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CHAPTER 1.  INTRODUCTION 

1.1.  ABSTRACT 

Suppose there are given k >_ 2 populations ir ,...,7t, ; observations 

from population n.  are normally distributed with unknown mean y. and 

2   2 
common (known or unknown) variance o. ■ o (i » l,...,k). Let 

^mi.* *'iHrkl ^enote t'ie wked values of y,,...,^. . In this thesis 

we assume throughout that both the numerical values of y,,...,^ and 

the pairings of the yrii» • • •»yrici with *he populations irj,...,^ are 

completely unknown (although we vary the distribution from normality) 

and consider the problem: estimate some (or all) of UMI »• •'»viri,! 

based on X.,...,X. , where X.,...,X. come from use of the following 

single-stage rule: Take n independent vectors X. ■ (X..,....X, .), 
—j     IJ      Kj 

j ■ l,...,n (X.. denotes the jth observation from n.); for each popu- 

lation compute X. « -I. X../n (i « l,...,k), and base the terminal 

decision on X.,...,)^.  (The fixed number n of vectors required depends 

on the particular problem.) This rule has been used in many instances 

of statistical decision problems. Applications to ranking and selection 

problems are noted. 

Let Xr.,^...<Xr., denote the ranked X.,...,X. . A natural point 

estimator of y,^ is X,., (1 ^ i jc k), and its bias is studied when 

observations from n. have density f(x - 6.). xeR, where the location 

parameter e. is unknown (i = l,...,k) and Ef = 2xf(x)dx<co' Upper and 

lower bounds, U. and L., are derived for E X,., (1 ^ i ^ k) (y denotes 

the vector (y,,... ,y,,)), and condition S(i), sufficient to imply that 

Xr., is asymptotically unbiased as n -► », is obtained. When i a k 



(i ■ 1), U.(L.) is the supremum (iiifimum) of E X,.,. It is shown that 

uniform integrability condition C.(i) implies S(i). Condition C- (which 

holds if, e.g., _2X f(x)dx«») also implies S(i). The relationship is 

C2 <"> ^CjC1)." •.QCk)}. The minimaxjbias|estimator of type Xr., + a 

is found for certain cases. These results are applied to the case 

where f(°) is the normal density, and a uniform integrability argument 

shows that U. and L. are the supremum and infimum. It is noted that, 

for the location parameter case, X,., is strongly consistent for yr., 

(1 <_ i <^ k); applications are noted. Bounds are obtained on the mean 

_        2 
squared error E (X,., - Wri) (* 1 i 1 '0. also for the location 

parameter case. For the case when f(») is the normal density these 

bounds are evaluated, and intervals in which the supremum and infimum 

of the mean squared error lie are determined. 

Maximum likelihood estimation of (IJ,., ,... fy..,) based on 

X, ,,... ,X|.. , is studied. It is shown that any critical point for 

this problem is a solution of a system with derivatives taken for 

V  e n(^) = {y: u,., ^ IJ^, t  ... ^ ^TLW if boundary points arc con- 

sidered solutions and that (X, ...,X) with X = (Xr,! + ••• ♦ ^ri i)A 

is a critical point. The nature of (X,...,X) is completely determined, 

and w.p. -»■ 1 as n * 00 it is a saddle point (unless y,.., = ... * ^rui» 

in which case it may be a relative maximum). Some results on the form 

of the maximum likelihood estimator (I'LE) for k ^ 2 are given, while 

for k = 2 the MLE is found explicitly. MLE's for non-1-1 functions are 

discussed, and a concept of iterated MLE's (IMLE's) is introduced and 

discussed. The generalized MLE (GMLE) introduced by Weiss and Wolfowitz, 

which has a certain optimality property, is found to be X,.,,...,Xr, ,, 



which has desirable larpe sample concentration.    It is shown that there 

is not just one GMLE but rather a whole class of CMLE's, and for k ■ 2 

the MLE is shown to be in this class along with X,,!. X,2,.    It is shown 

that for our problem (and others) a GMLE (if one exists) is equivalent 

to the maximum probability estimator (MPE)  introduced by Weiss and 

Wolfowitz, if the latter is "good." 

Confidence interval estimation of y,.i|..., UMI  is discussed, and 

upper and lower intervals on p,.-.   (1 1 i f, k)  are found, alonp with 

their maximal overprotection, for location parameter populations. 

Generalizing a result of Eraser, it is shown that exact upper intervals 

satisfying mild conditions do not exist. 



CHAPTER 1.  IMTRODUCTIOM 

1.2. OUTLINE OF THE THESIS 

In Section 1.1, we have given an overview of the problem considered 

below and of the results obtained, and in Section 1.3 we make specific 

definition of the problem considered and introduce various notations. 

In the present section we outline briefly the contents of the various 

chapters. 

Oiapter 2. The problem of point estimation is considered for a 

location parameter family, and the bias of certain natural estimators is 

studied; a mininax estimator is found for certain cases. These general 

results are examined in the normal density case, for which additional 

results are obtained. 

Chapter 3. The problem of strong consistency is considered for a 

location parameter family, and applications to value-estimation and 

Bayesian statistics are noted. 

Chapter 4. For a location parameter family, bounds are obtained on 

the mean squared error of certain natural estimators. These results are 

examined in the normal density case, and additional bounds on the 

infimum and supremum of the mean squared error lead to intervals on 

these two quantities. 

Chapter 5. Haximum likelihood estimators are studied for the normal 

density case. A concept of iterated maximum likelihood estimators is 

introduced and discussed. Generalized maximum likelihood estimators and 

maximum probability estimators are found. 



Chapter 6. The problem ot interval estimation is formulated. For 

a location parameter family upper and lower intervals are found, and it 

is shown that exact upper intervals satisfying mild conditions do not 

exist. 



CHAPTER 1.  INTRODUCTION 

1.3. PROBLEM DEFINITION AND NOTATION 

Consider the set-up 

Given k(^2) populations v,t...iiu  such that observations from 

(1.3.1) population TN are normally distributed with unknown mean ji. and 

2   2 
common (known or unknown) variance o. s o (i ■ l,...,k), 

and the following rule. 

RULE; Take n independent vectors X.- * (X..,...,^.), 

j = l,...,n, where X.. denotes the jth observation from the 

ith population n.. For each population form the sample mean 
(1.3.2) 1 

(1.3.3)    X. « ij X^/n (i - l,...,k), 

and base the terminal decision sc'cly on the statistics 

X. , . . . , A.  . 

(This rule has been utilized under set-up (1.3.1) in many instances of 

statistical decision problems.)    Make the 

DEFINITION:    Let Mrn*" ••<VJriri denote the ranked values of 
(1.3.4) llJ lKJ 

Mj,..., l^. 

We assume throughout that both the numerical values of u. ,...,wk and the 

pairings of the ^n]»« • •»^Jrici 
v^^ ^e populations ir.,...,TT.   are com- 

pletely unknown (although we vary the distributional requirements from 

those of set-up (1.3.1)) and consider the problem:    estimate some (or 

all) of M,.,,..., v ,., based on the statistics provided by the single- 

stage Rule (1.3.2). 



Consideration has been devoted in the literature to what are called 

"ranking and selection" problems. Since several of the proposed pro- 

cedures in that type of statistical decision problem use Rule (1.3.2) 

(e.g., those of Bechhofer (1954), Gupta (1956), (1965), and others), and 

since one will often wish to estimate as well as select, we will briefly 

describe such problems and will refer below to uses of our results in 

such problems. 

A simple example of such a problem is that of selecting the popula- 

tion (or, one of the population.) associated with the ith smallest mean 

(1 ^ i ^ k); this is called one's goal. (Much more general goals have 

also been considered.) Typically, a probability requirement is made and 

a procedure is given (which tells how to sample, when to stop sampling, 

and what terminal decision to make). The probability requirement affects 

one's sample sizes, since the more stringent one's probability require- 

ment vis-a-vis achieving the goal, the more sampling one must perform. 

In Rule (1.3.2), only the fixed number n of independent vectors required 

depends on the particular {goal, probability requirement, procedure} 

structure on hand.  (We note that Rule (1.3.2) has some optimal proper- 

ties. See Hall (1958), (195?); Bahadur and Goodman (1952); Lehmann 

(1966); and Eaton (1967).) Of course the various structures use the 

statistics in quite different manners, and not all structures use 

Rule (1.3.2); e.g., the nonparametric procedure of Bechhofer and Sobel 

(1958), the closed sequential procedure of Paulson (1964), and the open 

sequential procedure of Bechhofer, Kiefer, and Sobel (1968) do not. 

We will make use of the following definitions and notation. 

DEFINITION: For any set S, let v(S) = cardinal number of S. 
(1.3.5) 

(If S is a finite set, then v(S) is the number of elements in S.) 



(1.3.6) DEFINITION: Let R » {x: -»<x<«} and let R* » {x: x>0} 

DEFINITION: For 6 e R+, let n6(a,b,c,...) » {(Wj,... .i^) : 

^fkl " ^fk-ll 2. <s» ^i e f* f^ " l»"-»^)» a»b,c,... are held 

fixed}.  (In general a,b,c,... will be several of 

v[l]""tV[k]^ 

DEFINITION: Let ü)LFC(6) = ^[k]'6'*' * ^[l-J'^^fk]5 and 

^EM^ricl^ r ^rkT* "*wrkl' be vectors 0^ ^ components. 

DEFINITION: Let X,,^... <Xri , denote the ordered X. 
       [1]-  - [k] i 

(1.3.9)  (i = l,...,k).  (l"e disregard the possibility of ties, 

which occur w.p. 0 in the cases considered below.) 

DEFINITION: If a random variable (r.v.) X is normally 

2 
distributed with mean u  and variance o , we shall say 

X is N(y,o2). 

Denote the N(0,1) distribution function (d.f.) and 

(1.3.10)    density function (fr.f.) by ♦(■•) and <K')i respectively; 

i.e.,  let 

*(x)  =  J[«Ky)dy (x c R), 
1 2 

*(y)  » —i- e ^ (y e R). 

DEFINITION: Let F and f be the respective d.f. and fr.f. of 

observations from an arbitrary univariate location parameter 



family;  i.e., 

(1.3.11) F(x) - J|fCy-9)dy (x e R), and 

f has the form f(y-e) (ye R), 

where 9 is fixed, 9 e G j^ R. 

(1.3.12) DEFINITION:  ntf) « {y: y^ ^ M[2] ^ ... ^ p^j}. 

DEFINITION: If yen(/), let X .. _ denote the sample mean 
(1.3.13) (^ 

produced by the population associated with y,.,   (i = l,...,k) 
l1! 

DEFINITION:    If there is at least one breal^ in the string of 

inequalities y,., /*  ... ^ Prui» then the situation is that we 

have )i(l<fc<k) groups of equal parameters 

(1.3.14)    with i.,...,!   , integers 

(0 = iÄ<l<i1<i/,<.. ^i,  1<l<-l<i/i = k), 0—12 £-1— i 

and we let 

X(i.*l)-X(i.+2)l"^
X(i.+1-l^

X(i.+1) 

be the ranked values of the sample means from the population(s) 

associated with parameter y,.  i (J * 0,...,£-l). 
llj+lJ 

DEFINITION: Let S. be the symmetric ?roup on k elements, i.e. 
(1.3.15) K 

{a: a = (a(l),... ,a(k)) is a permutation of (l,...,lc)}. 



CHAPTER 2. POINT ESTIMATION: BIAS 

2.1. BIAS OF A NATURAL ESTFIATOR OF y,^ (l<i<k) 

FOP. A LOCATION PAPAMETER FAMILY 

Consider the set-up 

Given k(>2) populations TT.,...,^, such that observations from 

(2.1.1) population TT. have fr.f. f(x-e.), x e R, where the  location 

parameter e. is unknown (i = l,...,k). 

We make the 

(2.1.2) ASSUMPTION:    The fr.f.   f is such that Ef = _£xf(x)dx<", 

so that we may talk of \i.,...,\i,   (or of y, ,,... ,u,. ,) •    Henote the 

ranked values of the location parameters B.,...,6,  by ö,.-.^.. .<e|.,,. 

Then since 

7xf(x-a)dx =     7(x+a-b)f(x-b)dx =   /xf (x-b)dx-(h-a) 
(2.1.3) -* "O0 "^ 

00 

<    _£xf(x-b)dx (a<b; a,b t 0), 

the population associated with y,., is precisely the population associ- 

ated with dr.-,  (i = l,...,k). Also, 

(2.1.4) J*f(x-Q)<i\  = _/xf(x)dx + 9 » E + 0 

where E- is the mean of f when 6 = 0. 

l.'e will now study estimation of Ur-i (l<i<k) when set-up (2.1.1) 

obtains, Rule (1.3,2) is used, and the pairinp of IT,,.».,^. with 

Wrii >• • • »Uri,] is completely unknown (see Chapter 1). denote the 

densities of X. .-9. and X.. by fv  „ and fv , respectively. Since 
111       11      A. .-Ö.       A. . J J        1J   1        1J 

10 



11 

(2.1.5) fx   e M " fx ty*60 'f ((y+ei)-9i) ■ f(y). xij'i        \j     1 1   x 

it follows that X..-e. does not depend on 6. (i = l,...,k). 

DEFINITION: Gn(y|f) - Piax^-e.)*.. .♦(X.^e.) }/n < y]. 
(2.1.6) 

Sn^V ' -f-Gn(y|f) 

For i = 1,... ,k, 

(2.1.7) 

P[X.<x] = PtX-.+.-.+X.  <nx] = P[(X.1-e.)+...+(X.  -9,)<n(x-e.)] 1 i- J        l il in—   J        lv il    i' v in    i'— v     i" 

-G^x-e.lf). 

We now determine several d.f.'s and fr.f.'s which we will use in later 

sections. 

THEOREM:    Frr      (x)  = 11 G  (x-e. |f) 
X[k] i=l n        1 

(x t R), 

(2.1.8) 

Proof: 

f7     (x 
X[k] 

) - n  f n G (x-e. If)] gn(x-e.|d (x e R). 
j-lL lipi !     J    n       J    J 

Fjf     (x) = P[max(X1,...,Xk) <^ x] = P^ <_ x....,Xk < x] 
IkJ 

- k . » p[x1 < x]...p[x, < x] =   n G (x-e. f). 
1— k— -«in       i1 

The expression for fy      (•) follows upon differentiation of F-r-     (•)• 
X[k] X[k] 

utilizing the chain rule (see, e.g., Kaplan (1952), p. 86, (2-26)) and 

the fact that G'(y|f) = d_ Gn(y|f) = ^(yjf) (see, e.g., Fisz (1963), n '    (jy  n       n 

p. 35; or Parzen (1960), p. 169). 



1/. 

COROLLARY:    E Xr.,  =    fxfv      (x)dx 

(2.1.9) k      oo 
= y /xp(x.e |f) 

J=l  -00 J 
nGn(x-ei|t) dx. 

A possible estimator of Ur.i when set-up (2.1.1) obtains and 

Rule (1.3.2) is used is X,., (i = l,...,k); we now study its expectation 

and bias. (Although quantities such as EuX,. ■■ depend on the unknown 

\i c  fio» ^his dependence will sometimes be suppressed; e.p., we will 

write EX,^ for EyXfk,.) 

LPfiA: If X and Y are independent r.v.'s with 

(2.1.10)        FxW = P[X<x] < P[Y<x] = FY(x) (x t  R), 

then EX >^ EY. 

Proof; A peometrical proof of this lemma can easily be given using, 

e.g.. Exercise 2.5 of Parzen (1960), pp. 211-212, "A geometrical inter- 

pretation of the mean of a probability lav;." 

(2.1.11) 

THEOREM:    For i = 1,... ,k and x e R, Fv      (x)4- as vA 
X[i] £ 

a = i,...,k). 

Proof:    Fix   1{1 <_ i. <_k).    For i = 1,... ,k and x e R, 

Fy      (x)  = P  [Xf.^x]  = P [The ith smallest of X,,... ,X,   is <x] 
Ar.-. y^ij y —— i K        — 

= P [At least i of X.,... ,X.   are <^ x] 

= P [X < x and at least i-1 of X ,... ,X.     ,X    ..... ,Xk are <^ x] 

+ P [X >x and at least i of X,,,..,Xn  ,,X.   .,...,X.   are < x] 
]s    i 1 £-1    Ä+l k — 

= P^X^xjPjAt least i-1 of Xj,... J^^X^j,... ,Xk are < x] 

+ f^Pyt^l^jPyl^ least i of *i*--"h~l**i*V'th are -xl 



- ryx-ejnp^At least i-i of >V,",Vr?Ä+i',,,**v pre  -x^ 

♦ [l-r^Cx-eJ^lP^TAt least i of Xj,.../x^ ^X^j yy  are <xl 

Therefore, 

-d._ F   (x) = d__ Fv  (x) dei 
övl     [il    ^£ ri]       ^ü 

» -fn(x-e£|f)P fAt least i-1 of Xj,... .V^.X^j,... ,X1( are <x1 

♦Rn(x-6£If)P fAt least i of Xj,... .x^ .X^,... .X^ are <x], 

which is <0 iff 

P  fAt least i of X      . .,X.   . ,X       Y.   arc <xl 
y 1 £,-1     i+l k 

<P [At least i-1 of Xj,...,^ j.X^j,....^ are ^xl . 

npFP'TTI^!:    For Ä. =  1,?,3,...   let h  ft» ) ^e the expectation   HP 

of the maxinum of £ independent r.v.'s eac'i havin" fr.f. jj (x); 0n      ' 

and let h'(p ) be the expectation o^ the rnnirpum of £ in^e- 
(2.1.12) Ä    n 

pendent r.v.'s each havinp fr.f.    Cf  fx),  i.e., 

£-1 
V'V  ' -»yiirCn(y)1      «nWv, 

b£(V B iy^1-^^^'1^^^' 

TTe follovinc is vell-Vnovm: 

(2.1.15) 

IF!"'.*:    If p (x)  is sypmetric ahout x = 0  then 

hl<*J - -w- 

(?. 1.13a) Tt'FOf^':  if G (x) < 1 for all x, then lin h (g ) » ♦«       n I-H» £ n 

Proof:  By (2.1.12), 



^y[Gn(y)]      *n(y)dy2h£(gn) =  Ä.£y[Gn(y)]Ä-1gn(y)dy 

a ^y[Gn(y)]£'1Pn(y)dy +    5/y[Gn(y)]Jl"1gn(y)dy 

_>. Ä7y[Gn(y)]£"1Rn(y)dy * MGn(o)]£"1_2yßn(y)dy. 

Z£ 
ygT,(y)dy < " and lim £a    = 0 fO<a<l), by taking the limit 

£ 
£-*» 

as £•+• we obtain 

lim hfp ) = lim £7y[G (y)^"1?  Cy)dy. 

However,  for any ;' >  0, 

0 1 ^y[cn(y)]£"1gn(y)cly _< ^y[Gn0')] Ä'1pn(y)dy 

£-1 rj 
=  £fGn(M)] ^yßn(y)dy->0    as  £-H«». 

Choosing M > 1, and since G (M) < 1 for any "I, we find that 

U£ Vn3  = fö H^W1'1*^ 1\}Z   ^fGn(y)]Ä-1
Pn(y)dy 

»linfi^Cy)]^^  lirn::{l-rGrC)l£} = M. 

Since \* > \ was arbitrary, the theorem follows. 

LEMMA:    If Y.,...,¥   are independent r.v.'s each having d.f. 

G  (x-e),  then 

(2.1.14) K max{Y1,...,Y£}  = e  + V^) , 

H min{Y1,....YÄ}  = 6  + b^Pn) . 

Proof:    Since Y.has d.f.    Gn(x-e),    Y.   - 9 has d.f. G (x)   (i »  !,...,£) 

by (2.1.7).    Thus, 

E III {Yj,...^^ = F l\l {(Y1-e)+e (Yre)*e) 

= e + E Bf* (Y -9.....Yre} = e + lh£fpn) 
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THEOREM:    For any i  (1 ^ i < k) 

suP{V[i]:  ^ e Vy[i])} 

(2.1.16) 

P y 

-   Cw[1],....y[i.1].p[]}]Mri+1j.....u[k-|) 

a   (Pril,-.-,Prii,yrii,
+C0,...,+00) 

i 

[i]        iVr,n        M|i]        f        i/ir 

and 

inflE^.j: .e V^[i])} 

(2.1.15) ^ F x 

(2.1.17) 
=    (-oo, . . .,-oo, HJ^-J .pi^-j ,. . . ,p^) 

k-i+1 times 

= er., + h' . , (p ) = ur., - F- + h/ . ,(c ), 
Fi]   k-i+lvrn^  Mfi]   f   k-i+lv n 

where the configurations of the vector (uriT *" *'^rvP which 

involve values +» are viewed as a situation elirinatinp the 

populations with mean values +oo from contention for ith 

hichest sample mean.  (The case i = It in (2.1.16) and the 

case i = 1 in (2.1.17) involve no such eliminations.) 

Proof: By Lemma (2,1.10) and Theorem (2.1.11), we increase F Xr., hy 

raisin* p. (i,j = l,...,k).  Now, 

eri] + K-i+l^n* 
. n  Smallest of (^^-e^^^e^j,... ,(x(h)-eri])+e[i]} 

y« (u[1],....w[i.1],iJ[i],u[i]....,u[i]) 
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< E      filll smallest of X,^ ,... .X,^^,^ »X^.,... .X-.. } 

v 
eCu[ir...,y[i.iry[i].P[i].....u[i]) 

< E {ith smallest of X-,..,... ,X,. ,x,Xf.*,, ..,*„ ^}■ P X^r-i 
- W — (1)'  ' (i-l)' (i)' W      v  [il 

= E (ith smallest of xn)» • • • »xm »Xfi+n»'• «»Xfi^} 

< E     (ith smallest of xn)»• • • >xm »Xn+n»* • *'Xrk) ^ 

w -(y[i],...,n[i],ii[i].u[i+11,....u[k]) 

< E    <Larßestof ^(i)-e[i]5+e[i]"-"(x
(i)-9[i])

+e[i]} 

w ISCy[ij,....y[ij,y[i],p[i+1j,...,y[k-|) 

= e r,, +h. fg ). [i]    iV6n'' 

(Note that for our purposes here, the ties in Definition (1.3.14) should 

be broken in an arbitrary manner.)    Upon taking the desired supremum a;id 

infimum, the theorem follows. 

COROLLARY:    For any i  (1 <. i <. k) 

(2.1.19) V[i] + C^W^-V lV[i] l^i] + ^i^V-V 

Thus,  (1)    X,., is asymptotically unbiased (as n-w») as an 

estimator of y,-.,  if 
[i] 

(2.1.18) jW^f   as ^ ' and 

(2.1.20) <   , 
h-i+l^n^f   as ^ ; 

(2)  if the left and ripht members of (2.1.1?)  are the 

infimum and supremum of E X,,,  (respectively) then 

Xr., is asymptotically unbiased (as iv*») iff 

(2.1.20) holds. 
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With Corollary (2.1.18)  as motivation, we will now study the questions 

of (i) when (2.1.29) holds and (ii) when the inf and sup above achieve 

the bounds of (2.1.19). 

THEOREM; 

(2.1.21)   W[k] ^ V[k] -SUp{V[k]:  * e fio^[k]>> ■ ^[k] + tW'EJ 

v[i]+ ^k^-V ■ inf{V[i]: ^e n
0^[i]^iV[i] i ^rir 

Proof: The lower bound for E X,., (the upper bound for E X,.,) follows 

from the fact that h|(g ) » Ef (that h.(p, )  » E.). The equality for the 

sup for E Xr^-i, and for the inf for E X.-,, follow easily fror TTieoren 

(2.1.15) and the first sentence of the proof of Theorem (2.1.15). Note 

that they are actually attained at ü)p,,(ur. i) and td_.,(urii). respectively. 

From Assumption (2.1.2), it follows that independent r.v.'s with 

fr.f. f obey the Law of Large Numbers, so that (cf. (2.1.7)) as n*», 

for any i (1 ^ i ^ k) 

G.Cylf) 
i     1 jo.y < Ef 

(2.1.22) [Gfylf)]1      )   *GJy\f)  = { n 

1-[1-Gn(y|f)]
k~i+1 

[l.y >.E< 

since (2.1.4) is true. Each of the convergences indicated in (2.1.22) 

is weak convergence; i.e., F converges weakly to F iff F -»F on the 

continuity set of F. It is not obvious that it is then the case that 

(2.1.20) holds, i.e., that for any i (1 < i < k). 

hi(gn) -^dyUGJylf)]
1} 

hk-i+i^ '  MW-V-WW'1}! 

(2.1.23) \     > E- as n-** . 
.k-i-l. ' 
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If we make the following definition (cf. Lofeve  (1963), p.  182) 

DEFINITION:    If g(.) is a continuous function and F  (.) is a 

d.f.   (n ^ 1), we say  |f»| is uniformly integrable in F    if 

/  |f»|dF -K) uniformly in n as c -♦«with m-**', i.e.,  if (for 
(2.1.24)  |x|>c   n ,n 1 — m 

any e >o) there is an m such that for m > m we have ' o — o 

i i^ Igl^F < e for all n (where c -♦« as n-x»), x >c ■ ■ n m 1 '— m 

then we may use the following theorem (cf. Lo^ve (1963), p. 183, 

Theortm A.(ii)) 

THEOREM: If F converges weakly to F (a d.f.) and |g| is 

f2 1 25'» uniformly integrable in F , then 

J"gdFn - /gdF 

to immediately state the 

THEOREM:    For any i  (1 <. i <. k),  (2.1.20) holds if  |y| is 
(2.1.26) . k_i+1 

uniformly integrable in  [G (y|f)]    and 1-[1-G  (y|f)] 

Proof:    This follows from (2.1.22),  (2.1.23), and Theorem (2.1.25). 

00 

THEOREM: If (2.1.20) holds, then /yd {[Gn(y|f)l
1}-*f, and 

then /ydyUG^ylf)]1)-**, .^^^^(ylf)]1)^ with 

F.f = E* - E~  (F.^ = lim ./^^^^(ylf)]1}; E* similarly.) 

