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ABSTRACT 

A simple expression is derived for the influence of roll acceleration on 

the angle-of-attack convergence of rolling reentry vehicles with pitch or yaw 

damping.   Also included is an analysis of the windward-meridian rotation rate 

of the rolling vehicle, which is coupled through the gyroscopic equations of 

motion to the angle of attack and roll rate.   It is found that two modes of 

motion exist for which the windward meridian is generally oscillatory in one 

mode and rotary in the other (i. e.» the vehicle either oscillates about its roll 

axis relative to the wind or rotates continuously in one direction).   The mode 

of motion depends on the initial reentry conditions, and it is shown that a 

roll-induced instability can occur whereby the motion changes from the oscil- 

latory mode to the more stable rotary mode.   The analytical approximations 

are compared with computer solutions of the complete equations of motion. 
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I.    INTRODUCTION 

Of particular interest in the performance evaluation of & reentry vehicle 

is its angle-of-attack behavior during reentry through the atmosphere.    Under- 

standing of the angle-of-attack behavior is essential for prediction of the 

vehicle's trajectory and for assessment of the thermal requirements of the 

vehicle's heat-protective system.    In addition to the heating prediction» a 

knowledge of the windward-meridian rotation rate is required if one is to 

couple the heating or ablation rate prediction with the venicle dynamic motion. 

This paper treats the influence of roll rate and roll acceleration on the 

angle -of -attack convergence of rolling reentry vehicles and presents a tech- 

nique for predicting the windward-meridian rotation rate, which is coupled 

through the gyroscopic equations of motion to the angle of attack and roll rate. 

The windward-meridian rotation rate is also dependent on the initial 

(exoatmospheric) motion,  and it is found that two modes of motion exist for 

which the windward-meridian is generally oscillatory in one mode and rotary 

in the other (i.e.,  the vehicle either oscillates about its roll axis relative to 

the wind or rotates continuously in one direction).    It is further shown that the 

rotary mode is more stable,  although either mode can persist, depending on 

the initial conditions,  and an instability can occur with the presence of roll 

acceleration whereby the motion changes from the oscillatory mode to the 

more stable rotary mode.    A criterion is presented for predicting this insta- 

bility, which occurs only when the roil rate is large relative to the natural 

pitch frequency of the vehicle. 

The angle-of-attack convergence behavior of rolling reentry vehicles 

has been studied, and a number of papers on the subject are reported in the 

literature.   "     All of these,  however, treat the case of constant roll rate; 

only one includes the effect of pitch or yaw damping on the convergence 

envelope,     and none discusses in any detail the influence of exoatmospheric 

conditions on the subsequent angle-of-attack convergence and vehicle motion. 

Because of the susceptibility of high-performance reentry vehicles to roll 

-1- 



1 1 
— 

resonance and other phenomena that can cause significant roll rate excursions, 

it it of interest to assess the influence of roll acceleration on the angle-of- 

attack convergence and on the windward-meridian rotation behavior. 

The present study treats the vehicle motion during the period in which, 

because of misalignment with the flight path during reentry, the angle of 

attack is large relative to the trim angle of attack from mass or configura- 

tional asymmetries.   The quasi-steady or mean value of the angle-of-attack 

oscillation envelope is obtained as a function of time (or altitude) during this 

period. 

• • 
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II.    EQUATIONS OF MOTION 

The vehicle motion is described in terms of the Euler angles ¥, 0, 6» 

as shown in Fig.  1.    If the principal moments of inertia about the £, r\,  £ 

axes are I, I, I,  respectively (pitch, yaw,  roll), and the aerodynamic 

moments about these axes are M*, M , Mr, the moment equations of motion 

in terms of the Euler angles may be written 

Mf =I9 + i pi sin G - I*    sine  cos6 I xr 

M    = I ^ (* sir. 6) + iei cos 6 - Ixp6 (i) 

where the roll rate p is defined by 

p = 0 + icos e. (2) 

