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AN EXACT LOWER CONFIDENCE BOUND FOR THE RELIABILITY OF A SERIES SYSTEM
WHERE EACH COMPONENT HAS AN EXPONENTIAL TIME TO

FAILURE DISTRIBUTION

by

Tapas K. Sarkar

1. Introduction and Summary

Let us consider a complex system consisting of k components. The
components are connected in series so that the system fails if at least
one component fails. Let Ti represent the time to failurr: of the ith

component. The reliability of the system at time t 1s given by
(1) R(t) = P[T, > t,T, > tye. T > t].

This implies that T, the time to failure of the system, is given by

(2) T= min [Ti] and R(t) = P[T > t].
i=1,...,k
Let us assume that Ti has an exponential distribution with parameter
)‘1 so that
-kit
(3) P(Ti>t)=e , 1 =1,...,k.

Initially, let us assume that Tl" ¢ OIL

% are independently distributed.

Then from (1) and (2),
(M4 4N )t
(%) R(t) = Blr> e e LK
so that the time to failure of the system has an exponential distribution

with parameter }‘1 + >\2 + ... + )‘k In genersal, >‘l""’)‘k will not be
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known. We want to find a lower confidence bound for R(t).

We assume that the system as a whole is either impossible or too
expensive to test. Hence, no data is available for T. However, one can
test each individual component and observations are available for Ti for l

each 1 =1,...,k. We want our confidence bound to be based on these latter
observations.

Kraemer [7] has given two methods for obteining the lower confidence
bound of the above reliability. However, her methods do not give an exact
lower confidence bound. The method proposed by us will give an exact lower
confidence bound. It will also be shown that our method works under cer-
tain circumstances even when Tl""’Tk are not independently distributed.

We have given numerical examples to compare Kraemer's first method
with ours. We have also compared our lower confidence bound with that
given by maximum-likelihood estimates.

Kraemer's second method is based on & version of Tchebyshev's in-
equality. It appears to us that in most cases it is inferior to Kraemer's
first method. Accordingly, we will not mention it any further.

Lentner and Buehler [8] have used the Lehmann-Scheffé theory to ob-
tain a uniformly most powerful unbiased test for the hypothesis xl + Azz
@. Inverting the test they obtained an exact confidence bound for the
reliability of the system. The method has been extended to the case of
k components by El Mawaziny [1]. Unfortunately, the methods are com-
plicated and even in the case of Kk = 2 and very small sample sizes one
has to solve equations by trial and error to cbtain the confidence bounds
for @. For larger valuss of k and/or for moderate sample sizes

elaborate computer programming is required. In fact, E1 Mawaziny and
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Buehler [2] derived an approximate method when there are k(k > 2)
components because of the difficulty in computation for their exact meth-
ods. It will be shown below that our method is very easy to compute and
can be easily worked out with a desk calculator. The methods of (8] and
[1]) are applicable only when the components are independent. As will be
shown, our method also works for dependent components.

El Mawaziny and Buehler have used a theorem of R. von Mises to
obtain large sample approximations of the methods of [8] and [1]. Their
method depends on asymptotic expansions of certain quantities. It turns
out that if the first two terms of the expansions are used (and the
higher order terms are ignored), the confidence bound of reliability is
the same as that glven by the maximum-likelihood method. The approxima-
tion can be improved by using higher order terms, but the degree of

improvement is not known.

2. The Method

To illustrate the method, let us assume that k = 2.
Let T& be independent exponentially distributed random variables
vith parameters A, 1=1,2. Let T-= min(Tl,Te). Then

-(xl+x2)t
P(T>t)=P(Tl>t,T2>t)=e .

Hence, T 1is exponentially distributed with parameter (kl+x ).
Let us assume that ni similar components of type 1 are on test
simultaneously. The test 1s without replacement so that as one compo-

nent fails it 1s removed from test and is not replaced. We terminate
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the test as soon as r, among n, have falled. This method is known in

the literature as type II censoring of ry out of n, without replace-

i

ment.

Let X <X < ... <X be the order statistics of the times
(1) = “(2) (r

1)
to fallure of the components of the first type, and Y(l) < Y(Q) 000

< Y(rz) be the same for the components of the second type. For our
r-thod we require that r, =r,. let r = min(rl,ra). Hence, we work
with termination points r for each component. Kraemer's method or

the methods of [1], [2], and (8], however, do not require this restric-
tion. For simplicity, let us assume that n) =n, =n. As will be evi-

dent, there is no loss of generality in maeking this second assumption.