For any i (1 <^ i <^ k), (2.1.20) holds only if (as IH«0 
(2.1.27) 

r2Ef, 0 <^ Ef < M 
/  |y|d{[G (ylf)]1}-^    f f 

|y|>M     y |2E|, -M < Ef < 0. 

Note that |y|  is unifomly integrablt; in [G (y|f)]x means 
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E~ = 0 if Ef is non-negative (F* = 0 if F- is non-positive). 

A similar result holds with respect to {1-[1-G (y|f)]    }. 

^'ote that Et and Ef nay depend on i. 

Proof: Suppose 0 < Ef < M. By the Helly-Bray Lemma (see, e.p., Lofeve 

(1963), p. 180), 

M 
/yd ([G^ylf)]1}^ ■ 
o  y 

0 

-M y  n 

► as n-*» . 

^^^(ylf)]1}^ . 
-M 

Now, letting n-«0 in 
o M 

.£yVtGn(y|f)]1} s  -£ydy{lGn(ylf)ll} * ^V[Gn(y|f)]1} * f^V lGn(ylf)l1} y l n ''    -*' y 

we obtain 

E = -E ♦ E ♦ lin /ydv{[G (ylf)]1}, 

* i  — 
so that /yd {[G (y|f)] }-^Ef as n*<», and thus 

/lyld UG (ylf)]1} - -./yd ([GJylf)]1) Wyd {[G^ylf)]1} 
|y|>M  ^ / ^ /  •• 

-►(E~-0) + E~ = 2r~   as n*« . 

The case -M < F.f < 0 follows in a similar manner.    The result for E-. = 0 

follows from the equation E- ■ Et - Ef and the Helly-Bray Lemma. 

We have thus seen that althouph a certain uniform inteprability 

condition is sufficient for (2.1.20) to hold (Theorem (2.1.26)),  it is 

not clear that it is necessary for (2.1.20) to hold (Theorem (2.1.27)). 

V'e will now exhibit a condition  (simpler than that of 

Theorem (2.1.26)) under which (2,1.20) holds.    Fix i  (1 <^ i <^k),  let 

Z. be the mean of n independent r.v.'s Z..,...,Z.    each with fr.f.  f(') 
3 Jl jn 
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(j = l,...,i), and suppose EZ. = p (say) exists. Ve wish to know wher 

(as n-»«) 

(2.1.28) 

Proof: 

so that 

EninfV-"Zi^- 

THEOREM: If E|Z.-w|-K) (as n-x») (j = l,...,i), then (as n-n») 

E mm (zi>' • • fZ^)-^u . 

-   -         Zi+Z-?        Zi-Z2 max (7    7 1=    l    l ±   ' i       ' 
mm y*'i'i'2} 2  2  

EK CVV = u ±iElzrz2l- 
However (since |a|-|b| <  |a-b| for a,b c ^ 

and thus (as n-^») by the hypotheses of the theorem E [Y.-Y-|-»0. The 

result for k > 2 follows by induction. 

Although it can be proven (see, e.g., Lodve (1063), p. 157, d.) 

that ElZj-wl-H) irplies that E |z. |-»-|u [, it is not clear when the converse 

is true. In our situation, we would like to know when T-Z.-\i implies 

E|Z.-IJ|->0 (i.e., for which fi')'s  this is the case). 

(2.1.29) THEOREM:  If var(Z)->0 (as n-*») then FlZ.-ul-^. 

. .r 1/ 
Proof: This follows directly from the fact that (E |X | ) r is a non- 

decreasing function of r > 0 for any r.v. X (see, e.p., Lo^ve (1963), 

p. 156, c). 

(2.1.30) LEMMA:  V.ir (Z.)-*0 iff 7x2f(x)dx<». 

Proof: 

Var(Z1) = i var(Z11) = - {_£c2f(x)dx - ( /xf(x)dx)2}, 
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These results on the satisfaction of (2.1.20) of Corollary (2.1.18) 

may be summarized as follows. 

SlM'tARY: For any i (1 ^ i l k), X,., is asyr;  fically 

unbiased (as n-*») as an estimator of p,., if 

(1)  |y| is uniformly integrable in [G (yjf))1 

(2.1.31) 
and 1-[1-Gn(y|f)]

k"i+1. 

or if 

(2) _£c2f(x)dx«». 

(Note that (1) holds if, as is often the case, f(.) is 

concentrated on a bounded set in R.) 

For reasons noted above Lemma (2.1.10) it was reasonable to 

study the expectation and bias of X,., as an estimator of Ur.-i 

(i = l,...,k) in our context.. l"ith Corollary (2.1.18) as motivation, 

we note that estimators 

(2.1.32) X,., ♦ a (h' . ,(* ) - H. < a < h.(g ) - E.) v    ^  [i] v k-i+lVon    f -  - ivt,n    f 

(correction of X,., by adding a constant) may be preferable to X,., in 

certain contexts. If positive (negative) bias is very undesirable, 

one may use a ■ h.(g ) - E- (a » h' •.^(g ) - E-) and obviate its 

possibility. If one's preferences on bias are more complicated, one 

might even remove the restriction h' -.^g ) - E^. < a < h. (p ) - E^.. 

(Note that this restriction'^akes sense" since (see (2.1.14) for 

notation) 

h; (gn) '    E rin(Y  ...Ya ) < EY < F .ax(Y ,....Y ) - h (gj.) 
1 1 *        ^       2 

Note that, for certain f(«),s, information about the distribution 

G («If) will be available for use in determining h.(p ) and h,' . , (g ) 
nv ' ' i n     k-i+l^n 
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(1 <^ i ^ k).    For information and references see Reitsma (1963). 

THEOPEM:    Fix i  (1 _< i _« k).    Suppose that the sup and inf 

of (2.1.19)  achieve the bounds of (2.1.19).    Then we minimize 

(1) ;;:;,,    (EJC^ - a - ^.p 
U   t   «Qllifij 

(2.1.33) jhi(gn)   - Ef 

by choosing a =   \ , and ^e minimize 

Proof: 

1 k-i+lv^n f 

rax 
(2)      u e ß0(y[i])IV[il  ' a ' ^il 

by choosinp a = [h.(^ )  + h'   .  . (p )l/2 - E^.. / l iv n-'        k-i+1    n J f 

For (2), 

mm 
ae ("oo.o») 

=      mm 
a e (" »i») 

mn 

i\iPn)  - Ef)  - a 

(V-i.l^n)   - V  - a 
n at a = ^ 

hi^ - Ef 

hk-i+lfPn5  ■ Pf 

max 
a e  (-«>,")   u  e ^(WQI) 

E X,.,  - a -   Vr• i 

min     max (^.(g^)  - Ef - a|,   |h^_i+1(gn)  -  Ff - a|) 
at{-'*>,<*>) 

h.(p )  - h'      .(P )                  h.(p )  + h'      .(g ) 
    at a =   -Ff. 

since  (for c ^ d) min max (|c-a|, |d-a|) = (c-d)/2, as illustrated 
a 

below. 
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c-a 

It is of practical interest to know how any statistical procedure 

performs when the (distributional and other) assumptions under which it 

was derived are not met. We then say that (for deviations of a specified 

sort) the procedure is 'robust" or ' r>ot robust," according to whether 

the goal(s) of the procedure are or are not met 'well" under the 

deviations. 

The question of how our procedure for estinatinp w,., (1 <^ i _< k) 

performs when specific distributional assumptions are used to set n, 

but do not hold, is answered in part by our treatment of the estimation 

problem for a location parameter family in this section.  (The question 

of robustness of Rule (1.3.2) is not our concern here; for some results 

on this see Dudewicz (1P68).) 

The robustness interpretation of these results is larpe-samplc. 

Snail-sample robustness can be studied numerically for the f(,)'s 

important in any particular problem, utilizinp n. If one is considering 
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a location parameter family other than the normal, results related to 

robustness can be used to help design "i»ood" procedures, and to help 

compute the los« that would result from usinp sample means instead of 

the appropriate sufficient statistic. If this loss (measured perhaps 

in increments in n) were small enough, one might wish to use sample 

means since they might be more robust. (In any particular case this 

could be checked numerically.) 

Examples of location parameter families where Assumption (2.1.2) 

holds but X,., is not an asymptotically unbiased estimator of y,., 

(1 _< i ^ k) are presumed to exist. The case of Cauchy populations 

(excluded by (2.1.2)) may yield some insip'it. Here, G (y |f ) is 

independent of n (by a property of means of independent observations 

from f ).  (If Cauchy populations were being dealt vith, rule (1.3.2) 

would not be used. See Dudewicz (1966), np. 30-45.) 

The relationship between the uniform intef'rability condition of 

Theorem (2.1.26) and the condition of Theorem (2.1.28) (each of which 

is sufficient) is of interest, '"e first clarify the rale of i (1 ± i ± k) 

in Theorem (2.1.26). 

THEOREM: Bix i (1 _< i ^k).  If |y | is uniformly integrable 

(2.1.34) in G (y|f), then it is uniformly integrable in fC (y|f)] and 

I-U-G^ylf)^"1*1. 

Proof:    For -» _< a  * b  <^ ♦'», 

b • b 

^lyldyUG^ylf)]1} - i/|y|ffyy|f)lwdyGn(y|f)  < i4|y|dyGn(y|f). 

and  (for j ^ 1) 

dy{l-[l-Gn(y|f)]j} - ♦j(l-Gn(y|f)]j"1dyGn(y|f)   < jdyGn(y|f). 
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(2.1.35) 
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THEOREM:    ElZj-ul-K) iff  |Zj |  is uniformly inteprable (i.e., 

y|  is uniformly inteprable in G (y|f)). 

Proof:    Since ElzJ«» (because EZ.  = v exists) and since Z.  converges 

stochastically to u, the result follows fror1 the  L -convergence theorem 

(see, e.g.,  Lofeve (1%3), p.  163,  c). 



CHAPTER 2.  POINT ESTIMATION:  BIAS 

2.2.  THE NORMAL CASE 

In this section we consider set-up (1.3.1), for which Rule (1.3.2) 

was originally suggested. The forn of the location parameter family 

results of Section 2.1 is shown, and further results iire provided for 

normal populations. 

Denote (1/a) (}i(y/a) by ^ (y). Then the quantities defined in 

Section 2.1 for a location parameter family are (for i = l,...,k) as 

follows in the case of normality. 

f(x-u.) = (l/aH((x-p )/o) = * (x-y.); 
1 10    1 

0 

G (yU ) = P[X.-y. < y] = P nw ' a    l i i -- / J 
i pi     y   <   

(2.2.1)  pn 
a/ Jn 

y 

a/ Jn 

a/ vii        a/ vn 
= $ 

a/ti 

h (g ) = E[max of £ r.v.'s with fr.f. p (y|(|> )] 
JC n ii    o 

= E[max of £ N(a>a
2/n) r.v.'s] 

= (o/^")F.[max of £ N'(0,1) r.v.'s] = (a//n^^tf; 

h£(pn) = ■h£(pn) = -W^i^  hy  Ler,ma (2-1-13). 

Note that in the normal case, since h.(g ) = -h'(g ) = (o/^h ((fi) 

(£ = 1,2,...), only h ((()) need be tabulated,  (h U) > 0 for £ ^ 2 since 

/x())(x)dx = 0 and the positive weighting function [*(x)]   assigns 

greater weight to +x than to -x fo•», all x > 0.)  Tables of quantities 

more general than h (40 have been computed by (e.p.) Teichroew (1^56) 

where h (<fr) = E^x.;«,), and by Marter (1961) where h (^) = ^(XjiJ. 

26 
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Tables of ^«(4») have been computed by Tippett (1925). '"e now present 

some values of h.(0) obtained from Harter (1961) for £ = 2(1)10(5) 

25(25)50(50)400, and from Tippett (1925) for I  - 500,1000. (For 

further references, see Kendall and Stuart (1963), pp. 329, 336.) 

Table (2.2.2). Values of hj*) 

I h£(*) I \W 

2 .56419 50 2.24907 

3 .84628 100 2.50759  ! 

4 1.02938 150 2.64925  1 

5 1.16296 200 2.74604  | 

6 1.26721 250 2.81918 

7 1.35218 300 2.87777  j 

8 1.42360 350 2.92651 

9 1.48501 400 2.96818  | 

10 1.53075 500 3.03670 

15 1.73591 1000 3.24144  ! 

20 1.86748 

25 1.96531 

From Corollary (2.1.18), (2.1.31)(2), and (2.2.1), the following 

theorem emerges for the normal case. 

THEOREM: For any i (1 <_ i ^ k), 

UJ.J  -  (o/^)hk_itlU) lE/^j 1 wri]  ♦  (a/^öh.^) 

(2.2.5) 
and X,., is asymptotically unbiased (as n-*»)  as an estimator 

ofum. 
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The following theorert shows that the bounds of Theorem (2.2.5) are 

actually the sup and inf. (For the location paraneter case, the inf 

for i = 1 ar.d the sup for i = k were proven as Theorem (2.1.21).) 

THEOREM; For any i (1 <_i <^k), 

inf{V[i]: ^ e no(,J[i])} " ^[1] - (°/^hk.i+1(*) 
(2.2.4) 

and 

sup{EyXjij: M e ^(y^.j)} = u^.j * (o/^hj^). 

Proof: By Theorem (2.1.15), the infimum is >yr.■|-(o/^n)h, -.i^) and 

the supremum is <Ur. i + (a/t^n)h. (())). "/e will now show that 

inf{V[i]: ^ e üo^[i])}  1 ^[i] ' (o/^Vi+l0^ 

supCE^X^j: y e fi
0^[i])> 1 ^[i] + (a/^h^). 

Now, since we are taking the inf and sup over more restricted sets, 

inflE^: u  e V
y[i])} 1 inf{V[i]: 

i-1 tierms   k-i+1 terms 
y=(yfl],...,p[1],g[i],...,li[i]) e ^(yfij)) 

suP{V[i]:  p e  V^i]^ isuP{V[i]: 

i terms         k-i J^erms 
y=(^yT^.,y^].u[k],....u[k]) e ^(uj.j)}, 

Case 1. The infimum. By Lemma (2.1.10) and Theorem (2.1.11), 

E Xr.,, with y=(-M,...,-M,y  ,...,y  ), decreases as Mt. If we let 

li.(x) denote F^-  (x) with ^(-M,... ,-N,yr.,,... ,u ,), the desired r A[i] l1J     I1] 

infCE^.j: y^-M.-.-.-fLy^ y^ e ^iu^))  -lim ./xdHM(x). 

However, the following weak convergence holds as H*»: 
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i-1 terms k-1+1 terms 

"HM-^J*) = Fy  (x) with p«C-",...,-»,iJ[ij....,Mjij). 

Thus, by Thecrem (2.1.25), if |x| is uniformly inteRrable in H,,, then 

lim_7xd!Ifl(x) -.7xdf!Jx) - um - Co/^)hk .  C^), 

where the last equality uses Lemma (2.1.14) and (2.2.1). Since |x | is 

uniformly intej»rable in li, by Lemma (2.2.6), this part of the theorem 
tu 

is  proven. 

Case 2. The supremum. By Lemma (2.1.10) and Theorem (2.1.11), 

E Xr.,, with u=(yr-i,.. ..Urji »ff.. • • .'0 , increases as M+. If we let 

JM(x) denote F^-  (x) with y=(wr-i, ■ • • »gr-i »f'» • • • »f'). the desired 
!1 \i] ^ ■'     ' •' 

sup{E^Xj.j : u*(Mjij,...,yrij,M,...)W) e R0(v[i])} " li^.JcdJ^^x). 

However, the following weak convergence holds as M-*»: 

i terras       Ic-i terms 

JM(x)-NJao(x)  = F^-     (x) with uS5(pri]'---'i
Jri]'+00'--"+005- 

The theorem follows  as in Case 1, now usinp the fact that  |x| is 

uniformly inteprable in J.. by Lemma (2.2.7). 

LgmA:    For any y e ^(wr.!). 

(2.2.5) F7        (X)...FY        (X)| 

ed)        _m 
d,      (x) <   I ^ I     J f^     (x)-^: ^ 

X[i] i^i k- ße^ j=l Xß(j) Xe(j) 
dx. 

Proof: 

FTT     (X) = P[At least i of X.,...,X.   are <x] 
X[i] Ik- 

=    V P[Exactly  i of X".,... »X-.   are <x] 
£=1 ' 

55 JiÄlflc-Ä)!   ß^s 
P[Xß(l)iX"--'Xß(£) -   F' X6(Ä+l)>X","Xß(k)>x] 
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M 
it=i    k' ßeSk "6(1) 

'    Z    -Yt   I    Fy (x)...F7 (X)[l-F7 (x)]..^!-^        (x)]. 
ß(A) ß(£*l) ßOc) 

Thus, 

dF7_    (x)  =1-^-1 I 
. kl [i] Jl=i        ßES.      j=l Aß(j) 

I %        (x) -^ 

Frr (X)...F7 (X) 
^ ' X8(a) 

F7        (x) 
ß(j) 

[1-F7 (x)]...[l-F7       (x)]  -      I    %       (x) 
ß(Ä+l) Aß(k) j.£+l  Aß(j) 

[1-F7 (x)]...[l-F7        (x)] 
ß(i*l) ß(k) 

F7       (x)...F7       (x)  
HD ßW [1-F7       (x)] 

ß(j) 

dx 

t»i   K'  BcS,.  Ij.l    ABfj) 

%       (x)...!^        (x) 

Py       W 
Hi) 

(2.2.6) 

LEMMA:     |x| is uniformly integrable in H.((x) ■ Fy     (x) with 
  -M X(i] 

i-1 terms     k-i+1 terms 

V   =(-M,...,-M,U,i,,...,Urij). 

Proof:    Let L be positive.    Then, by Lemma (2.2.5), 

0 1  ,  I    M^M00 "   , (    lxldFY...(x) 

x  >L x  >L [il 

^ä. f 
£-1    KI  ßeSk   [j-1   |x|>.L        Xß(j) 

. F^-        (x)...F7        (x) 
r f      |    |tf ,   ,        6(1)   6(0 ,    . I J      |x|f- (X)    ^ i^»     dx^ 

F7       (x) 
Xß(j) 

Fix any e>0.    We will now show that there is an L ■ L(c)  such that the 

upper bound on      f    j 
|x|>L 

x|<iHM(x) is <e regardless of the value of M.    By 
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Definition (2.1.24),, this will prove |x| is uniformly integrable in 

HJJCX). 

Since £ > i.i-t-l,... ,k, and since i-1 populations have means -M 

while k-i+1 have means Vti-i,  for any fixed I  and ß at least one of 

^ßflV*'''^Rfj.'i ^s associatec' with a population with mean Vri-i* 

Let us consider the terms which are summed in the upper bound on 

f |x|dH..(x), a typical one of which is 
MIL 

w F^   (x)..^^   (x) 

.ßj) = M / |x|f^  W^m^       ^  dx. T(Ä|i-i5i -  . . 
K IX 1L    Hi) ^(j) 

Case 1. XQ#..» comes from a population with mean iir.-. Then 
   »UJ UJ 

w 
T(£,ß,j) i1^- f |x|%   (x)dx 

K,|xl>L   Xß(j) 

and, since X /.. is N(M,.,,o2/n), it is clear that for L ^L (£,ß,j,e) 

we have T(l.ß,j) < ^.^^i^ 

Case 2. )(„,.. comes from a population with mean -M. Then one of    SO) K r 

^OM\»-• •»^Q#•fl^ (but not X.,.,) comes from a population with mean Ur-i! 

call it XD . Then 
6o 

['1 h 
TU.BJ) 1-^/ !x|f7  Cx)dx*-^|/ |x|f   (X)F- (x)dx 

k!x>.L   Xß(j)       klxi-L   X0(j)   Xß o 

Since X0,.> is N(-:i,o2/n), it is clear that for L > LOCä.SJ.E) the 
PU J — 

1   e 
first term is < — ,.....,. uniformly in M. 

Now, since X  is N(y».i,o2/n), for x < -Iw^-il (^o that 
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•X+Mi]  > 0) 

F^    (x)   = P[Xß ^x]  = P 
ßo 0 

Xß0"U[il      ^[i] 

rfJü a//n 
- * 

X-li 
[i] 

a/^ 

=  1-* 

1 ['x+p[i.r 
2 

■^m 1      2 a/r/ri 

a^n ~/2? -x-»p 
[1] 

a//n 

by the result  (see, e.g., Feller (1957), p. 179) that, for y ^ 0, 

1 2 i      •■—y 
l-*(y) 1 —e 2   ^.    Thus,  for L > 2|wm|, 

^ y llJ 

/  1x1%       (x)F7   (x)dx 
x<-L       Aß(j)       V 

1 
1 "7 

1     /   |x| —■* 
x<-L     /27 c/Zn 

x+M "12 

J/^JT 

/27 

-X+U J.J 12 

,/A dx 
-x+u 

[i] 

< o/^n      r      lx 

■x+p[i] 

/2¥ x<-L"X+u [i]   /27o/^ 

a/t/n dx 

/ 2 L_ e   \ 

x-w 
[il 

)2 

a//T dx = a/2/(mr)  P[X0    <  -L] 

Since X      is N(ur.,,a7h), it is clear that for L ^ L  (fc,ß,j,M,.,,e) 

the second term of T(£,6,j) is < -j jy—-—rvrnr » so t^at for 
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L > Lu(£,ß,j,y ,.,,£)  = inax(L,,L,l we have T()l,6,j) <  
~ UJ z    J (k-i+l)klk 

uniformly in fl. 

Using Case I and Case 2, since the bound on     /    IxIdFi-Cx) 
|x|>L 

involves <  (k-i+l)k!k terms, we have (uniformly in M)      /    |x|dHM(x)<e 
|x|>L 

LEMMA:    Ixl   is uniformly integrable in JM(x) = F^-      (x) with 

(2.2.7) 
i terms        k-i^erms 

v = (yTijT• • • .u rVi ,'^7• • • ,M) • 

Proof:    Let L be positive.    Now, 

0 <      /    |x|dJM(x)  =      /    |x|dF7     (x). 
- |x|>L        M |x|>.L X[il 

Fix c>0.    By Definition (2.1.24), to prove that   [x | is uniformly 

integrable in J./x),  it is sufficient to show that there exists an 

L = L(e)  such that      /    |x|dJ (x)<e for all M. 
|x|>L 

For M >   Ivir-J, by Theorem (2.1.11), 

i times k-intimes 
JM(x) = F^     (x) with u=(uTTT;7'.". ,u,.; ,M,... ,M) 

i-L times   k-i-t-1 times 
<Fj     (x) with \i » (-M7...,-M,{i r^,,.7•»Wnp 

= ^(x). 

Define two d.f. 's 

1 if x > -L fl if x > -L 
F(x) -   < . G(x) aJ 

|JM(x)   if x < -L |HM(x)  if x < -L. 

Then by Lemma (2.1.10), 
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jrxdF(x)  >  _/xdG(x) 

-L -L 
_jrxdJM{x)-L(l-JM(-L)) l_/xdHM(x)  - Kl-^C-L)) 

-L -L 
0 > JjdJMM i .lxdUuW + UHM(-L)-JM(-L)}. 

-L 
Now,  since H  (-L) ^ JM("

L
)  

and since    /xd'< (x)-K) uniformly in M by 

Lemma (2.2.6), we find that 

-L -L 
0 >    /xdJ„(x)  >    /xdH.t(x)->0 uniformly in M. 

—  -oo       M  oo        N 

Thus, there is (for any fixed yr-i) an L.fe) such that for L > L^e) 

-L 
we have / Ix ldJ.,(x) <e/2 uniformly in M. 

- oo M 

Take L  > L^e).    By Theorem (2.2.3) and Theorem (2.2.4), we have 

W^j  +  (cV*£)h.($)  > sup^X^^:   ^=(^^^...,^^.^,11,...,^)   e ^CM^J) } 

oo -L L 00 

= lin    /xdJM(x) = lim  { fxdJ.Ax) +    /xdJ..(x)  +  /xdJM(x)} 
M-Ko -»     ri n^ia   -"    M -L     r, L     M 

LJ GO 

> -e/2 + lim    /xdJ..(x)  + lim /xdJ,.(x) 
If** -L      M M-*» L      M 

L 00 

= -e/2 +    /xdJ  (x)  +  lim /xdJ.,(x). 
-L      ^ It** L     M 

The last step follows from the Helly-Bray Lemma (as in (2.1.27)). 

Since  (as shown in Theorem (2.2.4)) 

.ZxdJJx) = ^ij  +  Co/^)h.($). 

L 
for L > 12(c)  we have /xdJ^x) within e/2 of y,., ♦ (a/^n)h. (.^). 

— L* 

Thus, if L > max(L1,L2) then 

UM] + (o/'/fDh.U) > -| -j + y ^j + (a//n)hi((}.) + lim 7xdJM(x) 
Li 
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e > lir 7xdJM(x). 

Thus, there is an L = L_(e)  such that     /    |x|dJM(x)<e regardless of 
^ IxliL ''     ~ 

the value of M. 

Among the results of Section 2.1 for a location parameter family 

which ergo hold for the normal family of the present section, the linear 

corrections for (e.g.) minimax|bias| at equation (2.1.32)ff are worthy 

of special note.    We may then (in the normal case) readily determine 

the sample size n needed to satisfy several criteria (ranking and 

selection, estimation, or both).     (1) Set n as dictated by the ranking 

and selection use of Rule (1.3.2),  say n..    (2) Set n to naVe certain 

minimax|bias|'s suitably "small," say n».    (3) Set nsmaxO^n.). 

Table  (2.2.2) of values of h  U) indicates that for k in the 

range in which Rule (1.3.2) would usually be used (k <^ 10)  the factor 

h (♦)  in the bias is not seriously detrinental, being only 1.5 for 

l « 10.    Even if i were of the size associated with large screening 

experiments, the factor h U) would still be only 3.0 for i = 500. 

As an example, if one were setting n large enough to make the ninimax 

|bias|   in X^. ,  - a, as an estimator of y r. ,, _^ e (e >0), he would find 

approximately that if n   sufficed for k = 2, 4n   would suffice for 

k « 5: and that if n    sufficed for k = 9, 4n   would suffice for k = 500, 
o o 

since by Theorem (2.i.33) the minimaxjbias | is 

WX-i+l^ \t*n>-KV      i 
= - (o/^n)hk((t.). 

