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ABSTRACT OF DISSERTATION 

TURBULENCE SPECTRA IN THE BUOYANCY SUBRANGE 
OF THERMALLY STRATIFIED SHEAR FLOWS 

A generalized eddy-viscosity approximation is used to study 

the turbulence spectra of thermally stratified shear flows.  For a 

stationary process in the wave number range investigated--the buoyancy 

subrange--under the assumption of local homogeneity of the flow, two 

governing spectral equations with six unknowns are derived from the 

equations of motion and energy. 

In order to reduce the number of unknowns to two so that the 

spectral equations can be solved, a generalized eddy-viscosity is 

used for expressing the integrated forms of the inertial transfers 

of energy and temperature inhomogeneity, the shear stress and vertical 

heat flux in terms of velocity spectrum 4>(k)  and temperature spec- 

trum <)>TT(k) 

Asymptotic solutions are obtained in the buoyancy subrange 

where the local production and local dissipation of turbulent energy 

is negligible as compared to the inertial transfer and vertical heat 

flux terms when the flow conditions satisfy the criterion 

g idfi   N ,g,2 ±1 or   iy «rc&)    . 

In the buoyancy subrange of stably stratified turbulent flow, 

the power law for the velocity and temperature spectra is not univer- 

sal but varies with the flow conditions in the way 4>(k) ~ kn and 

the measurements of velocity spectra in the atmosphere (Pinus and 

111 



Schcherbakova, 1966; Myrup, 1968), the dependence of the power law on 

the flow conditions was confirmed. The solutions of Bo1 piano (1959) 

and Luinley-Shur (1964) are only two particular cases of the present 

results under certain flow conditions. 

In the case of theCunstably stratified turbulent flow, the 

velocity spectrum exhibits aChurarTjin the buovancv subrange as a result 

of the energy input frnm, thp i-pmpp-ratnrp fjeld to the velocity field. 

On the left side of this hump the velocity spectrum approaches a +1 

slope and the temperature •fp?7+-"
,i"n ^h•.,,-   n—5,.„t lnpe.  The measurements 

of the velocity spectra in the atmosphere (Ivanov and Ordanovich, 1967) 

confirms this tendency. 

Jung-Tai Lin 
Fluid Mechanics Program 
Civil FnpineeriTicr Dftnartmenf 

Colorado State University 
Fort Collins, Colorado 80521 
"arch 1969_ 
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Chapter I 

INTRODUCTION 

Recent studies of locally isotropic turbulence of homogeneous 

fluids in the inertial subrange have been helpful in providing solu- 

tions to several engineering problems which are related to air pollu- 

tion, the long distance propagation of ultra-high frequency radio 

waves by scattering in the ionosphere, and the safe structural dftsipn, 

of high speed aircraft. 

When smoke or radio-active material is dispersed by turbulent 

diffusion, Tchen (1959) has shown that the dispersion from a point 

source can be related to a function of some power of time for non- 

stratified fluids.  Especially, when the -5/3 law holds in the iner- 

tial subrange of locally isotropic turbulence, the dispersion of *- 
* "  M &***$' 

particles  is proportional to    t3    where    t    indicates  time. jfcjb ? Ctfi ) 

In the second problem, if it is assumed that scattering wave 

numbers fall in the inertial subrange of locally isotropic turbulence, 

11/3 the scattering cross section exhibits a A     dependence where A 

is the wave length of the radio wave (Bolgiano, 1959L, 

As to the last problem, the vibration of aircraft due to the 

atmospheric turbulence can cause fatigue of aircraft material and may 

even cause the aircraft to crash if the critical frequency of vibration 

with respect to the aircraft is induced.  Of course, a better under- 

standing of the energy spectrum of atmospheric turbulence can give 

criteria for safe design of high speed aircraft. 

However, in addition to the complexity of turbulence, the 

atmosphere itself presents complications, i.e., the atmosphere is 



usually thermally stratified and in a state of shear.  The turbulence 

changes its spectrum of energy in the magnitude or scale since the 

conversion of potential energy into or from the kinetic energy of the 

flow can increase or decrease the kinetic energy of turbulence depend- 

ing upon whether the stratification is unstable or stable. Moreover, 

the spectrum of energy will change its shape and form because the 

stratification can cause some anisotropic effects on the turbulence. 

Thus, the turbulence will have directional properties and local iso- 

tropy can never exist in the wave number range where buoyancy is an 

influencing factor. 

Based on the assumption that the energy spectrum depends only on 

the total dissipation of density fluctuation by molecular effects in 

the buoyancy subrange of the equilibrium range of turbulence, Bolgiano 

(1959) reached a solution of the energy spectrum being proportional 

to k      where k  is the wave number. 

However, according to another hypothesis, Lumley (1964) obtained 

a different spectral form in this buoyancy subrange, since he postu- 

lated that the energy spectrum <J>(k)  and the buoyancy flux spectrum 

<}> „(k)  are functions of the local energy transfer flux e(k)  and the 
wl 

local wave number k and that the spectrum of the buoyancy flux in a 

stably stratified flow is proportional to the mean temperature gra- 

dient.  In this way, Lumley obtained a -3 power law of the wave number 

in the buoyancy subrange if Kolmogorov's hypothesis can be extended 

to this subrange, i.e., energy spectrum is determined by k and e(k) 

alone^. 

It is clear that from the above statements, Bolgiano's and 

Lumley's results seem to be mutually exclusive at first sight.  Hence, 



the author's motivation will be not only to determine the discrepancy 

in their basic assumptions but to search for the basic mechanism of 

turbulence in a thermally stratified turbulent shear flow. 

\ 
, 

.0 

y 



Chapter II 

LITERATURE REVIEW 

In this chapter, previous studies of turbulence spectra in the 

inertial subrange are briefly reviewed.  Two hypotheses given by 

Bolgiano and Lumley-Shur to study the turbulence spectra of a stably 

stratified flow are described.  Recent works of Monin, Gisina, and 

Pao are stated, and some measurements of turbulence spectra are 

reviewed. 

2.1 Locally Isotropic Turbulence--Kolmogorov Hypotheses 

From the definition, turbulence is characterized as an 

irregular condition of fluid flow in which fluid properties such as 

vorticity components are distributed randomly in space and time. 

Beyond its irregularity, turbulence as a result of nonlinear inter- 

action shows turbulent energy transfer through motion of the eddies. 

This idea of turbulent energy transfer is characterized by L. F. 

Richardson's rhyme: "Big whirls have little whirls, that feed on 

their velocity, and little whirls have lesser whirls, and so on to 

viscosity." This idea may be stated in a clearer form -- the turbu- 

lent flow contains eddies of various sizes characterized by the non- 

linear interactions between eddies.  In other words, the turbulent 

energy is transferred from large eddies to smaller eddies until it is 

dissipated into heat because of viscosity. 

In the case of a flow of high Reynolds number, Kolmogorov (1941) 

postulated that small eddies of turbulence are statistically steady, 

locally isotropic, and independent of the structure of large eddies of 



turbulence from which the small eddies are generated. He further 

postulated that the statistical characteristics of small eddies of 

locally isotropic turbulence can uniquely be described by parameters 

v the kinematic viscosity and e the total dissipation of turbulent 

energy by viscosity. 

In his second hypothesis, Kolmogorov postulated that in the 

universal equilibrium range where small eddies lie, there exists a 

subrange in which the viscosity effects are negligible and only the 

parameter e determines the turbulence structure. Thus, based on 

dimensional arguments, the velocity structure function, i.e., the 

averaged square of the difference of velocities at two points sepa- 

->• 

rated by a distance r , is 

2 2 

|u(x + r, t) - u(x, t)|2 = a£ E r  ,  £d << r << l& 

? (2.1) 

and equivalently, the three dimensional energy spectrum has the form 

in terms of wave number k 

«J>(k,t) = a  e3 k 3  ,  £ _1 = ke << k << l^
1 (2.2) 

-   1/4 
in which a and a  are universal constants, I,  = (V

3
/E)    is 

the Kolmogorov length scale that characterizes a cut-off length scale 

below which viscosity affects the turbulence structure essentially, 

and I      is the length scale of energy-containing eddies.  Histori- 

cally, the above stated universal function was reached independently 

by Onsager (1945, 1949) and von Weizsacker (1948). 



Based on Kolmogorov's hypotheses, the turbulent motion of 

small scale in the inertial subrange can be predicted.  Recent measure- 

ments of the turbulent energy spectrum of flow with high Reynolds num- 

ber show that the one-dimensional energy spectra are proportional to 

-5/3 
k1     in the inertial subrange. The experimentally evaluated a.. 

for one-dimensional spectra lies in the range 0.48 ± 0.055, (Pond 

->• 

et al., 1966) where k-  is an orthogonal component of k in the 

18 
streamwise direction and a.. = — a derived from the assumption of 

isotropy.  Examples of those measurements are listed chronologically, 

Gurvich (1960) measured in a wind over land, Grant and his colleagues 

(1962a, 1962b) in a tidal channel, Pond and his co-workers (1963, 

1966) in wind over water waves, Gibson (1963) in a round jet, and Payne 

and Lumley (1966) in an atmospheric surface layer by an airborne hot- 

wire anemometer. 

In case the tpflipprflf^rg fip1f1 ^Q considered, Obukhoff (1949) 

and Cojrrsin (1951) extended the Kolmogorov's hypotheses to the tempera- 

ture spectrum, i.e., in the inertial convective subrange the tempera- 

ture spectrum also follows the -5/3 law and has the form 

I    £ 
••pj-Ck.t) = aT N E 

3 k 3  ,  kg « k << ld~l (2.3) 

where a  is a universal constant, N is the total dissipation of 

temperature fluctuation by molecular transport.  Experimentally, 

Gibson and Schwarz (1963) showed the existence of the -5/3 law in the 

inertial convective subrange of the temperature and concentration 

spectra measured behind grids in a water tunnel. Tsj£2H£_X19_60) also 

found the -5/3 law of temperature spectra in the atmospheric surface 

layer. 



Although Eqs. 2.2 and 2.3 give good prediction of spectra in 

the inertial subrange of the equilibrium range, a detailed study of 

the spectra covering the whole equilibrium range must take v into 

consideration as k approaches to and beyond k,  . To reach this 

point, an additional assumption on the mechanism of the turbulent 

energy transfer must be proposed. 

Historically, Obukhoff f19411 first gave the assumption that 

the energy transfer across the wave number k is analogous to the 

process of the production of turbulent energy due to the work of 

oynolds stress against the mean motion.  From the other point of 

view, Heisenberg (19481 considered that the eddies with wave numbers 

1arger than k act as turbulent eddy viscosity on the eddies with 

ve numbers less th3" v  •  From the eddies of wave number less 

than k energy is transferred to the smaller eddies with wave number 

greater than k .  Assuming the local property of the energy transfer 

function, i.e., the energy transfer is only a function of wave number 

k and the energy spectrum at this local wave number k , Kovasznay_ 

(1948) obtained some solution also. Using a different approach-- 

cascade process approximation, Pao (1965) obtained some solution for 

the locally isotropic turbulence at high wave numbers. 

For the purpose of generalizing the problem, Ste\£axl_and- 

Townsend (1951) gave the assumption of generalized eddy-viscosity 

which is actually expressed in the form of a series.  Due to the 

difficulties involved in arriving at a closed form for the energy 

spectrum when a series form of generalized eddy-viscosity approxima- 

tion is used, Panchev (1967) used only one term of this series and 

obtained some results for locally isotropic turbulent flow.  In 



particular, one thing must be noted that Heisenberg's and Kovasznav's 

approximations can be deduced from Panchev's approach, and moreover, 

P^o's method can also be reached if some special nondimensional param- 

eter is introduced.  Panchev's book f19671 must be referred to for 

V  the details of these relationships. 

Stimulated by Panchev's work, the author tried to extend the 

generalized eddy-viscosity approximation to the thermally stratified 

turbulent shear flow which will be investigated intensively in the 

? 

next chapter. 

Before we study the eddy-viscosity approximation, some 

limitation of this apprnYimatinn mint hn dafrrihftd  Batchelor (1953] 

objected that introduction of the eddy viscosity implies that the 

smaller eddies must be statistically independent of the larger eddies. 

But as k approaches to k,  , this statistical independence does 

not exist (Hinze, 1959). Thus, at high wave numbers the eddy-viscosity 

approximation cannot be valid as, on the other hand, indicated by the 

fact that -7 law at high wave numbers implied by the eddy-viscosity 

approximation is unrealistic because -7 law will mean the discontinuity 

of velocity derivatives.. However, according to Kolmogorov's hypothe- 

sis, this statistical independence may he assumed in the jpartial 

subrange k << k << £, '  , and thus the validity of the eddy-viscosity 

approximation will be assumed. 
^^••"""""""^"^ 

2.2 ^JjTJ^gjjjjj^^gjjj^i.Timif>y_c;HiiT-*c Hvpntheses_on Stably Stratified 

Turbulent Flow 

As described above, the Kolmogorov's hypotheses shed some light 

on turbulent structure of flow without any thermal effects.  In the 

atmosphere the flow is not only compressible but thermally stratified. 



In case free convection occurs, the atmospheric turbulence is excited. 

Even when the atmosphere is stably stratified, i.e., the lapse rate of 

temperature is less than the adiabatic one, there is convincing evi- 

dence, excepting when very strong stable stratification occurs, that 

there exists a random, irregular motion—turbulent mot-inn \r\  the atmos- 

phere (Kellogg, 1956").  Due to the existence of thermal stratification, 

the gravitational force must be introduced into the equations of 

motion, and the potential energy of the flow, as an evidence of the 

gravitational force, will affect the energy balance of the flow. 

Hence, it can be expected that any variation of the turbulent kinetic 

energy must be a function of atmospheric thermal stratification. 

2.2.1 t^ec^aj^sm of turbulence in thermally strat^f^gd flow - 

As a result of the introduction of gravitational effects due to the 

thermal stratification, the tnrhnlftnt field becomes anisotropic since 

the vertical velocity fluctuation is suppressed if the flow is stably 

stratified and is excited if the flow is unstably st.rp^i^0^  It can 

be expected that in the absence of shear, the turbulent field as a 

first approximation tends to be axisymmetric with respect to the verti-  J* 

cal axis to which the gravitational force is oppositely parallel. 

Incidentally, the anisotropic effect will appear in the turbulent 

energy spectrum since, ip. the range of wave numbers where damping or 

excitation of turbulence by buoyancy force occurs, a part of turbulent 

energy is abstracted from or into the turbulent velocity field and is 

converted into or from potential energy depending on whether the flow 

is stably or unstably stratified. 

*Q.   wktcJUj WMANK '. 
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J40T 

For a stably stratified flow, energy drained out of the 

turbulent velocity field may propagate away in the form of internal 

gravit disturbances of Long-Hines type (Long, 1953. 1955; 

Hines, 1960)(or) may cause the production of density or temperature 

inhomogeneitv which is transferred infrtially to smaller eddies and 

finally smeared out hv the  nojppiia-r ^ffprt-;. fThus. in the wave num- 

ber range where the buoyancy force effects predominate, the turbulent 

energy transfer dScreasj^ with wave numberCjovy the transfer of den- 

sity or temperature inhomogeneities flncreasesj Hereafter, the total 

turbulent energy dissipation by viscosity e is reduced and the 

, 1/4 
Kolmogorov wave number (e/vi)    decreases accordingly.  In other 

words, the turbulent scale at which the viscous cut-off nrrnrc wi ] y 

indirectly(increase/through the effects of stable stratification. 

On the other hand, in the case of unstably stratified. 

turbulent flow, the potential energy of the temperature or density 

field is converted to the turbulent velocity field and the velocity 

spectrum may exhibit a hump in the buoyancy subrange where the gravi- 

tational force affects essentially.  Of course, the temperature or 

density spectrum in this buoyancy subrange may have a steeper slope 

as a result of energy export.  It can also be expected that the total 

dissipation of energy increases and the "^w ruimho-p pi  rtv ~h ""t "ff. 

of the molecular effects occurs is increased. 

