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CHAPTER 1. INTRODUCTION
1.1. ABSTRACT

Suppose there are given k > 2 populations n LW observations

P
from population m; are normally distributed with unknown mean My and
common (known or unknown) variance oiz = 02 (i=1,...,k). Let

M[1]S0 M K] denote the ranked values of TEARERIE In this thesis

we assume throughout that both the numerical values of TERER and

the pairings of the M[1]* " M K] with the populations LIRRRETE N are
completely unknown (although we vary the distribution from normality)
and consider the problem: estimate some (or all) of M[1)ee K]

based on ii,...,ik, where X ,...,Yk come from use of the following
single-stage rule: Take n independent vectors Zj = (le,...,xkj),
j=1,...,n (Xij denotes the jth observation from "i); for each popu-
lation compute Yi = jgl Xij/n (i =1,...,k), and base the terminal
decision on Yi,...,Yi. (The fixed number n of vectors required depends
on the particular problem.) This rule has been used in many instances
of statistical decision problems. Applications to ranking and selection
problems are noted.

Let itl]ff"ix[k] denote the ranled _i,...,ik. A natural point
estimator of M) is Y[i] (1 <i <k), and its bias is studied when
observations from ™ have density f(x - ei)’ xeR, where the location
parameter 6, is unknown (i = 1,...,k) and Ef g _fo(x)dx<m. Upper and
lower bounds, Ui and Li’ are derived for Eﬁf[i] (1 <i <k) (udenotes
the vector (ul,...,uk)), and condition S(i)}, sufficient to imply that

iti] is asymptotically unbiased as n + », is obtained. lhen i =k




(1 = 1), U (L)) is the supremum (infimum) of Euiti]' It is shown that
uniform integrability condition Cl(i) implies S(i). Condition C2 (which
holds if, e.g., _szf(x)dx<w) also implies S(i). The relationship is
C, <=> {Cl(l),...,QEk)}. The minimax|bias|estimator of type Y[i] +a
is found for certain cases. These results are applied to the case
where f(-) is the normal density, and a uniform integrability argument
shows that Ui and Li are the supremum and infimum. It is noted that,
for the location parameter case, Y[i] is strongly consistent for M[4]
(1 < i < k); applications are noted. Bounds are obtained on the mean
squared error Eu(f[i] - u[i])2 (1 <i <Xk), also for the location
parareter case. For the case when f(°) is the normal density these
bounds are c¢valuated, and intervals in which the supremum and infimum
of the mean squared error lie are determined.

Maximum likelihood estimation of (u[ll""’u[k]) based on
itll""'itk] is studied. It is shovn that any critical point for
this problem is a solution of a system with derivatives taken for
u e Q) = {u: u[1] # u[2] ... # u[k]} if toundary points are con-
si’ercd solutions and that (X,...,X) with X = (iill + .t Ytk])/k
is a critical point. The nature of (¥,...,X) is completely determined,
and w.p. * 1 as n + « it is a saddle point (unless u[1] E L6 “[k]’
in which case it may be a relative maximum). Some results on the form
of the maximum likelihood estimator (I'LE) for k > 2 are given, while
for k = 2 the MLE is found explicitly. MLE's for non-1-1 functions are
discussed, and a concept of iterated MLE's (IMLE's) is introduced and
discussed. The generalized MLE (GMLE) introduced by Weiss and Wolfowitz,

which has a certain optimality property, is found to be Y[l]""’i[k]’




which has desirable larpge sample concentration. It is shown that there
is not just one GMLE but rather a whole class of CMLE's, and for k = 2
the MLE is shown to be in this class along with 7[1], itzl' It is shown
that for our problem (and others) a GMLE (if one exists) is equivalent
to the maximum probability estimator (MPE) introduced by Weiss and
Wolfowitz, if the latter is ''good."

Confidence interval estimation of u[ll,..., ”[k] is discussed, and
upper and lower intervals on M) (1 <i < k) are found, along with
their maximal overprotection, for location parameter populations.
Generalizing a result of Fraser, it is shown that exact upper intervals

satisfying mild conditions do not exist.




CHAPTER 1. INTRODUCTIOM

1.2. OUTLINE OF THE THESIS

In Section 1.1, we have given an overview of the problem considered
below and of the results obtained, and in Section 1.3 we make specific
definition of the problem considered and introduce various notations.

In the present section we outline briefly the contents of the various
chapters.

Chapter 2. The problem of point estimation is considered for a
location parameter family, and the bias of certain natural estimators is
studied; a minimax estimator is found for certain cases. These general
results are examined in the normal density case, for which additional
results are obtained.

Chapter 3. The problem of strong consistency is considered for a
location parameter family, and applications to value-estimation and
Bayesian statistics are noted.

Chapter 4. For a location parameter family, bounds are obtained on
the mean squared error of certain natural estimators. These results are
examined in the normal density case, and additional bounds on the
infimum and supremum of the mean squared error lead to intervals on
these two quantities.

Chapter S. I'aximum likelihood estimators are studied for the normal
density case. A concept of iterated maximum likelihood estimators is
introduced and discussed. Generalized maximum likelihood estimators and

maximum probability estimators are foand.
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Chapter 6. The problem of interval estimation is formulated. For
a location parameter family upper and lower intervals are found, and it
is shown that exact upper intervals satisfying mild conditions do not

exist,




CHAPTER 1. INTRODUCTION

1.3. PROBLEM DEFINITION AND MOTATIOM

Consider the set-up
Given k(>2) populations MpoeresT such that observations from
(1.3.1) population m; are normally distributed with unknown mean M and

common (known or unknown) variance oiz = 02 i=1,...,k),

and the following rule.
RULE: Take n independent vectors Zj = (le,...,xkj),
j=1,...,n, where xij denotes the jth observation from the
ith population ™ For each population form the sample mean
(1.3.2) _
(1.3.3) X = . xm 4=1,..,%,
and base the terminal decision sc'cly on the statistics
Xl,..., K"
(This rule has been utilized under set-up (1.3.1) in many instances of
statistical decision problems.) Make the
DEFINITION: Let u[l]:3‘°:y[k] denote the ranked values of

(1.3.4)
u

170 oMo
We assume throughout that both the numerical values of Hysoo oy and the
pairings of the "[1]""’u[k] with the populations Tyses,M are com-
pletely unknown (although we vary the distributional requirements from
those of set-up (1.3.1)) and consider the problem: estimate some (or
all) of u[l]""’ u[k] based on the statistics provided by the single-

stage Rule (1.3.2).




Consideration has been devoted in the literature to what are called
“ranking and sclection' problems. Since several of the proposed pro-
cedures in that type of statistical decision problem use Rule (1.3.2)
(e.g., those of Bechhofer (1954), Gupta (1956), (1965), and others), and
since one will often wish to estimate as well as select, we will briefly
describe such problems and will refer below to uses of our results in
such problems.

A simple example of such a problem is that of selecting the popula-
tion (or, one of the population:) associated with the ith smallest mean
(1 <i<k); this is called one's goal. (Much more general goals have

also been considered.) Typically, a probability requirement is made and

a procedure is given (which tells how to sample, when to stop sampling,
and what terminal decision to make). The probability requirement affects
one's sample sizes, since the more stringent one's probability require-

ment vis-a-vis achieving the goal, the more sampling one must perform.

In Rule (1.3.2), only the fixed number n of independent vectors required
depends on the particular {goal, probability requirement, procedure}
structure on hand. (We note that Rule (1.3.2) has some optimal proper-
ties. See Hall (1958), (1957); Bahadur and Goodman (1952); Lehmann
(1966) ; and Eaton (1967).) Of course the various structures use the
statistics in quite different manners, and not all structures use

Rule (1.3.2); e.g., the nonparametric procedure of Bechhofer and Sobel

(1958), the closed sequential procedure of Paulson (1964), and the open

sequential procedure of Bechhofer, Kiefer, and Sobel (1968) do not.
We will make use of the following definitions and notation,
DEFINITION: For any set S, let v(S) = cardinal number of S.

(1.3.5)
(If S is a finite set, then v(S) is the number of elements in S.)




(1.3.6) DEFINITION: Let R = {x: -=<x<e} and let R* = {x: x>0}

DEFINITION: For 6 ¢ R*, let Qs(a,b,c,...) = {(ul,....uk):

U[k] - u[k'l] _>_ 6) ui € R (i = 1,---,k), a,b,c,--- are held

(1.3.7)
fixed}. (In general a,b,c,... will be several of
U[I]:---,u[k].)

I A TR T AR R e

wEM(u[k]) = (u[k]""’”[k]) be vectors of k components.

DEFINITION: Let X[I]:...:X[k] denote the ordered X,
(1.3.9) (i=1,...,k). (Ve disrepard the possibility of ties,

which occur w.p. 0 in the cases considered below.)

DEFINITION: If a random variable (r.v.) X is normally
distributed with mean u and variance 02, we shall say
X is N(U,GZ).

Cenote the N(0,1) distribution function (d.f.) and

(1.3.10) density function (fr.f.) by ¢(-) and ¢(+), respectively;

i.e., let
¢(x) = _Z,My)dy (x e R),
12
i
¢(y) = — e (y € B).
V2n

DEFINITIOM: Let F and f be the respective d.f. and fr.f. of

observations from an arbitrary univariate location parameter




(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

(1.3.15)

family; i.e.,
F(x) = Nrf(y-e)dy
f has the form f(y-g)

where 9 is fixed, 6 ¢ 0 = R.

(x € R), and

()’ € R)p

DEFINITION: 8(F) = {u: upyy # M) #oeee Foupgg )

DEFINITION: If pe(#), let Y(i)

produced by the population associated with M1 ia=1,...

denote the sample mean

k).

DEFIMITION: If there is at least one break in the string of

inequalities u[1] [ R “[k]’ then the situation is that we

have 2(l<2<k) groups of equal parameters

U[I] = ..., B u[ill # U[i1+1] = ... = url

IR Mli, p#1) =R

with 11,...,12_1 integers

(0 = i°<1£;1<12<...<iz_1§k-l<i£ : k),
and we let
X e <X,. e <Y 5

be the ranked values of the sample means from the population(s)

associated with parameter p[i ] (j =0,...,2-1).
j+1

DEFINITION: Let Sk be the symmetric group on k elements, i.e.,

{a: a = (a(l),...,a(k)) is a permutation of (1,...,Kk)}.




CHAPTER 2. POINT ESTIMATION: BIAS
2.1. BIAS OF A NATURAL ESTINATOR OF Mli] (1<i<k)

FOR A LOCATIOM PAPAMETER FAMILY

Consider the set-up
Given k(>2) populations LAERRRFL such that observations from
(2.1.1) population s have fr.f. f(x-ei), X € R, where the location

paranmeter 8. is unknown (i = 1,...,k).

We make the

o
(2.1.2)  ASSUMPTION: The fr.f. f is such that Ef = _éxf(x)dx<w,

so that we may talk of Hyseoeobp (or of “[1]"“’“[?])' Nenote the
ranked values of the location parameters 61,...,ek by 6[1153..:Q[k].
Then since

[XE(x-a)dx = [ (x+a-b)£(x-b)dx = _[xE(x-h)dx-(b-a)
(2.1.3) ~ -

< _[xf(x-b)dx (a<b; a,b ¢ 0),
the population associated with Mri] is precisely the population associ-

ated with e[i] i=1,...,k). Also,

(2.1.4) _fo(x-e)dx = _fo(x)dx +6=F 8

f +
where Ef is the mean of f when 6 = 0,

e will now study estimation of u[i] (1<i<k) when set-up (2.1.1)
obtains, Rule (1.3.2) is used, and the pairing of MyoesesTy with

H[1] M K] is completely unknown (sce Chapter 1). MNenote the

densities of X..-6, and X.. by f and £, , respectively. Since
ij 1 ij y Xij-ei xij p y

10




-
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(2.1.5) f (y) = £, (y+6.) = f ((y+0.)-0.) = f(y),
xij'ei xij i > KR ¢

it follows that xij-ei does not depend on ei i=1,...,k).
DEFINITIOM: Gn(ylf) = PLO(X; 0,0+, + (X, -0)}/n < y],

(2.1.6) e
g,(vif) = ;57_6 (y|£).

Fori=1,...,k,

P[i}:x] PIX, + Xy a<nx] = P[(Xil-ei)+...+(Xin-ei)§p(x-ei)]

(2.1.7)

G, (x-0,|£).

Ve now determine several d.f.'s and fr.f.'s which we will use in later

sections.
k
THEOREM: Fy (x) =T G (x-6, |£) (xeR),
—_— . 4N i
(k] i=1
(2.1.8) k X
f=  (x) =) [.[ M G_(x-9, If)] o (x-6. Ifi (x € R).
‘g gl g
17;
Proof:
Fifk](X) = P[max(xl,...,xk) <x] = P[X1 _<__x,...,xk < x]
=2 - k
= P[X1 < x]...P[Xk <x] = iIllGn(x-eiIf).
The expression for fY () follows upon differentiation of Fg (-),

X
(k] (k]
utilizing the chain rule (see, e.g., Kaplan (1952), p. 86, (2-26)) and

the fact that G- (ylf) —3§_ G (y|f) gn(ylf) (see, e.g., Fisz (1963),

p. 35; or Parzen (1960), p. 169).




[
™

COROLLAPY: E X = 7 f- d
COROLLARY: E\Xpi) = Ly, , (0

(2.1.9)

k
z ; x £ (x-9; | £) [ I G (x- eilf)] dx.
j=1 -= izl

1#)

A possible estimator of u[i] when set-up (2.1.1) obtains and
Rule (1.3.2) is used is iti] (i=1,...,k); we now study its expectation
and bias. (Although quantities such as E”ifk] depend on the unknown
u € 9o, this dependence will sometimes be suppressed; e.g., we will

write EY[k] for EuY[k].)

LF'ftiA: If X and Y are independent r.v.'s with
(2.1.10) Fy(x) = P[X<x] < P[Y<x] = Fy(x) (x e R),

then EX > EY.
Proof: A peometrical proof of this lemma can easily be given using,
e.g., Exercise 2.5 of Parzen (1960), pp. 211-212, "A ceometrical inter-

pretation of the mean of a probability law."”

TIEOREM: For i = 1,...,k and x ¢ R, FY (x)+ as w4
(2.1.11) [i]
R = 1;c008) s

Proof: Fix 2(1 < £ < k). Fori=1,...,k and x € R,
FY[i](x) = Pu[X[i]:;] = Pu[The ith smallest of xl,...,xk is <x]
= Pu[At least i of Yi,...,i' are < x]

Pu[Xgix and at least i-1 of xl,...,xl_l,x2+l,...,xk are < x]

<

+ Pu[xl>x and at least i of Xl,..., 2_l,x“l,...,xk are < x]

,ik are < x]

Xy 12 Xgayses

+ {I—Pu[xzix]]Pu[At least i of X,.... X, 1,X; 000

Pu[ngylPu[At least i-1 of X],

.,ik are <x]




r -

= C (x- i - v X Y
n(x ezlf)Pqut least i-1 of .1,...,X2_1, 2+1,...,Xk are <x]

-G _(x-0_|* At le iofX,...,Y g ..
+[1 Cn(x ezl )]PH;A' least i o Xl, . R"I,X£+1,

+»¥) are <«l.

Therefore,

S o E___F; (x) dég

dug KXy e, Trip My

= - 2 i- L - B ey X
vn(x ez|f)Pu[At least i-1 of 1 o e »X, are <x]

+gn(x-ez|€)Pu[At least i of Y ., X, are <],

RITTTA FUETE SRS

which is <0 iff

- —

: X Y Y
Pu[At least i of Xl,...,Xl_l,A2+],..., K

-- t v Y
.<_Puf."t least i-1 of 'Yl""’xz-l’x

are <x)

oo,

> <x).
y are <x

L+)’°°
NEEIMITIAN:  For & = 1,2,3,... let hz(qn) he the exnectation
of the maximum of £ independent r.v.'s each havinec fr. £, gn(x);
and let hé(?n) be the expectation of the minimum of £ inde-

(2.1.12)
pendent r.v.'s each having fr.f. qq(x), i.e.,

ho(n) = Iyarc ;™ e vy,
hie) = _Jyani-c ;e vy

T+e followine is well-¥nown:

LEZW: T nn(x) is symmetric ahout x = 0 then

(2.1.13) '

Proof: Ry (2.1.12),
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yi6 (1" e (y)dy >h (g ) = 16, 1% g )y

Wy (6 (14 sy + Q?Y[G 1* e ey
n n ~® n n

i 10
ayi6, 014 e dy + 216_1*_frg 4y

v

Thus, since Zygn(y)dy < « and %im Ran = 00 (0<a<l), by taking the limit
e ~»00
as £+ we obtain
. s 2-1
Hp hy (e = lin 2fy[G ()] e (n)dy.
However, for any 'i > 0,
i 2-1 A nq 2-1
0 < oyl (1] g (¥)dy < ¢fy(G (D1 e (y)dy
2-11
= 2[G (1] gygn(y)dy+0 as gom,
Choosing M > 1, and since Gn(M) <1 for any 'l, we find that
. DU = 2-1 .. £-1
Bnh () = fim 4y (6,001 e, (Ndy 2 1in w16, 001" e, (y)dy
= i 1 2% = ] vy = I 2 —
Hn B6 O]y = 1im n(1-16, €917 = n.

Since M > 1 was arbitrary, the theorem follows.

LEMMA: If Y ""’YE are independent r.v.'s each having d.f.

el 1

Gn(x-e), then

(2.1.14) B maX{Yl""’YE)

6 + hg(pn),

K min{Yl,...,YQ} 6 + hpie ).
Proof: Since Yihas d.f. Gn(x-e), Yi -6 has d.f. Gn(x) A =1,...,2)
by (2.1.7). Thus,

iR (Y),...,Y,} = FRER ((Y,-e)+0, ..., (Y, -0)0)

=6+ EJ3K {v,-6,...,v,-8) = 0+ {h%(gn)
h (e ).
AL 3
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THEOPEM: For any i (1 < i < k)

SUP{Euiti]: b Qo(”[i])}
< E X,.
- (u“].-.-,u[i_ll,u[ll']lu[id].---,u[k])

(2.1.16)
= (ui],..m 24P, 0., +)
i times

= 05y * hy(m) = wpyy - Bg + hylo),
and

inf{EuT[i]: M€ Qo(u[i])}

(2.1.15) > E( iki]
M0 M- e ey 0 M)

(2.1.17)

Gy o))
S Sy S
k-i+1 times
= 613 * Mejar () = upgy - Fe t by (o),

where the confipurations of the vector (“[1]""’“[k]) which

involve values +« are viewed as a situation eliminating the

populations with mean values +« from contention for ith

hichest sample mean. (The case i = k in (2.1.16) and the

case i = 1 in (2.1.17) involve no such eliminations.)
Proof: By Lemma (2.1.10) and Theorem (2.1.11), we increase ng[i] by
raising uj (i,j =1,...,k). Now,

Ori) * h£-1+1(3n)

. (Smallest of (Yki)-e[i])+e[i]""’(Y(k)-e[i])*e[i]}

u= (U[l]n- . ’“[i-l]’u[i]’u[i] ---'nU[i])
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{ith smallest of x(l),...,x(i_l),x(i),...,x(k)}

< E
H =(“[1]""’u[i-I]’“[i]’“[i]""’“[i])

< Eu{ig_m_ smallest of xm,...,x(i_l),x(i),...,x(k)}- Eux[i]

Eu{ig smallest of x(l)"‘"x(i)’x(i+l)""’x(k)}

{ith smallest of x(l),...,x(i),x(m),...,x(k)}
Y '(u[i].---.u[i].u[i].u[i+1],---,u[k])

E

()

< g (largest of (')("(1)-9[1])4»3[1],...,(Y(i)-e[i])m[i]}

H =(“[i]""’”[i]’“[i]’“[i+1]""’“[k])
= e[i]+hi(gn)'
(Note that for our purposes here, the ties in Definition (1.3.14) should

be broken in an arbitrary manner.) Upon taking the desired supremum a:nd

infimum, the theorem follows.

COROLLARY: For any i (1 < i < k)
, -
(2.1.19)  wpgy ¥ (5,008 -Bg) < B X5y <upgy + (hy(e)-Bp).
Thus, (1) Y[i] is asymptotically unbiased (as n+=) as an
estimator of ”[i] if

i'h.(gn)-vEf as m , and

(2.1.18) (2.1.20) i i

] .
Pk-ie1(8p) g as e
(2) if the left and richt members of (2.1.19) are the

infimum and supremum of EuY[i] (respectively) then

Y[i] is asymptotically unbiased (as m»=) iff

(2.1.20) holds,
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With Corollary (2.1.18) as motivation, we will now study the questions
of (i) when (2.1.20) holds and (ii) when the inf and sup above achieve
the bounds of (2.1.19).

THEOREM:
(2.1.21) "[x] < E;F[k] - sup{EuY[k]’ we B Gupp)l = gy + (hy(gp)-Eg)
N[I] + (h;((gn)-l’.f) = inf{Eu:‘-(.[I]: T Qo(u[I])} < Eui[ll < un],

Proof: The lower bound for EuY[k] (the upper bound for qu[ll) fol lows
from the fact that hi(gn) = Eg (that hl(gn) = Ef). The equality for the
sup for Euitk]’ and for the inf for Eui[l]’ follow easily from Theorenm

(2.1.15) and the first sentence of the proof of Theorem (2.1.15). Note

that they are actually attained at wEN(“[P]) and “EV(“[I])’ respectively.

From Assumption (2.1.2), it follows that independent r.v.'s with
fr.f. f obey the Law of Large Numbers, so that (cf. (2.1.7)) as mw,
for any i (1 < i < k)

G, (y|£)
(2.1.22) [G_(y|D)]* +G_(y|) R
116y |11 L1y 2 5

since (2.1.4) is true. Each of the convergences indicated in (2.1.22)

J'n.y< Eg

is weak convergence; i.e., Fn converges weakly to F iff anF on the
continuity set of F. It is not obvious that it is then the case that
(2.1.20) holds, i.e., that for any i (1 <i <k),

hy (@) =_Lyd, ([6,07 |11
(2.1.23) + F,. as no= ,

b g8 = D4, (-0-6 |01
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If we make the following definition (cf. Lodve (1963), p. 182)
DEFINITION: If g(.) is a continuous function and Fn(-) is a

d.f. (n > 1), we say |g| is uniformly integrable in F if

¥ |g|an->0 unifornly in n as ¢ owith mee; i.e., if (for

(2.1.24) le:_cm

any € >0) there is an m, such that for m > m, we have

I écr!‘g|an< e for all n (where ¢ +» as mia),

then we may use the following theorem (cf. Lodve (1963), p. 183,
Theorcm A, (ii))

THEOREM: 1If Fn converges weakly to F (a d.f.) and |g| is
uniformly integrable in Fn’ then

(2.1.25)
fngn + [gdF

to immediately state the

THEOREM: For any i (1 < i < k), (2.1.20) holds if |y| is

(2.1.26) ]

uniformly integrable in [(}n(y|f)]i and 1-[1-Gn(y|f)]

Proof: This follows from (2.1.22), (2.1.23), and Theorem (2.1.25).

THEOREM: If (2.1.20) holds, then _a{ydy{[Gn(ylf)]i}-»Ef, and
© . o q
1 + 1 T
mméwJWJﬂn]he,iwwﬁm“ﬂﬂ]h§ with
- o)
B, = E' - I3, (Fo=1lim J|y|d {[G.(v|D1'}; EX similarly.)
f poeo - y ' n 3

For any i (1 < i < k), (2.1.20) holds only if (as n+w)
(2.1.27) r

i 25;, 0 < Eg
! lyla {16, (y|£)] }»1
y WM< E
|y |>M £’ f
Note that |y| is uniformly integrable in [Gn(y|f)]i means

< M

:_0.
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E; = 0 if Lo is non-nerative (Ff = 0 if T is non-positive).

A similar result holds with respect to {1-[1-Gn(y|f)]k'i*1}_

Mote that E; and Ef may depend on i.

Proof: Suppose 0 < Ef < M, By the Helly-Bray Lemma (see, e.pg., Lodtve

(1963), p. 180),

M g
1
Iyd (16, (71D 1+,
as noie

0 .
{ydy{[cn(ylf)ll}»o
S 1 b

Now, letting m in

o . o . M . ® .
a6 0D = _[yd (16, (7|D17} + fyd UG (y|D]'} + fiyd {[6, (7|1}
we obtain

--_ 'w i
Ef = Ef + Ef + %12 &ydy{[Gn(Ylf)] },

so that Jfyd {[G_(y|£)]'}+E, as n+=, and thus
M Yy n f

: -M : % :
1 1 1
IyléLyldyf[cn(ylf)l be - Lyd G [0} dey{lcn(y|f)1 }

2F

+(E;-0) + L £

P as me
The case -M < Ef < 0 follows in a similar manner. The result for Ef =0
follows from the equation Ef = E; - E; and the Helly-Bray Lemma.

We have thus seen that although a certain uniform inteprability
condition is sufficient for (2.1.20) to hold (Theorem (2.1.26)), it is
not clear that it is necessary for (2.1.29) to hold (Theorem (2.1.27)).

We will now exhibit a condition (simpler than that of
Theorem (2.1.26)) under which (2.1.20) holds. Fix i (1 < i < k), let

Z. be the mean of n independent r.v.'s Zjl""’zjn each with fr.f. f(-)
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(j =1,...,i), and suppose E752 = u (say) exists. le wish to know when

(as n-x)
max o 2
E ey (Zl,...,Zi)+u .
THEORE!1: If E|7j-u|-°0 (as n+) (j =1,...,i), then (as n-»)

(2.1.28) = _ '1

E MoxX (Z)seenZ) g
Proof: = = i K7
- max (7..7.) = aItea & |21-22|

min 1272 2 ] ’

so that

E min (Z152)) = v t%EIZ -7, ],

However (since |a|-|b]| < |a-b| for a,b ¢ 7?)
1Z,-2,| < 12;-ul + 1Z,-u],
and thus (as n+=) by the hypotheses of the theorem Elzi-f}lao. The

result for k > 2 follows by induction.

Although it can be proven (see, e.g., Loéve (1963), p. 157, d.)
that Elfi-ul*o implies that E|2i|+|ul,it is not clear when the converse
is true. In our situation, we would like to know when F2i=u implies
Elil-u|~o (i.e., for which f(+)'s this is the case).

