
AIR FORCe R~PORT NO . 
SAMSO·TR-69-!57 

,-4 
CD 
,...-.4 

u-:> 
00 
~ 

AEROSPAC..t:: Rt::PORT NO . 
TR-0200(4306-0~-2 

Q A Unified Approach to Nonlinear Estimation 
c 

Prcp:Mcd by l. A. G RA and L J. HENRIK ON 
lcctronic Di i ion 

69 JAN 15 

AERO PA 

Prcpar~d for SPACE AND MISSILE YSTEMS ORGANIZATION 
AIR FORCE SYSTEMS COMMAND 

LOS ANGELES 1\IR FORCE ~TATION 
Los Angeles, California 

TliiS OC:X:UMENT HAS BEEN APPROVED FOR PUBLIC 
RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED 

. 
c. lEAR I 



'-"■-'■"■r^"''!^ 

Air Force Report No. 
SAMSO-TR-69-57 

Aerospace Report No. 
TR-0200(4306-02)-2 

A UNIFIED APPROACH TO 

NONLINEAR ESTIMATION 

Prepared by 

I. A. Gura 
and 

L.  J.  Henrikson 
Electronics Division 

69 JAN 15 

Engineering Science Operations 
AEROSPACE CORPORATION 

Pr&pared for 

SPACE AND MISSILE SYSTEMS ORGANIZATION 
AIR FORCE SYSTEMS COMMAND 

LOS ANGELES AIR FORCE STATION 
Los Angeles,  California 

This document has been approved for public 
release and sale; its distribution is unlimited 



1,1 ' '   "^^ 

'< 

"ffftm^pm^m' »iKimimim 

FOREWORD 

This report is .published by the Aerospace Corporation,  El Segundo, 

California, under Air Force Contract No. F04701-68-C-0200. 

This report, which documents research carried out from October 

to December 1968, was submitted on 29 January 1969 to SAMSO(SMTTA) 

for review and approval. 

Approved 

c {y^jLK~i- 

A.J. Schi«we,  Associate Director 
Guidance and Control Subdivision 
Electronics Division 
Engineering Science Operations 

Publication of this report does not constitute Air Force approval of the 

report's findings or conclusions. It is published only for the exchange 

and stimulation of ideas. 

• 
^ 

Lt.  Ronald P.  Fuchs,  USAF 
Project Officer,  SMTTA 

-ii- 



■ ■» i     mm 

ABSTRACT 

, 

■**»m 

A unified approach to the dynamic nonlinear estimation problem is 

presented.    General algorithms for filtering,  smoothing,  and prediction for 

both continuous and discrete nonlinear systems are derived.    The continuous 

problem is treated first by a direct approach which yields an exact solution. 

A similar approach is then applied to the more complex discrete estimation 

problem.    The discussion provided points out some subtle, but important 

features of the main results which should be useful when applying the results 

to practical problems.    To provide insight, motivation and background for the 

technique used in obtaining the solution of the general nonlinear problem, the 

special case of linear estimation is discussed in the first two appendices.   In 

a third appendix it is shown that in the continuous measurement limit, the 

derived discrete and continuous nonlinear filtering algorithms are identical. 
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I.    INTRODUCTION 

For nearly two centuries the concept of least squares has served 

scientists well in the solution of estimation problems.   Although the technique 

is basically linear,  it has been used effectively in nonlinear problems by suc- 

cessive application to linearized approximations (differential corrections). 

In recent years, however, the requirements for increased accuracy and 

efficiency, particularly in the aerospace industry, have created considerable 

interest in the development of a purely nonlinear technique.   With few excep- 

tions, the least squares concept has been ignored and probability theory has 

been adopted as the basis for new developments.   Although this recent approach 

has yielded some interesting mathematics, the results reported to date do not 

give a practical complete approach to nonlinear estimation (see, for example, 

comments by R. S.   Bucy [4])-   In any case, with the use of probability theory 

there is the inherent assumption that a system's dynamics, measurements, 

and relevant statistics can be modeled perfectly.    Clearly this is not generally 

the case in practical engineering situations.    This report will show that in 

abandoning the least squares approach, many researchers have overlooked a 

very practical and concise nonlinear estimation technique which is not limited 

by modeling assumptions. 

An important breakthrough in extending least squares directly to non- 

linear problems was made by Detchmendy and Sridhar in 1965 [5] .   Their 

results, however, are limited to filtering for continuous nonlinear .systems, 

and even then their derivation is indirect and unnecessarily involved. 

In the first part of this report the continuous filtering problem will be 

solved from a new viewpoint.   A similar approach will then be used to derive 

an appropriate filter for discrete nonlinear systems.    Algorithms for smooth- 

ing in both continuous and discrete nonlinear systems will also be presented. 

The discussions provided point out some subtle, but important, features of 

the overall technique.    They should be helpful in application of the main results 

to practical problems.    Three appendices are also included.   The first two 
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furnish the necessary background and motivation for the technique used in 

solving the nonlinear estimation problem.    The last one shows that in the 

continuous measurement limit the derived discrete and continuous nonlinear 

filtering formulas are identical. 

BASIC NOTATIONAL CONVENTIONS 

a) Matrices are upper case letters. 

b) Vectors are lower case letters. 

c) Exceptions to these rules are i, k, n, p, q which are 
used as integers; t, T which denote time; and J which 
represents a scalar. 

d) Asterisks (*) denote matrix transposition. 

e) Vectors are assumed to be columns unless otherwise 
denoted by an asterisk. 

f) Parentheses ( ) are used exclusively for showing 
functional dependence, while square brackets [ J 
are used for grouping terms in equations. 

g) The operator d/dx applied to a scalar (vector, matrix) 
gives the appropriate gradient (Jacobian, Hessian) 
evaluated at x. 

.2. 



