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AN EXACT LOWER CONFIDENCE BOUND FOR THE RELIABILITY OF A SERIES SYSTEM 

WHERE EACH COMPONENT HAS AN EXPONENTIAL TIME TO 

FAILURE DISTRIBUTION 

by 

Tapas K. Sarkar 

1. Introduction and Summary 

Let us consider a complex system consisting of k components. The 

components are connected in series so that the system fails if at least 

one component fails. Let T, represent the time to failure- of the i 

component.  The reliability of the system at time t is given by 

(1) R(t) = Pf^ > t,T2 > t,...,Tk > t]. 

Ulis implies that    T,     the time to failure of the system,  is given by 

(2) T=      min        [T. ]    and   R(t) = P[T>t]. 
i=l,...,k 

Let us assume that    T.   has an exponential distribution with parameter 

\.     so that 

-\. t 
(3) P^ > t) = e        ,  i  = l,...,k. 

Initially,  let us assume that    \> - • • f\    are independently distributed. 

Then from (l) and (2), 

-(\ +...+\Jt 
(10 R(t) = P[T>t] = e      1 ^    , 

so that the time to failure of the  system has an exponential distribution 

with parameter    X^ + Xg + ... + X^.     In general,    \ ,... ,K     will not be 
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known.     We want  to  find a lower  confidence bound for    R(t). 

We assume  that  the  system as a whole is either impossible or too 

expensive  to test.     Hence,   no data is available for    T.     However,  one can 

test each individual component and observations are available for    T.   for 

each    i = l,...,k.     We want our confidence bound to be based on these latter 

observations. 

Kraemer  [7]  has  given  two methods  for obtaining the lower confidence 

bound of the above  reliability.     However,  her methods  do not give  an exact 

lower confidence bound.     The method proposed by us will give an exact lower 

confidence bound.     It will also be  shown that our method works under  cer- 

tain circumstances even when    T-,,...,!,   are  not independently distributed. 

We have given numerical examples to compare Kraemer's first method 

with ours.    We have also compared our lower confidence bound with that 

given by maximum-likelihood estimates. 

Kraemer's second method is based on a version of Tchebyshev's  in- 

equality.    It appears to us that in most cases it is inferior to Kraemer's 

first method.    Accordingly,  we will not mention it any further. 

Lentner and Buehler  [8]  have used the  Lehmann-Scheffe  theory  to ob- 

tain a uniformly most powerful unbiased test  for the hypothesis    \,   + \p- 

0.     Inverting the  test they obtained an exact confidence bound for  the 

reliability of the system.     The method has been extended to the case  of 

k    components by El Mawaziny [1].     Unfortunately,   the methods are  com- 

plicated and even in  the  case of    k - 2    and very small  sample  sizes one 

has to  solve equations by trial and error  to  obtain the  confidence bounds 

for    0.     For larger values of    k    and/or for moderate  sample  sizes 

elaborate computer programming is required.     In fact,  El Mawaziny and 
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Buehler [2] derived an approximate method when there are k(k > 2) 

components because of the difficulty in computation for their exact meth- 

ods.  It will be shown below that our method is very easy to compute and 

can be easily worked out with a desk calculator. The methods of [8] and 

[l] are applicable only when the components are independent. As will be 

shown, our method also works for dependent components. 

El Mawaziny and Buehler have used a theorem of R. von Mises to 

obtain large sample approximations of the methods of [8] and [1].  Their 

method depends on asymptotic expansions of certain quantities.  It turns 

out that if the first two terms of the expansions are used (and the 

higher order terms are ignored), the confidence bound of reliability is 

the same as that given by the maximum-likelihood method.  The approxima- 

tion can be improved by using higher order terms, but the degree of 

improvement is not known. 

2.  The Method 

To illustrate the method,  let us assume that   k = 2. 

Let    T.  be independent exponentially distributed random variables 

with parameters    X..,    i = 1,2.     Let    T = mi^T,,^).     Then 

P(T > t) = I,{11 > t, T2 > t) = e 
■(\1+K2)t 

Hence,    T    is exponentially distributed with parameter    (\:.+X2). 

