oot L3, [1N1{3, }

where T

[N]=[Pﬁq] [N][izpq] 9

The matrix [ N ] is the objective incremental stiffness matrix. It is
clear from the foregoing development that the elements in this matrix are functions
of the unkuown displacement quantities { 8t . It follows that this matrix serves to
introduce the effects of finite displacemeénts. The utilization of this nonlinear matrix
is discussed as an integral part of the stability analysis procedure.

It is recognized by the authors that the foregoing outline of the development
of an element incremental stiffness matrix is lacking in clarity. Matrix notation is
not weil smited to expression of ronlinear relations. Recourse to the explicit state-
ment of the incremental stiffness matrix for the frame element in Section 4 is suggest-
ed for clarification of this general symbolic statement of an element incremental

stiffness matrix.
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9. Stress Matrices

Having completed expression of the {otal potential energy based element
matrices, it is appropriate to define the element stress matrices. The element stress
matrices stem airectly from the governing equations. The stress-displacement
relation is obtained upon substitution of the strain-displacement equation (Equation
12) into the stress-strain equation (Equation 11), i.e.

{e}=[=][c0l{B}-[=]{<} “

Transformation to gridpoint coordinates and particularization to specific points with-
in the element yields

fol=[s 1.
{e}=[s){8q]}- {4} 42
where the element stress matrices are given by

(5] -[=1 [e] [5,)
{«}[e{«} (44)

Stress resultants rather than point stresses are sought in the thin shell and
slender prismatic elements. Resultants corresponding to deformations not consider-
ed may be obtained directly from the governing differential equations of equilibrium.
In general, a rotational transformation is applied in order to exhibit stress values
with reference te courdinate axes which simplify interpretation.

This completes statement of the method cmployed in deriving the discrete
element representations incorporated in the MAGIC System. The maitrices of the
individual discrete elements are recorded in Sections 4 through 9.

C. LINEAR STRESS ANALYSIS
1. Stiffness Equation

The mathematical model for the total structure is traditionally constructed
by forming equilibriuta equations corresponding to the gridpoint displacement degrees-
of-freedom. A more general systematic approach to constructing the mathematical
model for the total structure is realized by carrying forward the variational view-
point. Specifically, the energy functions for the total structure can be constructed by
effecting a nonconformable sum of the individual element matrix energy forms. This
nonconformable sum, in which common gridpoint degrees-of-freedom are employed
for adjoining elements, imposes continuity over the entire structure. Application of
the Euler equation (Equation 1) then yields the objective governing equations for the
structure, This variational approach to the assembly of elements to form a total
structure representation is particularly attractive when generalized nonphysical dis-
placements degrees-of-freedom such as "wyy," are retained (26),
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The element matrices for a structural system are generated from the in-
put data to the MAGIC System without regard to their interconnection as indicated in
Block 2 of Figure 2. Since knowledge of these individual element matrices is required
during subsequent analysis phases, they are released from the generation of the
MAGIC System as distinct submatrices of system level matrices. For example, the
linear strain energy stored in all the eleinents is written as

v=4 |a; % J{ a0} (45)

(88, }, Aoy}, oofag } o ofag ), | oo
[x],, ]

where

(5 ] - [ K ]J

(4"

— —

The element column matrices ace also stacked individually in system level
vectors. For example, the external work of all the element loads applied to all
elements takes the form,

w=I.AI J{Pel} (48)
where T T T T
{Pa}=[{Fe* P}y {Fer P}y o {Fe* B} | (49)

Several additional system level matrices are generated from the input data.
Firstly, the matrix of the gridpoint loading at every degree~of-freedom in all loading
conditions is provided, i.e.

T T T T T
1 - [ > N veeo [P
{*.} {pc}l,{xc}z, ,{c}j {*.} . | (50)
The input data describing the interconnection of elements is processed to
obtain a system level assembly matrix. This assembly matrix takes the form of a

transformation matrix beiween all possible gridpoint degrees-of-freedom I Ay
and those gridpoint degrees~of-freedom which remain after interconnection of the

elements to form the objective structural system {Aa} , i.e.
{Aa}=[ra]{AI } o
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A further system level matrix is generated to extract the degrees-of-
freedom which actually exist from all those associated with the gridpoints of the
assembled structure. This matrix takes the form of a transformation between the com-
plete set of degrees~of-freedom { A, } and the actual or reduced set { A . } , i.e.

were {a}-[5,]{a,}

T
{As}':,.Asl’AsZ’”.’Ast 64

Provision of the foregoing sysiem level matrices enables execution of a
linear stress analysis. The first step taken is to combine the assembly and reduction
transformations of Equations 51 and 53 to obtain

e {a1}-]re [{a 4} )

[ro J-[r, 11, ] (56)

This combined transformation is introduced into the energy expressions of
Equations 45 and 48 to obtain the desired system matrices, i.c.

where @, -5 [ ][ %] {a:}-[as]{) 7

[% = [Par ' [®s1 }[Tar ] (58)

{P}=[r ] Pa }+ [ I7{"c} (59)

The variation of this potential energy function now yields a governing stiff--
ness equation which takes the form

(% J{as}={ s} (60)

TLis equation is presently solved by inversion. In general, multiple load conditions
exist and a corresponding multiplicity of solutions is cbtained.
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2. Element Stresses

As in the case of stiffress and load matrices, the element stress matrices
are stacked individually in system level matrices, i.e.

(o, [ 500n, }-{4,)

3 where

{o:}= 1 {o } {0} }T{o}TJ (62)
(e} - {4}, {»}Z RO S

5],
 [s]
- _ 2 ..,
| 8, ] B , :[s]. (64)
AR
i © sl
Stresses are econfary variable< obtaineud subsequent to the solution for

the primary variables As . Equation 55 enables direct expression of the de-
sired stress quantities in terms of the primary displacement variables, i.e.

{o.}=[s][r,. ]1{a}-{s} (65)

3. Element Forces

Element forces are useful results in many applications. This is particularly
true when the element employed is a simulation of the actual componeni. The back
substitution for element forces takes the form

{Faet } = [®e1 ] ITar ] {Ac} - {Per } (66)

where
T T T T T
F = r 2 } PP } LI ] }
{ net} ll net 1’{Fnet}2’ ! {Fnet jo? ’{Fnet n (67)
4, Reactions

The final step is to calculate the force halances and the reactions. These
are readily available from th: element forces, i.z.,

{r, }- [L ] {Foet } ~ {Pc} (68)
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D. STABILITY ANALYSIS

An analysis procedure is incorporated in the MAGIC System to examine the
stability of flexible lightweight structures. The structural stability phenomena associ-
ated with structures of this type inevitably involve gzometrically nonlinear behavior,
while, in confrast, material behavior remains linearly elastic. Thus, it is somewhat
fortuitous that geometric nonlirearities are most readily incorporated in the subject,
displacement methods of analysis.

Tlere exists a hierachy of geometric nonlinearities which may be incorporated.
Associated with each level of nonlinearity is a degree of complexity and a range of
applicability. The stability analysis provided in the MAGIC System is restricted to
the prediction of critical load values and buckling mode shapes. The prediction of
nonlinear pre~ and post~buckling behavior is not attempted.

The "classical" approacn to buckling analysis is based upon the assumption that
the membrane force distribution induced in a structure is known ab initio as a linear
function of the applied loading. The intensity of the given membrane force distribution
that causes the effective flexure stiffness to varish implies a critical applied load
intensity or buckling load.

The behavior of thin-shell and slender prismatic structural components of
zero curvature is, within the scope of linear mechanics, naturally completely un-
coupled into membrane and flexure behavior. A similar uncoupling of membrane and
flexure behavior can be obtained for components of non-zero curvature subjected to
certain types of boundary and applied load conditions. This uncoupling of membrane
and flexure behavior is employed to advantage in the subject general instability
analysis. However, the nature of the instability phenomena associated with practical
built-up structures of complex configuration and applied loading transcends the scope
of the preceding classical buckling analysis assumption. In general, membrane and
flexure behavior can only be uncoupled within certain components or zones of the
total structure. Linear coupling, which occurs at the junctures, cannot be avoided and
is accounted for in the subject general stahility analysis.

Geometric nonlinearities are introduced into the analytical model for stability
analysis via the previously defined element incremental stiffness matrix. In the
presence of the incremental stiffness matrix, the potential energy for a discrete
element takes the form

T, -3 lSqJ[K]{Sq}Jr% lSqJ[N] {Sq}"[an{P} (69)

The element incremental stiffness matrices, like the stiffness and load matrices,
are made available from the matrix generator in the form
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[Nsl] = ’..:[N]j 1 (70)

The total potential energy for a structural assembly of discrete elements can
be indicated symbolically as

YRR U RN R S VNS [ E TV SR TN

in which the definition of the one new symbol introduced, [Ns] , follows immediate-
ly from the statement of the linear stress analysis, i.e.

(1= [ 1 [ ] [T ] @

Equation 71 represents a geometrically nonlinear mathematical model suitable
for the prediction of certain types of nonlinear behavior. The stability analysis in
the MAGIC System is directed toward the more modest goal of predicting critical
buckling loads. Reference 27 is recommended as a useful source of information
regarding the prediction of nonlinear pre- and post-buckling behavior.

The vanishing of the second variation of the total potential energy is invoked as
the buckling criterion. Executing the second variation of the potential energy of
Equation 71 obtain, .

[¥s] {885+ [n] {88.}- {0} )

in which the vector { SAS } represents an arbitary variation from the displace-
ment state {As } .

The computational utilization of Equation 73 for predicting critical loads is
based upnn the assumption that the incremental stiffness matrix appropriate to the
critical load level p,. can be expressed as a function of its value at any given load

level p i.e.

Wl - ()1

P - Py p=p

This is interpretable as assuming that the intensity of the internal force state changes
linearly with changes in the applied load without affecting the relative distribution of
the internal forces. Invoking this assumption transforms Equation 74 into the form,
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[x] {38} - (52)[%] {34,} (15)

Clearly, the availability of a linear solution at any load level enables specification of
the matrices of this governing equation. The prediction of the critical load level is
then reduced to the solution of an eigenvalue problem. The incorporation of this
approach in the MAGIC System provides a powerful tool for stability analyses of
general frame and thin shell structures.
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4, FRAME ELEMENT

A. INTRODUCTION

A conventional frame discrete element is incorporated in the MAGIC System.
This element, shown in Figure 6, is suitable for the idealization of structural compo-
nents which are adequately characterized by ""beam theory." Having established
basic procedure and notation in Section 3, the mathematical model for the frame ele-
ment is summarized in this section in terms of element matrices. The formulation
is presented in detail in Reference 28.

The frame element is broadly applicable to space frame and stiffened shell
structures. Connection eccentricities can be accounted for in shell stiffener applica-
tions of the frame element. Space trusses can be accommodated as a special case of
space frames. The truss specialization is particularly useful in combination with the
shear panel element of Section 5.

Geometric specification of the straight slender prismatic frame element is
given, in part, by the end point coordinates. A third coordinate point in the positive
quadrant of the element axis system (xg, yg) is required to specify the twist orienta-
tion.

The cross section of the frame element is assumed doubly symmetric with
respect to the element coordinate axes. It is characterized by stiffnesses Iy, Iyy and
I,z about the three element axes together with the cross sectional area.

A linear Hooke's law is assumed to govern material behavior. Cross sections
initially orthogonal to the element axis are assumed to maintain orthogonality with the
deformed axis. It is further assumed that deformations are sufficiently small to allow
superposition of element loading.

Linear polynominal axial and torsicnal displacement mode shapes are construc-
ted. A cubic polynominal displacement mode shape is constructed for flexure in each
of the two principal planes of bending. These mode shapes lead to a total of 12 unde-
termined coefficients for the element which are chosen to correspond tn three trans-
iational and three rotational displacement degrees-of-freedom at each end of the ele-
ment. Description of stress behavior is accepted as the definition of the 12 forces
acting at the two gridpoint connections.