Let
Dl = X(l).
(5) e ]
P =) T gy =BT
5J = (1’1-,_']4'1)]:)‘j ) G =il .

Epstein and Sobel [3], and Epstein [4] have shown that b -,b, are

1
independently, identically distributed. The distribution is exponential

with parameter xl. Similarly, let

1= Yy
(6) EJ = Y(J) - Y(,j'l)’ j = 2,. T
TJ - (n-vj"'l)EJ J -j = l) ‘)r

Then 7 5T, are independently exponentially distributed with parameter

RES

2.
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A Also, 1 T, are independent of 61,...,6 c

2° 17 r

Let

(7)

2, =rnin(6J,'r

'hen, as we have already stated, zl,.. +»2,, are independently exponen-
tially distributed with parameter xl + }‘2' let

r
(8) V=23 2y

J=1
It is well known that 2rV()\.l+)~.2) has chi-square distribution with 2r
degrees of freedom. Let x2 denote a random variable distributed as chi-

square with 2r degrees of freedom. Let xgr(oz) be such that

2 2
(9) P(x < Xer(a)] = 1l-a.
Hence,
2
p[2rv(xl+x2) < "er(a)] = 1-q
or
2
Xo (@)
P[}\l+)\2 < —‘g-ﬁ—] = 1-q
-(kl+A2)t
and, since R(t) = e is a decreasing function of xl + )\2 for
fixed t, we get
2
(M 4Nt ()
(10) Ple e exp{-t . Xe;rv }] = 1-q.

This gives an exact 100(1-) per cent lower confidence bound on the reli-
ability of the system at time t when the system consists of two compo-
nents in series and the time to failure distribution of each component is
exponential and the two exponentials are independent.

It is obvious that the above method does not require the assumption

-




=n. If n and n, are unequal, then in (5) and (6) the

definition of Sj and TJ will be changed as follows:

(o4
1}

(nl-J+l)DJ

-
0

(n2-j+l )EJ

The rest of the theory goes through and (7), (8), (9), and (10) hold

with the new definitions of 6J, T,j’ and zj.

3. Extensions of the Method

A. When the number of components is larger than 2.

Let us consider a system consisting of k components in series. Let

Ti be the time to failure of the it'h component. Assume that Tl’T ,...,’I‘k

are independent exponentially distributed random variables having parameters

>\l)>\ o ’)\k respectively.

275

let T = min(Tl,...,Tk). Then

P(T>t)=P(T> t,...,T. >t).

Since T ,T,,...,T are independent,

k
P(T>t) = P(Tl bl P(Tk > t)
-(>\l+ cee ¥ )\k)t
- € .
Hence, T 1is exponentially distributed with parameter }‘l + 00+ kk =R

say.
Suppose we have n components of each type on test, and let us

perform type II censoring of r out of n without replacement. Let
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(1) o (1) (1)

our date consist of X(l) < X(2) <SETO0ES X(r), i=1,...,k. As in sec-
tion 2, for 1 = 1,2,...,k, let

(1) _ (1)

Dl = xl

(1) _ (1) _ (1) -
(12) DJ = X(J) X(,j-l)’ J=2,...,r,

Sgi) = (n-J+l)D§l) y J=1,..0,r,
(13) 2. = min ), yo1,...,r

Zo et .,zr are independently exponentially distributed with parameter N\.

1
Let
r
i=1

Then 2rVA has chi-square distribution with 2r degrees of freedom, and

-At

(15) Ple r

2L

> exp {-t

This gives us an exact 100(l-a) per cernt lower confidence bound tor the
reliability of this system at time t.
If nl,...,nk are different, then the modification proposed in the

last paragraph of section 2 applies.

B. When k =2 and the distributions are not independent.

Marshall and Olkin [9] and Harris [6] have considered the following
model of a bivariate exponential distribution.