Let us assume that n. similar components of type i are on test 

simultaneously. The test is without replacement so that as one compo- 

nent fails it is removed from test and is not replaced.    We  terminate 

■ 
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the test as  soon as    r.   among    n.   have failed.     This method is known in 

the literature as type II censoring of    r.   out of    n.  without replace- 

ment. 

Let    X/-, \ < X/oN <  . . .  < X/     v    be the order statistics of the times 
(1) (2) (r^ 

to failure of the components of the first type, and    Y/,\ <  5f/p\ <  ... 

< Y/     \ he the same for the components of the second type.    For our 

ir'thod we require that    r,   = rp.    Let    r = min(r1,rp).    Hence, we work 

with termination points    r    for each component.    Kraemer's method or 

the methods of  [1],   [2],  and i.8], however,  do not require this restric- 

tion.    For simplicity,  let us assume  that    n,   = n^ = n.    As will be evi- 

dent,  there is no loss of generality in making this second assumption. 

Let 

- 

(5) 

Di = Vr 
DJ = X(J) " X(J-I) 

,     j  = 2,...,r. 

bj  = (n-j+l)DJ        ,     j  = l,...,r. 

Epstein and Sobel  [3],  and Epstein  [k] have shown that    &,,...,&    are 

independently,  identically distributed.     The distribution is exponential 

with parameter    K. .    Similarly, let 

(6) 

El = ^l)' 

EJ = Y
(J) " Y(J-i)' J =2"-"r- 

Tj  = (n-j+l)Ej ,  j  = l,...,r. 

Then    T  ,...,T      are independently exponentially distributed with parameter 
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X.p.    Also,     T. ,...,T      are independent of    6   ,. .. ,&   . 

Let 

(7) z    = inln(6 ^Tj). 

'Jhen, as we have already stated,    z   ,...,z    are independently exponen- 

tially distributed with parameter    k    + \p-    Let 

(8) rV = E z   . 
J=l J 

It is well known that    2rV(\1+A.p)    has chi-square distribution with    2r 

2 
degrees of freedom.     Let    x    denote a random variable distributed as chi- 

p 
square with    2r    degrees of freedom.     Let   yu  (cc)    be such that 

(9) 

Hence, 

or 

P[X2< 4.(00] = 1-a. 

P[2rV(\1+\2) < )|r(a)] = 1- 

4r^ P[\1+\2 < -^r-] = 1-a 

a 

and, since    R(t) = e 

fixed   t,    we get 

-(\1+\2)t 
is a decreasing function of    \    + A.p    for 

(10) 
•(\ +\   )t r )| (a) . 

P[e       1    -    >exp|-t   •  -^v-j]  = l-a. 

This gives an exact lOO(l-a) per cent lower confidence bound on the reli- 

ability of the system at time    t    when the system consists of two compo- 

nents in series and the time to failure distribution of each component is 

exponential and the  two exponentials are independent. 

It is obvious that the above method does not require the assumption 

-- ■ mmmmmmm 
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that n    = ru = n.     If    n      and    np    are unequal,  then in (5) and. (6)  the 

definition of    &. and    T   will be  changed as follows; 
J J 

Bj = (n1-j+l)DJ 

(11) (   j  .-  1,2,...,r. 

The rest of the theory goes through and (7), (8), (9), and (lO) hold 

with the new definitions of &., t., and z.. 
J       J J 

3.    Extensions of the Method 

A.    When the number of components is larger than 2. 

Let us consider a system consisting of    k    components in series.     Let 

T,  be  the time to failure of the i      component.    Assume that    T, ,Tp,...,T, 

are independent exponentially distributed random variables having parameters 

\1,\2,...,\k    respectively. 

Let    T = min(T1,.. .,Tk).     Then 

P(T > t) - P(T1>  t,...,Tk > t). 

Since     T, ,Tp,. . . ,1,     are independent, 

P(T > t) = ?(?,   > t)   ...   P(Tk > t) 

- e 

Hence,     T    is exponentially distributed with parameter    \    +  ...  + \.   = \, 1 x. 

say. 

