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[ ABSTRACT

The aim of this project 15 to provide basic knowledge of the methods which may
be used by a man-computer system to detect the presence of a target, using data
from a passive sonar receiver. This research consists of analytical studies to
evaluate important system parameters and experimental investigations measuring

r operator performance under various operating conditions.

The first two reports in this volume describe the effects of pattern variations
on human pattern recognition. The results measured the operator's ability to
visually detect patterns differing in shape and to detect patterns generated by
statistically dependent sequences.

The second two reports deal with basic human information processing and de-
scribe the testing of a predictive model for reaction time to visual stimuli and a
test of the effects of number of stimuli on memory span.
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I. FOREWORD

The work described in this report was accomplished by members of the Department
of Electrical Engineering, University of Connecticut, under subcontract to the SUBIC

I Program (contract NOnr 2812(00)) during the period from July 1967 to July 1968. The
Office of Naval Research is the sponsor and General jnamics Electric Boat division
is the prime contractor. LCDR E.W. Lull, USN, is Project Officer for ONR; J. W.Y Herring is Project Manager for Electric Boat under the direction of Dr. A. J. van
Woerkom, Chief Scientist of the Applied Sciences Department.

r

i
I

r
I

mL
g i



INTRODUCTION

The goal of the General Dynamics Electric Boat division research project at the
University of Connecticut is to provide basic knowledge concerning the methods
which may be used by a man-computer system employing data from passive sonar
receivers to detect the presence of a target. This research consists of analytical
studies to evaluate important system parameters and experimental investigations
measuring operator performance under various operating conditions.

The reports in this volume are divided into two groups; the first deals with
pattern detection on a cathode ray tube display, while the second group is concerned
with visual information processing.

The first report, No. 23, describes an experiment in which target shape (line,
rectangle, or square), target orientation (horizontal and vertical) and signal-to-noise
ratio (three levels) were varied. Time to decide if a target was present was de-
pendent on signal to noise and target shape; operator "noise" was independent of
all parameters.

Report No. 24 describes three experiments on pattern recognition with dependent
statistical sequences. Several findings are reported, generally showing that operator
noise and detection performance are poorer then for equivalent independent sequences.

Report No. 25, the first report in the second group, describes a model to pre-
dict reaction time from individual stimulus information and an experiment run to
validate the model. The results supported the model; previous experimental results
were also analyzed by the model.

Report No, 26 describes an experiment to test the effect of a number of different
possible symbols to be recalled and information load per symbol on immediate
memory. The results generally showed that a constant number of symbols was re-
called regardless of the number of possible different symbols. The one condition
which did not show this result is examined in light of a coding scheme that subjects
could use.
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EFFECT OF PATTERN SIAPE AND ORIENTATION IN VISUAL PATTERN DETECTION

ABSTRACT

This report is concerned with an experimental investigation of the effects

of pattern characteristics on man's ability to detect visual signals in noise.

Subjects were presented a two-dimensional random dot display and asked to

indicate the presence or absence of a signal. Target shapes presented were

lines, rectangles, and squares, both vertically and horizontally oriented,

and at three signal to noise ratios. The standard deviation of the decision

uncertainty - operator noise - was found to be essentially independent of

target shape, orientation, and signal to noise ratio. Decision time was

i2,ependent of oricntjtion, but varied with both shape and signal 7c noise

ratio.
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Effect of Pattern Shape and Orientation in Visual

Pattern Detection

1.0 Introduction

The general problem being considered here is the development of a method

of determining how well a man can detect a visual pattern in a noisy environ-

ment. The solution to the problem must be a two step process: first, deter-

mining from what pattern characteristics the subject extracts information to

guide his detection decision; and second, determining how these information-

carrying characteristics interact to produce a final decision. This paper is

concerned with the first of these problems.

Previous research in this area has occurred in both physiological and

psychological studies. In general there are a few areas of correlation. First

of all, it has been found that in the visual cortex of animals such as the

rabbit and cat the architecture of the ganglion cells is such that some individual

cell structures respond to line stimulation only at specific orientations,
1'2

It is not known whether or not there is an overabundance of these cellsopti-

mized at any orientation, but a logical assumption is that they may be distri-

buted in such a manner as to allow such animals to see, equally-well, lines of

any orientation. The implication here is that the human's visual system may be

constructed in a similar manner. It has been known for some time that visual

orientation significantly affects the recognition ability of people. 3 It has

been shown that people more readily recognize vertically-oriented patterns than

horizontally-oriented patterns. Thus far the explanation of this phenomenon has

consisted of the theory that people do not recognize patterns as readily when

they are presented out of their normal conttxt. Since, in general, most real

life patterns are structured somewhat symmetrically about the vertical axis, it

may be true that people are not more capable of recognizing vertically-oriented
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patterns, but just more accustomed in doing so. There is some evidence that this

may be true. Henle5 found that an initial. difference in recognizing ability bet-

ween differently oriented patterns disappearel with further training. As a whole,

the determination of the effect of orientation on the ability of people tn recog-
'I

nize patterns has not clearly been explained. The question thdt is being raised

is, "Are people more capable of seeing vertically or horizontally oriented patterns,

perhaps because of the basic cellular structure of the visual system?"

Other visual pattern characteristics which may influence a person's det-

ection decision are contrast between bordering areas, and the shape of the pat-

tern presented. A line can be considered as the edge between two contrasting

areas, and the line intensity, can be measured as the amount of contrast present.

Pattern shape, although a somewhat vague area to define, is included in this

investigation to compare man's detection capability of lines with that of areas

containing the same information content.

The remainder of this paper investigates these areas---pattern shape,

intensity, and orientation---by comparing man's ability to detect visual patterns

from a noisy environment with that of an ideal detector.

A-3
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2.0 Description of Display System

The equipment used in the experiment consisted of a cathode-ray tube,

random-dot display controlled by a PDP-5 computer. A detailed description of

th- "isplay system is given in reference 6. The displays used in this exper-

iment were two-dimensional random-dot patterns (72 rows x 72 columns) in which

72 cells were assigned as a target ---line, rectangle, or square. The back-

ground noise was controlled by sampling a Gaussian noise source about the mean

to determine whether or not a specified cell should be intensified. Sampling the

same noise source at a different level determined whether or not a target cell

should be intensified. A push button matrix was available for subject responses

to the presented displdys, and the corputer was used to store and process data

as the experiment progressed.
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3.0 Ideal Detector

It is quite desirable in any research effort to determine a basis for

performance which can be used as a measure of the quality of the outcome of

an experiment or study. One possibility is to obtain a large amount of prev-

ious information in the area of interest and use this as a basis of comparison.

Another approach is to determine the ideal results of an experiment and find

out how the actual results compare with the ideal. In general, the latter

method is to be preferred, because specific areas which may be lacking are

more apt to be evident and because the latter method more readily lends itself

to modelling.

An ideal detector can be defined as a device which counts the number of

intensified cells in the target area and compares this with a predetermined

optimum threshold to form a target, no target decision. The decision amounts

to deciding whether or not the target plus noise, or just noise alone is

present. A detailed treatment of this decisian process can be found in reference

7.

Distribution of Noise Alone

7Distribution of Target
Plus Noise

Signal-to-noise ratio - where a a standard deviation of the distribution

Figure I Noise and Target Distributions
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The state of each cell in the target area is determined by sampling either of

the above Gaussian Distributions about the mean of the noise.

If the noise alone is present:

P0 (prob. of an intensified point) Q 0.5

If the target plus noise is present:

P = e 2--) dx

0

Q -" 1-P 1

Using 72 samples -- the entire target area---, and applying optimum decision

theory to form the likelihood ratio:
N1  N-N1

P1 (Q1) where N = 72, total number of target area cells
L. 0 N N-N1 Nl= the number of intensified cells

PO QO

The decision task is now:

L > Lth decide target

L < Lth decide no target

where the Lth is a threshold

Using the Bayes criteria for equal costs and an a-priori probability of 0.5,

the optimal Lth = 1.

Solving for N ,- the decision threshold;

N -N log 2Q1

log P/Q 1

The expected results for the ideal detector in a decision task can now be

determined by calculating, based on the optimum decision threshold, the detection,

A-6



ll~ilI
false alarff, correct dismissal, and false dismissal probabilities defined

below where the discrete binomial distributions are approximated by uniform
Nos

Gaussian distributions. Noise

Target Plus Noise

/Ica

-- _ optimum decision threshold

detection probability -(1/2)(=) dx
(decision target when target D e a

is present) r2-7

T

false alarm probability _ ( 1/ 2
(decision target when no F e-(/2)(') dx
target is present)

T

correct dismissal l- -(1/2)(E) 2dx
(decisirn no target when CD = dx-f' e U

no :arget is present)

false dismissal I (1/2)( ) dx
(decision no target when FD - e __a target is present)

The decision process of a person can be likened to that of an ideal

detector to which a Gaussian noise source has been added.
7
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N'~ (9of intensified points in the target area)

Fig. II Nonideal Decision Process

The ability of a person to make a decision can be measured by deter-

mining the standard deviation of this operator noise under different condi-

tions.

A-4



4.0 Experimental Design -

The pattern characteristics selected for the experiment were the

following:

Shape: line,rectangle, square

Orientation: vertical, horizontal

Intensity: -3.5db, -8.5db, -14.5db signal to noise ratios

Three shapes were included to provide an intermediate target area between

a line (minimum area) and a square (maximum area). Oblique orientations were

avoided because of the difficulty in obtaining equal oblique dot spacing in a

rectangular dot matrix. The signal-to-noise ratios were selected to take ad-

vantage of past experimental data for comparison purposes. Each possible

combinaticn of these factors was used as the basis of an experimental session.

Four subjects were used in an alerted operator, no feedback, signal detection

task in which, during each of the fifteen experimental sessions, one hundred

displays were randomly presented (fifty target, fifty no-target). The sub-

jects' task was to decide whether or not a target was present. Initially

before each session, the subject was given a brief training run to affix his

decision threshold at or near that of the ideal detector. The training session

consisted of ten patterns with feedback which allowed the subject to reexamine

the pattern after learning the outcome of his decision. If the subject desired,

the training session was repeated.

A
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The target areas were indicated by markers along the bottom and right

hand side of the display. (see Fig. III). The overall matrix size and

intensity were preset before each session. The subjects were told not to

waste time trying to locate the exact target perimeter, but rather to scan

the target area denoted by the markers and then indicate their decision by

depressing one of two buttons. The data collected consisted of the detection

time, to the nearest tenth of a second, and both the ideal detector and operator

decisions for each target display. After a session was completed, the com-

puter printed out the experimental results with the following format:

number of intensified target area Ideal operator decisionpoints in the target source detection decision timecol. distribution decision (T or N)
(T or N) (T or N)

(for all displays)

ideal det operator

detection probability D

false alarm probability F

correct dismissal CD

false dismissal FD

A-1I
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5.0 Results - Conclusions

The data analysis plan was to determine the standard deviation of the

distributions representing the subjeces decision characteristics, as a measure

of his detection ability. In order to have a large number of data sample@

and obtain results typical of an average subject, it was desirable to pool

all subject's data for each condition. However, initial data analysis of

the individual subject.'s decision characteristics revealed that in spite of the

attempt to reduce the between subject decision threshold variation by initial

training a significant difference persisted. Thus any attempt to pool the data

must first take this effect into consideration by subtracting from each set of

data the mean of its assumed-Gaussian distribution. This was accomplished by

writing a Fortran program which will find the one Gaussian approximation which

best fits the data points using a minimum mean square error criterion. (see

Appendix I) Now the means of the individual distributions could be determined

and subtracted, and the data pooled for an investigation of the decision un-

certainty--operator noise--characteristics. The results are shown below in

Table I.

In general the results show that the subjects could detect a target imbedded

in noise almost equally well over the range of parameters considered. Effects

of orientation are negligible, and only a slight difference in avg. decision

uncertainty was evident over the signal-to noise ratio range. The most difficult

shape appeared to be rectangular; the easiest a line. However,the manner in

which the patterns were presented may have contributed to this result. The

location of the pattern in the matrix was indicated to the subject by markers

along the bottom and right hand side of the display, (see FigureIII). For lines,

all the points in the target area were easily locatable by the subject by

scanning along the identified line. For recta.gular and square targets, the
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Signal/Noise Ratio

-3.5 DB -8.5 DB -14.5 DB Avg.

Vertical Line 4.8 4.4 3.7 4.30

Horizontal Line 4.4 4.4 4.5 4.43

Vertical Rectangle 4.5 4.4 5.8 4.90

Horizontal Rectangle 4.5 4.8 4.9 4.73

Square 4.4 5.0 4.5 4.63

Avg. 4.52 4.60 4.68 4.60

Orientation: Vertical 4.60
Horizontal 4.58

Shape: Line 4.37
Rectangle 4.82

Square 4.63

Each Entry Represents The Standard Deviation of The Subjects'
Decision Uncertainty In The Number of Points In The Target Area.

TABLE I POOLED OPERATOR NOISE RESULTS

subjects had the problem of identifying all four edges of the target area.

Since they were told not to attempt to accurately locate the target perimeter

but rather just scan the indicated area, they had the additional uncertainty

of exactly what points were considered the target. Thus, in general, they

could be expected to either use a smaller sample for the decision, or perhaps

include some points outside of the target area. On this basis, the small

difference between the results for different shapes does not seem significant.

Decision time was considered by determining first the average over all

subjects for each condition. (see Table II), and then determining the average

variation in decision time as a function of the number of points in the target

area for each condition. (see figure IV )

A-13
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Vertical Line Vertical Rectangle

5 5

4 o 4of
3 A6;- O*,

2 2 ./

| I -- -T I

36 46 s6 6b 30 40 50 60

Horizontal Line Horizontal Rectangle

4 *eS.0 4-
2 0 2

0• to 3_ -,* a
2 2 "

36 4F 50 66 36 40' 5b 6b

Square Signal/Noise Ratio
5 -3.5 DB

-8.5 DB
4- **a -14.5 DB
3-

2-

3o f4o 56 6d

Vertical: Decision Time (Sec.)
Horizontal: Number of Intensified Points

FIGURE IV DECISION TIME VS NUMBER OF TARGET AREA POINTS
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Signal/Noise Ratio

-3.5 DB -8.5 DB -14.5 DB Avg.

Vertical Line 2.32 3.00 3.42 2.91

Horizontal Line 1.63 2.67 3.93 2.74

Vertical Rectangle 1.75 2.62 3.06 2.48

Horizontal Rectangle 1.44 2.35 2.82 2.20

Square 1.42 1.88 2.17 1.82

Avg. 1.71 2.50 3.08 2.43

Orientation: Vertical 2.69
Horizontal 2.47

Shape: Line 2.82
Rectangle 2.34

Square 1.82

TABLE II AVERAGE DECISION TIME (SEC.)

F:om the preceding data several effects are apparent. As should be ex-

pected, average decision time increased as the signal/noise ratio decreased,

and asymptotically approached a constant. The slight difference between

vertical and horizintal conditions is not significant since the individual

subject's data does not consistently show the same result. However, as the

shape of the t arget changed in the direction of decreasing perimeter (line,

rectangle, square), the decision time decreased significantly. There are two

possible reasons why this might be true: first, there may be a difference in

the time required to scan the expected target area before the decision is made;

and second, if the scanning times are not different, the subject must be process-

ing the information in a different manner, It is evident, from Figure IV , that

for obvious decisions -- ones with extremely low or high target point density

-- that the decision times do not significantly differ, implying that the

scanning times do not significantly affect the decision time. The behavorial

A-15

I



explanation of this result may be the following: When observing a line target

the subject must bass his decision on two partitions of information: the number

of target points presently in view; the recall from memory of the previously

scanned target points. When observing a more compact target shape, a larger

portion of the target is within view and less memory recall is necessary. On

this basir the shorter decision times for more compact target patterns indicatid

that more rapid decisions may be made when less memory processing is required

of the operator.