■ '   ' 
1     ' fm^^<mmmmmmmmmmmßmmmnm*%,tmm]**m !■ I fill J   iiHHllipi««  li*n"*pi«|M|VmOTRP9PR 

b 

 -"1 
.  . •; 

■i 
• 

II.    CONTINUOUS STATE ESTIMATION 

A.        DERIVATION - CONTINUOUS SYSTEMS 

Consider the system 

x = f(x, t) + r(t)w(t) 

z = h(x, t) + v(t) 

(D 

(2) 

where x is a p-dimensional state vector, z is a q-dimensional vector of 

measurements,  £(x,t) and h(x,t) are appropriately dimensioned vector functions 

of x and t, and r(t)w(t) and v(t) are vectors rep resenting unknown disturbances, 

noise, and general modeling errors, with r(t) being a known pX k matrix 

function of time.    It is to be emphasized that w(t) and v(t) are not necessarily 

random functions.   They will, however, be assumed to have a zero time average, 

Note that a non-zero time average can be estimated as part of the state vector. 

The generalized least squares estimation problem can be stated suc- 

cinctly as follows.    Find the y and u which minimize the scalar 

A  i*   -1, 

+ jf    [[» - h(y.t>]*R'1(t)[z - h(y,t)] +u*Q"1(t)u]   dt (3) 

subject to the constraint 

y = f(y,t)+ r(t)u(t) (4) 

where P0, R, and Q are arbitrary symmetric positive definite weighting 

matrices and xQ is an a priori guess of the initial state of the system.   As 

stated, the problem is strictly one of smoothing; i.e., the solution at any 

-3- 
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instant t will be the least squares estimate of the state vector based on the 

data gathered in the entire interval tg s t £ T. The filtering aspects of the 

problem will become apparent later. 

Note from the form of (3) and (4) that the problem can be considered 

purely as one in control theory; i.e., it can be considered one of finding a 

control u(t) to force the output of the given system to track an arbitrary signal 

z(t).   This viewpoint is particularly useful for indicating the possible applica- 

tion of the function u(t) to the modeling problem.   Namely,  since u(t) is the 

"best control" for driving a system with dynamics f(y,t) to track 2(t), it 

can be considered an estimate of the difference between f(y,t) and the true 

dynamics of the system generating z(t). 

The given problem of (3) and (4) clearly calls for application of the 

calculus of variations.    By a well-known procedure [1. 3, 6] it can be shown 

that the solution must satisfy the two-point boundary value problem (TPBV) 

y = f(y.t) - rQr*\ (5) 

k=-  l7X + l7   R"ltz-h(y.t)] (6) 

Mt0) = - P^lyltQ) - x0] (MT) = 0) (7) 

with 

u(t) = - Qr*\(t) (8) 

where \ is a p-vector of unknown functions (adjoint variables).   In general, 

a direct solution of an arbitrary TPBV problem is quite unlikely.    For this 

case, however,  a special approach leads to a very practical method of gen- 

erating solutions.   The procedure used is motivated by the solution of the 

linear version of this problem for which details are given in Appendix A. 

.4- 
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That solution strongly suggests that a substitution of the form 

y(t) = - P(t)\(t) + x(t) (9) 

where P is arbitrary and x is the filtered state estimate, be applied to (5) and 

(6).    The conditions under which (9) satisfies the nonlinear TPBV problem 

will now be found. 

Differentiating (9) with respect to t gives 

y = - P\ - P\ + x (10) 

which upon application of (5) and (6) becomes 

f(y,t) - rQr\ = -P\ + P|^ \ - P-—  R"l[z - h(y,t)] +x (11) 

Now, using (9) and noting that for \ = 0, y = x, expand (11) in powers of \.   Then 

f(x,t) - -—PX - rQr\ = - P\ + P aL\.pr^"R-ilz.h(A>t)] 

ax idx 

ax \ax /    J 

+ x + higher order terms in \ (12) 

Equating coefficients of the first two powers of X to zero gives 

A = f(x,t) + P^   R"l[z -hdU] (13) 
ax 

P = iLp + pii' + rQr* + p_i./iä' K-\z. h{^t)Ap (14) 
a^ a^ a^\a^ / 

■ 5- 
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Assuming continuity of the functions involved, these equations are then 

necessary and sufficient to ensure the validity of (9) in a neighborhood of X = 0. 

Consequently,  by (7) they must hold near t = T, the end of the data span.   Fur- 

thermore, the term "filter" is correct for (13) and (14) since by (9), \ = 0 

gives y = x, the best estimate of the state vector at T based on data gathered 

in the interval tQS t £ T. 

To obtain initial conditions for these equations, observe that T can be 

considered arbitrary, so that if T -* tQ, it must follow that 

x(t0)=x0 (15) 

P(t0) = P0 (16) 

Note also from (9) and (7) that x(T) is the missing boundary condition 

for (5) so that a backward solution of (5)-(6) using 

MT) = 0 and y(T) = x(T) (17) 

immediately gives the complete smoothing solution in the interval t. £ t £ T. 

These results are summarized in Table I using the standard notation 

x(t/T) for the state estimate at time t based on data up through time T.   For 

completeness the solution to the prediction problem is presented. 

B.       DISCUSSION -CONTINUOUS SYSTEMS 

The basic formulas for filtering (18) and (19) have been derived pre- 

viously by Datchmendy and Sridhar [5].    Their derivation, however, is 

incomplete because it does not yield the all-important initial conditions.   In 

addition, their approach is unnecessarily complicated by the introduction of 

a partial differential equation. 

