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(U)-The existing method of x-ray determination of elastic constants

requires several tens of x-ray photographs to be taken, which is very
tedious. In order to simplify the method of determining the elastic
constants, author transforms the formulas of the relative strains

T4V RPN Y, N

in different directions for the case of a linear strained state in
such a way that the stresses and modulus of elasticity are eliminated.
Poisson's coefficient then is expressed in terms of three interplane
distances of the atomic planes. As a result, for the determination

of Poisson's coefficient, one may confine oneself to taking only
three x-ray photographs. To find the modulus of elasticity one needs
also to know the stresses arising in the object.. This method was tested
on specimens of armco-iron, A URS-501M apparatus was used.

Author shows that a similar method also is possible for the plane
stressed state, but that in this case at least four x-ray phoctographs
must be taken. {(—.
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X-RAY DETERMINATION OF ELASTIC CONSTANTS E AND v

M. M. 8hved

We derive formuias for determining the elastie
constants E and v during uniaxial extension or
compression in the plane~stressed state.

Experimentally determine the élastic constants
of Armco iron during uniaxial extension.

It is known [2] that the calculation of residual stresses by -
the x-ray method using elastic constants obtained from mechanical tests
leads to great discrepancies between the stresses measured byzﬁhe
x-ray method and mechanically-measured stresses. Therefore when
measuring residual stresses by the x-ray methcd it is best tc use
elastic¢ constants found directly from experiment.

At present there exists a method [1] which makes it possibie,
using x-ray photographs taken for various applied forces and at
various angles with respect tc the direction of the appliied forces,
to determine individually the elastic constants E and v. However,
the unwieldiness of the experiments makes this method unsuitable.

For example, in order tc determine the elastic constants for Armco
iron 1t was necessary tc take about 80 x-ray photographs at various
stresses applied to the Investigated specimen and at various angles

to the direction of the applied forces {1]. 1In additiocn, the authors
{1] presupposed that the elastic constants do not change with increas-
ing stresses. In this paper we propose a simpler x-ray method for
individual determination of E and v.
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Determining Elastie Constants E and v vith Uniayial
Extension or Compression

From the theory of elasticity [{3], the deformation in direction
¥ for uniaxial extension or compression {Fig. 1) will be

- ‘ .
£{0s ¥} = o,_[—E'{']sm'\p* -}], . (1)
where ¢ is the angle between the normal to the applied stresseés and
the direction of the measured deformation; ol is the magnitude of
the applied stresses; v is the Poisson ratio; E is Young's modulus.
Wheh ¢ = O

e(o, ¥=0=—0,7. (2)

If the relative deformation is represented as the deformation
of the interplanar spacings, then from (1) and (2) we get,

respectively,
"14- it v i
: [—-E . ’——51' (3)
: —d, v
i R d' ==—-0‘E. ; _(u)

wheré d¢ is the interplanar spacing of atomic planes In direction ¢
for a specimen in the stressed state; di is the interplanar spacing
of atomic planes with the same indices in a direction normal to the
applied forces for a specimen in the stressed state; dO is the
interplanar spacing of atomle planes with the same indices for a

specimen in the unstressed state.

.- If we subtract (4) from (3) we get

d,—d
el . (5)

v v
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Fig. 1.

Dividing (4) by (5) we get

d, —d
g | 9 __ v
d,—d, =~ {Fvsory" (6)
FProm this, )
v R S
T dy—dy T
-1 (7
4;— )sarv

From equation (7) it is obvious that we can -determine the
Poisson ratioc by applying any force. undéi unlaxial extension or
' v and ¢. We neéd not know the
magnitude of the applied forces ir this casé. .. )

compression and measuring & , 4,5 d
13

With uniaxial extension the interplanar s@é@ingé‘in the diregtion
of the gpplied forces increase; in the di;gbtipn rormal to the applied
?orcesfthey decrease. Obviously, there éxis£5‘a Sfﬁeﬂtibn along
which the interplanar spac¢ings do not ch ange, i e., tqe def ormatidﬁ
in this direction equals zero. For Such a directién-d "de and

Y
eguation {7) assumes the fornm

Cv=1gty, ' f ' (8)
An analogous expression can also be cbtained for .uniaxial compression.
From equation {8) it is obvious that for uniaxial extension or
compression the Poisson ratio is the sgquare of the tangent of the
angle tetween the normal to the applied forces a.d the direction
along which deformation equals zerc.