Note that if there are restrictions on the u.   (i = 1,... ,k) in a 

practical case, then the inf and sup of Theorem (2.2.4) can be improved, 
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For example, if A ^ u.  <^ B  (i » l,...,k), then "A" will replace "-"" 

and ' B" will replace "+»" in that work.     (A coiraron case is A » 0, 

B = +«0.)    Such a process will result in a smaller n. being needed 

for estimation as in the previous paragraph. 

If the sup and inf were desired over a more restricted set than 

u e ü (ur.i), sayy  e fifi6i r-i)» that sup and inf would also be attained 

by raising (lowering)  the components of u to the highest (lowest) 

possible values.    Moting that this is somewhat analogous to the set 

over which a Probability Requirement is made in the "indifference 

zone" formulation of ranking and selection problems, one might at 

first think we would be interested in the sup (inf) over u e ^(Mrii). 

However, since our aim is good estimation of y,-.-.  regardless of y, 

the set used above (y e fi  (yr.i)) will usually be the proper one. 

(For special uses of the estimate of yr., one may only "care" when, 

for some 6, y  G 0.(y,.,).) 



CHAPTER 3.    POINT ESTIMATION:    STPO'IG CONSISTENCY 

3.1.     STRONG (W.P.  1) CONSISTENCY OF A NATURAL ESTIMATOR OF y,.,   (l^i<k) 

FOR A LOCATION PARAMETER FAf!ILY 

Consider Xr., as an estimator of Ur.,   (1 £ i <^ k) when Set-up 

(2.1.1) and Assumption (2.1.2) hold, i.e., when observations from pop- 

ulation IT. have fr.f.  f(x-6.), XeR, i = l,...,k,and the mean of f exists, 

If Z is a constant (say 6) with probability one  (w.p.   1), a sequence of 

estimators {Z : n ^ 1} is said to be: strongly consistent (for 9) if Z 

converges to 9 w.p.  1; consistent (for 9) if Z   converges to 9 in prob- 

ability.    Since convergence w.p.  1 implies convergence in probability, 

strong consistency implies consistency. 

LEMMA:    Let T-Cn),... ,T, (n)  (n >^ 1) be r.v.'s which converge 

w.p.  1 to r.v.'s T.,...,T.   (respectively).    Suppose that 

g(t1,...,t.) is a continuous function of k real variables. 
(3.1.1) 1 K 

Then 

gCr^n),...,^)) 

converges w.p.  1 to g(T ,...,T.). 

Proof:    Suppose that all r.v.'s involved are defined on a probability 

space (JJ.B.P).    Then by a characterization of convergence w.p. 1 

(see, e.g., Parzen (1960), p. 415), it suffices to prove that for every 

e > 0,  6 > 0 there exists an integer N    > 0 such that 

P[sup  |g(T1(n),...,Tk(n))-g(T1,...,Tk)|  > e]  < 6. 
n>N 
- o 

However, by the continuity of g(*,...,•) and the convergence of T.(n) to 

T. w.p. 1 (1 £ i £k), this is clear. 

37 
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THEOREM: X,.-. is stronply consistent as an estimator of 
(3.1.2) llJ 

Proof: Since 7xf(x)dx is assuned to be a finite nunber, it follows 
■   ■ —00 

by Kolmoporov's Strong Law of Large Munbers   Csee, e.g., Lo^ve"(1?63), 

p. 239)that X.,...,X.   converge w.p. 1 to y.,... ,M.   (respectively). 

Thus by Lemma (3.1.1)  X,., converges w.p. 1 to y,.,   (i = l,...,k). 

The stronger theorem, that "(Xr.n) converges w.p.1 to g(u,.,)  for 

any continuous real-valued function g(')   (1 £ i 1'0 is obvious.    It 

can be used as follows:    a(xrvi^ ma^ ^e use^ t0 yi6^ an estimate of 

gfiir,,), where g(')  is a continuous function such that if we knew the 

mean of the selected population to be y , then we would know the 

expected worch to us  (e.g., in dollars) of the selected population to 

be p(u).    Other applications might occur for a Bayesian taking y,., to 

be a r.v.   (1 <_ i <_ k). 

Note that strong consistency of Xp,  as an estimator of y,., 

implies strong consistency of X,., + a   where lim a = 0 (i ■ l,...,k). 

(This, of course, was also the case for asymptotic unbiasedness.) 



CIIAPTFR 4.     POINT ESTTIATinM:    SQUAPvED HPROP 

4.1.      SQUARED ERROR OF A NATURAL FSTKIATOR OF y,.,   (l^ifk) 

FOP. A  LOCATION PARATICTFR FAMILY 

In this section we consider the squared error of X,., as an estima- 

tor   of yr.,   (1 <^ i ^ k) when Set-up (2.1.1) and Assumption (2.1.2) hold, 

i.e., when observations from population TT.  have fr.f.  f(x-6.), x e R, 

i » l,...,!«, and the mean of f exists.    The expectation of this ouantity, 

i.e. 

(4.1.1) E   (Xr.,-yr.,)
2, uk  [i] *[i]J 

will be of special interest. 

LEMMA: If F(-) and G(-) are d.f.'s with F(x) <_ G(x) (x e R), 

then for ^(x) any monotone non-decreasinp function of x we 

have 
(4.1.2) 

J>(x)dG(x) 5..Z*(x)dF(x), 

with the inequality reversed if iji(x)  is monotone non- 

increasing. 

This lenma, which is a generalization of Lemma  (2.1.10), has been essen- 

tially stated by Alam (1967), p. 283, who refers to Lehmann (1955) for the 

proof.    That reference is concerned with more general questions  (which 

makes it difficult to extract the needed proof).    A simple proof (for 

the strictly monotone ^(0 case) is possible usinp the inverse func- 

tion.    We omit this since Mahamunulu (1967), p.   1082, has recently pub- 

lished a reference on this result. 

39 
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DEFINITION: For our location parameter family, let 

1-1 J;erms  k-i+1 terms 
H (x) = FTT- (X) with U = C-00. ■. •.-«.UTTTT^.TTM r^ ■,) 

(4.1.3)   00     x[i] llJ     llJ 

iterms   k-i terms 
j^cx) = F^-    (x) with u = «r:^,. ^77, ,*«,...,+»). 

Although H (•) and J (•) depend on i (1 f_ i 1.1'), this dependence will 

be suppressed. (We  used this notation for the normal case in Theorem 

(2.2.4).) 

LE'WA: For any monotone non-decreasing function of x ^(x) and 

y e ^(y^j). 

f4 i A) .hWdUJx)  i inx)d^  (x) 1 _^(x)dJoo(x) 
[i] 

(i = 1,.. .,k),with both inequalities reversed if ^(x)  is mono- 

tone non-increasing. 

Proof:    This follows from Theorcn (2.1.11)  and Lemma (4.1.2). 

THEOPEM:    For any i  (1 1 i 1 k) and any u  e Ü (wr.,), 

(4.1.5) u[l/]
(X-,,(il)2dH-M *    i(X-"[i]'24,-(lt)iE

U
CX[ll-U[i])2 

U rj [il 
<  Jf (x-^i^^Jx)'^   / (x-M[i])2dJoo(x) 

[i] 

Proof: Define 
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TCx-u^,)2 if X-M,.,   > 0 

Mx)   =   { 
0 if   X-Mr.,     <   0 ^ [i] - 

^2(x ,.(■ 

if x-u r.-.   > 0 

| ^^[i])2 if x"u[i] 1 0- 

Then by Lemma (4.1.4), since i>Ax) is monotone non-decreasinp in x 

and 'l'-(x)  is monotone non-increasing in x, 

0 1     / (x-Wr.J^HJx) <     7 (x-Hr.J^     (x) <      / (x-yr O^JJx), 

V[i] u[i] Mil 
/ (xHij.^^Cx) >     / (x-u^j)^     (x) >     / (x-u^p^Jx) > 0. 

from which the theorem follows easily. 

Note that since (for any r.v. Z) EZ2-(EZ)2 = Var(Z) and since 

Corollary (2.1.18) gives us bounds on E X,.,-|ir.,, Theorem (4.1.5) can 

be used to obtain bounds on 

Var Xr., = Var (X,.,^ ,.,) » E (Xr.,-u r.J
2 - (E Xr.,-yr.,)

2. 
u [i]    iiv [i]^[i]'   u' [i] [i]J M  [i] M[ir 



CHAPTER 4.    POINT ESTIMATION:    SQUARED ERROR 

4.2.    THE NORMAL CASE 

In this section we first find the form of the results of Section 

4.1 in the case of normality.    Under normality, 

H^Cx) = P[Miniraum of k-i+1 N(y,.,,o2/n) r.v.'s is <x] 

= P Min of k-i+1 N(0,1) r.v. 

-,k-i*l 

•s is ^m 
o//a J 

= i- i-* 

J^Cx) = P[Maximum of i N(y,.,,a^n) r.v.'s is <x] 

= P 
x-y 

Max of i N(0,1) r.v.'s is <- [i] 

j//n 

X-p 
[i] 

I a^   < 
Thus, 

J    Cx-Uj.^^dHJx) («■-...-{'■H^l'l 
(o2/n)/x2d{-[l-*(x)]k-i+1| - (o2/n) /x^j^Cx)^-1*1}: 

[i] W f iJ 
/   (x-Mj.j^diCx)   =        /   (X-Wj.j)2* 

x-w 111 
1 I '/»^ . 

.(a2/n) /x2d][«(x)]if; 

and 

u[ii wri] 
/   (x-M^^dHjx)   »        /   (X-V[i])

2d. 
x-p 

1-* Lil 
y/^T 

k-i*ll 

(a2/ n)  /x2^-[l-nx)lk-i+1) - (o2/n)/x2d|fnx)lk-i41}; 

42 
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Thus, by specializing Theorem (4.1.5) to the case of normality and usinf» 

the above results, we obtain the followinp theorem. 

THEOPBM: For any i (1 5. i f. k) and any y e 0 (Ur-i), 

(4.2.1) 

(o2/n) /x2d|[*(x)]k'i+1| + (oVn) /^{[»(x)]1} 1 E^X^-y ^ ); 

5 (o2/ n)/x2d|[*(x)]
k-i+1| * (o^/^/x^d^nx)]1}. 

In the case of normality, it is possible to further bound the 

supremum and infimum, thus obtaining an interval in which each must lie. 

THEOREM: For any i (1 1 i f. k), talcing the inf and sup over 

inf V^ii-^ip2 

imin[(o2/n)  /x2d{[*(x)]k"i+1}j  (o2/n) Jx^^x)]1} 

sup R^-^ri])2 

(4.2.2) 

> max '(o2/n) J^dj^x)]^1*1^ (o2/n) /x2d|[*(x)]i}] 

Proof: Since (see Theorem (2.2.4)) H.,(x) and JM(x) converge weakly to 

HQI)(X) and J^x) (respectively), by TTieoren (2.1.25) it follows that, if 

x2 is uniformly inte.nrable in H,. and J,,, then 
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lim    j[x2cUUx) =    Jx^H^Cx) =  (a2/n) Jx2d{ [«(x)^'1*1} 
fJ-K»      .00 -00 .00 

lim    /x2dJM(x) =    /x2dJao(x)  =  (a2/n) /x2d{ [«(x)]1}. 
fl+flO     _00 -00 -00 

In this case it must be the case that the inf (sup) is less (preater) 

than or equal to each of these quantities. 

The fact that x2 is uniformly inte^rable in H,,follows from a modifi- 

cation of the proof of Lemma (2.2.6). 

The fact that x2 is uniformly inteprable in J,.requires major modifi- 
M 

cation of the proof of Lemma (2.2.7), as will now he noted. Using 

Lemma (4.1.4) with the non-increasinp function 

ix2, x < -L 
>Kx) - , 

10 , x > -L 

''■ .'ead of Lemma (2.1.10)) we find 

OB OB 

/^(x)dG(x)   >     /^(x)dF(x) 
.CO -00 

-L -L 
/x2dUM(x)  * L2(l-Hf1(-L))   >     /x2dJM(x)  * L2(1-JM(-L)) 

-00 -00 

-L -L 
/x2dHf.(x)  1    Jx2dJ.I(x)  * L2{HM(-L)-J.,(-L)}. 

-00 -00 

Now,  since IL(-L)  > JM(-L)  anH since     /x2dM (x)+0 uniformly in M, we 
— 00 

find that 

-L -L 
0 <    /x2dJ.1(x) <     /x2c,H.1(x)-<-n uniformly in M. 

-00 .00 

Thus, there is (for any fixed Ur-i) an L, (E) such that for L > L.(e) 

-L 
we have Jx2dJM(x) < E/2 uniformly in M. 
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By Theorem (2.1.11), J (x) > J (x).    If we define M 

F(x) = - 

G(x)  = • 

JJJCX), x ^ L 

0 , x < L 

J^Cx), x >_ L 

0        , x <  L 

iKx) = • 

2       ,  x > L 

,  x < L 

then by Lemma (4.1.2), 

^(x)dF(x) i   ^(x)dG(x) 

/x2dJM(x) + L2JM(L) i /x2dJao(x)  + L2J (L) 
L        ' L 

0 i /x2dJ (x) <_ ^{J^CD-J (L)) * /x2dJoo(x) <_ /x2dJoo(x) 
L        ' " L       " L 

How since /x2dJa)(x) exists, for L > Izte)  we have /x2dJ.,(x)  <^ e/2 
L 

uniformly in fl. The result then follows as in Lemma (2.2.7). 

We now find the min and max needed in Theorem (4.2.2). This will 

allow us to specify intervals in which the inf and sup must lie, and to 

study the lengths of these intervals. 

LEMMA:  Let I.,...,7.    be independent r.v.'s, each with d.f. F 

such that Ff^-) ♦ .:(-z) = 1 for all z (e.p., this occurs if 

F has a fr.f. which is symmetric about 0). Let (1 (z) be the 
(4.2.3) " 

d.f. of max Z. 
l<i<n 1 

Let h(u) be any non-decreasing function 
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of u>0 such that h(0)>-". Then /h(u)dG (u) is non-decreasing 

in n. 

Proof:    For u ^ 0, G      (u) <^ G
n(u)   (n = 1,2,...) since 

Gn(u)  = P 

= P 

,T,ax Xi I .1 u 1" p '"u 1   niax Xi 1 u1 1liln   I       i     L       1liln        J 

'max Xi < u]  - Pfmax X.  < - u]  = Fn(u)-[l-r(u)]n 

implies that 

3 if n = 1 
G  (u)  - G    .(u)  = ^ , 

n n+1 [ F(u)[l-F(u)][FI1"'1(u)-Fn-1(.u-)]   if n > Oj 

Hence the desired result follows from Lemma (4.1.2). 

' > 0. 

(4.2.4) 
COROLLARY:  /x2d{[*(x)]n} = 1 for n = 1,2 and is a strictly 

increasing function of n thereafter. 

Proof: Choosinfr h(x) = x2 and F = *, by Lemma (4.2.3) 

00 00 00 

/x2dGn(x) = /x2d{[Hx)]n) - /x2d{[l-*(x)]n} 
0 0 0 

oo 3 oo 

= /x2d{[*(x)]n} + /x2^.{rnx)ln} *    /x2d{f*(x)]n} 
0 -oo -oo 

is non-decreasinf in n. 

THEOPF.t'l: For any i (1 ^ i ^ k), inf{F CXrji-w^,)1 

u G Q ^fi)} is in the closed interval 
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[(oVn) /x2d|[*(x)]k"i+1| + (o2/n) Jx^jmx)]1}. 

(aVn) /x2d|[*(x)]k-i+1}] 

[(o2/n)/x2d|[*(x)]k-i+1J ♦ (o2/n) ^d^Cxf] , 

if i > k+1 

(4.2.5) 
if i < V+l (a2/n) ^dlf^x)]1} 

and sup-In (^r-i'U rii)2: P e n &i,.,)V is in the closed interval 

(o2/n) W^Cx)]1"}, 
w .00      * ' 

(a2/n)/x2d|[*(x)]k"i+'l ♦ {a2/n)}x2d|[*(x)]i} 

(o2/n) ]x2d{[*(x)lk-i+1}, 

(o2/n)"/x2d|[*(x)]k"i+1l * (a2/n)0/x2d|f*(x)]ij 

... , k+1 
if 1 > -s- 

i ~  2 

if 1 < -y- 
0   v ' 0 

Proof: See Theorem (4.2.1) for the lower (upper) end points on the inf 

(sup), and Theoren (4.2.2) with Corollary (4.2.4) for the other end 

points. 

. 
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(4.2.6) 

COROLLARY: The inf and sup of Theorem (4.2.5) each lie in an 

interval of lenpth 

(o2/n)(7x2d{[*(x)lk"i+1) - Jx^UHx)]1}) if i l^T" 

(a2/n)(/x2d{[*(x)]i} - _?x2d{fHx)]k"i+1}) if i < ^-. 

By Corollary (4.2.4), the intervals of these lengths for the 

k+1 inf and sun  fail to be disjoint iff (i = -=-> or (i,k-i+l) is a 

pemutation of (1,2)). In that case they have exactly one 

common nolnt. 



CI1APTFR 5. POINT ESTIMATION: MAXP1IM LIKFLIHOOD (ML) 

AMD REL^TP-D ESTIMATORS 

5.1. MLE's FO?.  W ^j. • ■ • .U[1;] 

Consider first naximun likelihood estimation of y.,...,p.; i.e., 

we seek the maximum likelihood estimtors (MLE's), those functions 

U,,...,£L (if suc;i exist) such that the density of the observed 

statistics (whatever they may be) is maximized by setting 

ul '  ul' »Wi 
A 

Our observed statistics under Rule (1.3.2) are X. .   (i = 1,...,V.; 

j » l,...,n), but since y^ ,...,X,   are sufficient statistics we may take 

them as fundamental.    Then 

(5.1.1)       f;- 7 (x  .....x.)  =  (/T/a) > x1>....xk    i 

and (if u. / u .: i ^ j" i.j = l,...,k) the MLF.'s of Ui.'"»iii, based on IJ IK 

X.,...,X. exist and are uniquely 

XJ-UJ 
•■•^ 

'X';^k] 
^0/vin 

(5.1.2) ^i = xi' ••' ,UV = Xl. 

(The restriction to MLE's based on X.,...,X. is a consequence of t^e 

general result that MLE's are functions only of sufficient statistics 

for a problem; see, e.f., "op" and Craif (1965), np. 245-246.) The 

oroblen of possible equalities amono. Mrii» • • • »W rj,! is discussed below; 

similar results hold for the case of equalities amo^" y  y, . 

For the problem of findinp an MLF of a 1-1 function u(u.,...,u. ), 

49 
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it is well-known that  (asjuninr the MLR of y.,...,y.   exists) 

ufC.,...^.) = u (say)  furnishes a solution, essentially because forcing 
1 •- 

u=u inplies v.  = u,,   ...   , y.   » y..    (See, e.*., Hopp and Craig (1^65), 

p.  247.)    If u(u.,... .y,)  is not 1-1, i.e.  if it is nany-to-one, points 

other than y.  = vs,   ...   »My = y^ ^ay also be irnlied ^y u = u.    In this 

case Zehna (1966) was the first to state explicitly a reason for 

picking only the "riphf   noint y. = y,,   ...   ,y ^ * y.   for attention 

(and thus for callinr u an f'LE).    Berk  (1967)  rivos a different justi- 

fication for callinr u an iiLl:. 

Fror the above it is clear t'iat, ^ased on X. ,...,X. , 

(5.1.3)   yril =  {ith smallest of X,...,Xk} = X,., (i=l,...,k) 

is the Berk-Zehna-MLE of yr.,,...,y,. ,. Below we discuss tbe nroblen 

of MLE-tyDe estimators of (y (■,•■,..., y,,,) fror another noint of view. 

This retrod,  Tterated-MlP's,  is discussed in Section 5.2. 

Elunenthal and Cohen  (If'öSa),   (1968'-)   (who provided tbe author 

with preliminaries of th.eir papers)  studied,  for a translation param- 

eter family,   (1)  estimation of t'e pair  (y r., ,ur:>,)  for tbe sum of 

squared errors as  loss function and  (2)  estimation of y,-1   for a 

squared error loss  function. 

Other work on the case k = 2,  in another formulatior;, was done by 

Katz  (1963), who proposed to estimate  (ur ■,-,,» r7-,) '.'hen one knows that 

(e.n.)   n    is associated with yr.i  and  v    is associated with yr^-i.    Tlis 

work was done for binomial probabilities nnd also for normal reans, with 

(e.":.) sum or squared error losses.     (HIP fact that  (X-.X-)  is not a 

totally desirable estinator may be seen  intuitively fror the fact that, 

althour'i yri, ^^ryi,  in general   {X.   > X.} can occur with positive 

mm 
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probability.) In our work one does not know the association of the y 

with the it. (i,j = l,...,k); see Robertson and '"'altran (1968) for the 

[i] 

case where one does. 

Blumenthal anr' Cohen (1%8), who utilize the MLF of u rji found 

below, desired tbeiv estimate to he sympetric in X,,^;  in order to 

force this they based tiieir estimate on t^e naxiral invariant Xr.,, 

Xr--..    Note, however,  that in order to obtain symmetry in X-.X.  (and 

certain other invariance conditions) in one's estimator, one nee^] not 

Ro to xrii>Xr2,   (at least for the normal case:  see (5.1.3)).    Mote that 

(although the "IV of Ur^ based on X./X- is -^i)  t''0 ■1I'n of Ur2l based 

on Xr.,,Xr7l  is not.     In Section 5.2 we pive additional justification 

for basin»-, the nui on Xrji.Xj.-,. 

"e will now consider the general case in which  it is desired to 

find the MLr's of M ,.,,... ,y ,, , based on X.  ,,... .^p,.    Tlie likelihood 

function is piven in  (B.l.l), and (due to its syrmctry in y rii »• • • »MrvO 

if tJ ri i f • • • >ij rvi  's ar!    '''   then so is any nerm'tation of it (so that it 

is not necessarily the case that ü r. ,<... <)j r. ,).    I
n order to elirinate 

such undesirahl^ occurrences, wo refiuire a consistency condition. 

CONSISTENCY CRITFRION:    Anonf the  (at r>ost k!) nermtation 

(5.1.4)      MI^'s \-hich any u f.,,... ,w rki which naxinizes  (D.l.l) pro- 

vides, only the one with d r, if • • • <u ri.1  will he called in f'L^. 

Fron  (B.l.l)  and tl;e forr of <>( ),  it is cl^ar t^.at we nay restrict our 

search for the naxinup to p ,.■■,... ,u r.i  sue'1 that x.   *. tu ri i >• • ■ »u r. i) 

<  x, .    By  (5.1.4)  we need only consider the case u r, i< • • ..51 M,! . and not 

all k!   (fewer if t^ere are any equalities)  orr,prin',s.     It is well-known 

mmm 
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(see, e.g., Hancock  (1960), p. 80) that in suc'i a case the maximum must 

occur at M MI »• • «»Uri,! such that 

rn *''' * r'l 
(5.1.5)       — LJ = o (i « l,...,k); 

any point ^ MI ^ • • • »^ rj-i   (which depends on the values of x. f...,x,) where 

(5.1.5) holds is called a critical point. 

In takin" the derivatives  (5.1.5),  the results depend on how many 

of the k-1 inequalities Vri i^.-• • ^r^-i  are equalities.    There are thus 

k-1 2'      mutually exclusive and exhaustive cases, say 

(5.1.6) Ü    = Q...  + nf2.   +   ...  + Opk-l. 

where the n,... are disjoint, 9.,,.  =  n(^) is defined ir (1.3.12), and the 

I' -1 !' -1 
Q,.^   (i = 2,...,2V ) are the other 2'   - 1 cases in sone order. Fix 

k-1 
any i (2 <_ i < 2      ) and suppose that sore p* e n,.. solves the system 

(5.1.5) (i.e., is a critical point vihon  the derivatives are taken for 

\i  e fi^.v). 'Hien it is easy to verify (usi^p (B.l.l)) that y* is a 

critical point of syster (5.1.5) when derivatives are taken for 

M c  ^/-j-v. "e tiius have the 

TIEOPHM: Aüy critical point for our problem is a solution of 

syster (J.1.5) wit^ derivatives taken forp e fi(/), orovided 

only that we allow boundary points (i.e., points o^ 

f!,-, * ... ♦ H k-K) to be considered solutions. 

To connlctely justify calling the boundary points included in 'rheorei? 

(5.1.7) critical points, one should show that any such point is a 

solution o^ system (5.1.5) when derivatives are taken for y in its 

(5.1.7) 
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n,.»; this is clear from the proof of Theorem (5.1.7). 

Now (taking derivatives when W n "i*-• «^nji)  system (5.1.5) is 

(5.1.8) I  rf/af* 
ßeS, 

lMnlm 
y     o/^n     t 

'imzm 
o/Sn 

XQr4A-W ^Lnii(^/0). o 
;//n 

(i = l,...,k), 

or 

I xftr4^ 

(5.1.9)      y^  = 
ßeS, ß(i) 

^(D^fl] 

J/^T    , 

xe(k)"pfk] 

k     o/^n     . 

ßeS, 

I tlmlm 
.     o/'n     . 

... (^ 
x„^N-y gOO iTkj 

(i»l,...,k) 

or 

(5.1.10) 
ßeS Xß^^ ^j]       ßeSk 

y[il  '      ^ 

^(D'^n 
>     a/^"     , 

a/Jn 

ÜHlsllDü 
a/Zn 

ßeS ^ Xß(ij 

xß(i)^in 
a/t^i 

.4, IßilLLÜM 
.     a/^     . 

-(i,j=l,...,k;i<j). 

X- + . . .+x. 
THEP^.Et':     (^ ni'-'-^rkp  ss   (^•■•.x) with x =   

(5.1.11) k 

is a critical point. 

Proof:    It is clear that this is so from system (5.1.9). 