Keeping the  above described mechanism of stratified turbulent 

flow in mind,  Bolgiano's  and Lumley-Shur's hypotheses on the stably 

stratified  flow  are now  introduced. 
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2.2.2 Bolgiano's hypothesis - If the Reynolds number of a 

stably stratified flow is sufficiently large, Bolgiano .11959") postu- 

lated that the equilibrium range of the turbulent energy spectrum can 

be divided into three distinct subranges: 

(1)  the buoyancy subrange in which the larger, anisotropic 

eddies are directly influenced by the density stratifi- 

cation. 

^2)  the inertial subrange in which the anisotropic effects 

due to buoyancy force decrease rapidly and the classical 

hypothesis of locally isotropic turbulence is applicable, 

and 

(3)  the rH sti pat-j np subrange at high wave numbers where the 

molecular effects dominate. 

It is obvious that the last two subranges fall intn thp  ratp- 

gory of the locally isotropic turbulence.  But, the buoyancy subrange 

needs special analysis and great attention. As a lower limit of 

scale cut-off for the buoyancy subrange,(j3olgianop.ntroduced the 

Obukhoff length scale 

where N is the total dissipation of temperature fluctuation by 

molecular transport,  e is the total turbulent energy dissipation 

by viscosity, and g = g/T in which g is the acceleration of 

gravity and T the mean temperature. 

Thus, Bolgiano further postulated that there exists a wide 

range of wave number between the scale of energy-containing eddies 

a      and the Obukhoff length £  , or equivalently, there exists a 
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buoyancy subrange. He also assumed that in this wave number range £ 

is comparatively much smaller than e(k) the local rate of the iner- 

tial transfer of turbulent energy (energy transfer flux) and that the 

local dissipation in this subrange is so small that the statistical 

properties of turbulence such as velocity and temperature spectra are 

only a function of N , 8 and wave number k . Dimensional argument 

gives readily 

<Kk) - N5  B5 k i- |,  kg << k << £Q" (2.4) 

In the inertial subrange, energy transfer flux e(k)  approaches to 

a constant e  ; the classical -5/3 law holds 

• 00 

5_ 
3 £ -1 << k << I,    1 

o d 
(2.5) 

Similarly the temperature spectrum can be worked out dimensionally as 

a form 

•IT
00 

4           2 

- N5    8    5 4 k    <<  k <<  I _1 

e                     o 

and 

•.^(10 

1_ 

-  N  e     3    k 

5 
3 I "1  << k <<  l~ 

o                         a 

(2.6) 

(2.7) 

2.2.3 Lumley-Shur's hypothesis - In contrast to Bolgiano's 

hypothesis, Lumley (1964, 1965) developed a new hypothesis for the 

turbulence spectrum of a stably stratified flow. These two theories 

are mutually exclusive since they are based on entirely different 

physical backgrounds and, of course, lead to different predictions 
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for the spectral forms of turbulent energy and temperature fluctuations 

in the "buoyancy" or "locally inertial" subrange. 

In his paper, Lumley first extended the original Kolinogorov 

hypotheses in the inertial subrange into the "locally inertial" sub- 

range .  From Kolmogorov's hypothesis, the statistical properties of 

turbulence in the inertial subrange, if the inertial subrange exists, 

are characterized uniquely by e  and k  as stated in section 2.1. 

In the inertial subrange,  e  , the turbulent energy dissipation by 

viscosity, is in fact the energy transfer flux through wave numbers. 

Thus, Lumley postulated that the statistical properties of turbulence 

of a stably stratified flow in the inertial-buoyancy subrange, such 

as energy spectrum $(k)     and heat flux spectrum <j> T(k)  , are deter- 

mined by the wave number k_ and the local energy transfer flux e(k) 

at this wave number k 

In addition to the above hypothesis as an extension of 

Kolmogorov's hypothesis, Lumley postulated further that the_ tempera- 

ture fluctuation field is determined solely by the velocity field. 

From the temperature fluctuation equation of flow with high Reynolds 

and Peclet number 

(2.8) 

in which x.  are the Cartesian coordinates, x  is in the streamwise 

direction, x  lateral and x  vertical;  6 is the fluctuating 

temperature; U.  are the instantaneous velocities; T is the mean 

temperature; the repeated index denotes summation and L  is the 

Eulerian space integral scale, Lumley derived that 
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(2.9) 

where a(x, t)  is the position at t=0 of a particle which will 

->• 

reach x at time t  . Thus, 

i(x, t)U.(x, t) = (x.-a.)U.(x, t) 3x.   j y   iv 

(2.10) 

where A..  is a second rank tensor characterized by the velocity field 

completely. 

Now, for simplicity, assume the mean temperature gradient 

exists only in the vertical direction, i.e.,  3T/3x1 = 3T/8x = 0 

, (if) <)> _(k)  the spectrum Then the heat flux has only the form 6U. 

of the vertical heat flux OIL is integrated spherically, the direc- 

tional information can be missed for simplifying derivations. Thus, 

Wk> w(k*)da  =  - §      t\&d° 

in which (k)  is the spectrum form •2i>^ da is the surface 

element of a sphere with radius k = |k|  , and dT/dz = dT/dx 

Finally, based on the above derivation, Lumley postulated 

that the spherically averaged spectrum of the vertical heat flux 

<J>  (k)  is proportional to the mean temperature gradient in vertical 

direction dT/dz for a stably stratified flow. ( So/ from the dimen- 

sional reasoning^ 
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1 

wT(k) ,-af c3 (k Q (2.11) 

in which a is constant. 

Now, if the production of turbulence is very weak in the wave 

number range considered, we have 

9e(k) 
3k Vr« f 

Z* *-(*)£ -!-c3(k)k"J 

which results in 

(2.12) 

2^ 2_ 4 

= E
3 [i •&)(£•>  ] 2 vk, (2.13) 

where 

I I 
_g_ dT    3 | 4 

T   dZ  '   I 
(2.14) 

After inserting e(k)  into the generalized Kolmogorov's 

spectrum 

>(k) = ae3 (k)k 3  ,  k << k << I     1 
(2.15) 

we have thus 

It is clear that in case k << k,  ,  4>(k) ~ k" 

N U 
-> 

(2.16) 
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Based on the same argument described above, Lumley-Shur's 

theory gives the temperature spectrum in a form 

for k <<k<<£. 
e        d 

-1 

Defining 

(2.17) 

In order to make the thus, in case k, >> k >> kj*  ,  <j>TT(k) ~ k 

approximation meaningful, it must be k, >> k* or equivalently 

T dT  >2 

dz 
gN 

<< 1 (2.18) 

Now, the discrepancies between Bolgiano's and Lumley-Shur's 

hypotheses are apparent when Eqs. 2.4, 2.6, 2.16 and 2.17 are reviewed, 

Their differences in physical background can readily be seen from 

their hypotheses. The details will be discussed and compared after 

the generalized eddy-viscosity approximation is introduced in 

Chapter III. 

2.3    Monies.  Gisiry^'s.   and Pflo's Workj 

Besides the above stated Bolgiano's and Lumley-Shur's hypotheses, 

Mpnin (1962) and Gisina (1966) used Heisenberg's eddv-viscnsity^ 
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approximation to study the turbulence spectrum in a stably stratified 

flow. Moninfobtained Bolgiano's solution in the buoyancy subrange 

for the stably stratified flow, and found some humps in the spectra 

in the case of unstable stratification. TGisind. considered more com- 

plicated conditions of stably stratified flow: 

(1) weak interaction of velocity and temperature fields, 

(2) strong interaction of velocity fields and temperature 

fieids> s^jjjjt 
(3) strong interaction of temperature fields and weak inter- Xlu/JTfc^    ftLOQ 

action of velocity fields. ) **"*** pffiy 

The results for Gjsina's first two conditions are trivial 

since Tchen's arguments f19531 on the shear flow can be applied to 

the thermally stratified shear flow, and as can be expected, the 

t~  _5/3 
spectra of velocity and temperature are proportional to / k     for 

the(Tirsp flow condition! [and/ a -1 law is obtained for both spectra. 

of velocity and temperature in case of the (second^f 1 ow c.rmHi ti nn/ As 

to the last flow condition. Gisina obtained Bolgiano's solution in 

case the relationship between parameters 

(2.19) 

in which b is a numerical constant corresponding to the ratio of 

kinematic eddy viscosity of momentum to kinematic eddy conductivity 

of heat flux, can be fulfilled. As we can see later, Monin's and 

Gisina's solutions are only some special conditions of the generalized 

eddy-viscosity approximation considered in this present study, thus, 

their works will not be reviewed in detail. 
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In Pao'.s parser f 1967) "the cascade pnjfpss is applied to solve 

a thermally stratified shear flow, however, he did not obtain any 

power law in the buoyancy subrange.  Now, the situation is very clear, 

different approaches used by different people to study a problen--a 

thermally stratified turbulent shear flow problem result in different 

solutions.  If they do not contradict one another, there must exist 

some way to solve this problem and to explain the discrepancies among 

them.  In the following, the author investigates this problem by means 

of the generalized eddy-viscosity approximation.  Before reaching this 

point, some turbulence spectral measurements in the atmosphere and in 

a wind tunnel will be reviewed. 

2.4 Measurements of Tujfau^eflce Sppri-rq in the Atmosphere 

Turbulence spectra have been measured in the surface layer 

and in the free atmosphere by several authors.  Different stratifica- 

tions of flows were involved in these measurements.  In case of neu- 

tral stratification, the - 5/3 law holds for a wide ran^e of wave 

numbers as can be expected from Kolmogorov's hypotheses for locally 

isotropic turbulent flow of neutrally stratified fluids. 

Figure la displays a spectral density curve of longitudinal 

velocity component taken at 500 m above the ground when the lapse 

rate of temperature from ground to 1000 m is 1°C per 100 m, i.e., the 

adiaba^ir l.-irsr- rate and the mean velocity gradient is 0.36 m per sec 

per 100 m (Pinus and Shcherbakova, 1966). 

In the surface layer the - 5/3 law was also observed for the 

energy spectrum, p^ the lower limit of the inertial subrange is 

related to stratification or Richardson number.  Generally speaking, 
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the stable stratification shrinks the inertial subrange and the 

unstable stratifirat inn pvtpnHs it (Zubkoyskii, 1962, Gurvich, 19601 .              ^ ^ 

In the free atmnsnhprp the spectra has a more complicated      .  

form because of buoyancy pffprts.  In the following, two categories 

of flows are described—stable and unstable stratifications--but the 

details of the discussion will be in Chapter IV where the numerical 

solutions of the present study are given. 

2.4.^ Stable stratification - As described in section 2.2.1, 

some energy will be abstracted from the velocity field and fed into the 

temperature or density field.  It can be expected that the velocity 

spectrum in the buoyancy subrange will present a steeper slope than 

- 5/3 .  Shur (1962) first showed the existence of the buoyancy sub- 

range from his measurements.  Later, P,inus and Shcherbakova (1966u^. 

measured the velocity spectrum in the atmospheric layer from 400 to 

4500 m.  In case of stable stratification, the slope of measured 

velocity spectra in the huovancvsubrange increased with height for 

roughly the same mean temperature gradient.  The exponent  n of the 

velocity spectrum k   in the buoyancy subrange varies from 2.0 to 

3.5.  For the sake of interest, the following Table 1 digested from 

Pinus and Shcherbakova(1966) is listed.  For better understanding, 

three typical energy spectra of stably stratified flows from their 

measurements are demonstrated in Figs, lc, Id and le. 

In 1963, Pinus measured the spectral density of the horizontal 

velocity component at heights of 6-12 km.  Fig. 2b displays one plot 

of his results which appears steeper slope than - 5/3 in a certain 

wave number range of spectrum. Another measurement by Vinnichenko 

(1966) as displayed in Fig. 2a indicates the existence of the buoyancy 
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subrange. Recently, My run (1968) found the buoyancy subrange in his 

measurements due to the fact that the steepened slone is rlnss tn -3 

for the longitudinal velocity fluctuations and between - 11/5 and -3 

for the vertical velocity fluctuation. 

TABLE 1 

Vertical     Vertical Gradient 
Temperature   of the Mean Wind Number   Range of 

Height,   Gradient,     Velocity, of    Variation 
J  /mr, -l„nn      Spectra   of n     n m      deg/100 m     m sec 1/100 m     r 

400-700 0.65 1.84 
700-1200 0.61 0.78 
1200-1700 0.76 0.86 
1700-2500 0.46 0.45 
2500-3500       
3500-4500 0.72 1.13 

9 2.0-2.9 2.43 
17 2.0-2.9 2.50 

6 2.2-3.5 2.83 
b 2.3-3.3 2.70 
1 2.8   

9 2.7-3.5 3.10 

2.4.2  Unstable stratification - In this case, the velocity 

field absorbs energy from the temperature field as potential energy 

is converted into kinetic energy; some hump in the velocity spectrum 

can be expected.  Fig. lb shows a spectral density curve of longitudi- 

nal velocity component.  (Pinus and Shcherbakova, 1966).  In 1967, 

Ivanov and Ordanovich made a more detailed investigation of velocity 

spectra for unstable stratification in the low frequency range.  In 

Fig. 3, some typical examples of the measured velocity spectra are 

presented.  (Ivanov and Ordanovich, 1967). 

As to the temperature spectrum, lesser information is available. 

Tsvang (19,63) measured some spectral density curves of temperature 

for both stable and unstable stratifications.  From his measurements, 

deviations from - 5/3 can be seen as the wave number is less than 
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-4  -1 about 10  cm  for either stratification, however, no detailed 

discussion on these deviations from the theoretical point of view has 

been given in his paper. 

2.5 Measurements of Turbulence Spectra in IfinHjjjmg^ 

Although the inertial subrange for locally isotropic turbulence 

has been confirmed as described in section 2.1, the buoyancy subrange 

has not been obtained in the laboratory since it is still difficult 

to generate turbulence of laboratory scale with buoyancy effects. 

Cermak and Chuana_Q9651 measured some vertical velocity spectra in 

thermally stratified shear flows, however, no buoyancy subrange was 

observed since the "buoyancy subrange" mentioned in their paper lies in 

the viscous dissipation subrange evidently.  Also, Arya C196R1 did not 

find any buoyancy subrange; however, the vertical velocity and tempera- 

ture spectra, measured at close wall regions where both velocity and 

temperature gradients are great, present -1 slope at lower wave number 

range as predicted by Gisina (1966J. 
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Chapter III 

THEORETICAL STUDY 

Most of the previous studies reviewed were made to find some 

asymptotic solutions, for which some specific restrictions are assigned 

to the flow conditions. Thus, it would be helpful to retain every 

factor in the energy balance equation and to find some continuous 

spectra if the whole view of turbulence structure is to be obtained. 

In this chapter, the spectral equations of the turbulent energy and 

the temperature fluctuation are derived; the generalized eddy-viscosity 

approximation is Introduced: and some analytical and asvmpt.pt.ic snln- 

tions will be given. 

3.1 Dej^va^gn of the Spp^tral Equations of Turbulence Energy and 
Temperature Fluctuation 

In an incompressible turbulent flow, the Navier-Stokes 

equation is assumed to be the equation governing the variation of the 

spatial distribution of the velocity with time.  For simplifying the 

derivation, dynamic visrogitv i <; assumed to be constant and Boussinesq 's 

approximation is used. Thus, we have, 

£— / 9U. 3U.   I 

%(TT+ uj ni
/ 

3P 3 
WT ~ JS«i + M 377 

1 J 

I 3U. 
l 

3x7 (3.1) 

and the incompressibility of the flow gives 

(3.2) 

where U.  is the velocity vector,  p is the density,^ p  is the 

mean density of the flow field, P is the pressure, and y  is the 
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dynamic viscosity. The assumption for the incompressibility of the 

turbu 1 ent flow is unnprpc^rv dini^___the_density can be replaced by the 

^potential density if a compressible fluid like atmosphere is concerned. 