Element matrices are provided for stiffness, incremental stiffness, stress, dis-

tributed loading, and axial thermal Ioading. Certain of these participate in the evalu-
ative application to a portal frame structure presented in this section,
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B. FORMULATION
1. Displacement Functions

The polynominal mode shapes assumed for the displacement functions are

written
(o} -[s0]{8} (%6)
where (o} - lecnvnwirgn | an
{p}T = |B1:By o, 312] (78)

42




[B()]: v ,I_Bz()_l,

where

T

[ro]

T
. 2
(=)

Figure 7. Displacement Function Mode Shapes [B( )]

I

b
b
»

| S

1
f

Bk

x

»x

>

e

—_

and [B()] » the matrix of mode shapes is defined in Figure 7. Elementary interpo-
lation theory is invoked to obtain a transformation to gridpoint displacement degrees-
of-freedom, i.e.

{8} - [rgsl{ss} ™9
where
T
{Sg } ) I-ugl’ vgl’ Ver’ exgl’ eygl’ ezgl’ ug2’ vg2’ “’gz’ eng’ yg2’ “zg2 J(BO)
and [I‘BS] is defined in Figure 8.

Assuming the ends of the frame element are positioned as shown in Figure
9 relative to the offset gridpoint, an eccentric connection transformation is provided

{8} [r] {8} 2

where

T
{Se} = l Ye1’ Ver’ Ver’ exel’ gyel’ gzel’ Ye2’ Ye2' Voo’ Uyes’ 9ye2' eze2](82)




and [1" e] is defined in Figure 10.

Since the eccentric connection is translational only, the subsequent trans-
formation to system coordinates { X g p is based upon the original direction cosines
of the element. This transformation relation takes the form

{8} -[Tsal {3} *

u u w v
gl gl gl egxl egyl egzl ug2 g2 wg2 9g‘x2 egyz 8gz2
Bl 1 3 b b ? 1 ? ? ? ’ * ?
1 1
BZ L ’ ? s ’ ’ ? +T ’ ’ s ’ ’
B3 b 1 ? ) ? ? ? * b ? ? ?
B‘ s ’ ’ s ) 1 > ’ ’ ’ ’
2 3 1
B ’ "_2 ’ ’ ’ y TR y b —— ’ ’ s T
5 L L L2 L
B . 2 N 1 N 2 + 1
6 ’ » t e, ’ s »y TR, s ’ o
L2 _L—f L3 Lz

B7 ? b +1 ? ? ’ ? ? ’ ’ 3 14

B 3 +2 N 3 1
’ 9T ——— y b ’ ’ y T y T
9 L2 L L2 L
2 1 2 1
Blo b} ’+-—é’ ’__é. 9 ] ? ’-—.—3-, ’_-—_'é-’
L L L L
Bll » 1 9 1 ) ’ ’ ’ ’ [} ’ 3
L 1
Blz s 2 ! ? L 9 ? ? ? ? * +L ) '] —

Figure 8. Displacement Coordinate Transformation [PBS]
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z
where

T
{ss} B l,usl’ Vs1' Vs1’ exsl’ eysl’ ezsl

Figure 9. Frame Element Eccentricity

u v w
* Yoo s2' g2’

’ [Tgs]_j

r

8

xs2’

8

ys2

(84)

J

., 8

zs2

(85)

The matrix [Tgs] is the direction cosine transformation between element {xg}

and global { X } coordinate axes, i.e.

S

{x} = [Tl {x)
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Figure 10. Displacement Coordinate Transformation [ T ]
e

The final transformation builds in the option to employ degrees-of-freedom
referenced to gridpoint axes. Transformations between the gridpoint axes and system
axes are known from the input to the MAGIC System. For the two gridpoints of the
frame element these take the form

{xs}j B [qu]j {xq}j J

1,2 (87)
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Given these axes transformations, the objective gridpoint displacement degrees-of-
freedom are introduced via the relation

{3} =[I'sq]{8q} | (88)

where 6)
{3, }T = | uqr Va1 Yzt Gear’ Gar Goga Uz Yoz a2’ Graz’ Oyaz Braz |
[l
[Tl = Tl ’ (90)
, ],
oy

In summary, displacement functions are assumed in terms of field coordi-
nate displacement degrees-of-freedom. These are retained for the algebraic develop-
ment. Then, the foregoing sequence of transformations is invnked to yield the desired
displacement degrees-of-freedom. Collectively, this set of iransformations is written

{8} - [%q] {3} 1)

[PBq] ) [PBSJ [Pe] [rgs] [Psq] (92)

2. Linearized Potential Energy
The assumption of linear material behavior governed by

c=E (¢ -~¢) (93)

leads to a strain energy of membrane and flexure given by

U=L(%E62-Eeie)dv (94)
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The linearized strain-displacement relation for the frame element is,

€ = u - yvxx - zwxx (95)

The prescribed prestrain € i is taken to be constant over the cross section and over the
length.

The linear potential energy functional which arises in consequence of these
strain relations is

1 2
<I>1=f-(EAu +EIv 2 Ew 2,.m 92 (96)
p x2 X Z XX y xx X "X

-'EAGiux - PyV - PzW) dx

Note that torsion and distributed load terms have been incorporated in the
above energy expression. The distributed loadings P, and P, are assumed to be
linearly varying over the length of the element, i.e.

P(x) = [1—(%)]p1+(—;‘-‘)p2 (97)

Substituting the displacement mode shapes into the linear potential energy
functional and integrating over the cross-section obtain,

. -7 8] [%]{8}- || {Fc}-18] {7, 9

where the matrices [ K ], {i‘;} and {ﬁp} are given in Figures 11, 12, and 13, re-
spectively. Jn conformance with the notation of Section 3, the foregoing are the element
stiffuess [ K] , prestrain load {Fe , and pressure load {f"p} matrices referenced
to field coordinate displacement degrees-~of-freedom.

It is convenient to define a distinct prestrain load vector for strains induced
by thermal expansions. Since flexure prestrains are omitted in the absence of know-
ledge of the cross section geometry, specialization of the prestrain {'f"e} load to
thermal load { fs T} is accomplished hy the relation,

¢; = aAT (99)

3. Incremental Stiffness

The retention of quadratic displacement terms in the strain-displacement
relation for the frame element yields the strain contribution,

1.2 1.2 (100)
O =35v, +3¥%
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Figure 11. Stiffness Matrix [ﬁ]

This nonlinear strain term leads to two incremental stiffness energy contributions, i.e.

2 (101)
‘bc = . Z ch
j=1
where

1 2
¢cl =,}; 2 EAuxvx dx (102)
d. - Leanw? (103)

c2 x 2 X X
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Figure 12, Prestrain Load
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Each of these terms is of the general form constructed in the symbolic development
of Section 3. The general form is stated here in the context of the frame element as

= h, d
<bc]. fxxfng X (104)

where

p=|1]{a} (105)

g, = !_1,;:,;:21{19}j (106)

#' hj = [1 » X, xz_l{c}j (107)

The matrix form of a typical contribution to the incremental stiffuness
energy now follows immediately in consequence of the theoretical development of
Section 3, i.e.

o =i (o) C) Y] o] | [ {0}
[CN]T’ ’[AN] {b}j
| ESROEEIEGS

The three matrices [AN] , [BN] , and [CN] are given explicit definition in Fig-

P ure 14. Particularization of this general form to the individual energy contributicns
! of Equations 102 and 103 is given in Figure 15 by specification of A and the quantities:

{2} =[4a]{8,} (109)
{v}i=[4:] {Bs}; (110)

{e}- 4] {8, aw)

The knowledge of these quantities enables the execution of a nonconformable sum of
the individual contributions to obtain the total incremental stiffness energy in terms
of the field coordinates, i.c.

0, -318] [¥]{s}

A
v

(108)

[A
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Figure 14. Increniental Stiffness Submatrices [A‘N] ’{BN} and {CN}

The matrix [ ﬁ] is the objective element incremental stiffness matrix referenced
to field coordinate displacement degrees-of-freedom. Transformation to the selected
gridpoint displacement degrees-of-freedom is accomplished via the previously de-
rived transformation;

{8} - [Fpq) {3,} (119)

Since the elements of the incremental stiffness are functions of subsets of the { B }
via the {a}, {b}j’ and {c }j’ they are indirectly functions of the independent prim-
ary displacement variables {AS} . Thus, expression of the incremental stiffness for

a stability analysis required the availability of the displacement results from a prior
analysis.

The incremental stiffness matrix for the frame element has been stated
here in accord with the standard form outlined in Section 3. Proper interpretation is
very important and, for this reason, a typical term for the frame element is resur-
rected here and examined in detail.
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Beginning from Equation 102, this energy contribution is rewritten as
- (L ' .
¢c1 = f > EA UV V. dx {114)

to obtain the appearance of the more general form in which all these functions are
different. This form is rewritten, in turn as

d =leA (Uv v +uVy +uvy)dx (115)
cl 6 XXX X XX X X X

The over-symbol ~ requires definition. Matrices are the natural notation of multi-
dimensional linear algebra. As a consequence they have become the language of the
finite element analysis technology. Recognizing this, the subject nonlinear formula~
tion is cast into matrix form to facilitate interpretation and implementation. The
over-symbol ~ serves to identify variables which will be imbedded in coefficient
matrices to accommodate matrix notation. With this explanation, Equation 115 is
rewritten again as
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Laamd

- L[EA u,v,v -O v' v {u ]
cl 6 x’x’x.' *Ux x|l x

e % 0 O % ) (116)

At this point the assumed mode shapes are introduced into the vectors in
which Uy, Vy, and v'x currespond to the f, g and h of Equations 105, 106 and 107, i.e.

r -

ux 1, {a}

2
i % t= s 1 ,x ,x <{b},
(117)
v' 1,x x2 {c}
x b 9 ]

- o L J

Substitution of these mode shape quantities into the energy functional

54

yields

-0 v'll,x ,xzj vxll X ,xzj- '{a}w

(1] -l,x,x1

AT CRIO NI Rt S SR RN RS TR &
2 2 3,4
| X | X ,X X
'17 —1 s X ,xz-

vx<x > Ve I x ,xz,x3 [ 0 ] {c}
- 4
| _xzd _x2,x3,x4__ (118)
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The integrated form of this relation corresponds to the symbolic form
exhibited in Equation 108. The remaining step is to bring in the field coordinate dis~
placement degrees-of-freedom. The transformation relativn required takes the form

, o [~ ar 9
al 1 ¥ ' ’ B2
b1 , 1 s B4
< >
b2 2 2 2 H Bs
4 b3 F= s ’ y 3 LBG ]
bl‘ ? 1 ? ’
b, .2,
[
| Py s 3 (119)

This relation is equivalent to the symbolic relations of Equations 109, 110 and 111
taken collectively. Introduction of this relation into Equation 118 yields the objective
incremental stiffness contribution. These individual contributions are accumulated
to obtain the total as expressed in Equation 112. Beyond this point, the symbolic
statement of the analysis process requires no further clarification.

4, Stress Matrix

Stresses for a frame discrete element are represented by the end point
forces. These "stress' quantities are exhibited with respect to element axes. Calzula-
tion is based upon the relation

{e} = [s]{a}- {<} (120)

where T
{ "} - l F e Fyr o My Moy Mo F g F g Frgs My Mo, Mz2J

(121)

[S] - [PBSJT [f('] [qu] (122)

Expression of this stress matrix completes the specification of the matrices which
comprise the frame discrete element representation.
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C. EVALUATION

As an illustration of the use of the frame element in a structural evaluation,
consider the following problem.

A three-member portal frame is shown in Figure 16, along with the loading,
pertinent dimensions and material properties. The two idealizations used in this
analysis are shown in Figure 17. A comparison solution is given in Reference 29
for this portal frame. Table I presents the results obtained from this analysis and
the reference solution. It should be noted that the alternate finite element solution
neglects axial deformation, thus producing a slightly stiffer structure.

0 0
|
Section A-A
mriy7 /774

E = 107 pSl

vy = 0.30

A = 18 in.2
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Figure 16. Three Member Portal Frame Description
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TABLE 1

COMPARISON SOLUTIONS FOR THREE MEMEER PORTAL FRAME

L ke o A i

Deflection, u (inches)

Rotation, 8, x 1073

Pt i ol v v )

v

: Node | MAGIC MAGIC MAGIC MAGIC

Point | (3 Elem) (6 Elem) |Reference (3 Elem) (6 Elem) Reference
2 0.01143 -0.7564

4 3 0.02691 0.02691 0.02682 -0.2382 -0.0382 -0.3350

g 4 0.02687 ~-0,1648

F 5 0.02684 0.02684 0.02682 -0.3376 -0.3367 -0.3350

.; 6 0.01140 -0.7544

LMtk i n b Lok T S e
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5. QUADRILATERAL SHEAR PANEL ELEMENT

A. INTRODUCTION

A quadrilateral shear panel is incorporated in the discrete element library of
the MAGIC System. This element, shown in Figure 18, is suitable for the represen-
tation of thin membranes which carry load primarily by diagonal tension. The direct
load carrying capacity of such membranes is delegated to surrounding axial force
members available via the frame element of Section 4.