In conclusion, it appears that

1. Orientation (vertical vs horizontal) has little effect on a subject's

decision.

2. Target shape does not affect a subject's ability to make a correct

decision, but may alter the manner in which he processes target

information. In general the decision time decreases when the target

information is presented in a more compact shape.

3. Signal/noise ratio (contrast), over the range considered, does not

significantly affect a subject's ability to make'a consistent

decision, but lengthens the decision time as the target strength

decreases.

A-16



Appendix I

Best Fit Gaussian Approximation
PDP-5 Fortran

Program Description

This program was written to simplify and improve the curve fitting

problem of approximating a psychometric function with a Gaussian Distribution.

Essentially, the program begins with an estimate of the mean and standard

deviation of a set of date, and iteratively varies the mean and standard

deviation, in that order, until a mean square error measure is minimized.

It was found, experimentally, that for the resolution of the program (0.1),

three iterations were sufficient. Total running time is about 3-5 minutes.

Output results are printed on the ASR-33.

A1
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Operating Instructions:

1) Load Rim loader at 0020*1

2) Load Dec 8-2U binary loader via Rim

3) Load Fortran operating system

4) Change location (004)8 to (7000)a

5) SA = 200 Press load address

6) Turn ASR-33 on line, punch off.

7) Insert INTerpretive BFGA program in High Speed reader

8) Enter 2000 in the switch register

9) Press start - program will load and halt with AC-O.

10) Press Continue and load data 
2

*1 - see Rim loader

*2 - see Data format

An output of "mean square error = " will occur for each iteration. If

the error is the same for two successive type outs the pr. em has converged

on the best solution. If the error has not repeated itself a the program

completion, reenter the data in the ame format but use the "new" estimates

(results of the first run).
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Operating Description:

Once the program has been loaded, operation will commence as soon

as sufficient data has been introduced. Data may be initially on paper

tape typed in ASC-11 form in the proper format*2 or it may be entered from

the keyboard as the program is running. If an error is made during input

data:

1) press RUB OUT and the program will ignore the preceding

word

or, 2) stop the computer and restart at SA=0201 - then reenter the

complete data.

Numbers are separated by commas or carriage returns.

This program is in a continual loop so that when a set of data

has been processed, a new set may be immediately entered.

A1
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Rim

0020 6014

0021 6011

0022 5021

0023 7300

0024 6012

0025 7106

0026 7006

0027 7510

0030 5020

0031 7006

0032 6014

0033 6011

0034 5033

0035 6012

0036 7420

0037 3442

0040 3042

0041 5020

Data Format

- order -

1 Code number (any numbmr

2 number of data points

3 Est. of mean

4 Eet. of Std. Dev.

s Variable, rate of occurrence - (one data point)

A-20



Example of data input format and output results,

0111,11,39,4

34.5,O,36.5,.133,38,.17,39,.33,40,.4,41,.375,42,.625,43,.7,44,.8,46,.86

48.5,1

Mean square error = O.257997E-1

Mean square error = +0.25799E-1

Mean square error =+0.257997E-1

+111

STD DEV- tO.389999E+l

Mean +0.411997E+2

* A-21



Gausian Approximation-

The area under the normalized Gauseele curve is calculated by the

following polyhomial

Y .398 x -. 0663x 3+ .00995x 5 .00118x7

Approximation Error

--VI -3

A-22
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FORTRAN Listing

C ; Best Fit Gaussian Approximation
; Dimension X(20), P(20), C(B), S(70)g D(20), Y(20),
i C(l),-.11SE-02
. C(2)=0
C(3)= .995E-02
C(4)20

, C(S)= -.663E-01
, C(6)=0
; C(7)= .398
- C(8)=0

26 ; Accept 3, T, N, XM, DV
3 ; Format (E, I, E, E)

; DO 4 1=1, N
1 Accept 5, X(I), P(I)

5 ; Format (E, E)
4 ; Continue

; DO 29 J=1,4
Kal

6 ; SM=O.
; DO 7 I=I,N

1 ; Y(I)=(X(I)-XM)/DV

; D(1)=Y(I)*C(1)+C(2)
1 DO 8 L=3,8
l D(L-1)=Y(I)*D(L-2)+C(L)

a ;Continue
1 R=0.5+D(L-1)

IF(AR-P(I)) 27,28,28
27 ; SM=SM+(P(I)-AR)**2

Go to 7
28 ; SM=SM+(AR-P(I))**2
7 ; Continue

; S(K):SM
Go To (9,10,11,12,13),M

14 M=M-1
9 ; K=K+l

XM=XN-O.1
, M=M+1
Go to 6

10 ; If (S(K)-S(K-1)) 14,14,15
15 ; XMzXM+O.1

S(l)=S(K-l)
Ka1

18 KzK
M=H+l
IXN.XH+O.1

; Go To 6
11 ; If (S(K)-S(K-1)) 16,16,17
16 ; HUM-I

; Go To 18
17 X zX-0.1

* S(1)xS(K-1)
, Kul

19 ; KK+Il
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;M=M+1
; DV=DV-0.1
Go To 6

12 ; IF (S(K) - S(K-1)) 20,20,21
20 ; M=M-1

; GO TO 19
21 ; DV-DV+O.1

S(1) = S(K-1)
; K=1

24 ; K=K+1
M=M+l

; DV=DV+O.I
; GO TO 6

13 ; IF (S(K) - S(K-1)) 22,22,23
22 ; M:M-1

; GO TO 24
23 ; DV=DV-0.1

Type 1, S(K-1)
1 ; Format (/"Mean Square Error=",E)
29 ; Continue

; Type 25, T, DV, XM
25 ; Format (I,/,"STD DEV=", E,/,"Mean=",E)

; GO TO 26
STOP

;END

A-25
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Preface

When analyzing or designing a man-machine system used to perform

signal detection or pattern recognition, it is important not only to

know the specifications of the computer and other hardware, but also the

capabilities and limitations of the human operator. Visual displays

generated by statistical processes provide one means of controlling the

information presented to the operator, and thereby studying his performance.

While other workers have used visual displays generated only by statisti-

cally independent processes, this thesis studies the effects of inter-

symbol .e-e..encies on human visual information processing ability. In

particular, the range of human sensitivity to dependent information, the

fom of ;peratcr noise, as compared to an ideal detector, and the relative

utility of statistically independent and dependent information are deter-

mined. Also, a method of generating Markov sequences by a small scale

digital computer is discussed.

This work was s _pnorted in part by an NDEA (National Defense Education

Act) Title IV fellowship and also the Office of Naval Research through a

prime contract (NOnr 2512(00)) with General Dynamics/Electric Boat as a

part of the SUBIC (Submarine Integratp/ 7ontrol) program.
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Chapter 1

Introduction

1.1 The Problem Under Investigation

An accurate description of human visual information processing

capabilities, and knowledge of the factors affecting human performance

in visual detection tasks, are particularly important if the human is

to be successfully integrated with a computer in a man-machine signal

detection or pattern recognition system.

In an attempt to analyze the human as a visual information processor,

investigators have used displays similar to Figure 1.1, composed of an

array of dots generated by statistical processes, in order to control the

information in the stimuli. In the typical "alerted operator" detection

task all columns, except one near the center, called the target column,

represent a random background. The 'target", if it is present, appears

in the marked column (target column) as a difference in some statistical

parameters, for example, the number of intensified points. The operator's

task is to determine the presence or absence of a target, or to classify

the target column on the basis of some subjective measure. In general

this work has been limited by the basic assumption that successive points

in the display are statistically independent. In this thesis human visual

detection performance is analyzed using patterns generated by dependent

statistical processes in order to determine the human's ability to use

information provided by inter-symbol dependrries. The three general areas

investigated are:

1. The range of human sensitivity to visual dependent information.

2. The form of human "operator noise" in a visual detection task

note: numbers in parentheses refer to references listed in the bibli-

[ Igraphy.
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Figure 1.1

Typical Statistical Display Used in Human

Visual Information Processing Experiments
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with dependent information.

3. The relative utility of independent and dependent visual

information to the human operator.

1.2 Background

Recent work by Kaufman, Levy, Booth, and Glorioso, (l)*, has

considered many aspects of the problem of integrating a small scale

digital computer and a human operator to combine the high speeu processing

and display control capabilities of the computer with the visual detection

capabilities of the human operator.. The basic display used in these in-

vectigations was an array of binary dots on the face of a cathode ray

tube as shown in Figure 1.1.. All columns except the target column were

essentially generated by a statistically independent binary process with

P(O)=P(1)= 1/2. The target column was generated by this same process for

the no-target condition, and was obtained by increasing P(l) under the

condition of target present. The basic assumption of these workers was

the statistical independence of each point in the display. For such

patterns it may be easily shown (2) that an optimum detector need only

count the number of intensified points in the target column and compare

this number to a threshold determined by the statistics of the underlying

processes, the a priori probabilities of the occurrence of target and no

target conditions, the costs associated with each decision, and the desired

detection pxrbability. It is not necessary for the optimum detector (in

this case)to consider higher-order statistics arising from inter-symbol

dependencies in the pattern.

Brazeal and Booth (2), in 1966, considered the problem of "operator

noise" in an alerted operator signal detection task. They found that the

operator could be modeled as an "optimum detector" with an added noise
B
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source. The operator noise was found to be Gaussian (normally) distrib-

uted with a mean which tended to zero with sufficient training.

This work was extended by Moran (3) to curved targets, while

Glorioso (4) developed a stochastic model which describes the dynamics

of the human operator and his ability to learn, adjust decision thresholds,

etc.

In general, information contained in the first-order statistics of

a display is only one component of the total visual infornation. In

addition to this component, higher-order information may be present when

there exist dependencies between the symbols. In this paper the term

"higher-order statistics" is used to mean probability distributions of

sequences of symbols of length greater than one. First-order statistics

refer to sequences of length one, the individual symbol frequencies,

second-order statistics refer to sequences of length two, and so forth.

Consider the two displays shown in Figure 1.2. Each of these displays

.as 84 rows and 64 columns of binary dot3, with the target column marked

by arrows. Each target has exactly 42 intensified points ("l's), which

is the expected number of intensified points in the other 63 "noise only"

columns. The target column of Figure 1.2b, however, has eight more se-

quences of two consecutive intensified points ("ll's") than the target

column of Figure 1.2a, which has a total of 21 "I1" sequences. An

"optimum" first-order detector, making use of only first-order statistics,

would view these two target columns as exactly the same since they both

have exactly 42 "l's". Although an untrained observer may not be able to

distinguish between these two target columns, it is a simple matter for an

operator who is trained to look for cues such as clusterings of l's and

O.'s to use this dependent information to distinguish between the two

B-4



a) N1=42, N 12

b) NI=42, N .1i=29

Fignre 1. 2

Patterns in which N1 :L+2 Without (a) and With (b)

Dependent In~formationl in The Target Column
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displays. Also a true optimum detector, which takes the inter-symbol

dependencies into consideration, can distinguish between such displays

extremely well.

1.3 The Present Investigation

This paper investigates the ability of human operators to make use

of information presented by higher-order statistical processes, and the

relation of the human to an optimum detector. As such, this effort

represents an extension of the previously mentioned work to the more

general case, and also answer- some basic questions concerning the cap-

abilities of the human to process dependent statistical information.

It should be pointed out that Julesz (5) has studied a different,

but somewhat related, problem. Julesz was concerned with the ability

of the human to discriminate between simultaneously presented visual

fields of dots. The brightness of each point in his di3plays took on

one of either 2,3, or 4 val," and were determined by the output of a

Markov chain. His investigations were concerned with finding specific

visual properties of the display which allow human discrimination,in

contrast to the present study which is concerned directly with the in-

formation content of the display and the ability of the human, as well

as an optimum detector, to use different types of statistical information.

1.4 General Outline of Experiments

The experiments involved in this study may be px'ouped into three

major classes. These experiments are discussed in generdl her? to

briefly outline the approach of the remainder of the paper, and will be

presented in detail in the following chapters.

Experiment 1 was designed to answer three basic questions.

i. Are humans sensitive to intormation contained in the higher-
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order (greater than first-order) statistics of a finite-

valued, discrete information source?

2. If so, what is the approximate range of sensitivity, i.e., that

region of stimulus intensity which does not lead to the two

trivial detection probabilities of zero and one?

3. Within the range of sensitivity, does the human consistently

favor one form of information over another?

Experiment 2 extends the domain of visual stimuli to a sub-set of

the patterns generated by a stationary, firstorder, binary Markov process.

The questions asked in Experiment 2 are:

1. When using patterns which fall into overlapping classes (a

pattern may exist in more than one class) does the human

perform better or worse than with patterns from non-overlapping

classes?

2. What is the form of the "operator noise" introduced in the

visual detection process?

On the basis of the data obtained, the operator noise, as compared to

a "noiseless" optimum detector, is determined, as well as the just

noticable difference (j.n.d.) of the stimulus intensity.

Experiment 3 first provides a definition of amount of information,

or "dissimilarity", contained in patterns in terms of independent and

dependent components, and then goes on to discuss the question of the

human's relative use of inde'prolene and dIependent information when both

are presented simultaneously. The questions specifically answered by

Experiment 3 are:

I. What is the form of the change in operator's probability of

correct detection when the relative amounts of independent

B-7



and dependent "dissimilarities" (information) in the displays

are varied?

2. How does the performance of a human operator compare with that

of a first-order detector and a true (Markov) optimum detector

when varying amounts of component "dissimilarities" are

presented?

B-8



Chapter 2

General Experimental Conditions and Apparatus

In the following chapters three experiments are discussed to

answer the questions posed in Chapter 1. Throughout these experiments

the same apparatus is used and certain psychophysical conditions

remain constant. In this chapter these invariant properties of the

experimentsare discussed. Later, the specific details peculi& to

each experiment are presented in greater detail.

The heart of the apparatus is a Digital Equipment Corp. PDP-5

digital computer - a flexible, small scale (4096 - 12 bit word core

memory) general purpose machine. Other major elements of the system

include a wide band (DC - lOOkHz) Gaussian distributed noise generator,

analog to digital converter, and Fairchild 737A 17 inch electrostatically

deflected oscilloscope display (CRT). The computer in conjunction with

the above equipment and miscellaneous external sweep and logic cir-

cuitry, is used to generate the displays under program control. In

addition, the PDP-5 is used to control the sequencing of the experiments

and to collect and process experimental data. Figure 2.1 shows a gen-

eral block diagram of the system, and a more detailed description has

been discussed in the literature (6,7).

The display consists of 5 by 7 inch array of dots (64 by 84) on

the face of the CRT. The points in all but one column of the display,

the so-called "target column, are ienerated by a computer simulated

statistically independent process with the probability of intensifying

each point (corresponding to a binary "l") equal to the probability of

not intensifying the point (a "0"). This is accomplished by independently

sampling the noise generator at a slow 3kHz rate and converting the
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resulting analog voltage into a 12 digit binary number, which is then

"clipped" about its mean value generating a 0 or 1. Thus P(O)=P(l)= 1/2

with no inter-symbol dependencies in any columns except the target column.

The statistical process used to generate the binary points in the target

column depends on the particular experiment and is discussed in detail in

the following chapters. Figure 2.2 shows a typical pattern as seen by

the operator. The points are intensified at such a rate that ao flicker

is present, and markers are used above and below the target column to

indicate its position to the operator.