FTD-HT-23~1137-68 3




crystailiine specimen the interplanar

For an unstresssd poly
spacings of the atomic planes with identical indices are identical
in all directions, and they can be represented in the form of a
sphere of radius do. With uniaxial extension or compression the
sphere assumes the form of an ellipsoid of rotation (axis of
rotation — the direction of the applied forces). Connecting the
points of intersection of the sphere and the ellipsoid of rotation
with the center of the sphere we get the directions along which the
deformation is zero (dw = do).’ Figure 2 shows the intersection of
the ellipsold of rotation and the sphere for uniaxial extension
(the cross section of the vlane passing through the direction of
the applied forees).

Thus, knowing the Poisson ratio,twe can determine the direction
along which deformation is zero, and vice versa. We should stress
that the points of intersection of the sphere with the ellipsoid of
rotation remain in place with a change in the applied forces until
the Poisson ratio btegins to depend on the magnitude of the defor-
‘Qatidn.

From (6) we get

14+ v .. _ . . a :5«»,
d,=d, —=E @, = dysin*¥.

v (9)

hiroﬁaihis'it is evident that d, 1is a i}near functicn of sinzﬁ,
‘whilée the derivative ) ‘

od 14+
de=— v di—d) (20)

characterizes tﬁe slope of line (9). At point d$ = 4, this function
will intersect the line do = canst. The projection of the point of

- intersection of theze lines onto axis sin2¢ makes it possible to

degermine sin2¢o‘(Fig. 3). Knowing sinzwc, we can determine &0 and
tg‘wg or v. With a change in the stresses appiied to the specimen,
the point of intersecticn of these lines does not change (see Fig. 3),
so long as the Poisson ratio remains constant, i.e., until the

Poisson ratio btegins to depend on the applied forces. PFrom this it
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is evident that the Pecisson ratio can be determined for any streése_s,
which makes it possible to investigate its dependence on the
magnitude of the applied stresses.

Having determined the Poisson ratio, we can easily determine
Young's modulus, but for this we must know, besides d 1 and do, the

magnitude of the stresses applied to the specimen, as fcllows from
(4): '

‘ d,o.y S
E=?_§:- . an
éi
H . j - ‘ ! -
) "» i B
) 7% ) ;
‘-.2_, ~4 AR p ; /._"- -
N Y |
Fig. 2. : Fig. 3.

In this paper we have determinad experimehtally Ybﬁqé‘s modulus
E and the Poisson ratio v for three samples of Armco ii@ﬁagnder ' .
uniaxizl extension. The measurements were mads on the ﬁ?ﬁsBOIM E T
installation in cobalt rays; calculation was done along line {310).
The measurement and calculation resultis are given in éhéff@llewing
table, 7

I x - hd — ; - - =
le} ‘ i ) o
S;:: i b u dy. L 4,, % %swfa:};zi v !“’5‘.‘? .
i : 'S

(2]

t
Ty ) } J { N PR
1 is.ws.ng*' 9.9528-10%119.0450- 107"} 0.684}21,653 | 0,251: 22030 -
- ¥ .. -
] 9.0470-197 " 9.0457. 107" _mooqa—u! 0.593 8.601 § 0.284 22100 -

i H

3 ]9,043-10-11 9,0521-10~" 9,0433.10~ % 0,750, 17,217 | 0,283.22000
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It 18 aloo euasy to calculate the elastic constants using,
equations (7) and (11) from the data in [1]; this can be done for
each point of any of the graphs given in thie work.

The accurucy of our propozed mothod of individual determinafiion
of the elastic constants coincides with that of (1], since in both
cases the accuracy in determining B and v depends on the accuracy
of measuring the interplanar spacings, the accuracy of measuring
¥, and the value of the applied stresses,

Determination of the Elastic Constants in the
Plane~Purallel State

From the theory of elasticity (2], for the plane~parallel state
the deformation in direction ¢, ¢

!