The general quadrilateral shape of the shear panel is defined by the coordinates
of the four corner points. The geometric definition is completed by specification of
an effective uniform thickness.

In contrast to the usual approach, the principle of complementary energy is
employed to derive the representation for the quadrilateral shear panel. Using this
approach, stress rather than displacement distributions are assumed. In particular,
a constant shear stress state is employed.

Deformation behavior of the shear panel is described by the displacements of
its four corner gridpoints. Description of stress behavior is accepted as the con-
stant shear stress value,

The complete element representation for the quadrilateral shear panel is taken
to consist of a stiffress matrix and a stress matrix. These matrices are employed
in combination with axial force members in an evaluative application to a deep canti-
levered beam in this section. Additional illustrative applications are included in
Section 10,

B. FORMULATION
The element representation for the quadrilateral shear panel is derived using

the principle of complementary energy. Only shearing energy is considered. The
governing energy functional is given by

2
- [ ) w-lrgl{s)

ld
The matrices { Pg} andlog} are available from observation of Figure 18, i.e.

T
P } = ¥ ’ ’ ’ ’ ) s F J 124
{ g L T gxl’ ngl ngz ng2 ng3 ng3 F~zx4 gy4 (124)
(5" |
gf ) _ugl' vg]’ ug2’ ng’ ug3’ Vg3’ ug4’ Vg4 J (125)
59



) P A Y ki A Fea -
R el S LI R v e T i & e L

Laar 2 i “"qu

T

TRV

TR

Ty

TN TR 77

ok oyl et vk Seu i aatt s

T

ALK e cars ma L

Lijhech

™

Figure 18. Quadrilateral Shear Pancl Representation

TRET

S oo e ity

-




e

The shear stress functiont is chosen as the statically independent force
quantity and is assumed constant over the element, i.e.

T X, = T = Constant. 126)
Xy( y) (

Recourse is made to Figure 18 to obtain expression for the complete force
set in terms of the constant shear stress. The statically equivalent corner grid-
point force set is readily written as

{Pg} = {I‘r }'r (127)

where
t(x 4 -X

T 9 3
AL B T I
{ T 2 2 2 2 2 2 (128)

tx3 tY3 J

Substitution of Equations 126 and 127 into the potential energy functional

yields
T
% ={§;_ "o - v{r} {3} (129)

At this point an algebraic expression for the total complementary energy follows
by integration, i.e.

o . & o c{r} (5]

The variation of Equation 129 yields the basic force-deformation relation for
the shear panel in the form

co (S{re} {3, )

The introduction of Equation 127 now yields the desired form of the stiff-
ness matrix for the quadrilateral shear panel referenced to the (xg, ¥g) coordi-
nate axis., This result is

{Pg} ) [Kg]{8 g} (132)
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Statement of the element matrices for the quadrilateral shear panel is com-
pleted by introduction of coordinate axis transformations. Writing the direction
cosine transformation between element and global axis as

{x} = [7g] {x} a24)

leads immediately to the force and displacement transformations, i.e.

{sg} B [Pgs ] {85 } (135)
{Pg} ) [rgs ] {PS } (136)

The transformation matrix [l" s] is given in Figure 19. The transformation
to gridpoint coordinate axes follows similarly, except that a distinct direction
cosine transformation is associated with each gridpoint, i.e.

{x} [l {x} (137)

The resultant displacement and force transformations take the form

{8.}- [r,] &} (138)
{PS } [I‘sq ] {pq } (139)

The matrix [I" sq] is defined in Figure 20.

The collective influence of the foregoing transformation yields

{P} - {K] {Sq} (140)

vere (k] = [Te) [Tes] [ ] [Tee] [Feq ]

(141)
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Figure 20. Displacement Coordinate Transformation [1” sq]
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Equation 139 is the objective form of the stiffness relation for the quadri-
lateral shear panel. Once the displacements have been calculated, the single stress
quantity T is available from a form of Equation 130 extended to accommodate the
transformation relations, i.e.

T - lSJ {SQ} (142)

where

lSJ - (%) l.rrJ [rgs ] [Psq ] (143)

This completes the statement of the element matrix representation for the
quadrilateral shear panel.

C. EVALUATION

As an illustration of the use of the quadrilateral shear panel element in a
structural evaluation consider the following problem.

A cantilever beam subjected to a uniform load of 2 x 10~2 kg per mm is shown
in Figure 21 along with its pertinent dimensions and material properties. The three
idealizations employed in the finite element analysis are shown in Figure 22. Axial
force members are used along with the subject shear panels for idealization of this
structure.

A solution to this problem was obtained in Reference 47 utilizing "equilibrium
gpar elements" for the web and "bar" elements for the caps. Solutions were also
obtained utilizing spar elements with linear as well as quadratic displacement fields.

Figure 23 displays the tip and midpoint deflections for the three idealizations
used in this analysis along with the displacements obtained in Reference 47. Figure
24 shows the bending moment distribution for the two element case and Figure 25
shows the moment dis’ _ibution for the four and eight element cases. It is to be noted
that the agreement of the bending moment distributions with the reference solutions
are excellent,
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Figure 22. Cantilever Beam Idealizations
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6. TRIANGULAR CROSS SECTION RING ELEMENT

A, INTRODUCTION

A triangular cross section ring element is incorporated in the MAGIC System.
This element, shown in Figure 26, is suitable for the idealization of thick walled
axisymmetric structures of arbitrary shape. A detailed development of the subject
element representation is presented in Reference 30,

The ring element representation is written with respect to cylindrical coor-
dinate axes. Its configuration is completely defined by specifying the radial and
axial coordinates of the three corner points. Anisotropy is provided for in the
physical and mechanical properties of the ring element. Orientation of orthotropic
material axes in the r, z plane is data specified.

Linear polynomial functions are employed for displacement mode shapes
leading to constant element strain and stress states. Interelement continuity is
maintained among triangular cross section ring elements without explicit consider-
ation in virtue of the straight edge displacement behavior permitted by the linear
polynomial mode shapes employed. The constant strain and stress states within the
element lead to a r¢ juirement for relatively fine idealization gridworks when de-
tailed stress behavior is desired. Relatively coarse idealization gridworks are
suitable for the prediction of stiffness, displacement states and vibration character-
istics.

Distributed loading is assumed to exist against one side of the ring element
which provides for convenient consideration of pressure loading. A prestrain load
vector is included in the ring element representation to accommodate directly pre-
strain and indirectly prestress and thermal loading as well,

Deformation behavior of the triangular cross section ring element is taken to
be described by the six displacement degrees-of-freedom associated with the grid-
points which the element connects. The stress behavior induced in the element
includes radial, circumferential, axial and shear stress values.

Utilization of the triangular cross section ring element is restricted to hollow
structures. Generally, simulation of a solid configuration can be achieved simply by
leaving a relatively small hollow cylinder.

The discrete element technique was first applied to the analysis of axisymmet-
rical solids by Clough and Rashid (17), This initial formulation of the triangular
cross section ring was extended by Wilson in Reference 31 to inciude nonaxisymmet-
ric as well as axisymmetric loading. The subject development follows Wilson's
approach, but is restricted to the axisymmetric case. The formulation is extended
beyond that of Wilson, however, in several ways. One of these generalizations is
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that the integration over the volume of the ring is effected analytically under normal

circumstances. Recourse is had to the approximate integration technique when the
radial dimension of the ring is small relative to the ring diameter.,

The complete representation for the triangular cross section ring is taken
herein to include matrices for stiffness, pressure load, prestrain load, thermal load
and stress.

B. FORMULATION
1. Displacement Functions
Linear polynomial mode shapes are taken to approximate the radial "u"
and axial "w'' displacement functions over the triangular cross section ring element.

With respect to the global coordinate axes shown in Figure 26, these mode shapes
are written as

{0} - [50]{8 (144)

where

{u}T= _u(),w()J (145)

[po]- "] (146)

b

and the {B} are simply the polynomial coefficients. These are referred to as the
field coordinate displacement degrees-of-freedom. Utilization of the linear assumed
modes of Equation 146 yields straight-line edge displacements and assures satis-
faction of interelement continuity requirements.

The foregoing assumed displacement functions are particularized to
corner point values and the resulting relationships inverted to yield 2 transformation
between the field coordinate displacement degrees-of-freedom B and gridpoint
displacement degrees-of-freedom { S q } . The results are expressed collectively

{8}
{8}"

The transformation matrix [P 8] is defined in Figure 27. No further displacement
coordinate transformations are required since the { S } are suitable for assembly
of triangular cross section ring elements. &

[I’BS] {Sg} (147)

where

lugl’ wgl , ugz, wgz, ugs, wg3J (148)

73



s ST CF PR AT A
FC, PRI SAA
3

T RTERVINT AT T

VTR

c gt N e LA e

TR e £ P el e D etk = e Lo O e PR

T v L

YT

B, B: B; Bs Bs B

-1
Figure 27. Displacement Coordinate Transformation [FBS ]

74




3

2. Potential Energy

Linear elastic material behavior is assumed. This behavior is taken to be

governed by the relation
(o} - [ {{e}- {1}

where
T
{o'} = lar, o-e, o, aer (150)
(e}~ J
e} “ & g G &y (151)

The matrix of orthotropic elastic constants [E] is specified in Figure 28. The
vector { € } is the initial strain state.

The element potential energy is derived as the sum of strain energy and
external work contributions. Invoking the stress-strain relation of Equation 148, the
strain energy is given by

u =j; (1/2 leJ [E] {e} -[eJ [E]{el}) dv (152)

In general, the material property characterization is known with reference to axes
orientated at an angle Y, with respect to the geometric axes. For this reason, it
is necessary to introduce a matrix for the transformation of stress and strain states.
The desired transformation relations are

{‘(m)} ["ea ] {‘(g) } (153)

(o™} - [re] {o®}

These stress and straiu vectors may be interpreted according to Equations 150 and

151. The transformation [Te o is given in Figure 29.

Invoking the transformation to convenient element axes, the strain energy

U =j; (12 [€® | [ 1{®}-|®) {e}) v ass)
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where

T

[E(g)] = ["'ea] [E(m)] ["'ea] (156)
(6.} = [reo] [E™]{c™)

The strain-displacement relations appropriate to the axisymmetric ring
element are given by

€.7u. (158)
€,= u/r 159
8 (159)
ez =W, (160)

€ =u +w (161)
rz 2z r

Introducing the assumed displacement. function mode shapes, the strains are obtained
in terms of the field coordinate degrees-of-freedom, i.e.

{®0}- [cn]{A) (162)

where the matrix [C ] is given in Figure 30. This relation enables statement of
a discretized potential energy function as

3 - j; (v2]8][co ]T[E(g’ 1lcor]{8}
- 18)[c0] {20 })er

- . . 27r
j; [( psin @ )u + (pcosd)w]cosa dr (163)

The last term included in this energy function is the external work con-
tribution. This arises in consequence of a linearly varying pressure distribution
applied between element gridpoints 1 and 2 as shown in Figure 26. The functional
form of this loading is

p(r,2)= p1 + alr + azz (164)
where
z
== 1 ) P_-P 165
a R S 0 (165)
1 (r:lz2 rzz1 ( 2 1)
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1
a. = (.———.——-—) P -P (166)
2 rlz2 r2z1 ( 2 1)

Two algebraic forms are utlimately given for the pressure load vector to account for
the special case when ry is equal to Ty,

The objective algebraic form of the total potential energy for the triangular
cross section ring follows via integration. It is convenient to preface statement of the
integrated form with the definition of additional symbolic notation. All integrals
arising out of Equation 163 are of the general form

8. = f r 2 dzdr (167)
ij
(z, r)

This symbol ] ij is employed to indicate the result of the integration. With this
result, the integrated form of Equation 163 is given by

o, -2 | B [R]{B}-| 8] {¥c}-18]{%,} ass

The matrix [ﬁ] and {?p } , given in Figures 31 and 32 are the objective
triangular cross section ring stiffness and pressure load matrices referenced to

field coordinate displacement degrees-of-freedom. The corresponding prestrain load
vector is stated under the assumption of a constant prestrain over the corss section as

{7} - ] [reo] ] {™)

where the single new matrix [C'] is given in Figure 33. It is convenient to have a
distinct load vector for prestrain due to temperature. The desired modification of
Equation 166 is

{ei(m) } = AT{a(m)} (170)

where {a (m) } is the vector of thermal expansion coefficients. It follows that the
triangular cross section ring thermal load vector, referenced to field coordinate dis-
placement degrees-of-freedom, is given by

Food -a7[] [ree] ™ ™)
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3. Stress Matrices
The element stress matrices stem directly from the stress-strain relation

of Equation 145. The strains are eliminated from this relation using Equation 162 to
obtain a set of stress-displacement relations, i.c.