The angular rate <j> is the windward-meridian rotation rate, i.e., the roll rate 

with respect to the wind.    It is assumed that the aerodynamic moments consist 

only of pitch or yaw moments from angle of attack, an arbitrary roll moment, 

and pitch and yaw damping moments.    It is further assumed that the veliicie is 

acrodynamically axisymmetric (i.e.,  CM    = CM ),  so that the restoring torque 

from angle of attack is independent of the roll orientation $ and dependent only 

on 6.    The moments are then written 

-3- 
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Figure 1.    Euler Angles for Three-Degree-of-Freedom 
Rotational Motion 

4- 



• 

-qSd' M4= -cN qsie - a|2_ 
2CNI 

q       md 

|Sd' 
T) 2u 

Mr = C|qSd 

2CNI 
- ? 

mq "    md2J 
tt sin 6 (3) 

where i is the vehicle static margin (considered positive for the statically 

stable vehicle)» and the damping terms consist of both the pitch (or yaw) 

damping derivative Cm- plus a normal force damping term 2C ^ I/md 

to account for lateral motion of the vehicle center of mass. 

Substituting Eq. (3) in Eq.  (1) and dividing the first two equations by I 

and the third by I   gives 

2 • • *2 -w Ö - v6 = 6 + tip« sin 0 - ¥   sin 6 cos 8 

-vi sin 9 = -rr {<h sin 6) + 9* cos 0 - ppO 

* = P 

(4) 

where the coefficients are 

CNqS* 
« j  

•*(v2) 

«C    s 

C<qSd 

ji = 

The parameter u> is the natural pitch frequency of the vehicle. 

(5) 

It can be shown» for an axiaymmetric vehicle, that the lateral motions of the 
center of mass from normal forces acting at the center of pressure are pro- 
portional to pitch or yaw rotations about a point a distance I/ml ahead of the 
center of mass. 
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III.    QUASI-STEADY SOLUTION FOR ANGLE-OF-AT TACK 
CONVERGENCE 

The vehicle motion during reentry,  described in terms of the time- 

dependent Euler angles [ -${t), 0(t), 9(t)],  is assumed to be of the form 

[*(t), *(t), 8(t)]  = [*(t), *(t), 6(t)] + [*+(t), *+(t), 9+(t)] (6) 

where [¥(t), 0(t),$(t)]   represents a quasi-steady component that varies rela- 

tively slowly with time (of the order of the dynamic pressure) and 

[*.(t)i 0.(t)f 6 (t)]  represents an oscillation of higher frequency about the 

average (quasi-steady) values.    In the ensuing analysis, the oscillations are 

neglected and a solution is obtained for the quasi-steady angle-of-attack con- 

vergence behavior of the descending vehicle.    This development is heuristic 

in nature and based on physical intuition.    It is justified on the basis of agree- 

ment with more complete and lengthier analyses presented later. 

Taking sin 0 » 8 and cos 6 « 1 and neglecting pitch damping v in the first 

of Eqs.  (4) gives,  for the pitch equation, 

§ + (w2 + >ip* - i2) 6 = 0 (7) 

This equation describes a nonlinear oscillation in 6 about a nonzero quasi- 

steady value 6,   since 6, by definition,  is always positive.    One can interpret 

the corresponding quasi-steady values of ^ to be those that make 9 in Eq.  (7) 

zero, thus satisfying the relation 

2 •"•    T2     Ä Cü   + |xp¥ - ¥   =0 

or 

5=(^p/2)±[(up/2)2 + u>2]1/2 
(8) 
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This result is valid as long as 6 is appreciably greater than the trim angle of 

attack from aerodynamic or mass asymmetries (assumed to be zero for the 

present analysis).    For tip/2 small relative to w,  the two values for <Sf may be 

'v  '«ten approximately 

? = « + »£. -« + !£ of 

This indicates that, for values of angle of attack sufficiently greater than 

trim, the precession rate \& can oscillate in either a positive or negative mode, 

the quasi-steady value of which is slightly displaced from the natural pitch 

frequency for a slender vehicle,  as shown in Fig.  2.     The mode of oscillation 

depends on the initial reentry conditions and is discussed later.    Once i is 

determined, the windward-meridian rotation 0, for small 6, is simply the 

difference between the roll rate p (assumed known) and i. 