In that case, we need only assume the flow speed is small compared to 

the speed of sound, or equivalently to say that the Mach number is 

much less than 1. The dejtailed study can be referred to the papers 

by Long (1953b) , Batchelor (1953b), Bolgiano (1962), Lumley and 

Panofsky (1964).  However, for the sake of simplicity in our deriva- 

tion, incompressibility is assumed for the turbulent flow. 

In addition to the governing equations for the velocity field, 

an equation for the temperature field which causes the density fluc- 

tuation is required, i.e., 

where c  is the specific heat capacity at constant pressure, T is 

the temperature and p„ is the thermal conductivity.  y„ and c 
_^-I '     T       P 

are assumed to be constant. 

For a turbulent flow, the fluid properties can be split into 

two parts: 

+ 
(3.3)    I    £yf   cortlKVVj 

CT rehl 

U.   = U.   + u. 
ill 

P  =  P  +  p. P =  P  + 
'1     ' 

T = T  + 

where the bar denotes the time average or ensemble average,   and    u.   , 

p     ,  p     ,  and    6    are the fluctuations  about their corresponding 

averages, 

Inserting those quantities into Eqs. 3.1, 3.2 and 3.3, we 

have then 

(jufii *<* 
CM- U^P-X^ v t- 

K ^o^TZ: <P & <fr-M£±2-£ 
-**r\ 
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/3U.       3u. 3U. 
p_U-i + ^i+ u. __L+ u 

3U. 3u. 3u. 
1 77 1 1 +  U.  -  + u. 

o   3t 3t j   3x. j   3x. j   9x. j   3x. 
' J       J J       3 J       3 3 

»(P  + PjJ" 8ZU. 32u. 

3x. 
(p + pi)gi + p 37^77 + P37^T 

3     3 J     3 

and 

3U. 
l 

3x7 
i 

3u. 
l 

3x. 
=    0 

3T       36       rr    3T 3T rr    36 39 
o p  3t       3t i  3x. i  3x. i  3x.       "i   3x. r\ 1111/ 

(3.4) 

(3.5) 

T   3x.3x. 
3     3 

3ZT 3Z9 
+     U T   3x.3x. 

3     3 
(3.6) 

Assuming the mean flow is stationary and taking the average 

(either ensemble or time average) of Eqs. 3.4, 3.5, and 3.6, we have 

thus 

3P 
i   3U.      3u. 

P    U. TTT— + U, 

32U. 

o  j 3x.    j 3x. 
3       3 

3x. 
- p g + ^ 

3x.3x. 
3  3 

(3.7) 

3U. 
l 

3x. 
l 

=    0 

' U.   f 
l   3x. 

l 

+ P„c„ o p 
39     1 

U.    -  
1   3x. 

1 

32T 
UT  3x.3x. 

3     3 

(3.8) 

(3.9) 

Sujjtractjjjg Eqs. t3.7,   3.8  and  3.91from Eqs.  3.4,   3.5  and 3.6,   respec- 

tively,  the turbulent equations  for velocity and temperature  fields 

become 



25 

3u.     3U.     3u. 3u.      3u. 
1       1—1 l        l 

TTT— + U. T  + U. T  + U. r U. -s  
3t    1 3x.   ] 3x.   j 3x.   1  3x. 

J       J J        J 

3p 32u. 

377 " Plgi + U 3x.3x. 
i J  3 

(3.10) 

3u. 
l 

3x. (3.11) 

,39      3T   - 30 
p  c  — + u. T— + U. T  
o p 1 3t   j 3x.    j 3x. 

+ u 
3 0 

j 3x. 
- u 

36 
j 3x. 

320 
T 3x.3x. 

3     J 

(3.12) 

Taking the advantage of incompressibility, Eqs. 3.10, 3.11, 
MMMaHM^^MMa^M La—~m^^——••••• 

and 3.12  are rewritten as 

5# Fo* 

(3.14) 

in which    v  =  u/f>       is  the kinematic viscosity,     v    =  p  /p   c       is 

th e  thermal  diffusivity,   and   ,0/T    =  -  p./p f \     o  1    o comes  from the assump- 

tions that the  flow is  incomp^f tjc-ihio •A *-V.Q QQC   ] nw  jp =   (c _c )px 

holds, where c  is specific heat capacity at constant volume. 
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Myj/tip lying Eqs. 3.13 and 3.14 by u'  and 9' respectively, 

-»• •+ -»• 

where the prime denotes that the quantities are measured at jc'=x+r , 

yield 

(3.16) 

Similarly, the turbulent equations at x'  are taken and 

•+ 
multiplied by    u.     and    9    at    x     ,  then we have 

9u' 3U1 9u' 3u\u' . 
u. + u.u1. + u.U'. + u. EJ. 
i      8t i    j  ax1.        i    i  3x'.        i      3x'. 

3 3 3 

9u\u'. , 9p' u.9' 
k    j 1 r  1 l 

32uV 

i       3x' . 
3 

i  3x\   +    T'     g'k  +  V'Ui  3x'.3x' 
(3.17) 

3       3 

and 

39' ,      3T' QTT,      39' ft j 
-r~— +  9u' .   .• ,•    +  9U' .   -   ,     +   9     -   ,   J 
3t ]   3x'. i   9x', 3x' 

J J 

39'u' 
J. 2fli 3ze 

3x' 
J 

T     3x'.3x'. 
3       3 

(3.18) 

Adding Eqs.   3.15  and 3.17,   and Eqs.   3.16 and 3.18 respectively 

and using the fact that the turbulent quantities  at    x    are indepen- 

dent of the coordin?1"^    *' and vice versa result   in    _ 
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3U' 
7T—  U.U'        +    U'.U.    -    +    U.U1. 
3t     i     k k  l   3x. I     i   3x'. ]        3x. 

3 J 3 3 

+  U.       I 

3u'.u. 3u.u.u'. 3u'u'.u. 3u.u.u', 
+ u -     L± + 1 J    k +  k   3 J 1 J    k 

j      3x" . 3x. 3x'. 3x. 
J J 3 3 

3u', u'.u. k    J   i f   1    9plU'k 1    9P'lUi| 

l'6       Q,        3T a   ,        3T'       rr    39'9    7T.     39'9 
—— +   6'u.  +   6u' .   - •••    +  U.   T +U1 .  T—7- 
)t j   3x. j   3x'. j   3x. j   3x'. 

36u.6'        366'u'.        39u.0'        39'u'.1 
+  2_+  1 2 i. 

3x. 3x'. 3x. 3x'. 
J 3 3 3 

From the transformations, 

)IST> VET. r.   = x' .   - x. 
3 3 3 

and 

<Bj   =l(x'j  + xj)     .       C5A/TjeO/J) 

,   -1. 

(3.19) 

(3.20) 

(3.2i) *ew*> 

(3.22)  /.oCftTloN 

it results  in 

3 ^    _3_ 
3x. 2     3x' 3r. 

J 

(3.23) 
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and 

3x".     3r. 

3r.3r.       3x".     3x. 
J     J J J 

(3.24) 

(3.25) 

(3.26) 

Using the above transformations 3.21--3.26 and taking average 

of Eqs.   3.19  and 3.20,  we obtain 

3t Vk  + U'kU 

3U      3U'   
~-i.+ u.U» .    r-l+ifU1.   + U.)  TVU«  u. j       3x. I     j     3x'.       2 j j     3x" .       k  l 

1     3 
j     r   3r.       k  l       2  3x".   v   l  1     k k     j   l' 

+   -r    (u'.U'.U.        -      U.U.U'.) = 
Jr.       k   j i i j    kJ     T 

u',e u.e' 
1 , 

§i Tl 8   1 'i T" 

J_ J— p-fpr- +    1 3— pT£- 
p    ax".     Ik      p'    3x"      1 i loi o        k 

/    1       3 P!u. 
P*     3r,      1  i o      k 

J__3_ p—r 
p     3r.     1U k 

o       1 ) 

3       3 
+   V 

3        3 
4  (V+V,)   3x".3x";   

+   (V+V'}   3r~3r- "   "3x<\ 3x" 
J       J J     J J       J J       J  J 

U'.UJ k i (3.27) 

and 
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4r Q'Q + 6'u, I?- + 6u« =  S— + 4 (U1 -+U.) —  fi'' 9t j 3x.     i  3x'.   2 v  j  V 9x". 
J J J 

+ (U1 .-U.) 
j  j  3r 

J^i- (eu.e1 + 
2 3x". *• j 

J 

»u» .) 

+  (68'u1 . 
3r.      ] 

J J J 

3 3    3,33 
3r.3r.   T 3x". 3r.   T 3x". 3r. 

J  J        J   J        J   J • 

(3.28) 

In order to make Eqs. 3.27 and 3.28 simpler, the local 

homogeneity is "g^p^ for the turbulent fields, i.e., the spatial 

variation of the averaged turbulent quantities is negligible over a 

distance r << I       ,  where I      is the scale of energy-containing 
- fj e 

eddies.  Thus, 

)x". 
0   and 

)x".3x". 
= 0 (3.29) 

make Eqs. 3.27 and 3.28 become 

—- u.u\   + u\ u, 
3U. 

l 
3U' 

3 
+ u.u'.    ^—f- +   (U'.-U.)  r—u'u. 

3t    I    k k i     3x. I    j     3x'. i     y   3r.       k I 
3 J J 

+ T— (u'.u'.u.   - u.u.u1.) 
3r. k    i   I I j    k 

J 

_^     -  -  .,-      T-\   I 1 1 _         p'  u. — P,u', 
p'     3r,   r 1  i      p    3r.     Ik 
ok o       l 

u\ 9 
+   (v+v') 

u.e' 
k I        , 

u\u.   + -a— g.   + -TjTT- g1, 3r.3r.       k  i T      6i T1     6 k 
J     J o o 

(3.30) 

and 
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9t 
+ O'U 

9T 

1 .»j 

  9T'    — 
+ eu«, |^r-+ (u- j 9x , - u.) ~- e'i 

J      r 9r^ 

+ _(ee-u- - eu8') - (v + v«) j^-^- 
3 3     3 

(3.31) 

in which the averaged turbulent quantities are functions of r and t . 

For further simplifying Eqs. 3.30 and 3.31 without loss of 

generality in a locally homogeneous turbulent shear flow of thermally 

stratified fluid, the following are assumed 

v = v'  ,  vT = vj  ,  g3 = g'3 = £ ,  g2 = g'2 -  gj = g'j =_0  , 

U_ = constant  ,  U_ = constant  ,  p = p' 
2 3 o    o 

Uj = f(x3)  ,  T = g(x3)  , 

where x  is in the streamwise direction,  x  is in the lateral 

direction, and x, is in the vertical direction. 

Thus, 

(3.32) 

and 
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(3.33) 

where 6. is Kronecker's delta,  6.. = 1 if i=i  :  6.. = 0 

if i *^ j . Expanding U'  into a Taylor series at x  gives 

_  _   d"i d2U   (x'_-x )2 

u; - U = -j-± (x-  - x,) • -^-4- •  L-±—    * 
1   1  dx3 ' 3   3J dxT2     2! 

dUl 
dx3  

r3 
(3.34) 

if we assume that r_ << (dU./dx ) / (d2U /dx2 ) 

Hence, qiihstitiit-ing F.n ^,34, into Eqs. 3.32 and 3.33 and 

contracting Eq. 3.32 gives 

(3.35) 

(3.36) 
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in which the pressure velocity correlation terms are eliminated in 

the contracted tensor form because of the incompressibility of flow, 

i.e. . 

P' u. 9r.  1 i 
1 

P,u'.  • 0 
dr.     1  i 

l 

In order to transform Egs. 3.35 and 3.36 into wave number k 

space, the following definitions are given 

k space 
(3.37) 

ilc r 
^—  (u'u' .u. - u.u.u', ) = f      F. , (k,t)e l  £d£    (3.38) 

3 J J k space 

(3.39) 

(3.40) 

(3.41) 

Thus, Eqs. 3.35 and 3.36 yield 

3E.   i       dU 

it" +   (2E1,3  "   kl ~^~,)   d73 

and 

K#X 

-i . F.   .   + JL H 
i.i        T     uy 

(3.42) 



(3.43) 

where k = |k| = ~\j k2 + k2 + k2  , and the assumptions 

lim E. 
1,1 

lim E. 
,i>i 

^3 t 

(anc^ lim E = lim E = 0 

/  k3^~  k3'-i°°  J 
are used.  It is 

realized that E. , and E Q are the cospectra of the Reynolds 

stress and vertical heat flux. Since the above two equations are 

expressed in k space, the directional information of the spectra is 

retained in both equations; needless to say, it is difficult to solve 

Eqs. 3.42 and 3.43.  Now, if Eqs. 3.42 and 3.43 are averaged over a 

spherical shell then we have the equations which are only function 

of k  , the magnitude of k  , and the directional information is 

lost.  Thus, 

9t     uw      dz 

3E. 
i5i 

1  9k. 
dU 
dz 

L V 
sp.av, 

F(k,t) + KwT (k,n - 2v k2 4>(k,t) 

and 

^TT(k'tj   A  ,. ,. df 
 ST" + W***' dT 

3E, 

"1 3k, 

F^Ck.t) - 2 vT k
2<J>TT(k,t) 

sp.av 

(3.44) 

(3.45) 

in which 
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<Kk,t) = \$  Ei>:L(k,t)da(kJ 

4>uw(k,t) = ^Elj3(k,t)da(k) 

3E. • (\ 3E. . (k,t) 

<J»•(k,t) = <£ E_(it,t)da(k) 

<kl -^f >sp. av. * 2 J  kl ~4f  dlik2 

/ft *wT(k,t) = 4-1 EU e (k,t)dooo 
x_^ **  3 

F(k,t) = jj  F  (k,t)da(k) 

FTT(k,t) = <£ FT(k,t)do(k) 

9E 9E (£,t) 
(ki air5 =  * ki ~4k—d0^ 1 dk3 sp. av.      l        dk3     

S - _I_    dU _ dUl    dT     dT     dT 6-ir'dT-d^7>d^7-2dZ--2d7  *      (3-46) 

and da(k)  is the surface element on the spherical shell with radius 

k . 

At this stage, it would be worth describing the physical 

sense of each term in the spectral Eos. 3.44 and 3.45 before attempting 

to solve them. The first terms of Eqs. 3.44 and 3.45 are the rate of 

change of turbulent energy and temperature inhomogeneity in their 

corresponding spectral forms.  In case of steady turbulent flow, both 

terms vanish.  The second terms of Eqs. 3.44 and 3.45 represent the 

production of turbulent energy due to the work of the Reynolds stress 

against the mean shear and the production of temperature inhomogeneity 
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transferred by the vertical heat flux against the mean temperature 

gradient. The integration of $        and <j>   with respect to k over 
p^mm~^^—•"^• 

the internal  (0, °°^) will give the Reynolds shear stress and the 

The third terms of Ens. 5.44 and 3.45 are the turbulent energy 

transfer and the temperature inhomogeneity transfer respectively due 

to distortion bv mean shear.  Unlike the second terms of Eqs. 3.44 and 

3.45, these terms do not contribute the total energy and temperature 

inhomogeneity balances but redistribute energy and temperature inhomo- 

geneity by transfer through wave numbers. The same situation happens 

to the fourth terms of Eqs. 3.44 and 3.45, i.e., these are also the 

transfer terms, however, these transfer terms are due to distortion by 

the fluctuation gradients, or say, due to inertia^ processes. These 

inertial transfers from low wave numbers to high wave numbers are cer- 

tainly the characteristics of turbulent flow. 