We will now investigate the nature of this critical point.    For 

i,j = 1,...,V,  for x^. ..^Xj,, 

32 

*[i]     [j]      [1]    [kl 
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f       r/nk+2 fx 

(5.1.12) 

\ / 

BcC- 
\ 

l m.piiLnn 
/SK    d 

•.. (j) 
xgck)^rki 

o/^r  i 

=< 

ßesJ
oJ 

k+2 ^ßOllllj 
o/Jn 

X6(k)'grk] 

o/V^n     ^ 

!eü£lLy 
■von 

o/«/n 
i • J 

Thus, for the matrix 0 - (d ) of evaluations of (5.1.12) at (x,...,x) 

we find 

(5,1.IS) 

'. ■ n 
k+4 

a//n 

BeS I 
(x6(i)-x)(xe(j)^   ' i ^ j 

• < 

=  (l;-2)! 
I 0J 

k+4 x^-x 

11 *   . r 
£.1   ^^J 

J ha)-*2- 4J • - ^ 

J    (x -x)(x. 
i,j-l :, 

x) . i >< j 

Y „2 
(V-l)  I  (x .x)2-k(k-l)^.  i - j 

i»l 

=  (k-2)!(^/o) k+4 
k     / x.-x 

t-1 la/,/"J 

cov(P,S)k(k-l) , i M 

:k(k-nvar(P)   -  k(k-l)(ö2/n), 

I 
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xrx 
11 ^       ... 

:OV(R,S) 

•War(R)  - o2/n 
, i / j 

where R and S are numbers selected at random (without replacement) from 

{x.,... ,x, }.    If we let 

(5.1.14) 

c = c(x1,. ..,xv) = k!(»Vo) k+4 
/I * 

x^x 

.£.1   ia//"i 

d, = 

d   = 

cov(R,S)«c 

(var(P)  - a2/n)«c. 

then d. . = d.  (i j< j) and d. .  = d    (i = j).    Mow, if we find the 

eigenvalues   of Q we can utilize Theorens  (A.2.1) and (A.2.2) to deter- 

mine the nature of the critical point (7,...,x).    I'ow 

!Q-XI|  = det 

(5.1.15) 

d -X o 
t. -X    d. 

o   .      1 

..   d -X        d, o 1 

..     H d -X 1 o 

= (do-x.d1)
]c"1(do-x + (k-i)d1) 

where we have subtracted the last column from all others, added all rows 

to the last row, and taken minors. Thus, the k eigenvalues of Q are 

X, 

(5.1.16) 

• %   -   ... s X, i = d - d- 1        k-1   o   1 

\  = rto + ^"^l 
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and Theorems (A.2.1) and (A.2.2) pive us the 

THEOREM: The nature of the critical point (x,...,x) is: 

d 
-r- < f*. < t 

0 
(i) relative minimum if - T—T < ^J * d 

(ii) relative maximum if   d < d, < - r—r v o   1   k-1 

d d 
(iii) undecided if either: (a)- —r- <_<i.  = d or-s—s-«d. <^ d 

or:{b)    do = dllr-Tordold1 = ^ 

(iv) saddle point if d. < nin (d , - j—r-) 

(5.1.17) or if d > max (d , -2-) 

Graphically, 
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The method of Theorer. (A,2.3) can also be used to prove Theoren (5.1.17) 

(since the required deteminants can be evaluated as in (5.1.15)), but 

is cumbersome. 

We now wish to investigate the nature (asymptotic as n-*» as well as 

small sample) of the critical poirt (x,...,x). Let x^OO denote a 
cl 

non-central chi-square r.v. with "a" decrees of freedom and 

noncentrality "b". 

THEOPE": 

I. P [(Y,...,X) is a relative rininun, or undecided] = 0. 

II. P [(X,...,X) is a saddle pointl = P  [x2,, 1d^Var(M)) >1<-1]; 

otherwise  (X,...,X) is a relative maximum.    This 

(5.1.18) probability does not depend on n if y,.,».. .=g ,,,. 

III. As n-x», P  [(X,...,X) is a saddle point]-*! unless 

Vi, , = ...=:yp,  (in vrhich case it is constant as given in 

H). 

Proof:    I.    Case (i) or case (iii)(a) of Theorem (5.1.17) holds iff 

d 
(see (5.1.13))  - £?Y 1 «^ 1 ^0> i-6-  iff 

- p~(Varr)  - o2/n) <. cov(n,S)  < Var(n)  - a2/n. 

i.e. iff (since Var(R) >  0 w.p. 1) 

Since (w.p.  1) p(R,S) =  ~—p v.p.  1 equation  (5.1.1°) fails to hold. 

V.'.p. 1 case (iii)(b) fails to hold since (for it to bold) at least one 

of the inequalities in (5,1.1?) must be an equality; this occurs w.p. 0. 

II.    As in I,  it can be seen that c?se  (ii) holds iff 
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Since the r.h.s. of (5.1.20) holds w.p. 1, case (ii) holds iff 

(5.1.21) 
o2/n „ -1 

1 ' Vir'(P) < h-1' 

i.e. iff Var(R)j-^y < az/n; otherwise (by I) case (iv) must hold. Now 

frorr Graybill (1961), p. 88 (Theoren 4.20), p. 91 (Problem 4.24), 

*  - ,2. 

Var(R) = (1/k) £ (X.-X)2 it (a2/(nk))x2k_1(X) with 
i=l 

.  1 kn 
2
0

2 

tu. [TV* 

U i3 
k2 > 

(5.1.22) 

a  1 l^/ar(M), 
2 o2 

where M is a number selected at random from (u.. ...,u, } Thus, 

(5.1.23) 

III. 

-   - '--1 a2 
P [(X,,..,'0 is a relative raxinum] = P rv'ar(R) > —.— —1 

oz 

This follows fror II. 

Note that even when (X,...,X) is a relative maximum it is not 

necessarily an absolute one (which it would be if, e.p., the system had 

no other solution). Below we will find reason to believe that the max- 

imun is 'near1' (öm >• • • »^m) = ^Xril'' *' ^fkl^' 

For the case k = 2, Theorem (5.1.17) shows (after some reduction) 
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that (x,x) is 

a relative maximum iff (Xj-x^ < 2o2/n 

(S.1.24) < 
7 

undecided (negative seni-definite) iff (x.-x«)    = 2o2/n 

a saddle point iff (Xj-x^ >  2o2/n, 

Obtaining this result fron Theorem (A.1.1)  is interesting.    The limitl"^ 

results of Theorem (5.1.18) can,  for the case k ■ 2, be obtained using 

(5.1.24). 

'■'e will now seek the I'LF (for k ^.2):    ".'e nay (without loss) choose 

eur estimator to be of the form 

(5.1.25) 

A =  Xj   ♦   BJCXJ,...^) 

,\s noted followinr?;  (5.1.4), we may restrict ourselves without loss to 

x. £ {y,.,,... ,UrV,} * \t fron which it follows that we have 

(5.1.26) 

0 1 ai 

) -(xi-x1) la^ (xk-xi)    (i=l,...,k) 

^ 10. 

Let  (for 1 <_ Ä, <_ k: i = 1,... ,k) 

(5.1.27) 

A£(i) 
ßesk 

ß(i)=Ä 

xß(i)'xrai^ 
o/i/n 

...$ jßlkllVfl^ 
i/Sr\ 

A 
BeS 
u xB(i)"xrai'> 

k ^ ,/Sn 
..(J) 

x8(k)'xk"ak^ 

J/^" 
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Then (note that, for any 1 <^ i <^ k, A » A (i) +  ...  + A. (i))  from system 

(5.1.9) we find that a.,...,a.   must satisfy the system 

(5.1.28) (xi * ai)A » x^i) ♦ ... * xkAk(i) (i - l....,k). 

If we add the terms of (5.1.28)  over i * l,...,k, we obtain  (since 

A ^ AJl(l)  ♦  ... + AJl(k)  for «, = l,...,k) 

A(x1+...+xv)  +  (aj+.-.+a^jA »  A(x1+...+x ), 

or (since A > 0) a.+...*a,   = 0.    Thus, we have the 

THEOREM:    For 1' >^ 2,  the f'LE is given by u rji  ■ X,., 

+ a1(xI1jf...,Ijkj), ... ,vr[kj » Xjkj + ^(x^j.-.-.x^p, 

where a.,...,a.   are some solution of system (5.1.28) and must 

(5.1.29) satisfy 

(x.-x ) < a.  <  (x, -x.) 
i    i   -   i — v k    iJ (i = l,...,k) 

(5.1.30) 

and 

a.+...+ak = 0, 

THEOREM:    For i,j  » l,...,k, if a. / 0 then 

djjyi) + ... + ^.^(i) 

i ' ajd    AjO) +  ...  + d^" Ak(j) a.  « a 

where d.. = x. x. = -d.i(i,j = l,...,k) 

Proof:    System (5.1.28)  is equivalent to the system 

a.      I $ 
3eSk 

xg(i)"xrai 
a//n 

A 
^(k)'^'^' 

a/v'n 
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I ^earV* 
xg(i)"xrai 

ßcS 

or (substitutinp the d..'s) 

j/^"     4 

• • > ^ 
lB(yy\'\ 

i//n 

ai(A1(i) + ...+Ak(i)) = dj.AjCi)  +  ... + ^jA^Ci) 

Thus, the theorem follows.     (Mote that the denorrinator 

dj.AjCj)  *  ...  + dj^.A^Cj) is zero iff a.  » 0.) 

(i « I,...,»), 

(i - I,...,!c). 

(5.1.31) LEMMA: For the case k = 2, a = -a«. Also, 0 <_ a.  <_ xn - x. 

Proof: From Theorem (5»1.30), 

djjAjd) + d^A^Cl)    d^A^l)     A^l) 
al s ^^(2) + d22A2(2) 

= a2d1/1(2) 

The theoren follov/s fron Tlieoroni  (5.1.2°). 

l2Ä7(^ys a2' 

LHMMA:    Let d = x2 - Xj >^ 0.    Then the VUl for I' = 2 is piven 

by y +    aJXr.T.Xr,,),  p 
[1] " A[ll        rA[l]'A[2]^VJ[2]  " "[?]  " *V  [1]'   [2] a,^. ,) 

(5.1.32) 
where a. is some root of 

d = a U 

d2-2a1d" 

1 + e 
Vn 

and 0 <^ a. ^ d. 

Proof:    By Lemma (5.1.31) vie must have 0 £ a   = -a- < d.    Then by 

Theorem (5.1.29), the MLE must be of the form piven where a.  is some 

root of the system (5.1.28): 
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Now 

(Xj + a^A = XjAjCl) ♦ x2A2(l) 

(x2 - a^A » XjA^Z) ♦ x2A2(2) 

x^d)  ♦ ajA = x2A2(l) 

x2A1(2)  - ajA = x1A1(2) 

ajA = dA2(l) = dA1(2) 

a^ « dA1(2) 

1 = ^^2) ; A2(2) 

al = 

1 + 
V2T 

A, (2)  =      I    <D 
ß£S2 

ß(2)=l 

rx x,-a,i gliLXlJ 

2TTa2/n 

(d-a^2 

a2/n    . 

ß(2)"X2■a2, 

•« <), 

*                • 
d-a. 

* 
o//n 

A:)(2) =      I 4. 
^ ßeS2 

ß(2)=2 

xß(i)"xrai 

i - e o2/n 

Xß(2)"X2'a2 
. <|. '-al ' 

o/Jn 
* 

al 

o/v^T 

2TTo2/n 
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Thus, 

a. (d-ap' 
A2(2) o2/n   o2/n 

d2-2a1d 

o2/n 

and the lemma follows 

(5.1.33) 

LEMMA:    For flxd d and 0 < a. «^ d, the roots of 

(5.1.34) 

2 \ d<:-2aid 

1 + e o2/n 

d      eo 
are (1) ^ » d/2, and  (2) ^ ' j * 2^a2/n if d > ^o/^. 

Here e    is either of the two solutions of o 

(5.1.35) d2n/a2 = e coth(e/2). 

Proof:    First, a.  = d/2 is seen to satisfy (5.1.34).    Now, suppose there 

is another solution of (5.1.34),  say (without loss of penerality) 

al ' ^2 * 2Ä    /'n 

2      2 2      ^ with -d n/cr   < c <^d n/cT   (since n  < a. j d),   tfO.    Substituting in 

(5.1.34), we find e i^ust satisfy 

12      2d n  I 

(§^^] d2.2|g . |d 

1 + e o2/n J-lt^^H1*^) 
l/j .  J -E      e a2      e ±{d + de     + j — + T 2l" ' "^      ' d n       d n e }. 

or 

.2 -e   .    o2 ^    a2 -e de      + e— + e—e n        n        ' 

-e or (since ejMa>l-e      t 0) 
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""^~^w»^ 

.2   o2 1 + e d « e » E n ,   -en 1 - e 

02 e
£/2 + e-

E/2   a* 

e/2   -e/2 e   - e 

c^- coth(€/2). n 

(See, e.g., Hodpman (1959), pp. 281, 427, 431, 432.) Since coth(-z) 

■ -coth(z), E coth(e/2) is en even function. Vow, 

lim  e coth(e/2) = lim (1 ♦ e"e) • lim  ^ ■ 2 lim 
t+o e-E £-»■0 E->0 E-K) 1 _ e" 

(See, e.n., Anostol (1957), p. 102.) Since 

~[c  coth(e/2)] = coth(E/2) - (e/2) csch2(e/'?) 

- cosh (e/2)  { n.        1 
- Tmwn  (E/2)

sinh2(E/2) 

B sinHc/2)  icosh(E/2)  - sinhfe/z")}» 

the facts sinli(e/2) > 0 if e > 0 and 

cosh(E/2)  - _n-^a -sI-H^[sinh(e/2) cosh(E/2)  - E/2] 

1 fsinMe)        ,-,] 

' ? Sinl)(E/2)[e + ST* ST* •'• ■ EJ 

1 fe3     il     t]_ 1 
" 2 sinh(e/2)(3I  * 5!  * 7!  * •"] 

« 2. 

> 0 

imply that -r—[e coth(e/2)] > 0.    Combining the above information, we nay 

plot Figure (S.1.36). 
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/|\ 

e coth(e/2) 

Figure (5.1.36). 

f, c- 

>  e 

Since coth(x) > 1 for x > 0, the ran^e of e coth(e/2) will be 

[2,d2—x ] when e is in [-d2n/a2, cl2n/o2]. Thus, there will be two 

additional solutions if c,2n/o2 > 2 and none if d2n/o2 < 2. 

Mote t^at a1 = 0 corresponds to t^e estiipator (x, ,x7); a, = d/2 

corresponds to (x,x); and a. = d correspon-is to (x-,x.). Consistency 

Criterion (5.1.4) rules out values a. > d/2; thvs,  in seeking the ""LI? v/e 

only consider e whic': is the negative solution of (5.1.35) in Theoren 

(5.1.33) (or, what is the same, -e where E is the  positive solution). 

THEOHCM: If 0 <^ d <^ Si o/Sn,   (x,x) is the only critical point 

and is the VIE. 

If d > v2a//r    there are two critical points,    ^ne 

(5.1.37)    yields  (x,x)  and is a saddle point.  The   other yields the MLE 
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(5.1.38) (*x  -  2° o?/-.  :•  ♦  £ o'/r). 

wlicrc c    is t!ie positive solution of 

(5.1.39) r   /^  = c cot: (c/D. 

Theorem (5.1.37) follows frorr TOVIOUS results notnbly Lcmpa 

(5.1.32) for the forr of the riLH, Lcmn (5.1.ijj Tor the solutions of a 

certain equr.tion, and (5.1.24) for t'-c nature of (x,x).  In ohtnirinp 

the form of (5.1.38), relations sue"' as 

"[1] = Xl + al " Xl * 2 " -£a2,in 

— 0      2 i 

' * '  2? 0 /n 

are used. Hote that, for d2n/o2 ' laroe," e =^2n/o2, so that (5.1.3?) is 

'close' to (x-.x-). The followinp ler-ma studies the a^nroac'^ of c to 

o2 

LEMI'IA: If e is the positive solution o^ (5.1.39), then (witf 

(5.1.4-)  0(n' 31 0) 
d^n   , , 

c =   - o(n). 
0    9 

Proof:    If wo write a = d2/o2,  tlen v;e arc interested in the positive 

solution of G cot'(c/2)  = an.    Let us set tbis solution as 

e    = a^n - c and investigate the order of r  •    Suhstitut.in«' in the on cn 

equation, 

[a'n "  cn 
(aMi -  c^)  cot?" i 2  » n «n 



or 

(5.1.41) 

f. 7 

1  - -.'1.- Loth   -----n 

From Ficurc (5.1.36) WP see tlvit c -»« as n-**, and since c    > 0 we have 
o o 

c 
c,, < a-n or — < a. Since cot' (x) > 1 if x > ^,  and since (5.1.41) 
n       n 

c 
must be satisfied, • — > 0.  Mow, takinp the linit of (5.1.41) as n-»«, 

we find that 

(1 - b/a)-l « 1 
c c 

where 0 < b « l^nj — <^ a.  This is a contradiction unless \in — »0, 

so that c ■ o(n). 
n   v ' 

,78 

do 

.37 

> y= d 
/n 

1.54 
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It is of interest to conparc (for t^e case k ■ 2) the likelihoods of 

the three estimators (JJ),   ('''n i »^^p • nn', the M,'n- ,"it'1 * ' x2'xl' 

we find (see (R.l.1)) 

n Xfi].yf2lCxl'X2) 

Tlf 

o//n 

VLüü 
a/A\ 

*■    TT(J him 

(5.1.42) 

r -f 
I 4cr/n 

if  (MrjpWpi)  "  (x.x),  the 

MLE for 0 < H2 < ?a2/n 

1      1 
? * 2e 

1 

o2/n 
if  (Pflj.wni) (Xj.X;,) 

1      •/!o2/n 
2° 

e        2 o o 1 

1       4o2/n 
* 2 e 

E 2 

if   (Mfl].Mr2]) 
e       2 e       2^ —        o a* —        o  o^ 

X '  2d n  ,X * 2d n ^ 

V the MLF for d2 > 2o2/n. 

If 0 < d/n/o <  /2,   (X,X)   is the ML",  anü the curve of (X.Y) has Ordinate 

1/2 w!>en d/n/o = ?/ln? =  1,67.    The curves of  (X,X) and  (Xn1,v    .) 

cross at d/n/a * I.S4.    ^t d/n/a = 2.   for  (^11.^71) we find 

1 + I 0'y    = I + y(.01831) x  .50^2, while ror t'e MLE,  n solution of 
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4 ■ e coth(c/2)  is npproxinately c    ■ ^.8 (thus c /4 »  .05) ant' 

i  - E /4 ■   ,05.     (?ee Abra^ovatz ard ^toPun  (ln64), p.  216.)    Thus, 

for the MLH we finO 

1  My2     1  4 Y2 1 / -.0025  .-5.802^ 
j ft   v    ' ♦ ^ e   v        2   f * e 

-^e-003 * e"3-81671} ^(I.OIO) - .5005, ^-2 

I'ote that Theorem (2.1.33) indicates the reasona'ilencss of an 

estimator whicii compensates, as does tlie "U = (x. ♦ a, x» - b), for 

under and over estimation v/ith reparc1. to expectation; t'^c livelihood 

approach bears this out. 

The above results indicate a weakness of takino a function of 

f'LE's to estimate that function of the naraneters for f. proMsir (as 

discussed at (5.1.3)): nanely, otlier net!iods yield different estinators 

with higher likelihoods.  (In fact, wit'1 t^e other I^et^oc, t'-e likelihood 

could never exceed =-n/o2 • witli our mcthoc' it can never be loss thnn 



i.ÜAPTEP 5.  POINT R?TI'?TION:  fAXimiT' LIKELIHOOD (ML) 

AMD RHLATPn ESTIMATORS 

5.2. MLH's FOP NON-1-1 r"\'CTIOMS:  ITF.RATFP MLE's (IMLE's) 

At (S.1.3), ve discussc' t^e prohlcn of nrovicUn" naxiniiin likeli- 

hood estirators (MLIi's) for Ufii »• • • »U rki. and noted the Berk-7chna- 

MLF • most o* the rerainc'er of Section f). 1 was devoted to a study of 

another method of nrovidinp iiU's for w r j i. • • • »M ri.i • "'e now formulate 

this latter nethod PS a pcneral inrcrence principle an'' study it in 

sore specific cases. 

Suppose that e (a narnneter of interest) is in soro space o and 

ti-at v;c have a liieliliood faction L(e) Cfror G to R).  «ssure that a 

unique MLE 0 of 9 exists, i.e. e c 0 such that f.(e) > I ffi) for all 

6 e 0.  Let p( ) be sone transforrnation of 0, and suppose that f(G) ■ A- 

Then if <;(-) is 1-1, cfe) is clearly the MLP. of e.  If p( ) is not 1-1, 

Zchna (1066) and Her! (ir67) hot' pronose to e^lny t^e estimator fCe), 

which we will call tie Ber!;-Zehna-MLE. 

7,cl)na proposes to use -(0) since, if vith "(fi) one associates the 

laro.cst of the li'^cliLoods of t'mse 6 such that "(e ) * P(6) , t»-is 

"induced likelihood function" is "-axirized at r(e). However, as 

Dr. Joseph Putter ''as pointed out in a personal coTtrnm lent ion, "(e) ^ay 

also he a rinimur litellhood nstrr-ator.  r.o., if (for some observa- 

tions) we ''.nve the possibilities as rivrr. in Table (.".2.1), 

TaM? (5.2.1) 

-2 1 1 

F(e) .3 .7 I -. 1 n 

70 
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A 2        * 
then e»-2 is the Mir of e, but if r(e) • o , tUn j!(0) « 4 corresponds 

to both a ninirurr likelihood estimator of 0 and a raxirur» likelihood 

estimator of 0. 

Berk proposes to use .f(f)) since, if one simply adjoins to p(e) 

another function h(0) so t-at the r-appinr 6-^(p(0) .'-(e)) is 1-1, tb^n 

(f?(ö)th(e)) is the MLF of ("(0).h(0)). Rerk states ^is belief that it 

is irportant that one's estimate raxirizc the likelihood function asso- 

ciated with some r.v.; and since it is not clear that Zehna's method 

does this, Zehna "misses the point." (Vote that tV Iterated MLE pro- 

posed below satisfies this criterion.) Berk's reasoninr sees faulty 

in that, if one desires to estimate p(9), t^ere seers to be no reason 

to be concerned with any l-l-izinc function h(e). Pather, M0) is 

added to preserve the status of p(e) as an "MLF." (F;.«'., in Putter's 

example of Tal le (5.2.1), h(0) ■ spn(fi) will wor! *\it  is irrelevant to 

2 
the problem of estimatin«- .«'(e) " e •) 

Let 6, 9, 0, A, L(6), and v(Q)  he ns defined above.  (In partic- 

ular, we suppose t''Ot ö exists and is unique.) ''e tuen -»ronose the 

nr^INITION: Consider the likelihood function of t'e statistic 

(5.2.2) 
p(0), say L . If there is a g e A sud that I (P) >^ Lp(r') 

for all p' e A, then " is called an Iterated MfT (If'I.F) of 

P(9). 

Thus, the IML£ of p(ö) is the MLF of p(e) based on ^(0) (if it exists 

and is unique). 

Example I.  For the problem of estimating g(V|,...,WiJ 

■ (w m »• • • fU rif-i)» the Berk-Zehna V.LE  is X,.,,... ,Xr. ,, and in Sect ion 
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5.1 we studied the IMLH (i.e., t^o MLP. of g ..,,... ,urVi based on 

p(X1,...,Xk) - (X^, vfil5)-  For the c85'' k " 2. Plunent^al and 

Cohen (1968) have compared t'ie ^erl -Zehna MLr of Wr^, with our IMLH of 

Ur-,, wit!i repard to mcnn squared error and Mas.  Let u ■ (ur-n " Wfll^ 

/2.  They find that, for both irean smiared error and for hlas, the IMLP 

is better for u srall, and X,., is Hotter for u moderate. 

2 2 
F.xarplo 2. Lot Y ,...,Y be i.i.d. ^'(u,o") r.v.'s «••ith y and o 

2 ^ 
both unI;novn (-" ^ u < ♦•, a    > 0). The MT of (y.o ) is '.'oll-VnoKn: 
_     n 

(Y,    I (Y.-Y)/n).    T'-en for estimation of c(u,o ) ■ u, the Pcrk-Zehna 
i«l    ' 

MLE  (whicti  is Y) and the  IMLF  (which  is t'-e f1Lr of u bas^d on Y)  coin- 

cide.    Such coincidence occurs in "apy othrr cases,  for example when 

our r.v.'s are uniform on (^,6). 
7 

Cxarple 3.    Let Y.,...,Y   be i.i.d. *'(u,a") r.v.'s vith u un';rown 

2 2 - (-oo < y  < ♦oo)  and o    known  (o    > 1) .    The M'.'." of u   is well-Vnovn:    Y. 

Tlien for estimation of p(p) » u">  the Per'-7e^na MLP is Y .    "e will 

2 -2 now study the  IMLR  (which  is t'-e MLP of p    based on Y ). 

Since  (^i/n)Y is "((/i/ojg , 1),   ((^n/o)^)7 is   (see,  o.a.,  Fisz 

(19G3), n.   343) a non-central c'.i-squarc r.v. with  1  d.f.  an-1 non- 

n    2 ^ 
ccntrality X  = —-g    say x' C^)>  anc< bas density (for x > 0) 

1 ^2 

-1   -X-' 
x 2o     2; r2Xx)n 

-    ,    . X      O r    I ^A X 
fi(x) = ■^—^T^TT 

-i -X-? ? ? 
y    e 

/2Ü     m=0,2,4. 1)1 

1 X 
2 "2 

^—^-e    cosh(/2Xx) 
/27 

T'-us, Y2 

a 
hns density (for y ^ 0) 



f^Cy) 
o2/n l[o2/nj 

7S 

1      n 

. _y_«_9 

.JLu2 
2o2 cosh (&]. 