A potential application of least squares estimation, which apparently 

has been overlooked, is its possible use in the solution of the modeling 

V ■ 
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Table I.   Continuous Nonlinear Estimation 

Filter-ing:        t  =   T 

d'    -    f(£,t)    +    P^R^Cz-Wx.t)] 
dx ar 

dP   =   UP   +   P^f     + 

^(t0)    =    ^0      and      P(t0)    =    P0 

Smoothing:   t < T 

dt 

g^(t/T)   =   f(^(t/T),t)   -  rQr*\ 

ax(t/T) ax(t/T) 

(18) 

ror* +   P\(^ R^Cz-h(^t)3)p    (19) 
dx \ dx / 

(20) 

(21) 

(22) 

x(T/T)    =    x(T)      and     X(T)    =    0 (23) 

Prediction:   t >  T 

d x(t/T)    =    f(x(t/T),t) 3t 

x(T/T)     =     x(T) 

(24) 

(25) 
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problem.   At present, errors in modeling system dynamics are often 
the most prominent cease of inaccuracy in practical estimation problems. 
In the least squares formulation of the problem, (l)-(4), the general system 
modeling error is included in the term w.   The solution in Table 1 offers 

both a filtered and a smoothed estimate of w.   From (18) and (8) these 

are 

r^t) =P^ R-l[*-hAt)] 
8x 

(26) 

and 

r^t/T) = - ror x(t) (t<T) (27) 

respectively.   Note that while the solution to the prediction problem (24) 
follows from (5)-(6) with z(t) = h(y,t) = 0, it may not be the most practical 
one for modeling problems.   That is, if Fwis significant, it may be advan- 
tageous to extrapolate it in some consistent manner for use in state vector 
prediction.   One approach would be to find an appropriate dynamic model for 
this error, then augment the given state vector accordingly, and apply the 
formal prediction algorithm (24). 

.8. 
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III.    DISCRETE STATE ESTIMATION 

A.        DERIVATION-DISCRETE SYSTEMS 

Although the continuous estimation formulas of Table I can be useful in 

certain situations, there are many practical estimation problems in which 

system measurements are not recorded continuously, but rather are known 

only at specific instants of time.    This,  coupled with the fact that it is generally 

desirable to perform analyses digitally, is good reason to seek a discrete 

analogue of the least squares formulas of Table I.   Several attempts at 

deriving such formulas have been made in the past [11,  12] with no overall 

success.    This is not surprising since the extension is not trivial as the dis- 

cussion below will show.   Although the discrete problem is similar to the 

previous one, there are sufficient differences to warrant a completely 

independent treatment.   Since the results to be obtained are new, a par- 

ticularly detailed discussion is provided. 

For the discrete problem consider the system 

xi = gi-l(Vl)+ ri-lwi-l (2<i<n) (28) 

z. =h.(x.)+v. (l<isn) (29) 

where x. is a p-dimensional state vector, z. is a q-dimensional vector of 

measurements, g-   <(x.   .) and h.(x.) are appropriately dimensioned vector 

functions, and F.   ,w.. and v. are vectors representing unknown disturbances, 

noise, and general modeling errors, with F   . being a known p X k matrix 

function of time.   It is to be emphasized thatw.   . and v. are not necessarily 

random functions.   They will, however, be assumed to have a zero time average. 

Note that a non-zero time average can be estimated as part of the state vector. 

In this context the generalized least squares problem is that of finding 

the sequences y^.y,,  • . . »  y   and u.,u-,  . . . , u     , which minimize the 
i    c n i     £ n-1 

scalar 

-9- 
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subject to the constraints 

yi = 8i.l^i-l>+ri.xVl (2Si5n) (31) 

where P.« R. and Q-   < are arbitrary symmetric positive definite weighting 
matrices, and x^ is an a priori guess of the initial state of the system at 
time tj.   Observe that (28) is meaningless for n = i, and the basic problem 
reduces to finding the minimum of 

Jisrtyl-x0i*pj1[y1 -fcoJ+^i-WiV^i-WJ     (32) 

The multistage problem of (30) and (31) clearly falls within the scope 
of the well-known Lagrange multiplier technique for solving constrained 
extrema problems.   By introducing two dummy constraints,  y, = g0(y0) + u. 
and y +1 = g: (y ) + u , a general formulation can be found which conveniently 
includes the single stage problem (32).   In particular, write 

n 

+ g[ri»i - vviX't'i - Wi +KQi"S 
+ x*[yi.gi.1(yi.1)-ri.1ui.1]] (33) 

.10- 
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where X.pX,,,   ...,X   »^+1 are p-vectors of Lagrange multipliers.    Now 

both J and J, will be minimized when BJ'/dy. = 0 for i = 0, l,2,...,n+l; 

and dJ'/^u. = 0 for i = 0, 1,2, . . . , n, or, more explicitly, when 

a8l dhl        1 1 A xi=l^x2+a-y7
Rnzi-hi(Vl -po t^i-V (34) 

ah. 
x      dy.     i+l       9y.       i    l   i       i    i J 

By, ayi 
(2<i<n) (35) 

yi = 8i.l(yi.l)+ri.lQi.iri-lXi (2 < i < n) (36) 

I UT1 
(37y 

with 

u0 = 0 and u. =Q.r. \.. . 
i        iii+l 

(1 < i < n) (38) 

Note that (34), (37) and (38) show J. is minimized for n = 1. 

Observe that the problem described by (34) through (37) is analogous 

to the TPBV problem encountered earlier in the continuous estimation prob- 

lem.    Recall in that case that the method of solution was motivated by an 

approach to the corresponding linear problem.    A similar technique can be 

used here.   A solution to the linear discrete estimation problem is presented 

in Appendix B.    That derivation strongly suggests that a substitution of the 

form 

9g 
y. = P. -ri X.. . + x. 

1 1  »A       i+i i 
OX. 

(39) 

-11. 
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ri.l =Pi.lX~Xi + Xi-l dx i-i 

(40) 

where P. and P.   . are arbitrary and x. and x.   . are filtered state estimates, 

be applied to the TPBV problem (34)-(37). 

Proceeding along these lines, then, combine (36) and (39) to obtain 

* 8g. 
F.   .Q.   .r.   A. =P.-ri-X... + x. - g.   Ay.   .) 