The angle-of-attack convergence can be obtained from the second of 

Eqs.  (4).    This equation can be written 

~- (i sin 9) + vi sin20 - up9 sin 6 = 0 (10) 

which, for small 0,  can be differentiated to give 

Th* two precession modes,  Eqs.  (8) or (9),  are analogous to the fast and 
slow precession of a spinning top but differ in sign, because the pitch moment 
acts in the opposite direction to the top turning moment for a statically stable 
missile. 
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Figure 2.    Precession Modes 
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Wc now consider the time variation of the quasi-steady values Ö and ¥ by 

writing Eq.  (11) in the form 

JLQ
2
 + [{tfi2 = o, 

where 

(12) 

) m (djr/dt) t v* 
I(t' "     5 - (up/2) (13) 

Equation (12) has the familiar solution 

(l)2 = exp(-/f(t,dt)- (14) 

On substituting ty from Eq.  (8) in Eq.  (13) and integrating this result in 

Eq.  (14) we find, for the quasi-steady angle-of-attack convergence,  the 

expression 

o 

-1/4 
exp -ij['(H 

-1/2 
l ± (l + o dt (15) 

where cr =E 2w/up. The plus and minus signs in the exponent correspond to the 

positive and negative modes,  respectively,  of the precession rate 4f, depicted 

in Fig.  2.    The roll acceleration term p/p in the exponent is an effective 

damping term that adds to or subtracts from the damping coefficient v, depend 
2-1/2 ing on the sense of the roll acceleration.      Similarly,  the term (1 + 9 ) 

It appears that negative (decelerating) values of p that yield negative values 
for the effective damping coefficient [ (p/p) + v] would produce a momentary 
angle-of-attack divergence.   Such cases might prove interesting for future 
investigations. 
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either increases or decreases the effective damping and, therefore,  increases 

or decreases the rate of angle-of-attack convergence, depending on whether 

the precession mode is positive or negative.   The conditions that determine 

the precession mode are discussed later. 
2 For a slender reentry vehicle,  n« it the pararreter <r   is generally 

mach greater than unity except for highly supercritical roll rates p »u>. 

Therefore, in most cases the term (1 + <r   )"        in the exponent of Eq. (15) 

can be ignored compared with unity, and Eq. (15), with the assumption 
2       2 l+o-   * v ,  reduces to 

(16) 

For an exponential atmosphere of scale height H, and with a straight-line 

trajectory of path angle v, the integral of Eq. (16) can be evaluated and the 

angle-of-attack convergence ratio reduces to the simple result 

=fe)": 
O 

where 

H-2 (cm, **;) maarv "V"ZT7 b 5 wrErz r. I-   ^ * 7-/ (i») 
md 

and p is density.   The results,  Eq. (16) or (17), indicate that for roll rates 

that are not excessively supercritical [i.e., for (1 + <r )"        «!)], the angle- 

of-attack convergence depends only on the reentry roll rate and is independent 

of roll acceleration. 

For the constant roll rate case (p = o), the result, Eq. (15), reduces to 

an expression similar to that derived in Ref.  1 for the negative precession 
mode. 

-11- 
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IV.    INITIAL REENTRY CONDITIONS 

Before reentry, the vehicle is in a state of moment-free motion, and 

the relation between the various angular rates is uniquely determined.   In 

general, the vehicle will have some initial roll rate p   and will undergo a 

steady precession (coning motion) with a precession rate ft and cone half- 

angle a (Fig. 3).   The cone axis will, in general, be inclined to the flight path, 

and the velocity vector may lie inside or outside the coning circle.    The latter 

case is shown in Fig. 3.   The exoatmospheric roll rate, precession rate, and 

cone half >angle are related by the expression 

^po ft = — (19) cos a *     ' 

This relation follows from the first of Eqs. (4) with 6 = 6 - u> = o, and a and ft 

substituted for 6 and ¥•   respectively. 