{o} - [rea] [E™]{[rec ] [c0] {B}-{<™}} am

Particularization of the matrix [C ( )] to the centroidal position (Xq, y.) on the
element as shown in Figure 34 yields the objective stress matrices for the triangular
cross section ring. Symbolically,

{o}- [F]{B}- {4} (173)

where

7] - [reo] [™) [reo] [c . 0]

{4} - [reo] [=™] {e™} 75)

This completes specification of the element representation for the
triangular cross section ring element.

C. EVALUATION

As an illustration of the use of the triangular cross section ring element in a
structural evaluation, consider the following problem.

A thick walled circular disk in the plane stress subjected to a radially varying
thermal load of the form T = Ty (1 - r2) is shown in Figure 35 along with the load-
ing, material properties and pertinent dimensions. The three idealizations used in
the finite element analysis are shown in Figure 36. Reference 32 provides an
alternative analytical solution for this problem which is based on the theory of
elasticity. Figure 37 shows the results for radial and circumferential stresses along
with radial displacements for the discrete element idealization shown in Figure 36 (c).
Note that the solid lines represent the alternate analytical solution.
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7. TOROIDAL THIN SHELL RING ELEMENT

A. INTRODUCTION

A toroidal thin shell ring element is incorporated in the MAGIC System. This
element, shown in Figure 38, is suitable for the idealization of axisymmetric thin
shells of arbitrary profile. The element configuration considered is that of an arb-
itrary section of revolution of a right circular toroidal shell. Perfornance of this
toroidal ring element is outstanding relative to the well known conic ring element.

The first thin shell discrete element model put forward was the singly Cltggfd
ring discrete element formed by a section of revolution of a thin conical shell .
This element has since been the subject of numerous research investigations and re-
ports (18, 34, 35), The reasons for this widespread attention are twofold. Firstly,
there exists a broad and important class of axisymmetric thin shell structures with
problematical axial variations which are amenable to formulation and solution as
assemblies of ring elements. Secondly, behavior predictions based on the polygonal
idealization afforded by the conic ring have proved, in some cases, to be meaningless.

Several papers have attempted to lay down guidelines for avoiding the ideali-
zation pitfalls (36, 37) and for interpreting the predicted behavior (38), These papers
identify the primary sources of difficulty in using the conic ring with the discontinu-
ities in slope and stress which occur along element circumferential interface lines.
Having made this identification, it follows that the best response is an element model
which eliminates the troublesome discontinuities.

Several discrete element models have been reported which seek to eliminate
idealization discontinuities by incorporating curvature of the meridian in the element
model (39: 40) Thege doubly curved elements have virtually eliminated the erratic
stress predictions characteristic of the conic ring. The subject doubly curved ring
element representation differs from these primarily in the utilization of generalized
displacement functions which yield high precision stress predictions. This element
representation is developed in detail in Reference 41.

The toroidal thin shell ring discrete element is forraulated with respect to a
toroidal coordinate system. In general, the cross section profile of the toroidal seg-
ment is circular. Specialization to conic and cylindrical shapes is automatically pro-
vided for within the MAGIC System.

The geometric shape of the eslement is specified by the cocrdinates and surface
orientation at its edge grid ring. The thickness of the element is assumed constant.
The subject element is written to accomodate orthotronic materials. Axes of ortho-
tropy are assumed to coincide with the principal axes of the element.
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The mathematical model for the toroidal ring embodies a coupled representation
of membrane and flexure behavior. A state of plane stress is assumed in formulating
the element representation. Discretization is affected by th~ construciion of polynom-
ial displacement mode shapes. An osculatory axisymmetric polynomial interpolation
function is taken to represent membrane displacement within the element. Trans-
verse displacement is represented by a hyperosculatory interpolation function. Dis~
placement behavior is taken to be described by the ten displacement degrees-of-freedom
which ave obtained from the polynomial mode shapes at the two grid rings connected
by the element. These degrees-of-freedom provide a relatively high order of vari-
ation in stress and strain within the element. For this reason, stress resultants are
exibited at the two boundary rings as well as at the midpoint of the element.

The toroidal axes provide a suitable set of coordinate axes for assembly of
smoothly connected toroidal ring elements. If idealization discontinuities are present
at element junctures, then it is necessary to reference the element represent-tion to
a set of global coordinates. Global coordinates may be used optionally when ths tor-
oidal ring elements are smoothly interconnected. The toroidal ring element is readily
specialized to yield end enclosure elements. This is a particularly useful feature
which was not available in the predecessor conie ring element.

The complete representation of the toroidal thin shell ring element is taken
herein to include matrices for stiffness, pressure load, thermal load and stress. The
toroidal ring element is somewhat more complex algebraically than the conic ring
element. This inecrement in complexity is given justification in terms of improved
accuracy with fewer elements in the set of evaluation problems included in this section.

B. FORMULATION
1. Geometric Specification

The toroidal shell parameters are obtained by reference to Figure 38. The
basic coordinate system employed is toroidal. This is a right-handed orthogonal cur-
vilinear system. The midplane of the shell is defined by the ( € , 7 ) coordinate sur-
face. The principal curvatures of the shell are aligned with the coordinate axes.
Cowmplete characterization of the system is achieved by specification of the metric
parameters and the principai curvatures.

The definition of an element of length (ds) is
2 2 2
ds)” = @&) + @n) (176)
where

d€ - Adé osfsa(az— a,) (177)
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dn = Bdf (178)
This leads immediately to the meiric parameters, i. e.
A =1 (179)
[sin( al + -;)—Sinall

B =r + ]/ (180)
(1va)

The principal curvatures are also found from Figure 38,

I S
P€ = RE a (181)
1 sin ( al + §/a)

- (182)

PB g B

These expressions for the general toroidal configuration readily degener-
ate to conical and cylindrical ring cases, i. e.

(a2) Conical Ring A =1 {183)
B=r,+¢cos a (184)
1 1
p, =0 (185)
sin al
PB = —_— (186)
B

2 2] V2
0< § < [(rz-rl) #(z,-2)) ] (187)

(b) Cylindrical Ring

A =1 (188)
B =r, (189)
PE =0 (190)
pB =1/B (191)
OS€S(z2-z1) (192)
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This multiplicify of parameter sets increases formulative effort since
integrations must reflect the alternatives; however, an automated select feature
eliminates any impact of this multiplicity in utilization of the operational capability.

The foregoing sets of parameters, ltaken collectively, enable exact idealiza-
tion of cylindrical, conical, and piece -wise circular shells of revolution. More gen-
eral shell profiles can be realistically approximated by combinations of these elements,

2. Displacement Functions

The construction of admissible displacement functions is straightforward
since the functions are essentially one-dimensional. Polynominal mode shapes are
assumed, The membrane displacement is taken to be cubic in the meridianal arc

length, A quintic polynomial is assumed for normal displacement. These assumed
modes are expressed in matrix form as

{u()}=[B<)] {B} (193)

T
{u()}= L“’W_l (194)

Bo]-{v &8 L
BO) 2 .3 .4 .5
’ ’ ’ )I)S,E)fyfif
and the {B} are simply the polynomial coefficients or, alternatively, the field coor-
dinate displacement degrees-of-freedom. Transformation from the B to gridpoint
displacement degrees—of—freedom{S} is required to enable proper interconnection

with adjacent toroidal thin shell ring élements. This transformation is effected by
imposing the following conditions on the assumed functions,

(195)

u (§) £eo =, u (§) : =y, (196)
= =8
=1 u (&) =u
ue(f) £-0 ¢ ¢ 3 £-s €2 (197)
w (&) €=0=w1 w () £n =W, (198)

welf) :wel we (f) _ B WE?.

(199)

wff © §=0 “Vee wff © £ s ’ wffz (200)
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This set of conditions can be expressed collectively in matrix form as

{8} - [FSB] {8} (201)

3 where T
1 {8} =l u,, U, ,Uy, Up_ , Wy, W, , W Y Wo, Wy , W (202)
2 S A ¢ D A S HE A S A 8

4 Specific definition of [1"3 ]is not included since it is the inversion of this
E relation which is desired. The inverted relation is written as

| (8) - [rgs] {5} o

where the [FBS ] is now given explicit definition in Figure 39.

The gridpoint degrees-of-freedom {8} are common toadjacent toroidal thin
shell ring elements and are, therefore, suitable for the assembly process. On some
occasions it is convenient to use degrees-of-freedom referenced to a rectangular
global set of coordinate axes. Moreover, such a system must be emplcyed if adjacent
elements do not interconnect smoothly. This further transformation relation is given

" {s}- [l“gs] {s.} (204)

T

where

= 0, 0, w ’ 01 0,
{85} lul, Wl, \Asl ufl’ w;CI
(205)
My 0% 0, Wegr Origgr O QCZJ
and the transformation [rgs ] is specified in Figure 40,
The two foregoing transformations may be collected symbolically to obtain

a single transformation between the field coordinate {Bland gridpoint { 85} dis-
placement degrees-of-freedom. J

{B}g [PBS] {85} (206)

where
[Tg )= [Tps) [T ] (207)

This completes the explicit statement of the displacement functional employed for
the toroidal thin shell ring discrete element,
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3. Potential Energy

Linear elastic material behavior is assumed. In accordance with this
assumption, a generalized Hooke's law is employed, i.e.

{o()}=[E] {{e()}‘{ei()}} (208)

T
{e1}= l"y"’BJ (209)

where

T
{e} = lee, eBJ (210)
[L] - 1 Ef’ UBE EE (211)
(%epve) | %p "8 "8

The term { € i} is prestrain state and can be interpreted in accord with Equation 210,

In virtue of the assumption of linear material behavior, the strain energy
can be written as

o [ Cn LT (-l Bl oy ™

The next step in proceeding toward the potential energy functional is to ex-
press the strains in terms of displacements. These equations, recorded from Reference

42 are written
{e}={an) - 2{ar)
{Am}T= [ u€+)\ LWy Apu b W J (214)

T (215)
{Af} - [ Veeo A, W,SJ

(213)

where

The quantities )\j are defined as

OB (216)
- - 1y 2= ;
)‘1 Pe s )‘z / 2 A, 3

These arc given explicit definition by the element configuration according to Equations
179 through 192,
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Based on these strain-displacement relations, the total potential energy
functional is given by

o [ (18] ] {8n)
cae o) Lo 1o ) an
a1}
18] )

- 27P w ) Bd§

Z
where [ IK] =2t {E] (218)
[o]- 25 (5]

{Ie}= 2t [E] {‘i} (220)
{0} 2= [=]{s}

This completes the statement of the potential energy functional for the toroi-
dal thin shell ring element. The next step in proceeding toward the objective element
representation is to effect the discretization of the functional. Invoking the strain-
displacement relations of Equation 214 and 215 against the assumed mode shapes of
Equation 193 accomplishes the discretization of the displacement functions. The results
may be written symbolically as

{Am( )}= [Dm()]{ﬁ} (222)

{a; 0} =[o 0] {8} (229)

The displacement to strain transformation matrices [Dm] and [ Df } are defined in
Figure 41,

The applied load functions also require discretization by the assumption of

mode shapes. Considering first the pressure load, a linear variation is assumed,
Translating this assumption into functional form yields