Suppose we have    n    components of each  type on test,  and let us 

perform type II  censoring of    r    out of    n    without replacement.     Let 
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our data consist of    x\  I < xS^i < • 

tion 2, for   i = 1,2,..,,k, let 

< X/l,    i = l,....k.    As in sec- 

D(i)  _ x(i) 

(12) (i)        (1)        (i) 
DJ       " X(J)      ^M)'    J       2'--,'r' 

I 
I 
I 
H 
11 
fl 
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(13) 

6^  = (n-J+l)D^)    ,    j  = l,...,r, 

z    =        min        by'  ,    j  = l,...,r. 
J       i=l,...,k    J 

Z.,...,Z    are independently exponentially distributed with parameter    \. 
J. r 

Let 

(1*0 rV =    E z 
i=l 

ISien   2rV\   has chi-square distribution with    2r    degrees of freedom,  and 

(15) P[e      > exp 4(°) l-^l>- l-a. 

TOXB gives us an exact lOO(l-a) per cent lower confidence bound for the 

reliability of this system at time    t. 

If    n, ,...,n.     are different, then the modification proposed in the 

last paragraph of section 2 applies. 

B.    When   k = 2    and the distributions are not independent. 

Marshall and Olkin [9] and Harris [6] have considered the following 

model of a bivariate exponential distribution. 

Let us consider 3 independent series of events happening in time. 
f   \ 

Let us consider the  series    i,  i = 1,2,3-     Let    IT      represent the interval 

between the n      and the    (n-l)      event of type i.    We assume that    U. 

--  -'--iiih 
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has exponential distribution with parameter    K. ,  independent of    n.    With 

an arbitrary time origin let us assume that    U;     ,  the time to the first 

event of type    i,    has the same distribution as mentioned above.    Further, 

let us assume that for fixed    i,     the distributions of    U. are independ- 

ent for all    n.    Hence, we have three independent Poisson series of events 

and    U.     has distribution    exp(\.),    i  = 1,2,3    and    U,,  U0, U    are 
1 1 x        d        "i 

mutually independent. 
I 

r Let us now consider a system with two components in series.     Let us 
, 

assume that component 1 fails if either    U,    or    LL    happens,  and compo- 
•»• 

nent 2 fails if either    Up    or    LL    happens.    The system fails if at least 

one  component fails. 

' th k Let T., i = 1,2, be the time to failure of the i  component. 

Then T, = mi^U-^U ), T2 = min(U2,U ) and 

« 

(16) P[T1 > s,   T2 > t] = P[U1> s, U2> t,  U3>max(s,t)] 

= exp[-\1s - \?t - \_ max(s,t)]. 

■ 

This defines the distribution of a bivariate exponential distribution. 

■• The reliability of the system at time    t    is 

i 

I 
I 

I 

(17) R(t) = P(T1> t,  T2> t) = exp[-(\1 + \2 + \ )t], 

This  shows that the time to failure of the system has exponential distribu- 

1 tion with parameter    X.,  + X_ + X_.    Also,  the marginal  distributions of 

T,   and    Tp are exponential with parameters    \,  + X^    and    \p + \  , 

respectively.     T,   and   Tp are not independently distributed. 

Let    T = min^,^).     Then 

(18) P(T > t)  = Pd^ t,   T2> t) = exp[-(\1 + \2 + \3)t]. 

8 
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(18) is really the same as (l?). 

Now suppose we have the same data as in section 2. We define 6., 

T , z ,    and rV as in (5), (6), (?), and (3). Then z.^...^ are 

Independently exponentially distributed with parameter >., + \2 + K^. 

With this modification we get that 2rV(\, + \2 + >0 has chi-square 

distribution with 2r degrees of freedom and, as in (9) and (10), we get 

(19) P[e  ! 2 3 > exp ) t . ^£__ J ] = i^. 

This gives an exact lOO(l-a) per cent lower confidence bound for R(t). 

When n. and Op  are different, we proceed as in the last part of 

section 2. 

C. As In case B, but k > 2. 

The bivariate exponential distribution has been generalized by 

Marshall and Olkin [9]  to multivariate exponential distribution. 