After entering the atmosphere, the statically stable vehicle is subjected 

to an aerodynamic pitch moment that tends to align the vehicle with the flight 

path.    However, because of the angular momentum comprised of the roll and 

precession rates, which,  on the average,   is directed along the coning axis, 

the pitch motion is resisted by gyroscopic forces that induce a precession of 

the angular momentum vector about the average flight path.    This precession 

is opposite in direction to the angular momentum (retrograde precession).   A 

projection of the path described would   -e as shown in Fig. 4 when viewed along 

the direction of flight.    The residual coning motion, in the same direction as 

the angular momentum vector (e.g.,  clockwise),  has been called nutation by 

Nicolaides,     and the retrograde precession in the opposite direction (counter- 

clockwise) has been called,  simply,  precession.      In general, the two motions 

exist simultaneously. 

These definitions are more restrictive than are the classical definitions of 
nutation and precession as being variations in 6 and #,  respectively (see, for 
example,  Ref. 8,  p. 432). 
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Figure 3.   Exoatmospheric Motion 
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PRECESSION 

Figure 4.    Retrograde Precession 
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The expression derived above for angle-of-attack convergence« Eq. (15), 

corresponds to two limiting cases of the type of motion depicted in Figs. 3 

and 4.   The first case» with the negative sign in the exponent,  represents the 

limiting condition of aero coning half-angle for which the vehicle is initially 

at angle of attack with respect to the flight path and is rolling, as shown in 

Fig. 5a*   The second case, with the positive sign in the exponent, is the 

condition in which the axis of the initial coning motion coincides with the 

average flight path, as shown in Fig. 5b. 

The Euler angles {% a, 8) were defined with respect to an inertial frame 

of reference that moves along the flight path such that i represents precession 

about the velocity vector (Fig.  i).   Therefore, the two exoatmospheric condi- 

tions represented in Figs. 5a and 5b correspond to initial conditions on ¥ of 

*   = 0 and i   = 0 = up /cos 8 ,  respectively.   Referring back to the quasi- 

steady solution for i, Eq. (8), we note that,  in the limit as co -0, correspond- 

ing to aero atmospheric density, J can have the two values 0 and up (the latter 

value would be up/cos 8, without the small angle approximations in Eq. 7). 

Therefore, the two precession modes shown in Fig.  2 follow from the two 

cases of exoatmospheric motion shown in Fig. 5.   Under certain conditions 

when the initial precession mode is positive, an instability can occur in the 

presence of roll acceleration whereby the motion changes from the positive to 
the negative precession mode.   A criterion for predicting this instability is 

derived in the next section. 

-16- 
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Figure 5.    Limiting Cases of Exoatmospheric Motion 
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V.    PRECESSION INSTABILITY 

Equation (11) describes the relation between the total angle of attack 6 

and the precession rate if, without any assumption of quasi-steady motion. 

This equation can be written in the form 

e = . (*•/*)+ i4« (20) 
2* - up 

which reveals much about the vehicle motion.    First, we note that 6, by defini- 

tion,  is always positive and if, from the above considerations,  oscillates about 

either the positive or the negative branch of the natural pitch frequency 

curve ui, as shown in Fig.  2.    Therefore, for ¥>up/2, the denominator of 

Eq. (20) remains positive, and, for small damping, d6/dt = 0 at approximately 

dsfr/dt = 0,  so that 6 and if oscillate at the same frequency with the 6 maxima 

corresponding to the if minima and vice versa.   Similarly, for if < up/2, the 

maxima and minima of both 0 and * are in phase, as shown in Fig. 6.    These 

results can be deduced in another manner.    Equation (10),  with the assump- 

tions v = 0 and sin 0 ^ 6, can be written in the form 

£t<*e2)-^ä<e2> = o (21) 

With the further assumption that p is constant (or slowly varying relative to 

the 6 or ^oscillations),  Eq.  (21) can be integrated to give 

(if - ££) 02 = constant (22) 

Equation (22), being the first integral of an equation of motion,  is an energy 

expression and indicates that |w - (up/2) | is maximum for 8 minimum and 

vice versa,  as depicted in Fig.  6.   However,  if ii is in the positive mode such 

-19- 
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Figure 6.   Angle-of-Attack and Precession Rate 
Oscillation Behavior 
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that it >M-P/2, and p increases because of an applied roll torque« An instability 

will occur as up/2 approaches the minimum value of the * oscillation, which 

causes the denominator of Eq.  (20) to approach zero.   It is shown from a 

phase plane analysis, which follows, that at the point of instability the A 

oscillation diverges without limit and finally reverses sign from an infinitely 

large positive upper bound to an infinitely large negative lower bound.   There- 

after,  i remains in the more stable negative mode.   The divergence in if 

corresponds to a lower bound on the 6 oscillation that approaches zero, from 
Eq.  (22). 