98




SuoIjRWIOJSURL], UleI)s 03 Juswsoe(dsiq 'Tp aanSig

1% - - e e O 0 0 0
e 202- . @I-  99- 2- 0 0 0 0
i
SQ mQ wQ N.Q wQ mQ wQ mQ
mMm.K . me mwmx Nwmx me mK mMNK NMNK
IO LS 1 ST L T L SR SR R L

o.HQ mQ mQ bQ wQ mQ vQ mQ

99




TIAY

p (L) = p(0) *-—E’—(p(S)-p(O))

(224)
Compressing the notation, this expression is rewritten
0)
N R S
p, (L) P, ( s )pz (225)

A similar linear form is assumed to approximate the prestrain load distri-
buticn. The corresponding functional form: is given by

{e:} = {f o} +z{x o}
S {{ei <S)} - {ei (0) }} + g (é){{xi(s)}-{xi(o) }} (225)

Notational convenience is realized by rewriting this relation as
g

{‘i}= {ei (0)}+ 2 {"1(0)}” (é) { (10)} {“' (e )} (227)

A distinct prestrain vector is provided in the MAGIC System for prestrains
due to temperature. Specification of the temperature load is accepted via for tempera-—
tures, i.e.,

T 1 - internal surface temperature at gridpoint no. )
Tlo - external surface temperature at gridpoint no. 1
T2i - internal surface temperature at gridpoint no. 2
T‘?o - external surface temperature at gridpoint no. 2
The thermal prestrain quantities follow immediately from this data, These
quantities are defined as follows:
(0)
{ } 1/2 i + Tlo) {a} (228)
a 0)} ~ 1/ T v { }
{e =12 (1 e Ty Ty~ Mo ) {a (229)
{xM}= 12 (1 - 1) {a} (230)
(10)}_ i (o e . { }
{Ki - 12 Ly = Tye ~Ty; * Ty ) {a (231)
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This completes the definition of assumed functions. Invoking these, obtain
the discretized potential energy functional, i. e.,

o, - [ (12| B][a] T ][] {8}
o 1| 8|[o] [ [2] {8)
18] (o) [ 1o -2 18], ] (5} {e®) o
18] e ) [ (- = 181 T2, T By ] ()

= 21r(pz(o)+ —sc-pz(m)) w) Bdg

Integration now yields the objective potential energy form of the representa-
tion for the torcidal thin shell ring element. The symbolic result is

Dy = 122 18] [&] {8}
- 18] {#.} - | 8] {%’p} (233)

Presentation of these matrices is prefaced by definition of additionai notation in Fig-
ure 42. Then, matrices [ﬁ] , 'f"'s and { F are given explicit definition
in Figures 43, 44, and 45, respectiveiy. ‘I'he matrix [ﬁ] is the element stiffness
matrix referenced to field coordinate displacement degrees-of-freedom B} . The
matrices Fp} and { f"e} are the corresponding element pressure and prestrain
loads.

The transformation of Equation 206 is introduced to reference the element
matrices to degrees-of-freedom amenable to assembly of the elements. The result is

&, =128 [[x] {8,} - [8,] {F}- 18, J{F,} 39

where

[] - [0, ]" [ [1,,]
(re} - [} 72) -

{Fo}-[1 Q]T () (237)
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This completes the statement of the stiffness and applied load matrices for
the toroidal thin shell ring element.

4, Stress Matrices
An element stress matrix is required to transform the solution for the pri-
mary displacement unknowns to a solution for the secondary stress resultant unknowns

as well. Stress resultants corresponding to deformations ccasidered are available
: directly from integrations of Equation 208, i. e.,

% Te m‘f; 0°6 dz TB fsf O‘B dz (238)

M asf zg, dz Mks—f 20, dz (239)
B J, ¢ 3 . B

! The calculation of shear stress resultant which is asscciated with deformation not
considered is based upon equilibrium requirements, i. e.,

# oM,
: Q€=)‘2 [MB+M€]+ 7 (240)

3 The integrated form of the discretized stress-displacement relations may be written
» symbolically as

(2} - [s]{8}- (s}

where

{z}T= lT{, Tg, Bgy N, Q€J (242)

and ['§] is given explicit definition in Figure 46. The final form of the eclement stress
matrix is obtained by transformation to boundary displacement degrees-of-freedom, i.e.,

(5]~ [5][r, ]

This completes specification of the matrices which conmiprise the toroidal
thin shell ring element representation,
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C. EVALUATION

As an illustration of the use of the Toroidal Thin Shell Ring Element in a struc-
tural evaluation, consider the tollowing example problem,

A thin walled circular cylinder, cantilevered at one end, is subjected to the
action of bending moments, M, and shearing forces, Q, both uniformly distributed
along the free edge of the cylinder, This cylinder is shown in Figure 47 along with
the loading, pertinent dimensions and material properties,

Five finite element idealizations shown in Figure 48 were employed in obtain-
ing results for distribution of meriodional moment in the cylinder. The results shown
in Figure 49 were obtained from the 16 element idealization shown in Figure 48 (e).
Reference 37 provides an alternate analytical solution and it is designated by the solid
line in Figure 49,
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8. MALLET QUADRILATERAL THIN SHELL ELEMENT
A.  INTRODUCTION

A quadrilateral thin shell element is incorporated in the discrete element library
of the MAGIC System. This element, shown in Figure 50, is recommended for use as
the basic building block for membranes, plates, and shells. The tlelle triangular thin
shell elemcat is & compatible companion element useful in regions of irregularity and
prominent doubic curvature. The Mallett quadrilateral thin shell clement representa-
tion is developed in detail in Reference 43.

The shape of the general quadrilateral clement is defined by the coordinates of
the four corner points. It is o zero curvature clement.. The plane of the clement is
determined by its first three corner point coordinates.

The subject element is a thin shell element in that both membrane and flesure
action are represented. Referenced to axes in the plance of the clement. the membrane
and flexure representations ire uncoupled. Optional generation of cither or both of the
representations is controlied by the provision of associated effective thicknesses, The
distinct membrane and flexure cifective thicknesses are assumed constant over the
plane of the element.

v

J x
m

Figure 50. Quadrilateral Thin Shell Element Representation
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Under normal circumstances, four corner points and four midside points partici-
pate in establishing continuous connection of the Mallett quadrilateral thii, shell element
with adjacent elemenis. Used in this way input data volume is reduced and accuracy is
enhanced. An option is provided to suppress the midside nodes individually if associated
complexities arise in grid refinement or nonstandard connections with adjacent elements.
Invoking this suppression option causes linear variation to be imposed on the specified
midside variables,

The Mallett thin shell element is written to accommodate anisotropy of mechani-
cal and physical material properties. Orientation of material axes is data specified.
Temperature referenced material properties, selected from the materials library, are
assumed constant over the element.

A linear generalized Hooke's Law is employed for the equations of state. Three
options are provided; conventional plane stress, generalized plane stress, and restric-
ted plane strain.

The element formulation is discretized by the construction of mode shapes.
Membrane displacements within the subject element are approximated by quadratic
polynomials, Transverse displacement is represented by cubic polynomials. A linear
variation is provided for midplane and gradient variations in thermal loading. Other
element loadings, such as pressure, are assumed constant over the element. Deforma-
tion behavior of the Mallett quadrilateral thin shell element is taken to be described
by the displacement degrees-of-freedom associated with the gridpoints which it connects.

The variation in strain within the element which is permitted by the assumed dis-
placement functions, leads to similar stress variation. Advantage is taken of this by
exhibiting predicted stress resultants at the four corners as well as at the center of the
element. Inplane and normal direct, shear, and bending stress resultants are included.
The display of stress implies a set of axes of reference. These axes are data specified.

B. FORMULATION
1. Displacement Functions

The displacement functions for the quadrilateral thin shell element are
constructed with reference to the oblique coordinate axes (xo, y,) shown in Figure 50.
The origin of this system is taken at the intersection of the diagonals of the quadrila-
teral. The orientation of these axes coincide with the diagonals. The X, ~axis goes

through gridpoint number 1. The ¥, —axis goes through the first gridpoint in the counter-
clockwise direction which is designated as number 2.
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Polynominal mode shapes are assumed for each of the four zones shown in
Figure 50. With respect to the oblique coordinate axes these mode shapes are written

as
w189 {8} i=1234 (246)
where

{Bm}T - '.Bml’ Bmz’ T BmlSJ (247)
{8 }T = | Ber By - By ] (248)

and the mode shape matrices {B 0 } , {Bv(]) and {B 0)} are given in Figures
51, 52, and 53, respectively. It isuapparent from these ma&ices that the mode shapes
employed for each zone are complete up to the order of truncation.

Elementary interpolation theory is invoked to obtain transformation to
gridpoint displacement degrees-of-freedom, i.e.

{Bu}=[T8o™] {8} 24)
{B f} ) [ PBom ] {sof } (250)

where
T . l u.,,u_,u ,u ,u _,u ,u ,u
{Som } ol’ 02’ 03’ 04’ 05 06 o7 o8

’ ’ 251
Vo1’ Vo2’ Vo3’ v04 Vo5’ Vo6’ Vor' Vos J @51)

T
, W

- lwol' Vo2’ w03’ Yoa' Wox1’ wox2’ ¥ox3' Vox4’

{ 8()f }
Woyl’ Woy2’ woy3’ Woy4’ Yons’ Yone’ Yont’ wonBJ (252)

and [I‘ B(om)] and [I' B‘?] are defined in Figures 54 and 55.
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: Bmt Bmz Bms Bms Bms Bmg Bmr Bmg Bmg Bmio Bmir Bmiz Bmis BmiaBmis Bmis
: 1 2 2
? B“” = uo ll s X, Y X s XY Y ’ . » ’ ’ , » f ’
2 - e e
g
3 2 2
Lﬁum‘ uo -l s X Y XY Y y X, » B , , , , , ]
i
g 3 2
:,g Bu“ =e (1 ,ox Yy, . XY s Y2, . ' ' . . . .
3 2
\_Bu“)_ = uo .1 y X 4 Y X2 v XY y Y + ’ ’ , B ’ ’ , ]
Figure 51. Displacement Mode Shapes uo(j)
Bix Bm2 Bma Bmd4 Bms Bume Bmr Bms Bms Bmio Bmii Bmiz Bmisz Bmis Bmis Bmis
1 2 2
BV() = Vo s ' . ’ ’ ’ » ' 1, x y ., X , xy , ¥ ’ ’ J
2 2 2
LBv()_"Vo_ ' s ' , , , , s 1, x Yy, VXY .y .xJ
3 2 2
.Bv( )_ = Vo L ’ » N » . ’ ’ v,y Yy, v XY v Y e X j
4 2 2
_Bv( )- A , R , , , R sl x oy L %, xy v Y J
Figure 52. Displacement Mode Shapes vo(”
Bn B B Bu Bs B By B B Bno Bmi Bnz Bua Bus Bus Bue
1 2 2 2 . 3
Bw“ =w, l.! N S A x2 '2¢y 4 Y .4x3. Xy ,4xy 4y » ' ' , '
2 2
BW( ) =W° '.1 ’ X » Y 2 2XY o ’ ’ Xy, 4y3 » ’ ’ ’ x2 ’ 44‘3 .4x2y
L. e -
2 2
Bw(a) =W, lj v X LY 2%y . , ’ ’ , y2 4xy 4y3 .xz , 4x3 WXy
4 2 3 2 2 2
Bw() =w°|_1 v X Y X ,2xy, ix  Axy ' v Y s 4xy .4y3. ’ '

Figure 53. Flexure Displacement Mode Shapes w o
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where
Bms Bmio Bmii Bmiz Bmiz Bmia Bmiz Bmis
Bmi Bmz Bm3 Bmi Bms Bme Bm? Bms
Sa 1 X 0 x2 0 0 0
9 9 1 1 0
81 S 1 0 y 0 0 2 0 0
16 92 2 P
2
S, 8| 1 Xq 0 0 0 0 0 Xy
2
812 84 1 0 y4 0 0 0 y4 0
_ 1 12 1 12
— 1 = — — = 2
[T ]” 315 8 2% V2 7™ T2 ¥, O 0
1 1 1 1.2 12
—x — —— L4 — —
814 85| 1 2%3  2Y 0 %Yy 1Y 0 2 %3
1 1 1 1 2 1 2
315 87| 1 2 X3 7Yy 0 a%¥y 0 7Y, 1%
1 1 12 1 1 2
1 1 1 1 1 1
816 3g ke B A T b Y S DY o7 0

(m)

o

]

Figure 54. Membrane Displacement Coordinate Transformation [ r B
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The next step is to intrciuce a transformation to gridpoint degrees-of-
freedom referenced to the element orthogonal axes (x , y ). The transformation
relations take the form & ¢

{som} = [Pog(m)] {ng} (253}

{Sof} B [ T of(f)] {ng} (254)
where

{ng}T = lugl,ugz, e ug8’ vgl’ vg2’ RN ngJ {255)

{ .3 } T . lw W o,W L, W, W w w w
gf gl’ g2 g3 g4 gxl’ gx2 Tgx3 gx4’
{256)

d 7’ Wn8.|

gyl’ wgy2’ wgy3' Vo5 Vus' ¥

and the transformation relations [I" og(m)} and [r'og(f)] are given in Figures 56
and 57.