—2 2        2 
Hence (when Y ■ y > 0) the IMLF of u Is ^e u which naximizes 

cosh^yu2j. 

y\ 
or y2 ■ a2(Y2)Y2 whcrß a2 is the c2 which maximizes 

n      2 
o 2 r      i—' 

(5.2.3) ?,(a2) ■ c cosh l-r-y1>'a2   . 
lo2 

Differentiatinr g(a2) with respect to a2, we find 

3R(a^    n   2o2 
n  2 —ya' 

3(a2)    2o2 
ye cosh — via y»a 

n  2 
-—ya 

♦ e     sinh 
n *r2 
—y la 

p   1 

a2 ^ 

which is <0 iff a > tanh — ya . Since tanh(z) < 1 for all z  (-« < r < »), 

the derivative is ncative for all a >^ 1, so we may seek the maximum of 

n _i     r 
(5.2.3) for 0 < a < 1, Tien, a > tanh (—ya) iff tanh (a) > —ya, 

a* o 

which is so (see, o.g., I'odgman (l0^), n. 431) if^ 

3   5 
a   a        n 

a + — 4 — ♦ ... > —ya, 

2 

i.e. iff 

(5.2.4) 
2   4 

1  a   a 
3+ r+ r-+ > ^y - i- 

Since (5.2.4) holds for all a (0 < a < 1) if -ry - 1 < 0, i.e. if y < £-• 

the IflLn of w2 is 0 if Y < o /n. If y > a /n, it is clear that there 

will be one critical ooint (correspondinp to equality in (5.2.4)) an^ 
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that it will be a raximun.    Thus, the IMLE of g'' is 

(5.2.5) u2 - 

where a is the root of 

(5.2.6) 

if Y2 < o2/n 

a2(Y2)Y2 if V2 > o2/n. 

2 2 4 1      a        a 
3 + 5    + 7" *  ' V2 -1 



CJIAPTFP 5.     POINT ESTIMATION:    MAXIMUM LIKELIHOOn  (ML) 

AND RFLATED HSTIMATORS 

5.3.    CHNERALIZnO MLE's   (GMLE's) 

Generalized maxirrur likelihood estinators,  introduced by '''eiss and 

Wolfowitz  (1966), provide  (vhere available) asynintotically efficient 

estimators, whereas this is not always true for MLF's even if the latter 

can be found.   As noted above,  for the case of estinatin«» u r,!, • ■. ,u r^ , 

what is ireant by "the MLF" is not clear,    ^e possibility,  the    IMLE,  is 

difficult to conpute and rny or r?.y not possess desirable properties, 

flost classical MLE theory assumes i.i.d. observations and is thorefore 

not applicable in our case,  since the    IMLE is in this case the MLE 

based on non-i.i.d. observations:  the ranked data.    To theory of V'eiss 

and V.'olfowitz (1966) allows for r.ore peneral situations, although nost 

of their applications are to i.i.d.  "non-repulnr" cases,     (rorrections 

to I'eiss and Volfo-.-itz  (1966)  are    contained in '"eiss and ''olfowitz 

(1967a),  in V'eiss and '"ol^ovitz  (l067b), and below.    /<n additional 

example is piven in "eiss and '"olfowit: fl067c).) 

\'c first si'iriflarize t'-e results of ''eiss and '"olfowitz (1066) for 

the case k ■ 2. 

PF^INITIOM:     Let 9 be a closed region in R2, G c 0 with 0 a 

(5.3.1)      closed reoion such that every finite boundary point of 0 is an 

inner point of 0. 

(5.3.2) 
DEFINITION:    For each n let X(n) denote the  (finite) vector 

of r.v.'s of which the estirator is to be a function. 

75 
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(5.3.3) 

DEFINITION: Let K.  {x|e) be the density, with  respect to a 

a-finite measure y , of X(n) at the ooint x (of the 

appropriate space) when 6 is the "true" value of the unknown 

parameter. 

DEFINITION: Let r = (r-.r^) be fixed and positive, 

(5 3 4)  *Z i(X(n),r),Z 2(X(n),r)} is a sequence of GMLE's if, for each 

6 = (O-.e,) c 0, (V) and (B') below are satisfied. 

(5.3.5) 

CONDITION (A1):    There is a sequence of positive constants 

0'  (n),k?(n)} such that k.tn)-*»,  v-f'>)->co, and a function 

LCyiiyol6) suc^ t}iat I^-je)  is a continuous d.r., and, for 

any y =  (y1,y2) -^nd an^ integers h.  L id Ii? 

lim P 
Illrl h2r2 

ei+ kjtnpV k^(Tiy 

k2(n) 

k^n) 
hlrl 

L 1 lyV 

i „-e. 
h r 

2 2 
Jn2 v2    ''.2(n; -^2 

« L(y1,y2|81,e,) 

CONDITION (B*):    For any integers hj.h. there exists a set 

S (Ojhj.h-) in the space of vjn)  such that 

(5.3 7) 

where 

lim Po    [X(n)  e S^e^^.h^]  - 1        (i,j«0.1) 
ij 
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(5.3.6) 

(5.3.8) 
(h1+i)r1 (h2+j)r? 

ct. . =  9, + -i—7~K > 60 + —5—f  ^    ' ij    1   k.Tn) ?   On) 
1.     ^ ^   . 

and there exist sequences 

(5.3.9)        {an. .(X^.ö.hj,^)} (i,j = 0.1) 

of (two-dimensional) r.v.'s such that, as n-*», 

a .. » (a . .,,a . ..) converres stochastically to zero when mj      v nijl' nij2J ' 

a., is the parameter of the density of X(n), and such that, 

whenever X(n) e S  (e.h-.h-), we have the followinp:    Let 

(5.3.in) M = nax{Kn(X(n)|a.j),   (i.j   = 0.1)}, 

(hj+l/^rj 
(5.3.11)        m =  (n^)  = 

(h2+l/2)r2 

1 +     k^n)—'  e2 + -irffi 

Ther, vhere "(a<b,   c <  d)" means "(a < h,   c < d)  or 

(a <b, eld)." 

(5.3.12a) M = Kn(X(n)|ano)^ nOOl    , n002 
nl        1      '^(n)'   n?      2     k2(n) 

(5.3.12b) M = Kn(X(n)|a01)-> 
an011   , anni2 

?nl <r,l +i^är)-'^>  r2 + i-äö 

(5.3.12c)  M = Kn(X(n)|a10)= 

(5.3.12d) M = Kn(X(n)|a11)=> 

nlOl nl02 
nl ' "l + V^T' Zr2 ' m2 + ^ÖÖ 

,      , anlll    , anll2 
Jnl   ' ml T V^T'   cn2 ' ^ T k^TT 
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THEOPKM:     (V/eiss and "'olfowitz)  '.ct{Zrl(X(n) ,r) ,Zr2(Xfn) ,r)} 

be a sequence o" Cf'L,:,s.    Let (T } be any seauence of 

estimators of 6 such that, for fixed r ■  (^y^J) >0 and all 

interers '^.hj 

lim P 
VÖ2 

r ri ri     r-> r r2l 

lim P 

(5.3.13) 
hlrl h2r2 

9i+ R7fHT'e2+ i^ 

< Mn) T ,-e Vr 
i^ 'nrvosy 

i 1   i 
- 2     ' 

- •/ < k2(n) 
h2r 

T      -A    _ 
n? ö2    kj^) 

< — 
_    T 

for any 6  e 0.    Then 

r. 
lim P 

r r 
1 2 

- 2-< ki(n^znrei) < r' - r < k2^f7n2-e?
) < T 

> lim sun P ^<k1(n)(Tnl-ei)   <r±. 

-Ii<k2Cn)(Tn2-e2)1^ 

Note that on n.   78 of V'eiss and Wolfowitz  (1966), condition (B')  is 

mis-stated- therein,  in (3.13) through (3.16)   (corresnordin" to our 

(5.3.12a) throuah  (5.3.1.?d)  above) 

KoOl' an011'  anl01' anlll: an002, ^012'  ^102' anll2^ 

should be 

fan001 anqil anl01 anlll 'o_n002 an0i2 anl02 anll2s 
-k^n)' k^T' k^n)' k^n)' k2(n)' k2(n)' lc2(n)

J ^^(n^ ' 
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Examination of the nodification of t^e proof of pp. 73-74 of woiss anH 

V/olfowitz (1966) used for tl.e proof of their Theorcr 3.2 (Thcorcn 

(5.3.13) above) shows that without this chanpe the ouantities a ..„ 

multiplied by the normalizing factors k.(n) and k-(n) would occur, and 

would not necessarily converce stochastically to zero (under the appro- 

priate parameters).  In their multi-paraneter examples VI, VII, and VIII 

K'eiss and Wolfowitz (1066) seep to satisfy the corrected (B').  (In 

example VIII this is not as clear as in examples VI and VII.) 

We now investigate the application of these results to the estima- 

tion of g ,.,,... ,u p ■•. For k ^ 2 we now choose 

X(n) ■ (Xrji.• • • >*\y]} 

K (x|9) = K (x|u) = 4W) 

(5.3.14) 
Y Y    1*1 » • • • »*W xrii"*" rki  L 

= l;r y"    IX. , . . « »X. J 
A[ir--"Ä[k] 1      K 

vu = Lebespue measure on R . 
\n 

_   y 
^e would also like to choose G « (u r u e Q ,\i .m T.■.,.,. ,v,*\i .,■•},    0 = P 

(which would satisfy (5.3.1)), but by Theoren (8.2.10) this would not 

allow satisfaction o^ condition (A') (essentially because y e Qn[n(.t)] 

would not uniquely specify the limiting distribution), "^us, we fix 

n* > 0 and choose 

(5.3.15)^ 
0(n*) ={u: y c O, ^^-u^.j t r1*' VJk-rVJk-2 - n*' ■■' ^2^1 - n*^ 

10 = 0(n*/2). 

(Although our results below would hold if we simply excluded t^e bound- 

aries of our desired 0, that set would not be closed.) Since our results 
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lack real dependence on n*, we '^ave essentially only eliminated the 

boundary  (where equalities exist). 

For k ^ 2,  consider the sequence 

(5.3.16) {Znl(X(n).r) Zn, (X(n) ,r) } -   {Xfl) Y^) 

with r «  (r,,...,r.)  fixed and positive. 

THEOPHM:     For k >   2,  condition   (^,)   (or, nore nropeily,  its 

(5.3.17) peneralization to k >   2)  holds  for the sequence  (S.3.16)   for 

arbitrary r >  0, with k^n)  « k-(n) » fv/a. 

Proof:    This follows fron Theorem (P,.2.8). 

LCMItA:     Let h,  and h- be any integers.    Choose S  (u .h. ,h-) 
  12 nit 

* Rkn   ^[1]-^ 1^(11 -"[l]*^' U[2]-Cn-^21 iur2]+en}' 
(5.3.18) 

where E    - o/n    (0 <  6 <  1/2 fixed).    Then  (for i,j  ■ 0,1) 

lin "      [X(n)  c  S  Gi,h    h )] « 1. 
ij n        i    / 

Proof-    Py (5.3.8), here ou .  «  (M rj Wh^i^jO/^.u ,2l*(h2*j)r2a//n), 

and  (settinp a1 »   (hj+i)^, a2 =  ('i2*j)r2) 

\V-W  c ^n^.^^)]  = P^ao/^[un]-o/n6 < Xri] 

6   ,. <Ur.^o/nu   (i«l,2)"] 

(5.3.19) 
= P 

u +ao/i/n 
2 ^       xriruriraio/,/"    T-6 

-n       -a. f. —L-J—' ^n        -a., 
o/ /n 

t-6 <   72l'Uf2Ta2 a//n        ~ -i 

'2 - 
< n        -a. 
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However, by Theorem  (B.2.!)  th* randon quantities of (5.3.10)  approach 

u joint  limitinf» distrihution, t-'hile the respective upper anc'  lower 

limits on those quantities tend to ♦«.     (In fact, the result is proven 

for any fixel a ■  (a.,a2) and not just  for ((h ♦i)r.,(h2*j)r2).) 

As noted in the proof of Lcnna  fS.'.l0)),   for our case we have 

(for i.j « 0.1) 

(5.3.20) ai.  »   (p ,l1 + (hl*i)rlo/^, u f?,*(h2+j)r:,o/l^'). 

LTMMA:     If k  » 2, then  (for i.j  = 0,1) 

K   (xla, .)2v — e 
nv   '   ij'      n 

r2h2 r2h2 
rl 1 r2 2 

02     -T- * — 

■ a'e 

v /r
urii    .„    i ., 2      .x7"gr2i    .,.    i ., 2 

o//n o//n 

(5.3.21) 

♦ ble 

where 

.xrur2]      ...        1., 2 .X2"lJfll      .,.       1.,  2 r2,—-^ . j(h2 + _j)r2  + r i—-H- - i^  ♦ ^Dr* 
o//n a//n 

a'   « e j//n 

b'   = e 

1 ['^[2)] 
2 

1 
2 
v^ni 

2 
. o/,^ o//n 

. xinJrii    . x2"ur2i •jhj J— r?h2 
1~ 

x1-ur21     
x2"iJri] 

o//n a//n e e 

?roof:     (Note t^at a' >  0 and »;' >  0 involve only o, n, x., x0, Wr,!, 

li,-,, r. , r0, h.,  anH h2, and not i n^H  j.)     From (5.3.14),   (5.3.20), 
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and  (B.l.l), 

Kn(x|(i. .)2TT o2/n - e 

2 

XJ-M r1i-(li1*i)r1o//n 1      i K'11 f2l"fh24^r2o/,/" 

o/i/n >//n" 

Xj-u r2,-(h2*j)r2o//n 

♦e 
o//n 

Xj-Wrji-fh^DrjO/^n 

J/^" 

=    e o/^ ^ 
_xi!l2l 

^(x.-ii nl)(h1*i)r.o/v/n 
 i—LÜ l. l. ♦rh,+i 

o2/n 

2^2 (hj + i)^^ 

:(x?-ii r3l)(h2+j)r2o//n 
—--i-J- ♦(h7*j 

oVn 
'2i 

♦e 

xrwf2] 

o//n a//r\ 

9 " ill 

-2(x1-ur2l)(h2+j)r?0/^ 

oVn 
2 ^ r2 

 j ♦(b  ♦i)2r2 
o2/n 1 1 

=   e 

V^jj] 
. o/^n    , 

x2^(2] 
,2 

o//n 



m 

x, -u rt      x.-u. 

~JiJovi)rr(V1)2T 4 ^—rJ-(h2*:')r2-(h2*j) 5' o//n       i a//n 

♦ e 

x.-w 

o//n    J   ( 

x,-^! r^      x^-Ufn 
^—^l(h2*j)r2-(h2*j)2/ * J-iiioyOrj-Ovi)2^ 
o/v'n 

r2h2        ,.21,2       1 rri    r2'2J -4 
"2    "2 

e e 

X
L!LLü 

o//n 

2 

o//n    J ( c//n 

r (h .DJ—LLL . iZ i .ih r2 r (h .j^^iü .^2 J. .jh r 
1     1 a//^ 2 1   !     2    -        o//?. Z 

+ e 

1 
' 2 

2 

1 
2 

x.-w 1 M r*'!        2 
r^h^j)-^:1 -jV -Jh2r 

o//n 

• e 

X'i'V rn ri 

o//n 

r2h2        r2h2 rlnl      r2n2 
2      '     2 

■Xi^m r.i '-- 

a'e 
-lhiri ^^-T/^ 

r2 

i2   2 
j  2      J  2 2 

x.-u x0-u 
r fLllLl .j2.1I .jh r2 r jJZm ..^A .ih r2 T2J    ,/-       3  2     ^  2r2 rl1    ,r ? 11 

+ b'e j//n /^ 
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LEMMA:    There exist a JJ. and a iiy (which nay depend on 

X(n), u. h  , and h.) w'iich converpe stochastically to zero 

when a. .   is the parareter of the density of XCn)   (i,j"0,l) 

such thnt,   if X(n)e  S   (u,h,,h-)  and M - K  (Y(n)|a..), then 
n        1    / n ij 

(i) for ij  ■ 0,0 

(S.3.23)    ■ 

^' ^ ^ ' v. 
an- 

o//n 
2;12 T "n^? 

(5.3.22) 

(ü) fo^i, 1-0^1 

(5.3.24)     ■ 

'^ < ^ ^ * 
nOll 

and 

72]^ r21 1, 
^~ ' ^ ^ * ^ 

(iii) for i,j o l.n 

(5.3.25)     \ and 

^Q1 > fV i-, ♦ Vo. 
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(iv)  for i.j  ■ 1,1 

(5.3.26) and 

_UL_:U.>  (hi+_)ri  +aniii 

o//n 

o//n 

Proof:     (i) Case i,j » 0,0.    For simplicity, write x for X(n), x.  for 

Xrji, X2 for Xp,, u , for u ,.,,  and u . for u pi •    Since 

Kn(x'a005 - ^^^lO5, by Lenna  C5-3-21)' 

xrwi X2-Ul 

a 
1 .7"-" (hi+i)ri       Trrr 

•  + b'  > a'e    0//" + b'e   a/^ 

K-2 
■  fhl+ 1^1 

(5.3.27) 

> a'e 

^^l 

o//n 
-    CM   i)T2 

1    2^1 *1   ,r 1    2'  1 

since x. f_ x-.    Thus,  1 > e 
- (V lM 

and (taking loparithns) 

0 1 ri 
o//n 

so that  (since r.  > 0) 

(5.3.28) 
X   -Uj j 

o//n 

1 We may (for example) take a »_.  « — and t'ierehy satisfy t^e first part 

of (5.3.23). 

Since Kn(x|a00) ^ Kn(x|a01), by Lerna (S.3.21), 
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^       ,K ^   2 

a'  ♦ b'   > a' c a//n 2      V  2 r„— 
X\*l 

♦ b'e j//n 
(h2 * ^)r2 

(5.3.29) 
r.-- (h2 ♦ i)r2 

>  a e 
n/ </n 

or 

(5.3.30) 
1 ♦ --,  > e 

x0-u2 

a/Sn 
(h? * 7)r2 

^'ow,  by the definitions of a*  an.' b', 

0 < -T a' 

o//n  I 

(x.-g 2^1 

o//n 
r2h2 rjhj  

o//n o//n 

V^i 
a/fr\ 

x2-u2 

ko//ri" . 

T * 
e 

.   ^l      , X2-u2 r h    r 'i   

o//n o//n 
e                 e 

v^i + ^vy.! 
,2 

x2"lJ2      w?'ul 

o//n        o/v^n 

1 x7-u? 

(5.3.31) VX1 
a//n 

~-(u 7'V j) (x^Xj)   (r1h1-r2h2)- ^-Xj) 

= o 

- -Vv50!5^^^!5- 7:(rihrr2-2)} 
o^ /n ... 

e if u2 > u j 

X2X1 

3/^" 
1  1    2 2; 

ifu2 - Wj 
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Since u2 > u.,  fron (5.3.^0)  an^'  (5.3.31) we find  (taking loparitbrrs and 

sirplifyind) that 

(5.3.32) _<   (1V ^r, . --£n(l* ~) 
o//r 2 

1      h' 
"'e now wish to show that the choice a nn- = — )ln(l+ —,-) is effective. 

(Mere we use the fact that a -_. ray denend on u, as well as on X(n)> 

h., and h..)  Since 

(X[?rXfl])-CJ[2]ni[1])| -  l(X[2l-i'[2])-(Xfirvi[11)| 

t lxm-w[21l * l^rii-^i]!' 

f2]'Mr2]! ■ 2* 'x[irw[ii' * 2j for any c > 0,{ |Xro1-u ro1 |   < T.   I^rn^rnl   < T> 

^X[2]"xm^'^m'^rii^' < e), so that 

(5.3.33) 00 

>p
[.00

(ixm-"ml<i:/:'|7m-1'(iil<E/21- 

By Theoren (B.2.8),  as n-*» 

(5.3.34) 
%0-'m-rii Wrn  <  e/2] 

00 [i] wrn 

3 Pa00f-Vr lr-< T^ir [i]-hirio/^ < IT- Vi^1' 

a similar result holding for X,-,. By Lepra (P.2.1), the r.h.s. of 

(5.3.33) -»I as n-x», so that the l.b.s.  nust also -►I as n-^». Taking 

e » c1 (M ,-,-u ,.,) with 0 < e' < 1, this reans that as (n-*») 

(5.3.35)    Pa [(l-E^lMpj^fi]) < ^fz]-^!] < (1+r,)(ijf2]_wri])^vl- 



88 

Using (5.3.35), notinp that x?'*! > 0• and takinf n i (r.h.-r.h )2a2' 

-a 
•6/Gi2-u1)2i it follows that the exponent a    (say) of b'/a1 ■ e       in 

(5.3.31) is such that for all finite x we have P      [a   < x]-^) as n-*». 
a00   n~ 

Then it can be shown (successively) that 

(5.3.36) 
00 

1,   x > 0 

0,   x <  0 

(5.3.37) 
AooL 

in 
-a 

1+e < x 
f 1,   X >  0 

0,   x < 0 

From (5.3.37) it follows that our a ftn7 converges stochastically to zero 

under a 00' 

(ii)    Case i,i  ■ 0,1.    Since K (x|ann)  < K  (x|an,), by Lenira ■ ■"  n       O'J   —   n       ui 

(5.3.21), 

(5.3.38) 

a'  + b' < a'e o//n 

X1'V?    n,      1. 2 r.—^--(h2* y)r2 

+ b'e   0/,/" 

V^ 
r, '- -  (h2+ j)r 

,    "a/1^7 <  a'e 
2     2^2 

+ b'e 

r   2    2 -fh ♦ hr2 
r2  ,r-      in2    2;r2 

since x. f_ x«.    Thus e    *- 

X2"P2      n,      li —- -  (h2+ T)r2 

o//n > 1 and (takinp loparit^ns) 

x9-y2 1 

o//n 
>^ 0 so that (since r- > 0) 

(5.3.39) 
x2-ii2 j 

^-l(V7)r2' j//n 
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We may (for exanple) take a _.,, = - — and thereby satisfy the second 

part of (5.3.24). 

Since K  (xla-.)  >^ K  (xja  .), by Lerra  (5.3.21) we have 

a'e 

X2-W2 

'o/Zn 

xru2 

■(h2+  2)r2 T2~±~7^ 'fh2+ f)r2 
lv,2 

♦ b'e 
j/Sn 

xl*l x^-y 

-1,,   (hi+y)ri+ T2-27r'ih2*i)T2 
>      a,e    o//n o//n 

x,-w _L_1 x^-g 

(h2+^i*ri-—-fVi)ri 
♦ b'e 

This can be reduced as follows 

o//n 

x2-w2 1^ 
xl-*2 r2i7^-(V i^i     -2-77---^V^i 

a'e i//n ♦ b'e 
j/^T 

x2^1 

l-e    a/^ 
■(Vi)r2i 

x.-v x^-y 
1 Ml     ,.        K   2      "?    2 

,      o/Zn > a'e 
r   2,il   A2"7?::" "(h2+ 2)r2 

j/v^ 

Ai A2 A2 Mi   ^   i, 2 
Ai M: 

r.        r (hi+T)ri ri  
.      b'      o//n    , a//n         1 ^    1 o/ZS' 
1  ♦ —je                l-e > e 

VU1     «       K  2 (h1+ jU] 

XJ-UJ 

xrx2 
,. '2; 

o//n 1     | 
l-e 

X2'gl     n.      It  2 

o//n 

Since u0 * ^i« l'sc of  (5.3.31)  reduces this  inennality to 

Vi 
o//n' 



90 

- (hi+ l)Ti + F"*"" l+e 

—(X2-X1){(M2-W1)- ^zCrjhj-r^h,,)} 

(5.3.40) /n, . X^j 
K-,2 

l-e lo/^ 

(h1+ f)^ 

(hl+ I)rl + ^n l+e 

^^^{(M^^-^hj-r^h^l))} 

x0-u. 
r - 2 1 -fh + -)r2 rl ,r     inl 2jrl 

l-e 0/^ 

In order to shov; that the choice1 of a „,, as the second term on the nOll 

r.h.s. of (5.3.40) is effective, we will show that 

(5.3.41) 
f 1, x > 0 

aoi nn11 - 0, x <_0, 

This implies that a n..   converges stochastically to zero under a«.. 

(To show the inequality of (5.3.24), a p.. should actually he taken as 

(e.p.) the above plus - .) "ov, if a»» is replaced hy a«, ar-1 h-+l 

replaces h2, then t'^e sane proof that yielded (5.3,35) yields (with 

0 < G' < 1) 

(5.3.42)     Pa  [(1-C')(M[2]-V[1]) < X^^X^^ < (l+Oiu^yU^U 1 

as n-*». Psinp (5.3.42), notinp that x2-x > 0, and taking 

n >^ (r1h.-r;,(h2+l))
2o26/Gj2-n 1)

2 with 6 > 1, the exponent of 
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A    = e n 
(5.3.43) 

is such that (as n-«») 

(5.3.44) 

In 

-(x-j-XjHGi^ )- ^-(rjl' -r2(h2+l))} 

P      [A    < x] 
aoi   n ■ 'V- 

1,  x >  0 

x <  0 

x^-u, , 

B   = -e   0/A A   - 
n r 

(bi+i)ri ^W'r^P 

(5.3.45) 

a -e 

-ih^ ^T\ - -SoyXjHfc  -up- -^(r^hj+D-r^h^l))} 
02     •■ - fa 

r^xj-uj) 

the p.idcUe exponential term tends stochastically to zero (under an] as 

n-*»)  as did A ,  since it is A   wit11 h.  replaced by h. + l, and the first 

exponential term is a constant.    By Theorem (B.?.8), 

exp{rl^n(Xrll-y r.^/o} has a non-depenerate    linitinp distribution since 

(for any x > 0) 

(5.3.46) 
l0l 

■i^rn^ri^ 
< x = F 

0lL 'i^nrrn^^ '] 

01 

l/r, 
-a-rx'[i]-yri]-hiri^ - £p x' l "Vll 
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It then follows that, as n-*», 

(5.3.47) P      [B    < x] 
a01   n 

f  1,  x >   0 

0,  x  < 0  . 

By (5.3.44) and  (5.3.47),  1 + A    ♦ B    converpes stochastically to 1 under 

a»,  as n-*», and since a „,. = —«,n{l+A +B } it follows that a _.. 01 ' nOll     r. n    n ndll 

converges stochastically to zero under ou.. 