As to the last terms of Eqs. 3.44 and 3.45, they are energy 

dissipation by viscosity and temperature inhomogeneity smeared out by 

thermal conductivity. Now, here comes the most important term 

3<(> T(k,t)  in Eq. 3.44 which reflects the effects on the turbulent 
>) 

spectra by buoyancy force due to stratifications.  In the case of 

stable stratification, this term becomes a sink with respect to the 

turbulent energy, and on the other hand, it becomes an energy source 

in case of unstably stratified flow. 

In the follnwinp. thft turbulent flow is assumed to be steady 

state, in the wave number range investigated. And also the third Iterms 

in Eqs. 3.44 and 3.45 are assumed to be negligible as compared to the 

\ fourth ones because it is believed that these shear transfer terms 
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rf»*>V mainly affect thp ^pprtra i^ the lower wave number range than buoyancy 

*S^      subrange. Thus, the spectral equations for velocity and temperature 

fields are respectively the following: 

dU 
" *uw« dT + B*wT(k) " 2vk2*(k) 3 (3.47) 

and 

FTT(k) " Kl(k)  1&;    -  2vTk
24»TT(k) (3.48) 

whose integrated forms are 

(3.49) 

and 

(3.50) 

In Eqs. 3.49 and 3.50,  e the total dissipation of turbulent 

energy by viscosity (andj %\ twice of the total dissipation of tem- 

perature fluctuation by thermal conductivity are defined by 

E = 2v / k2<}.(k)dk (3.51) 

and 

N* = 2v / k24>  (k)dk = _2N 
TT' (3.52) 

In the sections following the generalized eddy-viscosity. 

approximation is introduced and closed forms of solutions of Eqs. 3.49^ 

and 3.50 are analytically derived for different situations. 
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3.2 Generalized Eddy-Viscosity Approximation 

As a consequence of the nonlinearity of the Navier-Stokes 

equations, the correlation equations like Eqs. 3.32 and 3.33 always 

contain one more unknown than the number of equations; in other words, 

a closure problem is involved. Thus, if the problem must be solved 

from the correlation equations or its corresponding spectral equations, 

additional assumptions have to be assigned to the turbulent energy 

transfer function if only the locally isotropic turbulence is con- 

sidered.  In case the temperature field and shear flow are introduced, 

nther |a<;<;iin)flf-i r>n<;   <;hnn1H   he>   aHrlpr|4      Thus,   the   six   unknowns   in 

Eqs. 3.49 and 3.50 are reduced to two unknowns and, of course, these 

equations are solvable. 

In the following, the generalized eddy-viscosity of the form 

suggested by Panchev (1967) , 

ns(k) = YS 

S S    , w  —      _ — — 1 

/ <j>2 (k)k 2   dk s > 0 (3.53) 

will be introduced. 

The physical sense of the generalized eddy-viscosity 

expressed by Eq. 3.53 is not difficult to be realized if Hfiisenber^'s 

idea (1948) will be reviewed.  His form to express the turbulent 

energy transfer function is listed as 

/ F(k)dk = njOO / 2k2<Hk) dk (3.54) 

and n,(k)  called the kinematic eddy-viscosity is expressed as 

njCk) = Yj / (k)T dk (3.55) 

where y.  is a numerical constant. 
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The idea implied in the Eq. 3.54 is that the energy transfer 

from the wave number less than k to the wave number larger than k 

can be considered as eddy-viscosity working on the turbulent vorticity 

formed in the wave number interval  (0,k). This eddy-viscosity can 

be viewed as the integral effect of eddies with wave numbers larger 

than k on the eddies with wave numbers less than k  .  Thus, 

according to the dimension ill •?->-(}• i•Qr,-t-c-  ruCk)  is expressed in a 

form expressed by Eq. 1>^5~-  Now, we can see that the expression of 

the generalized eddy-viscosity n (k) has rprtain1y tnp H-impn^-jpp r»f 

rthe eddy-viscosity, moreover, the parameter s introduced in Eq. 3.53 

f-^n be interpreted as Hep-rep*; nf interaction between the motions of 

eddies, i.e.j how the motions of eddies are interrelated to one 

another. Generally speaking, the introduction of s will nnt afffigt 

the spectral form but its magnitude as can be seen later. 

As will he seen later, in case  s •> °°  , the expression of 

Eq. 3_53 becomes only a function of the local wave number k and the 

associated energy spectrum.  Of course, Heisenberg's expression for 

the eddy viscosity is only a special case of Eq. 3.53 when s = 1 . 

Based on the same argument and for the purpose of further generaliza- 

tion, the turbulent energy transfer function is expressed as: 

/ F(k)dk = y s,r 

s     s  . 
oo  —     _ — _  1 

r"    2 2 j    <T(k)k     dk 
L k 

which can evidently be derived from 

(3.56) 

/ F(k)dk = const, 
k 

°° ai    a? 
/ <j>  (k)k  dk 

1d3 

Lk 

k d    d   • 
/ * (k)k  dk 

(3.57) 
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given by Goldstein (1951), where the exponents are related from 

dimensional arguments as. 

and 

d3(d2 • 1) • d6(d5 • 1) - J , 

d3dl + d6d4 = 2 

These two relations can reduce six parameters d.  in 

Eq. 3.57 into four arbitrary parameters; for further simplification 

Eq. 3._56 is eventually derived.  It can readily be seen that the 

\first[factor in Eg. 3.56 has the dimension of kinematic turbulent 

eddy viscosity and theCsecondjone has a dimension of turbulent vor- 

_tj_c;ity.  It is clear that the expression of Heisenberg's form of 

turbulent energy transfer Eq. 3.54 is a particular form of Eq. 3.56 

in case s = 1 and r = 1 . 

Similarly, the transfer of turbulent temperature inhomogeneity 

j  F„T(k)dk can also be in a form^f^gn^rgJj-jjgjjLeddv-viscosity, i.e., 

(3.58) 

where b is a numerical constant of order 1 and is equivalent to the 

ratio of eddy thermal diffusivity to eddy kinematic viscosity. 

Before expressing <f> „(k)  and 4>11U7(k)  in terms of the uw 

generalized eddy-viscosity, the validity and generality of Eq. 3.56 

will be seen as follows. 
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lim 

Since 
r S oo   — 

/ *2  (k)k 
*• -  1 

,1 

dk (k)k (3.59) 

and 

lim 
r-x» 

r   k 

/ 
o 

r 3r-l 
>   (k)k dk •(k)k' 

Eq.   3.56,   in case    s •+ °°    and    r -> °°     , becomes 

/    F (k)dk = y        *     (k)k (3.60) 

It  is  obvious  that  Eq.   3.60  is  nothing but  Kovasznay's 

^ 

approximation, which is exactly the local limit of the nonlocal and 

generalised flpp-rmHma-H rm nf thP fft-nn of Eq. 3.56.  From the example 

illustrated above to indicate the usage of Eq. 3.56, we can say that 

by varying the values s and r , solutions corresponding to the 

different degrees of turbulent nonlinear interactions between eddies 

can be obtained.  Obviously, the Kovasznay's approximation is a limit 

form since it means that the eddies interact themselves only.  For the 

case 0 < s < °° and 0 < r < °°  , it may be interpreted that the 

eddies of wave number k interact with the other eddies with wave 

number k ± Ak  ; of course,  Ak  is a function of the values of s 

, and r , and Ak decreases with increasing s and r 

Keeping these ideas in mind, the generalized eddy-viscosity 

/"" wi 

approximation can be extended to the spectra <j>  (k)  and §  T(k) 

thout any trouble.  In the following, r = 1 will be assigned 

r f        2 
since  [ J  <t>(k)k dk]  gives a clear physical sense--the spherically 

averaged square of the root-mean-square vorticity of turbulence in 

vv 
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the range 0 to k . The exact local approximation when s -> « and 

r -> °° will also be used. 

In case d>  (k)  and <j> ~(k)  are concerned, we need consider 
nwv J rwT __:  

not only)the turbulent field but the interactions between the mea 

velocity and temperature fields and the turbulent field. 
CO CO 

Thus,     /    <j>     (k)dk    and   .   /    <\>     (k)dk    are expressed as the uw 

following general   forms 
-A    I wT' 

/ 4>  (k)dk = + y j" Tuw^   t 's,r 

s     s  , co —     _ — _ I 

j  4,2(k)k 2   dk 
w V k 

/ 2<J»r(k)C_idk 

(3.61) 

where the upper sign indicates the case when dU/dz > 0. , and the 

lower sign for dU/dz < 0  , and 

(3.62) 

where the upper sign denotes the s±able stratification dT/dzt > 0 

and the lower sign denotes the unstable one dT/dz4 < 0 because the 

vertical heat flux is negative in case of stable stratification and 

is positive for the unstably stratified flow. 

The parameters C.  in Eqs. 3.61 and 3.62 are related from 

and dimensional argument as C, + C_ = 1 , and C, + C = 1 .  C. 

C • characterize the degrees of interaction between the mean velocity 

gradient and the turbulent vorticity; C_ and C. denote the degrees 

of interaction between the mean temperature gradient and the turbulent 
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E? 

temperature gradient.  In case ,C1 = 0 , C_ = 1. , and C = 1 , C= 0, 
"  U— 1 *     Li ±     _-> 

Eq. 3.61 expresses the conditions of strong interaction and Weak inter- 

action of velocity field considered by Tehen (1953^. Hence, increasing f 

C~    would mean that the interaction between the ynrticitv of main 

motion and turbulent vorticity becomes stronger, and according to 

Tchen (1953), the resonance between two motions is intensified.  Thus, 

in case resonance is intensified, the inertial transfer process through 

eddies is interfered by the mean motion and energy is supplied to the 

eddies by means of the Reynolds stress working against the mean motion. 

In other words, the - 5/3 law is invalid and the energy spectrum has 

,1ess steep slope.  In the extreme case when CL = 1 , the slope of 

the energy spectrum becomes -1. 

As far as stratification is concerned, C_ = 0 , C. = 1 , and 
. | 3    '4        _j ' 

C, = 1 , C. = 0 are equivalent to the case of qtrpnp anH WPA!<; infr- 

actions investigated by Gisina f19661.  In the following sections, 

the significance of C. will be seen. Thus, it is clear that Eqs. 3.61 

and 3.62_can ffive more general information on the structure of the ther- 

""'My stratified turbulent shear flow, since different values of C. 

can be assigned to characterize different flow rnnrHjjgn<;. 

In (addition^to x.he  relationship between C.  described pre- 

viously it seems to be helpful to let C. > 0 and C_ > 0  .  Since 

|dT/dz^| -*•  0 would mean that the flow becomes lesser stratification, 

the flow will be nonstratified when  |dT/dz+| = 0  , thus, it implies 

that there exists no vertical heat flux.  But if C_ = 0  , this 

implication cannot be seen when  |dT/dz^| =0  ; in other words, j£ 

C, = 0 is assigned to Eq. 3.62, we always have the vertical heat. 

flux even when  |dT/dz^| = 0  .  However, once  |dT/dz^| ^=0  , from 
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the dimensional arguments C, can be less than or equal to 0 

according to the relation C + C. = 1 . Thus, it may conclude that^ 

C, is a function of  IdT/dzJ  , i.e., in case  IdT/dzJ •+ 0 , it is 

believed that C_ must be greater than 0 as stated.  Similar argu- 

ment can be applied to C.  if Eq. 3.61 is considered. 

3^3 Sqlut^ons of the Special Equations of Thermally Stratified 
Turbulent Shear Flows 

In this section, the analytical derivations of solutions 

based on the generalized eddy-viscosity approximation are described 

in detai1.  Nondimensionalized spectral equations are derived not 

only because they can give neat and concise forms but because some 

similarity theory of spectra can be made if suitable dimensionless 

variables are used. 

3.3.1    Solutions of flows wrfc)i[_miLL££ii^fl<r_ effects  - The 

introduction of molecular effects does not mean that the spectra at 

high wave numbers  can be studied by the present method as seen from 

the discussion in section 2.1.    Thus,  only the spectra in th^ hHflYfmT- 

and inertial subrange are of interest. 

Based on the generalized eddy viscosity approximation 

described in section 3.2, Eqs. 3.49 and 3.50 together with Eqs. 3.56, 

3.58,  3.61  and 3.62 become 

TWJ SFt*-*&^ ^? - ^MV^ ' 
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(3.64) 

(3.65) 

in which 

, and 

Eqs. 3.63 and 3.64 are reduced to the dimensionless forms 

1 = /    2x2$(x)dx + 
o 

s s     . oo      — -   —   _ \ 5 

/    $  (x)x ds 
L  X 

I m l /  2x2$(x)dx 
L o 

+ / 2x24>(x)dx +  3 /    2x2$TT(x)dx 
L  o 

TT> (3.66) 
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and 

where Y' = dY /dx ; the upper sign of the last term in Eq. 3.68 

denotes the stable stratification, while the lower sign indicates the 

unstable stratification. 

Thus, from Eqs. 3.68 and 3.69 and from 

and 

(3.70) 

oi  . 

Zs
2 (x) = / 2x2$TT(x)dx /, 

.0. 
(3.71) 

energy and temperature spectrfi ^Qr> h° *i"]]uai-aA v^y 
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*(x) = 
dY 2(x)  Y (x)Y'(x) 

s      s   s (3.72) 
2xz 

and 

*TT(x) 
Zs(x)Z'(x) 

(3.73) 

As to the turbulent shear stress spectrum and the vertical 

heat flux spectrum. Eqs. 3.61. and 3.62 are transformed into non- 

dimensional forms.  Using the dimensionless variables 

1      C2    1       I   3. ci 
Ad        v2        2~4        4 " 2    I dU , 

c c 1 I   _4    I C 
Ad ~  2 4    "2       4       "  2     idT   |      I dU 
* r-  = by     ,     e N. v    v U—       |   ,       -j— >  0 wT s,l * T ' dz   ' dz 

as well as the variables  in Eq.   3.65, we have therefore 

which can be simplified as 

(3.74) 

(3.75) 

(3.76) 

/*    (x)dx J   uwv  ' 
X 

1  - Y2 

s 

ImlY    + Y 2  +  B.Z    4        S 1   '   s        s Is 

and 
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1 - Y z 

/  $ T(x)dx = + a-  Z 
x  wT        |m|Y • Y 2 T«z C4  « 

s   s    Is 
/«J*yO 

Thus, 

$  (x) = 
uwv ' 

C      C -1        C +1 
(|m|Ys+Ys2 • pz/) [C2Ys

2  - (2+C)Y
2  ] Y; 

(ImlY  +Y  2  +  6,Z  4)2 
1   '   s    s Is 

Y       (1-Y  2)f|m Y'   +  2Y Y'   +  g.C.Z           Z1) 
__s __L___5 s  s 14s s_ 

(ImlY    + Y  2 7 g  z  4)2 
1   '   s        s 1  s  •* 

(3.77) 

and 
C.-l    C 

(ImlY  +Y  2   +  B.Z     )   [Z'(l-Y  2)C,Z 2Z  4Y Y'l 1   '   s    s ls'Ls s      4 s sss  _ _  
(ImlY    + Y 2  +  g 7 4)2 1   '   s s Is 

C -1 
Z     (1-Y  2)(|m|Y'+2Y Y*   +  g.C.Z Z') 

s s's      ss 14s s 

(|m|Y    + Y 2  + 6 7  4): 1    '   s s Is 

(3.78) 

From Eqs. 3j_68 and 3. £2 for both (stable and unstably/ strati- 

fications, the spectral equations differ only in the turbulent energy 

spectral equation as indicated in Eq. 3.68.  Thus the turbulent energy 

spectrum is explicitly influenced by thermal stratification while the 

temperature spectrum is implicitly affected due to the introduction 

of energy spectrum in a form of eddy viscosity as shown in Eq. 3.69. 