Equations (7) and (20) can be combined to give a single equation in if 

- v2*2 = 4(A - ISP )    {J- + up* - if2). (23) 

We can put this equation in a form suitable for phase plane analysis by making 

the substitutions 

vSy=#-|p (24, 

dv     ..     d2tf 

-21- 
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in which J$ has been assumed to be negligible.   Equation (23) is then written 

dvs -2y2(y2 - a2) + cv(y + d) +(3/2)v(v + b) + vvy. 
oy yv (25) 

where 

a.p + (.p/a)2]1/2 

bB<2/3)M$ + "P> 

c E(1/2)(V2 - 2v) 

v2-v d«(*pv2r
v. 

(26) 

-2v 

The parameters a, b, c, d, and v vary slowly with time (of the order of the 
dyaamic pressure) relative to y and are assumed to be constants in the ensuing 
analysis.   The stabiUty conditions so obtained from a phase plane evaluation 
of Eq. (25) apply at any instant of time with the appropriate values of these 
parameters.   However, since these parameters do change with time, the 
nature of the motion and the stability criteria change accordingly.   This is 
discussed in greater detail later. 

Singularities in the v - y plane (points where the right side of Eq. (25) 
takes the form sero over sero) are seen to occur at 

y = 0 

y = 0 

y = y, 

y = y2 

y = y3 

V * 0 

v * -b 

v = 0 

v s 0 

V s 0 
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where y.,  y-»  and y^ are roots of 

3      /2,c\       cd _ A (27) 

The parameters c and d are* in general, much smaller than a , and the roots 

of Eq. (27) can be shown to be approximately given by 

yi « a + c + cd 

y9» - a • c + 

a[i+(c/a)] 

cd 

a[l+(c/a)] 

y3* 
-2cd 

a[l+(c/a)] 

(28) 

where c is small relative to a and is defined by 

€S1S 
c (v    - 2v)  

8[^ + (jxp/2)^] 

(29) 

We now examine the character of each singularity in order to construct the 

solution curves to the equation of motion.   Equation (25) can be written in 

the approximate form » 

dv     - 2y (y - a) (y + a) [ y + (2fd/a)]  + ? v (v + b) + vvy 

dy ~ yv (30) 

in which the terms containing c have been neglected relative to a,  since they 

do not change the character of the singularity.    Consider first the singularity 

at y a a, v = 0.   If the origin is shifted to the singularity with the substitution 

x = y - a, the slope dv/dx in the limit as x, v -*0 is found to be of the form 

-23- 
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Equation (31) is a special case of the differential equation 

dv _ Ax + Bv 
3x"Cx +Dv 

(3D 

(32) 

which has the characteristic equation 

X6 - X (B + C) - (AD - BC) = 0. (33) 

The nature of the singularities is determined by the relative magnitudes of 

the constants A. B, C» and D, and the various singularities that can arise 
Q 

from Eq. (32) have been previously investigated.   Table 1    characterizes 

these singularities.   The singularity at y = a, v = 0 described by Eq. (31) is 

characterised by the coefficients 

- 
Table 1.   Characteristics of the Sing„larities of |~ = $£ + fa 

(B - C)   + 4AD > 0 Node if AD - BC < 0 
Saddle if AD - BC> 0 

/Stable if B + C < 0 
(Unstable if B + C> 0 

(B - C)   + 4AD < 0 

(B - CT • 4AD = 0 

Center if B + C = 0 
Spiral if B + C * 0 

Node 

/Stable if B + C < 0 
I Unstable if B + O0 

/Stable if B + C < 0 
\ Unstable ifB+OO 

-24* 
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A = - 4»2 C = 0 

B=f|+v D = l. 