Iet us consider 3 independent series of events happening in time.
Iet us conslder the series i, i =1,2,3. Let Ugn) represent the interval

between the n°® and the (n-l)t’h event of type i. We assume that Ugn)
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has exponential distribution with parameter xi, independent of n. With
an arbitrary time origin let us assume that Ugl), the time to the first
event of type 1, has the same distribution as mentioned above. Further,
let us assume that for fixed i, the distributions of Ugn) are independ-

ent for all n. Hence, we have three independent Poisson series of events

and U; has distribution exp(xi), i=1,2,3 and U}, U,, U3 are

mutually independent.

let us now consider a system with two components in series. Let us

. . ~ =

happens, and compo-

assume that component 1 fails if either Ul or U

3

nent 2 fails if either U2 or U3 happens. The system fails if at least § 1

one component fails. ’

¥ -9

+—

let Ti’ i =1,2, be the time to failure of the ith component.

i
i Then T, = min(Ul,U3), T, = min(Ue,U3) and g
L 3
- (16) P[T, >s, T, > t] = P[Ul> s, Uy> t, U3> max(s,t)] §
= exp[-xls - At - x3 max(s,t)]. g
e This defines the distribution of a bivariate exponential distribution. ;
- The reliability of the system at time t |is 8
» :
I (17) R(t) = P(Tl> t, T,> t) = exp[-()\l + A+ )\3)1;]. |
This shows that the time to failure of the system has exponential distribu-
tion with parameter xl + A2 + k3. Also, the marginal distributions of :
Tl and Ié are exponential with parameters Kl + x3 and ke + A3, fs d

respectively. Tl and ?2 are not independently distributed.

i
[
I Let T=min(T),T,). Then
I
I

(18) P(T>t) = (T.> t, T,> t) = exp[-(Kl + A

1

o+ h3)t].

b o b

8

Lt P &
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(18) is really the same as (17).

Now suppose we have the same data as in section 2. We define SJ,

TJ, Zys and rV as in (5), (6), (7), and (8). Then Zyyeers2, BTE

independently exponentially distributed with parameter %.1 + %.2 + >\3.

With this modification we get that 2rV(>\l + A, + >\3) has chi-square

distribution with 2r degrees of freedom and, as in (9) and (10), we get

(@)

(N 4N 4008
177273 ) L
> exp {-t o] k] = l-Q.

(19) Ple

This gives an exact 100(1-a) per cent lower confidence bound for R(t).
When nl and fy are different, we proceed as in the last part of

section 2.

C. As in case B, but k > 2.

The blvariate exponential distribution has been generalized by
Marshall and Olkin [9] to multivariate exponential distribution.
let us consider a system with k components in series. Let §

denote the set of vectors (sl,...,sk), where each s, = 0 or 1, but

J
(sl,...,sk) £ (0,...,0). For any vector s € S, max(xi si) is the
maximum of the xi's for which 8y = 1. The multivariate exponential
distribution is defined as

(20) P(Tl >xl,...,Tk>xk) = exp[- T A max(x si)]'

. s€S
Here Tl,...,Tk denote the time to failure of components 1,...,k. The
marginal distribution of any subset of Tl" c "Tk is again a multivariate

exponential distribution and, in particular, the one-dimensional marginal
distributions are exponential and are not independent. As in case B,

we can generate the distribution in (20) by considering 2k-l independent

9




series of Poisson events and the associated failures of components. For

example, for three components we need 7 series. The essociated failures

are
s shock component parame ter
1 1 1 kl
2 2 2 k2
3 K3
; i L 1,2 ku
. p) > 1,3 }\5
6 6 2,3 Ng
7 7 1,2,3 h7

The reliability of the system at time t is given by

(21) R(t) = exp[- L Ng t].
S€S

(1)

As in case A, 1f we have data for the k components and define 53 9

(V]
w

J=1,...,r, 1 =1,...,k, then zJ = min bgi), J=1,...,r, has
i=1,...,k

—

exponential distribution with parameter A= I ks and the method
S€ES
proposed under case A, section 3, is applicable.