(2.1.29) THEORE(!: If var('z'l)ao (as n-+=) then Elfl-ulm.
Proof: This follows directly from the fact that (Elxlr)l/r is a non-

decreasing function of r > 0 for any r.v. X (see, e.p., Loéve (1963),

p. 156, c.).

(2.1.30) LEMMA: Var(Z))»>0iff _fx?f(x)dx<e.

Proof:

Var(Z) = & var(z)) = L ([x200dx - ( [E)a02).
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These results on the satisfaction of (2.1.20) of Corollary (2.1.18)
may be summarized as follows.
SUMMARY: For any i (1 <i <k), 'x'm is asyry :ically
unbiased (as n-x) as an estimator of “[i] if
(1) ]y]| is uniformly integrable in [Gn(y|f)]i
and 1-[1-G (y]f)]k_i+1,
(2.1.31) n
or if
(2) _[x2£(x)dxce,
(Note that (1) holds if, as is often the case, f(.) is

concentrated on a bounded set in R.)

For reasons noted above Lemma (2.1.10) it was reasonable to
study the expectation and bias of iii] as an estimator of Mli]
(i =1,...,k) in our context.. ith Corollary (2.1.18) as motivation,
we note that estimators

(2.1.32) Xp;; +a (hy s4108) - Bg<a<hig) - Ep)

(correction of Y[i] by adding a constant) may be preferable to i}i] in

certain contexts. If positive (negative) bias is very undesirable,
1] . .

one may use a = hi(gn) - Ef (a = hk-i+1(gn) - Ef) and obviate its
possibility. If one's preferences on bias are more complicated, one

. . N L]
might even rerove the restriction hk-i+l(gn) - Ef <a :-hi(?n) - Ef.
(Note that this restriction'makes sense" since (see (2.1.14) for
notation)

1 . =
hal (gn) = E rm(Yl .v'--byal) 3 EYI < E "WaX(Yl"°°’Yaz) haz(gn) °)
Note that, for certain f(.)'s, information about the distribution

Gn(-lf) will be available for use in determining hi(pn) and hk-i+

1(e.n)
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(1 <i < k). For information and references see Reitsma (1963).
THEOPEM: Fix i (1 <i < k). Suppose that the sup and inf

of (2.1.19) achieve the bonnds of (2.1.19). Then we minimize

m | Gy - o - vy
UEQO(U[i]
(2.1.33) hi(gn) - Ef
by choosing a = , and wve minimize

t
hy_ie1(8)) - E¢

max Y
@ e no(u[i])"’ux[i] T M)

by choosing a = [hi(vn) + h 1(gn)]/Z - Ef.

‘k-i+

Proof:

min min  (Fwlpgy =2 - wpyy)

ae(~=,o) 'y ¢ go(“[i]) '
. _ . h.(p ) - E
= min (hl(pn) Ef) 2 =N atas= - d
ac (- (h;_i+l(gn) - Ff) - a hi-i+1(gn) - Ff'

For (2),

min max

E Y . - a = Y.
ae (-==) ue g luyy) wli] [i]

q '
ae’?f’: m)max (lhl(gn) i Ef - alr Ihk-1+1(gn) - Ff - al)

hy () - By 341 () hy () * My i1 ()
- - at a = - Ef,
2 2

since (for c > d) min max (|c-a|,|d-a|) = (c-d)/2, as illustrated
a

below.
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It is of practical interest to know how any statistical procedure
performs when the (distributional and other) assumptions under which it
was derived are not met. We then say that (for deviations of a specified
sort) the procedure is 'robust" or 'not robust," according to whether
the goal(s) of the procedure are or are not met 'well' under the
deviations.

The question of how our procedure for estimating u[i] (1 <i <Kk)
performs when specific distributional assumptions are used to set n,
but do not hold, is answered in part by our treatment of the estimation
problem for a location parameter family in this section. (The question
of robustness of Rule (1.3.2) is not our concern here; for some results
on this see Dudewicz (1968).)

The robustness interpretation of these results is large-sample.
Small-sample robustness can be studied numerically for the f(-)'s

important in any particular problem, utilizing n. If one is considering
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a location parameter family other than the normal, results related to
robustness can be used to help design ''good" procedures, and to help
compute the los< that would result from using sample means instead of
the appropriate sufficient statistic. If this loss (measured perhaps
in increments in n) were small enough, one might wish to use sample
means since they might be more robust. (In any narticular case this
could be checked numerically.)

Examples of location parameter families where Assumption (2.1.2)
holds but Y[i] is not an asymptotically unbiased estimator of “[i]

(1 <i <k) are presumed to exist. The case of Cauchy populations
(excluded by (2.1.2)) may yield some insight. Here, Gn(ylfc) is
independent of n (by a property of means of independent observations
from fc). (If Cauchy populations were being dealt with, Tule (1.3.2)
would not be used. See Dudewicz (1966), »np. 3°-45.)

The relationship between tihe uniform interrability condition of
Theorem (2.1.25) and the condition of Theorem (2.1.28) (each of which
is sufficient) is of interest. "e first clarify the role of i (1 <i < k)
in Theoren (2.1.26).

THEOREM: Bix i (1 <i <k). If |y| is uniformly inteprable
(2.1.34) in Gn(ylf), then it is uniformly integrable in [Gn(ylf)]i and
1-[1-G_(y [£)]* 711,
Proof: For -» < a <b < +=,

b : b : L

Llyld (6, (101" = isly 16,0101 7 a6 16 < 441yl G 19,

and (for j > 1)

d,1-01-6, 19171 = +501-6 10 a6 (v 1) < 5o vl
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THEOREM: Elfl-ul*o iff |7i| is uniformly inteprable (i.e.,
(2.1.35)
|y| is uniformly intepgrable in Gn(Ylf))-

Proof: Since E|71|<° (because Efl = y exists) and since 2& converges
stochastically to u, the result follows from the Lr-convergence theorem

(see, e.g., Loeve (1963), p. 163, c.).




CHAPTER 2. POINT ESTI!'ATION: BIAS

2.2, TVE NORVAL CASE

In this section we consider set-up (1.3.1), for which Rule (1.3.2)
was originally sugpested. The form of the location parameter family
results of Section 2.1 is shovn, and further results are provided for
normal populations.

Denote (1/0) ¢(y/o) by @o(y). Then the quantities defined in
Section 2.1 for a location parameter farily are (for i = 1,...,k) as
follows in the case of normality.

£(x-1;) = (1/0) 6((x-u)/0) = 8 (x-u;);

E, = e (n)dy = 0;

Gn(Y|¢G) P[Yi-u. < y] = P 1 1 = Y = ¢ LA :
tVVE' o/ /n o/ n

+

1 y _ ,
2.2.1) g (yle) CM‘JLM;} 9/ ROV

h,(g) = E{max of & r.v.'s with fr.f. pn(y|¢c)]

= E[max of £ N{2,0%/n) r.v.'s]

= (o//n)E[max of & N(N,1) r.v.'s] = (o//E)hzw);
h;l(pn) = (g ) = —(o//ﬁ)hg(da) by lLerma (2.1.13).

Note that in the normral case, since hl(nn) = -h;(gn) = (o/VF)h£(¢)
(2 =1,2,...5, only h2(¢) need be tabulated. (h2(¢) >0 for 2 > 2 since
_Zx¢(x)dx = 0 and the positive weighting function [<b(x)]’l'1 assipns
greater weipght to +x thar to -x for all x > 0.) Tables of quantities
more general than h2(¢) have been computed by (e.r.) Teichroew (1956)
where hn(¢) = E(xl;Q), and by llarter (1961) where h£(¢) = E(x1|2)'

26
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Tables of h£(¢) have been computed by Tippett (1925). We now present

some values of h£(¢) obtained from Harter (1961) for g = 2(1)10(5)

25(25)50(50)400, and from Tippett (1925) for g = 500,1000. (For

further references, see Kendall and Stuart (1963), pp. 329, 336.)

Table (2.2.2). Values of h2(¢)

L h, (¢) [} h1(¢)
2 .56419 50 2.24907
3 .84628 100 2.50759
4 1.02938 150 2.64925
5 1.16296 200 2.74604
6 1.26721 259 2.81918
7 1.35218 300 2.87777
8 1.42360 350 2.92651
9 1.48501 400 2.96818
10 1.53875 500 3.03670
15 1.73591 1000 3.24144
20 1.86748

25 1.96531

From Corollary (2.1.18), (2.1.31)(2), and (2

theorem emerges for the normal case,

For any i (1< i< k),

.2.1), the following

R LAQLRIORS R IR RN CAO LN

(2.2.53)

and Y[i] is asymptotically unbiased (as n-+«) as an estimator

of u[i].




p——

28

The following theorem shows that the bounds of Theorem (2.2.3) are
actually the sup and inf. (For the location parameter case, the inf
for i = 1 aid the sup for i = k were proven as Theorem (2.1.21).)

THEOREM: For any i (1 < i < k),
inf{EuX[i]! U € QO(U[i])} = U[i] = (O/ME)h 1(¢)

k-i+
(2.2.4)
and

sup{EuYtilt bfe Qo(“[i])} = upgp (a/Vn)h, (4).

Proof: By Theorem (2.1.15), the infimum is >u,..-(o//n)h (4) and
—_ =“Fli] k-i+l

the supremum is fy[i]+(c//ﬁ)hi(¢). We will now show that
inf{EuY[i]: H € QO(U[i])} < U[i] - (O//E)hk-i#-l(")
SUP{EHY[i]: [T Qo(u[i])} id U[i] + (U/E)hi(‘b)-

Now, since we are taking the inf and sup over more restricted sets,

inf{EuY[i]: uE Qo(u[i])} f-inf{Euili]:

_i-1 terms . ‘k-i+1Atermsﬂ
u=(1-||'1]:~- . :U[I]:U[i]:---ﬂl[i]) € QO(U[i])}

sup{EuX[i]: T Qo(u[i])} > SuP{Euiti]:

i terms k-i terms

o e s o s —

u=(U[i]’--°’U[i]’U[k]’--~’UE;i) € Qo(u[i])}-

Case 1. The infimum.. By Lemma (2.1.10) and Theorem (2.1.11),

E X;.7, with p=(-M,...,-M,ur.7,...,Hr:4), decreases as !4, If we let
uX[] b=, My

- i =(-1, ..., 7 Hlelele ' i
Hﬂ(x) denote Fx[i](x) with p=(-11, 5 J’“[l]’ ,u[I]), the desired

inf{Eux[i]; u:(-M,...,-“,u[i],...,u[i]) [ QO(U[i])} = hiﬂ _£Xd”M(X).

However, the following weak convergence holds as Mew:
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i-1 terms k-ifléferms
H“(x)+Hw(x) s Fi[i](x) with “a('w"""”’“[i]""’”[i])'

Thus, by Theurem (2.1.25), if |x| is uniformly integrable in H”, then
3 ] Y = ! = o
Lin Judth () = Jadll () = urg) = (o Bty g (9,
where the last equality uses Lemma (2.1.14) and (2.2.1). Since |x| is
uniformly intepgrable in HW by Lemma (2.2.6), this part of the theorem

is proven,

Case 2. The supremum. By Lemma (2.1.10) and Theorem (2.1.11),

X i = 1 M), i
EuX[i], with (”[i]""’“[i]’r""")’ increases as M4, If we let

J”(x) denote Fiti](X) with u=(”[i]"'"”[i]’w""’”)’ the desired

suP{EuY[i] : U‘-'(U[i]’---all[i]:Ms-~-yn) € Qo(u[i])} " ;i:-LXdJN(X)'

However, the following weak convergence holds as Maw:

i terrs k-i terms

. e S o e | —t e,
JM(X)-'Jw(X) = FY[i] (X) Wlth u=(u[i] peee ,u[i] ,"'oo, L) ,*w) .
The theorem follows as in Case 1, now using the fact that |x| is

uniformly integrable in JM by Lerma (2.2.7).

™A
LEMMA: For any u ¢ qu[i])’

(2.2.5) s [k] ) Py ()...Fy  (x)
aFy W< L\E T (T o8 fax.
(1] =i " geSy [3=1 " 8(3) X o03) |

Proof:

F- (x) = P[At least i of X,,...,X, are <x]
X[i] 1 k

= ? P[Exactly & of Xl,...,Y: are <x]
L=i .

1 - . — — -
) zgim—! sgskplxﬁ(ni""“'Xe(z)—‘-" ® Xa(aeny?e e X gy ]
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i
=] YT R .. Fp  [-Fg ®]...[1-Fx  ()].
g=i Kl geS, "B(1) B(2) B(L+1) B (k)

Thus,

K Fr (x)...Fy (%)
ku 3 X X
df- (x) = z ]2('! z zfi (x) 8(1) B(R)
i] g=i 7 BeS,  lj=1 "B(J) Fr (X
g(3)
k
s [-Fg ) D-Fp o ) - T fg o ()
B(2+1) B (k) =2+l TB(j)
[1-Fs (x)]...[1-F¢ (X))
Xa(2s1) Xg (k)
. Ff (x)...Fi (x) dx
B(1) B(L) [1-Fz  (x)]
B(3)
k Fo  (X)...Fs  (X)
e roy
122, ix oL I,fl f"sr-)(") B(”F_ (;"” dx
=i €S, [j= 'j x
k Xs(3)
LEMMA: |x| is uniformly integrable in H,(x) = Ff[ ](x) with
— i
(2.2.6)

i-1 terms k-i+l terms

P e WP g
Wo=(M M)

Proof: Let L be positive. Then, by Lemma (2.2.5),

0< [ Ixja,) = f [x[dFg  (x)
|x|>L

|x |>L [i]
k Fo  (x)...Fg  (x)
[ [ ryy
< 1 :! ! iy lefi (x) —2) B(2) dx
L=i BeS ljzl {x|>L 8(j) F-  (x)
k X8(3)

Fix any €>0. We will now show that there is an L = L(e) such that the

upper bound on | { |x|dHy,(x) is <e regardless of the value of M. By
x|>L
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Definition (2.1.24), this will prove |x| is uniformly integrable in
Hy (0.

Since £ = i,i+l,...,k, and since i-1 populations have means -M
while k-i+1 have means “[i]’ for any fixed 2 and B at least one of
ié(l)""’ié(z) is associated with a population with mean TR

Let us consider the terms which are summed in the upper bound on

|x|dH, (x), a typical one of which is
x|>L 1

FY (X)...F— (X)
o 185, 8L
|x]>L 8(3) xs(j)

xl= =

T(2,8,j) =

Case 1. ié(j) comes from a population with mean “[i]' Then

i
T(2,8,j) < &

Ix|f=
k'lx{zL Xs(4)

. vy . 2 Iy . -
and, since XB(j) is N(ufil’o /n), it is clear that for L 1_L1(2,B,J,e)

(x)dx

) €
we have T(%,8,j) < (k-i+1)k!k"

Case 2. X comes from a population with mean -l', Then one of

8(j)

) (but not X )) comes from a population with mean u[i];

Xaqay - Xa(a 8(j

call it YB . Then
[o]

=l x

k
T(%,8,3) :1%]!-] |x|f5(— (x)dx + 44 / |x|fY ()Fg  (x)dx.

x>L B(3) x<-L B8(3) B,

Since ié(j) is N(-!1,02/n), it is clear that for L > L,(%,8,j,c) the

1
first term is < 3'?§73533§7§' uniformly in M.

. N . 2 =
Now, since XB is N(u[i],o /n), for x < I"[i]I (-0 that

(o)
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B, "[i] XV XH (5
F—x- x) = P[XB <x] = P 0 < (1 = [1]]
B, ) o//n o/ /n \g//n
A
= 1-9 ﬁa_I_l_l < _l e 4 O/fn ___1___
OV/YT —/ZT -x-m[i]
o//n

by the result (see, e.g., Feller (1957), p. 179) that, for y > 0,

1
1-¢ c o= -?’21 Thus, for L > 2| |
-()’)_me y- Thus, for L > 2fu ..,
]lxlfY ()Fg  (x)dx
x<-L B(j) By
~X+ 2
1(x+M )2 -lt ull]]
< x| ! - e [0//1-1-] o/‘/ﬁe o/ A 1 dx
T x<-L  VZn o/Vn Y2 Eadd Ty
1|
< o//n | x| 1 o - o/Vn %
- VIn xf_-L.x"u (1] V2no/vn
. 2
1[_" ““1]
2
<Y/ [p—4 _ ¢ Lo/ g ov2/ (nm) PIX, < -LI.

= V2w x<-L V71 ofVm 0
Since X, is N(u,. ,o%), it is clear that for L > L_(2,B,),krsq5€)
B, (i] -3 [i]

syl 1 €
the second term of T(%,8,j) is < 5 I DKIK so that for
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3

L>L,(2,8,j,u,:q, = max(L,,L e h T(2,8,j ——
> Ly( J¥ ) €) (L,,L4) we have T(2,8,j) < KL DKIR

uniformly in .

Using Case 1 and Case 2, since the bound on | ledHM(x)
x{>L

involves < (k-i+1)k!k terms, we have (uniformly in M) [ | x| dHy, (x) <.
>L

LEMMA: |x| is uniformly integrable in Jy(x) = Fg (x) with
' [i]
(2.2.7)
i terms E_ terms

- ——._—)‘—-ﬂ
u=(u [i]’°°';u [i])M, M)
Proof: Let L be positive. Now,

0< J |x|dJ, (x) = / |x|dF-  (x).
Txe M e )

Fix €>0. By Definition (2.1.24), to prove that [x| is uniformly
integrable in JM(x), it is sufficient to show that there exists an

L = L(e) such that i |x|dJM(x)§; for all M.
|x|>L

For M > |”[i]|’ by Theorem (2.1.11),

. i t1mes k -1 times
JM(x) = Fyki](X) with u=(u[i], ..,u[ ], M)

%;} tlmes k-i+l times

Hy (x).

[

Define two d.f.'s
1 if x > -L ) if x > -L

F(x) = ’ G(x) =
JM(x) if x < -L HM(x) if x < -L.

Then by Lemma (2.1.10),
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_ZxdF (x) _ZxdG (x)

v

v

-L -L
_£XdJM(X)-L(1'JM("L)) o _éXdHM(x) - I(I'HM('L))

-L -L

0> &deM(x) _cj;de”(x) + L{HM(-L)-JM(-L)}.

{v

-L
Now, since HM(-L) > J“(-L) and since _‘[Dxd'h(x)-vo uniformly in M by

Lemma (2.2.6), we find that

-L -L
0> -{onJM(x) > _o{deM(x)-»O uniformly in M,

Thus, there is (for any fixed “[i]) an Ll(c) such that for L > Ll(e)
-L
we have _afolxldJM(x)<E/2 uniformly in M.,
Take L > Ll(e). By Theorem (2.2.3) and Theorem (2.2.4), we have

big * (o/ a)h. (9) > sup{EuY[i]: M= (e bt ot € B i) )

© -L L ®
lim  fxdJ, (x) = lim { [xdJ, (x) + [xdJ, (x) + SxdJ,(x)}

L ©
-¢f2 + lim fdeM(x) + 1im JfxdJ, (x)
o -, Mo L M

| v

L ©
-e/2 + JxdJ (x) + lim /xdJ  (x).
/ i o(X) By M( )

The last step follows from the Helly-Bray Lemma (as in (2.1.27)).

Since (as shown in Theorem (2.2.4))

Lx3, (0 = upyy ¢ (@0,

L
for L > Lp(e) we have /xdJ_(x) within ¢/2 of T (o//rT)hi(¢).
-L

Thus, if L > max(Ll,Lz) then

€ € S
INRECIONORE SRS THRICEANNORS LN
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e > lir JFxdJ, (x).
T M !

Thus, there is an L = Ly(e) such that 1 IxIdJM(x)fg regardless of
xI>L L

the value of M.

Among the results of Section 2.1 for a location parameter family
which ergo hold for the normal family of the present section, the linear
corrections for (e.g.) minimax|bias| at equation (2.1.32)ff are worthy
of special note. We may then (in the normal case) readily determine
the sample size n needed to satisfy several criteria (ranking and
selection, estimation, or both). (1) Set n as dictated by the ranking

and selection use of Rule (1.3.2), say n (2) Set n to make certain

1

minimax|bias|'s suitably '"small," say n (3) Set n=max(nl,n2).

5

Table (2.2.2) of values of h£(¢) indicates that for k in the
range in which Rule (1.3.2) would usually be used (k < 10) the factor
hz(¢) in the bias is not seriously detrimental, being only 1.5 for
2 = 10, Even if g were of the size associated with large screening
experiments, the factor hz(¢) would still be only 3.0 for ., = 500.
As an example, if one were setting n large enough to make the minimax
|bias| in i}k] - a, as an estimator Of“[k]’ <€ (¢ >0), he would find
approximately that if n, sufficed for k = 2, 4no would suffice for
k = 5; and that if n, sufficed for k = 9, 4no would suffice for k = 500,
since by Theorem (2.1.33) the minimax|bias| is

hi(gn)-hé-i+l(gn) hk(gn)'hi(gn)

1
; - s = 5 (//mh, (6.

Note that if there are restrictions on the My i=1,...,k) in a

practical case, then the inf and sup of Theorem (2.2.4) can be improved.
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For example, if A :_ui <B ({-=1,...,k), then "A" will replace "-="

and 'B'" will replace "+'" in that work. (A common case is A = 0,

w
1

+o.) Such a process will result in a smaller ny being needed
for estimation as in the previous paragraph.

If the sup and inf were desired over a more restricted set than
T Qo(u[i])’ sayu € QGGJ[i]), that sup and inf would also be attained
by raising (lowering) the components of u to the hipghest (lowest)
possible values. “oting that this is somewhat analogous to the set
over which a Probability Requirement is made in the "indifference
zone" formulation of ranking and selection problems, one might at
first think we would be interested in the sup (inf) over u ¢ Qé(”[i])‘
However, since our aim is good estimation of u[i] regardless of u,
the set used above (u ¢ Qo(u[i])) will usually be the proper one.
{For special uses of the estimate of u[i] one may only 'care' when,

for some &, u ¢ Qs(u[i]).)
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CHAPTEZR 3. POINT ESTI:ATION: STPO!'G COMNSISTENCY
3.1. STRONG (W.P. 1) CONSISTENCY OF A NATURAL FSTIMATOR OF u[i] (1<i<k)

FOR A LOCATION PARAMETER FAMILY

Consider Y[i] as an estimator of M (i) (1 < i < k) when Set-up

(2.1.1) and Assumption (2.1.2) hold, i.e., when observations from pop-

ulation L have fr.f. f(x-ej), XeR, i = 1,...,k,and the mean of f exists.

If Z is a constant (say 6) with probability one (w.p. 1), a sequence of

estimators {Zn; n > 1} is said to be: strongly consistent (for 6) if Zn

converges to 6 w.p. 1; consistent (for 6) if Zn converpes to 6 in prob-
ability. Since convergence w.p. 1 implies convergence in probability,
strong consistency implies consistency.
LEMHA: Let Tl(n),...,Tk(n) (n > 1) be r.v.'s which converge
w.p. 1 to r.v.'s Tl""'Tk (respectively). Suppose that
g(t,,...,t,) is a continuous function of k real variables.
1 k

(3.1.1)

Then

g(T;(n),...., Ty (n))

converges w.p. 1 to g(Tl""’Tk)'
Proof: Suppose that all r.v.'s involved are defined on a probability
space (2,B,P). Then by a characterization of convergence w.p. 1
(see, e.g., Parzen (1960), n. 415), it suffices to prove that for every

€ >0, § >0 there exists an integer No > 0 such that

P[sug Ig(Tl(n),...,Tk(n))-g(Tl,...,Tk)| > €] < 6.
n>
— 0

However, by the continuity of g(-,...,*) and the convergence of Ti(n) to

Ti w.p. 1 (1 <i < k), this is clear.

37
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THEOREM: X.., is strongly consistent as an estimator of
S——— ]
(3.1.2)
M[i] (1 <i<k).
Proof: Since _fo(x)dx is assumed to be a finite number, it follows
by Kolmogorov's Strong Law of Large Mumbers (see, e.g., Lodave [1963),

p. 239)that IR ,xk converse w.p.1 to u 170 My (respectively).

Thus by Lemma (3.1.1) Y[i] converges w.p. }to an (1i=1,...,8.

The stronger theorem, that Q(Y[i]) converges w.p.1 to g(u[i]) for
any continuous real-valued function g(-) (1 < i < k) is obvious. It
can be used as follows: Q(Y[k]) may be used to yield an estimate of
glu [k])’ where g(+) is a continuous function such that if we knew the
mean of the selected population to be u, then we would know the
expected worch to us (e.g., in dollars) of the selected population to
be g(u). Other applications might occur for a Bayesian taking u [i] to
be a r.v. (1 <1i < k).

Note that strong consistency of Y[i] as an estimator of “[i]

implies strong consistency of Y[i] + an where 1lim a-= 0 (i=1,...,k).
N>

(This, of course, was also the case for asymptotic unbiasedness.)




s
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CHIAPTER 4. POCINT ESTIATION: SQUARED EPROR
4.1. SQUARED ERPOR OF A NATURAL ESTII!IATOR OF u[i] (1<i<k)

FOR A LOCATIOM PARAMETER FAMILY

In this section we consider the squared error of Xti] as an estima-
tor of “[i] (1 < i < k) when Set-up (2.1.1) and Assumption (2.1.2) hold,
i.e., when observations from population L have fr.f. f(x-ei), X € R,
i=1,...,k, and the mear. of f exists. The expectation of this auantity,
i.e.

(4.1.1) E, (i[i]'“[i])z’
will be of special interest.
LEIMA: If F(-) and G(*) are d.f.'s with F(x) < G(x) (x ¢ R),
then for ¥(x) any monotone non-decreasing function of x we
have
(4.1.2)
v0dem < Jvmdr,
with the inequality reversed if Y (x) is monotorne non-

increasing.,

This lerma, which is a generalization of Lerma (2.1.10), has been essen-
tially stated by Alam (1967), p. 283, who refers to Lehmann (1955) for the
proof. That reference is concerned with more general questions (which
makes it difficult to extract the needed proof). A simple proof (for
the strictly monotone y(-) case) is possible usine the inverse func-
tion. Ve omit this since Mahamunulu (1967), p. 1082, has recently pub-

lished a reference on this result.
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NDEFINITION: For our location paramecter family, let

i-1 terms k-i+]l terms

-00

H_(x) FX-. (x) withu

RIUEE R Py
4.1.3)  ° [i] it S AARNA £3

Jw(X) FY[](X) withy = u'ti],---.uE]. %
1

Although H_(-) and Jm(-) depend on i (1‘1 i < I), this dependence will

be suppressed. (l'e used this notation for the normal case in Theorem

(2.2.4).)
LE'™MA: For any monotone non-decreasing function of x ¥(x) and
H E QO(U[i])r
(4.1.4) JveodH (x) < ‘zwtx)dr’y[.](x) LERATCLANES!
i

(i =1,...,k),with both inequalities reversed if y(x) is mono-
tone non-increasing.