(iii)      Case i,j = 1,0.    Since K (x|oi10) >.K (xiajj), by Lemma 

(5.3.21), 

X2-Ul 
'1   ,/-     '•"l    2jrl rl  ,r 

.„    0//n + b-e    0//n 
ri—7"-(hi* 2)rl 

a'e 

r,J_-l .(hi+ ^rl  + r2_i_2  .(ho+ ^r: 
>    a'e .      o/*^" >//n 

2    2/x2 

r„ (h,+ T)r^ + r 
. ,      a//r\ + h'e 

2'   2^2   '   ^l"/^" '   (hl+ 2)rl 7//n 

xl^l x--y, 
rl "^ 1    2)rl  r2—P- 

>    a'e e 
(vi)r22 

x?-x1 s,,-p. 

1 + —,e 
a' 

v     2 1 
r.— (h9+ T)r* 

b'     ^/^   ^      2o/^ 2    2    2 

> e 

X2"iJ 2 11 

o//n 2 

X2-Xl 

,    b1    ^/v^" 
1+ ~.e 



03 

We will now show that the choice a 
P102      r, -in- 

X2-Xl 
i  

b'      o//n 1+ '~o 

is effective.    Since w. > u,, by (5.3,31) 

x2-xl 

(5.3.48) 
'    1o//n 

—(XJ-XJM (u ,-Uj)- —(rj ri + l)-r2h9)} 

and the argument of (5.3.42) throu^'^ (5.3.4^) can be mo^ificf! to show 

that this converges stochastically to zero under a.n  as n-x". The 

result for a .„_ then follows. 
nlU/ 

Since Kn(x|ain) >_ ^(xjot^), by Lerma (5.3.21) 

a'e 

xi"Mi i x9'yi 

a//n fb,e    a//n 
K   2 

T\~r~ '^l*  2)rl 
> a'  + b'; 

V^l 
r 

c/Zn 
^ i'i 

x2-x 
r,  

.Ub'e10^11      > a-  ♦ 

>  (!>♦ -ihr,   + —£n(l+ ~)  - —£n - v 1    2^   1      r,    v      a'^      r. 

X2'X1 

,    b'    1a/Jn 

1 b'        ] 
The efficacy of a .„.  = —«,n(l+ —r) In 

' nl d      r. a ^      r. 

X7-Xl 
r  

.    b'      0/v4i 1+ --.e 
a' 

is shown by a nodification   (allowinr for air.)  of the proof for ?.  ir)- 

above. 
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(iv)    CHSO i,j * 1,1.    Since '<n(x|ani)  < ►'„(xl^jj),  by Lcnna 

(5.3.21) and the fact that x.  < x9 

a'e 

X
J1I 

•o//n 
■ ^v ¥r22 

x2-u2 ^"^ 

<    a'e    0//n 

(h2+ J)r| r?^^.(h2+±)^ 

(5.3.40) 

V^l     fu       K   2 ^-^ 

<    a'e  ^ 
r   2^1   '  i2.,/-      (h7+ 2)r2 ■a/^T 

+ b'e 

Xj-U, 

a//n o//n 

1 X7"lJ1 1 
r.—— -(h.+ 4)r2 + r,-i—i -(h1+ ^rj 

^^l    ,.   .   K  , x2-ü2 

<    a'e o//n o//n 

X-7"^^ 1 X'7"^1 1 

j//n 
'2-   2^2  T M 

+ b'e 

so that  (utilizing tSe first fmd  last  lines a'^ovc) 

/^n 
1    2^1 

(5.3.50) 

x1-u1 

1 < e o/vn 

X2-Ul 

h'  ^a/^ 
(h1+^ 

+ -.e 
a' 

'V^i 1-2 

= e V^n 1    2    1'       b'    W   " 
1+    -re ; 

—       g.nvK-^ 
Xj-X^ 

i* b-;elo/^ 
a' 
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The efficacy of a nlll -in I* ~,e 

. x2-xl 

a//n is s^own by a modifica- 

tion (allovipp for a,,) of t^e proof for a ,__. 11 nin/ 

Since Kn(x|a10)   < Y {x|a .), we obtain   (as with  (5.3.4?)) 

r,—  -(V 2)rl 
,      o//r. a'e 

r 
xryi 

< a'e lo//n 

-(h1+i)r| . 

+ b'e    0//" 

Vui x.-v 
r,^_^ .(h * ^r? + r,-^ -(h,* ^r? 

,      o/v'n <  a'e 
'I    2^1 

j/vfr 
7    2'   2 

1, 

♦ b'e J/A J/^" 

XJ-WJ X--U 2 p2 
1 77i-V!)1r2 77---(h2+-2)^ a//n < e 

and (as with  (5.3.50)) 

/^ 

X^-Xj 

a'+b'e 
r/Sn 

X2-y2 r0--~    (V -i)r2 

j//n 
2    2'  2 

r V
X1 

1+ L'e lo/v^ 
a' 1 < e 

The rest of the proof is sinilar to that of the first part of case  (iv) 

after (5.3.51). 

THEOREM:    For k >  2, condition  (B')  (or, more properly,  its 

(5.3.52)    generalization to k ^ 2) holds  for the senuence  (5.3.16)  for 

arbitrary r > 0. 
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Proof:    Condition (B')  is pivcn at  (5.^.6).    Its first reouirement, 

(5.3.7),   is satisfied hy  (the generalization to k ^ 2 of)   Lenma (S.3.18) 

The remainder of its rcquirer'ents are satisfie(,  (for V * case k ■ 2) by 

Lemma  (5,3.22).    "e v/ill nov s^ow that tbese reTrainin«' rpquirements 

are satisficf' when k > 2. 

As at   (5.3.21) and  (5..'5.?0),   for i1,...,ik - 0,1 

K   (x|u)   =  f7
(u) ^r      (x1,....xk) 

n xfl]'---'vfk]     1 

(5.3.53) 

ßESk a//n 

Cß(k)"lJrk1 

a//n     , 

(5.3.54) 

Thus, 

(M f1] + Ch1*i1)r1o/»/n,...,Urv^ + (h,.+i,.)rvo//n) 

x a. 

r2i,2 
11 

lll2- 
{/2va//ri) e 

k    2 + ...+ 

r2h2 Vk 

r2h2 
rl  1 rkhk 

(V^IT)    C    2 2        (l//fTT)'   . 

■ I* 
ßGsk 

'^iilm^j^j^f 
,//n 

r2l,2 r2h2 rri 
—=— +. . .♦  —a— 2 2 r 
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41 
xjinlm 

o//n ■2h6(i)-ur)l'(hj*lj,r^*(hJ,1),!rJj 

(5.3.55) 
r2h2 
rl 1 

+ ...■♦■ W k 
I *jinlm 

i/Sn 
.h.r 

1X
B(J):

U
IJI

)1 

j j j//n 

ßtS, 

I r.i.: mim!.. .i.(h.+ kj^. -fi 

I a'(S)e 
ßeSk 

where 

k 

I 
J = l 
n-| ÜLUlLfil 

o/»^n 
.h,r.!^ii^M 

(5.3.56) a^ß) = eJ 

'.'/hile for the case k s ? there were 2!  = 2 terns in the final sumiration, 

there are now k! teirs. 
I. 

As there were 22 = 4 parts to Lenr^a (5.3.22),  there arc 2    parts 

here.    V'e will "ive tlie proof for the part corresoon^inc to  (5.3.23), 

since it is indicative.    I.e.,  in the case i.,...,i.   = 0,...,0, 

(5.3.5") 

!Lijiui<tv|)ri.an0 
a//n 

.01 

hnlm  <   (h + i)r   + a tn?+ 2)T? + an0  ^02 
o//n 



OR 

Xrkl'u(k]      ,.      K 
. r v k    2y  k       nH...Ok 0/ /n 

(where a 
nij-'-i^'- n 1 

.  ,  corvor^e stoc'iasticMly to zero when 

a     is the paranctcr of the f'ensity of X(n)   (i.,...,!.  ■ 0,1)) when 

X(n)  e Sn(u,h1,...,hk)    ant' M = K fX(n)|a0      n).    The ani        ^   . 
V "  k 

(j  »  l,...,k) ray flcnoni] on %:(n) ,u .h    ... ,h. . 

For, e.p.,  the  first comparison of (5.3.57),  K  (x|an0      0) 

-   !'n^x'a10     0^'  so by (5<3'55) anc1 t'lc fact tfiat xi 5. xi  f1 a 2,...,k), 

l a'(ß) >_      I a'(ß)e 
PrSk ßeSk 

>_     l a,(ß)3 
ßeS, 

JÜLÜÜl 
o/Zn 

(V ?)ri 

xi^m 
a/*^ 

fh,. ^)r| 

x,-u 1 M[ll    r.       K  2 
1    2'   1 

1 i e 1 0/^ 

Proip bere tic proof is essentially that '.-hich  follows   (5.3.27). 

Rule for rraHn*   comparisons.    For each o^ the k I  vectors i.,..,,!   , 

one rust prove k   relrtions similar to  (5.3.57), with  anprnoriate 

modifications of "<" to ,^,,.     For t^ese, comnare the  pivon a. 
ij...^ 

with the k ot'ers which hnvc iJ,...,iJ,s which differ fror t'ie riven 

i.,...,i. in only one place.  (This mlc, siiffested ^y the k = ? results, 

.Nforl'S when k > 2.) 
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To illustrate our nethod, wo will now study, e.g., the second 

comparison of (5.3.57).  Since Kn(x|anoo  0) >_ K^Cxja^  0), 

[a'{P)>_  Ia'(ß)e 

r^^'^kH 
ßeSk     ßESk 

a/fi 

V1^,,, ^i,^ 

>_  l   a'(ß)e  
oAn ; 

ßeSk 
ß(2)-2 

l  a'(ß)- l    a'(ß) 
ß^k     ßcSk V^i.Ch  ^r2 

1 +  i-CDfi >e  a//n    " " \ 
l   a'(ß) 

ßeSk 
ß(2)-2 

Now the proof proceeds as at (5.3.30), and a relation like (5.3.31) holds 

because what is left in l  a'(ß) after   £ a'^) is removed, Fakes the 
6eSV ßeSk 

ß(2)=2 

"wrono" associations and thus tends to zero, while t^e denoninator does 

not. 

THEORI-M:    For 0(r)*)  and any fixeH r =   (r.,...,^) >   0, 

(Xr.,,...,Xrk,)  is a sequence of GMLE's  for estination of 

(5.3.58)     C^ rn.---.Wr];]) based on X(n) =  (X^,,.. , ,X,, ^ •     It thus 

possesses,  for all r =  (r.,...,^) >  0, the pronerty of 

Theorer:  (5.3.13). 
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Proof:    Theorems  (5.3.17) and (5.3.52) establish com'itions  (A*) and 

(B'), respectively,  for all r >  0.    V'e therefore have ? senuence of 

GMLF's possessing tlie property of Theorem  (5.3.13), or more pronerly its 

extension to k >_ 2,  for all r >  0. 

If T and U are estimators of 6, then U is said to be nore 

concentrated (about 6)  than T if 

(5.3.59) P.r-r < IJ-8 < r] >   PQ[-v < T-e < r] 

for all 6 e Q and all r >  n.    (This definition, whicb appears for perhaps 

the first time in print in Lawton (1968),  is Icnown to the present author 

to have been stated by Professor Lionel '''eiss as early as March ln65 in 

lectures at Cornell University.)    If T   and U   estimate 6, tven U    is '  J p. n n 

said to be of higher large sample concentration  (about o) t'an T^ if 

(5.3.60) ^m n
e[-r ik(n)(Un-e) i r] >. Ijm "J-r 1 h(n) (Tn-e) 1 r], 

where lc(n) is such that ! (n) (U -0) approaches a limiting distribution, for 

all 6 e 0 and all r > 0. The GMLE (A,., ,... .Xp,,) has, usin" a k- 

dimensior.al ceneralization of (5.3.60), desirable larpe sample concen- 

tration in cormarisor to the class of estirators o^ Theorer (5.3.13). 

V,'e will nov shovi (for k = 2, the k > 2 extension bein<» similar) 

that, by finding one GMLE, we find a class of GMLE's. 

ir.WiP.:  Suppose Um H [Z < y] = I.(y), with L(') a continuous 
n 

,- . ,,.  d.f..  Then, if lin c = 0, 
(5.3.61) '   n+<» n   ' 
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Proof:     If all but a finite number of the c      are positive, then 

LM  1 Ijm Pe  [Z    < y+c )  and  (since eventually all c    are less than c  , 
n 

m fixed) 

(5.3.62) lin Pen[Zn < y+cn]  <L(y^n). 

Taking the limit on m in (5.3.62)  and usin" the continuity of L(') 

the desired result follovs.     (If all but a finite ntin^er of the c    are 

negative,  the proof is similar.) 

If infinitely rviny c    are positive and infinitrly rany c    are 

negative,  sunnose c    < O^c    >  0.    Then 

(5.3.63) L(y*cr)  <. ljg P0  ^ < y+cr]  1 L(y+cs) 
n 

since eventually c    < c    f. c  .    Takinf Units    in  (5.3.6?) over 

(r:  c    < 0} ^v (s:  c   > r>} or. the £.h.s. ?"d r.h.s.   (respectively) the 

desired result follows. Note that this is a special case of, "dth an 

even simpler proof than, Crar^r's Theorerr (see, e.r., Fisz  (1%3), 

p.236). 

THEORI !M:    If {7nl(X(n),r),Zn2(X(n),r)} is a sequence of GMLE's 

then so is 

(5.3.65)      {Znl  + Ojd/k^n)),  Zn2 + o^l/k^^))}, 

(5.3.64) wherc 0 (1/,   (n)) (i = ^j) is a quantity suc^ that 

o.(l/1-.(n)) 
lin-J-——1-r^— = Um k.(n)o.(l/k.(n)) = 0. 
n*»        1/);. (n) n><»    iv ; i.        iK JJ 

Proof:     V.'e will show that,   for the new sequence,  conditions  (A1)  and 
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(B')  (see (5.3.5)  and  (5.3.6)) hold. 

Since  (A') holds for the original sequence ^Z -,7 2} with L(«|e) a 

continuous d.f.,  it will also hold for (5.3.65), by Lenna (5.3.61)   (more 

properly, by its multi-dimensional analog, which is proven similarly). 

Since  (B') holds for the oripinal sequence {7 ,,7 7} with constants 

anii =  ^aniiranii2^   ^'^ = 0'1^' ^ wil1 V|0l'i for i;ecluence  (5.3.65) 

with a'..  given by 

'an001 = an00rkl(n)ol(lAl(n))' an002 = an002-k2(n)o2(1/k2(n)) 

an011 s annil-k1(n)o1(l/k1(n)), a^^ = an012-k2(n)o2(lA2(n)) 

^101 = a^oj-kjWOjd/k^n)), a;in2 = anl02-k2(n)o2(l/k2(n)) 

anlll = amu^i^^dA^n)), a'^ = anll2-k2(n)o2(l/k2(n)) . 

(l^enever the a  . . converge in probability to zero the a'.,  do also.) 

A typical o.(l/k.(n)) right be l/{!'. (n)n<5i} with 6. > 0 fixed 

(i = 1,2).    In conparinf any two members of this class of GMLE's with 

each other, we find by Theorem (5.3.13)  that they have the same 

asymptotic efficiency  (in the sense of 'Hieorep  (5.3,13)). 

After results  (5.3.61) and (5.3.64) were obtained, the author's 

attention was called to the latter part of section 3 of a preliminary 

version of V'eiss and ''olfowitz (l%7b), where a peneraliiation of 

Theorem (5.3.64)  was stated without proof.    Tlamely, if {Z . (X(n),r), 

Z 2(X(n),r)} is a sequence of GMLE's then so is  (7 i+T',, 7 2
+T'?} where 

(T'    T') is such that, uniformly in 6, 
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(5.3.66) ^n PeNkjOOTj  < 6.   I^Cn)!^!   < A] . 1 

for any piven 6 > 0.    Our proof can be generalized to this case.     (Note 

that in the published version of Weiss and Wolfowitz (l%7h) condition 

(5.3.66) has apparently been wealened.)    These results will now be used 

to conpare the MLE and the GMLE with regard to gsymntotic efficiency 

when k ■ 2. 

LEMMA:    For any a > 0, P  fx'roi-Xr,! >   a o/^nl is minirrized 
  u'   [2]     [1] 

(5.3.67) 

(over u   e G(n*)   i.e. every   such that VJ,-, 
3 W^I 

+ n for some 

n >   n* >   0) at y 
[?]aurii ♦ n*.    Also 

' ^ ♦[^m'^rn >   a n//r\}*   1  as m-». 

Proof:    By Theorem  (B.3.2), 

pu[xm-x[i]>ao/^ 

y-n 
s2 

a/^n 

^ 

lo/^n 
dy 

(5.3.68) 

/*r 

^   2 
.     i dy +   

/57 
a 

a n 

1  2 
Ay 

a 
a— ♦n 
_^  

/2a/Sr 

(    o a n 

Sh 

fiof/n 

a > 
a n 
_K  
/2of/ni 

1 2 

dy. 
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By the fornula for differentiation with respect to a parameter (e.p., 

V'aHswortli an^  fryaii   (1%0),  P.   2) or by the Chain ''ule,  since 

(a— -t-n)^ >   (a nr , 
/n /n 

T-P [Xm-Xf., >   ao dn u l   |2]     [1] //nl 

1 
a— +n 

1 
2 

c 
/2a//n 

(  0 a— 
l_      1 

2 
/2a//n 

/n 

/2o//n /2a//n 
>   0. 

Hence P [X,,,..-X,., > ao/t^] is an increasinp function of n > n* > 0, an^ 

is therefore rininizec' when n = n* > n (i.e. '^en p ,-■■ ■ Mrii+n*). That 

this riniipal  probah ility-»•1 as n+<» follows  fro^ (5.3.68). 

LF^^n/»: 

(5.3.69) 

dZn 
 e 

2       0 < 2, where e     is t^e positive solution of 
-    ' o 

(5.1.3?). 

Proof:    Fror  (5.1.39) and t'ie fact t'at cot'i (x) >   1  for x >   n, 

d2n 
 -G 

2 0 
c  -c  coth(e /2) 
00        ^ o ro(cotMeo/2)-l). 

Csin" an   expression   for coth(c /2)  which was founH in the proof of 

Lenma (5.1.53),  this becores 

<'2n  e 
2 o 

=     G 

f  £ /2     -G   /? 0 O 
e____+e_  
'G /2    -G /2 

0 o e       -e 

-c /2 

=  e =   7- 
o t 17    -z 17 

e        -e P    -1 

t 2. 

xx v 

since (for x > 0) x/(c -1) < 1, or x < e -1, because x+1 < e' = 

1+X+ jj- +.... 
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In the notntion at  (5.3.66), we wish to show that the MLF 

{^m4Tni»Xm+Tj2)  is suc'- tlipt  (5-3-66) holds, with kjCn) = k2(n) 

/n/o.    By Theorem  (5,1.37), 

(5.3.70) 

xm'xm   ^ 
2 -  X[l] 

xm*xm . bivhiL.% 
2 ^cotRc 72) 111 

X[21'X[1] 
2 

XJ2J1XJ11 
cotMc /2) o 

if 0 <_ X^^-XJ-J,   <  /7o/»^n 

if X[2ry[11 >   /2a//t 

if 0 < X^^-X^j,   <_ ^o/Zii' 

if      vr2rxfn > ^/^ 

and  IT'J   =  IM'r2l"Xr2l I turns out t0 ^e t'ie same-    ITIUS, usinp the 

definition d = X^»-.-)^., and t'ie fact that e coth(G /2) = d2n/o2,  for 

any 6 >  0 

P8r,kl(n)Tnll ' 6'  'k2(n)Ti2l  " 6? = V^nl1  * &a//"] 

P  rXrj^-X^,  < 26a//n, 0 <  X^,-^^  < /2o//n1 

+ P 
Y -V 

1     i < Sa/Sr\, X,2l-Xri, >   /W*^ 

>  P 
xm"x[ii 

^  coth(e /2l <  6a/^, X,2,-Xril >   /2a/Sn 

(5.3.71) 
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Y .Y 
'72] m 

dzn ^       f2]     111 

Xrol-Xri,   |^2n-e a2 | 
liLJH ---7^— <  6o/^. Xr2]-Xril >   /20//R- 

d^n 

.   |d2n-c o2| 1   ' o    ' <   (X^j-X^pfio/v^,  X^J-XJ^  >  v^a/v^" 

• [2]  X[l]       25 
^ 

d2n ,  Xr2]-Xri1 >   Jlolfii 

THEOREM:    For the MLE when k = 2, uniformly in g,  for any 

(5.3.72)    piven 6>  n' 

AJCPuflklCn)Tnll   < ^l^^1^1  <  61  =  ^ 

Proof:     By Lemma (5.3.f<9)  and equation  (5,3.71), 

Pp[,kl(n)Tnl!   '  5'  l^^1^1  ' 61 

(5.3.73) >. P^ [X[2rX[1] >   ^^2, -X[2rXri] >   fiol^ 

P,fV[2]-Xri]>   ^ax(^i)a/^l 

By Lerma  (5.3,67), the last member of  (5.3.73)  can be bounded below, 

for    y  e 0(n*), in such a way that the bound ->-l as m-». 

By Theorem (5.3,72)  it follows,  as noted above (5.3,66),  that the 

MLE and the GI1LE have  (for k = 2) the same asymptotic efficiency, and 

that the MLE is a GMLE,    This proves asymptotic efficiency properties 

for the MLE which do not follow directly from the standard theory, which 

assures i,i,d. observations. 



CHAPTFR  5.    POINT ESTIMATION:     MAXIMUM LUCrLIHOOO   fML) 

AfJH RFIATEO nSTIMATOPS 

5.4.    MAXIMUM PROBABILITY FSTIMATOHS  (MPF's) 

Maximim probability estimators were introducer! ^y uJeiss and Wolfo- 

witz  (1967b)  for much the same reason as GMLF's were introduced by V'eiss 

and Wolfowitz  (1966), as discussed in Section 5.3 above.    Weiss and 

Wolfowitz  (1967b), pp. 202-203, proved t^at, for the case of m «  1 

parameter,  every GMLE is an MPF;  thus MPF's extend the notion of CMU's 

(and by finding a GMLE we find a fortiori an MPF).    We now study the 

extension of this result to m >   1 parameters, first summarizinp Weiss 

and Wolfowitz's results. 

Let 0 and    0 be as in (the m-dimensional analop of)   (5.3.1),  let 

X(n) be as  in  (5.3.?), and let K  (x|0)  and »„ be as in (5.3.3). 

DEFINITION:    Let R be a ^ixed repion of VT,  let V(n)  = 

(k-tn) ,. ..,km(n)) be such that k(n>*-",  let d =  (d,,...,d ), 

and define (^.4.1) 

d - RA(n) = {izv...,zr) e 0  :  d.  - y./lc^n) =  z., 

i = 1,.•.,'",   (yj,---^)  e R}, 

DEFINITION:    Z    is a maximum probability estimator with 

respect to R and k(n) if (for a.e.Cj  ) vali'e x of X(n)) 

,_  ,,   .,       Z  (x)  equals a d e 0 such that (5.4.2)        n    '     ' 

/ ... / Kr(x|e)de1...den = sun / ... / Kn(x|e)de1...dem. 

d-[k(n)]'1R te0 t-[k(n)]"lR 

107 
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CONPITION:    For each h >   0 an-l 6    c 0 

(5.4.3) lin P, [k(n)(Zn-e) c Pi  - 0 

uniforrrly for all  0 c H ■ {0:   |lc(n)(9-6o) |   < h] 

Cn'JDITIOI':    For each 0    c 0   o 

(5.4.4) j^g Pe[|k(n)(Zn-e)|   < M]  -  1 
If*oo 

uniforrily for all  6 in sone nciphborhoot' of 9 

CONPITIOI":    For each 0    e 0 and h >   0   o 

(5.4.5) ^rn {Pe[k(n)(Tn-e)    c   P] - Pe   f'(n) (Tn-9o)    c   R]} » 0 

uniforirly for all  6 c H = {6:   |V.(n)(0-fl  )|   <^ h]. 

TÜEOREM:    Let  (Z  } be an MPE with respect to P anf' ^(n). 

(5.4.6) 

Suppose  {7, } satisfies   fS.^..'?)  an^   (5.4.4).     Let {T } be any 

estimator wliic'1  satisfies  (5.4,5).    Then  (for each 6    e 0) 

3>. pnPe   [!(n)(Tn-Oo)   e R] 

rjFOTEM:    Let IV    be a GMIJ  (with respect  to r =  (r.,...^ ) 

>0) for the estimation of ft « (G,,... .6 ) e O  (m >   1). 
1     rp       — 

Choose R = {(y^-.-.y^): -r./2 < y. < r./2, i = l,...,n} 

(5.4.7)  and l<(n) as for the GMLE. If the MPF (w.r.t. this P. ami 

k(n)) satisfies (5.4.3) and (5.4.4), and if the TMLF satisfies 

(5.4.5), then the HMLF is (in the equivalence class o^) such 

an MPF. 
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Proof:  Lot Z be the MPE w.r.t. this R and U(n).  It then satisfies        n 

the condition of Theorem (5.3.13). Thus (for each 6 e 0) 

(5.4.8) ^mP6 (k(n)(Wn-eo) c R] >_ Jjjä Po [k(n)(VV E RJ • 
o o 

The GMLF W    satisfies  (5.4.5)  and thus the conclusion of Thcornn (5.4.6) 

holds:    for each 9    c 0 o 

(5.4.9) ^mPe  [k(n)(Zn-eo)   c   R] >_ JJi P9  [k(n)(Wn-eo)   e   R]. 
o ' o 

Then (see Weiss and Wolfowitz (1967b), p. 198) the CMLP is (in the 

equivalence class of such) an MPE. 