D. When type II censoring with replacement.

Let us suppose that n components of a type are on test and we
replace each falled component immediately by & new one. We stop as soon
as r failures are obtained. This is termed in the literature as type II

censoring of r out of n with replacement. Let D, be defined as in

J

(5). Let us define

(22) 5, = nD

GNY S ey et i 4 ey




Epstein [4] has shown that &,,..,0, are independently exponentially
distributed with the same distribution as the parent population. With
this new definition of bd (and Ty Sgi)), the methods of sections 2 and
3 go through and we can obtain an exact 100(1l-a) per cent lower confidence
bound for the reliability of the system. As before, the method works when

nl,...,nk are not all equal.

k. Confidence Bounds Based on Maximum Likelihood Estimates

We will consider case A of section 3 and for illustration we will
take k = 2.
let us consider component i and let the order statistics obtained

by type II censoring of r out of n without replacement be denoted by

(S}

i i -
O Y D O R

Using the transformation given in (5), the likelihood of the sample is

proportional to

r

L=}\i

eprmi(ﬁgi) o+ sgi))], i=1,2,

where 8(1),...,6(1) are independently identically distributed as
1 r

exponential with parameter xi. Hence, the maximum likelihood estimate

of N, 1is given by

1
(23) ;"i = —r—r— y 1 = 12,
s i)
je1 9
Let
r 8 0]
(24) 5= o), 1. ¢ sl@
j=19 j=1
11

-




Then ® &and 7T have gamma distributions with density functions

xi 6r-le-)\lé
£(5) = 77— 20,7 >0,
(25) r r-l -k2T
)\21 e
g(1) = 77— 720, A >0.
Now,
)
G
___51021,:_12’ il= 148
)
Ai Ki
M :
< is, in a sense, the "asymptotic vqséance" of ;. However, since
N M
Ki is not known, we replace = by o O

Definition: Let Xn be a random variable depending on n and let

X Dbe any other random varisble. Then we define
}glgg)( as n —®

if, as n - », the cumulative distribution function of Xn tends to the
cumulative distribution function of X &t the points of continuity of
P
the latter function. Also, we define Xn-a X if, given any € > 0,
P(IXn-XI >€) >0 as n - .

We shall prove

Theorem kL.1:

let 61""’5r and Tl,...,Tr be two independent random samples

from exponential distributions with parameters A, and A,, respectively.

1 2
Then

12
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T, = 1 22 80,1) as rowe,
L =
52 12
r r
wvhere 5 = I Bgl) and T = I 6§2)
i=1 i=1

We will require the following theorem to prove Theorem L.1:
Theorem k4.2:

Suppose (xlg,...,xkg, E=1,...,r) is a sample from a k-dimensionul
distribution with finite means {“i} and positive definite covariance
matrix HoiJH, 1,§ =1,...,k. let g(xy,...,x) be a function which

)
possesses first derivatives 3%- = 8 say, i = 1,...,k, at all points

i
. o
in some neighborhood of (m ,...,uk), and iet g = gi(ul,...,pk).
Then if at least one of the gf is £ 0,
‘\/;[8(;1:'-':;}{) - 8(“1;---.v""k)]
k
§>N[O, by oi.gigj] as r - o,
1, JmI

Proof: See [1.4,p. 260, section 9.3.1a].

Proof of Theorem 4.1:

Let & = 8/r, T = 1/r. From what we are given,

1 1

E(8,) = x; » V(&) = =,
A
1
1 1

E(TJ) - >‘-2 ) V(TJ) = )\T b
2




Consider g(x,y) =
1
/‘2*'2
X B/
Then
}\2
o _ gg i
€1 = 3«x 1 i 2 2,1/2
X= = ,¥y= T (NJ+X5)
}\l )\2 1

and

. h2
o o 2
g2'3§ iL LT TE aaE o e
X= x Y= x ()\l+}\2
1 2
Hence, by Theorem 4.2, as r - =,
= 5= 101
yrie(®,T) - 8(5: Y )]
1 2
2
0 0
i,d=1 .
Now " -
- S == )\l'}\e
g(S,T) - )
2 2
Sy .
62 Te
1 1
a5 » ¥ ) =0,
1 2
and . kh Kh
T o gogo 1 1 1 2 _1
o S e 2 B2 2 N =
i,d=1 N (>\1+>\2) A ("1”‘2)
Hence,
= 1 1
‘/r[g(SJT) - g(x N )]
12
r r
LA T N
R (o I e =




Pty
e - §

e}

U
I

and the theorem is proved.

Theorem 4.1 gives us an asymptotically exact confidence interval for tne

relliability of the system. Let ka be such that

-k 2
J' & —%: e-l/2t dt = a.
-®  /2x
Then
r r
=+ == AN
pf—T 1 25 _ %]:1-,
o
T 15
52 T2
. r r r
(26) P[xl+>\2\6+1+ka/52+:2]=l-a,
(N, L)t
172
(27) Ple > exp{-t(% + % +k, Eé + 52)} ] = 1-a.