1-1    1-1    l-l   1 l   a^       1+» 1 *"*     I-* 
i 

(41) 

Use (35) to eliminate \., and expand 8-_i(y;_i) about x.   ..   Then 

9g. dh. 
ri.iQi.ir*-i ö7rxi+i+ ri.iQi.irr.i^ ^'^i - wi 

88i-i ög 

1^i 
1+1   1 «i-l^i-l) 

^ 
iyi-i-xi-J - 

i-i 

(42) 

At this point the index i is confined to be near n, i.e.,i = n-l,n> 

where n is the last stage of the estimation problem.   Other values of i are of 

no importance in the discussion below.   With this in mind, it is assumed that 

v    , - x    - and \    are "small" in the sense that quadratic and higher order 
'Ti-C Ti-C n • o 
terms in these quantities can be ignored.    The implications of this hypothesis 

will be considered later.   Note from (40) that assuming \   to be small guar- 

antees that y    . - x     . will also be small.   Thus, for the i of interest, n-1        n-1       . 
terms nonlinear in y.   « - *•   < in (42) can be omitted. 

.12. 
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Continuing with the development, then,  apply (40) and (35) to (42) to get 

^ ah. 
ri-iQi.ir;-i arVi+ ri-iQi.iri-i 8rRi" izi - wi - 

da. 
Pi7-   i+1 i -h-i^i-O 

axi 

ag i-i 

dZ i-i 

88i if^i       ahi -i ,1 
1-1 ax    i-8yi    ^      ^    i     »     i  i J 

(43) 

Now, bearing in mind the fact that y. is a function of \.   . by (39), and that 

X       is assumed to be small, expand both sides of (43) in powers of X,    . to 

obtain 

ri.lQi.iri.l -jr*.: [z. -hA)] + -T-f-^RrUz. -h.(A.)])p.-^\.xl a^.    1 ^     x  ^     a^. Va^.    x     x     1  l  /   1 a£    1+1 ak. 
i 

ax. ^ak 
i      i 

ag?" ag? 

i-i  i-i  i-i   „A     i+i      i  .A    i+i      i    6i-r i-r ax. ax. 

9g; i-1 

a^ i-i 

ag. jfag ^    .i A 
P.   ,   -^    -r- X... +-Ti-R.^[z.-h.(x.)] 1-1  4.! Lax.   l+1    4   l l 1    l  l 

'is »;« 

+ 4-(^LR"![^ -h.(^.)]V-^-X., 
a^. Va^.    l ^     1  1 7 1 a^.    1+ 

(44) 

For convenience, the matrix is defined as 

A „ a8 
Pi/i-l=   ri-lQi-iri.l+   .A 

i-1 
P. 

ag i-1 
i-l   QA ax. , ax. , i-i i-i 

(45) 

-13- 
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and the vector as 

A   ^i „-1 V^^VK-w1 

^i 

(46) 

Then (44) can be expressed more concisely as 

* 
Hi A ÖTV 8g. 8g. 

pi/i-i -x xi+i
+ pi/i.i^(xi)f pi/i-i TA115! -^Vi = pi 3rS+i ak. 8X. 8X. axi 

Let i = n.   Then X   .. = 0 by (37), and (47) becomes 

.A /A       . 
+ X.  - g.   4 (x.   .) i    Bi-r i-i' 

(47) 

x    = g     «(x     .) + P   ,     .n   (x ) n     0n-r n-l n/n-1'n   n (48) 

Now, assume that new data is acquired, i.e., the last stage becomes 

n + 1. Then, ^ +2 = ^> bu* ^«+1 ^ ®» so t*1** equating coefficients of X., . in 
(47) for i = n gives 

P       =P     ;        .    +  P     / , n       n/n-i        n/n-1 
ön. 

n (49) 

n 

Thus (45) and (46) with i = n, and (48) and (49) are a set of recursion relations 

for P   and x .   Note that (48) '    limited from a practical viewpoint because it 
A 

is implicit in x .    Fortunately, the relationship can be solved directly by 

.14. 
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means of some interesting manipulations.    Consider the quantity x   -x   where 

xn =  gn_1(xn_1).    From (36), (37) and (40) 

' 

A — 
Xn * xn = 8n.l<Vl) + rn.lQn.irn.lXn " «n-l^n-l» (50) 

Expanding the first term on the right about ^^  and applying (40) and (45) 
yields 

x   - x   = P   .     A n       n        n/n-1  n (51) 

where X   has already been assumed to be small.   Thus an expansion of (48) 
n       A       — in powers of x    - x   can be truncated after the linear term with no loss of r n       n 

generality.   In particular, (48) becomes 

^   = x   +P   .     . L  (x ) + — [x   - x ] (52) n       n       n/n-11 'n   n       g—    l   n       nJl 

or, finally 

f an I-1 

x    = x   +    I - P   ,     . —2-       P   .     tr]   (x ) n       n n/n-1 £—    i       n/n-1'n   n (53) 

where the indicated matrix inverse is assumed to exist.   A practical inter- 

pretation of this hypothesis will be given later. 

To be consistent with the above result (49) must also be expanded in 

powers of x    - x  .   At first it appears that third derivatives of h (x ) will be ^ n       n n   n 
involved in the coefficients of the linear term.   Recall, however, that (49) 

resulted from equating coefficients of X.. . in (47).   Since that quantity itself 

15- 
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is assumed to be small, inclusion of the first power of x   - x   would then r n       n 
effectively result in a'becond ordei^'term.   Thus» (49) immediately reduces to 

>    = f I . p —I      P 
n     I n/n-1   g- n/n- 

*- n J 

(54) 

Note that (53) can now be written as 

n      n       n n   n 

Thus (54), (55) and 

. 8gn-l „ 8Bn-l 
P„/n-l = rn.lQ„-lrn-l + ^ Pn-»  ^ m 

n-1 n-1 

form the desired set of recursion relations for filtering nonlinear systems. 

To establish initial conditions for the sequence, let n = 2 and consider 

the original TPBV problem (34)-(37).   From (34) with Xj = 0, it is clear that yj is 

some fvmction of X2.   Expanding y^ in powers of X^ives Yj = ^ +  [Öy1/ÖX2]X2 

+ . . . , where x. must be the solution to the single stage estimation  problem. 