At this point the optional transformations for the suppression of midpeint
displacement degrees~-of-freedom are introduced. This feature provides flexibility

in idealizationand facilitates eccentric connection of elements. The transformations
take the form,

{8}
{2}

[Psup(m) ] { Sém } (257)

[ Psup(f) ] {S;;f} (258)

The degrees-of-freedom {S'gm} and {8' f} may be interpreted accord-
ing to Equations 255 and 256. The suppression transformations [P sup(m)] and
[f sup( )]are defined in Figures 58 and 59. The effect of these transformations is to
build in linear variations in place of the degrees-of-freedom suppressed.
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At this point a transformation is defined to establish a vectorial sign con-
vention for the rotational degrees-cf-freedom associated with the four corner grid-
points. In addition, the midside rotations, if not previously suppressed, are assigned
to be vectorially positive from the corner point with the smaller gridpoint number
toward the corner point with the larger gridpoint number. This transformation is
written symbolically as

{8} - [ Ton 1{8:} (259)

where

{sgf } = lwgl’ wg2’ wg3’ wg4’ ogxl’ egxz’ 9gx3’ egx4’

Bgyl, Ggyz, Ogys, 6 oy’ 6. 6 6. Gnsj (260)

{
and the transformation matrix [ I'sg.n‘f) ] is exhibited in Figure 60.
A sccond set of optional transformations is introduced to enable eccentric

connection of the quadrilateral thin shell element to a surface whichis a distance e,
above the element. This transformation takes the form

{ng} = [1 1] {Ssgim} 261)

The degrees-of-freedom {8;m} and {8 ;‘ may be interpreted according to
Equation 255, and the transformation matrix [I'¢] is shown in Figure 61. Note
that utilization of this transformation requires the presuppression of midpoint dis-
placement degrees-of-freedom.

Global or "system' displacement degrees-of-freedom are obtained by the
introduction of further transformations of the form:

{81 [T ™1 {3} 2e2)
where

{8;:} b [I' (f)] {8 } (263)
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Figure 60. Flexure Displacement Coordinate Transformation
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where

{Ss }T = lusl’ Vsr Vsx1’ esyl’ eszl’ Ya2 Vs2? Ve’ esxz’ esyz’ aszz’
Uis Veg Yexa' Ooza’ Vea Vear Vaar Osxar esy4’ 8524, Us5’
Vs5® Vg5’ 0n5’ 2,9, Use’ Vs6’ Vs6’ en6’ 9,9, Yeq’
Ver Ver Bup O 0 U Vep Wogr B0 O, O’J (264)

The transformation matrices [f' s(m)] and [P gs(f) ] are given in Figures
62 and 63. Assembly of the thin shell element can be referenced to these system dis-
placement degrees-of-freedom; however, it is convenient in many cases to employ
special gridpoint coordinate axes. Accordingly, a final transformation to gridpoint
displacement degrees-of-freedom is provided, i.e.

{8} =[] {a)

{g}T = I.“q1’ Var’ Yar' equ’ eyql’
uq2’ vq2’ Wq2’ exqz’ quz’
Y93’ Vg3’ Vg3’ 9xq3’ yq3’
uq4’ Vq4:’ wq4’ qu * Tyqd’
Y95’ Vq5* Va5’ “ngs’ 0,
Y6’ Ya6, Yq6’ “nge’
Yqr’ Va7 Vo7’ b O
Ygs* Vg8’ Vg8’ enqS’ %
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(265)

8, o’

o)

zq2

> =)

zq3’

P

a4

(266)
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The matrix [1" sq] is made up of the individual gridpoint axes direction
cosine transformations from the relations

{x:} - [qu]j {x,} j (267)

positioned along the major diagonal as shown in Figure 64.

The foregoing transformations may be collected symbolically to obtain a
singic transformation between the field coordinate displacement degrees-of-freedom

E - “nd the final gridpoint displacement degrees-of-freedom {q} . The results
are as wilows:

{Bm} - [Pﬁq (m)] {q} (268)
(6} - [5,"] {2}
where r (m);
[Pﬁq (m)] - [rBo<m)] [Fog(m)] [Fsup(m)] [I s I‘e(m)] - --E-l: ‘&)- #719
| g8

78,1 - [7.%) [5°] [Ts®] [T (501 [T em

This completes the explicit statement of the displacement functions employed for the
Mallett quadrilateral thin shell element.

2. Potential Energy

The strain energy density for a thin shell element of zero curvature is

defined as
dU = fld‘] {o'} 272)
where
{‘}T = l‘x' ey’ eny e
{a}T = lcrx, T oy J (274)
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Linear elastic material behavior is assumed to take place from an initial
state of strain {‘i} to a final state of stress { a'} and strain {e

(o™} = [=™] {{e™} - {¢™}) @7s)

The matrix of elastic constants [E] is given explicit expression for the

special case of orthotropy in Figure 64. The superscript m indicates the coordinate
axes of reference.

Substitution of the assumed constituitive relation into the sirain energy
density definition yields, after integration, an expression for the strain energy of
elastic deformation in terms of the strains.

w - 3 [e™] [2] () (] [5] () e

If the material axes (m) are orientated at an angle with respect to the
chosen element geometric axes {g) a transformation must be introduced,

(™} [5,] {<®)

(e®} - [1ee] {=™}

The transformation [T € o*] is defined in Figure €5. Transforming the
axes of reference of the strain energy density and the constituitive equation obtain

w =1 @] [£9] {©) - | {9} 279)

{o.(g)}= [E(g)] {e(g)} - {;i(g)} (280)

where

and

9] - [tee] " [5™] [Teo]

LT
O[] 2] (™) - (9] (9} e

[
{

al
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exy -2 sinycos ¥, +2 ginycosy, + coszy- sinzy

Figure 65. Strain Transformation [Te a‘]

The well known strain-~displacement relations for a thin shell element of
zero curvature can be written as a sum of membrane { e } and flexure {K } contri-

butions.
{e(g)} = {e @)} + z {K (g)} (283)

It is convenient to separate the membrane strain into linear and nonlinear parts.

(=9} - {49} + {9) o

Explicit definition of the strain contributions in terms of the displacement is given by

{e,®} ' o BT (285)

(e ©) T o2 1.2 286

e, —[wa ’Ewy ’wx“y ] (286)
T

{K(g) } =|-_wxx W -2wxy J (287)

It is convenient to carry forward the separation of membrane and flexure
strains into the strain energy expression prior to introducing these strain-displace-
ment relations. In so doing it is assumed that {‘i} is a linear function of the z
coordinate.

{‘i}= {‘mi}+ z {‘ﬁ} (288)
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The resulting expression for the strain energy is written as a sum of mem-
brane Cpm , flexure P, and coupling P ¢ contributions. Including an external work
term CP as well, the set of four energy contributions is written as,

d - j‘ (2[ (g)J [E(g)] {,,_u(g)}_t leu(g)J c (g)} (289)

m

o [ (S 10) B0 60510 (£ ) o e

c f (t]e (g)J [=®] {ew(g)}) da (291)
o - f (p w(g) 292)

This set of energy functions is employed as the point of departure in deriving
the companion triangular thin shell element reprzsentation in Section 9.

©

O

©
I

In order to realize the algebraic simplification afforded by oblique coordi-
nates axes, it is necessary to transform the displacement functions of Equations 285,
286 and 287 before substituting into the strain energy. Given the transformation relation

cos @
X 1, -—= X
[ 0 sin@ g
= (293)
0 1 y
Iyo ' sina g

and using the chain rule for partial differentiation, the following transformation rela-
tions are derived.

f =f (294)
X X
g (]
cos @ 1
- —— 295
fy sina fxo * sina fy (295)
fx < = fx x (296)
£g oo
cosza 1 2 cosa
f = f + 3 f ~ 5 fx {297)
yg g sin a Xo%o sin'a yoyO sin a )
cosda 1
- —— f 293
fxgyg sina fxox * sing@ xy (298)
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Invoking these transformation relations, 285, obtain the strains expressed in
terms of displacement functions defined with reference to the element oblique coordinate

sy
{%} = [n]{2n)
{9} = [n]{on)
{x¥} = [r,] {8}

where
T
{Amu} = Lux’ uy’ vx’ vy.l
T
{Amw} y2 ’ Wny.l

{Afw } T - " Yt Wy -way.]

n
v |-
=
o=
£

The matrices [Tu ] and [Tw ] are given in Figure 66.

Introducing these strain-displacement relations obtain the energy functionals

in terms of displacements referenced to the oblique coordinate system.,

o, - [ (71a.] [ ] {80} - 18] {1ne}) oo

Xy

@, - _/,:y (';' l.AfJ [Ifk]{Af}‘lAfJ {Ife}) dx dy
0, + [ (18] [] (B)) e

@p =J:y (pz w sin ﬁ) dx dy

1] - toma [1,] [29] [x,]
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© u u v v
X 'y X y
(8) — -
u +1 s o , 0 , 0
X
cos Q@ 1
T = 0 0 . -
[ u] vy ’ sin a sin a
3 u +v) - C?S a , t 1 ’ +1 ’ 0
X sin q sin a
- _
3 (0)
- — - —_ - s W W
(g) _wxx,zw wyy,zw 2w, W y_l
1
3 “W__, oW +1 ’ 0 ’ 0
. xx 2
K
: 2
3 1 2 cos a 1 2 cos a
N T = -w ,3w 2 ] + 2 ?* - 2
] w ¥y y sin” a sin” a sin” a
2w ,WwWw _cos a . 0 , .1
Xy xy | sin @ sin a

Figure 66. Displacement Function Transformations

T

{1m¢}= tsina ['ru] {'e’mi(g)} (310)
(1] = 502 [, ] [59] [r,]
T
3 o -
{Ife} = t1zsma [Tw] {‘fi(g)} (312)
[Ic ] = tsina [Tu] T[E(g)] [Tw] (313)

Equations 303, 304, 305 and 306 are the desired form of the energy functional.
It should be noted that, in expressing the nonlinear coupling energy, the second order
terms in the prestrain have been assumed small relative to the corresponding first
order terms in the total potentiai energy functionai.
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The next step in constructing the element representation is to effect the
discretization by introducing the previously derived mode shapes into Equations 300,
303, and 304. This results in the relations.

{Amu} = [Dm(j)] {Bm} (314)
{Afw} = [Df(j)] {Bf} (315)

The matrices [Dm(J) ] and [Df(]) ] are presented in Figures 67 and 68,
respectively. The vector Amw is a quadratic function of the coordinates { B f}
and symbolic representation is not attempted at this point.

Algebraic statement of the membrane energy contribution of Equation 305

is considered first. Examination of the component relations of Equation 314 Jeads to
identification of a typical form for each element of the vector { A mu} , 1.e,

(Amu)l(k) = [dJ [cm.lz(k) {am}j(k) (316)

where

{d}T= ll,x,yJ (317)

For example, focusing on the first zone (k = 1), the first element (£ = 1) is given by

(Amu)1(1)= ux(l) = ll, X, yJ 1, Bmz

2 Bins (318,

Explicit statement of the [ cm_l and {am} matrices for each of the four zones is
given in Figures 69 through 72.