(27) glves the 100(1-a) per cent lower confidence bound for the reliability.

The bound is exact if r - . The method of this section generalizes when
the number of components in series is more than 2.

Since this confidence interval (i.we.' 2onfidence bound, 1) is
based on the maximum likelihood estimate, for large samples it is the
smallest confidence interval. It is not known how good this bound is for
small samples.

We will make come comparison of this method with the method of
section 2.

When the number of items on test for each component is different,

the remark at the end of section 2 applies.

5. Kraemer's Method [7]

For the case A of section 3, hraemer's first method is as follows:

15




dra i ]

. g . = e -

" g

7 - .
: = oo et e At s

1
let B.l = q, i= 1,2, .,k
a, = [ ;i x(i) + (n,-r, ) x(i)]lr .
170, 70 T T )
2riai

is distributed as chi-square with 2ri degrees of freedom.
i

let A= min (riﬁi). Then
1=1,2,...,k

2

-(Al+...+xk)t X2(r1+...+rk)(a)

Ple > exp{~t o 1] > l-a,
where, if U 1s a chi-square variable with 2(rl+ I rk) degrees
2
of freedom, then Xe(r1+ - lk)(01) is defined as

PlU< Xg(rl+ el + rk)(d)] = 1-a.

6. A Comparison of the Methods

We will compare the methods of sections 2, 4, and 5 for a system with
two independent components in series. The time to failure of each compo-
nent is distributed exponentially with parameter Ki’ i=1,2. The
comparison will be based on the expected values of the upper confidence

bounds for kl + kz under each method. Since the left-hand end point is

zero, this gives the expected length of the confidence interval for xl +

h2. Since the reliability is a (strictly) monotone function of xl + x2,

this furnishes a valid comparison.

Exact Method of Section 2

Xor(@)
P[Al + A, < ?rv_] = l-0o.

16
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Since zi are independent, identical exponential variables witn param-

l eter A + M\, by (8) rV has gamma distribution and
2 2 2
! X2r(a) er(a) 1 X’Er(a) kl + KE
(28) El5m—] = =3 E[‘Ez]= S e
i -
where
ropel (Mo )x
(N +N,) x e
b Yo x (r-1)!
Tz
H s ( )
H =(A N, )X
A, o+ A sl b mRem e 2
i S 172 ix
r T r -1 Jdo (r-2)!
N+ N
- 1 2 :
L = ﬁ_ , provided r Z 2.
{
L] Kraemer's Method of Section 9
2
. Xﬂr(a)
L P[)\l + )\2 < —E'A—] > l-a,
where
(l A= min(ral, rﬁa)
[
} l ) 1 - A
L = min[x 0 2ral>\l, T ,-razhg].
1 2
4
{4 Since 2r§iki are distributed es X? with 2r degrees of freedom and
i are independent.for 1 = 1,2,
- A ~
[‘ P(A > x) = P(2ral>\l > 2>\.lx) P(2ra2}\2 > 2>\2x)

1l r-1 -u 1l r-1 -v
[I:;x Ty e du][jzgx ar Y e dv].

Hence, the probability density function of A 1is given by

17 |
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Integrating by parts,

rr-1 -le S
AX e r-1 =A.x (A X)
1 2 2
£(x) = (r-1)°7 Ze sk
’ S=0
~AN X
err-le e r-1 -a.x (A x)s
2 1 1
+ G
r-1)! sh
S=0

Hence,

r.s r.s
rél (Bpsmagil Patal HpR)
s%0 (T-1)1s’ (r en )75 L

(29) B =T T e(x)ax -
2
and
e (@) ¥°_(a) r-1 AAS + ANS
(30) £( Lr ) - br 5 (r+s-2)! 7172 271
3 2A -2 (r-1)!s! r+s-1’
(M +N,)

Asymptotic Method of Section 4

r r r r
P[)xl £ e & SER =1t k, 62+ _2] = l-a.
T
Using (25),
r r r
(31) E(g + ?) = o7 ()\l + )\2).

Substituting & = pcos ©, T = p sin ©, and using (25), we get

e / 2 2
Bl (S L) = B V0T,
o) T

_“/; (A r,) (2r-2): rﬂ/e (cos © sin 8)F 2ao

provided r > 2.