The operator views the dispiay through a hood which positions him

23 inches directly in front of the display. A small amount of light

is shown around the edge of the display to eliminate any visual "burst"

when the display comes on and goes off. The operator is allowed to con-

trol the brightness of the display to compensate for dark adaption. The

operator's decisions are signalled to the computer by push buttons loc-

ated in an array in front of him.

The display and operator are located in a 7 ft. high by 4 ft. wide

by 6 ft. long darkened and soundproofed booth. The use of the previously

mentioned hood, and the presence of nearly "white" background noise

from a cooling fan isolate the operator from external stimuli and allow

him to focus his full attention on the display screen.

In a typical session, the operator loads a program tape into the

computer, adjusts the equipment, and enters the booth. Upon pressing

a "start" button the first display appears. There is no time limit on

how long he may view the display before making a decision, but he is

asked to work as rapidly as he feels he can without diminishing confidence

in his decisions.

. I|-11
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Figure 2.2

Typical Random Display

(a) (b)

Figure 2.3

Format of Feedback of Knowledge of Results
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The operator's decision time is measured by a computer controlled

clock, and recorded, along with his decision, when he presses a decision

button. At this point in most of the experiments hit (H) or miss (W)

information (and for the case of three choices of decision, the correct

decision also) appears on the screen below (or above) the target column

in place of the markers, as illustrated in Figure 2.3. This feedback of

knowledge of results, is used as an immediate corrective fact to train

the operator in the task which he is performing.

Between displays the screen is dark (except for the glow of the

lights in the hood) for about two to four seconds (depending on the

particular experiment) while the subsequent display is being generated.

For any one experiment the display generation time is equalized for all

types of displays which may be presented so that no clue as to the type

of display can be obtained extraneously through this factor.

At the end of a session, consisting of either 100 or 150 trials,

the display goes off and does not return. A tabulation of the data

from the session is compiled by the computer, and is typed out on a

teleprinter, as well as on paper tape for further processing.
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Chapter 3

The Optimum Detector

3.1 Discussion of the Optimum Detector

Before discussing the experimental aspects of the thesis, it is

helpful to develop a mathematical description of the statistically

optimum detector. Knowledge of the form and capabilities of an "opti-

mum" or "ideal" detector serves two purposes. First, the form of

the optimum detector lends some insight into the possible factors affect-

ing human detection capabilities. Second, the performance of an opti-

mum detector provides a yard stick against which human performance may

be compared.

Consider two information sources, S1 and S2, which generate dis-

crete outputs at event times TIT 2 ,". T..i If one or the other of these

sources is chosen at random, as depicted in Figure 3.1, and the out-

put sequence YlY2 ...yt observed, the problem which exists is to deter-

mine which source is the generating source. In the experiments which

are discussed in the following chapters, this is the problem given to

the subject.

Let H1 and H2 be the hypotheses that the output sequence ylY2...y t

was generated by S1 and S2 respectively. To simplify notation let Ya,b

be the sequence of consecutive outputs yayal..Yb-lYb of length b-a+l,

and let Ya be the sequence of length one consisting of the single output

symbol ya-

An ideal detector (8) should calculate the likelihood ratio,

(Y lt ), defined as

P(YI t/H1 )

L(Y ) = ! 3.1.1
t NYl,tH 2)

where P(Y1,t/Hi) is the probability of the output sequence of length t
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beirg generated, assuming hypothesis Hi is true. The likelihood ratio

i'rp, ents the confidence that S1, rather than S2, is the generating

source. To make a decision, the like]lihood ratio must be compared to a

threshold, T, which is determined by the a priori probabilities P(HI )

and P(H 2 ) of H and H2, respectively, being true, and the relative costs

of making each decision. The decision rule is:

LCYl t ) >T : D1  (source S)
l~t 1 13.1.2

< T : D2  (soure S2)

where D1 and D2 are the respective decisions H true and H2 true. Let

ci (i=1,2) be the cost associated with making the incorrect decision D..

Assume that no charge is made for correct decisions. When a priori

probabilities P(i 1 and P(.H2 ) are known, the linear average cost function

(Bayes Strategy) is:

E U)c PI/H )P(l2) , c2P() /11I)P(H I) 3.1.3
c C 1PU1 A2 )i2 )tc2 PD2 /1 ON13.3

It has been shown (8) that the optimum decision threshold, which minimizes

F, is

P(H2 )c1  
3.1.4

P 1(H) C2

3.2 Development of Optimum Detector for Markov Sources

the
In the previous section/general form of a likelihood ratio decision

strategy with a linear cost function was discussed. Here this technique

is applied to the case in which S and S2 are Markov processes of order

rI and r2 respectively with identical output symbol sets {sj;i=l,m)

consisting of m elements.

A basic property of an rth order Harkov process is that the value
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of the current output depends on only the past r outputs. Thus, the

following conditional probability relation holds for all i:

P(yi/ylY2 ..yi-l ) = P(yi/yi-ryi-rl ..yi- )  3.2.1

Using the simplified notation introduced in the previous section, the

above may be rewritten:
PY i/Y 'i _I) N Y (i /Y i-r'i-) 3.2.2

Recalling the form of the optimum detector expressed in relation 3.1.2,

and making use of the above relation, the optimum detector for a

string ofsymbols emmited by one of two Markov sources may be written:

P(YI '/H) P(Y r+l /Y1 ;H1) P(H2)c1

P(YI,/ H2) Ky r+1,-tYr H1  - P(H1 )c2  :D1  3.2.3

D2

This expression may be further expanded into the form:

P(.Y I /H ) PIY /Y ;H ) P LY /Y ;H) ' P(Yt/Y ;H)

l,r1 21 r21  l,r2 1 r 2 2 2,r 2 + 2 t-r 2t-1P(YIr/H 2) P(Yr21/YIr H2 ) P(Y 2 2/Y2 ,IH 2 ) "PY/t-r2,t-Il 2

P21 D )cI  :D
SPI,1)c2 3.2.

Otherwise : 2

Each conditional sequence probability in expression 3.2.4 represents

the probability that a particular output, yi, will take on some particular

value, given that the past rk outputs have taken on particular values

and that one of the two hypotheses is true. Since there are m values
r k

which each sequence of length one may take on, and m possible seq-
rk rk~l

uences of length rk, there are m-m =m possible values for each of

the t-rk conditional probabilities which must be considered in both the

B-17

I



numerator and denominator of expression 3.2.4. Let these conditional

probabilities (and their associated rk+l length sequences) be ordered

as follows:

Pk, i=P(S1/Sl' Sl, Hk ) yk-,=sISI... SI1

P k,2 2=P (S 2 /S 1 .... I1 H k) y k, 2=. S" .. S1IS 2

P ,P(S /S ", S1H) yk ,mSISI... SSm
k,rn m 1 1k 1 1 1 m

Pk,m+l=P 1 /S1S1*** S 2'Hk y - 3 2S

3.2.5

P, =P(S S/S.. *S 2 , ) yk, 2m=s 2

k,2m 11 k1

P rk+l =P(Sm/Sm ... , Hk ) Yk Smrk+l s S Mk mm m mk m m

for k=l,2

This represents a natural ordering of the rk +1 length sequences Yk,i

with the last (right most) symbol running through its m possible values

before the left adjacent symbol is incremented. The probabilities

Pk,i are just those corresponding to the conditional sequences associated
kk.i

with the Y Note the following relations between these probabilities:

m
P r k P( /

J.O k,(m .j)+w 3.2.6a

rk+l

I P =:1 3.2.6b

for all 1 < w < m; k r 1,2.
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mI
As an example of the above ordering consider two Markov sources, S

and S2 , with binary output sets. Let S be a first-order process (r =l)

and S2 be of seoond-order (r 2=2).

The following conditional probabilities and sequences must L

defined.

I,1 = P(O/OH 1 ) y1 ,1 =00

P1 ,2=P(1/O,H I )  Y '2=01

P ,3=P(O/1H 1) y1'3=1O

P1,4=P(I/IHi) Y14 =11

P2 ,1=P(0/00,H 2) y2, l-000

P2 ,2 =P(/00,H2 ) y2'2 =001

P2 ,3=P(0/0i,H2 ) y2,3= 010

P2,4 =P(/OI,H2 ) Y2 '4=011

P2 ,5 =P(O/IO,H 2 ) y2'5=100

P 2,6=P(1/O,H2 )  y2 '6=I01

P2,7 P(O/l,H2  y2'7=10

P2,8 =P(1/,H 2) y 2'8=ll

Let nk, j be the number of times the 3th ordered sequence, y

appears in the output sequence Ylit; then nk, j conditional probabilities

of expression 3.2.4 take on the value Pk,j' and expression 3.2.4 be-

comes:

[ B-19
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m1r 1+ 1 - - -

NY /H 1 m pn1,)
l,r 1 1,j J l 2 )c2  DSr2+l -P(Hl)c 2  D1

S(y, /H2) m+1 2,J 1 2 3.2.7
NY1Or / 2 H l 2,j

otherwise D2

Note that there will be at most t different sequences (i.e., of length

one), so at most t different nk,j are different from zero. Frcm this

point on the threshold, T, will be taken as unity since this is the

only case which will be discussed in later chapters. Normally the

logarithm of this expression is taken, in which case we have:
r +1 r2 +1 3.2.8

m m2---- ( /H )+I n omii lg i / + o1~PY'r 1 2n~~ ) n2,j~ 2," : D

otherwise D 2

which is the final form for the general optimum detector when a seq-

uence of output symbols may have been generated by one of two very gen-

eral Markov processes.

In evaluating expressions 3.2.7 and 3.2.8 one should notice that

it is necessary to count the number of occurrences of each of m

sequences of length rk+l as well as making note of the exact form of

the initial sub-sequence Y l,r. The task of the optimum detector may

be very greatly. reduced(especia]ly for large m and/or r k ) if some

approximations are made. These approximations are introduced and a

more useful form of the optimum detector is developed in the next section.

3.3 Simplification of the Form of Optimum Detector

Expression 3.2.8 may be greatly simplified if the following

approximations are made. First, if r , the order of the Markov process,

is much less than the length of the observed sequence, Yl,t' the probability
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of the initial sub-sequence Yt nas little .. Uect on the overall

sequence probability. The log of the probability- of the initial sub-

sequence is small and of the same order of magnitude under the assump-

tion of each hypothesis; therefore, the first term on each side of

expression 3.2.8may be dropped with little loss of accuracy. Expression

3.2.8 becomes:

r~l 2
nkj lo I,,, n g:D

[ nk~ loEPI~j f  k, j log P2,j :D
j= j 3.3.1

otherwise D 2

The complxity which remains in relation 3,3.1 is due to the fact that

evaluation of the expression requires observation of the frequency

counts, nk,j , of all m klsequences of length rk+l. These sequences are

not independent however, and it is possible to represent the frequency

count of many of these sequences as a linear combination of some smaller

"basis" set of frequency counts. The approach used here is similar to

that presented in Booth (9), for determining a minimal generator set

of a random process. However, some modifications are necessary since

we are dealing here with actual frequency counts and not the underlying

probability structure.

Consider a Markov process of first-order (r=l) with two possible

output symbols ((si;i=l,2}={sls 2 )={O,l1). There are four sequences

of length r+1=2; these are:

Y 1 00

Y 2 =01
y3 = 10 3.3.2

'4Y : 11
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However, certain constraints exist on the number of these sub-sequences

which may exist in a longer sequence, Yl,t, of length t. If the symbols

of Yl't are considered in groups of two, they may be listed as:

lt

y 2Y3

yY 3.3.3

Yt- lt

and each of these pairs is one of the subtrquences listed in 3.3.2.

This makes up a set, {Y i+;il, t-l1 each element of which is

one of the sub-.mquences of expression 3.3.2. Observe that the first

element of each of the sequences listed in expression 3.3.3 when ntrung

together form the sequence Y ,t-l" Thus, the number of sequences of the

set {Y ii+l;izl,t-l1 which begin with a 1 (i.e., yi =s2 l) make up an

approximation of the number of V ts in Yl,

Denote the number of sequences of {Y i,i+l;il,t-l} which take on

values Y 1 Y2 Y3, and Y (of expression 3.3.2) by NCO(YI t),NoI(YI t),NI 0

(Y lt), and N 1(Y 1 t ) respectively. Let N (.Y ,t ) and N (Y I t ) be the

number of symbols (i.e.., sequences'of length one) of Yl't which take on

values S1 (i.e.., 0) and s2(i.e., 1) respectively. Further, let N0(Yk) and

N I(Y k ) be a 1 if and only if Yk is a 0 and a 1 respectively, and let N be

the number of symbols in the sequence Y The following constraints exist:

N 00(Y lt + N o (Y )  ( )- N0(Yt)

N 1(Y1,t  + N 1(Y l t  N1(Y1,t  N1(Y ) 3.3.4

~N00IY tN CY N0 t ):=No.YIt )- N(.Y )
N00 (Y lt + N 0(Ylt 0 (Yl,t N 1(Y

N (Y tN l( (Y 1
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The second tern, on the right side of each of the expressions 3.3.4 is

either one or zero. Thus, it may be dropped completely in most cases

with little loss of accuracy. Notc, also, that N=N (Y I t ) t N (Y -)

N00 (YI ,t )+N o(Y ,t )+N 1 (Y ,t )+N 1 (Y ,t ).

From expression 3.3.4 and the immediately preceeding relation we

may write the following relations:

N1(Y l t  N1(Y l')

N0(Y1, t  N - N1(Yl,t

3.3.5
N 1(Y1, t  N 1(Y 1,)

N 1(YIlt  N1(YIlt  N 1(Y1,t

N 01(YIl t  N1(YIl t  N 1(Y 1,)

N (Y N - 2N(YI ) + N (Y )

Note that 'each of the four frequency counts of sequence of length two

in the above relations has been written as a linear combination of the

"basis" counts {N, N1 , Nl}. This is not the only "basis" which could

have been chosen; among the others are:

{N, No, NO0 }

{N, N1, N0 1 } 3.3.6

{N, No, Nll}

In this case there are eight different basis sets which may be chosen.

Extending the above reasoning to the general case of an rth order

Markov process with m symbols, one may choose a basis set of frequency

counts by observing the constraints on equations 3.3.4. For sequences

of length one we have the constraints:

N (Y l) + N (Yl) ( N C( t) N(Y I') 3.3.7

2 m
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Thus, if m-i of the frequency counts of sequences of length one are

known (and N is known) equation 3.3.7 says that the mth frequency count

may be uniquely determined. For sequences of length two the following

constraints hold:

V

- N s s(Y ,) =N s (Y St) =N sj(Y I') 3.3.8

adm

and s Nssi(Y 't  = Nsj (Y N sj(Yl t ) for j = (,m)

The approximation holds only if N >> 1 . These 2m equations involve m2

unknown frequency counts for sequences of length two. One equation is

a linear combination of the other 2m-,l because of restriction 3.3.7.

2_ 2There are m -(2m-l) = (m-1) frequency counts for sequences of length

two which must be selected according to expression 3.3.8.

Considering frequency counts of longer and longer sequences, up to

length r+l, we see that there will be 2m
r constraints on the mrtl

frequency counts of sequences of length rtl of the form:

8.s I. " .'s (2,t NS.. -S. ,'t
i=l sIsJis,2 "Sr(Y J=s~s2 ]i 11 (Yl

3.3.9
and

N s " * rs (Yl't)=N sj • s Y . - s.i Y t
irl S J2 2 " - l r

But there will be mr -I restrictions on frequency counts of sequences

of length r. There will be, then, m r-(2m -mr-1) = mr-l(M-l)2 frequency

counts of sequences of length r+l which can be selected independently.