Let us consider a system with   k    components in series.    Let    S 

denote the set of vectors    (s, ,...,s, ),    where each    s   = 0    or    1, but 

(s,,...,s. ) / (0,...,0).    For any vector    s e S, max(x.   3.)    is the 

maximum of the    x. 's    for which    s.   = 1.     The multivariate exponential 

distribution is defined as 

(20) P(T1 > x^...,^ > \) = exP[- S \s max(xi si)] 
seS 

Here    T ,...,T.   denote the time to failure of components    l,...,k.     The 

marginal distribution of any subset of    T, ,...,Tk is again a multivariate 

exponential distribution and, in particular,  tne one-dimensional marginal 

distributions are exponential and are not independent.    As in case B, 

we can generate the distribution in (20) by considering   2 -1    independent 

9 
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series of Poisson events and the associated failures of components. For 

example, for three components we need 7 series. The associated failures 

are 

s shock component 

1 

parameter 

1 1 ^1 

2 2 2 ^2 

3 3 3 X3 
h 1+ 1,2 H 
5 5 1,3 S 
6 6 2,3 ^6 

7 7 1,2,3 K 

The reliability of the  system at time    t    is given by 

(21) R(t) = exp[- E \    •   t], 
seS 

As in case A, if we have data for the    k    components and define    5,     , 

J  = 1, .(i) ,r,    i = l,...,k,     then    z    = min    Si     ,    J  = 1, •••,*", has 
J      i=l,...,k J 

exponential distribution with parameter \ = L \  and the method 
seS S 

proposed under case A, section 3, is applicable. 

D. When type II censoring with replacement. 

Let us suppose that n components of a type are on test and we 

replace each failed component immediately by a new one. We stop as soon 

as r failures are obtained. This Is termed in the literature as type II 

censoring of r out of n with replacement. Let D. be defined as in 
J 

(5). Let us define 

(22) 6 = nD , j = l,...,r. 

10 
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Epstein [1^] has shown that   &,,... ,6    are independently exponentially 

distributed with the  same distribution as the parent population.    With 

this new definition of    &. (and    T., 6.     ),  the methods of sections 2 and 
J      J  J 

3 go through and we can obtain an exact lOO(l-a) per cent lower confidence 

bound for the reliability of the system. As before, the method works when 

n.,...,n. are not all equal. 

k.    Confidence Bounds Based on Maximum Likelihood Estimates 

We will consider case A of section 3 and for illustration we will 

take k = 2. 

Let us consider component    i    and let the order statistics obtained 

by type II censoring of    r    out of    n    without replacement be denoted by 

x(i)<x(i)< <x(i)      i       ip X(l) < X(2) < '" < X(r)'    1 " 1>2- 

Using the transformation given in (5)^  the likelihood of the sample is 

proportional to 

L =\ri expt-^B^ +  ...  + B^)],    i = 1,2, 

where    B1[     ,...,6        are independently identically distributed as 

exponential with parameter   \. .    Hence,   the maximum likelihood estimate 

of    \.     is given by 

(23) 

Let 

{2k) 

\>   = 
(i) 

i  = 1,2, 

I    6 
J=l 

5=    £6^, 
J=l J 

T =    E   S (2) 

11 
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Then    &    and    T    have gamma distributions with density functions 

xr gr-l^B 

f(5) =  (r^),     ,    B > 0, ^ > 0, 

(25) 

Now, 

. r    r-1      2 \2  T      e 
g(T)  =       ^^^ ,     T > 0,  K2> 0. 

d^log L 

öx2 "2   ' 1,2. 

-— is,  in a sense,   the  "asymptotic variance" of    K..     However,  since 
p A d i vf \. 
i i 

\,   is not known, we replace    —   by    — . i > r r      J     r 

Definition;    Let    X    be a random variable depending on    n    and    let 

X    be any other random variable.    Then we define 

X   * X    as    n -» • n 

if,  as    n -» oo    the  cumulative  distribution function of    X    tends  to  the 
n 

cumulative distribution function of    X    at the points of continuity of 
P 

the latter function.    Also, we  define    X   -» X    if,  given any    e > 0, 

P(|X -X|  > €) _» 0    as    n -► ». 

We  shall prove 

Theorem k.l: 

,1      be  two independent random samples Let    61,.-.>&r    and    T^...,- 

from exponential  distributions with parameters    \      and    X ,   respectively. 