Using Eqs. 3.68 and 3.69, a relationship between Y  and Z 

can be deduced from 

|m|Ys
2 + Ys2 70lZ.' Is Pr(Zs

2 + |mT|Zs
4) 

(3.79) 
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Thus, Eq. 3.79 together with either Eq. 3.68 or Eq. 3.69.  Y  and  Z 

can be solved explicitly or implicitly as functions of x_, and c on- 

sequently, $(x)  ,  <i>  (x)  ,  $ (x)  ,  $ _(x)  can be evaluated 
-    jn.   j uw       wT __ 

numerically by using Eqs. 3^72, 3.7.3, 3.77 and 3.7JL However, in 

case C2=l , C =0 , some analytical closed forms can be obtained. 

For the sake of interest, the following analytical solution is derived. 

First, from Eq. 3.79 and C =1 , we have 

C C 
[(Pr-l)Zs

2 • |iar|PrZs
4 + l]Ys

2 + |m|(l-Zs
2)Ys ~ 3jZg

4 d-Z,.2) 

,|Zs - Pr(Z 2 + |mjz 4) = 0  . (3.80) 

Now let 

C 
A(Z ) = (Pr-l)Z 2 + Im^PrZ  + 1 (3.81) 

B(Zs) = |m|(l-Zs
2) (3.82) 

C C 
C(Zs) = + B^4 (1-ZS

2) - Pr(Zg
2 + |mT|Zs

43  ,        (3.83) 

then, 

Y     -B • VB2
-4AC 

Ys  "  2A    ' (3-84) 

-R - ~\/ R^-4-AP 
the other root Y =  f?—'   is omitted since  |Y   must be 

S Z A. S 

less than or equal to 1 and Y ->-0,Z -> 0 as x -*- 0 

Squaring Eq. 3.84 yields 

Y  2  _     2B
2
-4AC-2BVB

2
-4AC OC^ 

Ys - . (3.85) 
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Differentiating Eq.   3.85 with respect to    x    gives 

i     dY  2 

y Y'   = 4        S 

s * s       2      dx 

8AL dZ       s dZ       s dZ       s dZ       s s s s s 
"V^B2-4AC 

B 

Y 
(2B ^- Z;  -4A ^- z:   -  4C $£- Z'J 

B2 -4 AC 
dZ       s    "'v dZ    "s s s 

dZ    "sJ 

s 

-  2 j 2B2-4AC  -  2B VB
2
-4AC )   A 4|- Z 

8Aq 
4 /B 45 A4£-- C^ * 4 dZ A dZ L dZ 
Is s s / 

dZs       VB
2
-4AC 

s s s 
-2   (2B2-4AC  -  2B"VB

2
-4AC ) A ~- t     , 

in which 

HZ"    =    2^-DZs  +   KlPr C4 Zs
4 

s 

(3.86) 

dB_ 
dZ 

2 ml Z 
1       C 

and 

g- = • BlC4Zs   • Bl(C4+2)Z8
4 -2PrZs-Pr|mT|C4Zs

4 
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Also from differentiating Eq. 3.69 with respect x , we have 

C C -1 
)(-2Z )-(l-Z2)(2Z +C.|m Jz   ) 

Z' 
1-Z 2 

s 
-s-l 

Pr(Z2+|>v|Zs
4) 

(Z2+lmTlQ(-2Zs)-(l-Z
2)(2Zs+C4|mT|Zs   ) 

Pr(Zs^|mT|Zs
4)2 

s_ 3s 
2 2 

(Y Y')z x      Z 

s s' 

-1 
(3.87) 

Thus,   from Eq.   3.86 

, l,s 
sC^) 

(1-Z2)S_1   [|mT|(2-C4)Z 
C  +1 C  -1 

•  2Zs  + C4|mT|Zs       ] 

(zs
2 • hT|zp 4%s+l 

(z;)2 

8AM 
A2 4  B 

dB_ 
dZ 

- A d£ 
dZ 

dA 
dZ •2W •4 AC 

dB 
dZ 

s      YB  -4AC 

s s s 
]  -  2  2B2-4AC-2B"V B2-4AC 

^ *   2 

(3.88) 
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3s-2  2     2s 
2-s s-2,„ .2-s, 

2s-2 

' s°" (Pr)' "(1-Z 2)  2"S (Z 2 + |m_|Z " s s   ' T' s 

2s + 2 
4, 2-s 

C +1 C -!h 
|mT|(2-C4)Zs   + 2Zs • C4|mT|Zs

4 /   1 

8A^ 

s 
2-s 

A2 „dB .   dC 
Bdz~-Adz- 

s s 
C^_)-  2VB2-4AC 

dB B_ 
dZ s     V B2-4AC 

s s s    J 
2B2-4AC  -  2BV B2-4AC dA 

dZ 

s 
2-s 

(3.89) 

In case s=2 , the abridged equation can be obtained from 
- i        • 

Eq. 3.88, 

X* = 

Pr2(Zs
2 + |mT|Zs

4)3 

C4+1 V1 
16A^(1-Z  2)[|mJ(2-C.)Z *       + 2Zc + CJmJZ*    ] 

s  ' Ll   T1v       4J   s s 41   T1   s 

• /A2 ^-Adi--cHM-2V^^ 
s s s 

dB_ 
dZ 

B   '»8~ <*£--«$- s s s VB
2
-4AC 

2B2-4AC-2B"\/ B2-4AC 

dA 
dZ. 

(3.90) 

and jn case    2 < s < °° .   a closed integral  form can be derived from 

Eq.   3.89, 
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4s 

" Xs"2 = s2"s (Pr)5"2 | (1-Zs
2) 

4s 

2s 2s-2 
C4+1 

|mT|(2-C4)Zs
4  + 2Zs 

+ C4|mT|Zs 
V1" s"2   c^-iVO 

r 2s+2 
C4,^2  / 1 ]S- 

8A1*/ 

4 B 
dB_ 
dZ 

- A 
dC_ 
dZ 

- C 
dA_ 
dZ 

- 2 \M 4 AC 
dB 
dZs  VB2-4AC 

s      s 
4C dA 

dZ 
- 2 

s-2 
2B
2
-4AC-2B"VB

2
-4AC U££-)  dZ +Dj 

(3.91) 

where the constant D.. can be evaluated from the boundary condition 

x = 0,Z =0,or x = °° , Z =1 ; the integral is an indefinite 

one. Therefore from Eqs. 3.72, 3.73, 3.77, and 3.78, spectra can be 

obtained as functions of s , Pr , m , C. , ra , and 6. 

3.3.2 Solutions of flows with negligible molecular effecjs - 

In the previous statement, molecular effects as represented by the 

kinematic viscosity and the thermal diffusivity are involved. How- 

ever, in case the spectra at waves numbers far away from the 

Kolmogorov's wave number is considered, i.e., when k << l~     , the 

local dissipation of turbulent energy and the local dissipation of 

temperature inhomogeneity in the range 0 to k are negligible as 

compared to e }  and N , respectively. This will be the case when 

we consider the buoyancy subrange where the molecular effects are 

negligible. Thus, Eqs. 3.49 and 3.50 are reduced to 
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j£    / *uw(k)dk + /    F(k)dk +  3 / <J.uT(k)dk 
k 

(3.92) 

(3.93) 

Again,  the generalised  pHHv-vigr-ncitv apm-qfi-j infirm  is  applied; 

thus, we have 
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Now, with the nondimensional variahlpg 

5  11 

(3.96) 

and 

PTT 

3 
2 

Y    b s,r 

1  7 
4  4 

(3.97) 

Eqs. 3.94 and 3.95 yield the dimensionless forms 

(3.98) 

and 
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Also letting 

(3.99) 

uw 
uw 

uw 

uw 

1_ 
2     " 

Y b s,r 

wT 

r 
I+ _1 
4        2 

vr 

I H  li 13 
M"   4   +     2     4 

1+C      -Cl 
2       L2,dU,   X 

'dz1 

and 

rwT 

_ I      _ I      . I +C li -C       - J +C        -    S 
2 4    M    4    L4      4     L4  fl     2    

L4   ,dT   | 
Y b N. e 6 h— 
s,r * dz* 

(3.100) 

we have  the dimensionless  forms 

s s     .    _ 
OO      -     —    —1 

/ $   (x)x dx 

1 

/ 2$r(x)x->r"1dx. 
L O 

and 

/ * TWdx = + 
wT 

s s     , 
OO   — -    —   - X 

/  $  (x)x dx 
L X 

/ 2<T(x)x3r_1dx 
L. O 

TT' 

(3J02J, 

Thus,   from Eqs.   3.98,   3.99,   3.101,   and  3.102,     *(x)   ,   4>     (x)   , 
\————— I       —-    TT 

$ (x) , and $ T(
x)  can be evaluated numerically. However, for 

simplifying the analytical derivation of solutions, two sets of values 

of s  and r are assigned. 
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(A) 2 < s < <*> , r = 1 

By letting 

x                    Y (x)Y'(x) 
Y 2(x) = / 2x2$(x)dx  , or 4>(x) = —  (3.103) 

and 

x Z (x)Z'(x) 
Z 2(x) = / 2x2$ (x)dx , or $  fx) = - TT TT ,2. 

(3.104) 

Eqs. 3.98 and 3.99 become 

s 

s s 
1 /  (Y Y')2 x  2  dx 

L  X 

and 

s   3s 

/ (Y Y')2 x  2 
-1 

L X 
S S 

dx 

Y 
2 +|r|Y 2 + r,z 4 

s   ' ' s    Is 

^ (^ 

Zs2 * lrilZs 

Also from Eqs. 3.101 and 3.102, we have 

(3.105) 

(3.106)     I* 

C-l 

<J>    (x)   = 
uw    ' 

(Y 
z + r Y     +   r.z   ) c_ Y 

s       '   '   s 1 s 2    s 
Y' 

s 
c c 

(Y 2  +   IrlY 2 7 rz4) v s '   '  s Is 

C C-l C-l 
Y 2(2Y Y'   +  |r|C0Y 2    Y* T I* r Z 4    Z' ) 
sss 2s        s 14s s 

2 - „ „4.2 (Y 2 + I r IY • + r.z ") v s '   '  s IS' 

(3.107) 

and 
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wT 

C    C -1   £ C -1 
(zs

2
+|rT|zs

4)c4zs
4 z;-zs

4(2z^z; + |rjc„z„4 
s s 'T'Ts 

»,*• |rT|zs», 4, 2 

(3.108) 

Now,   from Eqs.   3.105  and 3.106, we have 

C 
(3.109) 

and thus,  0(x) , <J„„(x) , $ (x) , and <$ „,(x)  can numerically be 
I      TT      uw '       wT 

_-^" 
calculated for a given set of parameters r , r  , r  , C_ and C. 

since, by differentiating Eq. 3.105 with respect to x , x can be 

in terms  of    Y     ,  Y'   ,  Z     ,   and    Z'     and Eq.   3.109  can offer the 
s        s        s s n 

relationship among Y  , Y' , Z  , and Z' . However, if some analyti 

cally closed form is needed to be obtained.) C» = 1, and C. = 0 , 

can be assumed. Hence, Eq. 3.109 becomes 

Y 
z +   r Y (  r  + r M (3.110) 

and so 

Y = 
s 

r + \/r^ + 4Z z + 4( r_ ± rjz u      s     ' T1    V   s 
(3.111) 

Squaring Eq. 3.111 results in 

C. 
2r2 + 4Z 2 + 4(1 rj ± r.)z 4-2|r| s v'  T1 Is       '   ' r2+4z2 + 4(|rT|±r1)zg 

(3.112) 

Inserting Eq. 3.112 into Eq. 3.106 and differentiating the 

resultant equation with respect to x , we have thus 
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s(2Zs+c4|rT|zs
4 SU 

CzJ*|rT|zs') 
4,s+l 

2zs + c4(|rT| ±rl)Zs 

- r 
2Vc4(|rT|±ri)zs

4 

r2+4Z2+4(|r„|±r1)z s   ' T' V   s 

3s  1 

" 2 (3.113) 

(^A^'^l 
— — c -l —        c 2s*2 

z; • 2s"2 ss_2 (2zs + c4|rT|zs
4 )s"2 (zg

2 + |rT|zs
4) 2_s 

c -l     2z+c (|r |±r)z 
2Zs+c4(|rT|±r1)zs

4  - |r| 

Consequently, we have then 

C J 
^2+4z2+4(|rT|±r1)Zs

4 

i       (3.H4) 

(3.115) 

which can numerically be integrated for °° > s > 2  .  In case s = 2, 

an abridged form can be seen from Eq. 3.113, i.e., 
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4xL 
(Z. 7 

T'-s 
+ |r JzV (2z„ + cjrjz 

41   T1   s J 

C  -1 

2Zs+c4(|rT|±r1)zs
4  - |r| 

r2+4Z2+4(|r.J±r,)z s  ' T1 r  s 

(3.116) 

n (B) J s -*• °° , r -» °° 

In this case, an exact local limit of the generalized eddy- 

viscosity approximation can be formed and Eqs. 3.98 and 3.99 become 

(3.117) 

(3.118) 

which are the simultaneous nonlinear equations of $(x)  and <I>  (x) 
*»——    11 

at a given dimensionless wave number x . Clearly the numerical solu- 

tions can be obtained as a function of x and the parameters f \T\   , 

ri , |r | , CL and C.J.  Since both parameters C„ and C. are 

retained in Eqs. 3.117 and 3.118, and the spectral equations are pre- 

sented in a clear and simpler form, Eqs. 3.117 and 3.118 will be 

investigated intensively.  As to evaluating $ (x)  and $ „,(x) , 
uw  ,      wT 

Eqs. 3.101 and 3.102 will be used.  Thus, 
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dHx)                d$TT(x) 
where $*(x) = d^    , and ^(x) = —^  

(3.119) 

(3.120) 

3.4 Asymptotic Solutions 

In the previous sections, details have; hftftrt giv^n to solving 

the spectral equations of thermally stratified, tnrhnipnt <zhoar  f^owg; 
— 

of course, numerical solutions are available now. However, if we 

need examine the significances of all the parameters such as s , C. , 
L-  1 

C- , C, , and C.  introduced in our generalized eddy-viscosity 

approximation, it would be helpful to investigate the asymptotic 

solutions under certain conditions.  In order to avoid the tremendous 

complexity introduced by the consideration of molecular effects, we 

still prefer to consider the case when the molecular effects are 

negligible.  Evidently in the buoyancy subrange of wave numbers this 

is the case. 
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3.4.1 Asymptotic solutions of stably stratified flow - First, 

consider the dimensionless wave number range x >> 1 or equivalently, 

k»Y
1/2 b3/4 N*3/4 £"

5/4 33/2=k 
s ,r       * o 

In this wave number range, 

the buoyancy effect on the motions of eddies is negligible as com- 

pared to the inertial interaction among eddies as we can prove 

aposteriori in the next section.  Thus, it will not be surnrisinp tha^ 

the classical -5/3 law holds in the dimensionless wave number range 

x >>^-.  FromjEq. 3.115^ asymptotic solutions are available by 
C, 

assuming as follows: 

2 < s < °°  ,  X>>1, (3.121) 

similarly, for the velocity field we have from/Eq. 3.109 

,  2<s<°°  ,  X>>1 

Thus, equivalently, the corresponding velocity and temperature 

spectra are 

(3.122) 

and 

(3.123) 

s   < °°   ,     x  >>  1 /  .   (3.124) 

to    s_jj_2   ,  Eq.   3.116   or the  limit  form of Eqs.   3.123 and 

2     can be used,   and we have  then       / j/J.   ,r| i jy f^a fl P    \ 

(3.125) 
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x >> 1 (3.126) 

In case x << 1 , the situation is somehow more complicated 

since the buoyancy effects will distort the inertial interaction among 

eddies. Two cases will be considered in the dimensionless wave number' 

range x << 1  .  In both cases, we still assume that the local pro- 

duction of turbulent energy in the wave number range considered is 
i   IT 

negligible.  From the computational point of view, we can let 

1 r | ~ 0 in Eq. 3.115. Thus, with the further assumption 

|rT|Zc
4 >> Zs

2  , Eq. 3.115 gives: T1   s 

C 1 
4 3/3 

s 4 

s-2 
3s 

1 

(|rT|+ri) 
3   s3s     x ,     2  <  s   < °° 

and  from Eq.   3.109, 

Y2  = 
s 

,3 3 
4 

s-2 
3s 

I 
3 (l^l+rp 3   s3s   x 2  <  s   < .(3.127) 

Thus, the velocity and temperature spectra become in this case 

rp3  )SJy, (3.128) 
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These asymptotic solutions can be considered as the spectra in the 

inertia! and convective subrange where the inertial transfer process 

predominates the velocity field and the interaction between the main 

and turbulent temperature fields plays the principal role in develop- 

ment of temperature  fliict.nat.jnns. 