S0 - ;—;—v(a,co"tp o+ a4 9in? @) sin® ¢ —5—(6. +04), (12)

where ¢y is the angle between the normal to the plane of the applied
forces and the direction of the measured deformation; ¢ is the angle
between the projecticn of the measured deformation onto plane Oq

P and the principal stress dlf dl and 02 are principal stresses;’

E is Young's modulus; and v is the Poisson ratio. '

For deformation in direction ¢ = o, wl (Fig. 4), from equation
(12) we have ‘

sy, ~ LF(O.cos’a 4 o,sin*a)sint ¢, — ;-(a, ~+ og)i v (13)

for deformation in direction ¢ = % +a, ¥, ,
1;_ . -L'E-Y ’(a, sin® q + 6.co$'a) sint g = ;-(fv.+a,); ()

for deformation in a direction normal to the surface of the specimen
(perpendicular to plane 15 02)
!
Sy ™ — i-(’r'f' 0y). (15)



If deformation in each direction is represented as the

' deformation of the interplanar spacings, then from (13), (14), and

{(15) We get, respectively,

.__i’ = L‘é‘.l’ {0, cos*a -} oysin*a) sin? ¥, — :;-_- (0 + oy

B 7’ - & - —d° T B -
ki - (o, sin*a -} 0y ;cosz a) sin? P2 — ’;‘ (5:4-02):

=—zloi + o),

where d is the interplanar spacing of atomic planes in

a, wleQr a specimen in the stressed state;

directisn

is the

) d‘(ﬂ??)-ﬁ-q,qb

iﬁtefplanar‘spécing of atomic planes with tne same indices in

direction (n/2) + a,

for a specimeh in the stressed state;,di is
the interplanar spacing of atomic planes with the same indices in a
direction normal to the surface df the specimen in the stressed state:
d0 is the interplanar spacing of atomic planes with the same indices

for 2 specimen in the unstressed state.

If from (16) we subtract (18) and divide the resulting equation

by sinzwj, we get

—d L
i =i - v(ﬂ;C&’Cr*'a‘&-lsn)o

FTD-HT-23-1137-68
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Subtracting (18} from {(17) and dividing the result by sin2¢2 we get
dy
: — " i
L = P e ot (20)
L X ¢
Let us add (19) and (20):
dy —d
d.,—d Ftees 1 4w
_ﬂ.*u 1 _2 _ e X 1
dysin® , dg sin® P, s (21)
Using (18), from (21) we find the Poisson ratio
V== do—~ d"" .,
4 g dewd, 9 o9y (22)
+ T bt TanTy, TN

As can be seen from (22), in the asymmetric plane-parallel state
we can determine the Poisson ratio from three x-ray photographs taken
of the stressed specimen (perpendicular to plane 01, 02; at angle
a, ¥y5 and at angie (n/2) + a, wz) and from one x-ray photograph
taken of an unstressed specimen. It should be stressed that to
determine the Polsson ratio in the plane-parallel state we need not
know the magnitude nor the direction of the applied stresses.

For the directions along which deformation equals zero,
dc'*. =4, and d%ﬂ“::d&
then equation (22) has the form
v = l —

1 1 '
sintg0 T sin’wpg‘i-—l (23)

In the symmetric plane-parallel state

v=;£%. (24)
From equations (23) and (24) it follows that in the case of the
plane-parallel state ithe Polsson ratio, Just as in the case of
uniaxial extension or compression, is defined in terms of the angle
between the normal to the applied forces and the direction along
which deformation equals zero.

~ PTD-HT-23-1137-68 8
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Knowing the Poisson ratio, we can, 1in the case of the symmetric
plane-parallel state, determine from (24) the angle between the
normal to the applied forces and the directlion along whieh the
deformation is zero, i.e.,

o — avasne

$9 = + arcsin l/ i ?;. , (25)

Having determined the Poisson ratio, we can then from (18)
determine Young's modulus (but for this we must know, besides do.and_
d,, the sum of the principal diregtions), i.e., ’

o dv (0, +03) ;
N @)

Thus, for the plane-parallel state we can determine the elastic
constants from three x-ray photographs taken of the stressed specimen
(at angle a, wl; at angle (n/2) + a, wz; and in the direction normai

to the plane of the principal directions), and one x=-ray photograph
taken of the unstressed specimen.
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