Since by hypothesis X, is small, this result shows that y^ - x^ muat also be 

small.   Applying these ideas to an expansion of (34) in powers of y^ - Xj 

yields 

ft 

0=XX2 + '1l,"',+5Llyl-Äi1-PÖl(4'-ä0l-P0^1-
Äll <"> 

dx. öXJ 

■< 
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Since by definition x,   satisfies 

(57) reduces to 

n^x^-PQ [xj .x0] (58) 

1 L1 ^^J ^^ \   J. A 

X2 + Xl (59) 

Now assume that y,  - x. is small and expand n.fx,) and dr]./dx. about xQ. 

Thus (58) and (59) become 

*i=VlI-po [-^irT^ (x0) (60) 

r'=[i-p°är 0 aS,  2     ' 
(61) 

Comparing (61) with (39) shows that 

-i 
(62) 

Thus (60) and (62) are the required initial conditions for the filter.    Note that 

the assumption that y.  - x0 is small is totally consistent with those made 

earlier in developing the basic recursion relationships. 

As in the continuous case, the solution to the smoothing problem follows 

directly from the results of filtering.   That is, x   and X   . .  = 0 are final con- 

ditions for running (35) and (36) backward from i = n. 

.17- 
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Table II.   Discrete Nonlinear Estimation 

Filtering; (i    =     1,2,...) 

A 
X. 

1 

A 
X. 

X,       + 
1 

and        P1/0    =    P 

P. ^-R.-'Cz 
^x. 

i 

-1 
i    LZi 

h. (x.)] i   i 

(63) 

(64) 

a   /^*     i VT pi/i.i^r  r^^^i-H^     Pi/i.i dx. yax. /J 

ki+i g.(x.) el   1 

(65) 

(66) 

l+l/i 
„* agi       agi r.Q.r.    +  _-i P. _i 

111 ^A i -A 
ox.        ox. 

1 1 

(67) 

Smoothing: (i     =    n,   n - 1, ... , 2) 

X.,     =    0      and      x  , n+1 n/n 
A 
X 

n (68) 

X. 
i 

ag dh 
« 

ox. 
i-_X.Al     +    —-i-R.^Cz. -hJx..  )] i+l ^A ii       i   i/n 
/n dx. 

i/n 

•l.A x. , /    =   g. (x. /   - r. .Q. .r. .x.) i-l/n ei       i/n        i-l   i-l i-l  i' 

(69) 

(70) 

Prediction;     (i     =    n,    n + 1,  ...) 

A A 
X    / =       X 
n/n n 

/A \ 

i+l/n 8i   i/n 

(71) 

(72) 
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For the convenience of the reader,  the results for the discrete estimation 

problem are summarized in Table II.    The notation x. ,    is used to indicate an r i/n 
estimate of the state vector at t. based on data through t  .    For completeness 

the prediction results are included.    It is noted that x. in the filter is itself a 

prediction which is updated by the measurement z. to give x.. 

Observe that the use of (64) and (65) requires inversion of a p X p 

matrix at each stage.    If SOh?/3x.)/8x. or z. - h. (x.) is small (this includes 

the case when measurements are linear),  then 

(73) 

and the famous Matrix Inversion Lemma [9] can be applied to (64) and (65) 

to yield 

dh. 
x. = x.  + P...   .   —- 

dx. 

dh. dhT 
—*- P...   . — + R. 
ax.    l/l-1 ax. 

1 1 

1 

[z. -h.(x.)] (74) 

ah. 
p. = p.,. . - p.,. , — 

1    l/l-l    l/l-1 d- 

ah. ah' 
—^ p.,. . ^ + R. 
ax.    l/l-1 ax.      1 

i i 

i-i ah. 
—ip 
ax.   i/-1 

1 

(75) 

These formulas require inversion of q x q matrices.    The result (75) can, in 

turn, be put in the more computationally attractive form 

ah. 
K. = P.,.   .  —i- 

1     l/l-1 ax. 
i 

ah. ah¥ 

a^    l/l-1 ax      1 

n-i 

[ah. I          r ah. ]* 
I - K. —^     P. /.   J I - K. -^l    + K.R.K.' 

1 ax. J   ^-'L       1 ax. J        1 1 1 
1 J           t l J 

(76) 

(77) 

> 
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The consistency of the approach taken here with that used earlier for 

continuous systems is verified in Appendix C.    There it is shown that the 

limiting case of the discrete filters of Table II as the time between measure- 

ments becomes small is indeed the continuous filter of Table I. 

B. DISCUSSION -DISCRETE SYSTEMS 

1. Fundamental Interpretations 

In this section the assumptions made in deriving the formulas of Table II 

will be discussed in detail along with other items of general practical interest. 

First consider the assumption that \    and y„ ? - x    , are small.    From n    }j(     n-c,     j n-c, 
(35) it can be seen that \   will be small if [9hn/9yn]Rn [zn " h

n
(yn^ is sma11- 

This will be true if a least squares fit of the last stage data alone gives results 

near those of the composite n-stage fit.   Thus,  small \,   is essentially a require- 

ment that new data be consistent with previously processed information.   Simi- 

larly, the assumption of small Y _? " x _2 ^•e•' clo8ene88 of filtering and 
smoothing near n) is a requirement that the introduction of new data does not 

significantly change the results.   Note by comparison to the derivation of the 

continuous formulas of Table I, that the above assumptions effectively simulate 

a "continuity" condition for the discrete problem. Basically then.the restrictions 

are mathematical in nature and are not necessarily limiting from an engineer- 

ing point of view.    Certainly, if difficulty were to occur in a practical problem, 

it would be expected at the initial stages of filtering.    An approach to be fol- 

lowed in such situations will be suggested in a later section. 

In the derivation of (63) - (66) the existence of the indicated matrix 

inverse was assumed.   This can be justified on practical grounds as follows. 