Procf: This follows from Theorem (2.1.11) and Lemma (4.1.2).

THEOPEM: For any i (1 < i < k) and anywu ¢ Qo(u[i])’

Ur.
o [i] _
o “[if] (ooupg 200+ [ O )20, () < B (K qmuyp)?

M li) e
Al -o{ (x-u [i])ZdH“’(x) + u [{] (X'U[i])szm(X) .

Proof: Define




lotan

4]

f(x-u[i])2 if Xy 0

b (x) = .
0 if X'u[i] : 0

0 if x-u [i] >0

Yo (x) =
2 | e )2 if x-upg 0.

Then by Lemma (4.1.4), since wl(x) is monotonc non-decreasine in x

and Wz(x) is monotone non-increasing in x,

0< . 1) 2dH < M. q)2dF < T (xeny.0)2d3 ,
"u[{](XﬂJ[I]) (%) __H[Z](x u[1]) X[i](x) "u[g](x u[ll) ”(X)

i) i) Hi)

[ it 2 [ (x'“[i])zd"i[i](") > [ w20,

from which the theorem follows easily.

Note that since (for any r.v. Z) EZ2-(EZ)2 = Var(Z) and since
Corollary (2.1.18) gives us bounds on Euqti]'u[i]’ Theorem (4.1.5) can

be used to obtain bounds on

Yer, sy = Ve R ) B v - By




CHAPTER 4. PCINT ESTIMATION: SQUARED ERROR

4.2. THE MNOPMAL CASE
In this section we first find the form of the results of Section

4.1 in the case of normality. Under normality,

H_(x) = P[Minimum of k-i+l N(u[i],ozln) r.v.'s is <]
x-
= Pf\lm of k-i+1 N(0,1) r.v.'s is <—uil]-
o/ n
k-i+l
X=Urs
= 1-(1-¢ [_1-]— ’
o/ /o
J (x) = P[Maximum of i N(u[i],og’n) r.v.'s is <x]
N X-u 3 X-p i
= PIMax of 1 N(0,1) r.v.'s is < [i] = |9 [1]
~o//n ao/vn |l.
Thus,
r k-1+1)
5 o i XU . -1+
[ (xup )28 () = [ (xeup 224 ¢1-|1-0f —L1
‘) “fap U] otk
[ L (o]
. (02/n) [x2{-[1-00)) 'Y} = (o2/m) [x2a{[o(0)1* 1%},
o -
B n i
[i] [i] X-u 0
J' (x-u[ll)sz (x) = f (X gy ])Zd{[ [—;—[/i_lﬂ }.(ozln)d{xzd{[ﬂx)]i};
and

U[i

]
J ""“ti]’z“{l'

U[1
f (x4 (5)) 280, (x) =

[1-0
I

[o]
= (o2/n) [x2d

42

X-y [1] k-i*l}
o//n

{-[1-o(x)]k-i+1} . (oz/n)fxzd{[Q(x)]k 1*1}
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- o ) ST i @
i
(Xt i7)2dd () = [ (x-u, )2d{[¢[—-—-[—1-]-]] }= (02/n) xzd{ *(x) }
u[{] {i] © U[i] [i] o/'n { [ ]
Thus, by specializing Theorem (4.1.5) to the case of normality and using
the above results, we obtain the followine theorer.

THEQREM: For any i (1 <i < k) and any u ¢ Qo(u[i])’

(02/n) ?xzd{ [o(x)]“‘i*l} + (0%/n) _szd{ [@(x)}i} < B, (Xpyq4 4702

(4.2.1)

= (°2/“)fxzd{[é(x)]k—i+l} + (02/n)fk2df[§(x)]i}.
0 4 \

In the case of normality, it is possible to further bound the
supremum and infimum, thus obtainiug an interval in which each must lie.
THEORFM: For any i (1 < i < k), taking the inf and sup over

U € Qo(u[i]))

inf B (Xj3)0(i))°

f_min[(czln) };zd{[?(x)]k-i¢l}, (cz/n)-IXZd{[}(x)]i}]

(4.2.2)
sup 5y 1))

2 max( (o2/m) -szd{ [Mx)}"'i”}, (o%/n) Z"zd{ [“")]i}] .

Proof: Since (see Theorem (2.2.4)) HP(X) and J, (x) converge weakly to
H_(x) and J_(x) (respectively), by Theorem (2.).25) it follows that, if

x? is uniformly integrable in H, and J,,, then

—_
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lim Ixde'.,(X) = 7X2d”m (x) = (gz/n) sza{ [Q(x)]k-i+1}
e -» % !
Lin [x?djy () = [x241,(x) = (0%/n) [¥4([e(x]').
Moo - ' —® 3

In this case it must be the case that the inf (sup) is less (greater)
than or equal to each of these quantities, j
The fact that x? is uniformly interrable inlﬁrfollows from a modifi- ;
cation cf the proof of Lemma (2.2.6).
The fact that x? is uniformly intesrahle in.%1requires major modifi-
cation of the proof of Lemma (2.2.7), as will now be noted. Using
Lemma (4.1.4) with the non-increasing function
sz, x < -L
w(x) =4
U) , X > -L
'+ read of Lemma (2.1.10)) we find
[o()d6(x) > fo(x)dF(x)

-L -L
fxlan(x) + L2(1-H,(-L1)) 3_-£§2dJ”(x) + 12(1-3,,(-1))

-L -L

[x?dn,,(x) > fodJW(x) + L2{H,,(-L)-J,,(-1) ).

- Q0 - 00 _L

Now, since I, (-L) > J(-L) and since fxzd””(x)*n uniformly in M, we

find that
-L -L
0 < [x2dJ.(x) < [x?¢H (x)+0 uniformly in M.

Thus, there is (for any fixed u[i]) an Ll(e) such that for L > Ll(c)

-L
we have fxszM(x) < ¢/2 uniformly in M.

-~ 0o
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By Theorem (2.1.11), JM(x) > Jw(x). If we define

J”(x), x>1L
F(x) = )
0 , X < L
[ J (x), x> L
G(x) =
0 , X <L
¥ x50
p(x) =
0 » X <L

then by Lemma (4.1.2),

Jo(x)dF(x) = [w(x)dG(x)

fx2day(x) + L23(L) < [x2dJ_(x) + L2J_(L)
L L - -] o

-]

0 < [x2dJ, (x) < L2{I_(L)-J,(L)} + [x2dI_(x) < [x2dJ_(x).
L ‘ L L

Now since.fxszm(x) exists, for L > L,(e) we have fxsz“(x) < g/2
2 '

uniformly in !, The result then follows as in Lemma (2.2.7).

We now find the min and max needed in Theorem (4.2.2). This will
allow us to specify intervals in which the inf and sup must lie, and to
study the lengths of these intervals.

LEMIA: Let Z ..,Zn be independent r.v.'s, each with d.f. F

|
such that Frz-) + (-2) = 1 for all z (e.r., this occurs if

F has a fr.f. which s symmetric about 0). Let Gn(z) be the

(4.2.3)
max Z2.|. Let h(u) be any non-decreasing function

1<i<n

d.f. of
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of u>0 such that h(0)>-=. Then fh(u)dGn(u) is non-decreasing
)
in n.

Proof: For u > 0, Gn+1(u) < Gn(u) (n=1,2,...) since

G (u) = P[| max X,/ <ul=P[-u < max X; <u
n ; = & =
| {1<i<n ] 1<i<n
, n n
= Pl max X, <uj - Pimax X; <-uf=F (u)-[1-F(u)]
|1<i<n 1<i<n

implies that

> 0.

o if n = 1}

G.(u -G_ .(u = " -
n n+l { Feu) [1-F )] [F ) -F* L (-u-)] if n > 0

Hence the desired result follows from Lemma (4.1.2).

COROLLARY:  [x2d{[#(x)]™} = 1 for n = 1,2 and is a strictly
(4.2.4) — .=

increasing function of n thereafter,

x2 and F = ¢, by Lemma (4.2.3)

Proof: Choosing h(x)

£x2dGn(x)

[x2a([2 )™ - [x2d{[1-0(x)]™)
0 0

- 00

oo o) ©
= [x24{[0(x) 1™} + [x2A0T2 )"} = [x2d{[6(x)]™)
(o] -0

is non-decreasing in n,

TORF: 1+ 3 3 2 X 5 2.
THEORE{: For any i 1 < i < k), 1nf{Fu(X[i] u[i]) :

U € Qoﬁ’[i])} is in the closed interval
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[(oz/n)_zxzd{[¢(x)]k'i*‘} . coz/n)_szd{[o(x)li}.
(oz/n)_zxzd{[¢(x)]k'i*1}] if1> 51
[(oz/ngzxzd{[ﬂx}]k'i”} + (oz/n)_ixzd{lfb(X)li} ;

(02/n) Ix?d{[¢(x)li}] if i< k%l

(4.2.5)

(Y. .- 2. g :
and sup{[u(X[i] “[i]) LTI Qoﬁj[i])} is in the closed interval

[(oz/n)_zfzd{[o(x)lj},

k+l

“‘i*'-'} + (a2/n) fod{[m)]i}] if 1> 52
o]

coz/n)fxzd{(¢cx)1
o]
[(oz/n) fxzd{[o(x)lk"’l}.

(0%/n) Ixzd{ic(x)]k'i”‘} + (o?/m) fxzd{[o(x)]i}] if i< k—;l
o] o]

J

Proof: See Theorem (4.2.1) for the lower (upper) end points on the inf

(sup), and Theorem (4.2.2) with Corollary (4.2.4) for the other end

points.
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COROLLARY: The inf and sup of Theorem (4.2.5) each lie in an

interval of length

) - px2aile()1t)) if i l";—l

o

(Oz/n) (szd{ [o(x) ]k-i'#l

k=islyy je g < KL

(o2/m) (Px2a{ [0(0)]") - _fx2a{[2(x)] :

(4.2.6)
By Corollary (4.2.4), the intervals of these lenaths for the
inf and sup fail to be disjoint iff (i = E%—l-,or (i,k-i+l) is a

permutation of (1,2)). Ir that case they have exactly one

common neint.
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CHAPTFR 5, POINT ESTIMATION: MAXIMUM LIKELTHOOD (!1L)
AND PELATED ESTIMATORS

5.1. MLE's FOR u. -,...,
1) MK

Consider first maximum likelihood estimation of Hysesoshys i.e.,

we seek the maximum likelihood estimators (MLE's), those functions

ﬁl,...,ﬁk (if such exist) such that the density of the observed
statistics (whatever they may te) is maximized by settine
A
gy e B R R
Our observed statistics under Rule (1.3.2) are Xij i=1,...,k:
j=1,...,n), but since Yi,...,?k are sufficient statistics we may ta'e

them as fundamental. Then

r [¥1v X "Wy
(5.1-1) f:‘ _(x )'-°1x‘) = (5/0) ¢ '..¢[
Aeees X1 ¥ L//E] o/ A

and (if My # uj: i#¢3j;i,j =1,...,k) the MLT's of Myoes oMy based on

xl,...,xk exist and are uniquely
N — . -
(5.1.2) My = Xl, cee My = Xk.
(The restriction to IlILE's based on Yl""’i% is a consequence of the

general result that MLE's are functions only of sufficient statistics
for a nrobler; see, e.e., 'Yoro and Crair (1965), np. 245-246.) The
problem of possible equalities amone b1y MK is Aiscussed below:

similar results hold for the case of equalities amoreo Mysesosby:

For the problem of findine an “MLF of a 1-1 furction u(ul,...,uh),

40
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it is well-knovm that (assumine the MLE of Hysese oy exists)

u(ﬁl,.”,ﬁy) = 0 (say) furnishes a solution, essentially because forcing

u=d implies M = ﬁl’ TP i,. (See, e.q., Hoge and Craig (1965),

p. 247.) If UOJI,...,UR) is not 1-1, i.e. if it is many-to-one, points
other than u, = ﬁl’ PPN ﬁk pay also be irmlied %y u = 0. In this
case Zehna (1966) was the first to state exnlicitly a reason for
picking only the “'risht' noint My = ﬁl, s s My S ﬁk for attention
(and thus for callinp u an 'LE). Berk (1967) gives a different justi-
fication for callins G an LY.

From the above it is clear that, hased on 21""’Yk’

(5.1.3) Wi = {ith smallest of Xl,...,Xk} = X[i] Gir = 1,:445K)

is the Berk-Zehna-MLE of ”[1]""’u[k]' Below we discuss the probhlem
of MLE-tyne estimators of (“[l]""’“[k]) fror another noint of view.
This rethod, Tterated-!LF's, is discussed in Section 5.2,

Rlurertnal and Co-en (1068a), (1968} (vho provided the auttor
with prelirinaries of their napers) studied, for a translation param-
eter family, (1) estimation of t'e nair (“[1]’“[2]) for the sum of
squared errors as loss function and (2) estimaticn of ”[2] for a
squared error loss functioa.

Nther worl on the case k = 2, in another formulatiorn, was done by
Katz (1963), who nronosed to ~stimate (“[11’“[2]) vhen one knows that

(e.rn.) m is associated with ) and m, is associated with IOE This

1
work was done for binorial »nrobahilities and also for normal reans, with
(e.0.) sun of squared crror losses. (The fact that (?&,Yz) is not a

totally desirable estinator ray h~ seen intuitively from the fact that,

) o . 1 — v ‘ el
althourn u[I] = u[zl, in seneral {Xl > )2} can occur with positive




P—.--__—m

51

probability.) In our work one does not know the association of the ME4]
with the "j (i,j = 1,...,k); sce Tobertson and “altran (1968) for the
case vhere one does.

Blumenthal and Cohen (1968), vho utilize the MLF of u[Z] found
below, desired thei-: ectimate to bhe syvmmetric in Yi,?é; in order to
force this they based tiicir estimate on the maximal invariant 7[1],

Y[Z]‘ Mote, however, that in order to obtain symmetry in Al,ﬁé (and
certain other invariance conditions) in one's estimator, one need not
go to Y[l]’Y[Z] (at least for the normal case: sce (5.1.3)). ‘lote that
X

on iill’ile is not. In Section 5.2 we give additioral justification

although the "LI' of based on ¥ ,¥_ is ¥ the MLE of based
(SR V2] gle ) H2]
3 i IE on K ra16Xoq -
for basinc the ML= on ‘[1]'Xf2]
""e will now consider tiie general case in vhich it is desired to

i n e % e iy o s ikeli*ood
find the MLT's of u[l], ,u[k] based on ny’ M The likel
function is given in (8.1.1), and (due to its syrmctry in U[11»--':Ury])
if ﬁ[l]""’ﬁ[k] is an "I then so is any nermutation of it (so that it
is not necessarily thre case that ﬂ[l]i...fﬁrk]). In order to clirinate
such undesirable occurrences, we require a consistency condition,

CONSISTENCY CRITFRICN: /rone the (at most k!) nermutation

(5.1.4) MLF's vhich any ﬁ[l]""’ﬁfk] which maximizes (L.1.1) nro-

vides, only the one with ﬁ[l]i"'fﬁ[yl will be called an MLF.

From (B.1.1) and the forr of ¢('), it is clear that we may restrict our
. L gl
search for the maximur to “[1]""’u[k] such tiat x1 f-{”{l]""’u[k]}

< x By (5.1.4) we need orly consider t'c case “[1]‘“"5P'P]’ and not

K

all k! (fewer if there are any equalities) orderin~s., It is well-knowm
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L] 2 1
] L L ] )
(see, e.g., lancock (1960), p. 80) that in such a case the maximum must

occur at ”[1]""’“[k] such that

afY[l] F LA L] ’-x—[,{] (xl, tet ,xl()

(5.1.5) 5 =0 i=1,...,k);
Uri]

any point u[l]""’u[k] (which depends on the values of xl,...,xk) where

(5.1.5) holds is called a critical point,

In takine the derivatives (5.1.5), the results depend on how many

of the k-1 inequalities ”[1]:f":y[k] are equalities. There are thus

Zk'l rmutually exclusive and exhaustive cases, say
5.1.6 Q. =0 ) i k-1
(5.1.6) o = g T Spgy e Oy
where the Q are disjoint, Q(l) = o(#) is defined ir (1.3.12), and the

(1)

B 1.
Q(i) (i-= 2,...,2L 1) are the other 2’ 1

- 1 cases in some order. Fix

p . k-1
any i (2 <1i <7 ) and suppose that sore u* ¢ solves the system

(1)

(5.1.5) (i.e., is a critical point when the derivatives are taken for

TR Q(i))' Then it is easy to verify (usinp (B.1.1)) that u* is a

critical point of syster (5.1.5) when derivatives are taken for

VI3 Q(l)' Y'e thus have the
TUEOPEM:  Any critical point for our problem is a solution of
syster (5.1.5) with derivatives tal'en fory e Q(#), orovided
(5.1.7)
\

only that we allov boundary points (i.e., points of

9(2) + ... 0+ Q(zk-l)) to be considered solutions.
To commlctely justify calling the boundary points included in Theorem
(5.1.7) critical points, one should show that any such point is a

sclution of system (5.1.5) when derivatives are taken for y in its
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n(i); this is clear from the proof of Theorem (5.1.7).

Now (taking derivatives when [1]<...<u [k]) system (5.1.5) is

2 H X -M X -u
(5.1.8) z (/;yo)k¢[_§£l)._lllJ__.¢(.ﬁlﬁl__lng.5111__111{/570) = 0

BeS, o/Vn o/vn o/v/n
i=1,...,),
or
b ST X -y !
T x| 2 [11]...¢ 8 (k) ¥ k]
Bt:Sk B(1) o/Vn o/Vn
(5.1.9) p[i] = (i=1,...,k)
3 *s1) ™ [1] o a0 MK
BeSk o/v/n o//n
or

T MPRTI X U
) xB(j)¢[ 8(1) "1} ¢[ 8 (k) Uﬁ]
BeS, o//n | o/V/n

VP
(5.1.10) u[J] : (i,5=1,...,k:i<§).
[1] . ¢["Bgl)"‘l}ll ...¢[f_.(k_)__Ll'" k
BeS; B(1) o/n | a//n

_ _ o Xpteeedxy
THEQRE;!: m[l]""’ﬁ[k]) = (X,...,X) with x =

(5.1.11)

is a critical point.

Proof: It is clear that this is so from system (5.1.9).

Ve will now investigate the nature of this critical noint. For

i,j=1,...,%, for X oo 2Ky

32
= i v (X5,0.0,X%)




(5.1.12)
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k+2 |x EJu[]
regsk[‘/‘:] [8 Z//‘I]

_¢l"sgk)“‘ [k1].
o//n

@)1 BV 4
o/Vn o//n

BeS ( 9 a//n

k

3

k+2 |x -y
g@) ¢[ B(1) [11]...¢

*s ) M 1) | .
o/vn

ffx .wesq]?
._B__Ql_hl-l,i-j,
o/Vn

Thus, for the matrix Q = (dij) of evaluations of (5.1.12) at (X,...,X)

we find

(5.1.13)

r
R

8
L

f
s k+4 L xl-;]
]l prif{ |
4 I a//n

2=1 ¢

L

k

e, X=X
k-2)1 (A7) ¥ 1L e [ 2 _} ’

2=y O/

Eg (XB(l)';)(xB(J-)';) ’ i * j
“k

-

o G2
eg,,["‘sm"az' 7]

T Y

i,j=1

i#j

¥-1) { (x;-x)2-k (k- 1)—, i=j
i=1

~

cov(®,8)k(k-1) » 14

A}

'k (k-1)var(®P) - k(k-1)(¢?/n),

i=3

.
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k — L :
Ked | — |Xp~% ov(®,S) y 1]
= k! (/n/o) lt°\:7;§ "Var(R) - ¢%/n , 123,
L=

where R and S are numbers selected at random (without renlacement) from

{xl,...,xk}. If we let

S (x,-x
c= c(xl,...,xb) = k!(fﬁlo)k+4 I ¢[—£-:]
o 2'=1 O//;’-

(5.1.14) <

[o%
]

1 cov(R,S) ¢

(var(P) - o2/n)-c,

[= %
0"

. . : - . ; : . '
then dij ¢, G #3j) and dij d (i =3j). Now, if we find the
eicenvalues of Q we can utilize Theorems (A.2.1) and (A.2.2) to deter-

mine the nature of the critical noint (x,...,Xx). Mow

X ;
dsd ] 5
4 %9 d 4
|Q-A1] = det] ° e o
(5.1.15) el
A R A
L Ry A B
d A-d.)5 e k-1)d
- (@440 aex-1)d)

where we have subtracted the last column from all others, added all rows

to the last row, and taken minors. Thus, the k eigenvalues of Q are

1]
o,

]
(o9

Al = ... = Ak-l =d 1
(5.1.16)