137




i 1 4 ) 6 7 8 9 10 11 12 13 14 15 16
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t ux 0, 1, 0, 0, Yy, 09 0, 2x, ]
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D =
m
] Vx. ’ 0, 1, 0, 0, Y, 0) 0’ 2x
. Vy ’ 0: 0’ 11 0, X, 2)’. 0» 0
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D(3) Y 6, x, o0, 2y, O,
m 1=

0, 0’ 1, 0, X, 0, 2y, 0
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Figure 67. Membrane Displacement Derivative Matrices
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o e
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Figure 68. Flexure Displacement Derivative Matrices

(Bpudy o [om] = [ 2 o2 1]
{om}" = | Buz +Bus +Brs |
[+ v 2]
{9} = |Bus -Brs +Bus |
(Bnada * [en) = [ 0 2 1]
{an}" = [BuroBse B

(Amu)z : [cml

L]

(Amu)-‘l:[cm.’ fil’l ’2]

{nm }T = lell'Bml:}'Bml-!J

Figure (3. Zone ! Membrane stiffness Parameters
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'The general form identified with the elements of the vector { A mu} leads
naturally to a generza] form for the associated energy contributions. Firstly, the mem-
brane energy is expressed in indicial notation.

! 4 4 4 ®)
] ¢m = Z Z Z (¢m ) . s (319)
r k=1j=1 i=1 N
where .

3 (k) k) (k)
(‘bm) =f (-;-(Imk) ij (Amu). (Amu )
E 1 zone k ! L

- ( Ime)i (Amu)i(k)) dx dy 320

The general contributing energy form now follows directly by introducing
the general form for the elements defined in Equation 316, i.e.

(k) (k) (k) (k) (k) (k)
(%), 30me), lon], [oal; 0] Ful " {a)

(k) (k) (k) (321)
"(Ime)i lamji [crnJi {Ce}

where

k

[ e ] - Lonek{d}ldjdxdy (322)
k)

{Cf} = fzone k {d} dx dy (323)

\Lacii i Rt et 4o Rt

TR

Presentation of these matrices is prefaced by definition of notation in
Figure 73. Then, [Ck] and{Cc}are given in Figure 74. The knowledge of these mat-

rices together with that of the [ cmj and {am} matrices specified in Figures 69 through

a st Laeadib bl e

72 enables explicit algebraic expression of each of the (@ (k). These individual energy
contributions are summed to obtain the objective algebraic expression for the total mem-
brane potential energy, i. e.

¢, -8, [K.] {8.}- [8,] {F} (324)
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As disclosed by the notation employed, [ﬁm] and { i:e} are the membrane stiffness
and prestrain matrices referenced to field coordinate displacement degrees-of-free-
dom { B } . Explicit statement of these matrices is redundant since they are simply
the assembled results of explicitly specified contributions.

It is convenient to have separate load vectors for prestrains due to temper-
ature. The desired modification is available immediately from Equation 310.
T

{1} -Ar_tsma [T ] [Teo.]T [E™] {a*™} (325)

The objective algebraic statement of the flexural potential energy follows
in analogy with the development for the membrane potential energy. Examination of
the component relations of Equation 315 leads to identification of a typical form for
each element of the vector {A f} , Le.

(k) (k) (k)
{Af}[ = l.dJ [ch[ {af}[ (326)

For example, focusing on the first zone (k = 1), the first element (= 1) is given by
()
. ,
(Bely = - vy [vxv] [ By
, ~24, B 7 (327

81 | Bgg

Explicit statement of the [ ch and {a f} matrice for each of the four
zones is given in Figures 75 through 78

143



T e R TR ,w
¢
:
y
]
$
i
13
t
H
¥
'
¢t
1
H
'
]
4
]

s (A) [ch = [z 2. s
T

{“f} = 1Bey» Bey+ By
| (Af)2 ‘-ch = |2, 8,24 |
¢ T_
{Qf} = Lers By + Berg
)
% (Af)3 [ch = |4, 16, 16 |
: { T
; i“f} = _st’BfB’B{Q

Figure 75, Zone 1 Flexure Stiffness Parameters

(Af)1’[°f [ 2, %, 8J
{

J -
“f}T= le14’ Bes Prss J

(Af)3 :[ch = [ 4, 16, 16 J
{“f}T= l_st’ Bus P J

Figure 76. Zone 2 Flexure Stiffness Parameters
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The general form identified with the elements of the vector { A f} leads

to a general form for the associated energy contributions. As before, the energy
function is expressed in indicial notation as

4 3 3 ®
o - Z Z Z (‘bf)” (328)
k=1 j=1 j=1 y
where
(k) ) , (k)
(d’f).. = f ('é' (Ifk),_ (Af)i (Af)‘ (329)
ij zone k ij j

(), (8] oo

The general contributing energy form now follows directly by introducing the
general form for the elements { A 1} defined in Equation 326, i.e.

&) (k) (k) k) (k)
(20, = % (), Lok el 1617 1] * o)
k) (k) k)

- (‘u)i loc] [chi {Ce} (330)

1

Particularization of this general form to the individual [ cf _l and { a f}

and summation yields the objective algebraic expression for the total flexural poten-
tial energy, i.e.

cbf - %’ I.Bf.l [Ef] {Bf} - !ij {ﬁe} (331)

As discloséd by the notation employed, [ ﬁf ] and {i"‘} are the flexure stiffness
and prestrain matrices referenced to field coordinate displacement degrees~of-free~
dom /3 . Explicit statement of these matrices is omitted since they are simply the
assembpled results of explicitly specified contributions.

As in the case of the membrane prestrain load vector, the flexure prestirain
load vector is particularized to thermal loading. The desired modification follows
immediately from Equation 309, i.e.

3 T T
(e} -o1 722 [r, ] [ree ] [=™] {«™} @32
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Work equivalent gridpoint forces are provided for the case of a transverse
load uniformly distributed over the quadrilateral thin shell element. The external work
of tkis loading is defined by

® = f p, W sina dxdy (333)
p Xy
The introduction of the assumed displacement modes into this expression yields
4
d, = 2 f p, sina [ij {Bw}(k) dx dy (334)
k=1 Yzonek

Substitution from Equation 246 and integration then yields an algebraic expression for
the external work, i.e.

¢p = leJ {Fp} (335)

The matrix { F } , referred to as the pressure load matrix referenced to field
coordinate displacement degrees-of-freedom, is given in Figure 79.

3. Stress Matrices

The stress resultants for a thin shell of zero curvature are defined in the
notation of Figure 80 as follows:

Nx = j;oxdz . Ny =fz crydz ;ny =j; Txy dz (336)
M = fzcr dz . M =f zo dz M =-fz't' dz (337)
X , X ; y A y wy ), T xy

- (“")d + (2322) 4 (338)
Qx B 2\ 9x 2 2 dy 2

z z

Q =f z (6a'y)dz + f z (drxy)dz (339)
y . ay a dx
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It was tacitly assumed in defining the stress resultants that nor*near mem-
brane flexure coupling contributions to the stress resultants are small relative to first
order terms. This assumption is carried forward in writing the stress resultants in
terms of the strains

(00 + (] 12 07 - (3,9} o) o

{ng)} [E<g>] {x®} - L {-—ﬁ(m} = -fo‘g’} (341)
3

(o) - ] [0 {55 ¥} 4[] [29] {ahgx} o

where [c1]= [3 g(l)] , [Gz] - [8 2(1)] (343)

The stress resultants are expressed with reference to dispiacement functions
defined in the oblique coordinate system of the element by substituting from Equations
299, 300, and 301.
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{.Nf(g)} =t [E(g)] [Tu] {Amw(O)} -t {Emi(g)}+ t {amo(g)} (344)

3 3 3
{Mf(g)} - i—f [E(g)] [Tw] {Afw(O)} - th. {Efi(g)} * % {&fo(g)}

3 ) (345)
t
{o®} -z [e] [=®] [7,] {55 4"}
3
8 [a] (9] [5,] {- 32202 8,%)
* slina {-:TO AfW(O)}} (346)

Introducing the displacement mode shapes assumed over the four zones of
the element, the stress resultants can be written collectively as

[ N & ] i Sy ] 4y,
) Mf(g) b= | sy | {a}-1 4y (347)
‘ Qf(g) ‘ ] SQ | 0

where
(50} - +[#] [] [5, 0] [, -
(s} =4 [29] [1,] [220] [r,,] o9

(5,0} =5 [o1] [£9] [1,] [& o2 0] [Ty)

3 .
iz (o] [=9] [x,] -85 [ 0]

* siwa [39370 o O] ] [Ts) (350)
{4} --{e,®} (351)
{"M} - ‘i_?:; { zfi(g)} (352)
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C. EVALUATION
1. Membrane Stress Analysis

The first illustration which uses the quadrilateral thin shell element in a
structural evaluation will be the fcllowing. Consider a thin square isotropic
plate loaded with a self equilibrating parabolic membrane load as shown in Figure 81.
The material properties and pertinent geometric data are also shown in the figure.

The idealizations used for the finite element analyses are shown in Figure 82,
Three different grid sizes were employed in this evaluation. One element, four element,
and 16 element solutions were obtained in order to evaluate convergence characteristics.
Due to conditions of symmetry it should be noted that only one quadrant of the plate was
analyzed. For the finite element idealizations employed in this evaluation, the midside
nodes which were loaded by the parabolic load were suppressed. This suppression
invokes a linear edge displacement under the load.

The resulis obtained from this set of convergence studies are presented in
Figures 83 and 84. Figure 83 is a plot of the membrane displacement, ug, at the middle
of the plate's edge versus degrees-of-freedom employed inthe analyses. The reference
solution (Reference 44) is designated by the solid line. Figure 84 presents a curve of
the membrane displacement, ux, and stress resultant, Ny, versus the edge span of the
plate for the idealization sliown in Figure 82 (16 element solution).

f Quadrant
Analyzed

32 in.

'y
—D

e g L Loy

0.1 in.

t

2
E =30 x 106 1b/in.

1)

Figure 81. Parabolically l.oaded Membrane
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Apgain it should be noted that the reference solution is designated by the
solid lines and no discernible difference between solutions can be detected.

2. Membrane Gridwork Influences

The second illustration which utilizes the quadrilateral thin shell element
in a structural evaluation will be the following. Again, consider a thin
square isotropic plate loaded with a self equilibrating parabolic membrane load as
shown in Figure 81. This illustration will involve the effect that the shape of the
elements used in the structural idealization has on the determination. of the center
edge displacement of the raembrane.

The six idealizations used for the shape study are shown in Figure 85.
It should be noted that due to symmetry only one quadrant of the plate was analyzed.
The midside nodes which were loaded by the parabolic membrane load were suppressed
in this solution.

The results obtained from the subject shape studies are shown in Figure 86.
These solutions indicate that the displacement values, ugq, obtained for the middle of

the plate's edge, are fairly insensitive to the shape of the element for this zlass of
problem.

3. Plate Stress Analysis

The third illustration which utilizes the quadrilateral thin shell element in
a structural evaluation will be the following. A simply supported isotropic square plate
with a uniform normal pressure load of one psi is shown in Figure 87 aiong with its
material properties and pertinent dimensions.

The idealizations used for the finite element analyses are shown in Figure
82. Note that no node points are suppressed in this analysis. Three different grid
sizes were employed in this evaluation. Oneelement, four element and 16 element solu-
tions were obtained in order to evaluate convergence characteristics. Due to condi-
tions of symmetry only one quadrant of the plate was analyzed.

Figure 88 is a plot of the transverse displacement at the center of the
plate versus degrees-of-freedom employed in the analyses. The reference solution
(Reference 45) is designated i,y the solid line. Figure 89 presents a curve of the
transverse displacement, wyx, and bending moment, My, versus the center span of the

plate for the idealization shown in Figure 82 (c) (16 element solution). Again, it should be

noted that the reference solution is designated by the solid lines and nodiscernible
difference between solutions can be detected.

4. Plate Gridwork Influences
The fourth illustration which utilizes the quadrilateral thin shell element in

a structural evaluation will be the following. A simply supported isotropic plate with a
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Figure 87. Simpiy Supported Square Plate with
Uniform Normal Load
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Figure 88 Convergence of Quadrilateral Element
Plate, Square, Isotropic, Simple Support, Uniform Pressure

159



pars

Transverse Displacement, Wy (in)

y = ~16.0 y = 0.0 y = 16,0
Sec. AA Span (in)

Legend:
@ ® Bell Quadrilateral, Grid Cp
Reference Quadrilateral
Reference Alternate Solution

Figure 89 Behavior Of Quadrilateral Element Plate, Square,
Isotropic, Simple Support Unit Uniform Load

160

Stress Resultant, M, (in~16/in)




a uniform normal pressure load of one psi is shown in Figure 87 along with its
material properties and pertinent dimensions.