The result of V'eiss and '/olfowitz (l067b) for the case m « 1 is 

somewhrt stronger than uur Theorem (5.4.7) for the caso m >_ 1: they 

show that the MPH satisfies (5.4.3) and (5.4.4).  (They assume, as we 

do, that the (IMLP. satisfies (5.4.5), whic'i is stronper than (A1) of 

(5.3.5).) Our result (more precisely, a slight extension of our result) 

says that if the MPE for a problem is "good" (i.e., satisfies (5.4.3) 

and (5.4.4)), then the GMLF (if it meets (5.4.5)) is equivalent to it. 

Note that the analoi» ^or ir > 1 o^ V/eiss and V'ol'oritz's result for m = 1 

is false. E.g., Weiss and Wolfowitz (1967^), p. l^, last paragraph, 

note an example (with n = 2) where the MPE is not "gooc1" although the 

GMLE is.  (Weiss and Wolfowitz pive a method for attackinr t^e problem, 

in such cases, by modifying it slightly and thereby obtaining (often 

"good") MPE's.) 

We will now study in detail the MPE of the ranked means. Although 

we have seen that, in general, for n > 1 narameters even if a GMLC and 

an MPE both exist the MPE may not be pood, in our case the MPE is shown 
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(for the case p « 2) to have nil the POCU' properties of the HMLF. Thus, 

let O ■ {y ; p c no, u1»yr1i,...,Mk"Ufj(J and 0 ■ R , an-I let X(n), 

Kn(x|y), M be as specific^ in (5.3.141. Fix r ■ (r.,..,,T.) >   n, and 

choose kjCn) « ... 3 kk(n) ■ &/a,  n = (CVj Y,.)'■   -r^? < yi ±^^2, 

i * 1,... ,k}.  Then 

1 d - fk(r)] 4n = {(Zj zk) t 

(5.4.10) 
t,i * y^i^ " z

i> i ' 1.---.v. (y1.---.yk) e R> 

T. T. 

v"~vr- ci ' i^y^i * \ * 2rTST' i B 1'---'k}' 
1 ' 1 

- ((^.....z,.)- ■' 

and 

sup I...  j  Kn(x|vi)dw,J,...du 
teG fk] 

t-fl:(n)l »p 

(5.4.11) tk * T0^ ti * y0/*^ 

= t 
SUP t    / / KnCx|u)dyri]...durvl 

tk " Ta^^       tl  ' v0/*^ 

For the case '. =  2,   (S.4.11) becor'es  (when X,.,  = x.  anH v        = x-) 

SU'i  — — 
t)-t7 2TTO2 

2 rl f 
t2 + --o/v^n t.  + ^-o//n        j 

. / / 
r2 rl t,  - -?-o//n t.   - ^-o/v/n 

2     . X-IJ ?^r2] 

a/Sn 

1 [V^ij] 
2 

1 
' 2 

fxr^2ii 

• 
2 

+ e . a//n . (J//n dufl]4ir2] 



Ill 

(5.4.12) 

sup 

o//n        2 

t2-x2      r2 

j/^- 

V^ t 
r2 

t2-x1      r2 

o/v^" 

sup  * r lo/Zn 

2 
j//n 1 , 1 

/Ü /27 
Hv i dv 2 

tj-xj     rj 

j/^" 

+ 2 

i 
1 2 

/27 /ST 

1  2 
2V2 

dv,  dv- 

tj-xj      rj 

o/^" 

t2-x2 

J//IT '? ^^2 

a//n 

♦ \ VTi, 
( J/^T 

- ♦ 
trx2 

Pisa 

ri 
" 2 

tj-Xj 
- ♦ 

t2-x1     r2 

a/^i" 

(5.4.13) 

LEfMA:    Let d = ^■(x2-x1),  tj = Xj ♦ A^/Sri,  t2 ■ x2 - ^a/Jn. 

Then an MPE is  (t1,t2) with a.^ which achieve 

sup [{♦(a1+r1/2) - ♦(a1-r1/2)}{*(a2+r2/2)  - *(a2-r2/2)} 
a1.a2 

♦ {*(a1-d*r1/2) - *(a1-d-r1/2)}{*(a2-d*r2/2) 

- *(a2-d-r2/2)}]. 

Proof: By definition (5.4.2), for our case as specified above (5.4.10), 
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the MPE is  (t-.t-) which achieves the suprerum in (5.4.12).    If we use 

d = —(x.-x.)  and transform via t.  = X.  ♦ a-o/Zn, t-= x-, - a-o/t^n, this 

{t.,t_) will be specified by the  (a.,a-) which achieves the 

sup  [{<J>(a1+r1/2)   -  *(a1-r1/2)}(^(-a2+r2/2) - *(-a2-r2/2)} 
a1,a2 

+ (tCaj-d+rj/?)  - *(a1-d-r1/2)}{*(-a2*d+r2/2) - *(-a2+d-r2/2)}]. 

Hsinp the relation $(*)  = 1 - <t(-x) (x e I?), this becones as specified 

in the statement of the lenra. 

LEMMA: The su^re^ur o^ (F..4.13) occurs only at (a, ,a-) with 
(5.4.14) * - 

0 < a < d, 0 < a- < d. 

Proof: By reasoninp as at (5.1.5), the sinrenun n'ist occur at a 

critical point. However, if we sot tho partial derivative with respect 

to a. equal to zero we obtain 

^(aj+rj/2) - (Kaj-rj/2)      *(a?-d*r2/2) - *(a?-d-r2/2) 

^(aj.d+rj/2) - tia^'d-r^?)" '  *(a2*r2/2) - «(a^-r,/?)    . 

Since the r.l^.s.  is always < 0,  t'ie l.'^.s. must always he < 0.    f'ow, the 

denoirir.ator of t!ie  l.h.s.  is positive  (negative)  ifr a.  < d   (a. >   d). 

Tlius, we must have 

T. r.    < 0        if       a    < d 

> n        if       a. >  d 

i.e. a   >  0        if        a.  <  d 

a.  < 0        if        a. >   d. 

This proves the result for a,: the result for a« follows similarly. 
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LFMMA: By imposinp a consistency criterion for estinators 

(5.4.15) similar to (5,1.4), we may restrict ourselves to (a.,a,) with 

ai + a7 1 ' • 

Proof:    In order that we have t.  < t?, we must have Xj + a^/Sn 

/r 
< x2 -a2o//n, i.e., al + a? 5. '^(Xj-Xj) 

Mote that, in the region of (aj.aj)-space in which Lemma (5.4.14) 

tells us the sunretruir of (5.4.13) nust lie, we ^ave syniretry (of values 

of  (5.4.13))  ahout the line aj + a2 = d:  see ^i^uro  (5.4.16).    Thus,  our 

consistency criterion only eliminates -n illopical Hunlicate    rraxirizina 

point. 

Figure  (5.4.16) 



(5.4.17) 
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LEMMA: For any fixed 6 > 0, tlere is a KCr.,!^,«) such that 

if d > KCr-.r-.ö) tlien (5.4.13) is maximized (in the shaded 

region I: a. > 0, a. > 0, a. + a. < c' of Fiaure (5.4.16)) 

inside the disk H: a^ + a^ < 6. 

Proof: Let fj = {*(a1+r1/2) - ^(aj-rj/?) }(*(a?+^0/'
,) - <t'(a2-r?/2)}, 

f2 = {^(aj-d+rj/2) - »(a.-d-rj/Z)}{*(a2-d+r?/2) - *(a?-d-r2/2)}; then 

(5.4.lb) is    sup   (fj + fj. 
(a1,a?)in I 

ilow ovor (a. »a«) e I, f. is naximized at (a,,a.) = (0,0) an^' 

decreases as a. and a7 increase. TKis, if we rove (a-.a^) outside P, 

the lo^ i/ f. is at least f1((0,0)) ninus the larrost value of 

f| ((a, >"->)) fn the boundary of D inside I: there a? + a^ = 6, so 

sup   f ((a ,a9)) = sup {<I'(a1+r1/2) - ^(a -r1/2)}- 
a^a2=5  1  1 2 O^j^   1 1       1 1 

(ap?^) in I 

.{*(/5-a2+r^/2) . ft(/6^'-r2/2)} 

< {^(Cjö+rj/?) - <f(c16-r1/2)}{*(r2/2) - t>{-r?/2)), 

where we may suppose without loss that c. = c..(r, .r-.S) > 0. (This can 

only fail if the suprenup. occurs at (a ,a9) = (n,6), in ''.'hicli case we nay 

reverse the roles played by a. and a7 in our inequality and the 

argument below will ro throu"!) sirilarly.) Tims, the loss in f.. via 

.fioinp outside P is at least 
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(nrj/2) - n-r1/2)}{*(r2/2) - *(-r2/2)} 

-{*(c16*r1/2) - *(c15-r1/2)}{*(r2/2) - *(-r2/2)} 

» {*(r2/2) - *(-r2/2)}[{*(r1/2) - *(-r1/2)}{*(c16+r1/2) - *(c16-r1/2)}l 

B c2(r2)c3(rl'r2'6)    Csay). 

The gain in f- (which increases as a. and a- increase in T) is less than 

sun   <!'(a1-(Ur1/2)*(a,-c
,.+r2/2) 

(a1,a?) in I 

^    sup    ^(a.-d+maxCr. ,r,))<I'(a,-d+niax(r1 ,r0)) 
(a1,a2) in I   1      l z l  - 

=  sup  «PCa-'d+maxCr. ,r-)">''; ,-d+r,ax(r. ,r-)) 
al+a2=d i ^    -      i    * 
al'a2-P 

-      sup *(a1-d+r'ax(r1,r2))$(-a1+max(r1 ,r-J). 
O^a^d   1      i^i    it 

We will show that 

f5 4 ijp     lim  sup *(a -d+max(r1,r?))'t>(-a1+r.ax(r1,r2)) = 0. 
^ ' '        d><» 0<a <d 

Thus, there will exist a KCr-.r^d) svch  that d >^ '.'(r.jr-.ö) implies the 

gain is less than c7(r7) c-tr-.r-.o), which will prove the lenra. 

Let X and Y be i.i.d. H(0,1) r v.'s. Then (5.4.18) is equal to 

ft.  .  1Q.    lin  sup PfX < a -d+iax(r1,r ), v <^-a +nax(r1 ,r-)], 
1.3. KlVj        ^ 0<a  j 1 i   <i 1        1   / 

which involves the probability in a certain rectangle in R2, as 

illustrated in Figure (5.4.20). 
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Thus, (5.4.19) is less tl^an or equal to the limit of the supremum of 

the probability to the left of the line X + Y = -d + raxCr-.r^), 

lim  sun P[X+Y <^ -d+paxCr.,r )] = lip P[X+Y < -d+maxtr.,r,)] - 0, 
d*» O^a <d l      d>" 

THEOREM :  For M G 0(n*) (see (5.3.15)), the MPE (t^tj) is 

(5.4.21) equivalent to the GMLE Cxr1i,Xr2i) found in Section 5.3, and 

thus has the sane ontinun nroperty as that CMLE. 

Proof: We wish to show that, for each \i  e 0(n*) and for each fixed 

6 > 0, 

1 = lim P)j[k(n)max(|t1-X[1]|,|t2-X[2]|) < 6] 
m-" 

lim P [A,ax(|a1|o/»^,Ia2|o/^) < 6] 

lim P^ [raax(a1,a2) < 6], 
ir>-<» 

where the last equality uses Lenma (5.4.14). Mow by Theorem (n.3.2), 

v^n - 
the density of d = —(Xro1-Xri,') for y > 0 is 

o       [2]     [I] 

1 

2/* 

y- - 
/^. * e 

y+ 

a/Sn 

v/hero n = y r .  - u ,  ,.    Thus lim P  fd >^ K{T. ,r0,6)] = 1, so usinp Lemma 

(B.2.1), 

lim P [Tnax(a1,p.2) < 6] = lim P frax(a1 ,a2) < 6 | d > ^(^,^,6)] = 1, 

where the last step uses Lemma (5.4.17). 



CMAPTE" 6.     IMTFRVAL FSTIHATION 

6.1.     rr.-.T^AL F^Rf'I.ATinN 

Consider joint corfic'once interval estination of Urii. • • ■ lUr^i • 

Our observed statistics under 'ulc  (1.3.2) are X..   (i ■ 1,...,^' 

j  =  1,...^)-  we take X. ,...,X.   to he fundamental  as at   (5.1.1)   (note, 

as has been pointed out by ßcc'ihofor,  Kiefer,  and Sobcl   (ln68).  Part  I, 

Remark 4.1.2,  t;iat X  , \ are sufficient and transitive  for g.,...,u^ 

after n stapes:  see p.  4?/' and Theoren ln.l of Bahadur  (1054),  as well 

as pp.   334ff of Ferruson  (1067)  for details of t'iese notions),  choose 

our interval  to be of the form 

I  =  KXj,....^) 

(6.1.1) 
= Si]«-" M[k]: "i -yrn --hv ••• '\ -urici lhk}' 

v;here P. ,h, •...•", Ji.   are functions of X.,...,"7, ,  and ask  two invariance 
11' " k    k 1 1: 

conditions   (involvin'- relabolinp of populations and sMfts of location). 

(6.1.2) 

-YMMPTY INVAnIAMCF-     Por all   $ t \, 

i f x T' 1 = T f x Y      ■) 

LOCATI^M IMVAPIA'T^:     For all  c e R, 
(6.1.3) 

i(x+c,...,x+c) = i(x       ,y ) + c. 

I'teiss (1063) pointed out, in another context, that (6.1.2) an' (6.1.3) 

are not necessarily the only or the best ways to corpensnte for ncrmuta- 

tions and shifts of location, respectively: there may be other ways to 

compensate which yield the same interval. 

118 



119 

LEMMA: Under condition (6.1.2), I(X......X.) must be of the 
(6.1.4)        _      _ IK 

form ^Xrj^,... »^i) • 

Proof: Tondition (6.1.2) implies that I depends only on the ordered 

Xi  (i ■ l,...,k)- 

DFFINITION: Let a.,...,a. (a. > 0, ... ,a^ >^ 0-aj ♦ ... + a^ 

(6.1.5) = 1), b* (0 < b* < »), and (G,!') (-» <^ G <^ H <^ +») be con- 

stants pre-set by t'ie experimenter. 

'Ve now take our loss function to be a weiphted sum of the proba- 

bility that UX",-,,. ..,Xrv,) doesn't cover Hr., plus a multinle of a 

quantity related to the length of the interval on yr.-. (i = l,...,k): 

LOSS FUNCTION: W(u ;I (X^,,. . . .X^,)) = 

(6.1.6) k 

= I  a.{P fwm /? (g.,h.)] + b* Mn(h -p M-n)}, 

Mote that the length h.-«>. is the special case of min(h.-c. ,H-G) where 

the experimenter chooses (G,H) with H-G = +«>. 

RISK FUNCTION: 
(6.1.7) 

r(p;I(X[ir....X[k])) = V,(U:I(X[ll'---'X[k])) 

Thus, 

r(vi;I) = F^Wdil) 

(6.1.8) 

k 



120 

» I a My   i  0» h )] + b*^ a r minCh -a H-C) 

k k 
- 1 -  I ajPyfUfi] G (p-.h.)] ♦ b* I a^^minCh.-Pj.H-C). 

Our aim now is to find functions G..h.;...:R, ,h. which are in so^e 

sense optimal with respect to (6.1,7), o.a. which achieve the irininun 

,, , ^ inf       sun  r(u ;I(Xr ,,...,Xr,,)) 

and provide a minimax invariant coniidenc» interval.  (TTie v  in (6.1.9) 

will be non-randomized, since u is a fixed jnVno^m and not a random 

variable; I (Xr.,,....X,.,) will be considered non-randomized also.) 

Although we have been unable to carry out (6.1.9) or other ontimization 

in the peneral case, results for special cases are obtained below. Mote, 

for use below, t1at by Lemma (6.1.4) and (6.1..7) with c = -Xr.-i we have 

the 

riEOREM:    Under conditions  (6.1.2)  and  (6.1.3),   UX-,... ,X. ) 

must be of the  form U^      , ...7,,)  wit'-   (for i  = I,...,1:) 

(6.1.10) 
?i= x[i] • ^i^fij-^i] VrV]3 

h. = y'r.-.   + h*(xr.1-xril,...,xr.1-yr,,). 
i      [i]       i  [i]   ri]      ' ill   ikr 



CIIAPTHR 6. INTF.nVAL rSTIMATinM 

6.2. INTRPVm OF FIX^D ''IDTF! WIT'IN A CFPTAIV S"BrLASS 

In Theorem (6.1.10) we looked at the form of intervals of type 

(6.1.1) under two invariance conditions. V'e now study the subclass of 

joint intervals 

IN(^[i]'""xfH) " {lJrir,,,,lJfk]: 

(6.2.1) 
xm-*Il»m lx[1]*h;....>x[krRk*llJ[k] ix^^h*}. 

which utilize the "natural" estimators Xr., of wr., (i = l,...,k) 
[i]    fij v 

stronply by tal'int^ g* hJ;... ;g£,h£ to be constants. Further, we will 

suppose the experimenter has specified nositive constants d.,...,d, , and 

wishes the interval about y,., to be of lenpth d. (i = l,...,k). '.'e 
[i] i 

then study intervals of fixed width within subclass (6.2.1), i.e. the 

subclass of joint intervals 

I?)-^[l]""'X\k]) 

(6.2.2)    = ^n].---»^^]: ^m+fhi"di^ -uri] - Xrl]+hl''••, 

Then (here it is logical to choose (G,H) = (-«,+ao)) 

^^■FV 

(6.2.3) 1 ■ Jj^ii]  e (>:[i]+(hi-di^x[i]+hpi ^^jVi 

k        k 

121 
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which is of the form constant (specified by the experimenter) minus a 

weighted sum of probabilities of coverape of u rji,... ,ur^i. To find the 

h*,...fhf which are optimal in the sense of (6.1.9) (minimax) within 

subclass I_  of (6.2.2), we must find the hVs which achieve 
r | IN X 

k 

(6.2.4)    sup     inf     I a.P fiir.,-h* < Xr., < Pr^-hf+d.]. 
h*,...fh* yeno(M(k]) i-1 iw1 [i]  I" M- N  i  lJ 

For the case a. = ... = a. . = 0, a. = 1, suppose we set h* ■ d./2. 

Then Lai Saxena and Tong (1968) claim in an abstract that 

occurs aty,., =  ...  = M ri.-!. and therefore equals * 
k /n 

12" ~J 

J dk ^ 
* * 2-- 

-rk 

; i.e., if one uses the interval (X,, •j-dj</2, Xry,*dy,/2) 

for u r,-I then the probability of converge is a minimum when 

^[1] = "• ^[k]- 
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DIAPTTP 6.   INTTPVAL HSTIMATIOM 

6.3.   i'ppp.n Ann LO'TP. INTF^^'ALS VITHIN A CFPTMN SUBCLASS 

The subclass o^ joint intervals IN o^ (6.2.1) utilizes X,,, as an 

estimator of p,.,  strongly (i = l,...,k).    For problers in w'üch we 

wish an upper (lower)  joint confidence interval on y ,.,,... »y r.-i v/e will 

set p* *  ... = p* = ♦«  (h* =   ...  = h* = +«)   in   (6.?.1).    Then our 

interval is in one of tbe classes 

(6.3.1) INjl| =  {^jp-.-.M^^: W(1]  lX[1]+h*,....yrk] l^b*} 

(6.3.2) IN>L =  {y[1].....y[k]: J^yP* 1 W tl]. • • • .X[v]-^ i y [k]) 

)- 

(6.3.3) r(y:IN)II)  = 1   ■  J a.P^Xj.j iPf^-hf)  * b*(H-G) 

(6.3.4) r(y.Iri>L)  = 1 -    l^C^^ l^i^V  + b*(M-G)- 

For the case of uoper intervals we may choose I'-G = 0  without loss. 

Then 

(6.3.5) r(y:IN)U) " .1^^ iy[irh|l. 

Similarly,  for the case of lower intervals we r-ay choose H-G = 0 

without  loss.    Then 

(6.3.6) r(y:If!)L)  =  .I^V^i]  ^[i]^1" 

123 
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THEOREM: For any i (1 < i < k), if a. = 1 (thus a. » 0 for 

j t  i) then the risk (6.3.5) ((6.3.6)) is the probability 

that our upper (lower) interval doesn't cover y,.,, and is 

i-1 terms  k-i+1 terms 

maximized over u e Ü  CJ rji) at u» (-00,... .-"»Ur-i,. •. ,u rji) 

i terms   k-i terms 

Thus, for any y (0 <Y < 1) an upper (lower) confidence 

interval of minimal probability of coverage y is (-».Xj-.-j+h?) 

1 1 

((Xj.j-g?,*«)) with ht=(a//n)*"1(Yk"i+1)(pt = (o/Zn)*"1^1)), 

Proof:    Upper Interval.    For any i (1 _< i _< k), if a. = 1,3. = 0  (j ^ i) 

then 

sup r(y jIN u) 
^^(Ufij) 

^Qo^[i]3 ^Po^[i]^       ril 

= lim    P ,, [Xr., < Ur-T-hJ] 
ffv+oo   VU   •••=U[i-l]='M'lJfi] = -'-=U[k]    II1 ~   [l1    1 

since, for i = l,...,k and x e R, F7      (x)+ as u  t  (A = l,...,k) by 
X[i] l 

Theorem (2.1.11).    It follows by a modification of the proof of Case  1 

of Theorem (2.2.4)  (usinp 1 for x) that 

sup r(u;IN(J) - P [Xfi] lu.^-hjl 
uen^j.j) ^ir-^ti-ir-^m3---^^] 

= P min(Y1.....Yk.i.   )   < -j- 
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where Y
1.*','Yk-i+l are k"i*1 independent N(0,1) r.v.'s.    To make the 

minimal probability of coverage Y (0  < Y < 1) we set h* so that 

1 - Y - P 
-h* 

^^l Yk-i+l^-> a//n 

1  - P min(Y1,...,Yk_i+1) >_ -hi 

T//H" 

= 1 

r .       \ 

1-* -hi 

lc//jrj 

k-i+l 
hi 

o//^J 

k^i+1 

thus Y ■ 
h* 
i 

(a//irj 

k-i+l 
k-i+l hi 

Ig/ZiTj 
, and h* =  (o//ir)*"1(Yk'i+1) 

Lower Interval.    For any i (1 £ i ^ k),  if a.  ■ 1, a. = 0 (j ^ i) 

then by Theorem (2.1.11) 

^i])
rb:lN-L,'-v"w)V'[1,iP[i]^ 

By a modification of the proof of Case 2 of Theorem (2.2.4), 

ucn 
sup       r(y;IN ,) » P       .      = [X,.,  > yr.T+g*] 
>ni) ' w[ll'--'S!lJ[i]'li[i+l] = ---=^k]s+00    W   -  W RlJ 

o^il 

i max(Y1,...,Y.i > —i- 
1 X   ~a//n 

where Y1,...,Yi are i  independent N(0,1) r.v.'s.    To make the minimal 

probability of coverage Y (0  < Y < 1) we set g* so that. 
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1 - Y » P 

» 1 - P 

g? 1 

//n 

max(Y ,...,¥ ) <-i 
1    1 "o/»^ 

» 1 
' gj ^ 

_ \o//nJ 

thus Y 
La//H; 

i  i 
Y ■ ♦ 

j//n 

Ir. i, , and g? » (a//n)*" (y ). 

(6.3.8) 

THEOREM: The upper confidence interval of (6.3.7) on M r.-. 

which has minimal probability of coverage y has maximal prob- 

1 I1 

ability of coverage 1- 1-Y 
k-i+1 

(i = l,...,k; 0 < Y < 1). 

The lower confidence interval of (6.3.7) on p,., which 

has minimal probability of coverage y has maximal probability 

of coverage 1- [l-Y 

k-i+1 

(i » l,...,k; 0 < y < 1) 

The proof of Theorem (6.3.8) is similar to that of Theorem (6.3.7) 

and will be omitted. Note that (6.3.7) and (6.3.8) also hold when k = 1, 

in which case the upper and lower intervals on v ,•..•. are exact.  The fol- 

lowing table illustrates the maxiriial degree of overprotection. 
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Table 6.3 .9.  l.[l-Y
k-i+1] 

1 k 1 1   1   1 1          2          1 1          3         1 
1 Y  1 1  i = 1  | j i » 1  i = 2 | | i = 1  i » 2  i » 3 j 

.99 j 

1 •95 
•90 1 

\   -80  1 
.70 

.60  ( 

.50 

|   .99  1 

|   .95  1 
i   .90 

|   .80  | 

1   .70  | 

!    .60 

1    •50    1 

.995  1.000  | 

1  .975   .998  | 

I   .949   .99  | 

|  .894   .96  | 

.837   .91 

|   .775   .84 

.707   .75 

|   .997  1.000  1.000 

j   .983   .999  I.000 

.965   .997   .999 

1   .923   .989   .902 

.888   .973   .973 

j   .843   .949   .936 j 

|   .794   .914   .875 

For the special case i = k, Fräser (1952), p. 579, pave the upper 

interval on y ,.-. of Theorem (6.3.7) as one with probability of cover- 

age at least y.    Fräser proves that under mild conditions an upner 

confidence interval for y r. ■. (k ^ 2), with probability of coverage 

Y (0 < Y < 1) for all y e fi . does not exist. 

Our results above extend to certain location paraneter families 

if, instead of set-up (1.3.1) (normal distributions), we take set-up 

(2.1.1) with assumption (2.1.2) (a location parameter family with 

finite mean). 

THEOREM: Suppose we have location parameter populations 

as in (2.1.1) and assumption (2.1.2) holds. For any i 

(1 _< i j* k), if a. = 1 (thus a. = 0 for j ?£ i) then the risk 

(6.3.5) ((6.3.6)) is the probability that our upper (lower) 

interval does not cover y r. ■. and is maximized over 

y e V^i]5 at 
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(6.3.10) i-1 terms     k-i+1 terms i terms       k-i terms 

V  « (-»,....-tD, V  ri]»---'U[ip C» " &i rjl f ...Urji .+•,...,♦»)) 

Thus, for any Y (0 < Y < 1) an upper  (lower) confidence 

interval of minimal probability of coverage Y is (-".Xr.^+h?) 