Next,   some  asymptotic solutions  in the buoyancy subrange will 

be investigated.     In the buoyancy subrange,  the  local production of 

turbulent energy and turbulent  temperature inhomogeneity is  so small 

that the  inertial transfer processes predominate turbulent motions. 

However,  the buoyancy subrange differs  from the inertial  subrange in 

the fact that  in the buoyancy subrange the buoyancy effects due to 

the vertical heat  flux affect the energy balance.    Thus, with the 

assumptions     lr|   =  0     ,     r.Z       >>  Z2   >>   |l\JZ \ l is s is 

and /" 

c4C|rT| • rpz/     » 2zs »c4|rT|zs
4 

rx »  |rT| 
1 __-> 

Eq. 3.115 gives the asymptotic solution as follows 

4+C. 

and 

(3.130) 

x <<  1  , 

C. > 0  and  °° > s > 2 
4 — 

(3.131) 
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or equivalently we have the asymptotic temperature and velocity 

spectra 

C > 0  , and °° > s > 2 
4 — 

(3.133) 

Now the significance of C,,  can be seen clearly from Eqs 

3.1S2. and  3.133..      In  case   |C.  -• 0 

-l   ,. T 
and    C. d 4>(x] and 

0  (x) ~ x   for x << x << 1  , and this is exactly the solution 
JJ e 

predicted by Lumley (1964].  If the expression (3.62) for the vertical 

heat flux spectrum is reviewed,  C. -> 0 and C, •* 1 would meaa_HiAt 

the vertical heat flux spectrum is determined bv the velocity field, 

implied by the eddy-viscosity y       [j $s/,2(k)k~ S/,2_1dk] 1^S in 
— s,r k 

Eq. 3.62 and is proportional to |dT/dz*|  . Thus, after reviewing 

Lumley-Shur's hypothesis in section 2.2.3, the generalized eddy- 

viscosity approximation considered. 

and r >> |r |  is equivalent^ to T.nmlfiy-fihiir'^ h,Ypp|t|pp
<s--i *  However, 

as we can see later, because of the generality of the generalized 

eddy-viscosity approximation implied by varying C. , C_ , C_ , C. , 

r|  and ri  , the present results are more fruitful, And 
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3.133^  then   /C(x)   ~ x /   and   |$    (x)   ~ x" / are obtained. 

This  is  actually the case considered by Monin  (1962)   and Gisina  (1966) 

3.4.2    Asymptotic solutions of unstably stratified flow -   In 

case the unstable stratification is concerned, it is better to study 

Eqs. 3.117 and 3.118 instead of Eq. 3.113. For the same reason des- 

cribed  above,   let     |r|   ~  0     and     r     >>   |r   |     in the buoyancy subrange. 

Thus,  we have 

3C4       1 C4 

1  =    x2     $2(x)   +  rxx  2       2       <D2(x)   $TT
2(x) (3.126) 

and 

In the wave number range    x >>   1   ,  the inertial transfer pro- 

cess dominates the turhnlemt  gtmrt-nrp    it can be expected that the 

-  5/3  law holds   for both  velocity  and temperature  spectra.     However, 

where    x <<  1    and is  still  far away from the range    x      in which the 

production of the turbulent energy and temperature in^pmn^pripifv pre- 

dominates , we have the buoyancy subrange for an(unstably stratified 

turbulent flow, and the asymptotic solutions would be 

and 

for   x << x << 1  . (3.128) e 

1A 

0 

s 
T 

I   I * 
1 = x2  $2(x)0  (x)  . (3.127)    U 

This shows that, in an unstably stratified turbulent flow, the velocity 

field absorbs energy converted from the temperature field in the 

E 
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buoyancy subrange, and presents a hump in the velocity spectrum. This 

is actually what we expected in our search for the basic mechanism of 

unstably stratified turbulent flow in section 2.2.1. 

3.5 On Rplyi ^np's and Ltj^fijfefifajU£^S Hypotheses and the Modified 
Hypotheses 

After introducing asymptotic solutions by the generalized 

eddy-viscosity approximation as presented in section 3.4, it would 

be worth comparing Bolgiano's and Lumley-Shur's hypotheses for stably 

stratified flow.  Phillips (1965) made comparisons between these two 

hypotheses.  In his paper, Phillips classified these hypotheses as 

follows: 

/ Lumley-Shur's hypotheses p 

\J    "The statistical properties of the components of the turbu- 

lence with wave number k in the inertia-buoyancy subrange, including 

the energy spectrum and the buoyancy flux spectrum, are determined by 

the spectral kinetic energy flux e(k) ^rT)this wave number and not 

at distant wave number in either direction," 

2J "The spectrum of the buoyancy flux in phy-*ical space of 

stably stratified environment is proportional to the mean buoyancy^ 

gradient."    (L^ • 0-,* 

/Bolgiano's hypothesis J 

\1     In the buoyancy subrange, the statistical properties of the 

motion are determined by N  , g/T and wave number k alone. 

Phillips agreed with Lumley on Lumley-Shur's second hypothesis, 

b.ut did Tjnt agree with the first since it is still doubtful if the 

Kolmogorov's hypothesis can be extended to the buoyancy subrange.  As 
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to Bolgiano's hypothesis, Phillips stated that the quantity N is 

certainly a property of the turbulence; it is a local property of the 

inertial subrange and an integrated property of the buoyancy and energy- 

containing ranges, but it is not a local property of the buoyancy sub- 

range itself as can be seen from the equation 

e(k) + 

/ dT \-l i   dT >-l 

N(k) = e + 
g g 

(3.134) 

which is derived according to the assumption that the production of 

turbulent energy is less important in the buoyancy and inertial sub- 

ranges.  (Phillips, 1965). 

Certainly Phillips argument is right for a general stratified 

flow.  However, as stated in sections 2.2 and 2.3, Lumley's solution   <*—JU 

would be meaningful only when 

dT 
dz 

eT*L   \2 

gN 
<< 1  . (2.19) 

Gisina obtained the sa^p, rp^trirtinn fnr the eyUtgnce of Bolgiano's 4- 

solution as expressed in Eq. 2.20^  Also in the present study, asymp- 

totic solutions for the buoyancy subrange are obtained with the 

assumption  |r| ~ 0 and r >> |r |  as described in section 3.4. 

After we review the definitions of I\  and r  as expressed in 

Eq. 3.96,  r  >> 11' |  is certainly equivalent to 

idT i 

«1  .  or  J-|«| "-H-1-I-] (3..35, 
*   

T 

for N, - 2N  .  ^ = 2 ^  , 
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/ H 1/2  — 
a   which means that the internal frequency (N/e)   g/T of turbulence 

*k / ' "   
/ of stably stratified flow must he greater than Brunt-Vaisala frequency 

^v  | of the external flow  (g/T)   (dT/dz)    and which is exactly the 

(^•o I same expression as Eq. 2.19 derived by Lumley and Eq. 2.20 obtained 

^ ^ I  J?y Gisina. 

5 fi By combining Eqs. 3.13^ and 3. .135. we will see what Eq. 3.135 

"     wi]1 rp^]ly jmply in the buoyancy subrange.  Thus, rewriting Eq. 3.134 

^<.    as 
dT 
dz 

NIL. 

dT 
e(k)    N(k)   C  dz 
e   +  N      Ng 

+  1 (3.136) 

V, 

and assuming e(k)/e to be finite, Eqs. 3.135 and 3.136 will imply 

N(k) ~ N in the buoyancy subrange.  In other words, the objection 

/ from Phillips to Bolgiano's hypothesis can be released if the in- 

equality of Eq. 2.19 or Eq. 3.135 can be accepted as the basic 

requirement for the existence of buovancv subrange.  As we can see 

later, in*case"bq. 3.135 does not exist for a certain flow condition, 

or equivalently, the condition T1 >> |r_|  cannot be fulfilled, there 

exists no buoyancvsubrange. Thus, one word can be added that if 

there exists any buoyancy subrange.  N(k)_~ N  is still a local prop- 

erty.  Of course, in the energy-containing range, this argument breaks 

^i down without any doubt. 

Before the author elaborates on the modified hypothesis 

proposed for the stably stratified turbulent flow, it is worthwhile 

to review Lumley1s idea concerning the production of turbulent energy. 

In his paper, Lumley (1965) considered the effect of the turbulent 

energy production on the turbulence spectra by expressing the shear 

stress spectrum as 
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(3.137) 

(3.138) 

where Rf is the spectral flux Richardson numbej. 4 

As stated by Lumley, in Eq. 3.138, both production and 
--      —* 

buoyancy spectra have the same form; thus, there is no range of wave 

number in which _pj^dli£li^IL-i^_uiliJIiaQrXaPi:- \Howeverj if Eqs. 3.61. and 

3.62__are used find) if the corresponding values C. , C« , C- , and C. 

are known for a given flow condition such as stratification, mean 

velocity gradient, etc., the difficulties induced by Lumley's model  \ 

can be removed.  That is, by varyingf C. } there may ftxist a range of \ 

\   \ 

certainly dominates the flow. Now, if Eqs. 3.137 and 3.61 are com- 

'1 pared,  the former corresponds to the  latter when    C1  -*• 1   ,  C, 0 

i.e., when the shear stress spectrum is proportional to dU/dz the 

mean strain rate. This condition can only be fulfilled when the mean 

strain rate is small compared to the eddy strain rate (Tchen, 1953). 

Thus, the validity and the generality of Eqs. 3.61 and 3.62 certainly 

offer a better opportunity for the study of buoyancy subrange of a_ 

thermally stratified flow. 

Consequently, the (modified hypothesesjfor a stably stratified 

turbulent flow are given as: 

{\\/ The buoyancy subrange of a stably stratified turbulent 

flow exists when the local production and local dissipation of 
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turbulent energy is not important in this wave number range and when 

the flow conditions satisfy the criterion 

dz1 
**  i g    idTi N 
<<  1     ,  or    -*—   -r-    << — m (3.139) 

{Tf    1° the buoyancy subrange,   the spectra of turbulent energy 

and temperature fluctuation are determined by    N  ,   e   ,   g/T  ,   dT/dz   , 

k   ,   and    C.     completely and  are  expressed  in  forms 

8-4C 

4+C 4+C      r        \   4+C 
• 00   -N e M- fjCs.^.Tj.C^k 

-2C.+4       -4+4C, 
4 4 

C.-12 4 
4+C, 

(3.140) 

2+2C,,       2-2C. 
 4       4 
4+C 4+C     / 

•4+2^ 

4+C, 
•3C.-4 4 
4+C. 

f2(s,rT,r1,c4)k (3.141) 

Where I 

•1+C.     1-C 4 4 /   e 

—=r \   T   ' 

^      ,— 4 dT_ 
dz 

-?+r i-r 
-2+C.       2-C.  / \       L4 ,-        U4 ,=• 

r   = N      
4   e     

4   JL. |£L.| £L 
T      N* f 'dzj dz, 

r     >  0 oo>s>2 N=2N —-  =  2 — 
dz. dz 

and f.   and f_ are numerical variables as function of s  , r 

r,  and C. . 

In  case    C     =   1   ,   thus     r     =  1   ,   then Eqs.   3.133  and  3.134 

become  the  Bolfliano's  so^|+i^Tig  "  gyp-rp^c-^   i* pg^     ?  A  anrl  7  7 
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Now, from Eq. 3.140, we can see that the reason why the parameter e 

is dropped from the Bolgiano's hypothesis is not because e << e(k) 

as interpreted by Bolgiano (1959) but because C,, = 1 makes zero 

exponents for e in Eqs. 3.140 and 3.141. Accordingly, the parameter 

e must be retained in the hypothesis as described in the hypothesis 

(2). As to the physical background on which the modified hypotheses 

are based, the section 4.4 in the neyf chanter must be reviewed. 

Furthermore, if the upper limits of the buoyancy subrange for 

the velocity and temperature spectra arei interest^!!, the wave numbers 

k*  and k*  obtained by equating Eqs. 2.2 and 3.140 as well as Eqs. 2, 

and 3.141 respectively ars expressed asy 

3(4+C4)   3(4+C4) 

and 

8(2-C )   8(2-C )   4 
a        fi       N4 e 

3(4+C4)   3(4+C4)  Q 

(3.142) 

8-4C. 8-4C 
k* 

4   M4 
N   e 

Certainly,    k*    and    k*    are  linearly propor^jn^ to    k      defined in 

Eq.   3.97.    Hence,   it has been proved    aposteriori that    k      is  a 

characteristic wave number to distinguish the buoyancy subrange from 

k  or the inertial subrange in case k << k  ; of course, if k fa- e    o ' -   ( 

k >> k  , there exists no buoyancy subrange.  Equations 3.142 and 

3.143 also reveal another interesting thing, i.e., the upper limit of 

buoyancy subrange are a function of flow conditions such as  dT/dz^. 

"r% 
Et 

etc. 

fa 
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Chapter IV 

RESULTS AND ANALYSIS 

In this chapter, numerical solutions of turbulence spectra of 

a thermally stratified flow investigated in the last chapter will be 

given. The solutions studied in the previous chapter are mainly 

divided into two categories:  one is for the solution of a flow witl 

molecular effectsT the other is for those of a flow with negligible 

molecular effects. The consideration of molecular effects in the 

flow of the first category does not mean that the spectra at high 

wave numbers beyond the molecular cut-off wave number can be studied 

by the present method--the generalized eddy-viscosity approximation, 

but is used to generate nondimensionalized spectra expressed with 

dimensionless variables containing the molecular parameters v and 

Thus, for stuHyinp cpArf-ppi in thp hnovanry subrange, we need 

only consider the case when the molecular effects are negligible in 

the wave number range of interest.  In other words, the solution 

given in section 3.3.1 will not be investigated, ejtQr>c",Qly and only 

some typical spectral curves of a certain flow condition are displayed 

as Figs. 28, 29, and 30. However, for a better understanding of the 

snectral forms in the buoyancy subrange, the solutions developed in 

section^. 3.2 must be ascribed to; in particular the solution 

obtained in case s -> °° and r ->• °° as presented in part B of 

section 3.3.2 will be studied extensively because of the clearer and 

simpler forms given bysEas. 3.117 and 3.118, 



73 

4.1  Determination of Parameters  r , T. , T  , C? and C. 

In order to solve the nondimensionalized spectra such as  $(x) 

and 0  (x) , etc. as functions of the dimensionless wave number x by 

using Eqs.  3.117,   3.118,   3.119  and 3.120,   the parameters   r   ,   r     ,   r     , 
— — •     w     ^    ^ 

C? and    C.    must be known.     From Eq.   3.96,     r   ,  I\   ,  and    r      can be 
l_S   \JLt -^     T~Z—' ' " 
related to only two parameters fc„/ and> C.I/if dU/dz  , dT/dz  , 

b , N ,  e and 3 are knownj Experimentally, Q      and C.  can be 

evaluated from the measured spectra at given flow conditions charac- 

terized by dU/dz  ,  dT/dz  , b , N , e     and 6 .  Thus, the way to 

evaluate C? and C. would be equivalent to that of evaluating  U£J l^s    
Kolmogorov's constant a in Eq. 2.2 for locally isotropic turbulent 

flow.  For simplicity, the asymptotic forms of Eqs. 3.132 and 3.133 

can be used for evaluating C.  if there exists a wide bunyririry suhj 

range and if the flow conditions upon which C.  depends are known. 