There are a total of (m-)+(m-l) 2+---+(m-l) 2 m r-=(m-l) mr basis freq-

uency counts necessary to approximate all the frequency counts of sequences
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of length rl. In addition, the number of symbols, N, must be known.

Let us return now to the notation adopted in section 3.2; in part-

icular let nk, j be the number of times the k,jth ordered sequence

(see 3.2.5) appears in Yl't" Call the elements of the set of basis

frequency counts F There will be at mostf{mrk(m-l) + 1} F k,i needed

to specify frequency counts of sequences of length rk+l. Any one of

these frequency counts, nk, j may be expressed as a linear comLination
rk

of the m (m-l) + 1 basis counts.
rk
m (m-l)nk m r F f-
I f 'j'i F ki 3.3.10

for all k=l,2; j=(l,m)

where Fk, is defined to be N, and f k,,i is the integer weighting factor

associated with the k,jth ordered sequence and the ith basis frequency

count.

The optimum detector (3.2.8) now becomes: 3.3.11

r 1+1 r 1mr 2 +1 r2

I I r flii Fl'i log P I [ f 2 ,iF 2 { log '2,jj=l i0j=l "=O

: D 1

iotherwise D D2

Interchanging the order of summation, and regrouping gives:

r r1+1 r2 r2+1 3.3.12

1,1m (m-l) m Fm (m-l)2,i log H (P2 f2j 1

i=0 j=l i=0 j=1

otherwise 2

B
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rk

Note that the form 3.3.12 involves observation of only mk (m-1

frequency counts of the sequences Y .to evaluate the summation onm 1 k l rk r.

each side. This allows a saving of m -m (m-l)=m k frequency counts

over the use of form 3.3.1. For large m and/or rk this saving can be

substantial.

3.4 Special Forms of the Optimum Detector

In this section a few special forms of the optimum detector 3.3.12

are developed. These forms will be used in later chapters when the

Markov optimum detector is compared to the human operator.

First, for the case of r1 =r2=r, the optimum detector reduces to:
r

m ( M 1) r+l, P '
F, log > 0 : D1

1.o j~l L 2,jJ 3.4.1

otherwise: D2

If one of the sources, S2 say, is actually a statistically indepen-

dent process (i.e., r=O), P(Yi/YI 1 l)P(Yi) for all i=1,2, - . , and

expression 3.3.12 reduces to:
1(M-) r 1 m 3.4.2

Y FI i log fl (P > Ns  (Y t) log P(s : D1
i=O j=l u=l

otherwise : 2

where N s(Y l t ) is the number of times the symbol su appeared in the

observed sequence Y ,t' and P(s ) in the probability that yi takes

on value s (for all i=(l,t)). Note that the left side of 3.4.2 was

derived from the approximation that t >> r and the probability of the

initial subsequence Yl,r could be dropped. This approximation has

more effect in 3.4.2 since no quantity of similar magnitude is being

dropped on the right side. A better approximation would be obtained
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if the first r symbols were not considered in evaluating the right side,

i. e., let Yt - in 3.4.2.

Specifically, for S1 a first-order Markov process with a binary

symbol set {Si ;jl,2}={SIS 2 }:{0.1 and S2 a binary statistically

independent process with P(O) = P() 1/2, the optimum detector may be

expressed in approximate form as:

2 4 f,
F .j _ > (t-1) log () D1 (Independent)i=0 9 j=j (P,j 2 3.4.3

otherwise : D2  (Markov)

where te FIl i (and f ,) are chosen as in section 3.3. For the

"basis" set mentioned in section 3.3, one specific form of expression

3.4.3 is:
3.4.4

N log P(O/O) + N, log P(l/OP(O/1) + log P(O/OP(l/1) >(l)
P2l(00) 11  P(I/O)P(0/1) 2-log

Otherwise :D

where {FI} {N,NN I}

+1 -2 +1 P2,1 P(0/O)

f 0 +1 -1 P 2,2 P(I/0)
, P2,3

0,~ +1 -1P , PC0/l)
0 0 +i P2,4 Pi/l)

3.5 Implications of the Optimum Detector

In the preceeding sections it has been shown that it is possible

to formulate the design of an optimum detector which makes use of higher-

order information. Specifically, for a first-order binary Markov

process it was shown that the optimum detector results in a weighted
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summation of frequency counts of sequences of length one and two. It

is reasonable to ask if the human operator can also extract this in-

formation, and, if 3o, to what extent. Also, does the human use dependent

information in a mannjr simi:1ar to the optimum detector, or does he

use different cues.

After determining, in the next chapter, the range of human sensitivity

to dependent information, experiments are discussed which answer the

above question.
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Chapter 4

Experiment 1 - Basic Questions

4.1 Introduction to Experiment 1

Before considering some of the detailed aspects of the effects

of inter-symbol dependencies on human visual detection capabilities,

it is necessary to determine the range of dependencies to which the

human is sensitive, and whether or not he favors certain types of dep-

endencies over others. Julesz's work in visual discrimination (5) has

shown that humans more easily discriminate between two visual fields

when the border exhibits a "connectivity " property. Ir other words,

if the human can subjectively "connect" a "line" of equal brightness

levels, his discrimination is facilitated. It was thought that perhaps

the subjects in the present investigation might, on this basis, favor

one type of dependency over another.

Specifically, Experiment 1 was designed to answer three fundamental

questions which provide some basic insight into human performance in

this particular area. It also provides the information necessary for

the design of later experiments.

1. Is a human inherently sensitive to information provided

by the dependencies between consecutive symbols of a

visual display? In other words, without previous training

can a subject learn to correctly identify displays which

differ only in their inter-symbol dependencies when no

knowledge of results is provided to reinforce or modify

the subject's performance.

2. When feedback of knowledge of results is provided does the

human learn to detect information provided by inter-symbol
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dependencies, and does his performance improve to some

steady-state? if so, what is the level of this steady-state

performance?

3. What range of dependencies leads to non-trivial (other

than zero and one) detection probabilities? What is the

range of human sensitivity where more detailed investigations

should be concentrated?

4.2 Design of Experiment 1

To answer the above three questions, the following experiment was

performed. Using the general display scheme outlined in Chapter 2,

displays were presented to subjects for classification into one of

three groups. On each trial the subject had equal chances (.1/3) of

viewing any one of three types of patterns. Each pattern contained

63 columns of background noise consisting of 84 points in each column

which were generated by a simulated, statistically independent, process

with P(O) = P(.) = 1/2. The statistics of these 63 noise background

columns remained constant over all trials. The target column, located

near the center of the display, also contained 84 points, but was chosen

to possess very specific properties. On every trial the number of

l's and Q's in the target column was each exactly 42. This is one half

of the total number of points,and also represents the expected value

of the number of l's and G's in the noise background columns.. The number

of ll's(and Q0's) is the cue on which the subject based his decision,

and was set randomly at one of three levels, H/4 = 21, 21+6, and 21-6.

The parameter 6 was fixed for each session of 150 trials, and took on

values of either 2,4, or & depending on the particular experiment. Since
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the number of ll's and 00's was increased or decreased by an amount 6,

the number of 01's and 10's had to be decreased or increased respectively

to maintain the same total number of points in each column. The properties

of these target columns are admittedly very special and are not related

specifically to any statistical process, but are, rather, of a deter-

ministic nature. These types of target columns were used, however, je-

cause they were sufficient to answer the questions at hand, ana were simple

to generate. Once they were generated and stored on paper tape they

were available for all experiments with different subjects. Figure 4.1

shows some typical displays with N 1l21 + 6, for 6 of 2, 4, and 6.

The patterns used in this experiment are deterministic in the sense

+hat an optimum detector may employ a decision rule which leads to a

detection probability of 1. As demonstrated in Figure 4.2, the prob-

ability density function of the number of 11 sequences in the three types

of displays is simply three delta functions with magnitudes of 1/3

each. Placement of decision thresholds T1 and T2 between the peaks of

the density function leads to an optimum detector with perfect performance.

Since N11 must vary by at least one count (i.e., 6 is an integer: 6 > 1)

placement of decision thresholds at T =N/4 - 1/2 and T 2=N/4 + 1/2 leads

to perfect detection for any 6. The problem under investigation is the

determination of the range of 6 to which the human is sensitive and

whether or not he consistently favors an increase or a decrease in N11

over the opposite situation.

4.3 Results of Experiment 1

Since there were no data available on human performance in a

visual detection task with statistically generated dependent symbols,
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11-13 =N=2

N 11 17 =4N 11=25

N11 114 2

Figure 4.1
Typical Displays, Experimnt 1. Conditionh: 62 2,4,6.
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o f( N,,)

T T

4 4

Figure 4.2

Probability Density Function of N for Experiment 1

f(N 1)=(l/3)[6(N I-(N/4-6))+6(N I-N/4)+6(N 1-(N/4+6))]

Optimum Decision Rule:

N1 <T1: D1 (choose hypothesis H1: N N -6)
11 1 111 4

T << N<T D (choose hypothesis H2 N N
1- 11-T2 2 2 11"4N
T < N : D (choose hypothesis H : N + 6)
2 11 3 3 11 4

Detection Probabilities: T1

P(D /H1 ) P(N <T /H f f(N /H )dNI 6(N -(L -))dN =1

-00 - ()

if T > N -
T 2 

T

P(D2/H )=P(Tl <I-NI <T /H)-- f(N /H)dNI= 2 ,(Nl-N)dNI=1
2 2 1- 1 2 2) j 11 2 1141

T1  T1

N
if T1  < T

1- - 2

P(D /H3 =P(T2 <N 1/H 3 f(N /H N 6(N -(N/4+6))dN -
33 3 f 11 3 11)f 11- 11

T T,
2

N
if T2 < N+ 6
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the first problem was to determine the range of human sensitivity

to dependent information so that further experiments could be meaningfully

designed.

In the first phase of Experiment 1 two subjects were run under

various conditions on 6 without any previous discussion of the type

of patterns which might appear and without any feedback of knowlee

of results. Both subjects for this phase had no previous display

experience.

First, Subject A 4as presented fcu' one session with displays

in which 6 = 2. He was told that the patterns would fall into three

classes, and was instructed to try to classify the patterns consistently

by pressing one of three buttons after each display appeared. He was

told to take his time and to look over the display carefully. Subject

A was also told that the differences between the three types of patterns

would occur in the target column, which was ma-ked above and below by

pointers. He was not given any indication of the way in which the

pattern classes differed.

After 150 trials (50 of each type of display) Subject A showed

no consistent decision strategy related to the number of 11 sequences

in the target column. His overall stimulus-response matrix was:

STIMULUS

1 2 3

"1" ..133 .133 .107

RESPONSE "211 .113 .127 .113

"3" .Q93 .073 .113

6 2, no training, no feedback
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It should be pointed out that this form of stimulus-response (S-R) matrix

contains elements which represent the relative frequency of the joint

occurrence "response-i to stimulus-j". The sum of all elements is one;

each column sum is the relative frequency of the occurrence of that

particular stimulus; and the row sums indicate the portion of the sub-

Ject's responses which were of that certain type. The sum of the diagonal

elements represents the relative frequency of correct decisions. In

this case the probability of correct classification was .33 which does

not differ significantly from a chance value of 1/3.

Since performance was so poor at 6 = 2, the next level of stimulus

investigated was 6 = 6. Under this condition the same subject immediately

began to classify the three types of patterns consistently. His overall

correct detection probability rose to about .68, the actual S-R matrix

being:

STIMULUS

1 2 3

"I" .32 .153 a

RESPONSE "2" Q06 .Q6 .24

"3" Q06 .12 .093

6 = 6 no feedback

The subject had obviously chosen to call stimulus-3 by the name "type-2".

Thus interchanging rows 2 and 3 "corrects" the subject's naming procedure

to that of the experimenter.
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STIMULUS

1 2 3

1 .32 .153 0

RESPONSE 2 .006 .12 .093

3 .006 .06 .24

"corrected" S-R matrix

Detection Probability = 0.6 80

The subject's performance on stimulus-2 was rather poor; he had trouble

deciding whether to make response-i or response-2. The S-R matrix

loes, however, clearly reflect an ability to extract information

provided by a difference in the number of second order sequences only.

Recall that N1=N0=42 for all target columns. The answer to the first

question posed in section 4.1 is that a human is inherently sensitive

to higher order information in this task provided that the information

is sufficient to separate displays by at least five to six counts of

sequence of length two.

Before commencing with sessions in which knowledge of results was

provided after each trial, a second naive subject was run under conditions

sim lar to the above., However, prior to running, subject B was informed

of the display generation procedure and the characteristics of the

various patterns which would appear. It was explained to him that

N N 0=42 in the target column and that the background was random with

an expected value of the number of 1'a (and 0's) of 42, but that the

target column would have either 21, 15, or 27 11 and (00) sequences,
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while the average number of these sequences in the background would be

21. No knowledge of results was provided during the 150 trials. The

subject's resulting S-R matrix was:

STIMULUS

1 2 3

1 .263 .04 0

RESPONSE 2 .0.7 .26 .053

3 0 .033 .28

6=6 Initial Training, no feedback

Setection Probability = .803

Subject B performed with a probability of correct decision of about

8/10. Clearly detection of patterns with 6=6 is a relatively simple

task once the subject learns what to look for. The question which

arises is to what level will a subject's performance rise when he is

given extended practice and knowledge of results? What are the subjects'

'"steady-state" capabilities after learning dynamics have died out?

Phase two of Experiment 1 provides an answer to this second question.

Phase two of Experiment 1 was identical to phase one except that

the generation procedure and properties of the patterns were described

in detail to all subjects prior to the first session. Knowledge of

results was provided after each decision by changing the pointer below

the target column into an "H" for "hit" or "M" for "miss", and the upper

pointer into the correct pattern type, "1", "2", or "3". Three paid

subjects, in addition to the author, participated in this experiment.
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Subjects A and B, male undergraduate engineering students, were also

subjects A and B in phase 1. Subject C, a female graduate student, had

had no previous display experience. The author may be considered to be

subject D.

Under condition 6 = 2 subject detection probability averaged over

all classes of patterns and the three subjects (B, C, and D) partici-

pating was 0.576, well above a chance level. The overall S-R matrix

based on pooled data from 2550 trials of three subjects' later runs reflect

an ability to learn to detect patterns differing only by two second

order counts.

STIMULUS

1 2 3

1 .197 .067 .017

RESPONSE 2 .103 .169 .106

3 .033 .097 .210

Pooled Data,255U Trials,6 =2

Detection Probability = .576

In this experiment all subjects favored stimulus-'; that is they had a

bias toward making response-3. This effect diminished somewhat in later

sessions but never disappeared completely. If this increased ability to

detect stimulus-3 patterns is a consistent effect it should be enhancQL

when the level of this stimulus is increased. However, the conditions

6 = 4 and 6 = 6 do not support this hypothesis.

Under the conditions 6 =4 and 6 : , the learning period was shorter

and the subjects reached a steady-state performance after only about

five sessions of 150 trials. The pooled data for two subjects over the

last 900 trials indicates an increasei detection ability over the 6 = 2
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condition.

STIMULUS STIMULUS

1 2 3 1 2 3

1 .251 .040 .003 1 .300 .070 0

RESPONSE 2 .071 .236 .033 RESPONSE 2 .033 .223 .020

3 .011 .057 .297 3 0 .040 .313

Pooled Data 900 Trials Pooled Data 900 Trials

6=4 6-6

Detection Probability=.78L4 Detection Probability=.836

An answer to the second question posed in section 4.1 is now possible.