1 

((Xfij-gJ.W)) with M  = -Gn"
l(l-Yk"i+1|f) ♦ Ef 

1_ 

(g* = G ' (Y
1
^) - EJ. If g (x|f) is symmetric about x « 0 

1 1 

this becomes h* = G ■1(Yk"i+1|f) + E* Cß* " G "^Y1^) - E,). i   n       '    f fti   n ,•, ' ^   f 

Proof: Upper Interval. For any i (1 ^ i ^ k), if a. = 1, a. =0 

(j t  i) then by Theorem (2.1.11) 

n lim P w [X,., <yr.1-h*l 
M^« ^U^-'^U-U^'^il^-^fk] [l1 -  [l1 i 

= lim ^(u  -hj), 

where H^x) = PytXr^^x] with y = (-M,.. .,-M,y rj,,... ,y r.,) . Now 

HM(x)^Hoo(x) for all x by the expression for FY  (x) given in the proof 
[i] 

of Lemma (2.2.5). Thus 

sup   r(w;IM ,,) = P [X,., < pr.T-h*] 
ycn^fij)   N'u  *[ir'-'su[i-i]-'*[i]-"''»[*]   M -  [1]   iJ 

= P[min(Y1,...,Yk_i+1) 1 -hJ
+Ef] 

where Yi»•••»Yk.i+1 
are (see (2,1.7)) k-i+1 independent r.v.'s each 

with  d.f. G (y|f). It follows that to make the minimal probability 
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1       *   •  - 

of coverage y (0 < Y < 1) we set h* so that h* = -G ~ (l-y    |f) + Ef. 

Lower Interval. This case follows in a similar manner. 

(6.3.11) 

THEORCM: The upper confidence interval of (6.3.10") on y,., 

which has minimal probability of coverage y  has maximal nrob- 

1 

ability of coverape 1- 1-Y 
k-i+1 

(1 * l,...,k; 0 < Y < 1J 

The lower confidence interval of (6.3.10) on u ,., which 

has minimal probability of coverage Y has maximal probability 

-  nk-i+l 

of coverage 1- 1-Y      (i = l,...,k; 0 <Y <  !)• 

The proof of Theorem (6.3.11) will be omitted. Note that this 

result implies that Table 6.3.9 provides an analysis of maximal over- 

protection for our location parameter case as well as for the normal 

case. For the special case i = k, Fräser (1952), p. 576, gave the upper 

interval on y ,., of Theorem (6.3.10) as one with probability of coverage 

at least y. Fräser proves that under mild conditions an upper confi- 

dence interval for Ur^i (k >_ 2), with probability of coverage y 

(0 < y < 1) for all p e fi , does not exist if f(x-vi) satisfies a 

condition of bounded completeness. We will now extend this result to 

\ir--t   (1 _< i ^ k; k _> 2); our mild conditions are slightly stronger than 

Eraser's. 

DEFINITION:    For 1 ^ i _< k,  let g.fa..... .x^) be a real- 

valued function such that for any j   (1   < j   < k) 
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(6.3.12)     gjCXj,...,^) ^ gi(x1,...,x. j.x.+fi.x.  ^....Xj^) 

for all x.,....x,   e R and 6 >  0. 

DEFINITION;    For 1 _< i _< k, let 

;' 

) 
(6.3.13) Jl if «.(Xj,...^) ^9 

j^o if g.frj,...^) <e. 

PEFINITION:    For any i (1 ^ i j^ k)  for I = 1,2,...  let 

I 
(6.3.14) Riiy1,...,y!L)  = <> 

! the ith smallest of y.,...,y   if Ä >_ i 

+<» if £   < i, 

Let R0(/!,...,y£) = -« if £>_ 1. 

DEFINITION:    For 1 ^ £ _< k    let 
(6.3.15) 

S£ =  {(Xj....^):  Ri(x.J^)>   x£>  R^^x.J^)} 

N:>te that (*).  . (x, ,.,.,x, )  is a monotone non-decreasing function of 

x.,...^.  and that S. ,...,S,   are disjoint sets whose union is R . 

ASSUMPTION:    G  (y-G|f) is boundedly comnlete (each-sided), 

(6.3.16)      i.e.    Eg(X) - _2g(x)dG (x-e|f) = 0 for a dense set of 

e(<0 or>0) and  |g(x)|   <M imply g(x) = 0  (a.e.). 

THEOREM:    Suppose we have location parameter populations as 

in (2.1.1) and assumptions  (2.1.2) and (6.3.16) hold.    Fix 

(6.3.17)      i  (1 ^ i <^ k; k j> 2).    Then an upper confidence interval for 

Vr-i, with probability of covering y  (0  < y  < 1) for all 

yen, and satisfying (6.3.12), does not exist. 
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Proof:    Assume that p. (r..,... ,x. ) satisfies (6.3.12) and yields an 

upper confidence interval for y ,., with probability of covering 

Y (0 < Y  < 1) for all VJ e n  .    We have 

Y" ^wih^i Vi ■E^[i].i
(3fi v 

■ ^[i].i
(5ri'---'Vi>x£'IÄ+i'---'V

dGn(v^i]+Eflf) if ^ syri] 

' E[ßM[i]fi
(xi'---'x£-i'xÄ+i V1 if% = urii 

where 

ß;^    iCXj.-.-.x^.x^ xk) =_£* ^ VdGn(V[i]+Ef|f) 

(1) We now derive conditions on the function 3V ..    From the expression 
0,1 

above it is seen that (if y. = ^r-O 

El^(X1,....Xi_1,Xm Xk)   - Y]   =0. 

Hence, as in Fräser (1952), p.  580, 

ßo,i^xr,"'XÄ-l'X&+l,,"'V ' Y    (a'e-)- 

Using the above condition on ß    ., we obtain conditions on the function 
o, i 

♦0ji(x1,...,xk). 

Y s P- j(x.»...,x«_. »x. .»•.. »x^.j  (.a.e.i 

= i*o,i(xl VdGn(VEflf)- 

Consider fixed x. »...»x. , ,x,+. ,.,.,x. . Now * .(x.,...^.) is a mono- 

tone function of x , and since it is a characteristic function it will 

have the following form: 
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value of x, at which 

from 0 to 1 

JO if Ri_1(x.,j|it) < xJl < uixl,...,xl_1,xl+1,...,xY) 
*   Ax .....x.) '   < 

|1 if u(x1,...,xjl_1,xJl+1,...,xk)   < x£  <-. 

Using the function uCx.,...,x.) we obtain 

R^jtXjJ^i) 

(6.3.18)    Y « 

However, since 

J 
-00 

*o,i(Xl V^n^^fl« + dGn(VEf|f) 

U^X. » • « • »*j _ J '^Oxl » * ' * '^Jc' 

Ri_1(xj,j^) 

0 1     j^.i^l'-'-'V^nW^fl^ 

R._1(xrJ^Ä) 

dGn(x£+Ef|f) = PfX^ tR^iXyjM) * Ef] 

-00 

then 

,-1 
Gn (1"Ylf^ ' Ef 1 u(xi'-"'X£-l'XJl+l'',"Xk) 

iG^d-Y+PfX^  < R.^x.J^)^])   - Ef. 

The inequality on u(x.,...,x,) implies that 4 .(x1,...,xk) ■ 0 for 

(x-.-.^Xj^) e S^ with x£ < G^ (1-Y|f) - E.. This is true for £ = 1,...,k; 

hence A    .(x, ,...,x,) » 0 if R. (x.) < G' (1-Y|f) - E-. Consider now o,iy  1'  ' k'       i j   n v '' y   f 
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(x1,...,x£_1,xJl+1,...,xk) having RJJCX.J ^ l)   <G"1(1-Y|f); in (6.3.18), 

the first integral vanishes leaving 

Y-      | dGn(xÄ+Ef|f). 
u(x1,...»x£_j,xul,. .-.x,^ 

Therefore uCx,,... »x^.x^j,... ,xk) = C^Cl-ylf) - F.t., if "J.JCX. .jj4^) 

< G' (1-Y|
C
). From this equality on uCx.,... »Xj.x.^^.,.. ..x^), we 

obtain the following; conditions on 4 . (x.,... ,x.): 
011  1       K 

0 if  P.Cx..) < G'^l-ylf) - Ef 

Mv-'-'V -^ if K^j^ G;1(i-Yif) -Ef 
JR.jCx.) < G'^l-Ylf). 

But since $ .(x.+S,....x,+6) is monotone in 6, we have 
0 y 1     1 K 

JO ifRi(xj)<G;1(l-Y|f) -Ef 
0'1 1     k    ' 1 if R,(x,) > G^^I-YU) - Ef. 

i r n 

Therefore 

gi(x1,...,xv) 
< 0 if R.Cx.) < G^Cl-Ylf) - Ef 

|J  C if P.Cx.) > G^d-Ylf) - Ef. 

Similarly 

<u[i]  if Ri(xj)<G;1(i-Y|f)+u[il -rf 

gjtXj,...^) 

1U[i]   if  R^x^ > G^Cl-Ylf) + Vifi] - Ef. 

This completely determines g^Xj,... ,xk): pi(x1,... ,xk) = RjCx.) 

- G fl-ylf) + E-. But we know that a constant added to this yields 
n    '     f 
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1 

X,., - G" (1-Y 'X+ |f) ♦ Ef, which doeSi 't always yield y;  therefore 

this can't. 

Note that the argument of Fräser (1952), p. 580 (top) showing that 

the interval  for u,, , generated by his proof has coverage at lerst Y 

doesn't extend to our case, since although 

{\.l(xylW 1A} =>  {\(xp >  A     iff     xi> A}' 

' iR^Xyjtl)  < A} -^ {Ri(x.) >   A      iff     x^ > A}. 

Note that (if we wish to consider location parameters and not 

means) restriction (2.1.2) can be dropped throughout this section and 

the results stated in ter.iis of eri-i»« • •»9rifT 



APPENDIX A.    IIAXIMA AND "INIftA OF REAL-VALUED FUNCTIONS 

OF n REAL VARIABLES 

A-I.    n = 2 

Although the case n = 2 is included in the case n ^ 2 of Section 

A-2,  it will be convenient to have stated separately the results and 

notations of this special case.    (Note that some authors, e.g. 

Kaplan (1952), p.  126,  state these results in a somewhat more cumbersome 

manner.) 

THEOREM:    Let f have continuous second-order partial 

derivatives on an open set S in P2.    Let  (x. ,x2) e S be such 

that 

3f(x1,x2) 

3x, 

and let 

(A.1.1) 

3f(x1,x2) 

0      0, 
3x, 

(xj.xp 
= 0, 

,0      0., (x1,x2) 

92f(x1,x2) 

ax2 

o „o. (x^xp 

Z2fixvx2) 

3x^2 <- o    os Cxj.xp 

32f(x1,x2) 

3xi 
,   0      Ox (x1,x2) 
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o  o. 
Then (x-.x.) is 

(i) a relative minimum if B2-AC < 0, A > 0; 

(ii) a relative maximum if B2-AC < 0, A < 0; 

(iii) of undecided nature if B2-AC ■ 0; and 

(iv) a saddle point if B2-AC> 0. 

L 



APPr.MDIX  A.     MAXiriA AND MINIMA OF RFAL-VALUHD FIINCTIOMS 

OF n RFAL VAPIAßLFS 

A-2.    n  >   2 

Even in Hancock   (1960) anJ Apostol   (1957)   the presentation of the 

theory of maxima and minima is not as complete as we need  (e.p.,  in 

order to show in total  the asymptotic nature of  (X,...,X)  in Section 

5.1).    We therefore present a summary gathered  fron several  sources. 

THEOREM:     Let  f have continuous second-order partial 

derivatives on an open set S in p 

such that 

(A.2.1) 

Let  (x.,...,x )   c S be 

3f(x.,...,x) 

3X. 
(i ■ l,...,n), 

( 0 »0-\ lx. i • • • »*■-.) 

and let Q ■   (d..) where 

a2f(x1,...,xn) 

ij 3x.3x. 
(ij - l,...,n) 

(Xj,... ,xn) 

Then the real symmetric matrix 0 is either 

(i)        positive definite,  in which case (x  ,...,x )   is 

a relative minimum; 

(ii)      negative definite,  in which case (x.,...^ )  is 

a relative maximum; 

(iii)    semi-definite,  in which case the nature of 

(x?,...,x )  is undecided;  or 

(iv)      indefinite,  in which case  (x.,...,x )  is a saddle 

point. 
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Proof:  In addition to nrcviously-citcd references, sec Courant (1966), 

pp. 204-208. 

T!'rO',r:.M: A real symnctric matrix 0, having eigenvalues 

(A.2.2) 

Xj, . . . ,Xn (say)   is 

(i)    positive definite 

(ii) nepativc definite 

iff X. >   0  (i  ■  l,...,n); 

iff X.   <  0  (i  -  l,...,n); 

(iii)(a) positive serü-definite iff X. >   o  (i  »  1,..,,n) 

anc1 at   least one X .   = 0- 
J 

(b) negative seni-definite iff X.  <   0  (i  »  1,. .. ,n) 

and at  least one X .  = 0-  and 
J 

(iv)   indefinite iff at  least one X.   is positive and at 

least one X .   is ncrativo. 
J 

Proof:     Recall   that the eigenvalues of a rratrix 0 arc t'^e n roots of t'ie 

equation   |0-Al|   = 0, and see '•'edderburn   (106/1), n.  02. 

(A.2.3) 

THEOfTM:    For the real  synjnetric natrix n,  let A « dot (0) 

and A    » 1.    Let A    .be the determinant of O with its   last o n-t 

t rows and columns deleted.     (Vote that A    s A.)    Then O is 
n 

(i)  positive definite      iff A  .A,,...,A    are nositivo: 1 o'  1*      ' n 

(ii)    nerative definite iff A  ,A, ...^A    are alternately o' 1' n ' 

positive and ru-.ative; 

(ill) (a)    positive semi-definite iff all principal  minors 

of D arc >0 and  A = 0; 
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(b) negative semi-definite iff all prir.cinal minors 

of 0 arc ^0(M")) if their order is even (odd), and 

A ■ 0; or 

(iv) indefinite, otherwise. 

Proof:  For (i) and (ii), see (e.p.) Narayan (1963), pp. 165, 167, ('•'otc 

that the reference cited by Anostol (1057) is inadequate; it proves a 

weaker thcoren which utilizes more than t'ie leacUnp nrincinal minors of 

Q.) 

For  (iii)(a),  from Browne  (1958), we know 0 is positive semi- 

definite iff all principal minors of 0 are >n (see p".  1?0-121, T'eorer 

46.5).      If 0 is to he positive semi-definite but not definite,  then 

the condition should also specify A = n.     (TMs modification holds  for 

the ^> implication by the well-known result A=X....X   ,  e.".  Faddceva 

(1959), p.   14.    The «^ implication is clear.)    Vfe use, of course. 

Theorem  (A.2.2). 

For  (iii)(b), note tliat  for any matrix A of order i,  det(-A) 

«  (-l)1det(A),  and that 0 is negative semi-definite iff -0 is positive 

semi-definite. 

Note.    A condition such as "A  .A.,...,A    >   0 and A = 0" will not 

suffice for  (iii)(a) of Theorem  (A.2.3).     ^or cxamnle,  consider 

0    0] 

0 -1J. 

Note.    If n = 2, 0 
AP 

BC ,   A  =  AC-B2, A. = A,  A-  =  A and 0  is 
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(i)    positive definite iff B2-AC   < 0, A > 0; 

(ii) negative definite iff B2-AC   < 0, A < 0; 

(iii)(a)    positive semi-definite iff B2-AC - 0, A >_ 0, C >^ 0; 

(b)    negative seni-detinite iff B2-AC ■ 0, A  <^ 0, C <^ 0;  and 

(iv) indefinite iff {B2-AC - 0, A>   0, C  < 0} or 

{B2-AC -  0,  A  <  0,  C >   0} or  {B2-AC>   0). 

Here, we have reduced the number of undecided cases   ((iii)  cases) 

"beyond" those, namely B2-AC ■ 0,  named in virtually all  texts.     (The 

cases separated   out belong to  (iv) and are therefore saddle points.) 

However, by a consideration of sipns it is easy to see that the sets 

(B2-AC « 0, A >  0, C   < 0} and   {B2-AC » 0, A   < 0, C >   0} are empty.     (The 

reason for this is the need to have at least one positive and one 

negative eigenvalue, thus exhausting the supply of eigenvalues when 

n - 2.) 



APPP'PIX B.     niSTflBUTIONS OF VARIOUS  FlIVCTIONS OF 

rr^TAiN rA'iixv' VAPIABI^S 

3-1.    JOINT DISTVmmON Or X,.,,.. . .X^, 

The joint c'ensity of X.,...,X.   is 

% x/^----'^-^^^---^^ (yj  e  R;   i  ■  l,...,k) 

whe re f^- (O  is tl'e M(u,,o2/n) density function (i ■ l,...,k) 

(see (5.1.1)).     It is well-known that t'-en tho joint density of the 

ordered X.   (i  = 1,...,!.),  i.e. of X,. ,^.. .<_X,, ,, is 

(B.l.l) 

ßJ % x^^ecD'-'-'^ck)5« xi-----xk 
^ "k 

0 

I (/S/o)k* 

0 

I  (/^/o)k* 
ßeSk 

0 

^(D^l 
;//n 

^(D^fl] 

V j//n 

, otherwise 

X6(k)-Vk 
.  Xj <, . .ixk 

o//n 

, otherwise 

xß(io^M 
\    o//n 

, otherwise 

»  xil- • -t?]- 
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APPENDIX  B.     DISTRIBUTIONS OF VARIOUS FUNCTIONS OF 

CERTAIN RANDOM VAPIABLES 

B-2.     LIMIT DISTPIDUTION OF *»., ,... .JT,., 

The limiting distribution of ^rii»•••»^fLi   (under certain 

parameter configurations)  is of interest to us.    Let   (A  , n ^ 1} 

aiid   {B  , n ^ 1} be sequences of events   on   some probability space 

(which may depend on n).     Let a ■ (a,,...,a.)  e R   be fixed, and denote 

the vector (u.+a o//n,... ,u. ♦a. o//n) by u  ♦ ao//n. 

LEMMA:    If Urn P  (B )  ■ 1, then  (if either of the following 

(B.2.1) 
limits exists) ^g Pn(AnBn) - l^m Pn(An). 

Proof:    Suppose lim P  (Bl  « 1.    Then by    takin«» limits in P (B )   n*00   n   n n   n 

<    P (A^B ) <  1 we find lim P  (Aü B ) » 1, and hence — nv n   n^ - n*»   n    n   n7        ' 

lim   {P   (B )  - P (A^B )}  » 0.     Taking Units in P  (A B )  » P (A ) n*»     nv n nv n    n' n    n n^       n   n' 

+   {P (B )  - P (AWBJ}yields our result, n    n n   n    nr 

DEFINITION: For p  e  no. let p(n|p)  = p
ul*m   < ••■   * X(k)1 

(B.2.2)      where X,.^,... ,X,, x  are as in definitions  (1.3.13) and 

(1.3.14). 
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LBMMA:    Let 0 -   {y: u   c no, u j-w rji,. •. ,P v
0ii ,^,1 .    For all 

(B.2.3)      *  e "W"0' 

Proof:     1.    Suppose that u   c n(j<)ft0.    Then for all n  larpe enough, 

u ♦ao//n e n(><)n0.    Then the Xf..  are independent and X"f..   is 

the sample mean of   n    i.i.d.    N(IJ. .,*a.o//n,o2)  r.v.'s.    The 

characteristic function of a N(m,o2) r.v.  is  (see, e.g., Parzen  (1960), 

p.  221) |r(t) » exptitm- yt2o2}.    Thus, 

h^      (t) - ne      (j)  - 
X(j) 

•t, //-,    1  t2  2]
n 

e 
n    l3J    3 2 n2 

.♦0 1   t2   2 

e e 

itum so that JUjn r^v-      (t)  = e      ^   .     It is then well-known  (see, e.p., Wilks 
(j) 

(1962), p.  124, 5.4.1a)  that X^... converges in probability tour-i 

(j  ■ l,...,k).    Thus, since the Xf..  are independent,  it is clear that 

the probability that  {X...  converges toy,.,   (j  = l,...,k)} approaches 

1 as n*".    However, by Lemma (B.2.1) 

^PuW/n^(l)   <-"   ^(k)1 

CB.2.4) " ^S Pp+ao//n^(l)   <"-   < V) • 

lY(l)-y[l]l<e |Y(k)-y[k]l   <e] 
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for any c >  0.     If we choose 2e  <      nin      CM ri)-1^1)1 then the rh.s. 
l1i<j_<k     UJ     m 

of (B.2.4)  equals 

which is 1 since P[X,,x  converges top,,,   (j ■ l,...,k)] approaches  1 as 

2.    Suppose that u   c(n(^)]cft0.     (F.ventually y ♦ao//n E 0nQ(t), or 

Qn[nW)]C•)    Then there are £ distinct values in   k ,.-,*&.a//n,... t 

Urkl*ako//n}   (1 1 £   1   k-1) and (see  (1.3.14)) 

Py*ao//nfX(l)  *   •* * X(k)1 

- Pyao//n[X(i1)  * ^i^l)' X(i2)  * ^i^l)1  •"   ^(i^.j) * ^i^.^D1' 

However,  the result will not follow as before since     tnin    fa r-i"^ n^ 
l<i'i<k    UJ     llJ 

= 0 here.    It can be seen  (e.g., consider the case k » 2)  that the limit 

-^  1 as m-00.     (In fact,  it depends on a.) 

LEMMA:     For u   e GyU?0, as m» 

(u+aa//n J 

(B.2.5) Ä[l]'"-'A[k]     1 K 

p .    /^-[X/-.  * x.   (i = l,...,k)] p+aa//nl  (1) —   1   v '      '  " 

Proof: 

(u+ao/»^n) 
im ?-rr -       (x,,...^.) 

x[l]'---'x[k]    1 K 
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lim|p(n|u*aa//n) 
TV 

•PM.aa//^X(l]  1X1 V]  lXk   I   X(l)<   •••  <   X(k)l 

♦ (l-p(n|u+ao//n))' 

•P^ao//nfX(l]  1X1 *(k] lxk   '   not   (X(1)  <   '••  <  V)^! 

"nUS Pu+ao//^*(l] lxl X[k] lxk; *(1) <   ••' * ^'k)1 

'rti5 P
y*ao//n[X(l) *-Xl X(k) 1 V X(l) *   •" <  W 

■ lim P        //-[X,^ <  x,,   ...  »X,..  < x, ]. n><»   iJ*ao//nl   (1) -   1 '  (k) —   kJ 

Here the second equality follows from Lemma  (B.2.3), while the last 

equality follows from Lemmas (B.2.3) and (B.2.1). 

LFMMA:    As n-*», if v*aa//n e QfSi(t) then 

(B.2.6)      Pu*ao//n[X(l) ~ Xr   •"   'X(k) - ^ 

"*  P
u ^(i) 1 xi'   •••   'X(k) 1 xk]- 

Proof:    As n*00, 

Py*ao//ntX(l) - xr  ••'  'X(k) ~h) 

* Pu+ao//nlX(l)-alo//"-xralo//"'   •••   >JWaka/^^\-\a//^ 

m Py[x(i) i^rv^"' ••• 'V) i vV//"] 

-*     PMtX(l)   1X1 V)1^1- 

The second equality follows because, whenw+ao//n e Qr\ütf), X...  is 

N(p ,. ^a-a/Zn, o2/n)  iff X,. .-a.o//n is N(M,.,,o2/n)      (i=l,...,k). 
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DEFINITION: Let »(z ,...,z ) denote the  d.f. of the I,...,s 
(B.2.7) 1     s 

order statistics in a sample of size § from a N(0,1) population. 

THEOREM: As n+», if y e 0nfi(^) then 

(u +aa//n) 

(B.2.8J     /nf7      a  .,-,    /*.- //-,
(xl'--"xk) 

T(x[i]-w[i]-aio//n) —^[kj^fki-V/^ 

i=l 

Proof:    This follows froin Lenunas  (B.2.5)  and (B.2.6). 

COROLLARY:    As n-»-«,  if y   e Op^C^)  then 

(B.2.9) JL 
F^-_ ^_ (x1....,xk) -vjl  «(x.) 

THEOREM:     If y  e 0n[n(j«)]C then 

(p+aa//n) 
(B.2.10)    liinFv/S-_ rj-__ (x1....,xk) 

"^   -^[ll-^l]-3!07^"-"—^[kr^k]^^^ 
depends on a. 

Proof:     (A hint of this dependence was given in part 2 of the proof of 

Lemma (B.2.3).)    Suppose k = 2,  a =  (a.,a.) with a. £ a«,  and let 

Y-,Y2 denote i.i.d. N(0,1) r.v.'s.    Then u,., = y,-, and 

(y+aa/t^n) 
IW- /K CXl'X2) 

^C3r[l]^[l]-aia//fr)' ^(5ft2]"U[2ra20//") 
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' P
M+aa//n[->inCXl'X2^[l]-alo//") lxl' 

—Cnax(X1,X2)-u,1,-a2a//n)  < xJ 

= P[min(Y1,Y2+(a2-a1)) JCXJ, iiiax(Y1-(a2-a1) ,Y2)   < *?]. 

For a. - a. = 0, this is  «Kx-.x«).    However,  for a2 »   a.  it is approx- 

imately *(x1)*(x-), and therefore depends on a. 



From 

APPENDIX B.  DISTRIBUTIONS OF VARIOUS FUNCTIONS OF 

CERTAIN RANDOM VARIABLES 

B-3.  JOINT DISTRIBUTION OF Xr.^-X",.,,... X^-X^ ., 

the joint density of X,.,,...,Xr. , given at (B.l.l), we find 

that (for x, <_ x.) 

ty    y   (.X. ,X-J 

[1]' [2] 

1 

" 2 

e      L 

fxrp[ii 
2 

■f 
[X2SJ[2]> 2^ 

+ e 

1 
2 [ o//n 

2 Vm1 21 

n 

Zno2 

1 o//jr o//n o//n 
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Since, via conpletinp the square. 
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it follows from (B.3.1)  that 

THEOREM:    With n « u (2] " ^1]' for y^0 
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