Ak

n
=¥
+

~~~
Fa

)

[

L

[a R
[V
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and Theorems (A.2.1) and (A.2.2) give us the
THEOREM: The nature of the critical point (x,...,x) is:
d

- - - - 0
(i) relative minimum if - 1 < dl < do

d
22 . 0 A 0
(ii) relative maximum if do < dl el YT

d d
‘s . . . cfay. O - _o
(iii) undecided if either:(a) 1 idl do or - dl <d

ori(t) d =d <p—yord <d =3

0 0 n N 0
(iv) saddle point if d, < min (d , - 77)

d
. o
(5.1.17) or if dl > max (do, - ﬁ).
Graphically, d
1 & il
Jf\ o 1

‘:‘
/ (iii) (b)
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The method of Theorem (A.2.3) can also be used to prove Theorenm (5.1.17)
(since the required determinants can be evaluated as in (5.1.15)), but
is cumbersome.

We now wish to investigate the nature (asymptotic as n+» as well as
small sample) of the critical poirt (x,...,x). Let xza(b) denote a
non-central chi-square r.v. with "a" decrees of freedom and
noncentrality ''b'.

THEOPE'":
I. Pu[(?',...,i) is a relative rinimum, or undecided] = 0.
1. Pu [(X,...,Y) is a saddle point] = P, [xzk_l(% -:—ZVar(M)) > k-1];
otherwise (X,...,X) is a relative maximum. This
(5.1.18) probability does not depend on n if “[1]="'=u[k]'
III. As n-oe, Pu[(Y,...,Y) is a saddle point]+l unless
”[1]="'=“[k] (in vhich case it is constant as given in
I1).

Proof: I. Case (i) or case (iii)(a) of Theorem (5.1.17) holds iff

d

(see (5.1.13)) - g2y < ¢ <d , i.e. iff

1 0

i.e. iff (since Var(R) > 0 w.p. 1)

1 02 /n 02/n
(eatal2) T FT Y wDvarm < PRS) <1 iy
Since (w.p. 1) p(R,5) = ;%T“ w.p. 1 equation (5.1.17) fails to hold.

W.p. 1 case (iii)(b) fails to hnld sirce (for it to hold) at least one
of the inequalities in (5.1.1¢) must be an equality; this occurs w.p. 0.

II. As in I, it can be seen that case (ii) holds iff
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2 = 2
(5.1.20) 1- v%;%%T < p(n,S) < k}l + Tk-g)ézr(?)'

Since the r.h.s. of (5.1.20) holds w.p. 1, case (ii) holds iff

2

g¢/n -1

(35L2H) V- ey ‘1T

i.e. iff Var(R)k—‘_(l— < 02/n; otherwise (by I) case (iv) must hold. Now

fror Graybill (1961), p. 88 (Theorem 4.20), p. 91 (Problem 4.24),

k
Var(R) = (1/k) ] (X;-¥)? ic (o?/(nk))x?) _, () with

i=1

2 2
1 knlzui () ]

Amo ok
02 k2 J

(5.1.22)
= l. @.\/ar(M)’
2 o2

vhere M is a number selected at random from {ul, S el k}' Thus,

- . ) ) k-1 g2
‘4 \( 3. v = "
Pu[()\,...,,) is a relative raximum] Pu[ ar(R) > N 1

(&.1,.25)

2 2
_ ] k-1 0 - 2 l kn _
=P L M) > = = P 46 ——OZVar(”))> k-i].

-

IT1I. This follows fror II.

Note that even when (¥X,...,X) is a relative maximum it is not
necessarily an absolute one (which it would be if, e.o., the system had

no other solution). Below we will find reason to believe that the max-
imn is “near® m[l]”"’ﬁ[k]) = (Y[l]""’Y[k])'

Per the case k = 2, Theorer (5.1.17) shows (after some reduction)




that (x,X) is

(a relative maximum iff (xl--xz)2 < 202/n
(5.1.24) ﬁundecided (negative semi-definite) iff (xl-xz)2 = 202/n
a saddle point i (x;-x,)” > 202/n.

Obtaining this result fron Theorem (A.1.1) is interesting. The limiti-n
results of Theorem (5.1.18) can, for the case } = 2, be obtained using
(5.1.24).
HWe will now seek the I'LE (for k > 2): We may (without loss) choose
our estimator to te of the form
ﬁ‘[” =X+ al(xl,...,xk)
(5.1.25) :

ﬁ[k] Xt ak(xl’“"xk)'

As noted following (5.1.4), we may restrict ourselves without loss to
n i i it € i
X, < {ulll,...,u [k]} < X, fron which it follovs that we have

~

Oia1

(5.1.26) { -(xi-xl) _<_ai < (xk-xi) (i=1,...,k)

3 29,

e,

Let (for 1 < & <k;i=1,...,k

X -X,-a X, pry =Xy =8y
AW = ] ¢[ B(1) M1 1]..'¢[ B(k) *k L]
BeS, o//n o//n
B(i)=2

(5.1.27)

v Te ) 17%) (e k%)
o//n o//n
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Then (note that, for any 1 < i <k A= Al(i) + .. * Ak(i)) from system

(5.1.9) we find that SEEERTL N must satisfy the system

(5.1.28) (xi + ai)A = xlﬁl(i) + ... 04 xkAk(l) (i=1,...,k).
If we add the terms of (5.1.28) over i =1,...,k, we obtain (since
A= Az(l) + .0+ Az(k) for ¢ =1,...,k)
A(x1+...+xk) + (a1+...+ak)A = A(x1+...+xk),
or (since A > 0) a+...48 = 0. Thus, ve have the
THEOREM: For I > 2, the I'LE is given by ﬁ[l] = 3}1]

+ al(i[ll""’itk])’ T ’ﬁ[k] = Y[k] + ak(itll""’itk])’

where a),..+,3 are some solution of system (5.1.28) and must
(5.1.29) satisfy

-(xi-xl) < ay :-(xk'xi) i=1,...,k)

and

THEQRE!": For i,j = 1,...,%, if aj # 0 then

dliAl(i) + ...+ dkiAk(i)

(5.1.39)
.= a, : :
3 Jdlel(J) R dijk(J)

1566 . ulk)e

where dij =X - xj = -dji(l,J

Proof: System (5.1.28) is equivalent to the system

L¢

&
BeSk

X 1) X174 ¢["s(k)"‘k'”k]
a//n o//n
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(X, ,yy-Xy-3,) X,y =Xy -
_ 8(1) X174 B(k) k% -
= (x,,.v-X.)¢ s = i=1,...,1),
Begk 8(i) "1 l o//n J [ a//n ]
or (substituting the dij's)
ai(Al(i)+...¢Ak(i)) = dliAl(i) + ...+ d!:iAk(i) i=1,...,%.

Thus, the theorem follows. (Note that tle denorinator

dlel(J) + ... 0+ dijk(j) is zero iff aj 2 0.)

(5.1.31) LEMMA: For the case k = 2, a, = -a,. Also, 0 < a; < X, - X;.
Proof: From Theorem (5.1.30),
e dllAl(l) + d21!\2(1) .. dZIAf’.(l) ol :\2(1) ..
1 20 A ) + dph (D) ZINE) ZAiT?j 2
The theorem follows from Theorem (5.1.2°),
LEMMA: Let d = x > 0. Then the I'LE for ¥ = 2 is given

2 - %

by ¥ 1y = Xy * @1y X2 Bz = Yoy - 21y Tr2p)

where a, is some root of

(5.1.32) :
d2-2a,d
2
d=a 1+ /P
1
and 0 < a, < d
Proof: By Lemma (5.1.31) we must have 0 < a; = -a, < d. Then by

Theorenm (5.1.29), the MLE must be of the form eiven where a is sore

root of the system (5.1.28):
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(x1 + al)A = xlAl(l) + szz(l)

(x.2 - al)A = xlAl(Z) + x2ﬁ2(2)
xlAz(l) + alA = szz(l)
szl(Z) - alA = xlAl(Z)
a;A = dAz(l) = dAl(Z)

a, A= dAl(Z)

1

Pl(z)
ol dl‘l(Z) N

Now

' ¢
BeS, o//n o//n c/“ﬁj o//n
8(2)=1
- (d-al)z.
L1 e o2/n :
2n02/n
)= T ¢["e(1) x-2) ["3(2) ) . ['31 h[ 2 | ]
2 BeS, o//n o/V/n o/Vﬁj o//ﬁj
B(2)=2
Al
o1 ao%n ,
2n0?/n
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Thus,
al2 (d-al)z dz-Zald
L 2
A, (2) . o?/n o?/n 02/n
Al'(zj S

and the lemma follows.

LEMMA: For fixed d and 0 < a, < d, the roots of

1

(5.1.34)

(5.1.33) d €,
are (1) a; = d/2, and (2) a; = 5 + —ﬁoZ/n if d > V20/Vn.

Here € is either of the two solutions of

(5.1.35) d2n/02 = € coth(e/?).
Proof: First, a, = d/2 is seen to satisfy (5.1.34). “ow, suppose there
is another solution of (5.1.34), say (without loss of penerality)
-1 & =2
a; = d/2 + 53 0%/n
with -dzn/d2 <€ _<_c12n/d2 (since 0 <a

1 = d), €# 0. Substituting in

(5.1.34), we find ¢ must satisfy

2 2dn

= (4, & o? o?/n I d ¢ 02] -
oo fie sl J-Bem il )

) € €02 ¢ 0% -¢

seede™ s qi-rgne )
or
- 2 2
d2-d2ee+eg—+eg—ee,
n n

or (since e 0 =>1-¢¢#0)
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2 £1+e-€-eﬁe€/2+e-€/2

= =€ n
L -e e€/2 _ m€/2

o2
== coth(e/2).

(See, e.o., Hodgman (1959), pp. 281, 427, 431, 432.) Since coth(-z)

= -coth(z), € coth(e/2) is cn even function. MNow,

im e coth(e/2) = lim (1 + ¢§) -« lim —S—— = 2 lim —— = 2.
) €0 €20 ] . ¢°F €+0 o€

(See, e.r., Anostol (1957), p. 102.) Since
2[e coth(e/2)] = coth(e/2) - (e/2) esch’(e/?)

. ct?sh(e/Z) - (E/z)-——l————
sinh(e/2) sinhz(s/z)

1 e/2
= Sinh(e/2) {cosh(e/2) - sinh(e?Zi}’

the facts sinhi(e/2) > 0 if ¢ > 0 and

cosh(e/2) - sinlig/Z) = sinhtsz) [sinh(e/2) cosh(e/2) - €/2]

1 Finh(e) - e/2]
J

= sinh(e/2) 2

1
= 7 sinh(e/2) [e Y3 !

1 ed €5 ¢
= TSInh(e/2 [ET *STYTY "'J > 0

imply that g—e[e coth(e/2)] > 0. Combining the above information, we may

plot Figure (5.1.36).
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e coth(e/2) .’

/\ ,

b

Figure (5.1.36).

Since coth(x) > 1 for x > 0, the rance of ¢ coth(e/2) will bhe
[2,d2;% *} when € is in [-d2n/02, d2n/0?]. Thus, there will be two
additional solutions if ¢2n/c? > 2 and none if d2n/0? < 2,

4

''ote that a, = 0 corresponds to the estimator(xl,x,); a, = d/2

corresponds to (x,x); and a, = d corresponis to (x,,x;). Consistency

Criterion (5.1.4) rules out valves a, > d/2; thus, in seekino the MLE we

1
only consider €, which is the nerative solution of (5.1.35) in Theorem
(5.1.33) (or, what is the same, -€, where €, is the positive solution).
THEOREM: If 0 < d < /2 ¢//n, (x,X) is the only critical point
and is the MLE.
If d > Y20//r there are two critical points. Ore

(5.1.37) yields (x,x) and is a saddle point. The other yields the MLE
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€ €

(5.1.38) (x - 23 0%/, v . f’ a’/r),

where €y is the positive solution of

-
(5.1.39) 17 /0?2 = ¢ cot’ (e/2).

Theorem (5.1,.37) follovws from ~reviocus results notably Lemma
(5.1.32) for the forr of the MLE, Lemma (5.1.35) for the solutions of a
certair equation, and (5.1.24) for tic nature of (x,x). In obtairing

the form of (5.1.38), relations suc™ as

are used. 'ote that, for d?n/o? “laroce,” co=32n/02, so that (5.1.3%) is

"close' to (xl,x?). The Ffollowine lerpa studies the annroach of € to

a2-n,
o2
LEMMA: If €, is the positive solution of (5.1.39), then (wit!
(5.1.40) °(m 20
2
€ = D o(n).
o 2
o

Proof: If we write a = d2/0?, tiien we arc intercsted ir the nositive
solution of ¢ cot"(e/2) = a-n. Let us set this solution as
€, = @M - ¢ and investircate the order of Cpe Substitutine in the

equatien,

a-n - C
2--—— = aen

(asnn - cn) cothk




07

or

C'_‘ a-n - Cn
(5.1.41) (1 - 5-,-h]coth(_----,-----] =1,

From Figure (5.1.36) we sce that €, ™ as n+e, and since €, 0 we have

c

¢, < a-mnor ﬁﬁ < a, Since cot'(x) > 1 if x > 7, and since (5.1.41)

C

must be satisfied, hn-> 0. Mow, taking the limit of (5.1.41) as n-=,

we find that

(1 - b/a)'1 =1
(3

¢

where 0 < b = *im hﬂ < a. This is a contradiction unless Aig ;ﬁ = 0,

so that c, " o(n).

.78

.63

1/9
.37

T
1 1.41

1

1.67 ?

.54
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It is of interest to comparc (for the case k = 2) the likelihoods of

. estimators (L,9), (%, 1,¥ A the ME, With d = x-
the three estimators (Y,Y), (’[l]’ [2]), and the '"LE. With d Xy=X1

we find (see (B.1.1))

n=—f. 3
n X“],..[z](xl.xg)

| e ilg?m] [g.u] , M(‘_?_*i.ruH_’;l.ir_zl]

o//n o//n o//n o/'n
“ i A2
{ '4“2‘/—
| oc/n A =
£ , = (x,x), th |
. !I ¢ 1 (}‘I[l] U[z]) (X x) e
} MLE for 0 < d2 < 202/n
(5.1.42)
a2 )
1 1 d2/n .,
J —7 + Ee 1% (ufll'urq]) R (xl’XZ)
2 2
€
lerd] | nferey
1 4g2/p\" 1 402/n n
) i

, q - c002-- Eoo2
; “@uﬂuﬂ’b‘rrﬁ’ﬁr+

\ the MLE for d2 > 202/n.

If 0 < d/nfo < V2, (V,X) is the MLY, and the curve of (¥,X) has ordinate

1/2 when ¢vn/o = 2/an? = 1.€7. The curves of (%,X) and (Y,”,Vr,]) |
I -— {

w

cross at dvn/o = 1.54. At d/h/o = 2, Sor (Y“],?[,]) we find

1 1 -y2 1 1 = e e .
5+5 ¢ 55 :._,-(.01831) = 5072, wihile for t“e MLE, a solution of
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4 = ¢ coth(c/2) is approxinately €5 " 3.8 (thus cold a ,95) and
1 - 50/4 = .N5. (See Alramowitz ard Steoun (1064), p. 216,) Thus,

for the MLE we find

2 (€ 2 2(€ 2
=V AROE) i
Y2 . 4 y2

:

1, 1, =y _/_,nnzs \ o 3:8025

2 ° 3 2 © & :
15 -.003 -3.31671> 1

25 +c (= 3{1.010) = 5095,

llote that Theorer (2.1.33) indicates the reasonahleness of an
estimator which compensates, as does the LT = (x1 +a, Xy - b}, for
under and over estimation with repar! to expectation; the likelihood
approach hears this out,

The above results indicate a wealkness of takine a function of
MLE's to estimate that function of the narameters for o~ protler (as
discussed at (5.1.3)): namely, otlier metiiods vield different estimators
with hipgher likelihoods. (In fact, with the other met“od the likelihood
could never exceed %;n/oz' with our method it can never be less than

2




CHAPTER 5. POINT ESTIMATION:  MAXTHUM LIKELIHOOD (ML)
AMD RELATED ESTIMATORS

5.2. MLE's FOP NON-1-1 FUNCTIONS: ITERATEDR MLE's (IMLE's)

At (5.1.3), ve discusse! the probhlen of providine maximnr likeli-

hood estirators (MLL's) for -“[y]' and noted the Berk-Zchna-

gt
MLE: most o the rerainder of Scction 5.1 was Adevoted to a study of
another rmethod of providinp iLF's for Mgy ek “e now formulate
this latter method as a general inference principle and study it in
sore specific cases.

Supposc that o (a narareter of irterest) is in some space o and

that we have a litelihood finction L(8) (fror 0 to R). Assume that a

unique MLE 0 of 6 exists, i.c. 6 € 0 such that 1.(8) > L(g) for all

8 € 6. Let p(-) he some transfornation of 0, and sunpose that r(0) = A.

Then if e(-) is 1-1, o(8) is clcarly the !iLF of 9. If p(-) is not 1-1,
Zchna (1966) and Ber! (1967) bot" pronose to emloy the estirator 7(8),
which we will call tle Berk-Zehna-‘LE,

Zeana proposes to vse ~(0) sirce, if r:ith (@) one associates the
larocst of the likeliloods of those 0' such that o(g') = e(8), tris
"induced likelihood function" 1is raxirized at e¢(9). lowever, as
Dr. Josenh Putter has pointed out in a personal communication, «(§) may
also Le a rinimur lileliliood estirator. T.,e., if (for some observa-
tions) we ave the nossitilities as river in Table (5.2.1),

Tahle (5.2.1)

1.(e) .8

- —

S Y ——
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then §=-2 is the MLI' of 0, but if p(0) = 02, t! en p(é) = 4 corresponds
to both a minimumr likelihood estimator of 6 and a raxirum likelihood
estimator of 6,

Berk pronoses to use p(a) since, if one simply adjoins to p(8)
another function h(6) so t':at the mappinr 6-+(r(0),"(8)) is 1-1, then
(#(6),h(8)) is the MLF of (n(0),h(0)). BRerk states “is helief that it
is irportant that one's estirate maximize the likelihood function asso-
ciated with some r.v.: and since it is not clear that Zchna's method
does this, Zehna ''misses the point." (‘ote that the Iterated MLE pro-
posed below satisfies this criterion.) Rerk's reasonine secrs faulty
in that, if one desires to estimate p(8), there secers to be no reason
to be concerned with any 1-1-izine function h(8), Pather, h(9) is
added to nreservce the status of y(g) as ar. "MLF." (E.e., in Putter's
example of Tatle (5.2.1), h(8) = sgn(f) will work hut is irrelevant tn
the probler of estirmatinc ¢(8) = 62.)

Let 8, 6, 0, A, L(8), and ¢(8) be as defined above. (In partic-
ular, we suppose ti:at 0 exists and is unique.) '"e t-en sronose the

NEFINITION: Consider the likelihood function of the statistic

p(h), sav L_. If therc is a g ¢ A svch that IP(E) >L (r")
(5.2.2) g _ «
for all g' € A, then o is called an lterated MIF (IMLE) of

g(8).

Thus, the IMLE of g(8) is the MLE of g(8) based on q(é) (if it exists
and is unique).
Example 1. For the problen of estimating g(ul,...,uk)

s (u[ll""’“[k])’ the Berk-Zehna MLE is x[l],...,x[k], and in Section
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5.1 we studied the IMLE (i.c., the MLE of “ll]""’“[”] based on

X Y . (% v 2 @ =
g(xl,...,xk) (x[ll"""[k]))' For tte case ¥ = 2, Rlumenthal and
Cohen (1968) have comparcd the Rerl-Zehna MLF of u[2] with our IMLE of
u[2], with repard to mcan squared error and hias. Let y = (u'zl - “rll)
/2. They find that, for both mcan snuarcd error and for hias, the IMLT
is better for w srmall, and Y[7] is hetter for w moderate.

s
Exarple 2. Let Y ,...,Yn be i.i.d. "(u,0") r.v.'s with , and 02

1
2
both unknowvn (- < u < +m, 02 >0). The M'F of (u,o0 ) is vwell-known:
n
vy, J (Yj-Y)/n). Then for cstiration of n(u,oz) = ,, the Perk-Zehna
i=l ~

MLE (which is Y) and the IMLF (which is t“e MLF of y basrd on Y) coin-
cide. Such coincidence occurs in "ary other cases, for example when

our r.v.'s are uniforn on (Nn,9).

5
Exarple 3. Let Y ..,Yn be i.i.d. "(u,0”) r.v.'s vith y unlirovm

1
(- <y < +=) and 02 known (o2 > 0). The M7 of y is well-Fnowm: V.
Then for estimation of p(y) = uz, the Per'-7ehna MLF is 72. "le will
now study the IMLE (vhich is the MILE of u2 Hased on 72).

Since (Va/m)Y is “((¥/o),1), ((A/0)YV)’ is (sce, c.o., Fisz

(1263), ». 343) a non-central c.i-square r,v. with 1 d.f. an? non-

2
centrality ) = _p_UZ say x (), and has density (f{or x > 0)
202 1 -
Ao, A, X
e Xl SfERN T Ty (/BN
1 Y2n  m=0 (2r)] 2n  mn=0,2,4,... i
1ox
X 2e & -A
= e cosh(v2xx).
Van
2 2
Thus, T 9—{Z§§] has density (for y > 0)
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1 n
A R ) ALY
2 _‘02 —)
1 y y ‘e 202 ‘{n? 2
foa(y) = —f |- —| s /-2 ——¢ cosh[ —gyu ]
Y 0?/n 1[02/”] /v o//n 0

Hence (when 72 =y > 0) the IMLF of uz is the u2 which maximizes

n
LY

2 i
e 2% cosh [}/"—yuz] :
ol

N )
or u? = a2(¥2)Y? where a? is the 22 which maximizes
.,2.715),32 _
(5.2.3) a(a) = ¢ “° cosh[P—zy‘i,za—z].
(o]

Differentiatine g(az) with respect to a?, we find

2 Ll

y ya
3g(a? n 2 2 1
__1.!(2 i -3Ye e cosh[ﬂéyvgn7 + e L sinh n—;y{;z .n—y———,
3(a2) 2 o o 02 2%a2

f r . n .
vhich is <0 i{f a > tanh(—;ya]. Since tanh(z) <1 for all z (-» < z < =),
o
the derivative is ncrative for all a > 1, so we may seek the maxirum of

= n

(5.2.3) for 0 < a <1, Tien, a > tanh (P—Eya) iff tanh l(a) > —-2ya,

o o
which is so (see, c.g., Hodgman (195%), n. 431) iff

3 5
a+ &+ 4 s 11---ya,

02

i.e, iff

2 4
211  a a n
(5.2.4) 3[3-+§—-+7—-+...}>0—2-y-1.

2

BIQ

’

n
Since (5.2.4) holds for all a (0 < a < 1) if 5y -1 <90, i.e. i S
o

the IMLE of u2 is 0 if 72 < oz/n. I€y > oz/n, it is clear that there

will be one critical point (corresponding to ecuality in (5.2.4)) and
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that it wili b2 a maximum. Thus, the IMLE of u2 is

~, 0 if V2 < oz/n
(5.2.5) ue = L .
a2 (O ir ¥ > o¥/n,
where a is the root of
2 4
211 a a n 52
(5.2.6) a 3— + -S- + -7—- + = -O—ZY - l




CHAPTER 5. POIMNT CSTIMATION: MAXIMUM LIKELIHOOD (ML)
AND RELATED ESTIMATORS

5.3. GENERALIZED MLE's (GMLE's)

Generalized maximum likelihood estimators, introduced by “eiss and
“Yolfowitz (1966), nrovide (vhere available) asymntotically efficient
estimators, vhereas this is not always truc for MLE's even if the latter

can be found. As noted above, for the case of estimatine u[l]""’“[k]’

what is meant by '"+he MLE" is not clear. "ne nossibility, the IMLE, is
difficult to compute and ray or m2y not possess desirable properties.
tost classical MLE theory assumes i.i.d. observations and is therefore
not applicable in our case, since the IMLE is in this case the MLE
based on non-i.i.d. observations: the ranked data. Tie theory of Yeiss
and Volfowitz (196€) allows for more pencral situations, althourh most
of their applications are to i.i.d. "non-repular" cases. (Corrections
to Veiss and ''olfovitz (1966) are contained in Weiss and "'olfowitz
(1967a), in Yeiss and “olfowvitz (1767h), and below. An additional
example is piven in "eiss and “olfowitz (1967c).)

V'e first summarize t“e results of "ciss and Wolfowitz (1965) for
the case k = 2,

DEFINITION: Let © be a closed region in R?, 0 € 0 with 0 a

(5.3.1) closed rerion such that every finite boundary point of 0 is an

inner point of 0.

DEFINITION: For each n let X(n) denote the (finite) vector
(5.3.2)
of r.v.'s of which the estimator is to be a function.

75




(5.3.7)

(5.3.4)

(5.3.5)
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DEFINITION: Let Kn(xle) be the density, with resmect to a
o-finite measure L of X(n) at the point x (of the
appropriate space) when 8 is the ''true' value of the unknown

parareter,

DEFINITION: Let T = (rl,r,) be fixed and positive.

{an(X(n),r),an(X(n),r)} is a sequence of GMLE's if, for each

8 = (01,62) € 0, (A') and (B') below are satisfied.

CONDITION (A'): There is a sequence of positive constants

{kl(n),k?(n)} such that kl(n)+w, bz(w)aw, and a function
L(yl,yzle) such that L(+|6) is a continuous /.7, and, for
any y = (y;,¥,) and any integers h, wid h,

b7y
%3& ¥ h.r h,r kl(n) zn1’61° i;?;j’ :'yl’

B MO

h,r?
ky(n) |7 ,-6,- N <Yyl = Llyyy,18,,85).

COMNDITION (B'): For any integers hl,h there exists a set

2

Sn(e,hl,hz) in the space of Y(r) such that

(5.2 7) lim Paij[X(n) € Sn(e’hl’hz)] = ] (i,j=0,1),
where




(5.3.6)
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(hl+i)r1 (h2+j)r2
(5.3.8) U.ij = el + Tl—(—n-s-—, 67 + -—,g(n—)-— s
and there exist sequences
(5.3.9) {anij(X(n).e,hl,nz)} (i,j = 0,1)

of (two-dimensional) r.v.'s such that, as n-x,

=

anij anijl’anijz) converspes stochastically to zero when
aij is the parameter of the density of Y(n), and such that,

whenever X(n) ¢ Sn(e,hl,hz), we have the followinp: Let
(5.3.10) M = nax{Kn(X(n)laij), (i,j = 0,1},

(h1+1/2)r1 (h2+1/2)r?
(5.3.11) m = (nlmz) = 91 + Tl(?{j——’ 92 + T .
Ther, vhere "(a<hk, ¢ < d)" means "(a <t, c<d) or

(a <t c<d),"

a
n00l . n002

[l v y ——