When feedback is provided a human can learn to detect patterns which

differ by as little as two second-order counts at a level of about

58% correct classification. When there is a difference between patterns

of six second-order counts, about 84% of the patterns are classified

correctly. In any of these cases guessing would account for only about

33% of the correct classifications.

Furthermore, although some subjects favored one type of information

over the others in the early phases, this effect is based to a large

extent on initial response bias, and diminishes after training. Such

an effect becomes almost non-existent when the difference between patterns

is large. This indicates that there is no large, consistent favoritism

of any one type of second-order information after thp subjeccs are well

trained., Subjects can learn to use aJlltypes of second order information

equally.
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4.4 Discussion and Limitations of Results of Experiment i

As mentioned earlier, in section 4.2, an optimum decision strategy

for the class of patte:.'- used in Experiment 1 involves simply counting

the number of 11 sequences occuL.'ng in the target column and comparing

this number to the proper decision thresholds, T1 and T2, located

between the impulses of the density function of N 11 The optimum

decision strategy is, in this case, 100% correct and, as such, a mean-

ingful comparison with the subjects' performance is not pojsible. Also,

L-cause of the special nature of the patterns, there are very little data

on which to bace a measuremeit of the operator's psychometric function,

i.e., the probability of a particular decison versus N, for the target

column. One may, however, hypothesize as to the form of the human

psychometric function, and determine whether this hypothesis fits the

data well or not.

Earlier work by Brazea (2) and Glorioso (4) showed that a model

of the human operator (in a detection task with first-orde information)

as an ideal detector with an inherent Gaussian distributed noise source

fit the data very well. Using the same model in the present study

results in a model detector which counts the number of 11'S in the target

2
column, adds a random number, 12(W,o )-due to operator noise- and compares

the sum to the decision thresholds. This nodel is depicted in Figure

4.3, and the associated probability densities are shown in Figure 4.4.

Glorioso (4) found that for a four-choice decision hiaman opuratsrs set

decision thresholds very near the optimum values. By determining the

value of the operator's decision thresholds and the variance of the

operator noise (.the mean is taken as zero when decision thresholds are

allowed to vary) it is possible to fit a model to the operators' S-R
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matrices very closely. Using the values of thresholds and variance which

closely fit the operators' performance, it was possible to obtain the

modeled S-R and difference matrices of Figure 4.5. The elements, Dij,

of the difference matrices are given by,

Dij = (MSij - 0ij) x 150

where M. is the element in the ith row and j column of the model's
iJ

S-R matrix and 0.. is the corresponding element of the operator's actual

S-R matrix. The close agreement shown by such small values in the

difference matrices is encouraging and lends support to the hypothesis

that the operator can be modeled as an ideal detector with an additive

Gaussian distributed noise source. Operator decision thresholds were

set very near the optimum values, which are located at the intersections

of the density functions in Figure 4.4. It is interesting to note that

the operator noise variance is roughly constant, or, at least, that

there is no apparent systematic change in operator noise over a wide

range of stimulus (N 1) intensity. Compare this result with the approxi-

mately linear relation between operator noise and stimulus variance for

first order information reported by Brazeal (2). The result agrecs

in that here the stimulus variance is constant (actually zero),and operator

noise variance is also constant. It differs from Brazeal's result, how-

ever, in the existence of an operator noise with zero stimulus variance.

This may be interpreted as a "fundamental" operator noise to which is

added a term related to stimulus variance.. Fitting S-R matrices is not,

however, a particularly accurate method of determining operator noise,

and the next chapter discusses more exact measurements through the use

of psychometric functions. The purpose of the present discussion is

only to point out that, even with little data, the possibility of a

Gaussian distributed operator noise source for second-order information
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I7 .076 .014 0 +1.65 -.45

[ij 6=2 .119 .172 .109 Edi] +2.4 +.45 +.45

.017 .085 .210 -2.4 -2.1 0

.252 .029 0 +.15 -1.65 -.45

Cm i.16=4  .080 .236 .036 Ed )j +1.35 0 +.45

.001 .069 .297 -1.50 +1.80 0

.300 .044 0 0 -3.90 0

I. .100 .222 .060 Ed) 0 -. 15 0

0 .067 .313 0 +4.05 0

6=2 6=4 6=6

T 1 19.47 18.35 18.2

T 2 22.32 22.6 23.1

a 2.04 1.95 2.5

Cd11)3 (m j I -[oiI

Figurwe 4.5

Modeled S-R and Difference Matrices for 6 2,4,6
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is quite feasible.

4.5 Summary of Results of Experiment 1

Two questions emerge as a result of Experiment i. First, the

patterns used in this experiment were very special in that, although

they appeared to be random, they actually fell into three non-over-

lapping classes, and were perfectly identifiable by the simple strategy

of counting the number of second-order sequences in the target column.

More interesting, and necessary for an investigation of deeper quest-

ions, is a study of the larger class of patterns which may be generated

by some statistical process which has dependencies between consecutive

output symbols, for example, a Markov process. In these cases the

pattern classes may overlap. That is to say, any one particular pattern

may be generated (with different probability) by various statistical

processes. No detector will be infallible for this larger class of

patterns, and a comparison between the human and statistically optimum

detector becomes meaningful. Also it is possible by using such displays

to determine the precise form of the operator's psychometric function,

i.e., the parameters of the operator noise. The question of human

performance with patterns generated by a Markov process is discussed in

the next chapter.

Second, information in Experiment 1 was provided only through a

difference in second-order sequences. It is interesting to know not

only whether or not a human can use dependent information, to what

degree, and in what way, but also how dependent information is related

to independent information in terms of its ability to be perceived. Is

there some level of independent information above which depenient
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infornation ceases to be a factor in determining human detection

capability? By combining various amounts of independent and dependent

information, the question of the relative utility of each is answered

in Chapter 6.

i i = m . .Bmmm6



Chapter 5

Experiment 2-Markov Displays

5.1 Introduction to Experiment 2

In the last chapter human performance in a visual detection task

with a set of very restrictive patterns was discussed. This class of

patterns was sufficient to answer some basic questions about human

information processing of higher-order information, however, the answers

obtained raised other questions. To answer these questions requires the

use of patterns generated by a statistical process with inter-symbol

dependencies. In the present chapter Experiment 2 is discussed in an

attempt to answer the following questions.

First, when using a set of patterns, each of which has the

possibility of being generated by more than one statistical process,

does the human perform better or worse than with the restrictive (non-

overlapping) set of patterns used in Experiment 1? Consider the problem

of classifying a pattern which may have been generated by one of two

statistical processes with Jensities described by the envelopes shown in

Figure 5.1. The first process is assumed to be a binary statistically

independent process with P(1)=P(.O)= 1/2. It can be readily shown (see

Appendix B.4) that the number of 11 sequences in a target column of

length 84 is binomially distributed with a mean of NP(ll)=84 x 1/4 = 21

and variance of NP(l1)Q(11)=15.75 where QCLl)=1 - P21). Let the second

process he a first order Markov process with the same first-order prob-

abilities as the statistically independent process. However, set the

conditional probability, P(1/11, such that it is greater than P(l): 1/2.

In particular let P(1/1, Q.642 in which case the number of 11 sequences

B
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Nil, in the target column of length 84 is binomially distributed with

mean of about 27 and Variance of 17.75. It should be noted that the

means of the two distributions shown in Figure 5.1 coincide with the

impulses of the density function for N in Experiment 1 for stimulus-2m11
and stimulus-3, under the condition 6 = 6. With the sources shown, however,

there is a non-zero variance in both distributions and some patterns will,

therefore, be misclassified even by an optimum detector.

The second question which Experiment 2 answers is concerned with

the form of the operator noise. Is the operator noise actually Gaussian

distributed as the close fit obtained in Chapter 4 between the actual

and modeled S-R matrices would suggest? Also, how does the operator

perform compared to a statistically optimum detector?

In the last chapter, the parameter used by the optimum detector

was the number of 11's in the target column. The optimum detector

achieved 100% correct performance, and it was hypothesized that the

human performed as an optimum detector corrupted by an internal operator

noise, which was assumed to be Gaussian distributed. By using a first-

order Markov process to generate the displays, it is possible to obtain

a plot of the probability of the subject making a particular decision

versus whatever decision parameter an optimum detector would use. For

an optimum detector the decision strategy results in a sharp boundary

at some decision threshold, T, as indicated by the solid line in

Figure 5.2. All patterns with a/valLctflsion parameter, P, greater than

T are put into one class, and the rest into another class. The human,

however, cannot accurately determine the value of P for each pattern. Thus,

his classification performance (see dotted line in Figure 5.2) in general
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only approximates that of the ideal detector. This "psychometric

function" characterizes the operator's use of the particular parameter

as a cue in detection. If the resulting curve follows a cumulative

Gaussian distribution the model is supported. In this chapter a measure

of the mean and variance of the operator noise is obtained by such a

method.

If the human psychometric function is actually Gaussian distributed,

the standard deviation of the operator noise may be determined by

taking one half the difference in parameter values, P, which correspond

to probabilities of 0.16 and 0.84. A useful psychological measure of

human sensitivity is the "just noticeable difference", or j.n.d., which

may be defined as one half the amount of stimulus change necessary for

a change in probability of classification of 0.5., From the psychometric

function a J.n.d. is one half the change in P which corresponds to a

change in probability from 0.25 to 0.75

5.2 Design of Experiment 2

Making use of the specific form of the optimum detector expressed

by relation 3.4.2, with a basis set {N, Ni, N11 }, the optimum decision

strategy for patterns which may be generated by either a first-order

Markov process or a statistically independent process may be expressed

as
5.2.1

84 log P(0/0)+N log P(l/0)P(0/I) +N log P(O/I)P(l/l) > 83 log 1/2
1 P2 (0/0) 11 P(0/1) P(1/0)

D2 (Markov)

otherwise D1 (StatisticallyIndependent)
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This relation may be further simplified to read,

Nk+N 2PT0 : D2 (Markov)

5.2.2
otherwise :Di (Statistically Independent)

where k1: log P/( O/I)

P(O/O)P(l/l)
k 1 log P(OTl)P(l/O)

As pointed out in Chapter 3 and discussed in detail in Appendix B.2

k and k may not vary independently. What, then, is the form of th-

displays which may be presented in an experiment which uses a first-

order Markov process and a statistically independent process? For

the questions which are to be answered by Experiment 2 it is desirable

to use a Markov process which results in the simplest decision strategy.

From the weighted summation of equation 5.2.2 it is obvious that the

case kI= ! 11 =k would be a desirable choice. However, as pointed out

in Appendix B. 2, tie condition kI=k11 is impossible, but kI=-k is

entirely feasible. If kl=-k 1=k it is shown in Appendix B.3 that

the Markov transition matrix must be double stochastic; this implies

elual first-order probabilities, P(O) = P()= 1/2, and the Markov process

is completely specified. Although it will not be verified until

Chapter 6, one other reason for choosing k =-k is that this condition

corresponds to vhat will later be called "purely dependent" information

content in the display. This added condition is not necessary to answer

the questions asked in the present chapter, but the proper choice 't

this point provides a bonus when combination of information is discussed

later.
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Thus for the present, only the limited case of k =-k 1=k will be

studied. Under this assumption the optimum decision rule involves counting

the number of l's and the number of l's In the target column and com-

paring the difference to an appropriate threshold.

NN ! 84 l og1 D (Statistically Independent)
1-N 11 log )  1

5.2.3
otherwise D (Markov)

2

Note k < 0

For the case in which the observed sequence is much longer than the order

of the Markov process Cr << t), NI-NI1 is approximately equal to N or
1 01

N10 , following the reasoning used in section 3.3.

With the optimum decision parameter, NIl-Nl NIO, specified, the

conditions on P(1/I) must be determined.. Since it was found in Experi-

ment 1 that the subject did not favor either an increase or a decrease

in N over the opposite situation, the "one sided" case in which P(I/I)

> PCI) was used in Experiment 2. Two conditions, as outlined in Table

5.1, were studied. The means of the N distributions governing the

generation of patterns were set to correspond to stimulus-2 and stimulus-

3 patterns of Experiment 1, for the two conditions 6 = 2 and 6 = 6.

The same three subjects participated in all display conditions in

Experiment 2.. Subject A was also subject A in both phases of Experiment

1, while two additional subjects, E and F, both undergraduate engineering

students paid for their services, participated in this experiment. Each

session consisted of 10Q trials rather than 150 used in Experiment 1

in order to reduce any undesirable effects due to fatigue.. On each

trial the subject was required to make one of two decisions which were

indicated by pressing one of two buttons located in front of him.. The
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possible decisions were:

DI: Display generated by source -1 - a statistically independent

process with P(1)=P(0)= 1/2.

D 2 Display generated by source-2 - a Markov process with

statistics known to the subject before running.

Before the first session the statistics related to the generation of

displays by each source were explained to the subjects and after each

trial knowledge of results was provided in the form of an "H" for "hit"

or an "M" for "miss" (see Chapter 2). The subjects were tcld to work

as quickly as possible without diminishing confidence in their decisions.

After each decision, the computer determined the first and second-order

sequence counts in the target column, and typed out the following

data:

-subject's decision,

-correct decision,

-N1 , No in the target column,

-N i, N00, N10, N 1 in the target column,

-subject's decision time

At the end of each session the subject's S-R matrix was outputed, and

the subject was told how well he had performed. All of the data for

each session were also recorded on paper tape for further processing.

5.3 Results of Experiment 2

The main goal of Experiment 2 was the determination of the form of

the human psychometric function, and, thus, the form of the operator

noise. As such, only data representative of the subjects' steady-state

performance, such as those obtained from the later sessions, were retained
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for further processing. The data from these later sessions, consisting

of an average of 600 trials per subject, were processed by a special

computer program which extracted the information necessary to plot the

psychometric function.

Thp program first calculated the value of the parameter N -N

in the target column for each trial. Recall from section 5.1 that N -Nl

is the parameter used by the optimum detector in making a decision. Based

on the value of this parameter, the remaining information from each trial

was categorized and summed over all trials. This procedure provided

the following measures:

-number of times a pattern appeared for each value of NI-Nll

-number of times a Markov pattern appeared for each value of

-number of times decision-2 (Markov display) was made by the

operator for each value of N I-NII.

From these processed data the sublect-s psychometric function was

obtained. Also, the overall S-R matrices for both the subjects and the

optimum detector were calculated..

Figure 5.3 shows the S-R matrices for both the pooled subject

data and the optimum detector under both experimental conditions, A

(strong dependency) and B (weak dependency).

In Chapter 4 the question was raised of whether or not the

subject would perform better with the overlapping set of patterns used

in this experiment. The stimuli used in the present experiment correspond

with respect to means of the probability density function of N to the

stimulus-2 and stimulus-3 conditions of Experiment 1. However, there

is no counterpart in the present experiment to the stimulus-l condition
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STIMULUS 
STIMULUS

1 2 
2

.40 .10 
1 .44 .06

Response 
Response

2 .09 .41 2 .06 .44

Subjects, P(D)=.81 
Optimum, P(D)=.8e

Condition A

STIMULUS

ST IMULUS1 2
1 .31 .18 1 .42 .12

Response 
Response

2 .21 .30 
2 .10 .36

Subjects, P(D)=.61 
Optimum, P(D)=.78

Condition B

Figure 5.3

S-R Matrices for Pooled Subject

Data and Optimum Detector
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of Experiment 1. As such, it might be argued that in comparing

performance in these two tasks, classification of stimulus-2 as

stimulus-i (in Experiment 1) should actually be considered as correct

classification of stimulus-2. Making such an assumption, the modified

probability of detection (correct classification) assuming only the

presence of stimulus-2 and stimulus-3 patterns, is 0.688 for 6 = 2

and 0.91 for 6 = 6. Comparing these values to the corresponding

probabilities of detection in Experiment 2 of 0.61 and 0.81 indicates

that the patterns from the overlapping set used in Experiment 2 are

consistently more difficult to classify than those chosen from the

restrictive, non-overlapping set used in Experiment 1.