Then 

12 
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^1) (2) 
where    6 =    E &;   ;    and    T =    I. b)   '. 

i=l i i=l 1 

We will require the following theorem to prove Theorem k.l: 

Theorem ^.2: 

Suppose    (x...,. • ■ ,x. ,,   | = l,...,r)    is a sample from a k-dimensional 

distribution with finite means    f n. ]    and positive definite covariance 

matrix    Ija.,]!,  i,J = l,...,k.     Let    g(x1,...,xk)    be a function which 

possesses first derivatives    g»- = g.,   say, i = l,...,k,  at all points 

in some neighborhood of    (n-,,-..,^),    and let    g.   = g {|i ,... j^). 

Bien if at least one of the    g.     is ^ 0, 

//rfgC^,...,^) - gC^,...,^)] 

E 
1 
I 
I 
I 
I 
i 

-» N[0,        Z    a, .g. g,]      as    r -♦ ». 
i,j=l      J      J 

Proof: See [l.'j,p. 260, section 9.3.1a], 

Proof of Theorem k.l: 

Let 5 = 6/r, T = x/r. From what we are given. 

E(6i) = r * v(5i) = 4"' 

E^^6v(Tj)e^' 
Cov(6i,TJ) = 0; i,j = l,...,r. 

13 
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Consider    g(x,y) =  *■  
/I        1 

If x       y 

Then 

=1^ 1 1 ' x= r 'y= r 
772 ,2vL/2 
(\1+\2) 

/ 0,  + », 

and 

4-% 1        1 ' x= r »^ r Xl        X2 

7~2 ,2^1/2 
/ 0,  + 

Hence, by Theorem 4.2,  as    r -» <», 

^[g(6j)  - g(i     i )] 
h  x2 

Now 

and 

^ N[0,        S   a. .g
0g0] 

g(6j)  = 
r      r      .     . 
^ + T " xi-x2 

/ 2        2 /r        r 

g(^ , ^ ) = 0, 
h   K2 

- 00] 

,,2    Pv   T    2 
(^2) 

Hence, 

v/?[g(6,T)  - g(i   i )] 
\1 \2 

r      r 
& + T " Xl"X2 

/r        r 
^   N(0,1), as    r -♦ «, 

1)+ 

mmm 
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and the theorem is proved. 

Theorem k.l  gives us an asymptotically exact confidence interval for the 

reliability of the system.  Let k he such that 

(."
ka  1  -l/2t2^  ^ J      e '   dt = a. 

Then 

r  r 

P[F  T" 1"2 > - kj = l-a, 

I r   r 
(26) 

(27) 

P[\ i+X2<i + i + kayi2 + £2] = 1.^ 

-(\1+\2)t 
or  "^r^2;\ f wr      r      .        /r        r" N \ . P[e >exp[-t(F + T + k^-2+-2)} ] = l-a. 

(2?) gives the lOO(l-a) per cent lover confidence hound for the reliability. 

The hound is exact if    r -» <».     The method of this section generalizes when 

the number of components in series is more than 2. 

Since this confidence interval (l-.w;..' ionfldence bound,  l) io 

based on the maximum likelihood estimate,  for large  samples it is the 

smallest confidence interval.     It is not known how good this bound is for 

small samples. 

We will make come comparison of this method with the method of 

section 2. 

When the number of items on test for each component is different, 

the remark at the end of section 2 applies. 

5.    Kraemer's Method [7] 

For the case A of section 1, Kraemer's first method is as follows-. 

y 
15 
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Let    a.   = -—,    i s 1,2.....k. 
i 

r. 