(5.3.12a) M = X (X(n) [agg)=>|7,; < my + MOREYAL AR NOIE

a a
- B} n0l11 n012
(5.3.12b) M = K (X(n) oy )12,y <) + Ky T T2t E,m)”
w
[ #a101 2n102

(5.3:12c) M

H

W10 71 > 7y R oz <2 K

)
%n111 #n112

2d) X - L] ,
(RaBAlZd ) % Kn( (n)|u11)4> S A kl(n)’ Tn2>M2 * k;TET}
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TIEOPEM:  (Yeiss and “olfowitz) Lct{an(X(n),r),sz(X(n),r))

be a sequence o” GI'LF's, Let {Tn} be any sequence of
estimators of 6 such that, for fixed r = (rl,rz) >0 and all

interers hl,h2

T Ty r, T
lim Pel"’z[" 5= <k (M(T1-8)) < 57 - 5= < k() (T 5-0,) < 5=

r1 hlrl r1
A hyr, |77 € X0 [Tnl'el‘ r—(,,‘)‘] R
(5.3.13) 61+ F;m,62+ ]f—z.m
T h,r T
2 272 2

for any 6 € 0. Then

r r) T, r,]
Hn Pol- 5= < Ky ((Z51-6)) < 57 - 5= < Ky (7,-6,) < 5=

= ' tJd

T
. 1
y P P o
> lim sun ‘6[ 5 < kl(n)(Tnl 61) <

»

2
Tz < kM(Tpp-6y) < 57|

Note that on n. 78 of 'eiss and Yolfowitz (1946), condition (Bf) is
mis-stated- therein, in (3.13) through (3.16) (corresnordine to our

(5.3.12a) throuch (5.3.12d) above)

{2001 4h011° 2n101° #n111° Pnon2, 2no12° 2ni02’ 2112}

should be

4

%001 %no11 Zn1n1 %ninr, “no02 %no1z Zn102 ?nniz:
\ ’» 1 > [ 5 1. [ ’ 7, ) .
Lkl(n) kl(n) kl(n) Rl(n) uz(n) kz(n) Lz(n) kz(n))
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Examination of the modification of the proof of pp. 73-74 of "“eiss and
llolfowitz (1966) used for tlhie proof of their Theorer 3.2 (Thcorem

(5.3.13) above) shows that without this chanpe the auantities nnij!

multiplied by the normalizinp factors kl(n) and kz(n) would occur, and
would not necessarily converre stochastically to zero (under the appro-
priate parameters). In their multi-parameter examples VI, VII, and VIII 1
Feiss and "olfowitz (1966) seem to satisfy the corrected (B'). (In
example VIII this is not as clear as in examples VI and VII.)

We now investirate the application of these results to the estima-

tion Of"[l]""’u[k]' For k > 2 we now choose

I = Y v
'X(n) (X[I]""’X[k])

- £

K (x]8) = K_(x|u) -
n n X[ll,...,er]

(xl.--..xk)
(5.3.14) '

£

X (xl,...'xk)

1y X

kfn = Lebespue measure on Rk.

. — k
W 5 0= : v = = P
We would also like to choose {m: . e Qo’uqu{l]’ My ”[k]}’ 0=P

(which would satisfy (5.3.1)), but by Theorem (B.2.19) this would not
allow satisfaction of condition (A') (essentially because u ¢ O,,[Q(#)]c
would not uniquely specify the limitino distribution). Thus, we fix

n* > 0 and choose

(0(n*) ={u: u € 0, uy-u 2N uy My o 2 nY, L ety > Nt
(5.3.15)1 k "k-1 k-1 "k-2 271
=

0 = 0(n*/2).
(Although our results below would hold if we simply excluded the bound-

aries of our desired ©, that set would not be closed.) Sincc our results
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lack real dcpendence on n*, we have cessentially only eliminated the
boundary (where equalities exist).
For k > 2, consider the sequence
(5.3.16) (z ,(X(n),r),...,2, (X(n),7)} = {Ym,...,'r'm}
with r = (rl,...,rk) fixed and positive,
THEOPEM:  For k > 2, condition (A') (or, more nropeily, its

(5.3.17) peneralization to k > 2) holds for the sequence (5.3.16) for

arbitrary r> 0, with k (1) = k,(n) = /n/o.

Proof: This follows fror Thcorem (7.2.8).

LEMMA:  Let hl and h, be any intepers. Choose Sn(u,hl,hz)

5 _ -
=R bpgyren Xy Suytens Mpep e £ Y2y SV r2ytents
8

(5.3.18)
where €, " a/n” (0 < 6§ < 1/2 {fixed), Then (for i,j = 0,1)

. n =
lim Olij[X(n) € Sn(p,hl,hz)] 1.

Proof: Ry (5.3.8), here a5 = (;1“14(h1¢i)rlo//ﬁ,u [2]+(h2+j)rzo//ﬁ),

and (settine a, = (h +i)r), a, = (1,+j)1,)
Lo 6 < X
palJ[y(n) € -'n(u nhl:h‘z)] = PLO-aO//ﬁ-[u [i]'o/n 3 ‘([i]
§ .
_u[i]m/n (1=l.2)]

=P -n2
- "w+ao/Yn

] - 1
(5.3.19) 5 -6 (PR -a,o//n = -6
IR £ el P L )




However, by Thcorem (B.2.t:) the randon auantities of (5.3.19) approach

a joint limiting distributior, vhilec the respective unper and lower

limits on those quantities tend to +=,

(In fact, the result is proven

for any fixel a = (al,az) and not just for ((hloi)rl,(hZOj)rz).)

As noted in the proof of Lemma (5.2.1%), for our case we have

(for i,j = 0,1)

(5.3.27)
LEMMA:
K (x|aij)2n
X, -y
T i-l——
= a'e o//n
(5.3.21)
rzj--—
+ b'e
where
4 (
1
2
a'=¢
<
{
1
2
h'
\
Mroof:
ulzll rln r-

2 1Y
T ST T
o//n | o/ " " o/tm

( 3
el 03 PR Wl A N il )

I

\ U/v/l—"— J

a5 " (u“r(hld)rlo//ﬁ, u!7]¢(h2+j)r20//;).

If X =2, then ({or i,j = N,1)

x,,’ur
Liyez « i 2y v iy

o//m

X,-U
il

Je?2°"/5e11°/’/5

(Note that a' > 0 and ' > C involve only o, n, Xy X9, ufll’

50 hl’ and h2’ and rot i and j.) From (5.3.14), (5.3.20),
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and (B.1.1),
xl-u[ll:(hloi)rlo//ﬁ

0//;

2
l[xz-ulzl-(h2¢j)rzc//ﬁ
H o//n

]2

l[
o 2 a
K (xlu.j).. o/n e

xl-u[gl-(hz*j)rzo/ﬁ;

1

o 7[ o//n
2

YOty

s )

o//n

e

e

.'Z(XI‘U Ll])

2
A vil

2
1 xz-u[l]-(hl4i)rlo//ﬁ
o/Vn

(hlq)rlo//rT

$Y242
+(h1+1) n

|

N~
r

o?/n

.2 +j /n
(Xz:ufz])(hz J)ry0//n +(h,+j)2r§

N ==

02/n

2

_1_[_1__'_21_ i)
v Lo/ ST

[2(x1-u{2])(h2#j)r7o//ﬁ

+(*5+3)%r)

02/n J.

-

-

[-2(X5-tyq) (hy+i) T 0/vn
e Y L

o2/n

-

2

2ty

1
3 o/Vn

4 c//ﬁ

e
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2 2
x| 4 r2  x,-u, rl
Wy viye) -zt o« 22 ehyr,-thyesy2y”
. o//n a//n -
X, -u X,4 2
. [_1__1"1 _u_w_]
2 &
. B o/vn o//n
2
X, -u T
——I—lh RO PSR E A A | P P PR L
o o/vn o//n
2 2
v el ) et
e~ 2 2 H o//n o//n
2
+ x 2M([2 T,
r,(h 41)——Ul 12 Lolinr2 o (ryei)- A= 21 522 gt
a/'n o/Vn S -
. e
2 2 ]
1172 1) ) 22 Ly g2
-3l -2 - Ht ] ry ()= -§%5= -5h,r)
.o o//n o/Vn o o/ /n .
XY i
r, (h sy s2 Ll s g2
1 o/V/n 2 171
ce
212 212
) rlhl ] 1‘2h2
2 7
X 'u T X "u"», T
. r 1——-—-Lll - i%,~ -ih,r? r j-—z——‘ -j25= -jh.r?
o/Vn 1 72 o/Vn 2°2
a'e
2
X, U r X, -u r
r j-—l—-—L—- -j2.2 jnorl 2T g2l gy g2
2 22 nl 2 1'1
o//n a/Vn
+ b'e e :
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LEMMA:  There exist 80141 and Bnij

X(n), v, hl‘ and hz) which converpe stochastically to zero

2 (which may depend on

when % is the parareter of the density of X(n) (i,j=0,1)
“ such that, if X(n)e S (u,h;,h,) and M « Kn(Y(n)luij), then

(i) for i,j = 0,0

[ Yy

< (hy+ 3)T, + 8 g
ol 1 2771 nn}

(5.3.23) {an”

2* 3Tyt Apan

(ii) for i

5

1
(hy+ 5)r) + ana

(5.3.24) {and

(5.3.22) V‘rz]*‘m 1
Y- (ot 3)Ty *+ 3515
| a/vn

(iii) for i,j = 1,0

(X
nrtm T
o/ /n > (hl+ 7)1‘1 Y 210l

(5.3.25) A{and

Yoy
(21 12} < 1

e (‘-, 4+ . ')T +a_.,
S 2* T2 * A




'IIlIlIlIIlllllllllllllll--'--''''-''--''"---''''--''""'""""'II-"-""----Ir
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(iv) for i,j = 1,1

r -x _
wrel,
o//n

N

l+

(5.3.26) {and

X121 12

> (h,+
o//; .

\

Proof: (i) Case i,j = 0,0. For simplicity, write x for X(n),

X[l]’ X, for x[?]’ My for u[l]‘ and Mo for u[zl. Since

Kn(xlaoo) > Kn(x|u10), by Lemma (5.3.21),

X, = X, =
11 1, , 2771 1,
et o= - (htan
al + bl > a.e c/ n + b'e 0/ n
(5.3.27) B
X, U X, -
r L L. (hoe Ly r Lo e b2
1 /A 1L 251 lo/ - 1 2771
>ate ’ + b
Xy =u
! e (hy* %’ri
. a/vYn : .
since x; < x,. Thus . 1 > e and (takino loearithms)

ol 1
0 3_r1 - (h1+ 7)1'1 so that (since r > 0)
a//n
X, -u
171 1
(5.3.28) ——= < (h,+ F)T,.
e 1 2°71

We may (for example) take a 001

of (5.3.23).

Since Kn(x|a00) > kn(xIaOI), by Lerma (5.3.21),

)Ty *am

~l—)r + a
2772 7 “nll12,

for

|

= % and thereby satisfy the first part




X, 4
1, 12 Il
2L ey (hy * 273
+ b'e
(5.3.29) X,
rzh—ﬁf' - (g« )5
> a'e o/vn
or
o RO
(5.3.30) 271 e - Ap o T
k! o/v/n
1+ v > /
Now, bty the definitions of a' an' b',
( \2 2 -
1{1%2]" 1% 1) e
" 3T ) T N
he e lo/VD o/ | Yo, Tat
N < -— = .
0 R Y ( 2 -
S VS e
3 3 2"
= o/¥n )] “\o/Vn | - 1 lo//r-\-e “o//n
. ] 2
S e e et 2 B e
o 2 o//n a/vn | 2 o//n o//n
T T T A (e '
1171 71 1177 72
- 5l—=| - 5[
a//n a//n
(5.3.31) XyeX,
(rl‘ml-rzhz)-
.o u/vn
n /n
’ g il Cop e by te e C )
= ¢ e
TN Wi T T I -r.h
oz(xz Xl){(u2 ul) /E(rlhl r?'z)}
e if My > My
1 x,-x
271 .
;‘;‘fﬁ"(!‘l \l-rzhz)
le if Wy =M.
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Since Wy > My, from (5.3.%0) ant (5.3.31) we find (taking loparithms and

sirplifying) that

X, -4 ,
(5.3.32) -Z-—éa < (hys %)r, L tn(1+ 270'
o//ﬁ )
1)
“'e now wish to show that the choice a e gn(l+ qu is effective.
n00? T, a

(Here we use the fact that a.902 ™Y derend on u, as well as on X(n),

hl‘ and hZ') Since
[ K2y X =6 2y v = 1&gy 290 - Gy )|

< Rppvpzl * Pyl

- e .
for any ¢ > 0,({[Xpp iyl < 50 Kyl < 7 =
(I(il’z]'ill])‘(urzl‘U[I])l < ¢}, so that

P [l(x.!?]'.i[l])'(u[?]'url'l)l < E]

a
(5.3.33) 00

E paoo[lx"-z]'“[?]| S 5/2s|v|'1]'u [1]' i C/2]°

By Theoren (B.2.8), as n-=

Po o LBy gy < el 8Py VEe(2 g gy € e
(5.3.34) _
S

< ! (T,' € v/-l‘;
Tyt n

- Pu(ﬂf‘hlrl' 7o S U E

a similar result holding for ikzl' By Lemma (R.2.1), the r.h.s. of

-hlrlo//;) <

(5.3.33) +] as n+, so that the L.h.s. rust also +1 as n+=, Takine

€= c'ﬁ:lzl-ulll) with 0 < e¢' < 1, this reans that as (n-)

(5.3.35) paoo[(l’c')c’[zl'u[l]) < -XIZ]-Y[I] < (l+r')(u[2]-u 'rl])]"l.
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Using (5.3.35), noting that x > 0, and taking n > (r.h. -r hz)zaz-

11 72
*6/(1,-u;)%, it follows that the exponent a_ (say) of b'/a' = e " in

2%

(5.3.31) is such that for all finite x we have Pa [an < x]+0 as no,
00
Then it can be showm (successively) that

-a 1, x>0
(5.3.36) P [e "< x]+ ;
a -—
00 n, x<@0
-a 1, x>0
(5.3.37) P |anf1ve ™| < x|
%o0! 0, x <0

From (5.3.37) it follows tkat our a corveroces stochastically to zero

n002

under %0

(ii) Case i,j = 0,1. Since Kn(xluoo) :_Kn(xlaOI), by Lemma

(5.3.21),
X, X, -y
272 1, » 1 1.0
2 Ut )T Ty -(hy* )15
a' + bt <ae /0 + bre o/"m
(5.3.38) _— §. o
Pyt (g DT ry - (hyr DTS
/ﬁ; 0//;
< a'e ¢ +b'e
XU
2[’%}‘2‘ = (g %”2]
since X) <X, Thus e g/vn >1 and (taking loparithms)

e PO s ;
T, ——;:7 -(_2+ fqrz > 0 so that (since r, > 0)
a/v/n

X4
(5.3.39) 22, e D,
o/n

ikl




e
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Ye may (for example) take 2012 = ° % and thereby satisfy the second

part of (5.3.24).

Since Kn(xlaOI) > Kn(x]all), “y Lerra (5.3.21) we have

X -k X, -y
2R T 1772 e
T Tyt iy T By 3T
are a/v/n . bt o/vn
X, - X 'U.,
P (hye P e r (g S
.. “a//n “o//n
> a'e
X, -U X {2
1 72 271 1
Ty - (hy* %)ri * T - (hy )T
+ ble afm a/Vn
This can be reduced as follows:
b PV X,-u X,
T .2_2. -(h * l)rz T ._1__.3 -(h + l)rz T 2 1 -(h + -l—)rz
2 /= 2T 22 2 /o 2 2772 1 1 2771
ate o//n 4907 o//n l-e o/vn
X, 4 XU
’1‘1—l -(hye ‘;’)ri 1”2?—2 - (hy ’;')”5
> ale o/Vn o/Vn ;
X, -X X, -y X, -u
1 72 271 1 171 1
Ty T Oy T -y )T
1+§-:e of/n |} o o/Vm >e aln ;
X, -X XU
X, 4 P IR UL
1771 1 1 b'  “o/va o/Vn -
-i_(h1+5)rl + ;—Qn 1+ o€ l-e |
a//n 1

Since u, > My, Use of (5.2.31) reduces this ineanality to

X,
171 <

o//n




- D—Z.(XZ-XI) { (U 2'”1)' 9/:_(1'1}11'1'7‘1,,) }

1 1
< (h1+ iﬂrl + ;Iﬂn l+e

/n X2¥1 e
(5.3.40) r 0%, -x)| 1= -(h,+ F)r
.ezolzLe%/'fn 1t 20

n g
) ) - -O;(XZ-XI){(}JZ’UI)‘ ”/_;(rlhl‘rz(hz"'l))}
= (h1+ §)r1 + ;;&n l+e *

Xl
r1'2 : -(hy+ %)ri
ell-e C//;

In order to show that the choice of a 911 28 the second term on the

r.h.s. of (5.3.40) is effective, we will show that

1, x>0

(5.3.41) P [a < x]»
aOl nM11 0, x <0,

Tiis implies that a converges stochastically to zero under e

r”11

(To show the inequality of (5.3.24), 2 011 should actually be taken as

1 " .
= oy aced h apA
(e.p.) the above plus n.) ov, if ayq is replaced hy @5y AP h2+1

renlaces hz, then the same proof that yielded (5.3.35) yields (with

0<e'<1)

(5.3.42) PQOI[(I-C')(u[Z]—u[I]) < Y}Z]-Rtl] < (l+e')ﬁl[2}—u[1])]+ 1

as n>~, lsing (5.3.42), noting that X5-Xq > 0, and taking

n> (rlhlwrz(h7+1))2026/ﬁx2111)2 with § > 1, the exponent of
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n

(5.3.43) A = 02
n

Hi
(4]

is such that (as n-)

1, x>0
(5.3.44) P [A_ <x]+
a n -
01 0, x< 0,
In
X~
271 2 Lo = M. -
Torm oy ] “(hyr DT TRy y)
B = -e A = -¢ e A
n r n
(5.3.45)

1 n o
'(1’1"' 'z)r% - ;;(xz'xl){(“z’ul)' "};(rl(h1+l)-r2(h?+l))}

s -e e .

"11/3—("1'“ 1)

.e »

the middle exponential term tends stochastically to zero (under %y @S
n+e) as did An’ since it is /\n with !11 replaced by h1+1, and the first

exponential term is a constant. By Thecorerm (B.2.8),

exp{rlfﬁ(f[ll-u [1])/0} has a non-depenerate 1limitine distribution since

(for any x > 0)

al§1

/e
1oXpy ) <40 %]

Ry ¥y |
P e < xJ = Fa [r
01

(5.3.46)

/{1‘ l/r1
=D " < An x - hyr |.
°01[ Xniy*m™" 1,~) 1 1]
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It then follows that, as n+=,

1, x>0

(5.3.47) P [B. < x]+
%91 " 0, x <0 .

By (5.3.44) and (5.3.47), 1 + /\n + Bn converpes stochastically to 1 under

a,, as n+e, and since a o1 - %—zn{lmnmn} it follows that a 011

n
. 1

converges stochastically to zero under a5y

(iii) Case i,j =1,0. Since Kn(xlam) > Kn(xla“), by Lemma

(5.3.21),
X, 4 X.~u
r Al _hos Ly r2 1 e+l
1 7 1 2771 1//- 1 2771
ate 9//n « hie 9/7n
X, =i YU
= -ty P ¢ T (e T3
s an o/Vn a/Vn
X ~u XM
R R L
. o/vn ' o//n
+ b'e
X, X,y
B bt 0 B
, . “o/Vn “o/vn = =
- a e »
X274 Yot 1 H
r,- PLe—=—— -(h2+ —2~)r‘;:
b ‘o//n “a/V/n
1 + Ty 5 > A
a
X,-X
e r, 7./_1_
22 < (hyr 1, + Tan1e e 0T
o//n %




271
h! 1o//;\.

1
] h &t -
e will now show that the choice a 12 ng 1+ ; ¢

is effective. Since Wy > Wy, by (5.3.31)

2% n o
T - - —(x,-x){ (W ,-u,)- —(r,(",+1)-r,h,)}
bue 10//n o 52 271 271 >y 1'1 2 P

(5.3.48)

2

and the argument of (5.3.42) throueh (5.3.44) can bhe modified to show
that this converces stochastically to zero under @ p AS N, The

result for a then follows.

nl0?

Since Kn(xlaln) 1_Kn(x|aqn), by Lerma (5.3.21)

| )M
(h + )1‘2 T, ——= _(h ) 2
0//h 2 lo/ﬂ\ ]
a' + b'e > a' + bl
Xy Xq-X
rl"l“'/:‘l‘ '(h 2)1‘% rl--g./.._l.
o/vn a'+b'e o/Vn >at +h
X5-X)
X, U rl_"_}:_.
Y
171 3.(h1+<%)r1 + %—&n(1+ g;) - %—&n 1+ gﬁe o/Yn
294
rl—’F
i 1 h! 1 b o//n
f € - ey 1 b
The efficacy of a 191 r12n(1+ a') rlln 1+ €

is shown by a modification (allowinr for alo) of the proof for 2,102

above.
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(iv) Case i,j = 1,1. Since Kn(xlam) < Kn(xlqu), by Lemma

(5.3.21) and the fact that x, < X,

1
X, -y
r22_ e Y
2 ) 28 22
. o/vn
a'e
X, =l Xy -U
2 172 1
d e ‘a//n - " . b “o//n
X, -y b SETIN
’rl-—l—-l -(h1+ %)rz +r 2 -(h,+ %)r%
/—- 1 2 /“ s
2 38 o/vn o/vn
(5.3.49) - i
X 'U—, X,-U
ke Y A e
Vo 4 ] //;1- 1
+ b'e o//n 9
X, -u X,
171 22
T 2ade=t - (h) & %)ri + 1L - (h,+ 7)r§
< la e a//n “o/vn
X,=U X,)"U
r2_2‘-‘2‘ = LT% %”5 * rl';’l ik %‘)ri
" %
+ ble o/vn o ’
so that (utilizin» the first and last lines ahove)
X, -u X,-u
rl“'l'T-l = Uy %)rzlz ’1_:‘-1 - (hy %‘)ri
1 <e o/vn ) b! o//n
(5.3.50) - e
P X,-X
rl—l-—- -(hl+ ;)rf rl—z———l‘
- o/v/n 1+ b—:e a//n :
e |
X, U ,
(5.3.51) 171, (h,+ %)’1 A -l;an 1o ble 0//m
0//n 1




P

ar

N |

r

b losvm

- - -l—lln 1+ —e
rl a

The efficacy of a is shown by a modifica-

111

tion (allowinp for all) of the proof for a 102

Since X (x|a; ) < ¥ (x]a we obtain (as with (5.3.49))

11))

X, -4
171 1y 2
rlo/,g- (hy+ 5y
a'e ’
X, -U X~
T —l——l--(h + l)rz r -;——l--(h + l)rZ
1 //' 1 2771 1 //r 1 2771
<a'e a//n + b o/vn
X, -d XL
11 1, 2 2 _ ) PP
2 W= (hy* 5y + 1y = (hy+ 5115
< a'e 0/ n a/vn
X, -y Xa-u
2 2 1
rz’};F“"(hz’ %’rg ] rl“'"'l"(hl‘ 21
+ h'e O/Vn o/vn
X, -u p TR X,-X
rl'ljil -(hyt 501 T Z;F:"(hz’ D% T /»L
< o/¥/n o/vn a'+h'e o/vn ,
and (as with (5.3.50))
Xa-U X=X
r2—27:g -(h2+ %)r% rl_gj;}
l <e o//n 1+ hxe o/ 0

oo a’

The rest of the proof is similar to that of the first part of case (iv)

after (5.3.51).

THEOREM: For k > 2, condition (B') (or, more properly, its
(5.3.52) generalization to k > 2) holds for the senuvence (5.3.16) for

arbitrary r > 0.
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Proof: Condition (B') is piven at (5.3.6). Its first reauirement,
(5.3.7), is satisfied by (the peneralization to k > 2 of) Lerma (5.3.18).
The remainder of its requirerents are satisfie! (for t'~ case k = 2) by
Lemma (5.3.22). "e will now show that these rerainine requirements
are satisficd when k > 2,

As at (5.3.21) ard (5.3.29), for il,...,ik = 0,1

: (n)
K (x|u) = f< = (X, ..o,X)
" NES R .
(5.3.53)
BeSk o//n o//n
(5.3.54) ai1"'ik ‘. Q:[1]+(hl#ilh&olvﬁ,...,u[k]+(hk+ip)r}0//ﬁ).
hus,
rihi .. rﬁhﬁ
Kk 2ttt
Kn{xlailiz...ik](/576//55 e
o, TR
= (/2m¥e 2 2y .
2
1) XB(J')"'JJJ'(hjﬂJ')rj"/q
) Ze Tj=1 o//n
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2
k [{x,,..u
o .l. _B_)_L__U_]_( -2 - h.+i .@, 2 2].
. jzl{[ ol ] '(XB(j) u(j])( i j)rj 3 (hj‘ij) er
(5.3.55) y - . T N
e ;{-%_sm_m. we Cs i)
ce 2 T2y il o//n 33 s .
BeSk
k (X, sy Hpst) rh?
J {r.i.—~£ﬂll—ﬂlll---i.(h.+ %4.)r%- -%—l}
LeJ=1 YJ 4k 3Ty 257
(XB(.)-u[.]) 1
.ij~———l—-——l-—--i.(h.+ i.)r2
- Jagdlll ek S
BeSk
vhere
5 2
) { L["_B(Jiu‘l] +h.r.(xﬂ(5)-u[j])}
Qe J)
(5.3.56) a'(8) = )1 o//n a//n
“hile for the case k = 2 there were 2! = 2 terms in the final sumration,

there are now k! terms.
As there were 22 = 4 parts to Lemma (5.3.22), there arc 2k parts
here. Ve will ~ive the proof for the part corresvonding to (5.3.23),

since it is indicative. I.e., in the case i =0,...,0,

1,...,ik

Xpyq+
__[})_.J.l_l < (bl.Q. %.)rl + a

0//;1- I'IO...OI

\

X a'l
(5.3.57) 4 __[Z_L_LZJ_< (h,)+
a//n '

)T, * A 02

OO} —




8

[kj- Jk-] < (h + —)r +a

0//_ nt,, .0k
4 B . [ b altd ! }
(where anil"'lkl""’ un]l lkk corverne stoclhiastically to zero when
Ay ey is the paramcter of the density of X(n) (il,...,ik = N,1}) vhen
1 k
'M = by ,
X(n) ¢ S (,hy,..0shy ) anc M Kn(x(n)lao_“n). e nnil...ikj
(7 =1,...,k) may derend on Y(n),u,hl,...,hr.
For, e.p., the first commarison of (5.3.57), Kn(xlaoo_..o)

> VoGxlayy (), so by (5.3.55) and the fact that x; < x; (i = 2,...,k),

__.L_l ] (H + -.) 2
| |
o//n

Xy M
1"" &3 (hy+ Syr2
//; 1 2771
> z a'(s)= °
BeSk

.
H

,__[_]_. (h + _.)rz

1> 0//_

From here tic proof is ~ssentially that which follows (5.3.27).

Rule for makinc comparisons. For each of the k! vectors il,...,i

one rust nrove k relotions similar to (5.3.57), with anpronriate

modifications of '"<" tc '>'"., For these, cornare the piven a i
1--.k

with the k ot'ers which have 1i,...,ii's which differ fror the riven

il""'ik in only one place. (This rule, succested by the k = 2 results,

vorks when k > 2.)
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To illustrate our method, we will now study, e.g., the second

comparison of (5.3.57). Since Kn(xlanoo...o) 1-Kn(x|°010...0)’

X -
rz_p-Q)--izl _(h2¢ %.) rg
Ja'(R)> ] a'(B)e o/ /n
BcSk BcSk

Bt 12) 1
L - s
>_ Z a'(B)e o/vn ;
BcSk
B(2)=2
[ ae)- | a'(8) a5
BcSk BeS) ,Z_Z__;Zl -(h,+ %)r%
1+ B(2)=2 s o 0//n -
Y a'(B) N
BcSk
B(2)=2

Now the proof proceeds as at (5.3.30), and a relation like (5.3.31) holds

because what is left in )| a'(B) after ] a'(B) is removed, rmakes the
BcSk BeSk

B(2)=2
"wrone'" associations and thus tends to zero, while the denorinator does

not,

THEOREM:  For O(n*) and any fixed r = (rl,...,ry) > 0,

(i}l]""’ifk]) is a sequence of GMLE's for estination of
(5.3.58) 01[1],...,u[k]) based on X(n) = (X[I],...,X[!]). 1t thus

possesses, for all r = (rl,...,rk) > 0, the pronerty of

Theorer. (5.3.13).
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Proof: Theorems (5.3.17) and (5.2.52) establish conditions (A') and

(B'), respectively, for all r> 9. “e therefore have a seauence of
GMLE's possessing the property of Theorem (5.3.13), or more pronerly its

extension to k > 2, for all r> 0.

If T and U are estimators of 8, then U is said to be rore
concentrated (about 6) than T if

(5.3.59) Pef-r < U-8 <r] 1_Pe[-r < T-8 < r]

for all 6 € 0 and all r> N, (This definition, which appears for perhaprs u
the first time in print in Lawton (1968), is !!nown to the present author
to have been stated hy Professor Lionel "eiss as early as March 1765 in

lectures at Cornell University.) If Tn and Un estimate 6, tren Un is

said to be of hicher large sample concentration (about 0) than T if ‘

(5.3.690) %im De[-r :_k(n)(Un-e) < r] 3_%1& Def-r < k(n)(Tn-e).i r],

where k(n) is such that P(n)(Un-e) approaches a limitine distribution, for

all 6 ¢ 0 and all r> 0. The GMLE (E[I]""'it”]) has, usine a k-

dimensional reneralization of (5.3.60), desirable large samnle concen-
tration in comnarisor to the class of estirators of Theorer (5.3.13).

Ye will now show (for k = 2, the k > 2 extension beine similar)

that, by findins one G!LE, we find a class of GMLE's. |

LEMMA:  Sunpose lim Pe [Zp <y] = L(y), with L(-) a continuous

(5.3.61) d.f.. Then, if l nc =0,

%ig 7 [Zn < y+Cn] = L(y).
n




e
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Proof: 1If all but a finitc number of the cn are positive, then

L(y) < lim P6 [Zn < y+cn] and (since cventually all c, are less than €2