It is not meaningful to compare the optimum detector's performance

in Experiment 1 to that shown in Figure 5.3 for Experiment 2 since

the former achieved 100% correct performance. However, comparing

the subjects' performance to that of the optimum detector demonstrates,

as expected, the superior ability of the optimum detector. Notice

for strong dependencies, however, that the subjects' 0.81 detection

probability compares quite favorably to 0.88 obtained by the optimum

detector.

Figure 5.4 is a plot of the psychometric function for the three

subjects participating in Experiment 2 under the condition of strong

inter-symbol dependency. The abscissa of this figure is a normal

probability scale, thus, a cumulative Gaussian distribution plots a s a

straight line. Notice that a particular distance at the extremities

represents much less change in probability than an equal distance near
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I ]
the center. A computer program was used to find a best fit (minimum mean

square error) Gaussian distributed approximation to the data points for

each subject. The results are shown in Table 5.2. Since the mean of

these distributions were nearly equal, the variances were averaged to

obtain an overall best fit model of the pooled subject psychometric

function. This is shown in Figure 5.4 as the straight line with mean

of 18.2 and standard deviation of 3.48. It should be noted that the

mean is extremely close to the optimum decision threshold of 18.4 cal-

culated from equation 5.2.3.

Under the condition of weak inter-symbol dependency, condition B,

the subject 's data points, Figure 5.5 were not very consistent. Best

fit Gaussian distributed models of each subject's psychometric function

are shown in Table 5.3. The mean of l9.92 used by Subject A was very

close to the optimum decision threshold of 19.85, however, the other

two subjects deviated considerably. By adjusting the subjects' data

points so that the resulting means'coincided with the optimum decision

threshold, Figure 5.6 was obtained. A "best fit" Gaussian distributed

model of the pooled subject psychometric function is shown by the straigt

line with mean of 19.85 and standard deviation of 5.22. However, this

mz4el is strongly biased by the extreme variance shown by Subject F.

Deleting Subject F's data points results in the model with standard

deviation of 3.64. It is obvious that a precise measure of the variance

of the operator's psychometric function under the condition of weak

dependency is not possible, however, a value between 3.6 and 5.2 seems

appropriate. Also, a value of J.n.d. of from 2.5 to 3 second-order

counts is indicated by the psychometric functions.
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5.4 Discussion and Summary of Results of Experiment 2

This section provides an interpretation of the experimental

findings of Experiment 2, and a summary of results.

It is apparent that with strong dependencies the subject may set

a threshold very near to the optimum decision threshold, and that he

appears to operate with an internal operator noise which is Gaussian

distributed with a standard deviation of about 3.5. However, when

there are only weak dependencies (P('/1)= .543 in this case), the sub-

ject does not set his decision threshold as precisely. Nevertheless.

it is still set near the optimum value.. With weak dependencies, the

value of operatpr noise variance varies considerably between subjects,

but is consistentlylarger than for strong dependencies. Calculation of

the precise relation between operator noise variance and stimulus var-

iance is no. possible with the Cata available. However, it is clear

that operator noise variance and variance of the cue used by the operator

(N10 in this case), are directly related, as Brazeal found for first-

order information. As an approximation, the linear relation found

by Brazeal results in:

a 2=k 2 VAR(N 1 .)

with a vaule of k2 of about I. for first order information, Brazeal

2found that a value of k = 1/2 described the subjects' performance well.

It is clear that operator noise variance is greater by a factor of about

2 when the cue used for detection is a second-order rather than a first-

order parameter..

In summary, Experiment 2 has pointed out the following factors

B
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related to human information processing with dependent, statistical,

visual information:

1. In a two-choice decision task, humans can learn to use

statistical information related to the inter-symbol

dependencies of the source. Correct classification

performance rises from about 60% when the pattern classes

are separated by dependencies of about 0.043 i. e., P(1/l)

of 0.5 and 0.543) to a level of about 80% with 0.143 separa-

tion between dependencies of the two pattern classes.

2. Subjects learn to set near optimum decision boundaries,

indicating that the mean of the operator noise is near zero.

The decision thresholds are set more accurately when dep-

endent information is strong than when it is weak.

3. Operator noise variance in a task involving dependent infor-

.mation is about twice as great as in a task using first-

order information as the cue.. The variance ranges from

about 12 for patterns with strong dependencies to roughly

20 for patterns with weak dependencies.
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Chapter 6

Experiment 3 - Combination of Information

6.1 Introduction to Experiment 3

In an attempt to determine to what extent various cues are

used in visual pattern detection, it was suggested in Chapter 4

that subjects be presented with patterns containing various amounts

o.7 independent information, whicb is related to the individual sym-

bol probabilities, and dependent information, which arises from the

joint probability structure of the underlying process. Although

we know the form and magnitude of operator noise for purely indepen-

dent and purely dependent information, there are no data which pertain

to the operator's relative use of each type of information when they

are presented simultaneously. By measuring the probability of

detection under various conditions of independent and ependent

information, the answers to the following questions might be obtained.

How much dependent (second-order) information is equivalent to a par-

ticular amount of independent (first-order) information? How does

the human performance compare to an optimum detector when more than

one type of information is present? When "equal amounts" of informa-

tion on both levels are presented, which is used the most? Over what

range is independent information superior to dependent information in

visual pattern detection?

Before an experiment can be designed to answer these questions,

it is necessary to give a more precise meaning to the term "amount of

information", and how it is related to the visual displays used in this

paper.

Consider, once again, the problem proposed by Figure 3.1. One of

two sources is chosqn at random to produce outputs, on the basis of
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which an observer is to determine which source is the generating

source. It is assumed that the output symbol sets are identical,

and that the sources differ only in their underlying probability

structure. At first, assume that both sources are governed by

binary, statistically independent processes. Furthermore, assume

that P(l) > P(O) for both sources; this implies P(1) >1/2.

Under the-a conditions, the entropy (10), H(Si), of each (ith) source

lies between one and zero and decreas 's monotonically with increasing

F(l).

H(Si) -[Pi(0) log Pi(O) + P i(1) log Pi(1)] 6.1.1

A measure of the "dissimilarity", U, of the two sources is proposed as,

U = I H(S1) - H(S2 )J 6.1.2

If the sources are very dissimilar (U is high) their probability

structures (just P(l) in this case) must differ greatly. Note that

0 < U < 1.

Assume, now, that one source, S1 say, always has P() 1/2, and

H(S) 1 . Since H(S2) 1I, the dissimilarity is,

U Z 1 - H(S ) 6.1.3

and represents a measure of how greatly the probability structure of

S2 differs from that of source Sl, or pure chance. What, now, if S2

(henceforth called simply S) is allowed to be governed by a first-

order Markov process?

The total dissimilarity, U , is composed of two parts, one part

due to the independent information (i.e., the first-order probability

structure of the Markov source), and the other part arising from

inter-symbol dependencies. Call these the independent dissimilarity,

UV, and the dpendent dissimilarity, UD, respectively. Thus UUIU .

To obtain a quantitative measure of each component, consider a source
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S, called the adjoint source (10), which has P(l) and P(O) equal

to the first-order probabilities of S. However, let there be no

inter-symbol dependencies in T, i.e., P(1/1) = P(1/0) = P(l) and

P(0/0) = P(0/1) = P(O). Furthermore, let S2 be a source which

has output symbols, a., composed of pairs of output symbols of 6,

22
and let S be the adjoint of S2 . Thus the probability F(ai ) of

each output symbol from S2 is equal to the probability of sequences

of length two from S. It is shown in Appendix B.X that the entropy

of a Markov source is,

H(S) H(S2) - H(S) 6.1.4m

For example, assume that S is a binary first-order Markov process

with, P(0/0) = P(I/l) = 0.7

P(0/l) = P(1/0) 0 0.3 6.1.5

P(0) = P(l) = 0.5

S is a statistically independent source with,

P(0) z P(l) = P(0/0) = P(1/0) = P(0/1) = P(1/1) = 0.5, 6.1.6

and S2 has an output symbol set, and symbol probabilities, of:

0O : 0 P(a) 0.35

02 = 01 P() = C.15
6 .i.7

03 = 10 P(o) = 0.15

04 = 11 P(o 4 0.35

Also, S is a statistically independent process with first-order

symbol probabilities the same as those of 6.1.7. From the above

probabilities, the entropy of the Markov source, S, may be calculated.

H(S ) H(S H(S)

(2)(.35 log2 l/.35) + (2)(.15 log 2 1/.15)

- (2)(.5 log 2 1/.5) 6.1.8

= 1.8813 - 1 = .8813

B-69



Returning, now, to the problem of determining the individual

components of dissimilarity, assume that S were the actual genera-

ting source. There would be no dependent information available

to contribute to dissimilarity, and the independent component of

dissimi:arity is,

U, = 1 - H(S) 6.1.9

Since the total dissimilarity, U, is the sum of the component

dissimilarities, the additional 'amount of dependent dissimilarity

arising from actually using S, a Markov source, instead of 3, the

adjoint source, must be,

UD U U I

El - H(SI] - [1 - H()]

H(.S) - H(S) 6.1.10

=2H(IS) - H(S)

Equations 6.1.9 and 6.1.10, along with tables of entropy for

various sources, permits the design of a unique source for any

specified component dissimilarities.

As a measure of the "dependency" in patterns arising from the

use of sources described above, the following ratio is proposed, and

is used in the remaining development.

uD
S-U D U I 6.1.11UD + UI

Dependency, D, ranges from zero, for a statistically independent

process (UD = 0), to +1 for a Markov process with P(l) = P(O) = 1/2

U ( I  0). A D measure of 1/2 indicates that equal amounts of

independent and dependent components of dissimilarity are present.
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Using the above definitions of "dissimilarity" and "depen-

dency", Experiment 3 was designed to answer the questions posed

earlier.

6.2 Design of Experiment 3

By using either a statistically independent process with

P(l) = P(O) = 1/2, or a first-order Markov process, patterns were

generated which contained the same total amount of dissimilarlty

as the patterns used in Experiment 2, however, they possessed

varying amounts of component dissimilarities, UI and U . Table

6.1 summarizes the experimental conditions used in Experiment 3.

There were two amounts of total dissimilarity in the displays,

U = .007 and U = .06, with three levels of dependency, D = 1/3, 1/2,

and 2/3. Data from Experiment 2 and interpolation from the results

of Brazeal (2) fill in the cases of D = +1 and D = 0, respectively.

A new subject, G, was added to those who had participated in

the past experiments. SubjectsA and B participated in all condi-

tions with U = .007, while Subjects F and G ran all conditions of

the experiment with U = .06. All subjects were required to make

one of two decisions, Markov or Independent display, as in Experi-

ment 2, on each trial. There were 100 trials per session. As

before, feedback of knowledge of results was provided immediately

after each decision, and the subjects were informed of their overall

level of performance after each session. Each subject participated

in an average of seven sessions for each conditior. Subject detection

probability rose rapidly in early sessions and leveled off to a value

which varied less than 7% over the last three sessions. Because of

this steady performance, and the fact that all subjects except G had
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particjpeted in other <xperiments, the data from the subjects'

last three sessions were taken to be a measure of the subjects'

steady-state performance.

6.3 Results and Discussion of Results of Experiment 3

With total "dissimilarity", U, of 0.06, average subject

detection (correct classification) probability, P(D), was about

0.85. Figure 6.1 indicates the change in P(D) with dependencj,D,

for the two subjects participating in Experiment 3. Data points for

the D = 0 and D = I conditions are taken from other work, as mentioned

earlier, and there are no data for Subject F at D = 1/2. The three

lines in Figure 6.1 compare the performance of an optimum detector

(for Markov sources), the average of the two subjects, and a first-

order detector (one which uses only independent information).

It is clear that the subjects' performance rose when less dependent

(more ipnendent)information was presented; however, the change was

only on the order of 10%. The subjects seem to perform very much like

a poor Markov optimum detector. This result agrees with the results

from the psychometric functions obtained in Experiment 2, although

only dependent information was used there. For dependent dissimilarity

U, greater than 50% of the total, subjects outperformed the first-order

detector.

When total dissimilarity was only 0.007, Subjects A and B perform-

ed with a ,robalility of Jtection of about 0.60. Average subject

performance shown in Figure 6.2 indicates that there is very little

change in P(D) over the complete range of dependency. An optimum

Markov detector achieves about 68% correct decisions, and, again,

subjects perform roughly 10% worse than the optimum detector. The
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first-order detector is superior to the subjects until dependencies

make up about 2/3 of the total dissimilarity.

From this experiment we see that, although operator noise is

greater for dependent information than for independent information,

subject performance suffers by using greater amounts of dependent

information only when the total information is high. At low levels

performance is roughly constant, irrespective of the level of depen-

dency. In both cases studied, the subjects' detection probability

followed the form of the optimum detector, and not the first- rder

detector. Apparently, independent information can be extracted more

accurately, but its presence never causes the trained subject to ignore

the available dependent information.

Also, we see that if the dependency, D, of the patterns is less

than 1/2, implementation of the simple first-order detect¢ ., which

only counts the number of l's in the target column and compares this

to a threshold, provides performance superior to that of the human

operator who uses the dependent information as well. However,

when the dependent dissimilarity is high, the performance of the first-

order detector deteriorates rapidly.
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Chapter 7

Conclusions

7.1 Objectives and Method

This thesis has attempted to provide a better understanding

uf the effects of inter-symbol dependencies on human visual infor-

mation processing ability. Three general experiments have provided

the answers to the following questions.

1. Is the human operator inherently sensitive to information

provided by inter-symbol dependencies? If so, within

what range?

With extended practice, what level of performance can the

human operator achieve in a visual detection task involving

dependent statistical information?

Does the model of the human operator as an optimum detector

corrupted by an internal noise source hold for a task involving

dependent information? What is the form of the operator noise?

". When presented with patterns containing both dependent and

independent statistical information, does the human operator

use one component of the information to a greater extent

than the other?

The first experiment determined the range of human sensitivity

to 11 endent information. Experiment 2 proceeded to determine the

fort, of the !-,uman operator noise through the use of an ideal detector

and experimentally derived psychometric functions. Experiment 3

provided definitions of "dissimilarity" and "d2pendency" of patterns

p-nerated by either a statistically independent or a Markov process.

It then went on to discuss the relative usefulness of independent

ind dependent information.
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7.2 Summary of Results

From the three experiments conducted, the following results

were obtained:

1. It was found that the human operator possesses an inherent

ability to recognize differences In patterns on the basis

of second-order sequence counts only, provided that the

patterns are separated by at least five or six second ,order

counts.

2. With extended practice in a three choice decision task with

patterns from non-overlapping classes, the human operator can

learn to consistently classify patterns which differ by only

two second-order counts at about a 60% level.

3. Classification of patterns drawn from overlapping classes used

in Experiment 2 was consistently more difficult than classifi-

cation of patterns from the non-overlapping classes used in

Experiment 1 over a range of separation of N (or its mean) of

from 2 to 6 counts.