^-I.^ol^Vi)^)11^' 

2r a 
     is distributed as chi-square with   2r.     degrees of freedom. 

a. i 

Let    A = min        (r.S. ).     Then 
ii 

1 — J, ■ ^z • . . . ,K 

-(\+...+\,)t f      ^2(r+...+rk) 
P[e       1 ^    > exp  -t —   1 k 

(a) 

2A 1] > 1-a, 

where,  if    U    is a chi-sq.uare variable with    2(r,+  ...  + r.)  degrees 

2 
of freedom,   then Aot)    is defined as 

,[U<^(r1+...  +rk)^^al-a- 

^(r^ ... + lk), 

2 

6.     A Comparison of the Methods 

We will compare the methods of sections 2, h,  and 5 for a system with 

two independent components in series.     The  time to failure of each compo- 

nent is distributed exponentially with parameter    \.,    i = 1,2.     Ihe 

comparison will be based on the expected values of the upper confidence 

bounds for \,   + \p    under each method.     Since the left-hand end point is 

zero,  this gives the expected length of the confidence interval for    ^  + 

Xp.    Since the reliability is a (strictly) monotone function of    X...   + \p, 

this furnishes a valid comparison. 

Exact Method of Section 2 

Xpr(Q?) 
= l-a. 

16 
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Since    z.   are independent,   identical exponential variables with param- 

eter    A.,  + \?,    by (8)    rV    has gamma distribution and 

■ (28) Et^-j  = ^— E[1i—] = ^— . ^rx- 

i'l" 

where 

E( 7—) = Jo   7 

ir    r 
^    -(\1+\2)x 

r 

(\1+\0)
x   x1"x e 
  dx 

ox" ' (r-1): 

D 
X 'd    [wo      '    1      Ü' 

"    r-1    Jo (r-2) 

.         .              r.     x   ^-1    r-2    -(V^)X 
Xl + K2   n»    (VX2^ X        I  ^ 

-= r=- ,    provided    r > 2, 

Kraemer's Method of Section ^ 

P[xi+ x2 < ~2r~] ^ 1"a' 

where 

A = min(ra   ,  ra2) 

= min[^- . 2^, ^i-.  ^2X2]. 

Since    2ra. \.  are  distributed as    x     with    2r    degrees of freedom and 

are independent for    i = 1,2, 

P(A > x)  = P(2ra1\1 > 2^)  P(2ra2\2 > 2K2x) 

r P* 1 r-1   -U,    -.r poo 1 r-1   -V       , 

= [JI^  (7^7: u    e   du][Jl2x(7^T: v    e   dv] 

Hence,  the probability density function of    A    is given by 

17 
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f(x) = ^ 

,r r-1      1 ,r r-1      2 
\,X      e \_v      e 

(r-1): Jx        (r-1)! 
dv 

. r r-1      2 .r r-1      1 k2X      e r    V l_ 
+      (r-1): -'x        (r-1): 

dv,    x > 0. 

Integrating by parts, 

, r r-1       1 -,,/■,      \S \,x      e r-1    -\?x (\pX; 
f(x)=   '(r-i):        ^ v ' 3=0 

.r r-1 ~ 2X      -,      ,       r.      \t \pX      e r-1    -\ x (^^x) 

Hence, 

s; 

,a9) Mi^zb^'imB'-^v^ >■>.*■ (r-i)|s: (v^)' 
and 

.X^a)        Xi|r(0') r-1 
r s        r s 

(30) E(^£_)=J2_    t   $$fr   l*        I1.,,    Provided    r>2 

s=o v        (\,+\0) (^2) 

Substituting 6 = p cos 0, T = p sin 0, and using (25)^ we get 

l r V& +t 
El /^ ^1 • E[    BT 

Vr (X.,\0)
r(2r-2):   M ,   Q ,  Q\ y  v ■1-.2 .       C71'   (cos 0 sin 0) 

r-2 d0 
T^Tn7Tv--\o  (,iC08e + ,2Sine)2r-i  ' 

provided r > 2. 
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Asymptotic Method of Section h 

Using (25), 

(31) 

P[x1 + ^<| + f+k    ljy£2] 

E(| + T) = ?rr^i^2)' 

l-o. 
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(Put    t = tan |) 

77 (^)r(2r-2):      2r-l ^^^2^2^ 
(r-l)!  (r-1):      \2r T   Jo /     . x2r-l.y,   7v2r-l (a+t) (t-t) 

where 

a= H + ^f-r^0' 

We will "break the integrand into partial fractions: 

tr-2(i-t2)r-W)2 = 
2^1 A,        2r-l      B. 