However, for the present study, these parameters can only be 

assumed before the numerical solutions are obtained.  Generally 

speaking, dU/dz  , dT/dz  , and (3 can be found from the measure- 

ments of velocity and temperature profiles of the atmosphere, and b , 

N , and e can be estimated from the measurements of heat flux and 

shear stress or from the energy balance budget equation or from the 

measured spectra. Thus, we can evaluate the maximal and minimal 

values of those flow characteristics, but how they are related to 

one another for given mean velocity and temperature gradients is 

.unknown. Nevertheless, to the best knowledge of the author, there 

are no measurements of N and e corresponding to the respective 

measurements of spectra in the free atmosphere. Therefore, in the 

present study, the values of r , r, , and  r  are assumed to 



74 

facilitate the numerical solutions, and the significance of these three 

parameters can only be studied by varying their relative values.  On 

the other hand, C„ and C.  are varied according to 0 < C  and 

0 < C.  in order to test how the spectral forms will be changed under 

a given set of values for r , r  , and  r  .  Henceforth, we can_ 

obtain a general idea that the introduction of C_ and C. gives 

more degrees of freedom to test the spectral forms, although more     , 

freedom means more complications are invnlyed in the analysis.In    > 

the following, results and analysis are presented and classified 

according to the flow stratification. 

4.2 e of Stably Stratified Flow 

ic solutions of stably stratified flow in the 4.2.1 Asj 

buoyancy Subrange by V?ryi"g C. - As studied in section 3.4, in the 

buoyancy subrange where the productions of energy and temperature 

inhomogeneity are negligible, that is equivalent to say that  |r| ~ 0 */*? 

and  r  >> |r |  in Eqs. 3.117 and 3.118 from the numerical point of , 

view, there exist some asymptotic solutions of velocity and tempera- "} 

ture spectra as functions of C. . Thus, it is proposed to solve. 

Eqs. 3.117 and 3.118 numerically bv letting  |r| = 0 ,|r | ^0 , and 

|r | be finite. (Figure 4\lisplays how the spectral forms vary as the 

parameter fcTN changes for stable stratification.  In the derivation 

of Eqs. 3.132 and 3.133,  C.  is restricted to be 0 < C. , however, 

if Eqs. 3.117 and 3.118 are concerned,  C.  needs only satisfy the 

condition C. < 1 when  |dT/dz|  is very small as discussed in 

section 3.2, and no lower limit should be assigned to C  from the 

numerical point of view. Thus, for the sake of interest, in Fig. 4, 
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some curves evaluated by Eqs. 3.117 and 3.118 in case C. < 0 are also 

presented. Of course, the power law derived in Eqs. 3.132 and 3.133 

cannot be true in this case. 

As displayed in Fig. 4, the spectral slopes in the buoyancy 

subrange show agreement with these derived in Eqs. 3.132 and 3.133, 

c r n nni    */• A     " 11.999/4.001    -3 i.e.,   for    C.   = 0.001   ,   0(x)   ~  x ~  x and 

.     ,  , -  4.003/4.001 -1 ,     _ .  _       w  , -   11.1/4.9 
^JJW   ~  x - X ,   and    C    =  0.9   ,   $(x)   ~  x 

-  6  7/4  9 
and    $TT(x)   ~   x       *   '   *        .     It  is  clear that with    C    = 0.001     the 

asymptotic solution becomes very close to the prediction of Lumley- 

Shur, and with C = 0.9 the slope approach^ \hp.  preHirted slope 

given by Bolgiano.  For better understanding the behavior of the 

spectra, FigI 5 is plotted by varying r  at given C. = 0.001. 

Thus, we can see that as r.  increases the buoyancy pffpftg pQr»Q|Tfli-p 

gradually into higher wave numbers and the deviations from the - 5/3 

law of locally isotropic flow are more apparent as the spectra become 

more anisotropic due to the buoyancy effects characterized by r  . 

Figure 31 displays the asymptotic power law varied as C  for velocity 

and temperature spectra in the buoyancy subrange of stably stratified 

flow,  m and n contained in <j>(k) ~ k  and <}>  (k) ~ k  are 

-3C.-4        C.-12 
4 4 

defined as m = ••••„•—  , n =    • 
4 4 

4.2.2 The pro<duction_effg££s of turbulence energy and 

^emperafcuj^e-^h^p^ppflfiity/ on tne spectra of stably stratified flow 

in the bjifl¥3n£y subrange - In section 4.2.1, it was assumed that the 

production of turbulence energy and temperature injiomogeneity is 

negligible in the buoyancy subrange.  Without any doubt, in this 

buoyancy subrange, only the inertial transfer process and the buoyancy 

lt«, 
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* 

t! 

k 

effects exist and the spectral forms must characterize the huoyancy 

effects. However, if  |r|  and  |r |  are large enough as compared 

to r  so that the production effects can penetrate into the buoyancy 

subrange, the spectral forms will hp Hi gt^y-p^rl  Figure_6 shows two 

sets of spectral curves at different r  , r , and r  with fixed 

C_  and C. .  The ^rsjj. set of curves is calculated with/ r  = 0_. 01_ , 

and the s^econcS with 

From 

the plotted curves, the temperature spectra present maximal points 

which show that some energy is cQaitfigted ^ronythe ypin^ity fjp]rl into 

the temperature field.  NpaT fhf wavA nnmhgr ranyp in which the maxi- 

mum of temperature, snec.tra. occurs, there appears a steeper slope than 

- 5/3 ^or)the energy spectrum as a consequence of kinetic energy being 

transferred and converted^ntdS potential energy.  It is clear that 

this wave number range is associated with the so-called buoyancy sub- 

range in our previous investigation of asymptotic solutions. 

According to the asymptotic solutions presented in section 

3.4.1, the energy spectrum and the temperature spectrum must show the 

power law - 11.7/4.3 and -4.9/4^3 respectively if only the buoyancy 

effects are predominant in the buoyancy subrange^ however, the pqwer 

law of velocity spectrum of the first set of curves appearing in 

Fip^fi) is . - 2 T 4 T This is not surprising after^Fig. 7jis  reviewed. 

Figure 7 displays the distributions of energy production, transfer and 

drainage by buoyancy force as represented by F1 , F~ , and F 

respectively, and defined by 
3f    C 

1 •* 2  1  2 
2 + 2  2* 2 

F. = |r|x     *  (x)| Hoi>. (4.1) 
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TfifiHSr- 

and 

(4.2) 

PMfiiitt. 
(4.3) 

The functions F. and F  are the production and inertial transfer 

of temperature inhomogeneity. /Figure 7 Jhows that in the wave number 

range the - 5/3 law holds the inertial transfer presented as F_ 

predominates the turbulent structure and tends to be a constant.  In 

case the energy drainage by vertical heat flux becomes gradually im- 

portant, F_ increases as wave number decrease^ and consequently the 
'  \JJ —'   
buoyancy subrange is formed.  As the wave number decreases down to 

the region where the energy production becomes important.  F~ 

decreases.  Now, in the wave number range, say in the interval 

0.03 <_ x <_ 0.15  , the energy drainage bv buoyancy becomes import apt 

and the energy production becomes less negligible as well.  In other 

words, the introduction of the energy production in this wave number 

range compensates the energy drainage by buoyancy and modifies the 
- 2.73.      '  y> 

power law from - 11.7/4.3 t.n -2.4 .^A similar situation can be 
— t cuW*"6"    > 

seen from the second set of spectral curves which shows that the 

reduction in energy production can cause a wider buoyancy subrange 

and steeper power law^ for a better understanding, Fig. 8 must be 

examined. \In the interval 0.004 <_ x <_ 0.02  , the turbulent energy 

is mainly distributed by energy transfer F« and drained by buoyancy 

F, but the contribution from energy production F..  on the energy 
. 3 -^*** V_>/  — 
distribution is less important. Hence, it will not be a surprise to 
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I 

have the maximum power law -2.5 for the energy spectrum curve B in 

the wave number range 0.004 <_ x <_ 0.02 . 

—-—"* Another interesting phenomenon also caused by the compensation 

of energy production F. on F? and F can be observed in the wave 

number range x < 0.001 where the -1 law exists for the curve_A and 

the -5/3 law for the curves B in Fig. 6. /No^ref erring tovFig.7J 

F1 completely predominates the energy distribution in wave number 

range x < 0.001 , the -1 slope for (jurve A Van be predicted from 

Eq. 4.1 by inserting C, 

I 

As to ^urve_Bj -5/3 slope in the wave 

number x < 0.001 results from the compensation among F1 , F  , 

and F_ such that F_ tends to be constant over a wide range as can 
\2J ilu .  

be seen from Fig. 8. Here one word must be added, the -5/3 slope in 

the wave number range x < 0.001 is obviously not a result of local 

isotropy. Thus, to the experimenters, the prediction for the local 

isotropy from the measured velocity spectra must be carefully worked 

out in case buoyancy effects exist.  For example, if in the buoyancy 

subrange there exists any experimental error which causes data 

scattering, the -5/3 slope may be extended to low wave number without 

realizing the existence of the buoyancy subrange.  In other words, 

the -5/3 slope appeared in low wave number x < 0.001 for curve B 

in Fig. 6 may incorrectedly be predicted as a result of local isotropy. 

The experimental data of Fig. 2a shows this situation very clearly 

since a -5/3 slope appears on the left side of the buoyancy subrange. 

In order to test the local isotropy of the stably stratified 

5/3, \ jt| '  turbulent  shear  flow,   Fifl.   9  is plotted with    x       $(x") and 

5/3 

^ 

$ (x)  vs x .  It is clear that the plot of Fig. 9 can present 

the tendency to local isotropy in a better way than the plots $(x) 
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and 'I'M  vs x , since the deviation from local isotropy can be 

detected easily without any ambiguity as stated in the last paragraph. 

4.2.3 Validity of the generalized eddy-viscosity approximation- 

Up to this stage, the generalized eddy-viscosity approximation has been 

used to study turbulent energy and temperature spectra under the 

effects of buoyancy.  Of course, the validity of the present study 

can be justified from the measured energy and temperature spectra, 

however, there is another way to test its validity by comparing the 

shear stress and vertical heat flux spectra predicted by the present 

study with respect to the measured ones.  Since the present method-- 

generalized eddy-viscosity approximation—rests on the assumptions 

for the integrated forms of energy transfer, temperature inhomogeneity 

transfer, shear stress, and vertical heat flux spectra presented as 

Eqs. 3.56, 3.58, 3.61, and 3.62, the validity of the present study 

must logically be checked by comparing those spectra with the measured 

ones although the measurements of these spectra are not easily 

performed. 

Thus, for the above reasons, some spectra of shear stress and 

vertical heat flux predicted_b_y the present study for given flow con- 

ditions are_^displayed inV^igs. lOyand^ll/ In Fig. 11, the heat flux 

spectrum $ T(x)  of curve A shows a change in sign at wave number 

x = 0.00315-.  The same phenomenon also occurs in Fig. 12 which shows 

the Bolgiano's solution in case C. = 1 .  From these results the 

changing sign_ of $ „(x)  seems to be related to C. . 

For further understanding turbulence spectra of stably 

stratified flow. Figs. 13^18-are displayed systematically by varying 

one of the parameters r  , r , r. , C_ , C. when the others are 
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fixed.  In the spectra the buoyancy subrange certainly exists since 

for most the condition r >> r  is satisfied.  For example, in 
*—A JL 

Fig. 13) when F  is increased from 0.001 for curve A to 0.01 for 

curve B with the corresponding r =0.5 , the buoyancy subrange is 

narrowed as expected. 

Cn Fig_. 1^ the effects of energy production on the spectra 

are examined by varying T and keeping the other parameters fixed. 

Increasing r not only narrows the buoyancy subrange but even shrinks 

the inertial subrange. This situation can be seen from the curve A 
    » 

of velocity spectra.  Near the region x = 1 , the slope of velocity 

spectrum is -5/3 , but in the interval 0.1 < x < 1 , the slope is 

le_ss than -5/3 , because the effects of energy production penetrate 

deeply into the region of high wave numbers such that the energy 

transfer decreases with decreasing wave number in this interval. 

While in the buoyancy subrange of stably stratified flow the energy 

transfer increases with decreasing wave number and the slope of the 

velocity spectrum is greater than the slope -5/3 . This situation 

reflects the case when the flow hasgreat shear gradient.. 

^Figure lj^displays a case when T      varies.  From the plot, 

increasing r  would mean that the effects of buoyancy force inten- 

sify as indicated by a wider buoyancy subrange shown as curve C. 

Also as r  increases, the power law in the buoyancy subrange 

approaches to the asymptotic power law (C.-12)/(4+C.) . Another 

interesting thing should be noted from the plots inVfig. 16)  For these 

spectra, C. is varied and we can see that when C_ < C. , the 

buoyancy subrange for the velocity spectrum $(x)  disappears as C_ 
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decreases to 0.1 for curve A.  Whether this phenomenon is realistic 

or not can only be determined by experiment. 

from 0.5 for curve A to 1.0 for curve B, the^ump in <J>  (x)  disj 

appears.  Also since r is not negligible as compared to r..  and 

r  , the power law in the buoyancy subrange deviates greatly from the 

asymptotic power law which requires that  r  is negligible.  In 

C.  is forced to be negative and a steeper slope of the 

velocity spectra in the buoyancy subrange is observed.  In case 

C. = - 0.1 the slope is close to the power law for <t(x)  given by 

(C.-12)/(4+C ) , but for C = - 0.5 the plotted curve has a steeper 

slope than (C .-12)/(4+C ). This is not unexpected since the power 

law derived in Eq. 3.125 is valid only for C. > 0 . 

4.3 Buoyancy Subrange of Unstable Stratification 

As described in Eqs. 3.127 and 3.128, the buoyancy subrange 

of Unstably) stratj f je^ tnrhnipnt flnw pxistrs when the production of 

turbulent energy is less important^andQ I\ >> |r | , and the velocity 

spectrum exhibits a hump and the temperature spectrum has a steeper 

slope than -5/3 in the buoyancy subrange.  Figure^lS)displays spectral 

curves for unstably stratified flow.  Curves A, B and C show that 

buoyancy effects very clearly since  r >> |r |  is certainly ful- 

filled, however, curves D appear in a different way from curves A, B 

and C just because of the fact that r = r = 0.001 . 

In Fig. y20,J the effects of the production of turbulent energy 

due to Reynolds stress on the spectra are displayed by varying  r 

when the other parameters are fixed.  As can be seen from Fig. 20, 
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the variation of r does not affect the spectra significantly, 

however, if C      is varied, i.e., the degrees of interaction between 

mean strain rate and the eddy strain rate are varied, the spectra 

appear differently as presented by Fig.f2^> A plot of curves 

F. (i 1,...,5)  vs x is shown in FJj^^^^when F.  represents the 

terms on the right sides of Eqs. 3.117 and 3.118 respectively.  F„ 

decreases with decreasing wave number as a characteristic of buoy- 

ancy subrange of an unstably stratified flow.  Note that in thp bu.ny- 

ancy subrange of a stably stratified flow.  F2 the energy transfer 

flux increases with decreasing wave number as a consequence of com- 

pensating the energy drainage by vertical heat fjnx-  For a better 

understanding of how the shear stress spectrum is distributed with 

respect to wave number in these cases of unstably stratified flow, 

Fifi/j^is displayed by plotting x$  (x)  vs x on semilogrithmic 

paper.  The interesting thing is the changing sign of $  (x) ; of 

course, the validity of the curves of x$  (x)  plotted in Fig. 23 

must be checked from experiments although it is certain that <J> (x) 
 V. uw 

need not necessarily be always positive or negative throughout all 

wave numbers. In addition, Fig. (243is presented for the heat flux 

spectrum which does not show any change in sign. 