Let i = i and note that P, ,_ is positive definite.    Then 

I - P '/»•^(l^.-v^). = P i/o 
,1      ahl   .1 ahl 
1/u dxl    

1 dxl 

=^)^i-¥*i )] dx 

(78) 

.20. 
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Now,  clearly [ 3h!/9x  ] R"   [dh./dx..] is at least positive semidefinite.    The 

matrix sum on the right of (78) will thus be positive definite unless the quantity 

R.     [ z.  - h. (x. )J is "large".    Such a situation, however,  implies that the 

data z. is especially inconsistent with x. .   It could then be argued that the 
-1 

weighting matrix R      be decreased to limit the effect of z.  in the resulting 

estimate.    This, in turn, would ensure the positive definiteness of the matrix 

in question.    This reasoning can be extended inductively for all i by observing 

from (67) that P   ,     , must be positive definite if P     . has that property (it 

is implicitly assumed that  [9g     j/9x  _.] is invertibie).    Thus, in practical 

situations where weighting matrices have been sensibly chosen, a matrix 

singularity should not arise. 

An interesting interpretation of P. ,.   , and P. can be obtained by com- 

paring (64) and (65) with (60) and (62).    These relations can readily be used to 

show that P. ,.   . is the appropriate "a priori" weighting matrix which trans- 

forms the basic problem of (30) into a sequence of single stage problems. 

That is,  minimizing 

Vriyi -^X/i-A-^ + rK -wrVK-WJ (79) 

for i = 2,3,   . . . , n is equivalent to minimizing (30).    In this context, it can 

also be shown that P. = d(dJ./dx.)/dx.. 
i iii 

The formula (79) leads to a heuristic discussion of the behavior of 

P. ..   . .    In well behaved filtering problems where large amounts of data are 

available it seems that there should be a point beyond which new data is 

redundant.    By (79) this could only occur if P. ,.   .  reached a steady-state 

value which is    small" compared to R..    Certainly if P.   jQ.    .F.   . is large, 
j 

this could not happen. Note, however, that new data should never be redundant 

in such cases since Q is chosen to be large when large disturbances are antici- 

pated or when there is little confidence in the system dynamic model.    In 

general,  the behavior of the matrix P. ..   . in practical problems should pro- 
i/i-i 

vide some indication as to the adequacy of the filtering process.    Note that 

establishing conditions for convergence of the sequential estimation formulas 

■ 21- 
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of Table II is an open problem.    It is conjectured that the solution is the key 

to nonlinear observability. 

The modeling problem will not be discussed in detail because the com- 

ments made for continuous systems in that regard apply here essentially 

unchanged.   Note that the appropriate filtered and smoothed estimates of 

the dynamic error are,  respectively, 

>',■ 

A 8h.. 
r.   .w.   .  =P.   —i-R     [z. - h.(x.)] (80) 

1-1 1-1 1 Q— 1 l 1 1 1      J 

i 

r. .w. .     = r. .Q. .r!'5 .\. (2ii<n)    (8i) i-l   i-l/n        i-l   i-l   i-l   i 

2.        Comparison With Differential Corrections 

Adequate results have often been obtained in practical nonlinear estima- 

tion problems using linear techniques such as the Kaiman Filter in conjunction 

with the method of differential corrections [7,8].    The basic philosophy of this 

approach can be easily demonstrated and compared to the method proposed 

here using a single stage estimation problem as an example. 

To minimize 

J=|-[z - h(y)]V1[z - h(y)] (82) 

by the method of differential corrections, it is assumed that the minimizing 
value of y is close to some nominal x so that h(y) can be adequately approxi- 
mated as a linear function of y- x.   That is, 

JäITZ -h(x) --^[y-xjl R^Fz-hü)-^  [y-x]j (83) 

• 
■» 
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Then,   9(J)/3y = 0 gives the estimate 

Id* dx]       8x 
(84) 

Note that the linearizing approximation is made before minimization is 

attempted. 

The alternative presented here is essentially one of first minimizing 

and then approximating.    Thus,  referring to (82), 

JL(j)S .   |^R-i[z.h(y)]=o (85) 

Now assume that d(J)/dy is a linear function of y - x and obtain 

x = x + I- 4: f^R'^^-Mx)])]'1 ^ R-^z-Mx)]        (86) 
I    ax Vax 'J     ax 

or 

! 

x = x + FI^R-' «i. X/üI!U->[2 .„wj]-1 at! R-.fl .h(-)](87) 
[ax ax     ax \ax / J     ax 

Compare (84) and (87) and note the term missing in (84).    The basic result 

(87) can also be derived by assuming J to be a quadratic function of y - x 

and then minimizing that approximation. 

The observations made above apply in principle to the much more 

complex dynamic estimation problem.   Thus, use of the formulas presented 

in this paper instead of those for the differentially corrected Kaiman filter 

should provide imprr   sd accuracy and computation-d efficiency in practical 

problems. 

■23- 
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3. Unusual Cases 

The direct use of the basic nonlinear filtering algorithm of (63)-(67) 

should provide efficient and accurate state estimation for most practical prob- 

lems. 

Some difficulty could arise, however, when the data taken in the initial 

stages are of a particularly poor quality.   The following heuristic "start up" 

procedure is recommended in such cases. 

Apply (63)-(67) for several stages.   Use the smoothing algorithm (68)- 

(70) to obtain \..   If \.  = 0, continue filtering from the point it was interrupted. 

On the other hand, if X,  j£ 0, two choices remain:   either continue with filter- 

ing for a few more stages and smooth again, or restart the problem using the 

smoothed result at the first stage for linearization.   That is, let [8] 

Pl = I - P 

l/n ^    l/n 

-1 

1/0 (88) 

xl =xi/n+Pl —i- K'i
i[zi - \6l/n)] + Pj}0U0 - ^1/n] 

1/n 
(89) 

Continue this "looping" procedure until \. = 0. 

Another special case of interest is encountered if large amounts of 

reliable data are available.   In such situations the filtering algorithm of 

Table II may "converge" sufficiently at some point so that the term 

[ d(8hf/%ci)/8ki]Rr1[zi - h.fx.)] can be omitted and the formulas (74), (76), and 

(77) used in place of (64) and (65).   Of course, this would only be advantageous 

if the dimension of the measurement vector q is less than that of the state 

vector p. 