+   Z 
(a+t)2r"1(b-t)2r"1 " i=l    (a+t)1      j=l    (h-t)J ' 

or 

TZ    (r-2) (-l)S[tr+2s-2 + 2tr+2s + t
r+2s+2] 

s=o 

2r-l 
=    E   A.(a+t)2r"1"i(l3-t)2r"1 

t«l 

+    I'    B.(b.t)2r-1-J(a+t)2r"1, 
J=l      J 

where A's and B's are independent of t. 

We have l4-r-2 unknowns. We will differentiate n times 

(n * 0,1,.. .,2r-2) with respect to t and put t = -a and t = b. 

This will give us two systems of 2r-l equations each. Each system is 

triangular and we can easily solve sequentially for A« -i ^Bp ,,...,A.. ^B, 

For the n  differentiation the general pair of equations is 

19 
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and 

ri2 (r;2) (-i)s [(r+2
n
s-2)(-ar2s-2-n 

s=o 

+ 2(r;2s)(-a)r<-2s-n + (^^X-a.)"25*2-»] 

k=o 

s=o 

_/r+2sN, r+2s-n      /r+2s+2v, r+2s+2-n. 
+ 2(    n  )b + (     n       )t ] 

__ /2r-lw    , N2r-l-(n-k)/   n Nk 
= ^^r-l-k ^ n-k)(a+b) ("^ 

k=o 

with the proviso that    (   ) =0    if    p < q.     After solving for A's and B's, 

we get,  using (31), 

-. ., 

(32) E[* + 
r      ,      /r      r 
T aV&2      T2 

] 

7? (\1X2)
r(2r.2);  2r-1 

,  ^r-l 
(r-l)J  (r-1): \^ 

['C rk t-hi ■ rt^T) + Ailog (^) 
i=2 a (a+1) 

B, 
2r-3.   "J    /       1 1   \   «    -,      / "b \i 

j=2 

for    r > 2, 

We will now make  some numerical comparisons between (28),  (30),  and 

(32). 

20 
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Numerical Comparisons 

"Bie following table gives some numerical values of    E    (upper 95 per 

cent confidence bound for    \    + \2)    based on (28),   (30), and (32)-     In 

(30) we have used tables of cumulative binomial  distribution ac  follows: 

Let 

Then 

B(n,k,p) =    Z OpS(l-p)n-S. 
s=k s 

r    s        r    s 
r"1 ^r-hs-2); h k2 + X2 h 

%r-l):s!      /,    %   vr+s-1 

K  r-1 

,  r >2 

= r-l    ^ ^ r-2  ,KK+hJ        ^iK+^l s-o 12 12 2 

+ ?T   Z   ^  r-2  ^  ^^T+kl^        ^VhT"^ 
S=0 12 L     d 

^ t2 (2r2)(r^)3 <rs-)2r-2-s 
r
^ s=r-l      s        Xl+X2        \*X2 

r^ s=r-l        S      Xl+K2        \*\ 

T B(2r-2,r-l, ^) 

In (32), instead of using the partial fraction expansion we have performed 

numerical integration of 

f»"'2        (cos 9 sin 9)r"2d9 
J ( 

(\    oos 6 + X    sin e) 
2r-l   * 

• 

ii 
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We have used Simpson's rule after subdividing the interval    [0,n/2] 

into ten equal parts. 

\ \0 r E (exact) E (Kraeraer) E (asymptotic) 

2             2.5        5 10.30 11.37 Ö.72 

10 7.85 8.40 6.90 

20 6.60 6.98 * 

30 6.14 6.48 # 

1             5         5 13-73 19.66 12.20 

10 10.47 15.49 10.47 

20 8.80 13.41 » 

30 8.18 12.64 * 

\            \        5 U.58\ 5.00X 3.87\ 

10 3-49X 3.6TX 3.O6X 

20 2.9k\ 3.03K # 

30 2.73^ 2.79\ * 

For larger values of    r    the error involved in approximate integra- 

tion becomes large and hence these values have not been given. 

As has been pointed out before^  the above table also gives a valid 

comparison between the confidence intervals of    R(t)    as given by the 

different methods. 