4. Operator noise in a pattern detection task with dependent

statistical patterns was found to be approximately Gaussian

distributed with near zero mean and a standard deviation of

from 3.5 to 5. The variance of the operator noise is roughly

twice the variance associated with operator noise in a similar

task using statistically independent visual information.

S. Operator performance, as measured by probability of detection,

in better for independent information than for dependent infor-

mation when the overall level of information is high, specifi-

cally U a 0.06. At low levels, U = 0.007, performance is
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j nearly constant, irrespective of the form of the information.

6. No point was found at which operators overlooked the presence

of dependent information. Even when independent information

made up a large portion of the total amount, operators made

use of whatever dependent information was present.

7. For a level of dependency less than about 1/2 a simple first-

order detector is capable of outperforming the human operator;

however, the performance of this simple detector falls off

rapidly as dependency increases above 1/2.

B
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Appendix A

Computer generation of Markov sequences

A.1 Introduction

This Appendix describes a method for the generation of Markov

sequences by a small scale digital computer. The machine language

computer program was written particularly for a Digital Equipment

Corporation PDP-5 data processor, a 4096 12 bit word machine.

The order of the process, r, and the number of symbols, m, are

completely general, and only limited by the available memory of the

computer. The basic machine language program uses about 70 locations

of core memory. A maximum of an additional 2mr locations are required

to store statistical informavitce about the process being generated.

This information must be stort2 ;n thfi computor memory prior to execution

of the program.. One step of thi invcives converting probabilities to

coded numbers which are used by the computer.

A.2 Theory of operation

An r-th order Markov process - one :-hos. :,esent (utut epends on

at most the past r outputs - may be described y a state diagram con-

taming nzmr states, where m is the number of different output symbols

allowed. The states correspond to all possible r-length sequences of

the m output symbols. For each state m cond.-ioral probabilitias must

be specified to define the "next state" trar.itic:-i )f the 9rocess. An

e.xample of such a state diagram is given in figure A.J. for a second-

:qier process (r=2) with 2 possible output symb A&s (t2). The conditional

i are derived from thove listed in Tdtle. V1. It should be

.'ec- " ':er-Ain states (shown in dotted lines in the diagram) have no

tran . them; they are oever reached, and may be eliminated from
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Figure A.,1

Typical Transition Diagram of A Markov Process
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P(11)r- 1/3

P(1)= 2/3

P(,12)= 1/3

P(.2)= 1/3 \ P(21)-1/

Table. A..1

Probability Tree Associated

With A Markov Process
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the diagram. Hence,

r
n<m.

Also, not every state has m transitions from it. This may happen in

certain processes when the transition probabilities for these cases

are zero. Nevertheless the sum of all transition probabilities from

any state is always unity, In the computer program, which orders the

transitions from lowest to highest probability, some states must be spec-

ified for these non-existent transitions and assigned a zero probability;

the actual states specified are of no importance since the transitions

will never occur.

To generate a Markov process the computer needs all the information

contained in the state diagram. This is;

- ntmber of slates, n.

- number of output symbols, m..

- ordered listing of next states and corresponding probabilities
for every state of the process.

- coded numbers corresponding to the transition probabilities.

- starting state.

- outputs corresponding to each state.

The flow diagram of Figure A.2 describes the operation of the program

in the generation of Markov sequences.

The "next state" transitions of the process are determined by

sampling a Gaussian noise generator connected by an analog-to-digital

convertor to the computer, adding to the sample a constant which corre-

sponds to the probability of going to the least likely state, and check-

ing the magnitude of the resultant binary number to see if it is above

or below a specified limit. If the limit is exceeded, the particular

state corresponding to the constant added to the sample is specified as

I
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the next state of the process. If the limit is not exceeded, a second

constant (corresponding to the next most likely state transition) is

added to the same sample and again checked in a like manner. This pro-

cedure continues until the limit is exceeded; the state corresponding

to the added constant is taken as the next state. Only m-l iterations

at most are necessary to effect a state transition, since, if m-l states

are not chosen as the next state, the m-th ordered state must be. The

state transitions are always checked from least probable to most prob-

able, thus the necessity for their entry in an ordered manner. The

constants which are added to the a/d converted sample of the noise gen-

erator are those which are stored in memory prior to execution, and

correspond to shifting the mean of the Gaussian noise source to a

point where the desired transition probabilities are obtained by the

given decision ale.

7he
Figure A.,3 demonst "tes how the statistical properties ofinoise

source are relat2d to the transition probabilities of the Markov process.

The noise source has a mean V of 5 volts and a standard deviation a of
2

1 (variance =c =1). The binary conversion of any sample between 0 and

lQ volts corresponds to the octal numbers 0000 through 7777. The com-

puter program checks to see if the constant Kij , corresponding to Pij

(the probability of a transition from state i to the state corresponding

to the j-th ordered probabilityl plus the noise sample exceeds 7777.

This procedure is equivalent, in the analog case, to seeing if a voltage

kj (Cthe analog equivalent of the binary constant, Kij, actually used in

the program) plus the noise sample voltage, v, produces a result greater

than 10 volts. we denote the Gaussian density function of the ran-

dom variable v corresponding to a distribution with a mean of V and a
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Noise Source and Transition Probabilities of Markov Source
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va "ince of o' by gv( ;o ), we see (I1) that the following probabilities

correspond to the sample plus constant, viki., being greater or less than

10 volts: 10 1
1-P. .=P[v+k. .<l0v]=J g ,(+k. I)dv= 7 + erf[5-ki .] A2.1i,] V, - j

P. .P[v+k >1Ov.]=Ig (5i.;I) dv= - -erf[5-k. .] A.22ij ij _ f vSkij 2 ef5ki j  .

10
Equation A.1 is just the probability of not choosing the transition

corresponding to k.., while equation A.2 is the probability of choosing

it. If this particular transition is not choosen, it is necessary to see

if the transition with the next highest probability will cause the sample

plus constant to be greater than 7777 (octal), i.e., v+kij+>10 volts.

We must remember, however, that we know from the j-th iteration that

v<10-k. .and, so, the constant which is added must be sufficient so that:I-,)

P[10<v+k. . <10-k. .+k. . ]=
1,1-+l bij+l

But, P[10< k, <10-k..+k. ijl] k. .4 -k.

- ~, j i5 ,j+l 1 g (5ki-+l )dv

=erf[(10-k i .+k. )-(Sk )]-erf[i0-(5+k

i] 1,+ i,j+ '+
:erfl5-k i j ]-erf[5-k i j+l

]

and from the j-th iteration we know:

P. - -erf[5-k. .]; or erf [5-k.i..] 1 -Pij 2 1,) 2 ij

Thus, P.+:[ -- P. -erf [5-k
isj+1 2 1,3 i,j+l

or, P.. + P -erf[5-k i, gv ( k l)dv A. 2.3i,ji-1 2

10
We must, then, choose ki,j+1 so that equation A.3 is satisfied; the proce-

dure is to add P. to P. subtract this suw from 1/2, and use tables

of the Gaussian error function to find k i,j .  If the transition to the
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141 mrered state is not made, the next iteraicn will !Ae xi+ 2 ad4d

to the same samplt. and by the above reasoning we may find k ,J92 by
-1 1

the equation: k 5-erf 4 -(P +P 4P volts A.2.4i,j+2= 2 i'j~ i,jtl i,Jt2

In general: p- o 1.2.1

The actual constant used by the computer is the a/d converted binary

number corresponding to this voltage. Note that erf (x) may run from

-" to +- for values of x equal to - 1 and + 1 respectively. The a/d

converter, however, is limited to a 10 volt range, and this restriction

must be imposed on the voltage ki,j+ w. This approximation causes no

problem, however, since erf a.87= 1/2 when rounded off beyond 4 places,

and this corresponds to the limits of only 1.13v and 8.87 v respectively.

The bina:'y numbers 0000 and 7777 k.correspond to 0 and 10 volts) may be

used for the probability of zero and one respectively.

Once a transition is made, the same process is repeated but uses

the set of probabilities and state transitions which were entered for

that particular state. The process continues to generate next state

transitions with the desired probabilities until the program is halted

by the operator or control is removed by programming in a special sub-

routine described below.

After each state transition, the main program branches to a sub-

routine (written by each user) which allows the present state information

to be used in producing the desired output information in the required

form. Some possible options might be:

- store a sequence of outputs for future processing by another
program.

- convert the output information to an analog voltage, and hold
this voltage on an output line.
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- activate particular relays or control circuits which

correspond to the various states of the Markov process.

Also by proper programmnlng within this subroutine, control may be

removed from the Markov Sequence Generator Program and transferred to

some other location.

Since output 4ssignments occurs after state transitions occur,

and the state-to-output mapping may be specified in any way, it is

possible for the output process to be a projection of a Markov process,

or, in general a Linearly Dependent Process. A discussion of the prop-

erties of such statistical processes is presented in more detail by

Booth (9).
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Aprendix 3

Miscellaneous Derivations

B.1 Steady State Probabilities of A Markov Source

In this section the steady-state probabilities associated with

a Markov process will be found and a useful form presented for a

first-order binary Markov process.

Let T be the transition matrix of a Markov process.

T = Ctij 8.1.1

Each element, tij, represents the probability of a transition from

state-i to state-j, where the states may be assumed to correspond to

the past r output symbols for an r i-order process. Figure B.1 shows

the transition diagram for a first-order binary Markov process.

P(1//OI
P(.O/O ~p(1/1)

P (0/1)

Figure B.1

Following the presentation by Booth (9), let wi (n) be the

.th th
probability that the system is in the i state at the n obser-

vation. The probability (row) vector (n) represents the proba-

bility of the syst3m being in each state at observation n. The

probability vector at ooservation n+l is related to the probability

vector at observation n by the matrix equation,

(n+l) = ;(n) T B.1.2

It is assumed here that the elements of T are time invariant. Thus,

;(n+l) " (n) T Cl[(n-l) T] T

S(n-) T2  B.1.3
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ar in general,
,R(n~l) 7(C) T *  B.1.

or

T(n) = 7(0) Tn B.1.5

It is shown by Booth (9) that the z-transform of Tn is,

Z[Tn , = W(z) = z [zI - T]1

where I is the identity matrix..

Using the final value theorem of z-transforms, we may write,

lir [Tn] = lim (z-l) W(z) = lim (z-1)(z)[zI-T] 1"

n -), z -1 z 41 B.1. 7

Consider, now, specifically the following binary first order

Markov process:

a 1-a
T -B.1.8

1-b b

z-a a-1
[zI - T] B.1.9

b-1 z-b

z-b 2-a

1 z-c z-c
[zI - T]"1= z-i B.1.1O

-l1-b z-a

z-C z-c

where c a+b-1. And from the final value theorem,

1-b 1-a
-l l-c 1-c

lim (z-l)(z)[zI-T -  = lim[Tn, B.1.11
z1 1-b 1-a n -

1-C 1-c

Notiee that this matrix has identical rows, and hence the steady-

state probability vector is,

lm ;(n) = limi(O) Tn  1-b 1-a B.1.12
1-c 1-c
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B.2 Dependrnce of Weighting Fac-ors in A First-Order Markov

Optimum Detector

In section 3.4 the following expression was obtained for the

optimum detector of patterns which may have been generated by either

a statistically independent process or a first-order Markov process:

P(1/O)P(O/l) Niog P(O/o)P(l/O)

NlogP(0/O) + N log + N (0/og POl/0)
B.2.1

>(t- )iog 1/2 D 1I

otherwise : 2

Let C1 = P(I/O)P(O/l) and C P(O/0)P(l/l)1 p2(oo 11 P(O/I)P(I/O)
P (0/0)

It is shown in this section that for a fixed first-order probability

distribution, P(O) and P(l), C1 and Cl1 may not vary independently.

The relation between these factors, and thus the form of the displays

which may be generated by such processes is also indicated.

Let the transition matrix for a first- order Markov process be,

T a 1-a B.2.2

1-b b

where the t.. entry represents the probability of a transition fromi]

state-i to state-j. If the states associated with this matrix are

chosen to correspond with the output symbols of the process, it is

possible to write C1 and C as,

C (l-a)(l-b) and C a-b: 2 11 l (-a)(1- U B.2.3

a

Let the product of C1 and C be Q,

Q = C'.1 = b/a B.2.4
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Assume, now, that C1 may be held constant while C is allowed

to vary. The produ-? Q, shouia De able to take on two possible
1 an 2

values, Q and Q2, corresponding to the two values C1 and C
1 211 11

11 1 a2  B.2.5

= C1  2 C /

However, in section B.1 it was shown that the steady state proba-

bility vector is,

[P(o) P(l)] 1-b 1-a

1-c 1-c B.2.6

1-b 1-a
I(1-a)+(l-b) (l-a)+(l-b)

Thus, for a fixed P(O) and P(l), their ratio is,

P(O)/P(l) =(l-b) / (1-a)

and is constant. So, b/a is also constant. But this contradicts

the asumption that Cl1 may vary independently of C1.

It has been shown in this section that C and C may not vary

independently. In fact, once the steady-state (first order) probabil-

ities are set, the ratio b/a is set, which determines the relation

between C1 and C 1. Note, however, that b and a may vary over wide

ranges for a constant b/a ratio. It is necessary to insure only that

0 < (a & b) < 1

B.3 Value of C1 and C for P(O) = P(l) = 1/2

When it is desired thati (-) t [1/2 1/2], what values may C1
and C take on? From relation 8.1.12 the condition P(O)=P(l) implies

1-b = 1-a , or a=b

Thus the transition matrix becomes,

a l-a

T=.3.1

1-a a
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This results in,
2 a2

C 1 a) and CI1 - a2 B.3.2a (1-a)2

or log C -log C B.3.3

B.4 Distribution of Second-Order Sequence Counts

Let P(O) and P(M) be the first-order probabilities of a 0 and

a 1 respectively, and P(0/0), P(0/)p P(1/O), and P(1/1) be the

conditional probabilities associated with the output symbols.

Assume that dependencies extend only to the adjacent symbols. This

describes the statistics of a first-order binary Markov process.

The problem is to determine the distribution of N1i, the number of

11 sequences which occur in a longer sequence of length N.

If one observes the symbols generated by the Markov process one

at a time, the chance of a symbol being a 1 is just P(l). The

distribution of NI, the number of l's in an N length sequence, is

binomial with mean of N'PO). Now, consider the symbols emitted

by the Markov process two at a time as depicted in Figure B.2. Each

pair of symbols may be classified as being a 11 sequence (Y) or not

being a 11 sequence (N).

Figure B.2

Source.................

S NYNNNNYYNNNN .....

The problem has been transformed into determining the distribution

of the Y's in the classified sequence. A Y occurs only when a 11

occurs, so P(Y) = P(ll) = P(1)P(l/l). But the Y's, and hence the

1l's, are obviously binomially distributed with mean of N.P(l). The
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same approach may be used to find the distribution of any other

sequences of length greater than or equal to one.

B.5 Entropy of a Markov Source

Consider a first-order Markov information source, S, which has

an output symbol set Sl, s2$ ... Sm) with associated symbol probabil-

ities P(ST), P(set rp(s (and the set of conditional symbol

1~ 2J

Rwiigtecniinlprobabilities Ps/ ij l , Th nrp (1)oamm
H(s) = E E P(sis) log 2 i/P(si/S (s. s l .1

i,j=l 1

Rewiting the conditional probabilities,

mmm

H(S) = -E E P(s.s.) log P(s.s.)/P( s.) B.5.2~i ,j= l, i 31

which may be split into two terms,

m m m m

H(S) E-[ E P(sis) logE P(s s )log P(s
i,j=l i 1 i'jl

2B.5.3

N The second summation may immediately be taken over i, giving,

mmm~~~~H(S) E -iEl P(s s.) log P( s s) + Ej I P(s.) log P(s.)