in which the constants a, b, and v are positive by definition.   For this case, 
(B - C)2 + 4AD = [(3b/2a) + v] 2 - 16a2 < 0 (since |,  v « a) and B + C = 

(3b/2a) + v > 0.   Therefore, the singularity is an unstable spiral.   Similarly, 

for the singularity at y = -a, v = 0,  if the origin is shifted to the singularity 

with the substitution x = y + a,  the limiting value of the slope dv/dx is found 

to be 

lim 7 

x^0gvs-*»*.[(3b/2a).v]v (34) 

For this case,  (B - C)2 + 4AD = [(3b/2a) + v]2 - 16a2 < 0, as before, but 

B + C = - (3b/2a) + v, which may be greater or less than zero, depending on 

the damping and roll acceleration.   Therefore, this singularity is either a 

stable or unstable spiral. 

The quantity B + C, which determines the degree of stability or insta- 

bility of the spiral singularities at ±a, 0 is proportional to the pitch damping 

and roll acceleration, which are, in general, small quantities.   For the case 

of zero damping and constant roll rate (i. e.,   v = p • 0), then B + C = 0 and 

the spiral singularities reduce to center-type singularities in this limiting 

case.    The singularities at ±a, 0 therefore signify the existence of either 

stable or quasi-stable oscillations in y about the equilibrium values y = ±a, 

depending on the magnitude of pitch damping and roll acceleration.   Moreover, 

the oscillations about y = +a are of either constant or diverging amplitude, 

corresponding to the center or unstable spiral singularities, whereas the 

oscillations about y = -a may be either of constant, diverging, or converging 

amplitude, depending on the relative magnitudes of the pitch damping and roll 

acceleration.    From the definition of y, Eq. (24), the oscillations in y about 
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am correspond to the direct and retrograde precession oscillations in i about 
tot positive and negative branches, respectively, of the natural pitch frequency 
curves identified earlier in Fig. 2. 

The above considerations are based on the assumption of quasi-steady 
motion for which the parameters defined by Eq. (26) were assumed to be 
constants.   However, since these parameters change slowly with time, they 
influence the character of the motion.   Consider, for example, the oscillation 
in y about the singularity y = +a and let there be a positive roll acceleration 
so that the roll rate p increases with time.   The increase in p reduces y, 
from the definition, Eq. (24), whereas the value a about which y oscillates 
increases approximately as the natural pitch frequency.   The net effect is to 
increase the amplitude of the oscillation; this increase is characteristic of 
the unstable spiral singularity that exists at y » +a with the presence of a roll 
acceleration.   It will be shown that if p increases sufficiently to drive y to 
aero (i.e., up/2 approaches the minimum value of ¥), an instability occurs 
whereby the motion reverses from an oscillation about y • + a to a more stable 
oscillation about y = -a.   The nature of the crossover becomes apparent from 
the character of the remaining singularities at and near the origin. 

Consider the singularity at y = 0, v • -b.   The origin is shifted to the 
singularity by the substitution w» v +b.   The slope dw/dy in the limit as y, 
w-*0 ia 

lim ,      [v -(4fad/b)l y + fw 

I-n«r r (35) 
w-»0 

This singularity is characterised by (B - C)   + 4AD = 1/4 > 0, AD - BC 
* - 3/2 < 0 and B + C = 5/2 > 0, which is an unstable node.   For the singu- 
larity y = - (2cd/a), the origin is shifted to the singularity with the substitu- 
tion x sy + (2td/a) and the limiting slope is 
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x^o4ls2»*-[(3»b/4.d).v]v (36) 

The characteristic values are (B - C)2 + 4AD = [ (3ab/4«d) - v] 2 + 8a   > 0 and 

AD - BC = 2a   > 0.   Therefore» the singularity is a saddle.    Finally* the 

singularity at the origin, y = 0,   v= 0, has the limiting slope 

lim 
0 —     4adcy + (3/2) bv + v yv 

yv (37) 

This is a higher-order singularity than those characterized by Eq. (32), and 

the nature of the singularity is not readily determined analytically.   Conse- 

quently, a numerical technique such as the method of isoclines     is required 

for determining the behavior of the solution curves in the neighborhood of the 

singularity. 