In the range of    a    that we are interested in (e.g.,    1-a = -90, 

.95^ etc),  it is expected that the exact method will give a shorter 

confidence interval than  the Kraemer method.  Since Kraeraer's method is an 
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approximate one,  in general,  for    \      and    \      widely different  (as in 

the second set of examples),  the exact method is expected to be signif- 

icantly superior to Kraemer's.    This happens because the error of ap- 

proximation in her method exceeds the precision obtained by using a 

larger number of degrees of freedom in the chi-square distribution. 

When    \,     and    \      are close (as in the first set of examples),   some- 

times Kraemer's method may give a better confidence interval  than the 

exact method;  but the difference between the two methods is not expected 

to be large.    For very small values of    a (e.g.,  l-Of _  .99.   '999)  etc   ), 

there is some numerical evidence that sometimes Kraemer's method is 

slightly better than the exact method when    \    - X5-    It may be pointed 

out that for    \,   = \9,the difference between the expected value of the 

upper confidence bound for    A...  + \p given by Kraemer's method, and the 

expected value as given by the exact method,  goes to zero as    r    goes  to 

Infinity. 

Kraemer's method has one advantage over the exact method.     The for- 

mer is applicable even when the termination points    (r. )    for the compo- 

nents are different.    For the exact method some data have  to be  ignored 

to equalize the termination points. 

For large    r    it is expected that the asymptotic method will  be bet- 

ter than the exact method.    Without a knowledge of the rate of convergence 

of the exact and asymptotic methods,  it is not possible to assert to any 

degree of precision how  the two methods will compare.    However,  it is 

expected that the exact method will compare  favorably with  the  asymptotic 

method for large    r. 

Since  the methods of [1] and [8]  are based on inverting uniformly 

most powerful unbiased tests,  they may give better lower confidence  bound? 
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than those given by the method proposed in this paper.  This is especially- 

true for small values of r. For large values of r the confidence bounds 

given in [1] and [8J will tend to the bounds given by the method of [2], 

and will te the same as those given by the asymptotic method. As we have 

already pointed out, the methods of [1] and [8] are computationally 

complicated even for the case of two components, and work only when the 

components are independent. In fact, the computational difficulties 

motivated the authors to get (approximately) asymptotic results in their 

subsequent joint paper [2].  These three methods, however, do not require 

the same termination points for every component. 

il 
When    \p -» 0,   the exact method and the asymptotic method proposed 

in this paper can be easily compared.    If    v, -♦ 0,    then we are reduced 

to the case of a single component with exponential time to failure  distribu- 

tion.     In this case,    T. for all    i,     and 

(10) reduces to 

z.   =min(6.,T,)=&. 
i v  i'  i'        i 

rV =    E &, 
i=l 

Pfe        > exp(-t.      2rV  )] = 1-a , 

the well-known result about a single component. 

Let    \2 -» 0    in  (27)-     Then 

Pfe    l>exp{-t(|+kcy4)|]  = 1-a. 

Following Halperin  [5], 

v/rCRCt)  - R(t))au^N(0,l). 

2U 



.- .. 

where 

a(u) = " R(t)logR(t)' 

-X,t 
R(t) = e  1 

1   r 

If we replace a  by a = -   , then the lower confidence 
U    R(t)logR(t) 

bound for R(t) becomes 

-(-^--TH 
&  P  1 

By the weak law of large numbers (see [10, p. 92]), — -* -  as 
r     1 r P 

r -»•. Then    r -♦ *, and 
o    i I 

i 
Hence, asymptotically exp(- — ) and 1 - — are the 

& " /-  6 

k^t V? k^t ^r 
„,.....  ., are the !-.aine, 

5 o 

This checks our asymptotic result for a single component against the 

well-known result as given above. 

Finally, it is easily shown that the exact lower confidence bound 

converges in probability to the true reliability as r approaches infinity 

From (10) we note that the lower confidence bound for R(t) is 

exp|-t'  p — >.  By (l8), V is the arithmetic average of independent 

identically distributed random variables. Hence, by the weak law of 

large numbers, 

V -♦ -—r— as r -» a». 

Also, p 

—    -»1 as r -» <» . 
2r 
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Hence,  as    r 

expi 
Xg^a) ] p      -(X1+\2)t 

2rV 
=R(t), 
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