This illustration will involve the effect that the shape of the elements used

in the sfructural idealization has on the determination of the maximum displacement
of the plate.

The six idealizations used for the shape study are shown in Figure 85.
Due to conditions of symmetry only one quadrant of the plate was analyzed.

The results obtained from the subject shape studies are shown in Figure 90.

These solutions indicate that the determination of the plate's center transverse
displacement is fairly insensitive to the shape of the element for this class of problem.
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9. HELLE TRIANGULAR THIN SHELL ELEMENT

A.  INTRODUCTION

A trinngular thin shell clement is incorporated in the discrete clement Library
of the MAGIC System. This clement. illustrated in Figure 91. i8 recommended for
use ae the basic building block for most doubly curved shells. Additionally. it is
uscful in combination with the Mallett quadrilateral thin shell clement for dealing
with irregular geometries of all membrane. plate. and shell structures. The Helie
trinngular thin shell element representation is developed in detait in Reference 46.

Figure 91, Trinngular Thin Shell Element Representation
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1 The shape of the general triangular element is defined by the coordinates of the
three corner points. It is a zero curvature element. The piane of the element is
determined by the three corner point coordinates.

The subject element is a thin shell element in that both membrane and flexure
action are represented. Referenced to axes in the plane of the element, the membrane
and flexure representations are uncoupled. Optional generation of either or both of
the representations is controlled by the provision of associated effective thicknesses.
The distinct membrane and flexure effective thicknesses are assumed constant over
the plane of the element.

E Under normal circumstances, three corner points and three midside points

] participate in establishing continuous connection of the Helle triangular thin shell
element with adjacent elements. Used in this way input data volume is reduced and
accuracy is enhanced. An option is provided to suppress the midside nodes indi-
vidually if associated complexities arise in grid refinement or nonstandard con-

1 nections with adjacent elements. Invoking this suppression option causes linear
variation to be imposed on the specified midside variables.

ol g

The Helle thin shell element is written to accommodate anisotropy of mechani-
cal and physical material properties. Orientation of material axes is data specified.
Temperature referenced material properties, selected from the Materials Library,
are assumed constant over the element.

A linear generalized Hooke's Law is employed for the equations of state.
Three options are provided; namely, conventional plane stress, corrected plane
: stress, and restricted plane strain.

The element formulation is discretized by the construction of mode shapes.
Membrane displacements within the subject element are approximated by guadraiic
polynomials. Transverse displacement is represented by cubic polynomials. A
linear variation is provided for midplane and gradient variations in thermal loading.
Other element loadings such as pressure are assumed constant over the element.

e o

b cr s oo ot

; Deformation behavior of the Helle triangular thin shell element is taken to be
] described by the displacement degrees-of-freedom associated with the gridpoints
3 which it connects.

The linear variation in strain within the element which is permitted by the
assumed displacement functions leads to similar stress variation. Advantage is
taken of this by exhibiting predicted stress resultants at the three corners as well
as at the center of the element. Inplane and normal; direct, shear, and bending
stress resultants are included. The display of stresses implies a set of axes of
reference. These axes are data specified.
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B. FORMULATION
1. Displacement Functions

The displacement functions for the triangular thin shell element are con-
structed with reference to the coordinate system (xg, yg) shown in Figure 91. The
origin of this system is located at the centroid of the triangle. The orientation of
the xg axis is defined by corner gridpoint number 1. The yg axis of this right-
handed coordinate system is taken counterclockwise from the Xg axis in the plane
of the element.

Polynomial mode shapes are employed to represent the displacement
functions over the element. These mode shapes, for the membrane displacements,

take the form
l.Bu J{Bm} (353)

|2, | {8} (354)

{Bm } =le1 ! BmZ’ Tt Bm12 J (3595)

The mode shape matrices lBuJ and leJ are exhibited in Figure 92. It should
be noted that both of these represent complete quadratic polynominals.

=
H

v
where

The transverse displacement function is approximated by distinct polynomials
over each of the three zones of the triangular element identified in Figure 91. The
basic cubic polynomials may be written symbolically as

Wi le J {7‘”} j=1,2 3. (356)

where the mode shape matrix leJis given in Figure 92 and the {7 (j)} are simply
the undetermined coefficients.

Interzone continuity requirements impose interdependencies among these
undetermined coefficients, yielding

G i\
{7 J)} _ [P)’Bma {Bf} (357)
The resulting admissible displacement functions are given by

(9} [n,) [54°] &)

where
{Bf}T ) lel’sz""’anJ (359)

The transformation [I‘ U)] to independent field coordinate displacement degrees-
of~freedom for transverse displacement B ¢t are exhibited in Figures 93 through 95.
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Figure 94. Flexure Displacement Interzone Transformation [P)' B(z)]

Elementary interpolation theory is invoked to obtain transformations from field
coordinate to gridpoint {3} displacement degrees-of-freedom, i.e.

{8} = [T8.™] {8m) (360)
{Bf} [FBg(f)] sgf} (361)
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Figure 95. Flexure Displacement Interzone Transformation
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It is convcnient to define the transformation matrices [r' 8 ] and [P 2 ]
in terms of submatrices by writing J g

-
[PBg(m)]-l ) [Fm]’ (364)
L [T
- e ®7
(f) , -1 0 . o ,|B I
[FBg ] } [Bz] , 0, [ ;] "1--72(2)4 (365)
o L [8] . o ||FTF @

o , 0 ,[Bm] o7

o [3a]. 0

These submatrices are now given explicit defintion in Figures 96 and 97.

At this point, optional transformations are introduced to enable suppression
of the midside displacement degrees-of-freedom. This feature provides flexibility
in ideaiizatior. and facilitates consideration of eccentric connections. The transfor-
mations take the form

Bt = [Top™] {3} e

8t = (1] {3} e

The degrees-of-freedom {8'gm} and {S'gf} may be interpreted according to Equa-
tious 362 and 363. The suppression transformations [f' s (m)] and [I" Su (f)} are
given in Figures 98 and 99. b p

A transformation related only to flexure is defined to establish a vectorial sign
convention for the rotational degrees-of-freedom associated with the three corner
gridpoints. In addition, the midside roiations are signed so as to be compatible with
adjoining elements, Specifically, they are assigned vectorially positive in the direc-
tion from the corner gridpoint with the smaller gridpoint number toward the corner

gridpoint with the larger number. This transformation relation is written symbol-
ically as

{S'gf} i [Psgn(f)] {8"gf} (368)

where
i -
{8 gf} [wgl, &gxl, egy." Wgz, agxz’ egy2’
(369)
wg3’ gx3’ Bgy'é' en4’ 8115’ enGJ
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Figure 98. Flerare Displacement Coordinate Transformation [r
sup

The transformation matrix [I' sgm(f)] is shown in Figure 100.

The transformation introduced next is designed to enable ecceniric connection
of the triangular thin shell element to a surface which is a distance e, above the ele-
ment. This transformation effects a coupling of the flexure degrees-of-freedom to
the membrane displacements and is written as

{S'gm}"’ [1]. [r.] (3n) (370)
| | {874}
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The degrees-of-freedom {8"gm} and {8"gf} may be interpreted according to
Equations 362 and 369 with the understanding that these quantities now refer to the
eccentric gridpoints. The eccentric connection transformation Pe is given in
Figure 101. Note that utilization of this eccentric connection feature requires the

presuppression of the midside gridpoint displacement degrees-of-freedom.

Global or "'system'' displacement degrees-of-freedom are introduced via a
further set of transformation relations of the form

(3} - [ {2

{8"gf} I‘gs(f)] {88} (372)
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where
{Ss} =lusl’ V1’ Y51 esxl’ esyl’ aszl’ (373)
; Us2’ Vs2' Vg2’ 93}.2’ esyz’ esz2’
Mgy Yoz Vazr Ooxar Oy Geza
Y54’ Vsar Vsa’ esn4’ 0, 0,
Us5’ V85’ Va5’ esns’ 0, @,
“se’ 's6* Vs6’ 9sn6’ 0, 0 J




ey

The matrices [f' gs(m)] and [1" gs & ] which accomplish the transformation to
system displacements are given in Figures 102 and 103. These system displace~
ment degrees-of-freedom can be employed to assemble discrete elements; however,
in many applications, it is convenient to employ special gridpoint coordinate axes.
Accordingly, a final transformation relation is provided to reference the displacement
degrees-of-freedom to gridpoint coordinate axes, i.e.

{Ss} ) [qu] {Sq} (374)

where
{Sq} T l.uql’ Yar' Yqr eqxl’ eqyy qul’ (375)
Y92’ Yq2* Vo2’ quz, aqu’ qz2’
43’ Vg3 Vo3’ eqx3’ 9qy3’ qz3’
“qa Ve Vo' 0qn4’ 0, 0,
U5 Va5 Yo O 00 O
uqﬁ’ VQG’ wq6’ eqns’ 0, @ j

The matrix [ r sg] is made up of the individual gridpoint axes direction
cosine transformations from the relation

{"s} = [qu] {xq}j (376)

positioned along the major diagonal as shown in Figure 104,
The foregoing transformations may be collected symbolically to obtain a gingle
transformation between the field coordinate displacement degrees-of-freedom

and the final gridpoint displacement degrees~of-freedom {8 } The results are as
follows: 4

{Bm} ) [qu(m)] {Sq} (877)

{Bf} ) [Pﬁqm] {Sq} (378)
where [F s(m)] ’

[78a™] = [55™] [r™] [ [R] [ 7[5 [Fid)

(379)
[78.°] = [Ta"] [Tu”] [Tg”] [Fs®] [Tie] 00
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Figure 104. Displacement Coordinate Transformation [qu]

This completes the explicit statement of the displacement functions constructed for
the Helle triangular thin shell element.

2. Potential Energy

The total potential energy functional appropriate to thin shells of zero curva-
ture was stated in Equations 289 through 292 in terms of four contributions, i.e.

0, - [(18) o0 () 0 o
- L] (26 () [49) {30 v
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o - j‘ (g) <g>] {ew<g)}) dA (383)

(g) (384)

LSy
R e]
a'?“s

Accepting the foregoing statement of the total potential energy function as
the point of departure, the first step is executed primarily for notational convenience.
The strains are written in terms of the displacement functions via the relations

{eu(g)} i {Amu} ' [Tu]T ) [uX’ Yy Yy vyJ (1)’ 8’ 3 (383)
0. ¢, 1
0,1, 0
{ew(g)}T = {Amw}T = l%wxz, —;»wyz, W wa (386)
{K(g)} T, {Afw}T = l.-wxx’ -wyy’ -2wny (387)

The potentizl energy functional contributions for the triangular thin shell element
are now written in analogy with those for the quadrilateral thin shell element as

L ,[ (% [AmuJ [Imk]{Amu}‘ 18 {Ime}) da (388)
(2120 [m{an} - [85 ] {1}) o2 59
( 12,...] [In ] (8} ) s (390)
(

pzw) dA (391)

o -

c

®, =

L5
—— >'\o

where

[ =[] 7o ] T [=™] [76] (7] @92
Une =[] [7ee ] "[=™] {e™} @
]

[Ifk] ='t'2" [Tecr T[E(m)] [Tev] (394)

1
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[1fe] =£133 [Tec] T[E(m)] {‘ﬁ(m)} (395)

['{c] =t [T‘u]T[Tw] ' [E(m)] [Teo"] (396)

The next step in constructing the element representation is to effect the dis-
cretization by introduction of the previously derived displacement mode shapes into
Equations 385, 386, and 387. This substitution yiclds

{8} = [ra] {82} (397)
{a:}=[2] {»¥} (398)

The matrices | Dy { and [Df are presented in Figures 105 and 106. The vector
Ame is a quadratic function of the coordinates y} and symbolic representation
is not attempted at this point.

Algebraic statement of the membrane energy contribution of Equation 388
is considered first. Examination of the component relations of Equation 397 leads to
identification of a typical form for each element of the vector { Amh} , L.e.
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