n

m fixed)

(5.3.62) 1in pen[zn <ysc ] < Liysc)).

Taking the limit on m in (5.3.62) and usino the continuity of L(*)
the desired result follows. (If all but a finite numher of the ¢, are
nepative, the proof is similar.)

If infinitely many ¢, are positive and infinitely rany c are

negative, sunnose <, < n,cs > 0. Then

(5.3.63) L(y+cr) i_%im Pen[Zn < y+cn] 5_L(y+cs)

since eventually Cp2c, S cge Takine limits in (5.3.62) over

{r: ¢, <M ont{s: ¢ "} or the £.h.s. and r.h.s. (resrectively) the
desired result follows. !lote that this is a special case of, with an

even simpler proof than, Crarér's Theorem (see, e.r., Tisz (1763),

p.226)
THEORFM:  If {qu(x(n),r),znz(X(n),r)} is a sequence of GMLE's
then so is
(5.3.65) {an + ol(l/kl(n)), an + oz(l/kz(n))},

.3.64
S ) where oi(ll*i(n)) (i = 1,2) is a quantity such that
. oi(l/ki(n))
s i 1 ek ' -

e TR e FiMme (/% m) = 0.

Proof: !We will show that, for the new sequence, corditions (A') and




(B') (see (5.3.5) and (5.3.0)) hold.

Since (A') holds for the original sequence {an,znz} with L(+|8) a

continuous d.f., it will also hold for (5.3.65), by Lemma (5.3.61) (more
properly, by its multi-dimensionzl analog, which is proven similarly).

Since (B') holds for the oripinal sequence {Zn1,7n,} with constants

anij = (anijl’anijZ) (i,j = 0,1), it will hold for sequence (5.3.65)

with a'..

nij given by

r

' - - . = J
20001 = 2nop1 7Ky (Mo (175 (M), aj50, = 30027k, (M0, (17K, ()

8011 T o117k (M0 (/k (M), ajy) 5 = 3 457k, ()0, (17K, (n))

31101 = 31017k (M0 (/K ()), af, 0, = a0k, ()0, (1/k,(n))

Bn111 = 2ap117Kp (Mo (/K (), afy 5 = an, 057k, ()0, (17K, (n)).

{Whenever the anij converge in probability to zero the aﬁij do also.)

A typical o, (1/k; (n)) right be 1/{ki(n)ndi} with §, > 0 fixed

(i =1,2). In comparine any two rermbers of this class of GMLE's with
each other, we find hy Theorer (5.3.13) that they have the same

asymptotic efficiency (in the sense of Theorer (5.3.13)).

After results (5.3.61) anc (5.3.64) were obtained, the author's
attention was called to the latter part of section 3 of a nrelirminary
version of ''eiss and "olfowitz (1967b), where a gencralization of
Theorem (5.3.64) was stated without proof. ‘'amely, if {an(X(n),r),

MLE! H Q ” ' t
an(x(n),r)} is a sequence of GMLE's then so is { 1t Thl? 7n2+152} where

o : . .
(Tnl’TnZ) is such that, uniformly in 8,
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(5.3.66) Lim Pe[Ikl(n)Tﬁll < 86, |k2(n)Tr'12| < 8] =1

for any piven § > 0. Our proo{ can be ceneralized to this case. (llote
that in the published version of Weiss and "“olfowitz (1967h) condition
(5.3.66) has apparently been wealened.) These results will now be used

to corpare the MLE and the GMLE with rerard to asymntotic efficiency

when k = 2,

LEMMA: For any a > 0, P [¥ ..-X,., > a o//n] is minirized
LEA any WXy > e o/

(overu € ©(n*) i.e. over y such that un] = u“] + n for some

(5.3.67)
n> n*> 0) at M2l TR + n*. Also

Pu [.”]w[l]"“*[Y[?]-X[l] > a n//ﬁ}+ T as i o

Proof: By Theorem (B.3.2),

g [ { : l[x_] l[L_]}
v - n 4 4
Pu [XIz]-X“] >ag/Vn] = s . o/vn e o//n qy

.m n
a—— =-n ag— +n
(5.3.68) . .
B Y20//n V20/V/n
-a~ - n '
7-2.0//17 © 1
2
1 4
= — + e dy
V2n
-0 ao_ _n
/n
V20//n)
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By the formula for differentiation with respect to a parameter (e.g.,

Yadsworth and Pryayn (1960), n. 2) or by the Chain "ule, since

(a= +n)? > (a’= -n)?,

n n
2
al— +n - agf -n ]
1 _!ﬁ I —— _/h - 1 '
B = 2 | 7
dp X, y-X,,y > ao//n] = 1le /20 //n /50//5-0 CUUREILIR 0.
dnut7[2] T[1] o

Hence ﬁj[f[,]-f[ll > ao//n] is an increasing function of n > n* > N, and
is therefore rinimized when n = n* > 0 (i.e. when ul2] = u[l]+n*). That

this riniral probatility +1 as m follows from (5.3.68).

LFMMA

< 2, where € is the nositive solution of

(5.3.69)
(5.1.39).

Proof: Fror (5.1.39) and the fact trat cothi(x) > 1 for x> 0,

d?n

—- -€

(o)
g2

co-cocoth(co/Z)I = so(cotk(co/Z)-l).

Usinc an ecxpression for coth(co/Z) which was found in the nroof of

Lerma (5.1.33), this becores

e /2?2 -¢ /2 -e /2
9 2 +e g _1 - 2e 0 - (o] < 2
o 50/2 -co/Z

=€ = g = 2
oe f? - /2 € =
O/ 0/

e -e e -e e -1

since (for x > 0) x/ (e*-1) <1, orx f.ex-l, hecause x+1 < e =

2
l+x+ X LU

2!
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In the notation at (5.3.66), we wish to show that the MLF

X d i Yot i = =
{X[I-J.+T X[2]+Tnz} is such that (5.3.66) holds, with k. (n) = k,(n)

/n/o. By Theorem (5.1.37),

LSURSEITRI]
r M_lﬂ X I if 0 < X,nq=X < /’30//1?
3 ") P21 m =
Yr K Y217*n . o
U " Fea ml% Yl Y > 7
(5.3.70)
RRERH fo1¥
—4 1E 0, 8 Xpp) Py £ veBiim
= <
W= M
2141, . X
: l ‘—W(cot 77 if (21%1y > 720/

\

and |Tn2| = "r[Z]-X[Z]' turns out tc he the same. Thus, usine the

s s s - Vv Y ' |} = 2 2
definition d 12] x[l] and the fact that eocot,1(co/2) d°n/c¢, for
any § > 0

Al < 8, IRy Ty < 8 = P [T | < S0/Vn]

2]-Y[l] < 260//n, 0 < Y[ﬂ-')?“] < Y26//n1

X¢aqr-X
20 1
+ P [L 2] 1 coth(e 75

< &og/vn, ¥

[?1-f[1] > V20//n

(5.3.71)
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€ 02

. P —L-]—-l-ll- O < 6%, X,y Xy > VIof/n

u 42n VS 3 B Y

ldzn—e o?| i

= p (2] (1] ° < 80/Vn, X > /20/¥n

U d2n ] [1]

rl Idzn-roozl _ _ _ B e

SR = (x[2]-x[1])co//r?, xm-x[l] > V20/Vn
= & 1 o [d%n ¥ X .

Pl 217 > 7 iz o’ a1 %Xmy 2 '2"/’/'7]

THEORE!!: For the MLE when k = 2, uniformly in u, for any

(5.3.72) given § > 0,

Lir Pu[lkl(n)Tr',II < 6,|]:2(n)Tr"2| < 8 = 1.
Proof: Py Lemma (5.3.69) and equation (5.3.71),
P UK (T < 8, [ky,(m)Te | < 6]
(5.3.73) > 0 (¥ (5¥pyy %—t’/ﬁ ¥a1%11) /3o /)
=P [Y[Z] > rax (V2,3 0//n1.

By Lerma (5.3.67), the last member of (5.3.73) can be bounded below,

for u € O(n*), in such a way that the bound +1 as nreo,

By Theorem (5.3.72) it follows, as noted above (5.3.66), that the
MLE and the GIILE have (for k = 2) the sare asymptotic efficiency, and
that the MLE is a GMLE. This proves asymntotic efficiency nroperties

for the MLE which do not follow directly from the standard theory, which

assures i.i,d. observations,
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CHAPTER 5. POINT ESTIMATIOM: MAXIMUM LIKELIHOND (ML)
AND RELATED ESTIMATOPS

5.4, MAXTMM PRORARILITY FSTIMATORS (MPE's)

Maximum probability estimators werce introduced by Weiss and Wolfo-
witz (1967b) for much the same reason as GMLF's were introduced by 'eiss
and Wolfowitz (1966), as discussed in Section 5.3 above. Weiss and
Wolfowitz (1967b), pp. 202-203, proved thrat, for the case of m = 1
parameter, every GMLE is an MPE; thus MPE's extend the notion of CMIE's
(and by findine a GMLE we find a fortiori an MPF). !e now study the
extension of this result to r > 1 parameters, first summarizine Weiss
and Wolfowitz's results.

Let © and O be as in (the m-dimensional analog of) (5.3.1), let

X(n) be as in (5.3.2), and let Kn(xle) and u_ be as in (5.3.3).

DEFINITICN: Let R be a fixed repion of Rm', let ¥(n) =
(kl(n),...,km(n)) be suck that k(n}p=, let d = (dl,...,dm),
U (5.4.1) and Aefine

d - n/%(n) = {(zl,...,zr‘) e 0 : di s yi/ki(n) =z,

B = e B 5 (yl,...,ym) e R}.

DEFINITION: Zn is a maximum probability estimator with

respect to R and k(n) if (for a.e.(pn) valve x of X(n))

(5.4.2) 2 (x) equals a d e 0 such that

[ ... [ K (x]e)de,...d0 = :ugj .o [ v (x|e)de, .. de . |
d-[k(n)] 'R 2 t-[km)] IR
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CONDITION: For each h > 0 and 60 e 0

(5.4.3) Lin P [k(n)(2,-9) ¢ P) = 8

uniformly for all 0 ¢ H = {0: |l<(n)(e-00)| < h},

CODITION:  For each 00 €0

(5.4.4) Lin Pe[lk(n)(zn-e)] <M] =1
[0
uniformly for all 6 in some ncishborhood of eo.

CONDITIOM: For each eo e 0Oand h> n

(5.4.5) lim (P[k(n) (T -0) ¢ P]-P, [k(n)(T -8) € R]} =0
o

uniformly for all 6 ¢ H = (0: |%(n) (O-BO)I < hl.

TIEORENi:  Let (Zn} be an MPE with respect to P and %(n).
Supvnose {7_1} satisfies (5.4.3) and (5.4.4). Let {Tn} be any
estimator which satisfies (5.4.5). Then (for each eo € 0)

8> m Peo[l'(n) (T -6.) € R].

TIEOPEM:  Let wn be a GMLE (with respect tor = (rl,...,r )
>0) for the estimation of 8 = (el,...,em) €0 (m> 1).
Choose R = {(yl,...,yn): -ri/?. S e ri/2, i=1,...,n}
(5.4.7) and k(n) as for the GMLE, If the MPF (w.r.t. this P and
k(n)) satisfies (5.4.3) and (5.4.4), and if the CMLF satisfies
(5.4.5), then the GMLF is (in the equivalence class of) such

an MPE.
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Proor: Lect Zn be the MPE w.r.t, this R and %k(n). It then satisfies
the condition of Theorem (5.3.13). Thus (for cach eo € 0)

(5.4.8) Mm Peo[k(n)(wn-eo) ¢ R) 1@"90“‘("”%"’0) € R].

The GMLE Wn satisfies (5.4.5) and thus the conclusion of Theorem (5.4.6)

holds: for each 90 €0

(5.4.9) Lin Peo[k(n)(zn-eo) e R) zﬁ"eo““"’ (W -8,) ¢ R].

Then (sce Weiss and Wolfowitz (1967b), p. 198) the GMLF is (in the

equivalence class of such) an MPE,

The result of 'eiss and “olfowitz (1°67b) for the case m = 1 is
somewhe t stronger than our Theorem (5.4.7) for the case m > 1: they
show that the MPL satisfies (5.4.3) and (5.4.4). (They assume, as we
do, that the GMLF satisfies (5.4.5), which is stronper than (A') of
(5.3.5).) Our result (more precisely, a sliocht extension of our result)
says that if the MPE for a problem is 'good" (i.e., satisfies (5.4.3)
and (5.4.4)), then the GMLF (if it mects (5.4.5)) is equivalent to it.
Note that the analog for m > 1 of Weiss and Wolfoviitz's result form = 1
is false. ELC.g., Weiss and Yolfowitz (1967%), p. 178, last parapraph,
note an exanmple (with n = 2) where the MPE is not '"good'" although the
CMLE is. (Weiss and Yolfowitz pive a method for attackinr the problem,
in such cases, by modifying it slightly and thereby obtaining (often
"good') MPE's.)

We will now study in detail the MPE of the ranked means. Althouph
we have seen that, in general, for m > 1 parameters even if a GML® and

an MPE hoth exist the MPE may not be sood, in our case the MPE is shown
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(for the case m = 2) to have all the pood properties of the GMLF. Thus,
= 1,

let © = {u.p ¢ 2, “I'LWI]""'uk'”[k]} and 0 = R, and let X(n),

Kn(xlu), u, be as specified in (5.3.14). Fix r = (r,...,n) > 0, and

choose kl(n) z ,,. = kk(n) e njo, " = {(yl,...,yh): -ri/? <y < ri/z,

i=1,...,k}. Then

d - k)] I = ((2),000,7) € B

di - yi/ki(n) =z, 1= ) Y (yl,...,yk) ¢ R}

(5.4.10)
r, r,
= o & T = i =
((Zl,...,Z‘.).(i ?!(i n)izi<ai*2;—i—(’ﬁ,l l,...,k},
and
SUR ["' f Kn(xlu)(‘u[]]”'du[k]
O o fr(n)17IR
T, L)
(5.4.11) tk + 2—"0//5 tl + To//ﬁ
eI e [ byt
1 k LIV b .
tk - i-o//H tl - é-o/fg

For the case ! = 2, (5.4.11) becomes (when Y[l] = X, and v[’? = x7)

T r

t, * -z—zo/fn- t, ¢+ -,:—10//; _.l_[xl-u “]]2-1;[)(?'11 f2]]2
Sl _n [ ! L U//l'; 2 0/\/7-1—
4.t 2m02 r, r,

t, -5 9/n t, - 5a/n

2 ?
] _l_[x2-u[1] ) 1["1"‘[21
. e 2\ o/Vm 2\ otvm

dyy% )
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ERa el R
o/fn 2 o/V/n 1 1,
1 '7"%1 = 2R
= sup I I /'—_e ——¢ dv, dv,
t,,t 2n 2n .
S e T T W W |
ot/ 2 a2
e e WA SRS W B |
a/v/n e o/Vn 1, 1,
1 ™M1 TV
+ I —e —e dvl dv7
(5.4.12) . /2n 2 '
2T Ty Y%, Ty
offn 2 ol 2 )
t,-X r t,-X r
= sup $ 1 + fl' - ¢ -1 1 - 71 .
t.t, a/v/n o//n :
t,-x r t,-x r
_4,22#73_4,?2_2_2_
o//n o/vn
t,-X T t,-X T
« dol2 3*2_1_ . ol2 2__21 .
o//n o//n
o tz-xl . 1‘_2 . tz-xl r_z
2 | T2
o//n o//n
LEMMA: Letd=£(x -x,), t,=x, + a,0//n, t.=x, - a,0//n
= T g *2 7178 5wy 1 2 S0 =2 2 g
Then an MPE is (tl,tz) with a,,8, which achieve
(5.4.13) sup [{O(al+r1/2) - o(al-rl/Z)}{O(az+r2/2) - 0(az-r2/2)}

a),a,
+ {@(al-d+r1/2) - ¢(a1-d-r1/2)}{0(a2-d+r2/2)

- #(ay-d-r,/2)}].

Proof: By definition (5.4.2), for our case as specified above (5.4.10),
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the MPE is (t],tz) which achieves the sunrerum in (5.4.12). If we use

d = ——2—(x2-x1) and transform via t, = x

] + alo/fn, t

= x2 - 320//5, this

1 2

(tl,tz) will be specified by the (al,az) vhich achieves the

sup [{tb(a1+r1/2) - ©(al-rl/2)}{¢(-a,+r2/2) - ¢(-a2-r2/2)}
a,,a -
1°72

+ {¢(a1-d+r1/?) = o(al-d—r1/2)}{¢(—az+d+r2/2) - @(-a2¢d-r2/2)}].

Using the relation ¢(x) =1 - ¢(-x) (x € ?), this becormes as specified

in the statement of the lemra.

LEMMA: The sunremur of (5.4.13) occurs only at (al,a,) with
(5.4.14) -

0<a1<d,0<a2<d.

Proof: By reasoning as at (5.1.5), the sunremurm mist occur at a
critical pnoint. However, if we sct the partial derivative with resnec*
to a, equal to zero we obtain

v(a+r,/?) - ¢(a,-r,/2) o(a,-d+r,/2) - o(a,-d-r,/2)
¢(a1-d+r1/2) - q:(al-d-rl/i"—)= i} @(az+r2f2) - ¢(a2-r?ﬁ>§

Since the r.h.s. is always < 0, the 1.™.s. must always he < 0. !‘owv, the

denorinator of the 1,h.s. is nositive (negative) if€ a, < d (a1 > d).
Thus, we must have
r, ry < 0 i€ 2 < d
¢(al+ 7)_') = ¢(al- '2—)
= >0 if ay > d
i.e a >0 if ay < d
a < n if a, > dl.

This proves the result for ay; the result for a, follows similarly.
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LFMMA: By imposing a consistency criterio~ for estimators

(5.4.15) similar to (5.1.4), we may restrict ourselves to (al,a,) with

Proof: In order that wve have t, < t,, we must have X * alo//ﬁ

= . |/r\.
i_xz -azo//n, ie., a, +a, §_~3{X2‘X1) = d.

Note that, in the region of (al,az)-space in which Lemma (5.4.14)

tells us the sunrerur of (5.4.13) rust lie, we “ave synmetry (of values

of (5.4.13)) ahout the line a, +a, = d: see Fieure (5.4.16). Thus, our

consistency criterion only elirinates .n illosical dunlicate raxirizine

point.

w
n
»
[

Figure (5.4.16)
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LFMMA:  For any fixed § > 0, tlere is a K(rl,rz,ﬁ) sucl: that

if d 3_K(r1,r2,6) then (5.4.13) is maximized (ir the shaded

(5.4.17)

rerion I: a > n, a, > 0, a, + a, < ¢ of Fisure (5.4.16))

inside the disk N: a§ + a% < 6.

Proof: Let f1 e {¢(al+r1/2) - ®(al-r1/?)}{¢(az+r?/?) - Q(az-rz/Z)},

f2 = {¢(a1-d+r1/2) - ¢(a1-d-rl/2)}(@(az-d*r?/Z) - ¢(a?-d-r2/2)}; then

(5.4.15) 1is sup (f1+f2).
(al,a?)in I

Jlow over (al,a?) eI, fl is maximized at (al,az) = (0,0) an?
decreases as 3 and a, increasc., Thus, if we move (31’87) outside N,

the loss i, £ is at least fl((0,0)) ninvs the lareest value of

1

fl((a],“7)) on the boundary of D inside I: there a% + a% = &, so

fl((al,az)) = sup {¢(a1+r1/2) - @(al-rl/2)}-

su
a§*32=5 0_<_al_<_6

(al 39-2) in I
'{¢(/6-a§+r?/2) - ¢(¢6-a§—r7/2)}

H 2 - - 2 - =
§_t®(c15+r1/.) ¢(c16 rl/“)}{¢(r2/2) & ( r2/2)h
where we may sunposc without loss that ¢, = cl(rl,r?,d) > 0. (This can
only fail if the sunrerum occurs at (al,a,) = (0,8), in whichk case we mav

reverse the roles nlayed hy 2y and a, in our inequality and the
arsument helow will go throush sirilarly.) Thus, the loss in fl via

roine outside N is at least
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{o(r /2) - o(-r,/2)Ho(r,/2) - o(-r,/2))

-{0(c16+r1/2) - o(clé-rI/Z)}{®(r2/2) - ¢(-r2/2)}
= {O(rz/Z) - ¢(-r2/2)}[{®(r1/2) = ®(-rl/2ﬂ{o(c16+r1/2) - @(cld-rI/Z)}1
= ¢,(ry)c,(r),1,,8) (say).

The gain in f2 (which increases as a, and a, increase in 7) is less than

sun ¢(a

-d+r1/2)®(a,—d+r,/2)
(al,a,) in I =

1

A

sup &(a,-d+max(r,,r,))¢(a,-d+max(r,,r,))
(al’az) in 1 1 1552 2 12

= sup ¢(al-d+max(r1,r2)\"w}-d+max(r],r7))
a.+a,=d - ’
1 72
aliazzp
= sup ¢(a,-d+rax(r,,r,)P(-a,+max(r,,r,)).
O:alzﬂ 1 1’72 1 1’72

We will show that

lim  sup ¢(a

-d+max(r,,r,))¢(-a, +rax(r,,r,)) = 0,
i Ofﬂlfﬁ 1’72 1 1’72

(5.4.18 1

Thus, there will exist a K(rl,rz,é) sich that ¢ z_K(rl,rz,G) implies the
gain is less than cz(rz) cz(rl,rz,d), which will prove the lemrma.

Let X and Y be i.i.d. N(0,1) r v.'s. Then (5.4.18) is equal to

lin  sup P[X < al-d+rax(r1,r2), b 5_-a1+max(r1,r?)],

(5.4.19) dom O<ayd

which involves the probatility in a certain rectangle in R?, as

illustrated in Figure (5.4.20),
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(-d+max(r,,T,) .mmc(ut'l.r;,))Y

max(rl,rz)

\'4
...;.------.--.-..-.--.--.--.\ - -
e . al o — .
o - -'_/ i . /
For g = il = X
m— = o 5 R
al = 0 EF e /’/ _,f '
- o '
—/_ - ’_/ /.» - ]
> o 0
— . '
2 s o -
- et ’ 3 e '
- o '
- — -
o - '
- -0
- > e . '
- = o ‘
- I L ’_/’ ]
ce o= pma '
..... e e m e i e e e mente e e e e mc o=}
4 ~ = . -
NS - /// - N - .-‘ B = 5
pe - > el ~ v 8
~ oS 7 e il A NT TN
~ —— N > - *+
P ol s i, k.
- =g - s S ! ‘:
s e s 0
e il ot ) ] . R
=, o S e | ’
R? e, S ek . ¢ ll
=" " % -~ =l R Y \
- s X > 1 " '
- i P ) <'\, e 0‘ - ' \
I B Sy TN e e e 3
e —A< il e e 88

For a1

(max(rl,rz),-d+max(r1,r2))

X+ Y= -d+ max(rl,rz)

Figure (5.4.20)
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Thus, (5.4.19) is less than or equal to the limit of the supremum of

the probability to the left of the line X + Y = -d + wax(rl,rz).

lim  sun P[X+Y < -d+rax(r 2)] = lir PIX+Y < -d+max(r1,r2)] =0,

P 0<a1<d G

THEOREM: Foru ¢ O(n*) (see (5.3.15)), the MPE (tl,tz) is
(5.4.21) equivalent to the GMLE (Y[l]’ [2]) found in Section 5.3, and

thus has the sarme ontimum nronerty as that CMLE.
Proof: We wish to show that, for each y ¢ O(n*) and for each fixed
§> 0,

1 = lim P [k(n)max(lt X[l]l It X[,]l) < 6]
no

lim P, [!C;ax(la lo/Vn Iazlo/Vﬁ) < 8}
nro

= 1lim P [Pax(al, 2) < 8],
nm w

where the last equality uses Lemma (5.4.14). Mow by Theorem (R.3.2),

the density of d --KZ(A[Z] { ]) for y > 0 is

e e
v R B D

vhere n = u[?] - “[1]' Thus ;i: P fd > K(rl,r,,d)] = 1, so usine Lemma

(B.2.1),

i = lim P 4 v =
i:: Pu[max(al,nz) < 6] ;:: u[rax(al,a2)< 6§ 14> X(r;,T,,8)] = 1,

vhere the last step uses Lemrma (5.4.17).




CHAPTEP 6. TMTERVAL FSTIMATION

6.1, CENFPAL FORMULATION

Consider joint corfidence interval estiration of “fl]""’“[k]'
Our obscrved statistics under "ule (1.3.2) are ‘ij i=1,...,%

j =1,...,n)" we take X .,Yk to be fundamental as at (5.1.1) (note,

17

as has been pointed out by Bechhofer, Kiefer, and Sobel (17°68), Part I,

Remark 4.1.2, that X X are snfficient and transitive for p.,...,u,
1 k

1

after n stages: see p. 426 and Treorerm 17,1 of Rahadur (1954), as well
as pp. 334ff of Ferpuson (17267) for details of tese notions), choose

our interval to be of the forrm

T o= (¥ vtsner, 1 )

(6.1.1)

= . h
(g ey & P S oS Py ) €

where ¢, ,h are functioas of i},...,?}, and ask two invariance

q con il
1-° k,nlk

conditions (involvin- relobeline of populations and shifts of location).

SYIMETPY TMVAPIAYCE: For all B ¢ S

kl
(6.1.2) _ _ _ __
R T N e = % et 5
LOCATIM INVARIANCT:  For all ¢ ¢ R,
(6.1.3) _ B - -
I(x1+c,...,Xk+c) = I(kl,...,Yk) + C.

Yeiss (1°63) pointed out, in another context, that (6.1.2) and (6.1.3)
are not necessarily the only or the htest ways to cornensate for nerruta-
tions and shifts of location, respectively: there may be other ways to

compensate which yield the same irterval.

118
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LEMMA: Under condition (6.1.2), I(X .,7k) must he of the

(6.1.4) r

form I(X[I}""’Y[k])'

Proof: C(Condition (6.1.2) implies that I depends only on the ordered
Yi i=1,...,k).

DEFINITION: Let al,...,ak (a1 >0, ... ,ak 1_0:31 + ... 0+ a,

(6.1.5) =1), b* (0 < b* < w), and (G,}') (-» < G < H < +=) be con-

stants pre-sct by the experimenter.

We now take our loss function to be a weiphted sum of the proba-
bility that I (X, q,...,X doesn't cover u,., plus a multinle of a
Y Ky Xy Mi) P
quantity related to the length of the interval on u[i] i=1,...,k):

LOSS FUNCTION: W(u ;I(Y“],...,Yrk])) =

(6.1.6) "

i izlai{pur“[i] £ (g;;h)] + b* min(h, -g, ,"-F)).

Mote that the length hi-gi is the special case of min(hi-gi,H-G) where
the experimenter chooses (G,!!) with H-G = +=,

RISK FUNCTICH:

(6.1.7) = _ - -
r{ ;I(X[I]" "’x[k])) = Euw(u:I(X[I],.. .,X[k])).

Thus,

r(u;I) = Fuw(u'l)

k
(6.1.8) ) iglaiE“{P“hj[i] £ (g;,h)] + b* min(h,-g; ,H-C))




120
k k
= r n, 4 a.F v -, ,H-G
iglai AURREACERIRY izlqi  min(h o, H-6)
k k
=1 - Z aiﬁj[u[i] € (pi,hi)] + b* z aiﬁumln(hi-vi,H-C).

i=1 i=1

Our ain now is to find functions ql,hl;...:gk,hP which are in some

sense optimal with respect to (6.1.7), c.r, which achieve the winimum

inf sun r(U;I(Y{I],o")Y[}]))

(6.1.9) A
“1 ’}‘1) [ v.q](:hk UEQC(U [!,])

and provide a minimax invariant coniid:nce interval. (The u in (6.1.9)
will be non-randomized, since p is a fixed unknown and rnot a random

variable: I(Y[I],...,Y[P]) will be considered non-randomized also.)

Although we have been unable to carry out (6.1.9) or other ontimization
in the peneral case, results €or special cascs are obtained helow. VNote,