The curves discussed above mainly correspond to the flow 

with r.. >_ |r |  .  In Fig.C^O the case  |r | >> r  is given by 

varying C_  and is used for comparison with Fig. 21.  Up to now, 

the plotted curves of temperature spectrum seem always to have . 

steeper slope than -5/3 , however, Fifi. ih J;bows that this may not 

always be the case when some special values of the parameters_jire 

considered; of course, whether the curves shown in Fig. 26 are 
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realistic or not, or say, whether the assigned values of parameters 

arc reasonable or not must be determined by experiment. 

In sections 4.2 and 4.3, great attention has been paid to the 

characteristics of the buoyancy subrange of both stable and unstable 

stratifications.  However, very often there exists no buoyancy sub- 

range at all because of the fact that the criterion  r  >> |r |  for 

buoyancy subrange is not satisfied and that the effects of the pro- 

duction of turbulent energy penetrate greatly into high wave number 

range_.  l;or example, in case C?  =  1 , C. = 1 , the -1 law exists for 

both velocity and temperature spectra as the productions of energy    <^- 
 .               - I7WE" 

and temperature inhomogeneity are very large.  Figured^ shows this     S7~f2/^T^ 

situation for both stratifications.  Also in Fig. 27, the curves A       j(/0 

show the existence of - 1/3 slope region for temperature spectrum 

when the velocity spectrum has extensive-- 5/3 slope in this region. 

This region may be called the inertial and convective region as 

stated in Gisina's paper (1966) and as indicated by Eq. 3.129 when 

C4 = X • 

Now in order to examine systematically how the parameters r , 

r  , r  , C_ , C  , s , and r vary for these figures, a brief table 

is listed as follows: 

-i-A/fci 
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TABLE 2 

Fig. 
No. Curve 

Stratifi- 
cation 

B 

A 
B 
A 
B 
C 
A 
B 

c 
A 
B 
C 
A 
B 
A 
B 

19 A 
B 
C 
D 

21 A 
B 
C 

25 A 
B 
C 

26 

27 

A 
_B_ 
A 
B 

4 §  lllr9 A stable 
B  ' 
C 

0.01       0. 

stable 

stable 

( 0.1 0.1 0.01   •     1. 
\0.001 0.01       O.OOlJ 

0.3 

0.01 0.1 0.001 
stable 0.1 

stable 1.0 
0.5 

.0.1 

0.5      I 0.001)     17"      1. 
V0.01 /  

0.1 0.01 1. 0.3 

stable 0.5 '0.1 
0.5 

.1.0 

0.01 1. 0.3 

s t ab 1 e 0.1 0.1 
0.01 

stable 0.1 

£2T 

l      oTol    "a/^ fo.5 \ 
    li.oy 

o.i 
0.5 
l.Oy 

stable 0.1 0.5 0.001 1. 

unstable    0.0001 0.5   '   -0.001 
0.1 
0.01 
0.001 

l-O-1^ 
0.5 

20 A unstable    1.0 
B 0.5 
C 0.01 

0.5 -0.1 0.5 

unstable    0.5 1.0 •1.0 0.1 
0.5 
0.8 

1.0 

unstable    2. 0.1 •1. 0.1 
0.5 
0.8 

1.5 

unstable    2. 

stable 0.01 

0.5 

{IV 

-0.5 

0.75 

2.         0.1 
3.  
1.0       1.0 

OO CO 

5 A 
B 

mt\  

stable 0. 

 i 

0.001 
0.01 
0.1 

0. 1. 0.001 
OO 00 

OO CO 

OO CO 

CO CO 

00 CO 

CO CO 

OO OO 

OO OO 

OO 00 

CO CO 

CO CO 

GO OO 

CO OO 

OO CO 
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Now, the general characteristics of turbulence spectra of 

thermally stratified flows has been investigated very extensively for 

the buoyancy subrange by means of the generalized eddy-viscosity 

approximation, it would be worthwhile to make comparisons with mea- 

surements in the atmosphere and to test the validity of the general- 

ized eddy-viscosity approximation. 

4.4 Qualitative CQ•pa-ricnn Between the MeagmggBagj^s of Spectra in 
the Atmosphere and the Results Obtained by the Generalized Eddy- 
^S^flSilX flpp-""^mntiiMi 

Basically speaking, it is hard to make this comnarj-sxin because 

of the fact that the experimental data normally relate to one- 

dimensional spectra whereas the theoretical consideration in the 

present study is concerned with three-dimensional spectra.  As noted 

in the paper of ^A^csee^aidYaglom^n^6T), the one-dimensional^^sp**- 

trum always varies jioticeably more^suLoothly than the three- 

dimensional spectrum.  The wave number range in which a power law 

occurs in a one-dimensional spectrum will not be the same range in 

which the same power law occurs in a three-dimensional spectrum even 

if the local isotropy of the turbulence holds. (Moreover.^ the turbu- 

lence spectra of a thermally strati f^fij f1nw a1*p certainly charac- 

terized by ttfpanisotrot>y\ue to the buoyancy effects, and thus in 

our problem, the basic adyjyitage__of_ local isotropy to relate one- 

dimensional spectra to three-dimensional spectra is (pstj 

However, if only the approximate comparison is made to see 

how the parameters mentioned in the theoretical consideration are 

related to the experimental data, the difficulties as stated above 

can be relaxed.  In particular, it is assumed that in the buoyancy 
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subrange the deviation from the local isotropy may not be too great. 

In section 2.4, it is mentioned that the exponent n of the velocity 

spectrum k   in the buoyancy subrange of a stably stratified flow 

varies from 2.0 to 3.5. cAs we review( Fig. 4^ the values of n are 

associated with the parameter I C/\ in the theoretical consideration, 

i.e., by varying C.  , some specific slope in the buoyancy subrangje 

can be made/NFor example, to n = 11J5    there corresponds C. = 1 , 

for n = 3 we have C. •* 0 , and for higher values of n , a negative 

value can be assigned to C. as presented in Figs. 4 and 18.  And in 

fact, the introduction of C. into the theoretical consideration is ' 4 

a great improvement in interpreting the spectra of a stably stratified 

flow. 

A^__tjli g g^agpHt__it would be worth mentioning the process by_ 

which the parameter C. was introduced into the theoretical considera- 

tion.  In the inertial subrange of velocity spectrum, only e the 

dissipation of turbulent energy is the parameter to characterize tur- 

bulence. Thus, the - 5/3 law is implied from the dimensional argument 

and this subrange is of universal equilibrium since the flow is inde- 

pendent of the parameters such as mean velocity and temperature gra- 

dients which in turn characterize the external flow conditions.  As 

to the energy containing range, the flow is determined by the mean 

quantities and is influenced by the geometry which contains the flow 

or around which the flow passes. Of course, this range cannot be 

universally determined, and moreover, there exists no equilibrium 

state for turbulent flow in this range. Now, if we assume that there 

exists a certain subrange between the inertial subrange and the energy- 

containing range, then we can expect that the turbulence spectra are 
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in a state of equilibrium but mod of universal form.  Consequently, 

it can be expected that in this subrange the turbulence is determined 

by the mean quantities and the turbulence parameters. 

^Firsty consider a subrange which is caused by the velocity 

field alone such as mean velocity.  Certainly dll/dz  and e  are 

the only parameters to determine the turbulence as can be seen from 

Tchen's solution (1953). ^Secor^K if this subrange is induced by the 

existence of thermal stratification, then based on the previous argu- 

ments, the turbulence in this "buoyancy subrange" must be determined 

by the mean quantities dT/dz , g/T , and the turbulent parameters 

e and N .  Note in the present arguments the significance of the 

second and higher order derivatives of U and T with respect to  z 

are negligible as compared to dU/dz  and dT/dz respectively.  The 

following paragraph gives the reason why the parameter C. must be 

introduced. 

In the buoyancy subrange the turbulence may be in equilibrium 

but not universal in character. Thus, for a given set of parameters, 

dT/dz , g/T ,  e  , and N of a certain turbulent flow, there exists 

a definite spectral form beqause of the equilibrium of the turbulence, 

However, the spectral form will vary from one turbulent flow to the 

other because the turbulence is not universal. Hence, we can see the 

necessity to introduce a new dimensionless parameter / C./ in order 

to characterize the spectral forms for varied flow cppditionq as 

related to the degree of interaction between the mean temperature 

field and temperature fluctuation field as described in Eq. 3.62.  Of 

course, the same argument can be applied toj cTl introduced in Eq. 3.61. 

In fact, Tchen's solutions (1953) are only two particular cases implied 

by Eq. 3.61.  

M 
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Q If/ C. i^ Renown for a given set of flow conditions, is^it 

possiJil£-te—find a si mi ]ajHty_ theory such that snme r.hqract eristic 

variables can form a set of dimensionless variables and the turbu- 

lence becomes quasL>universal in this subrange? Here the term "quasi- 

universal" means that for different flow conditions which can build 

up the same values of dimensionless parameters there is a unique 

spectral form corresponding to the associated C  .  Certainly, the 

characteristics to be quasi-universal in the buoyancy subrange of a 

stahbe-sfeearified flow was ignored and undetected by Bolgiano and 

Lumley since both of them devoted themselves to an effort to reach a 

universal solution for the^buoyancy subrange. Thus, the reason why 

some dimensionless parameters are presented in Eqs. 3.65, 3.74, 3.96, 

3.97 and 3.100 can be seen clearly. With these ideas in mind, it 

shouJ^i_jiat_-be--strrprising to get the hypothes_is_j£-2^-.£pr the modified 

hypotheses stafc_H i" gpf-^ion 3.5. 

Now, it is time to clarify why the parameter dU/dz does not 

appear in the hypothesis (2).  In Monin's paper (1965) it was noted 

that in the buoyancy subrange the dependence of spectra upon dT/dz 

only and ^oiAiPon_^dU/_dz seems unnatural. However, if dU/dz is 

introduced into hypothesis (2) in order to make this hypothesis com- 

plete, the simple solution as expressed in Eqs. 3.132 and 3.133 

cannot be obtained. However, the situation will not be so pessimis- 

tic since the dependence of the spectra upon dU/dz can be investi- 

gated numerically, although not analytically.  And in fact, the 

numerical investigation of the dependence of spectra upon dU/dz is 

certainly an improvement upon either Bolgiano's or Lumley-Shur's 

hypothesis.  Curve A in Fig.6 shows the effect of dU/dz on the 
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spectra clearly. If Fig. 2b is reviewed, the less steep part of the 

curve on the left side of the buoyancy subrange reflects the effects 

of the production of turbulent energy due to Reynolds stress or flux 

divergence. 

In case the unstable stratification is concerned , the velocity 

spectra shown in Fig. 3 show a hump at the frequency corresponding 

to the motion of Benard cell in the thermal convection (Ivanov and 

Ordanovich, 1967).  In the present study, this kind of hump due to 

unstable stratification can also be detected from Fig. 19, and it 

seems to the author that the left side of the hump of the spectra in 

Fig. 3 approaches to the +1 slope as shown in Fig. 19 from the theoret- 

ical consideration.  Unfortunately, Ivanov and Ordanovich did not 

mention any measurements of the temperature spectra corresponding to 

the flow conditions under which the velocity spectra were taken. 

Hence, generally speaking, when compared to the above stated measure- 

ments of spectra in the atmosphere, the theoretical study by the 

present method--generalized eddy-viscosity approximation--can give 

better features of turbulence structure of thermally stratified flows 

than any of the previous hypotheses of Bolgiano and Lumley in the 

case of stable stratification and than Monin's results (1962) on the 

spectra of unstably stratified flow. 
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Chapter V 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

In this theoretical investigation, j_t yiag gV-r.wr| f-ha-t- the 

proposed generalized eddy-viscosity approximation can predict features 

of turbulence spectra of thermally stratified turbulent shear flows 

better than any previous hypotheses- The present method gives a 

general solution in the buoyancy subrange, and the effects of the 

turbulent energy production in the buoyancy subrange are investigated 

numerically.  As a consequence of the application of the generalized 

eddy-viscosity approximation, modified hypotheses a^ Agtahl i <;hpH for 

the buoyancy subrange of a stably stratified flow as follows: 

(1)/ The buoyancy subrange of a stably stratified turbulent 

flow exists when the local production and local dissipation of turbu- 

lent energy are not important and when the flow conditions satisfy 

the criterion 

'dz1 
<< 1 or g  ldT| 

Y     ' dz ' (-H 
1/2 

which means that the internal frequency (N/e)   g/T, is much greater 

-— -j— 

(2) 1 In the buoyancy subrange, the spectra of turbulent energy 

and temperature fluctuation are determined bv N , e , g/T , dT/dz , 

k , and C. completely, and are expressed in forms 

8-4C, 
C.-12 
4 

4+C. 
fjCs, rT, rlf c4)k 
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f2is>vT,v1,c4n 

respectively.  In these expressions, 

-2+C.  2-C. . 
r = N  4 E  

4 JL •2+C4 ,dT ,1"C4 dT 
'dz. dz. 

•1+C. 1-C 
r, = N. 

•l+C.     1-C. 
4   ^T       4 

I—I 'dz J c. > o 
4 

oo > s > 2 

i?* " 2N • a* 
dT     dT 

:  dz 

and f  and  £_  are numerical variables.  Clearly, both the solution 

of Bolgiano and the solution of Lumley-Shur are contained in these 

forms when C. = 1 and C. •* 0 respectively. 

As to the unstably stratified flow, the velocity spectrum 

exhibits hump in the buoyancy subrange. On the left side of this 

hump the velocity spectrum approaches a +1 slope and the temperature 

spectrum shows a -_5 slope. 

•—     Before the generalized eddy-viscosity approximation is 

introduced, the basic assumption used to derive a simpler set of 

spectral equations is that the flow is locally homogeneous.  In other 

words, in the derivation of the spectral equations the terms due to 

•in^ftrooppnpify of the flow field have been discarded. Thus, for better 

understanding of the effects due to the inhomogeneity it would be 

constructive to include these terms in the spectral equations. This 
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may be important in the case of free convection and inversion layer 

flows because the divergences of energy flux and temperature inhomo- 

geneity play an important role in the balance of the thermal turbu- 

lence energy budget equation. Thus, for further research on turbulence 

spectra of thermally stratified flows, these effects must be c^rifii dfecad 

so that the spectral forms in \he  qnhr^nge where the production and 

diffusion of turbulent energy play the principal role in determining 

the turbulent structure can be investigated. 

I 

On the other hand, the fruitful results obtained up to now 

may induce some further advanced research in applied engineering 

problems such as turbulent diffusion related to air pollution, 

wave propagation in the atmosphere, and high speed aircraft design. 

For example, in his paper, Tchen (1959) did not consider the effects 

of stratification on the Hispprsirm nf <;mnkp frniri ^ pni.nt source 

although the role of the Reynolds stresses in the momentum equations 

was studied extensively in order to clarify the internal interaction 

of the diffusing particles.  In the classical theory nf thp scattering 

of sound waves (Tatarski, 1961), the vertical heat flux spectrum is 

assumed to be zero in order to simplify the problem; certainly the 

vertical heat flux spectrum is not zero in the case of stratified 

flows. As to the high speed aircraft design, the airplane frequency- 

response function can predict the associated response spectrum of 

airplane vibration caused by turbulence (Steiner and Pratt, 1967). 
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Fig. 4 Asymptotic velocity and tempera±ure spectra of stably 
stratified flows varied as a function of C, 
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Fig. 19 Velocity and temperature spectra of unstably 
stratified flows varied as a function"~of r 
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Fig. 20 Velocity and temperature spectra of unstably 
stratified flows varied as a function"~of~ r 
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Fig. 21 Velocity and temperature spectra of unstably 
stratified flows varied as a function of" C 
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Fig. 24 Turbulence spectrum of vertical heat flux of 
unstably stratified flow varied as a function 
of C„ 
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Fig. 27 Velocity and temperature spectra of {stably 
stratified flows varied as a function ot 
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Fig. 30 Velocity and temperature spectra of thermally 
stratified viscous shear flows 
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