.24- 
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APPENDIX A.    CONTINUOUS LINEAR ESTIMATION 

Although the solutions to linear estimation problems are well known[ 2], 
they are derived by a special technique here and in Appendix B specifically 
to provide insight and motivation for the techniques used to solve the cor- 
responding nonlinear estimation problems. 

The linear version of the continuous least squares estimation problem 
is obtained if in (l)-(2) f(x,t) = F(t)x and h(x,t) = H(t)x.   Then (5)-{7) become 

y = Fy - ror \ 

\ = -F'X + ^R'^Z - Hy] 

MtJ—PlW)-^] (X(T) = 0) 

(A-l) 

(A-2) 

(A.3) 

By expressing (A-l) and (A-2) in the augmented vector-matrix form 

i 
I 

y 

*  -1 

ror «* p      ^ ■                                                                    ■ 

y 0 
+ 

\ HV. 
to         . _                     . 

(A-4) 

and partitioning the corresponding transition matrix accordingly, the solution 
can be expressed as 

y(t) = «11(t,t0)y(t0) +•^U.tQ^Up+y   9i2{t,v)H*Kmiz{<r) dv (A-5) 

Mt) = *,1(t,t0)y(t0) + •22(t,t0)\(t1) + f   *2Z{ttv)H*Kmiz(<r) d<r (A"6) 

.25- 
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This result can be transformed to a much more useful form as follows.   Solve 

(A-6) for y(t0) and substitute the results in (A-5).    Then 

y(t) .•11(t.t0)«-}(tit0)X(t) + [•^(t.V - •^^^•-{(t.to^t.t^xcto) 

t t 

-•11(t,t0)*21
1(t,t0)/' •22(t,a)H*R"1z(<r)d<r +/"  •12(t.a)H*R'1z(<r)dy 

(A-7) 

Since (A-7) holds for arbitrary tQ, the solution to equations (A-l) and (A-2) 

for the boundary condition X(T) = 0 can be expressed in the general form 

y(t) = -P(t)Mt) + iit) (A-8) 

with P(t) and ((t) as yet unspecified.   Differentiating (A-8) and substituting 

from (A-l) and (A-2) yields 

-g + Ffc - PH'R"
1
^ + PH^R^z = [-P + FP + PF* - P^R^HP + rQr*l\ 

(A-9) 

For this to hold for all X requires 

$ = Ffc + PH^R'^z - Hg] (A-10) 

P =FP + PF*+rQr* - P^R^HP (A-li) 

From (A-8) and (A-3) the initial conditions for these equations are 

seen to be 

e(t0)=x0 (A-12) 

■26. 
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P(t0)=P0 (A-13) 

Further,  since X(T) = 0, this gives 

y(T) = |(T) (A-14) 

The proper interpretation of the result is the key to the solution desired. 

Recall that y is the smoothed estimate in the interval t-S t S T.    From this it 

should be clear that |(t) for arbitrary t is an estimate of the state vector based 

on the data gathered from t- to t.    By definition, then, this is the "filtered" 

estimate of the state.    Note also that for any T, the term |(T) is the missing 

boundary condition on (A-i) so that a backward solution of (A-l)-(A-2) using 

X(T) = 0 and y(T) = i(T) (A-15) 

immediately gives the complete smoothing solution in the interval tn £ t ST. 

Note that for the standard statistical model where in (1) and (2) w ^nd v 

are white noise processes with spectral density matrices Q and R,   respectively, 

the filter (A-10)-(A-i 1) is the Kaiman filter.   In any case it is the optimal 

least squares filter. 

A useful interpretation of the matrix P can be obtained from the defining 

relationship (A-8).    Differentiating with respect to X yields 

•^■(x(t/T) - x(t))  = .P(t) (A-16) 

From this it is clear that a "small" P indicates that the difference between 

the smoothed and filtered estimates is relatively unaffected by changes in \. 

This would be expected to occur after large amounts of data have been pro- ■ 

cessed or when the a priori guess of the state vector is especially consistent 
I 

with the observed data.    (Observability is implicitly assumed here.)   In such 

cases, the smoothing algorithm (A-i),  (A-2) and (A-i5) would be of little value. 

•27- 
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On the other hand, if P were "large",  (A-16) clearly indicates an improvement 

in estimating the state from smoothing.    In a qualitative sense,  then, P is a 

measure of the effectiveness of filtering where the ultimate standard of 

"goodness" is the smoothed estimate. 

An interesting observation can be made from (A-8).    The main motiva- 

tion for its introduction was to solve the filtering problem.   If,instead, the 

object had been to solve the smoothing (tracking) problem directly, the desired 

substitution would be 

Mt) = -S(t)y(t) + Ut) (A.17) 

This gives "feedback control" directly when substituted in (A-l).   Now, com- 

paring (A-17) with (A-8) it is immediately obvious that 

S = P"1 (A-18) 

and, indeed, the resulting differential equation for S is precisely the equation 

for P"   .   This is, of course, the well-known duality between the optimal 

control and optimal filtering problems.    Note that substitutions of the form 

(A-17) have been used effectively in solving nonlinear TPBV problems by 

McReynolds [lO]. 

APPENDIX B.    DISCRETE LINEAR ESTIMATION 

The linear version of the discrete least squares estimation problem is 

obtained if in (28)-(29) g.(x.) = «.x. and h.(x.) = H.x..   In that case (34)-(37) 

becomes 

\i =**\2 + li*R'i
l[zi -Hjyj] -P^lyj -x0] (B-l) 

■28- 
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H=Vi+1 + H*R:1[2..Hiy.] (B-2) 

yi=*i.lyi-l + ri.lQi.iri>i               (2^i^n) (B.3) 

X1=X„+1=0 (B-4) 

Solving (B-l) for x. with \    = 0 immediately gives 

y,  ^I + P^R^H^^Po^X + P^^ + HjR^zJ     .       (3-5) 

Now let 

pi-[I + poHiRilHi]   po (B-6' 

and 

A      4. = xo + 

so that (B-5) can be written as 

yi =P1*,1X2 + ^l {B-8) 

This suggests that in general the change of variable 

yi = Pi*i<Xi+l + ^i dsisn) (B.9) 

-29- 
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(where P. and 4-  Are arbitrary) be applied to (B-l) and (B-2).   Note from 

(B-4), however,  that if (B-9) is to be valid, |. must be the smoothed state 

vector at the end of an i-stage process.   By definition this is the "filtered" 

state vector and, therefore. 