- ! - ! .
(r-1) (r-1 32 o (M cos @ +\, sin o)

provided

18

2r-1

’

r > 2.
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(Put t = tan g)

JT (xlxz?r(zr-a): | 2l 2014272142y
(I‘-l)! (I‘-lj- )\fr-l o (a+t)2r-l-(b_t)2r-l

vwhere
A A
a= (14 (xg e . Xg >0,
il 1
A A
b = 1+(—2)2+—2>1.
xl >‘1

We will break the integrand into partial fractions:

tr-2(1_t2)r-2(l+t2)2 _ 2r-1 Ai 2r-1 B,

= + Z .
e 2r-1 " 41 (a+t) g1 (b-t)d

(a+t) (b-t)

or
r-2
5 (r;2) (_l)s[tr+2s-2 5 2tr+2s - tr+2s+2]

8=0
2r-1

= 8 Ai(a+t)
t=1

2r-1-1 2r-1

(v-t)

ar-1
+ T B, (b-t)
j=1 J

2r‘l-J(a+t)2r-l,

where A's and B's are independent of t.
We have Lr-2 unknowns. We will differentiate n times

(n =0,1,...,2r-2) with respect to t and put t =-a and t = b.

This will give us two systems of 2r-1 equations each. Each system 1s

triangular and we can easily solve sequentially for A2r-l’32r-l""’Al’Bl'

For the nt'h differentiation the general pair of equations is

= B = La T

,_‘.
et

19
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r-2
r-2 s r+2s-2 r+2s-2-n
(F72) (-1)° 1(**278)(-a)
s=0
2 +25- r+2s+2 r+2s+2-n
b 2(T%)(-a) RSN, (THESH2) (L) ]
{
’ n
a2r-1 2r-1-(n-k n=k
. - 2ay  (F)ew)? () )
I k=0
: and
S S, ,r+25-2\. r+2s-2-n
SR G 6 Dl (G
S=0
|
r+2s,, r+2s-n r+2s+2,, r+2s+2-n
+ 2( 0 )b + ( o )b ]
n
2r-1 2r-1-(n-k) k
= kE;B2r-l-k ( n-k)(a+b) (-l)

with the provisc that (g) = 0 if p < q. After solving for A's and B's,

we get, using (31),

r r r r
(32) Elg + Ttk EF# :2]
- r ¢ ~r-1
Vs (xlxe) (er-2)! 2

2r-1
1

= mTihe) (r-1)! (r-1)! A

asl

1 1
( a

i=2 al™l  (as2)t"

l) + Al log (

2r-1. j 1 o1
+ 2 J-l (b"l)j-l bj'l

b
P-Bl log (B:T)]’
for r 2> 2.

We will now make some numerical comparisons between (28), (30), and

(32).
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Numerical Comparisqgg

The following table gives some numerical values of E {upper 99 per
cent confidence bound for A, + ke) based on (28), (30), and (32). In

(30) we have used tables of cumulative binomial distribution ac follows:

Let
2 nys n-s
B(n,k,p) = T ( )p (1-p)
S:k
Then
Tl (r4s-2)! MO A N
z (r-1)!s! Tes-1 T =4
=0 (xl+x2)
_ Kl rzl(r"'S'E)( l ) ( )
T r-l G x +A Zx +A
x2 r+s -2 r-l 1l \s
+= ¢ (7, )( ) )
1 = Kl+k2 kl+K2
- _>\:£ 2;- (21“'2)( Kl )S ( }\2 )21’ 2-5
r-1 ger-1 ° xl+x2 kl+k2
i (272 2 ' ( i j2r-2-5
r-1 ger-l s kl+k2 Kl+h2
A A '
il 1
= - B(2r-2,r-1, —=—)
r-1 hl+k2

A A

2 1

+ — l-B(2r-2,r,—)} .
r-1 kl+k2

In (32), instead of using the partial fraction expansion we have performed

numerical integration of

I“/e (cos 0 sin 0) 240
(o]

(xl cos © + A, sin Q)

2r-1 °

-




—

We have used Simpson's rule after subdividing the interval [0,n/2]

into ten equal parts.