for use below, thrat by Lemma (6.1.4) and (6.1.2) with ¢ = _Y[i] we have

the

THEOPEM: lUnder conditions (6.1.2) and (6.1.3), I(ii,...,xk)

must be of the form I(V}I]""’Y[V]) with (for i =1,...,%)
(6.1.10)

? T Yy &Ny X g

hy = ¥y ¢ WX o5 Yg)-




CHAPTER 6. INTEPVAL FSTIVATION

6.2. INTERVALS OF FIXFD “IDTH WITHIN A CFRTAT™ S''BCLASS

In Theorem (6.1.17) we looked at the form of intervals of type
(6.1.1) under two invariance conditions. e now study the subclass of
joint intervals

I (x[l]n---) [},]) » {u[l]""’ufk]:

(6.2.1)

<

“] 81<u[1]<X[]h,....n[k] Pk_u[,] []"h}

which utilize the 'natural’ estimators iki] of Mii) (i=1,...,k

stronply by taling gi,hi,..

.;gi,h; to be constants, Further, we will
suppose the experimenter has specified nositive constants dl""’dk’ and

wishes the interval about “[i] to be of lensth di (1=t 15. .55, We

then study intervals of fixed width within subclass (6.2.1), i.e. the

subclass of joint intervals

Ig wXpqpee e Xy

(6.2.2) = {"[1]""’” [x]° 7('[1]+(h*1*-d1) ¥ iY“]«»hI,...,

Y[k]+(h§—dk) <MK _<_Y[k]+h;;}.

Then (here it is logical to choose (G,H) = (-«,+x))

r(u:IF’N)
k k
(6.2.3) =14 = izl i p[ul;l] e (¥ [1]“(}‘ -d. )»‘([ ]"’h Nl +b*1§1 i
k -a-
S LR iglaidi - Zl‘" Rolys)-hy € Xpgy Swpgprhisegl,
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which is of the form constant (specified by the experimenter) minus a

weighted sum of probabilities of coverape of u[1],...,u[k]. To find the

hi....,hi which arc optimal in the sense of (6.1.9) (minimax) within

subclass IF N of (6.2.2), we must find the h;'s which achieve
k

(6.2.4) su inf a.pP y~h* < ¥ .o <y ...-h*+d.].

hi"'?’hi “CQOGJ[k]) igl i u[“[l] i— "[1i] _.“[1] i 1]

For the case a, = ... = a =0, a

1 = 1, suppose we set h¥ = dk/2.

k-1 k
Then Lal Saxena and Tong (1968) claim in an abstract that

inf P [ q-d,/2 < Xppq < g q+d, /2]
uer(“[k]) pio[k] Tk k] (k] "k

k
d
occurs at u[l] = .. 0= “[k]’ and therefore equals [¢[§£ n]}

3

Q

4 Al - -
- ol 5| o ien, if one uses the interval (X[k]—dk/z, X[k]+dk/2)

for M K] then the probability of converge is a minimum when

U[I] LT U[k].




CHAPTFP 6. INTEPVAL ESTIMATINN

6.3, UPPER AMD LOVER INTFPVALS WITHIM A CFEPTAINM SUBCLASS

The subclass of joint intervals I of (6.2.1) utilizes Y[i] as an
estimator of u (] strongly (i = 1,...,k). For problems in which we
wish an upper (lower) joint conlidence interval onu “],...,u k] we will
set gi = .. = gi = 4o (h; = ,,, = h; = +o) in (6.2.1). Then our

interval is in one of the classes

(6.3.1) IN,[' = {u[l]”"’u[k]: b i,‘_:[1]+h*1' gy S <y ]+h§}
(6.3.2) IN,L = {u“],...,u (k] Y[ ]-v < ”[1]""’Y[1<]""l: f_u[k]}
and
¥
(6.3.3) r(u:ly ) = Z a,P [Xh] > [.]-h;] + b*(H-G)
k -
(6.3.4) r(,Iy ) =1 - ) aiP [Xpyp Supyptei] + b2 (0.

i=1
For the case of uasper intervals we may choose !'-G = 0 without loss.

Then

k
(6.3.5) T ) = izl %, iy <wpgphil-

Similarly, for the case of lower intervals we may c™oose H-G = 0

without loss. Then

(6.3.6) I‘(MEIH,L) = alpu [-\T[i] _>_U[1]+?;]

o
S
—

Sy




o
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THEOREM: For any i (1 <i < k), if a, = 1 (thus aj = 0 for

j # i) then the risk (6.3.5) ((6.3.6)) is the probability

that our upper (lower) interval doesn't cover u[i], and is

i-1 terms k-i+l1 terms
—_———,

maximized over u ¢ Qo(u [i]) at u= (-w,...,-w,u[i],...,u [i])

e =

(G i terms k-i terms

= e S e, Y

= (u[i]n--,u[i],""",--o,*“))-

Thus, for any vy (0 <y < 1) an upper (lower) confidence

interval of minimal probability of coverage y is (-m,Yri]-rh;)

_1 1
/me ).

((Xp;q-830+=)) with he=(o//n)o” " (y v

Proof: Upper Interval. For amy i (1 <i <k), if a; =1, a; = 0 (#1)

then

sup b 3 (T | {
UEQO(‘J [1]) N, U [

= sup P‘J [X[i] <u [i]-h*i*] = sup FY

Mr:q-hY)
UEQO(U[i]) UEQO(U [1]) Mi] [1] .

; :;TOO pu [1]=. /] [i_1]=-M,u [i]=' Y [k][i[i] ,<_u [ll'h;]

since, for i = 1,...,k and x ¢ R, FY (x)+ as ulf (v =1,...,k) by
[i]
Theorem (2.1.11). It follows by a modification of the proof of Case 1

of Theorem (2.2.4) (using 1 for x) that

sup T(usly ) =P (Xp3y < wpephi]
4o 0 1)) T T )T )
-h;
= PImin(Y,,...,Y, . ) < ——
1 k-1 b 0/'/;
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where Yl""’Yk—i+1 are k-i+l independent N(0,1) r.v.'s. To make the

minimal probability of coverage y (0 < y < 1) we set h* so that

l1-v

-h*
. i
P[mn(Yl, . ’Yk-i+1) < o//FJ

-h;
1-7P mm(yl""’Yk-iﬂ) >

c//;f
e Y] X-idl - ]k-i+1
=1 - [1-00— ] =1 - [o|—= ;
o//n )| O/GJ

[ hy kel B hy R-l—
thus y = ol——;-:] , yk'“l = @L z ], and h} = (o//;f)fl(y 'i"l).
co//n

//n

Lower Interval. Forany i (1 <i <k), if a; =1, ay = 0@ #1)
then by Theorem (2.1.11)

sup rh;Iy ) o= sup P [X;:q > Mo.q+2]

, i) =T
UEQO(U [i]) UEQO(U [1])
= lim P IR b IR RT3 I
M40 H [1]"’."1[1] ’u[i*].]-."-u [Y']—M fl] [1] 1

By a modification of the proof of Case 2 of Theorem (2.2.4),

sup  T(ly ) =P =M,[Y[i] > vpy)*ei]

”eﬂoﬁ‘[i]) u[1]=..,= u[i].u[i+1]=...=u[k]
g¥
= Plmax(Y,,...,Y.1 > —=
1 1 _0//;

where Yl,...,Yi are i independent N(0,1) r.v.'s. To make the minimal

probability of coverage vy (0 <y < 1) we set g* so that




1 - Y = p[max(yl.v-o-’y’) >

r 4] 4
=] -P max(Yl,...,Y.)‘: =1- (¢ s
[ ' o//F] [ (o//r_f]

$ 1

g? 1 T g* 3
thus v = |9 1 , Yl = ¢ L , aind g* = (0//;)¢-1(Y1)-
o//n o//m, !

THEOREM: The upper confidence interval of (6.3.7) on u[i]

which has minimal probability of coverage y has maximal prob-

1 i
ability of coverage 1-[1-yk°1‘l] i=1,...,k; 0 <y <1).

(6.3.8)
The lower confidence interval of (6.3.7) on u[i] which
has minimal pr.obability of coverage y has maximal probability
1]k-i+l
of coverage 1-[1-y1J (i=1,...,k; 0 <y <1).

The proof of Theorem (6.3.8) is similar to chat of Theorem (6.3.7)
and will be omitted. Note that (6.3.7) and (6.3.8) also hold when k =1,
in which case the upper and lower intervals On‘J[I] are exact. The fol-

lowing table illustrates thes maximal degree of overprotection.
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1 i
Table 6.3.9. 1 [1 yk’i*l]

k 1 2 3

Y i=1 i=1 1i=2 i=1 i=2 1i=23
.99 .99 .995  1.000 997  1.000  1.000
.95 .95 975 .998 983 .999 1,000
.90 .90 049 .99 965 .997  .999
.80 .80 .894 .96 923 .989  .992
.70 .70 .837 .91 888  .973  .973
.60 .60 775 .84 843 .949  .936
.50 .50 707 .75 794 .914  .875

For the special case i = k, Fraser (1952), p. 579, gave the upper

interval on u[k] of Theorem (6.3.7) as one with probability of cover-

age at least y. Fraser proves that under mild conditions an upner

confidence interval for11[k] (k > 2), with probability of coverase

y (0 <y <1) for all u € Qo’ does not exist.

Our results above extend to certain location parameter families

if, instead of set-up (1.3.1) (normal distributions), we take set-up

(2.1.1) with assumption (2.1.2) (a location parameter family with

finite mean).

THEOREM: Suppose we have lccation parameter populations

as in (2.1.1) and assumption (2.1.2) holds. For any i

(1 <i <k), if a, = 1 (thus aj = 0 for j # i) then the risk
(6.3.5) ((6.3.6)) is the probability that our upper (lower)
interval does not cover u[i] and is maximized over

V> Qo(”[i]) at
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(6.3.10) i-1 terms k-i+l terms i terms k-i terms
e N e N

p—— ———

= ('wa-.-"”nu [i]'.-"u[i]) (u = (u[i]""lu[i]'+Q""’+w))'
Thus, for any v (0 <y <1) an upper (lower) confidence
interval of minimal probability of coverage vy is (-w.Y[i]+h{)
_1
((Rpy)-ego+=) with hg = 6 ta-v* g + g

1
(e} = Gn'l(yllf) - E). If gn(xlf) is symmetric about x = 0

1 1
: -1 kel Beatin) 7 | hpdiie
this becomes h¥ = G " (v |[£) + Ec (gf =G (v | £) Eg).

Proof: Upper Interval. For any i (1 <i <k), if a; = 1, aj =0

(j # i) then by Theorem (2.1.11)
sup r@;l, ) = sup P [X;.y <up.q-h?]
ueﬂo(u[i]) LB u&:Qo(u[i])u [i) [i] 1

= 1j Xp.q <up.q-h?
;irm pu[1]=...=u[i_1]=-M,u[i]=...=u[k][ [i] -u[1] 1]

= h];:,:» HM(u[I] "h;:) ’

where H,, (x) = Pu[Yti]:;] with y = (-M,...,-M,u[i],...,u[i]). Now

HM(x)*Hw(x) for all x by the expression for FY (x) piven in the proof
[i]
of Lemma (2.2.5). Thus

sup r(p;l, ) =P - = S = .= [X,. < upsqy-h?]
per Gy Y T g B TR
o [i]
= P[min(Yl,...,Yk_i+1) :_-h;+Ef]
where Y Y are (see (2.1.7)) k-i+l independent r.v.'s each

120 Tkeiel

with d.f. Gn(ylf). It follows that to make the minimal probability
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1
_ -1 k-i+1
of coverage y (0 <y < 1) we set h? so that hf = -G " (1-y |£) + Eg.

Lower Interval. This case follows in a similar manner.

THEORLM: The upper confidence interval of (6.3.10) on )

which has minimal probability of coverace y has maximel nrob-

1 11
A g [ k-i+l] . ) !
(6.3.11) ability of coverape 1-{1-vy (1=1...,k; 0 <y <1j

The lower confidence interval of (6.3.10) on u[i] which
has minimal probability of coverage y has maximal probability

1Jk-i+1

of coverage 1-[1-yi (1=1,...,k; 0 <y <1).

The proof of Theorem (6.3.11) will be omitted. Note that this
result implies that Table 6.3.9 provides an analysis of maximal over-
protection for our location parameter case as well as for the normal
case., For the special case i = k, Fraser (1952), p. 576, gave the upper
interval on u[k] of Theorem (6.3.10) as one with probability of coverage
at least y. Fraser proves that under mild conditions an upper confi-
dence interval for “[k] (k> 2), with probability of coverape y
(0 <y <1) for ally ¢ no, does not exist if f(x-u) satisfies a
condition of bounded completeness. e will now extend this result to
“[i] (1 <i <k; k >2); our mild conditions are slightly stronger than
Fraser's.

DEFINITION: For 1 <i < k, let gi(xl,...,xk) be a real-

valued function such that for any j (1 <j <Kk)
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(6.3.12) gi(xl,...,xk) < gi(xl""’xj-l’xj’s’xj+1""'xk)
for all XyserosXy € Rand §> 0.
DEFINITION: For 1 <i <k, let
( e
(6.3.13) jl if gi(xl,...,xk) > 0

¢, .(x ,...,xk) =
6,11 |
LO if gi(xl,...,xk) <8.

DEFINITION: For any i (1 <i <k) for 2 = 1,2,... let

!the ith smallest of yl,...,y2 if 2> i

-(’
(6-3.14) Ri(yl,""yl) = 0 *
l+oo if ¢ <i.

Let Ro(yl,...,yz) = -o if 2> 1.

DEFINITION: For 1 <2 <k, let
(6.3.15)

Sy = {lxysvux): Ry(x,5#0) > x> By (x5,540))

N:;te that ¢e i(xl"“'xk) is a monotone non-decreasing function of
]

170 % and that Sl""’sk are disjoint sets whose union is Rk.

ASSUMPTION: Gn(yuelf) is boundedly comnlete (each-sided),
(6.3.16) i.e. Eg(X) = _Zg(x)dGn(x-BIf) = 0 for a dense set of

(<0 or >0) and |g(x)] <M imply g(x) = 0 (a.e.).

THEOPRFM: Suppose we have location parameter populations as

in (2.1.1) and assumptions (2.1.2) and (6.3.16) hold. Fix

(6.3.17) i (1 <i <k; k >2). Then an upper confidence interval for

u[i]’ with probability of covering y (0 <y < 1) for all

HE QO, and satisfying (6.3.12), does not exist,
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Proof: Assume that gi(xl,...,xk) satisfies (6.3.12) and yields an
upper confidence interval for u[i] with probability of covering

Yy (0 <y <1) for allu ¢ Qo' We have

! = i < —
Y= Pu[U[i] S gi(xl’.."xk)] b E¢u[i]’i(x1:-°-)xk)
= E ’°u[i],i(ii""'ii-1'xz'ii+1' K6 (xpu g Bl ) 1Ewy = vy
= (2) ' X Y 3 L
E[%J[I] 1(Xl,...,X2 1° 1+1, ..,Xk)] if My = u[i]
where
(2)
Bu [i],i(xl""’xi’.-l'xlﬂ’ 0 ,xk) —_wu[ ] xl,...,xk)dGn(x -u[1]+Ef|f),

“)

We now derive conditions on the function Bo i

’

From the expression

above it is seen that (if My = “[i])

1]
=]

Wz 3 T
E[Bo,i(xl" 8 xl 1° 2+1: xk) - Y]

Hence, as in Fraser (1952), p. 580,

(2)(x 0-1"%g417" ,xk) =y (a.e.).

(2)
i

Using the above condition on Bo ., we obtain conditions on the function
»

¢°’i(x1....,xk).
()
8o,i(x il

,xz_l,xz+l,...,xk) (a.e.)

= Log 3 0o e X )06 (x 4B | £).

Consider fixed XpseeesX »Xp - Now ¢o,i(x1""’xk) is a mono-

2_1,2(24_1, ‘e

tone function of Xy and since it is a characteristic function it will

have the following form:
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[ value of x, at which
u(xl,...,xl_l,xz+l,...,xk) = max °o,i(x1""’xk) jurrs , Ri_l(xj,j#z)
from 0 to 1

0 if Ri_l(xj,jfl) < xy < u(xl,...,xl_l,xz+1,...,xk)
09,iZpoeeox) = .
1 if u(xl,...,xl_l,xz+l,...,xk) <x, <.
Using the function u(xl,...,xk) we obtain
R -1 (x;,3#2) -
(6.3.18) y = ’ ¢°’i(xl,...,xk)dGn(x£+Ef|f) + [ dGn(x2+Ef|f).

- u(xl,...,xz_l,x£+1,...,xk)

However, since
Ri_l(xj.sz)

0 < J ¢°,i(x1,...,xk)dGn(xz+Ef|f)

-00
Ri_l(xj.J#z)

< dGn(x2+Ef|f) = p[ik g_Ri_l(xj,j#Z) + Eg]

-0

then

-1
G (1-v|f) - Eg 5_u(xl,...,xl_l,x£+1,...,xk)

< 6 (-v+P (X, < Ry ) (x;,3H)4EGD) - Eg

The inequality on u(xl,...,xk) implies that ¢o,i(x1’°"’xk) = 0 for

. = . ) ,
(Xy5-0%) € S, with x, < G (1-y|£) - Eg. This is true for £=1,...,k;

. -1 .
hence ¢°,i(x1,...,xk) = 0 if Ri(xj) <G (1-y|f) - Eg. Consider now

—
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(XpseeesXy 10X, 000 005%,) having Ri_l(xj,j#z) < G;l(l-ylf); in (6.3.18),

the first integral vanishes leaving

Y = f dG_(x,+E.|f).
ng °f
u(xl,...,xz_l,xhl,...,xk

= -1 - - ] sd

Therefore u(X,,...,X, 1,X, 155X ) = G (1 v|£) E., if Ri_l(xj,Jrl)
-1 . ;
< G (1-y|°). From this equality on "(xl'°'"xl-l’x2+l""’xk)’ we
obtain the following conditions on ¢° i(xl,...,xk):
0 if (x,) < G.l(1-v|£) - E
Y75 n £

-1
¢°’i(x1,...,xk) = | Ri(xj) > G (1-v|f) - E;

1NE -1
Ry (x5) < G (1-v[£).

\

But since ¢o’i(x1+6,...,xk+6) is monotone in &, we have

0 if R (x)) < cla-vlp - K
bo,i(Xyreeeaky) = ! -1
’ 1 if Ri(xj) > G (-vy|f) - E

£
Therefore
. -1
<0 if Ri(xj) = Gl (1-v|f) - Eg
gi(xl,...,xk) . . -1
> 6 if hi(xj) > G (1-y|£) - Eg.
Similarly
- -1 :
<upgyp M ORi(x) < 6 (L-v[£) +upyy - Te
gi(xl,...,xk) E
Z ¥ i) if Ri(xj) > G (1-y|f) + Wiy C Ege

This completely determines gi(xl,...,xk): gi(xl,...,xk) = Ri(xj)

3 G;l(l-ylf) + Ec. But we know that a constant added to this yields
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1 |

Y[i] S G;l(l-yn'l‘llf) + Eg, which does. 't always yield v; therefore

this can't.

Note that the argument of Fraser (1952), p. 580 (top) showing that

the interval for "[k] generated by his proof has coverage at lesst v

doesn't extend to our case, since aithough

Ry _y (x;,3#2) < A} = Re(x;) > A iff x> A),

'{Ri_l(xj,j;ez) <Al # {Ri(xj) > A iff x> A}

Note that (if we wish to coasider location parameters and not
means) restriction (2.1.2) can be dropped throughout this section and

the results stated in terus of 6,,4,...,8 1
(1] " [k]




APPENDIX A,

[IAXTMA AND MINIMA OF REAL-VALUED FUNCTIONMS
OF n REAL VAPIABLES
A-l‘ ns= 2
Although the case n = 2 is included in the case n > 2 of Section
A-2, it will be convenient to have stated separately the results and

notations of this special case. (Note that some authors, e.g.

Kaplan (1952), p. 126, state these results in a somewhat more cumbersome

manner.)
THEOREM: Let f have continuous second-order partial
derivatives on an open set S in P2, Let (xi,xg) e S be such
that
Bf(xl,xz) i af(xl,xz) o
— = =0,
X 3 X
1 (xo xo) 2 (x° xo)
1’72 1°72
and let
32£(x,,%,)
A=.._____1_i.
ax% - =
(x;,%5)
2
= ) f(xl,xz)
(A.1.1) = =
3X,0X
172 ( o 0
XXzl
32f(x,,x,)
C=-————12—2—~
IxX
2 0 .0
(xl,xz).
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o o, .
Then (xl,xz) is
(1) a relative minimum if B2-AC <0, A > 0;
(1) a relative maximum 1if BZ-AC < 0, A < 0;

(iii) of undecided naturc if B2-AC = 0; and

(iv) a saddle point if B2-AC> 0.

E—— 8




APPENDIX A. “AXIMA AND MIMIVIA OF RFAL-VALUED FUNCTIONS
OF n REAL VARIABLEN

A-2. n>2

Even 1n Hancock (1960) and Apostol (1957) the presentation of the

theory of maxima and minima is not as completc as we need (e.p., in

order to show in total the asymptotic naturc of (X,...,X) in Section

5.1).

(A.2.1)

We thereforc present a summary gathered from several scurces.

THENREM: Let f have continuous second-order partial
derivatives on an open set S in " Let (x?,...,xg) € S be
such that

Df(xl,....xn)l

i = 0 (i=1,...,n),

o} 0
(xl,...,xn)

and let Q = (dij) where

2
3 f(xl,...,xn)

dig = CRIEES

(155 =G i)'

(xi,...,xﬁ)
Then the real symmetric matrix 0 is either
(i)  positive definite, in which case (x?,...,xg) is
a relative minimum;
(ii) negative definite, in which case (x?,...,xg) is
a relative maximum;
(iii) semi-definite, in which case the nature of

(x;,....xg) is undecided; or

(iv) indefinite, in which case (xi,...,xg) is a saddle

point.
137
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Proof: In addition to nreviously-cited references, sce Courant (1966),

pp. 204-208.

THEOPEM: A real symmetric matrix 0, having eipenvalues

Al,...,xn (say) is

(i) positive definite iff Xi > 0 (i=1,...,n);

(ii) neecative definite iffA, <0 (1 =1,...,n);

i

(iii)(a) positive semi-definite iff xi >N (i =1,...,n)

(A.2.2)
and at lcast one Xj = 0

(b) nepative sermi-definite iff Ay < n(is=1,...,n
and at lcast onc Aj = 0: and
(iv) indefinite iff at least one Ai is positive and at

least onc Aj is necpative.

Proof: TPecall that the eigenvalues of a mratrix 0 are the n roots of the

equation |0-A1] = 0, and sec “edderburn (1764), n. 92,

THEOPT'':  For the real symmetric matrix 0, let 4 = det(Q)

and Ao = 1. Let An-t be the determinant of Q with its last
t rows and columns decleted. (Note that An = A.) Then O is

(i) positive definite iff AO,A 'An are nositive:

1o

(ii) nerative definite iff AO,A ..,An are alternately

1’

positive and n..ative;
(A.2.3)

(iii)(a) npositive semi-definitc iff all nrincipal minors

of 0 arc >0 and 4 = 0;
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(b) negative semi-definite iff all princinal minors
of Q arc >0(<0) if their order is cven (odd), and
A =0; or
(iv) indefinite, otherwise.

Proof: For (i) and (ii), see (e.p.) Narayan (1962), pp. 165, 167. (ote
that the referencc cited by Apostol (17°57) is inadequate; it proves a
weaker thecorerm which utilizes more than the leading nrincinal minors of
0.)

For (iii)(a), from Browne (1958), we know 0 is positive semi-
definite iff all nrincipal minors of 0 are > (see pn, 120-121, Theorer
46.5). If 0 is to be positive semi-definite but not definite, then
the condition should also specify &4 = 0, (This modification holds for
the => implication by the well-known result A = Al"'xn' e.o. Faddceva
(1959), p. 14. The <= irplication is clecar.) 'Ye use, of course,
Theorem (A.2.2).

For (iii)(b), note that for any matrix A of order i, det(-A)
= (-l)idet(A), and that 0 is necative semi-definite iff -0 is positive

semi-definite.

Note. A condition such as "AO,AI,...,An > 0and A = 0" will not

suffice for (iii)(a) of Theorem (A.2.3). For cxamnle, consider

o]

0 -1j.

AR
Note. If n=2,0-= L!C]' A = AC-B2, A, = A A, = A and O is

1 2




(i) positive definite iff BZ-AC <0, A > 0;

(ii) negative definite iff B2-AC <0, A < 0;
(iif)(a) positive semi-definite iff B2-AC = 0, A> 0, C > 0;
(b) negative semi-detinite iff BZ-AC = 0, A < 0, C < 0; and
(iv) indefinite iff {B2-AC = 0, A> 0, C < 0} or
(B2-AC = 0, A < 0, C> 0} or {B2-AC> 0},
Here, we have reduced the number of undecided cases ((iii) cases)
"beyond" those, namely BZ-AC = 0, named in virtually all texts. (The
cases separated out belong to (iv) and are therefore saddle points.)
However, by a consideration of signs it is easy to see that the sets
{B2-AC = 0, A> 0, C <0} and B2-AC =0, A <0, C> 0} are empty. (The
reason for this is the need to have at least onc positive and one
negative eigenvalue, thus exhausting the supply of eipenvalues when

ns=2.)
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APPEMDIX B.
CFRTAIN TAYDOM VAPIARLTS

3-1. JOINT DIST'IRUTION OF X

[’

The joint density of YI”"’YP is

f5 7 (Vo) fs (y,)...f5 (y,)
XyoooosXy 71 S ¥R X, Tk

where in

(see (5.1.1)).

NISTRTBUTIONS OF VARINUS FUNCTINNS OF

"”Y[k]

()’i € R; is= l,..
(*) is the .‘I(ui,ozln) density function (i = 1,...,k)

It is well-known that t'en the joint density of the

ordered )(i (i=1,...,1), i.e. of x[l]i"'ix[k]’ is
f- = (x,,...,x.)
X[l]""’x[k] 1 k
) < % Gaayr Xay) s Mo
_JB»:Sk ) R ¢
0 , otherwise
X - X -4
(B.1.1) [T (aroyke|BAITLS (7800 Tk X <X,
= {8eS, c//n o/Vn :
. 0 , otherwise
x 4 X oy H oy,
Z (/r—{/o)k¢ _.B_(_l)—”_[_l_]_ oot .._B(_l..)_.[.!__]_ " xl:..ix]-
= {8eS, a//n a/V/n
0 , otherwise,
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APPENDIX B. DISTRIBUTIONS OF VARIOUS FUNCTIONS OF
CERTAIN RAMDO! VAPTABLES

B-2. LIMIT DISTPIBUTION OF X,.+,...,X,
(1) ik]

The limiting distribution of Y[l]""'ilk] (under certain

parameter configurations) is of interest to us. Let {An, n> 1}
aad {Bn, n > 1} be sequences of events on somc probability space