Figure 7 summarizes,  schematically, the character of the four singu- 

larities analyzed above plus the higher-order singularity at the origin deduced 

from limiting cases of Eq. (37).   The relative spacing between the singularities 

is grossly distorted,  since c is, in general, a very small quantity compared 

with a.   The qualitative behavior of the solution curves in the neighborhood of 

the singularities near the origin, as determined from a plot of Eq. (25) by the 

method of isoclines, is shown in Fig. 8.   The nature of the crosuover from an 

oscillation about the positive branch of the pitch frequency curve to an oscil- 

lation about the negative branch now becomes apparent.    Figure 8 shows that 

there are two switching lines in the positive halfplane and one in the negative 

half plane.   To the right of the first switching line, an oscillation about the 

positive branch persists until the amplitude reaches sufficient magnitude to 

reach the first switching line as y -* 0.    It then appears possible to follow a 

trajectory between the two switching lines which will pass through the singu- 

larities but continue around the positive branch (trajectories labeled 3 and 4). 

Beyond the second switching line the trajectory loops around the negative 
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Figure 7.   Singularities in Phase Plane 
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branch (y • -a) and can return to the positive branch provided it passes to the 

right of the switching line in the negative halfplane (trajectories 1 and 2). 

This motion through the singularities at the origin represents a brief period 

*t instability, which occurs only at the instant y «• 0.   As was pointed out 

earlier* the spacing between the singularities in the vicinity of the origin is 

extremely small compared with the amplitude of the motion.   Also, in view of 

the decreasing value of y due to the increase in roll rate, it would be expected 

that only a small number of trajectories, if any, would pass through this 

region.   To the left of the origin, as y continues to decrease due to the 

increasing roll rate, the oscillations appear to become more stable about the 

negative branch, as represented by the trajectories to the left of the singular- 

ity at -c.   This behavior has been verified by computer solutions of the equa- 

tions of motion* which are discussed later. 
Some further insight can be obtained from a physical interpretation of 

the relation»  Eq. (20)* between the angle of attack and the precession rate. 

From the definition for y*  Eq.  (24),  the limiting case y = 0 corresponds to a 

zero value of the denominator on the right side of Eq. (20).   But since 0, by 

definition» is always positive, this would represent an instability in 6 (i. e., 

a large value of 6) unless either 6 or (dv/dt) + v« also approached zero along 

with y.   What is found from the computer solutions is that 6 does approach 

aero in the region of instability, since the 6 oscillations are coupled with 

the £ oscillations through Eq. (22), as depicted in Fig. 6.    From conservation 

of energy, as 6 approaches its minimum \i - (pp/2) | approaches its maximum 

and vice versa.   Therefore, the extreme values of ¥ (or y), both positive and 

negative* will occur in the region of instability as y -»0.   This is shown 

qualitatively in Fig. 9. 
The foregoing discussion has dealt with the precession rate 4, which is 

related to the roll rate p and the windward-meridian rotation rate <p  through 

the relation* Eq.  (2), 

p = i + * cos e (2) 
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Figure 9.    Qualitative Behavior of Solution Curves in Phase Plane 
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or, for sir all 8, 

p = M4       • (38) 

From the third of Eqs. (4), the roll rate is gyroscopically uncoupled from the 

other angular rates and depends only on the roll moment coefficient.   There- 

fore, for a prescribed roll history, the windward-meridian rotation rate is 

•imply the difference i = p - 4».   Depending on the roll history and on whether 

4 is in the positive or negative mode, the windward meridian may be either 

"oscillatory" or "rotary";  i.e., the vehicle either oscillates about its roll 

axis relative to the wind or rotates continuously in one direction.    This is 

illustrated in Fig.  10 for an arbitrary roll rate history.   When 4* is in the 

positive mode with the roll history shown, 0 oscillates from positive to 

negative with the quasi-steady value $ « p - w - c.   However, for * in the 

negative mode,  ^does not change sign, and the windward meridian therefore 

rotates continuously in one direction.   Since, as was shown above, the 

negative 4/ mode is more stable, the windward meridian is more likely to be 

rotary, but either mode may persist, depending on the roll history. 
- 
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VI.    COMPUTER SOLUTIONS 