Kl A r E (exact) E (Kraemer) E (asymptotic)

2 2.5 5 10.30 11.37 8.72
10 7.85 8.40 6.90
20 6.60 6.98 *
30 6.14 6.48 *

1 5 5 13.73 19.66 12.20
10 10.47 15.49 10.47
20 8.80 13.k1 %
30 8.18 12.6h4 *

A A 5 L. 58\ 5. 00N 3.87\
10 3.49N 3.6TA 3.06\
20 2.9\ 3.03n *
30 2.73\ 2.79n *

For larger values of r the error involved in approximate integra-

tion becomes large and hence these values have not been given.

As has been pointed out before, the above table also gives a valid
comparison between the confidence intervals of R(t) as given by the
different methods.

In the range of « that we are interested in (e.g., l-oa = .90,
.95, etc), it is expected that the exact method will give a shorter
confidence interval than the Kraemer method. Since Kraemer's method is an
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approximate one, in general, for xl and K2 widely different (as in
the second set of examples), the exact method is expected to be signif-
icantly superior to Kraemer's. This happens because the error of ar-
proximation in her method exceeds the precision obtained by using a

larger number of degrees of freedom in the chi-square distribution.

When kl and A, are close (as in the first set of examples), some-

2
times Kraemer's method may give a better confidence interval than the
exact method; but the difference between the two methods is not expected
to be large. For very small values of « (e.g., l-a = .99, .999, etc ),
there is some numerical evidence that sometimes Kraemer's method is
slightly better than the exact method when xl = ke. It may be pointed

out that for A, = A,,the difference between the expected value of the

1

upper confidence bound for A, + A\, given by Kraemer's method, and the

1 2
expected value as given by the exact method, goes to zero as r goes 1o
infinity.

Kraemer's method has one advantage over the exact method. The for-
mer is applicable even when the termination points (ri) for the compo-
nents are different. For the exact method some data have to be ignored

to equalize the termination points.

For large r 1t is expected that the asymptotic method will be bet-

ter than the exact method. Without a knowledge of the rate of convergence

of the exact and asymptotic methods, it is not possible to assert to any
degree of precision how the two methods will compare. However, it is
expected that tne exact method will compare favorably with the asymptotic
method for large r.

Since the methods of [1] and [8] are based on inverting uniformiy

most powerful unbiased tests, they may give better lower confidence bownds
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than those given by the method proposed in this paper. This is especially
true for small values of r. For large values of r the confidence bounds
given in (1] and [8] will tend to the bounds given by the method of [2],
and will te the same as those given by the asymptotic method. As we have
already pointed out, the methods of [1] and [8] are computationally
complicated even for the case of two components, and work only when the
components are independent. In fact, the computational difficulties
motivated the authors to get (approximately) asymptotic results in their
subsequent jolnt paper [2]. These three methods, however, do not require
the same termination points for every component.

When XA, =+ 0, the exact method and thec aszymptoiic method proposed

2

in this paper can be easily compared. If A2 — 0, then we are reduced

to the case of a single component with exponential time to failure distribu-

tion. In this case, pEere for all i, and

2, = mln(Si,Ti) = Si
r
rv = Z 61.
i=]1
(10) reduces to
2
-hlt xer(d)

Ple > exp(-t- _75;7—)] = l-o ,

the well-known result about a single component.
Let A\, >0 in (27). Then

A\t

-
Ple 4 exp {-t(% + ka\/—g) } ] = 1-a.

Following Halperin [5],

VE(R(t) - R(t))o, & n(o,1).

2k




where
1
o(u) = - RTTTos W(T)’
At

ﬁ(t):el,

Ny gt

1 B
If we replace % by Gu = - L , then the lower contidence

R(t)log R(t)
bound for R{t) becomes

exp(-t- %) %l - ?qt ‘/;3

5

By the weak law of large numbers (see [10. p. 92]), g B % as

r P
r -+ ®, Then 5 - xl and

1
e

ﬂ%:%.%f’o.
Ve
katJr
o}

This checks our asymptotic result for a single component aguainst the

k t Vr

5 are the same.

Hence, asymptotically exp(- ) and 1 -

well-known result as given above.
Finally, it is easily shown that the exact lower confidence bound
converges in probability to the true reliability as r approaches infinity

From (10) we note that the lower confidence bound for R(t) is

2rv
identically distributed random variables. Hence, by the weak law of

2
X (@)
exp{-t+ —=———— ). By (18), V 1is the arithmetic average of independent

large numbers,

Also,




Hence, us 1 — o,

10.
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