(which may depend on n). Let a = (al,...,ak) € Rk be fixed, and denote
the vector (ulmlc/";"' . ,ukmko//F) by u + ao//n.

LEifA: If A}g Pn(Bn) = ], then (if either of the following
(B.2.1)

limits exists) #m Pn(Aan) = rlrm pn(An)'
Proof: Suppose %_m Pn(Bn) = 1. Then by takine limits in Pn(Bn)

(V] N : q v S
Pn(An Bn) < 1 we find 1im Pn(An Bn) 1, and hence
3 - V 8 . . » . .

Ain {Pn(Bn) Pn(An Bn)) 0. Taking linits in Pn(Aan) Pn(An)

- v
+ {Pn(Bn) Pn(An Bn)}yields our result,

1o . X X
DEFINITION: For w e Q_, let p(nu) Pu[X(l) < ... <x(k)],

(B.2.2) where X(l),...

’Y(k) are as in definitions (1.3.13) and

(1.3.14).
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LEMMA: Let O = {y:p ¢ Qg “]'“[1]""“‘»“” [k]}’ For all

(8-2.3) u € Q(ﬂ)non

Hm p(n|u+ac/’/n) = m Pumo//ﬁ[-i(l) < ‘Y(k)] - 1.

Proof: 1. Suppose that u ¢ Q(#),0. Then for all n large enough,

u+ac/V/n ¢ Q(;‘)“O. Ther the Y(j) are independent and Y(j) is

the sample mean of n i.i.d. N(u[j]*ajo//;{,oz) r.v.'s. The

characteristic function of a N(m,0?) r.v. is (see, e.g., Parzen (1960),

p. 221) P(t) = exp {itm- %—tzoz}. Thus,

n
itX 'L +3. /_ - l tz 2
Foo@ e G o [0
Xt
- ita 9. L%
1tu[j] 1taj/_n_ 5 n—o
= e e ,

itu,,
so that Mm PY (t) = e [J].
(3)

(1962), p. 124, 5.4.1a) that Y(j) converges in probability to b i)

It is then well-known (see, e.g., Wilks

(j =1,...,k). Thus,since the Y(j) are independent, it is clear that
the probability that {Y(j) converges to u[j] (j =1,...,k)} approaches
1 as n»>, However, by Lemma (B.2.1)

B Puvao/alX ) < Kol

{Ehzen) gt Pu+ao/v’F[Y(l) oo S Y(k)’

Xyl e s - I Xggupgl < el




144

for any ¢ > 0. If we choose 2¢ < nmin (u[j]~u[1]). then the r.h.s.
l<i<j <k

of (B.2.4) equals
#m pu*&O//;lli(l)-u[1]|< @ 500 ‘Ix(k)-u(kll E C],

which is 1 since P[X converges to u[j] (j = 1,...,k)] approaches 1 as

()
nee,

2. Suppose that u c[R(#)]40. (Fventually u+ao//n ¢ 0,0(#), or

0,[2(#)]€.) Then there are & distinct values in m[1]4alo//ﬁ,...,

u[kloakc//ﬁ} (1 < 2 < k-1) and (see (1.3.14))

pu*ao//;[i(l) < ,.. < Y(k)]

ik X <X,. ].

= Pu*ﬂ(’/'/;[x(il) < X(il*l)' x(lz) < 1241)’ oo I (Ig-l) (12_141)

However, the result will not follow as before sinze min (.. 4 (.4)
- l<i‘:j<k [J] [1]

= 0 here. It can be seen (e.g., consider the case k = 2) that the limit

+ 1 as me, (In fact, it depends on a.)

LEMMA: Foru € 0,0(#), as n»e

I‘(uﬂm/(;)

- v (X,,...,%x.)
5.2.5) (1100 kg L k L

Proof:

_ F(U+a°/";f) ( )
im Fo o ;S
Aig Ry X ! k
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. rl”ig{p(nlu +aa//n).

Pueaoal¥y S X0 Ky <0 gy < < Xy

+ (1-p(n|u+ac//n))-
'Puoao//'r?[x—[l] S Xpr ees 'Y[k] <X | not (7(1) < ... < Y(k))]}

"8 PsaomlX ) S X Xy SX6 Xy

< '..<_x.

OL

X

"B P eavatRay <X e Ky R Xy < e < Kyl

A8 Psao/nl¥(y < Xpe oo Xag 2 %
Here the second equality follows from Lemma (B.2.3), while the last

equality follows from Lemmas (B.2.3) and (B.2.1).

LEMMA: As n+w, if y+ao//n ¢ 0,0(#) then

(B.2.6) Pu+ac/Vﬁ[Y(l) ks DI j(k) < x1
e Pu IY(I) <_. xl, 00 G ,Y(k) <_ xk].

Proof: As me,

P;nac//ﬁli(l) Al xl’ ’Y(k) Bl xk]
Povaoi/alX (1) 8100 < xpm8pel/n, oo Yy mayol/n < xy -0/ n]
=P [Y(l) < x-a,0//n, ... 'Y(k) < x-a,0//n)

w Xy % e ’X(k) < xJ.
The second equality follows because, when u+ac//n ¢ OnR(#), Y(i) is

N(u[i]mio//ﬁ, o?/n) iff Y(i)-aio/fﬁ is N(u m,o?/n) (i=1,...,k).
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DEFINITION: Let ¢(zl,...,zs) denote the d.f. of the l,...,s

(B.2.7)
order statistics in a sample of size § from a N(0,1) population.
THEOREM: As m»x, if u ¢ OpQ(#) then
(u+ac/V/n)
(B.2.8) /n — - e (xl,...,xk)
O(X[I]-u [1]"310/’/“) P »"E(X[k]‘u [k]-ako//;)
k
-+ |\ @(xi).
i=1

Proof: This follows from Lemmas (B.2.5) and (B.2.6).

COROLLARY: As n+eo, if y e 0(#) then

(B.2.9) k
F (Xy,000,% ) = || o(x.).
/m - /Mo 1 k ] i
SRy T pa v w)! =1
THEOREM: If y ¢ 0,[a(#)]1° then
k.
(B.2.10) 1im F}"-ﬂw/ n) (Xyoe e 0%

o YRy | - My =
AT RS CADRIEE-T S RTS I AL
depends on a.
Proof: (A hint of this dependence was given in part 2 of the proof of

Lemma (B.2.3).) Suppose k = 2, a = (al,az) with a, <a,, and let

: 7 , -
Yl,Y2 denote i.i.d. N(0,1) r.v.'s. Then u[l] u[2] and

(u+ao/Vn)
F (x:%,)
V.= = i 1'%2
"E(X[I]'U[I]'alﬁ//n): T(X[Z]'U [2]'320/'/?1—)
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n, . - ©
= Pu‘_ao/'/ﬁ[--a‘(mln(xl.xz)-u [ll-alo//a < xl,

%(max (Yl ’Yz)'u [1] ‘32 O/l/l?) _<_ Xz]

P[min(Yl,Y2+(a2—a1)) 2 X, max(Yl-(az-al),Yz) < x2].

For ay - ay = 0, this is Q(xl,xz). However, for a, » a, it is anprox-

imately ¢(xl)¢(x2), and therefore depends on a.




APPENDIX B. DISTRIBUTIONS OF VARINIS FUNCTIONS OF
CERTAIN RANDO!! VARIABLES

B-3. JOINT DISTRIBUTION OF X, -XcvuyeoerXppy-X
(k] “[1] k] ~[k-1]

From thc joint density of Y[l]""’ifk] given at (b.1.1), we find

that (for X, < xz)
 va w  (x,,x,)
X[I],X[Z] 1°72
1 "1"‘[11]2+["2*‘t21]2 e, __"1*‘!21]2
D . . o//n J o/Vn I 2 o/Vn J o/Vn ‘
2n0?

so that (for y > 0), settingn = u[-?] = “[1]’

fs v )= [f5 1 (x,y+x)dx
X217 ) Z"m"‘[z]
2 2
® _1[["‘”[11 +[Y*""‘[zl }
- n b 2 a//; o//rT
2ng2
1[[”"@]2 ["““[z]]2
(B.3.1) -5 + -
. e o//n o//n dx

© 2
| - %xz* ) (IS
Jl_/_ne L lotn
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Since, via completing the square,
gaOb!
1
o = 7l (x+a) 2+ (x+b)?] o % /_ -(a-b)2/4
fe dx = fe 1/72

it follows from (B.3.1) that

THEQREM: With n = Y121 "y fory >0

e

o//n

n 20/11

- 3(a-b)?2

dx = /ne

S




REFERFNCES

Abramowitz, M. and Stegun, I. A. (Editors): Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables, U. S.
Government Printing Office, Washington, D. C., June 1964.

Alam, K.: "A two-samplec estimate of the largest mean,'" Annals of the
Institute of Statistical Mathematics (Tokyo), Vol. 19, No. 2
(1967), pp. 271-283.

Apostol, T. M.: Mathcmatical Analysis, Addison-Wesley Publishing Co.,
Inc., Reading, Massachusetts, 1957 (Third Printing, Necember 1960).

Bahadur, R. R.: '"Sufficiency and statistical decision functions,"
Annals of Mathematical Statistics, Vol. 25 (1954), pp. 423-462.

Bahadur, R. R. and Goodman, L. A.: "Impartial decision rules and suf-
ficient statistics," Annals of Mathematical Statistics, Vol. 23
(1952), pp. 553-562.

Bechhofer, R. £.: "A single-sample multiple decision procedure for
ranking means of normal populations with known variances,' Annals
of Mathematical Statistics, Vol. 25 (1954), pp. 16-39.

Bechhofer, R. E.: ‘"Design of experiments,'" a course offered at Cornell
University, Ithaca, New York, Fall Term, 1964.

Bechhofer, R. E., Kiefer, J. and Sobel, 'M.: Sequential Identification
and Ranking Procedures (with special reference to Koopman-Darmois
populations), University of Chicago Press, Chicaro, Illinois, 1968.

Bechhofer, R. E. and Sobel, M.: '!Mon-parametric multiple-decision
procedures for selecting that one of k populations which has the
highest probability of yielding the larpest observation (prelimi-
nary report),' Abstract, Annals of Mathematical Statistics,

Vol. 29 (1958), p. 325.

Berk, R, H.: "Zehna, Peter W.. Invariance of maximum likelihood
estimators," Review #1922, tathematical Peviews, Vol. 33 (1967),
pPp. 342-343.

Blumenthal, S. and Cohen, A.: 'Estimation of two ordered translation
parameters," Annals of Mathematical Statistics, Vol. 39 (1968a),
pp. 517-530.

Blumenthal, S. and Cohen, A.: '"Estimation of the larger translation
parameter,'" Annals of Mathematical Statistics, Vol. 39 (1968b),
pp. 502-516.

150




r-

151

Blumenthal, S. and Cohen, A.: '"Estimation of the lareer of two normal
means,' Journal of thc Amerlcun Statistical Association, Vol. 63

(1968), Pp. 861-876.

Browne, E. T.: Introduction to the Theory of Determinants and Matrices,
University of North Carolina Press, Chapel Hill, Vorth Carolina,
1958.

Chambers, M. L. and Mack, C. "Confidence limits for the minimum of

two normal means; a new 1nfﬂrcnce principle," New Journal of
Statistics and Operational Research, Vol. 2 (1966), pp. 14-27.

Courant, R.: Differential and Integral Calculus, Vol. Il (translated
by E. J. McShane), Interscience Publishers, Inc., New York, 1036
(Reprinted 1966).

Dudewicz, E. ./.: The Efficiency of a Nonparametric Selection Procedure:
Largest Location Parameter Case, unpublished M.5. thesis, Cornell
University, Ithaca, New York, February 1966. (Reprinted as
Technical Report No. 14, Department of Operations Research,

Cornell University, I—ica, New York, December 1066.)

Dudewicz, E. J.: "The Pobustness of a Selection Procedure of Bechhofer,"
Technical Report in preparation, Department of (merations Fesearch,
Cornell University, Ithaca, New York, 1968.

Eaton, M. L.: ''Some optimum properties of ranking procedures,' Annals
of Mathematical Statistics, Vol. 38 (1967), pp. 124-137.

Faddeeva, V. N.: Computational !ethods of Linear Algebra, Nover Pub-
lications, Inc., New York, 1959,

Feller, ¥.: An Introduction to Probability Theorv and Its Applications,
Vol. I (Second Edition), John Wiley § Sons, Tnc. , llew York, 1957,

Ferguson, T. S.: Mathematical Statistics: A Decision Theoretic Ap-
proach, Academic Press Inc., Mew York, 1967.

Fisz, M.: Probability Theory and Mathematical Statistics (Third Edi-
tion), John Viley & Sons, Inc., New York, 1963,

Fraser, D. A, S.: 'Confidence bounds for a set of means,' Annals of
Mathematical Statistics, Vol. 23 (1952), pp. 575-585.

GCraybill, F. A. An Introduction to Linear Statistical Models, Volume I,
McGraw- H111 Book Company, Inc., New York, 1961.

Gupta, S. S.: '"On a decision rule for a problem in rankineg means,"
Mxmeoggaph Series No. 150, Institute of Statistics, University of
North Carolina, Chapel Hill, Morth Carolina, May 1956.




152

Gupta, S. S.: "On some multiple decision (selection and ranking)
rules," Technometrics, Vol. 7 (1965), pp. 225-245,

Hall, W. J.: 'Most econonical multiple-decision rules," Annals of
Mathematical Statistics, Vol. 29 (1958), pp. 1079-1094,

Hall, W. J.: "The most-economical character of some Bechhofer and
Sobel decision rules,'" Annals of Mathematical Statistics, Vol. 30
(1959), pp. 964-969,

Hancock, H.: Theory of !'laxima and Minima, Dover Publications, Inc.,
New York, 1960.

Harter, H. L.: 'Expected valucs of normal order statistics,"
Biometrika, Vol. 48 (1961), pp. 151-165.

Hodgman, C. D. (Editor): C. R, C. Standard Mathematical Tables
(Twelfth Edition), Chemical Pubber Publishing Company, Cleveland,
Ohio, 1959.

Hogg, R. V. and Craig, A. T.: Introduction to Mathematical Statistics
(Second Editior), The Macmillan Co., New York, 1965 (Second
Printing 1965).

Kaplan, W,: Advanced Calculus, Addison-Wesley Publishing Co., Inc.,
Readinp, Massachusetts, 1952 (Fifth Printing, July 1959).

Katz, M. W.: "Admissible and minimax estimates of parameters in trun-
cated spaces," Annals of Mathematical Statistics, Vol. 32 (1961),
pp. 136-142,

Katz, M. W.: "Estimatinp ordered parameters,'" Annals of Mathematical
Statistics, Vol. 34 (1963), np. 967-972,

Kendall, M. G. and Stuart, A.: The Advanced Theory of Statistics,
Vol. 1: Distribution Theory (Second Edition), Hafner Publishing
Co., New York, 1963.

Kiefer, J.: ‘Invariance, minimax sequential cstimation, and continucus
time processes,' Annals of Mathematical Statistics, Vol. 28
(1957), pp. 573-601.

Lal Saxena, K. M. and Tong, Y. L.: "Interval estimation of the largest
mean of k normal populations,' Abstract, Annals of Mathematical
Statistics, Vol. 39 (1968), pp. 704-705.

Lawton, W. H.: "Concentration of random quotients," Annals of
Mathematical Statistics, Vol. 39 (1968), pp. 466-480,

Lehmann, E. L.: '"Ordered families of distributions,'" Annals of
Mathematical Statistics, Vol. 26 (1955), pp. 399-419,




153

Lehmann, E. L.: "On a theorem of Bahadur and Goodman," Annals of
Mathematical Statistics, Vol. 37 (1966), pp. 1-6,

Lodve, M.: Probability Theory (Third Edition), D. Van Nostrand Co.,
Inc., Princeton, New Jersey, 1963,

Mahamunulu, D. M.: "Some fixed-sample ranking and selection problems,"
Annals of Mathematical Statistics, Vol. 38 (1967), pp. 1079-1091.

Narayan, S.: A Text Book of Matrices (Fourth Edition), S. Chand # Co.,
Delhi, India, 1962.

Parzen, E.: Modern Probability Theory and Its Applications, John "iley ¢
Sons, Inc., New York, 1960 (Fourth Printing, “arch 1963).

Paulson, E.: "A sequential procedure for selecting the population with
the largest mean from k norral populations,” Annals of
Mathematical Statistics, Vol. 35 (1064), pp. 174-180.

Reitsma, A.: 'On approximations to sampling distributions of the mean
for samples from non-normal populations,” Annals of Matheratical
Statistics, Vol. 34 (1963), pp. 1308-1314.

Robertson, T. and Waltman, P.: '"On estimating monotone parameters,"
Annals of Mathematical Statistics, Vol. 39 (196R8), pp. 1030-103°%.

Teichroew, D.: Probabilities Associated with Order Statistics in
Samples from Two Normal Populations with Fqual Variance,
ENASR no. ES-3, Cherical Corns Enpineerine Agency, Fngineerine
Statistics Unit, Army Chemical Center, 'laryland, Necember 7, 1755,

Teichroew, N.: 'Tables of expected values of order statistics and
products of order statistics for samples of size twenty and
less from the norral distribution,' Annals of Mathematical
Statistics, Vol. 27 (1756), pp. 410-426, —_

Tippett, L. H. C.: 'On the extreme individuals and the range of
samples taken from a normal population," Biometrika, Vol. 17
(1925), pp. 364-387.

Wadsworth, G. P. and Bryan, J. G.: Introduction to Probability and
Random Variables, McGraw-Hill Book Company, Inc., Mew York, 1960.

Wedderburn, J. H. M.: Lectures on Matrices, Dover Publications, Inc.,
New York, 1964,

Weiss, L.: "On estimating scale and location parameters," Journal
of the American Statistical Association, Vol., 58 (1963),
pp. 658-659.




154

Weiss, I.. and Wolfowitz, J.: ‘'fGeneralized maximum likelihood
estimators," Tcorija Verojatnostei i ec Primenenija, Vol. 11
(1966), pp. 68-93.

Weiss, L. and tolfowitz, J.: ‘'Generalized maximum likelihood
estimators in a particular case," Teorija Verojatnostei i ec
Primenenija, Vol. 12 (1967a), to anpear.

Weiss, L. and Wolfowitz, J.: '™aximum nrobability estimators,"
Annals of the Institutc of Statistical Mathematics (Tokyo),

Vol. 19, No. 2 (1967b), pp. 193-206,

Meiss, L. anl Wolfowitz, J.: ‘'Fstimation of a density function at
a point," Zeitschrift fur Vahrscheinlichkeitstheorie und
Verwandte Gebiete, Vol. 7 (1967c¢), pp. 327-335.

Weiss, L. and 'Yolfowitz, J.: ‘'"iI‘aximum probability estimators with a
general loss function," to appear in the Proceedings of the Inter-
national Symposium on Probability and Information Theory, held
April 4-5 (1968) at ‘iciMaster U'niversity, Hamilton, Ontario, Canada.

Will's, S, S.: Mathematical Statistics, John Wiley & Sons, Inc.,
New York, 1962 (Second Printing with Corrections, 1963).

Zehna, P. W,: "Invariance of maximum likelikood estimators,"
Annals of Mathematical Statistics, Vol. 37 (1766), n. 744,




e

Unclassified
- Security Classification
DOCUMENT CONTROL DATA - R&D
(Security claseification of title body ol abeatrect end indexing annotaiton must be enlered when the overell teport se clessilied)

1 ORIGINATING ACTIVITY (Corporate suthor) e REPORY SECURITY C LASSIPICATION

Department of Operations Research Unclassified

College of Engineering, Cornell University 26 amour

Ithaca, New York 14850

) REPORY TITLE

ESTIMATION OF ORDERED PARAMETERS

4 DESCRIPTIVE NOYES (Type of report and Incluaive dates)

Technical Report, February 1969

8 AUTHOR(S) (Last name. liret name. Initial)

Edward J. Dudewicz .
& REPORT DATE 70 TOTAL NO OF PAGED 75 NO OF REPS
February 1969 154 62
8@ CONTRACT OR GRANT NO 90 ORIGINATOR'S AEPOAT NUMBERS)
N 401(53
b**;;;xxxx(5 ) Technical Report No. 60
N00014-68A-0091
¢ GP-7798 [ 1) 2.,',“,..- n’!onf NO(8) (Any other numbere thet may be sseigned
4 GP-8958

10 AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

" W‘W 12. SPONSORING MILITARY ACTIVITY
Sponsoring military activity Center for Naval Analysis
Logistics and Mathematical Statistics| University of Rochester
Branch, Office of Naxg&ikesearch Rochester, New York 14627

hington, D.C

13 ABSTRACT
Suppose given k > 2 normal populations LEERERTL IR has unknown mean
My and variance o? (i=1,...,k). We assume throughout that ul,...,uk and the
pairings of u[l];"';p[k] with nl,...,nk are completely unknown (although we
vary the distribution from normality) and consider the problem: e:timate

based on .il""'ik’ where X is the average of n independent

g SRR (Y 1
observations on L ({ =1,...,k). Applications to ranking and selection

{ problems are noted.

i[i]’ the ith smallest of Yl""'ik’ is a natural estimator of
u[i] (1 <1 <k) and is studied with regard to bias, asymptotic unbiasedness,
strong congistency, mean squared error, and minimax |b1as| estimator of type
x[1] + a. Results for the location parameter case are extended in the normal caseg
Maximum likelihood estimation, MLE's for non-1-1 functions, iterated MLE's,
generalized MLE's, and maximum probability estimation are studied. Confidence

intervals on ulil (1 <1 < k) are found for location parameter populations.

DD 5?5’:. 1473 Unclassified

Security Classification




Unclassified

Security Classificution

KEY WORDS

che T
r-

MO
-4 — - —¢ = o

LUl

Mathematical statistics

Statistical estimation

Ordered parameters

Ranked parameters

Location parameters

Ranked means

Maximum likelihood estimators

I[terated maximum likelihood estimators
Generalized maximum likelihood estimators
Maximum probability estimators

Ranking procedures

Selection procedures

Multiple decision procedures

T_.-

" ~STRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and addr v
of the contractor, subcontractor, grantee, Departmen. of D) ~
fense activily or other organization (corporate author) 1asuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘"Restricted Data’’ is included Marking is to be in accord-
unce with appropriate security regulations,

/b, GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armad Forces Industria! Manual. Eater
the group number. Also, when applicable, show that optional
markings have been used (or Group 3 and Group 4 as author-
1zed.

3. REPORT TITLE: Enter the complete report titlc in all
capital letters Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately [ollowing the title.

4. DESCRIPTIVE NOTES: If sppropriste, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a speciflic reporting period is
cavered,

5. AUTHOR(S): Enter the name(s) of author(s) as shown on

or in the report. Ente: last name, first name, middle initial,
I ‘rilitary, show rank #nd branch of service. The name of
the principal « thor ix an absolute minimum requirement.

6. REPORT DATZ. Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shou.d follow normal pagination procedures, i.e., enter the
number of pages containing information

76 NUMBER OF REFERENCES Enter the total number of
references cited in the report.

Ra. CONTRACT OR GRANT NUMBER: I[f sppropriate, enter
the applicable number of the contract or grant under which
the report was written.

85, 8c, & 8d. PROJECT NUMBER: Enter the appropriste
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR's REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
\tations on firther dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘’Qualified requesters may obtain copies of this

report from DDC."’

‘“Foreign announcement and dissemination of this
report by DDC is not authorized.”’

‘U, S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(2)

(3)

(4) ''U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

‘*All distribution of this report is controlled Qual-
ifited DDC users shall request through

()

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

11, SUPPLEMENTARY NOTES: Use for additional explanas-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving » brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re- .
port. If sdditional space is required, a continuation sheet shall
be attached.

It 18 highly desirable that the abstract of classified reports
be unclassifie!. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C), or (U).

How-

There is no limitation c¢n the length of the abstract.
ever, the suggested length is from 150 t2 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment mode! designation, trade name, militery
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

o ag6- 5%

Unclassified

Security Classification