Figures 11 and 12 show computer solutions of the equations of motion, 

Eqs.  (4), for the angle of attack and angular rates corresponding to the two 

limiting cases of exoatmospheric motion shown in Fig.  5.    Also shown for 

comparison with the computer results are quasi-steady approximations for 

the angle-of-attack convergence, calculated from Eq.  (15).    Figure 11 corres- 

ponds to Fig. 5a, in which the rolling vehicle is at angle of attack with respect 

to the flight path, but has no precession.   Figure 12 corresponds to the other 

limiting case, in which the vehicle is precessing initially about the average 

flight path in the positive direction. 

Since the precession rate 4> is initially zero for the case of Fig.  11, 

and 4* = 0 < up/2, the vehicle will pre cess in the negative mode following 

reentry and will remain in the negative mode until the angle of attack 

approaches trim.    This is verified from the computer result.    Alternatively, 

for the case of Fig.   12,   4/ is initially positive and greater than the reduced 

frequency w-p/2.    Therefore, 4» continues to precess in the positive mode and 

remains positive as long as the minimum value of the oscillation envelope 

reamins greater than fip/2.    The reduced frequency is also plotted in Fig.  12 

and remains less than the minimum value of * throughout the trajectory. 
Consequently,   4> remains in the positive mode, as verified by the computer 

result. 

Figure 13 corresponds to a reentry in which the vehicle is coning 

initially about an axis inclined to the flight path.    The precession rate  4/ with 

respect to the flight path is positive initially and oscillates with an upper and 

lower bound.    The lower bound is plotted against the reduced roll rate in 

Fig.   14 and is greater than M-p/2 initially.    However, the roll rate increases 

because of an applied roll torque, and the reduced roll rate approaches the 

minimum value of * after approximately 8 sec, which causes  if to become 

unstable.    Simultaneously, the lower bound of the angle-of-attack oscillation 
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envelope approaches zero as the upper bound of 4i diverges, and 4/ reverts to 
the more stable negative mode.   The character of the motion also changes 
after the instability, as shown in Fig. 15, which is a polar plot of the angle 
of Attack versus the precession angle ¥.   Before the instability, the motion 
is characterized by "flower petal" loops containing the origin, whereas after 
the instability, the loops do not contain the origin (retrograde precession). 

• 
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VII.   SUMMARY AND CONCLUSIONS 

A simple expression has been derived for the angle-of-attack 

convergence of a rolling reentry vehicle subject to roll acceleration and 

including pitch and yaw damping.   The analytical result has been shown to 

compare favorably with computer solutions of the equations of motion.   The 

effect of roll acceleration on the angle-of-attack convergence envelope is 

identical to the effect of pitch or yaw damping in the term p/p, which either 

adds to or «ub»tracts from the damping coefficient, depending on the direction 

of the roll acceleration.   The cumulative effects of damping and roll accelera- 

tion on the convergence envelope can be significant in certain cases.   The 

angle-of-attack convergence also depends slightly on the mode of precession 

motion, which depends, in turn, on the initial reentry conditions. 

It has been shown that a rolling reentry vehicle has two modes of preces- 

sion motion, either of which can persist, depending on the initial reentry con- 

ditions and on the roll history.    The positive mode io quasi-stable and will 

persist as long as the lower envelope of the precession rate oscillation (tf) is 

greater than the reduced roll rate parameter up/2.  If  this   parameter 

increases because of roll acceleration until it reaches the lower envelope 

of the* oscillation, a precession instability will occur, and the precession 

rate will change from the positive mode to the more stable negative mode. 

At the point of instability, the lower envelope of the angle-of-attack oscil- 

lation reaches zero.   Following the instability, the angle of attack increases 

slightly, depending on the magnitude of the roll acceleration and on the pitch 

a.  ' yaw damping.   The character of a polar plot of angle of attack vs pre- 

cession angle also changes from "flower petal" loops containing the origin, 

before the instability, to loops that do not contain the origin, after the in- 

stability. 
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