S=1B.5.4

I~I -

Let S 2 be a source which has m 2 output symbols, Oi, composed

of pairs ot output symbols of S, with symbol probabilities of,

P (o 2) = P ( S 2l ) B . .

PNO3 )  = P(SIS 3 ) n

P (a 2 P(Smsm
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Furthermore, call S the adjoint of S, and let it be a source which

has identical first order probabilities as S, but no dependencies,

i.e., a statistically independent process. Let S2 be the adjoint

2
of S2 . Equation B.5.4 may be ,.itten in terms of these special

sources a's,

H(S) H(S ) - H(T) B.5.6

I
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PREDICTION OF REACTION TIME FROM INFORMATION OF INDIVIDUAL STIMULI

1.0 Irtroduction

There has been continuing disagreement in the literature over the effects on
reaction time of the information load of unequally probable stimuli. It has been
shown that while RT is linear with average stimulus information, the same function
does not apply with regard to the information of individual stimuli. Kaufman and
Lamb (1966) advanced the hypothesis that S's behavior in this type of situation
is a function of his threshold for differential stimulus probabilities. Their experi-
ment differed from previous studies on two variables. First, they used only two
stimuli for all conditions in which stimuli were not equally probable, and second,
they used an absolute judgment situation, where other studies have used discrimina-
tivz judgments. The present study was conducted to explore the significance of the
numbar of equally probable and unequally probable stimuli, to test the validity of
Kaufmai. and Lamb's hypothesis, and to attempt to modify the hypothesis to allow
quantitative predictions. The experiment varied the number of unequally probable
stimuli in a discrimination setting and was designed to follow as closely as possible
the procedure used by Hyman (1953).

2. 0 Experiment

The Ss were 48 male and female undergraduates. The apparatus consisted of a
Gebrand tachistoscope, voice key, and Hunter millisecond timer. Stimuli consisted
of white cards with black stimuli, X's and O's, 7/8 inch in size.

The stimulus locations used were the four outermost corners and next inner
four corners of an imaginary 6x6 matrix. Bun, boo, bee. bore, bive, bix, bev,
and bate were the eight location names of which two, four, or all were used, depending
on the condition. Each side of the matrix made a visual angle of approximately 50
at S's location. The matrix was centered on the white card.

The data ior the information in the individual stimuli are of the same form as
that reported by Hyman, that is, RT to high probability stimuli are longer than would
be predicted from the regression line for equally probable stimuli, and the reverse
for low probability stimuli. Figure 1 shows that stimuli with the same probability
of occurrence (7 S or 1 '2) had approximately the same RT regardless of ti~e number
of alternatives in the condition.

While the data are ot the same general form as that reported by H.yman (1953)
and Kaufman and Lamb (1966), the present results provide quantitative values for
testing an extension of the hypothesis advanced by Kaufman and Lamb. They had pro-
posed that, in an absolute judgmen -;ituation with unequal probabilities, Ss would
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be prepared to respond with the name of the more frequent stimulus provided that
the disparity in probabilities was large enough and the cost of a mistake was not
excessive. The extension is that, with three or more alternatives, S makes a chain
of decisions, the order of which depends on the probabilities of the alternatives and
the time for each of which depends on the amount of information in each step. On
every trial, S makes an initial decision as to whether the most probable stimulus
has occurred. If it has, thenS's reduction in uncertainty is equivalent to the informa-
tion in the most probable stimulus plus the residual information in all remaining
stimuli. Thus, for a set of stimuli, I to n, ranked in order of probability, the reduc-
tion in probability for the most probable stimulus is

-P1 log 2 Pl - (1 -pl) log 2 (1-pl) (1)

Note that the second term (residual inf(,rrnation) is not the same as average informa-
tion.

If the most probable stimulus does not occur, then the time required for this
decision is the time that S uses to process the inform tion in the first term of eq. 1.
Next, S decides if the second most probable stimulus has occurred. The total re-
duction for the second most probable stimulus occurring is

-pl log 2 p1 -p2 log 2 p2 - (1-p 1 -p 2 ) log 2 (1-pl-p2)

or first stimulus reduction plus second stimulus reduction plus residual information.
This process is repeated until a decision has been made for all stimuli.

If, at any point, the remaining stimuli are all equally probable, the residual
term is simply log 2 of the number of stimuli remaining. Thus, for the present
experiment, two equations are suffizient, eq. 1 for the most probable stimulus and

-P1 log 2 p1 + log 2 n remaining (2)

for all other stimuli.

The reduction in information for each stimulus was calculated and the RT to that
amount of information was estimated from the regression line for equally probable
alternatives. Table I gives predicted and actual RTs for the present experiment;

ji t - tests were used to test for significant departures from predicted values. None
were found to be significant. Table I also shows values estimated from other published
data; these values are consistent with the results obtained in this study.

Thus, for discrimination situations at least, a quantitative method using only
the information loadings of indi'4dual stimuli can predict RTs to individual unequally
probable stimuli.
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An experiment has been conducted using the same conditions for absolutely
judged stimuli. Preliminary results are of the same form as the present experiment.

Table I. Reduction In Uncertainty, Predictwd and Actual RTs for Three Studies

EXPERIENTAL CONDITIONS

CONDITION NO. ALTER- PROB- STIMULUS AVERAGE
NATIVES ABILITY INFORMATION INFORMATION

1) 2ELA 2 1/2 (. 500) 1.0 1.0

2) 4ELA 4 1/4 (.250) 2.0 2.0

3) 8ELA 8 1/8 (.125) 3.0 3.0

4) 2UIJA 1 7/8 (.875) 0. 1926 0. 5436
1 1/8 (.125) 3.0

5) 4ULA-High 1 7/8 (.875) 0.1926 0.7417
3 1/24(.042) 4.585

6) 8ULA-High 1 7/8 (.875) 0.1926 0.8945
7 1/56(.018) 5.8074

7) 4ULA-Low 1 1/2 (.500) 1.0 1. 7925
3 1/6 (.167) 2.585

8) 8ULA-Low 1 1/2 (.500) 1.0 2.4037
7 1/14 (.071) 3. 8074

REDUCTION IN
PROBABILITY N TOTAL N UNCERTAINTY PREDICTED ACTUAL

Present Study

.875 1 2 0.5436 .332 .315

.875 1 4 0.5436 .33,41 .314

.875 1 8 0.5436 .332 .324

.500 1 4 1.0 .335 .440

.500 1 8 1.0 .335 .397

.167 3 4 2.585 .654 .ti30
.151 2 0.5436 .332 .370

.071 7 8 3.807 .900 .786

.042 3 4 2.129 .562 .572

.018 7 8 3.351 .808 .937
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Table I. (Cont'd)

REDUCTION IN
PROBABILITY N TOTAL N UNCERTAINTY PREDICTED ACTUAL

Hyman (1953)

.813 1 4 0.69 .317 .306

.062 3 4 1.72 .475 .585

Stone & Calloway (1964)

.812 1 4 0.695 .326 .325

.188 3 4 1.827 .370 .375

.500 1 4 1.0 .338 .345

.250 1 4 1.5 .357 .370

.1.25 2 4 2.0 .377 .375
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ALPHABET SIZE, IMPLICIT CODING AND
THE MEMORY SPAN

1. 0 Introduction

Miller (1956) suggested that the immediate memory span (IMS) is constant for
chunks, where a chunk represents a unit of response. Hyman and Kaufman's (1966)
results indicated, to the contrary, a constancy for information. The present experi-
ment was an attempt to resolve the disagreement between the two sets of results.
Miller's interpretation is based primarily on the IMS for sequences of familiar oinary
stimuli presented aurally. With the use of various coding schemes, the IMS increased
for the amount of info.'mation transmitted but was constant for the number of response
units or chunks. Hyman and Kaufman presented tachistoscopically simultaneous
messages of 4 to 8 symbols selected from alphabets of either 3 or 5 bits per symbol.
Their symbols were either eight forms (3-bit alphabet) or combinations of the forms
with four colors (5-bit alphabet), and the messages were exposed for either 100 msec.
or 500 msec. No significant differences were found in the number of bits recalled,
approximately 13.3, as functions of the exposure time or bits per symbol conditions.

Hyman and Kaufman (1966) suggested that the difference between the two sets of
data might be in the human's ability to code stimuli. With familiar stimuli, such as
in Miller's experiments, Ss might be able to encode them during the brief interval
that an exposure remains. The typical sequential presentation allows relatively large
amounts of time for coding.

Two parameters appear to be of fundamental interest, viz., alphabet size and
familiarity. The chunk hypothesis is based on binary alphabets of familiar symbols.
Sperling (1960) found a constant IMS of 4. 5 symbols for brief tachistoscopic exposures
cf messages selected from alphabets of either 21 consonants or 21 consonants plus 10
digits. Hyman and Kaufman's results are based on relatively unfamiliar alphabets of
3 and 5 bits per symbol. Therefore, in order to resolve this contradition, certain
features of the Hyman and Kaufman experiment were replicated with familiar symbols
and an alphabet of size two was included. In the present experiment, alphabet size
was varied from 1 to 4. 7 bits per symbol with familiar symbols - leLLers of the
English alphabet.

2.0 Method

2. 1 Stimuli, Apparatus, and Subjects

Familiar subsets of letters from the English alphabet were selected to give
"alphabets" of 2, 4, 8, 16, and 26 alternatives corresponding to 1, 2, 3, 4, and
4.7 bits of information per symbol (table I). The sets were the letters A-B, A-D,
A-H, A-P, and A-Z. Messages were always of length 12 and were formed by random
sampling with replacement. Fifty messages were prepared for each alphabet. For
the two-alternative case, the distribution of number of symbols on each card followed
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Table I. Alphabet Sets

NUMBER OF LETTER
SYMBOLS BITS/SYMBOL SET

2 1 A-B

4 2 A-D

8 3 A-H

16 4 A-P

26 4.7 A-Z

a binomial distribution. The letters were printed on 8-1/2 x 11 inch white cards
using a primer print typewriter. Each letter was 1/4 inch high and 1/8 inch across.
The 12 symbols were arranged in a diamond 2 x 2-1/8 inches, which subtended an
angle of approximately 5° (figure 1). The cards were presented in a Gebrands two-
field tachistoscope. The second field contained a center fixation point and was
brightly lit to minimize afterimages.

B

B D

A C

D C

A C

C A

B

Figure 1. Symbol Arrangement

Two groups of Ss were run. In the first group of 10 Ss, 2 So were assigned
randomly to each of the five alphabet conditions. n a single session, each S saw
100 messages in a single condition. In the second group, each of 5 Ss observed all
of the conditions four times over the period of ten sessions.

2.2 Procedure

The S was seated at the tachistoscope in a darkened room and asked to fixate on
the fixation point. He then initiated a trial by pushing a button which exposed the
stimulus for 500 msec. The S was then given as much time as he needed to write
down the symbols on a response grid. The Ss were instructed to not guess.
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3. 0 Results and Discussion

For the 2-, 4-, 8-, 16-, and 26-symbol alphabets, the average number of sym-
bols recalleJ were (figure 2):

Alphabet Size

2 4 8 16 26

Repeated measures 5.2 4.5 4.1 4.2 4.1
Independent groups 5.1 3.7 4.1 3.7 4.0

The most striking feature is the nearly constant level for all other conditions follow-
ing a decrease from the level for the two-symbol alphabet. Since there were no

5.5-

5.0-

U 4.5-, \repeated measures

S4.5-

4.0-

3.5- independent groups

3. 0

0.0 I I I I I

1 2 3 4 4.7

Input in bits per symbol

Figure 2. Symbols Recalled as a Function of Alphabet Size

coding conditions, the number of symbols recalled corresponds to the number of
chunks recalled. With the exception of the binary alphabet, the data support the
chunk constancN hypothesis. Certainly, a constancy for information is out of the
question. Even the deviant (alphabet size of two) data may be explained within the
framework of the chunk concept. The explanation is based on the assumption that
the chunk is not the single symbol in the binary case. With a binary alphabet, the S
is able to increase his IMS by invoking a simple implicit coding procedure.

One possible code is to operate on the basis of runs, I. e., sequences of the
same symbol. A coded response wou~d be 2A, 4B, IA, etc. This code has two
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response units per chunk, one specifying number and one specifying kind. Therefore,
the S would use it only when the run length is greater than two. Analyzing the dis-
tributions of samples of size 12 for the binary alphabet, we find that the probability
of a run of length two or less is .79, in -rporating. 56 of the symbols. Calculating
from the data (repeated measures) for the larger alphabets of 8, 16, and 26 symbols,
we find that the number of response units available is 4. 1. The number of recalled
symbols used by runs of length two or less is. 56 x 4. 1 = 2.3. The runs of length
greater than two, which average 3. 6, are divided into the remaining 1. 8 response
units giving 3.2 symbols for the 1.8 response units. Adding 3.2 to 2.3, we obtain
5. 5 as the predicted number of symbols to be recalled in the two-symbol alphabet
condition. The observed figure of 5.2 is close enough to the predicted figure to sup-
port the notion that some such process might be operating. The hypothesized implicit
coding strategy is most useful with two alternatives. However, some gain would be
expected for a four-symbol alphabet. Thus, Ss run repeatedly show a slightly better
performance for the four-alphabet condition; this may be a systematic effect enhanced
by practice. The explanation of some forms of information processing behavior in
terms of repetil.ion has been proposed previously by Kornblum (1967).

Thus, the results of the present experiment support Miller's hypothesis that the
IMS is constant for "chunks" or units of response. If this is the case, Hyman and
Kaufman's (1966) data are open to reinterpretation. They found that the maximum
number of symbols correctly recalled was 4.5 in the 3-bit per symbol form group.
Two points are important about this: First, the number of symbols recalled is the
same as found in the present experiment for comparable conditions and also found by
Sperling (1960). Secondly, the stimulus figures were complex forms which may well
have been as distinctive and, with some training, as familiar as the letters used in
the present experiment. The maximum number of symbols recalled for the 5-bit per
symbol color-form conditions was approximately 2.75, well below the comparable
figure for the present experiment. Inspection of Hyman and Kaufman's data suggests
that, at least for the 500 msec. exposure condition, asymptotic performance was not
obtained. Wheroas the form-alone alphabet was relatively familiar, it may be that
the color-form alphabet was relatively novel. Unfortunately, the two alphabets are
not comparable. If performance is still improving at the end of their experimental
sessions in the color-form condition, then Hyman and Kaufman's interpretation of
their data is open to doubt. However, one feature of their data may support the con-
tention of a constancy for bits. For the 100-msec. exposure conditions, which were
run after the 500-meec. conditions and were, therefore, more practiced, there is
no evidence of a further increase in IMS over the final two sessions. If it should be
the case that the interpretation applied to the 500-msec. exposure group is correct
but that their 100-meec. exposure group had, in fact, stopped improving, then the
significance of the exposure times becomes crucial. Possibly the 500-msec. ex-
posure is already allowing processes to be invoked different from those available with
the 100-msec. exposure.

Alternatively, the chunking and information capacities represent different limits
on the organism's IMS. The Information c~pality may not have been reached in the
present experiment because of the familiarity of the symbols. 'Therefore, a chunk
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capacity was imposed by some other process in memory. Finding larger alphabet
sizes which provide homogeneous subsets poses a problem for further research.

We conclude that at least for the conditions tested, the results support a modified
chunk hypothesis.
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