A = x. 
'i        i e, = (B-10) 

where the notation x. is introduced to specifically indicate a filtered estimate, 

Note that for i = n = 1, I. has already been defined correctly. 

To apply (B-9) to (B-2) and (B-3) write 

'i-l        i-l   i-l  i        i-l 
(B-U) 

* A 
y.  =P.».\.., +x. h        iii+l       i (B-12) 

Combining this with (B-3) gives 

ri-iQi.ir*-lXi = PÄ\+i 
+ -i " *i.lPi.i<-l\ " *i.l*i-l      <B-13) 

By first applying (B-2) and then (B-12), \. and x. can be eliminated from 

(B-l3) to give 

* *      *   _ir r     * Ail r. .Q. .r. A... + r. .Q. .r. ,H.R. * a. - H. P.«.x.... + x. i-l  i-l  i-l i+l       i-l  i-l  i-l  i   i  L i      iL i i i+l      iJJ 

= P.«*\... + x. - *. .x. . i i i+l      i      i-l i-l *• ip-  <*•  i i-l  i-l i-l «.X..xl + H.R. 1 

i   i+l        ii 

h-Hi[PA+l + -i]] (B-14) 

30- 
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For convenience define 

pi/i.i=ri.iQi-irr.i+*i.ipi.iVi        (B
-
I5) 

Then (B-14) can be simplified to 

* *    -1 A A 
i/i-l   i   i+l        i/i-l   ill        i        i-l i-l 

= P.^X..., + P...   tH*K:iH.P.9%..i+P,..   .a'R^H.x. (B-16) i i   i+l        i/i-l   ii      iiii+l        i/i-l   iiii 

For i = n, the last stage of an estimation problem, \.+ .  = 0 by (B-4) so that 

(B-16) becomes 

x    =*    .x     1+ri + P   ,     .H^R"^ P   .     .H^R'^z    -H*     .x     .] n       n-1  n-1      I n/n-1   n   n     nf        n/n-1   n  n L   n        n n-1   n-lJ 

(B-17) 

Suppose now that additional data is acquired, i.e., the last stage 

becomes n + 1.    Then ^ x? = 0 ^ut ^ +i ^ ^»  so t^at equating coefficients of 
X... in (B-16) for i = n and simplifying gives 

P    =|l+P   ,     .H^R^H   l    P  j     . (B-18) n     I n/n-1   n   n     nj       n/n-1 

Thus the formulas (B-17), (B-18), and (B-15) with the initial conditions (B-6) 

and (B-7) can be used recursively for least squares filtering of an arbitrary 

linear process. 

Note also that for any n, the term x   is the missing boundary condition 

on (B-4) so that a backward solution of (B-2)-(B-3) using 

Vn^n and Xn+1=0 (B-19) 

immediately gives the complete smoothing solution. 
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APPENDIX C.    CONTINUOUS MEASUREMENT LIMIT FOR 
THE DISCRETE NONLINEAR FILTER 

It will be shown here that as the time between successive measurements 

approaches zero, the discrete filtering formulas of Table II approach the con- 

tinuous ones of Table I. 

To begin, some basic relationships must be established between the 

various quantities involved.    Integrating (4) between t.   , and t. with 

At = t. - t.   i assumed to be small yields 

y.wy.^ + f{yi_1.ti_1)At+ Fft.^Mt.^At (C-l) 

Comparing this with (31) immediately gives 

«i.i^i-i^yi.i + ^i.i'Vi^ <c-2) 

ri-lUi-l = Ht.^Wt.^At (C-3) 

whereupon 

!!kJ. = i+  * 
*Vi.i 8yi.l 

At (C-4) 

To force the two least squares criteria (3) and (30) to be equivalent, it 

is clear that 

Rr1 = R"l(t.)At (C-5) 

-1      Q"l(ti) 
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where (C-3) was used to establish the last result.    Combining (C-4), (C-6), 

and (67) gives 

8f df Pi/i.l  ^^i-i^i-l^ (ti-l)At+Pi.l + äfTPi-lAt+Pi-l äTT 
1-1 1-1 

At 

(C-7) 

In order to use this relationship effectively, (65) must be expressed in the 

form 

-i r       öTiiir      8Tiii_i 
= ?.,. , - p... .p.;. Ji - p... . —*•  i. p.,. , —-\  p.,. t i/i-i     i/i-i i/i-ii      i/i-i ^Jf   ^i/i-i g- j    1/1-1 

+      1    -    P.;.      ,     —i- P.,.      . 
L       l/l"1 axj     l/l-1 

B\ r 80-1 
= p.,. , + p.,. , —-\i - p... t —-   p... t i/x-l i/i-l  ^L ^i"1   8X.J       l/l'1 (C-8) 

where the notational abbreviation (46) has been used for convenience.   Now 

use (C-7) to eliminate the first term on the right of (C-8).    Then 

P. - P.   , i        i-l 
At 

df p. . + P. df 
ayimi   'i-l-i-l   8^7+r(ti-l)Q<ti.l,r<ti.l) 

+ ^-p. df 
ayi-i  i-1 8yi-i 

At+ P. in-v\ AtJL   ^"^J i/i-1 

(C-9) 
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Similarly, applying (C-2) and (66) to (64) gives 

&. - x.   , . r]Ax.) 

-Sr^^'vi-W^iTr- (c-10> 

By applying (C-5) to the explicit forms of ^(x.) and dr^/dx^ and then invoking 

(C-7) it can readily be shown that as At — 0 (C-9) and (C-10) become as 

desired, respectively, 

^ = £(^t) + P^-R-l[z -h(^t)] (C-il) 
ox 

f=|P + P^+rQr' + pi(^R-i[..h(S.t),)p  (c.12) 
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