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ABSTRACT

—

e »
: l The aim nf this project is to provide basic knowledge of the methods which may
be used by a man-computer system to detect the presence of a target, using data
;‘ from a passive sonar receiver. This research consists of analytical studies to
¢ evaluate important system parameters and experimental investigations measuring
r operator performance under various operating conditions.
4.

The first two reports in this volume describe the effects of pattern variations
on human pattern recognition. The results measured the operator’s ability to

visually detect patterns differing in shape and to detect patterns generated by
statistically dependent sequences.
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' I* The second two reports deal with basic human information processing and de-
scribe the testing of a predictive model for reaction time to visual stimuli and a
) test of the effects of number of stimuli on memory span.
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FOREWORD

The work described in this report was accomplished by members of the Department
of Electrical Engineering, Uuniversity of Connecticut, under subcontract to the SUBIC
Program (contract NOnr 2512(00)) during the period from July 1967 to July 1968, The
Office of Naval Research is the sponsor and General . mamics Electric Boat division
is the prime contractor. LCDR E.W. Lull, USN, is Project Officer for ONR; J, W,
Herring is Projcct Manager for Electric Boat under the direction of Dr. A, J. van
Woerkom, Chief Scientist of the Applied Sciences Department.
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INTRODUCTION

The goal of the General Dynamics Electric Boat division research project at the
University of Connecticut is to provide basic knowledge concerning the methods
which may be used by a man-computer system employing data from passive sonar
receivers to detect the presence of a target. This research consists of analytical
studies to evaluate important system parameters and experimental investigations
measuring operator performance under various operating conditions.

The reports in this volume are divided into two groups; the first deals with

pattern detection on a cathode ray tube display, while the second group is concerned
with visual information processing,

The first renort, No. 22, describes an experiment in which target shape (line,
rectangle, or square), target orientation (horizontal and vertical) and signal-to-noise
ratio (three levels) were varied. Time to decide if a target was present was de-

pendent on signal to noise and target shape; operator ‘‘noise’”’ was independent of
all parameters.

Report No, 24 describes three experiments on pattern recognition with dependent
statistical sequences. Several findings are reported, generally showing that operator
noise and detection performance are poorer then for equivalent independent sequences.

Report No. 25, the first report in the second group, describes a model to pre-
dict reaction time from individual stimulus information and an experiment run to

validate the model. The results supported the model; previous experimental results
were also analyzed by the model.

Report No, 26 describes an experiment to test the effect of a number of different
possible symbols to be recalled and information load per symbol on immediate
memory. The results generally showed that a constant number of symbols was re-
called regardless of the number of possible different symbols. The one condition

which did not show this result is examined in light of a coding scheme that subjects
could use.
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EFFECT OF PATTER: SHAPE AND ORIENTATION IN VISUAL PATTERN DETECTION

ABSTRACT

This report is concerned with an experimental investigation of the effects
of pattern characteristics or man's ability to detect visual signals in noise.
Subjects were presented a two-dimensional random dot display and asked to
indicate the presence or absence of a signal. Target shapes presented were
lines, rectangles, and squares, both vertically and horizontally oriented,
and at three signal to noice ratios. The standard deviation of the decision
uncertainty - operator ncise - was found to be essentially independent of
target shape, orientation, and signal to noise ratio. Decision time‘was
indeperdent cf orientarion, but varied with both shape and signal t¢ noise

ratio.




Effect of Pattern Shape and Orientation in Visual

Pattern Detection
1.0 Introduction
The general problem being considered here is the development of a method

of determining how well a man can detect a visual pattern in a noisy environ-
ment. The solution to the problem must be a two step process: first, deter-
mining from what pattern characteristics the subject extracts informatien to

guide his detection decision; and second, determining how these information-
carrying characteristics interact to produce a final decision. This paper is
concerned with the first of these problems.

Previous research in this area has occurred in both physiologica; and

psychological studies. In general there are a few areas of correlation. First
of all, it has been found that in the visual cortex of animals such as the
rabbit and cat the architecture of the ganglion cells is such that some individual
cell structures respond tc line stimulation only at specific orientations.l’2
It is not known whether or not there is an overabundance of these cellgopti-
mized at any orientation, but a logical assumption is that they may be distri-
buted in such a manner as to allow such animals to see, equally-well, lines of
any orientation. The implication here is that the human's visual system may be
constructed in a similar manner. It has been known for some time that visual
orientation significantly affects the recognition ability of people.3 It has
been shown that people more readily recognize vertically-oriented patterns than
horizontally-oriented patterns.u Thus far the explanation of this phenomenon has
consisted of the theory that people do not recognize patterns as readily when
they are prasented out of their normal context. Since, in general, most real
life patterns are structured somewhat symmetrically about the vertical Qxis, it

may be true that people are not more capable of recognizing vertically-oriented
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patterng, but just more accustomed in doing so. There is some evidence tnat this
may be true. Henles found that an initial difference in recognizing ability bet-
ween differently ofiented patterns disappeare” with further training. As a whole,
the determination of the effect of orientation on the ability of peopie to recog-
nize patterns has not clearly been explained. The question that is being raised

is, "Are people more capable of seeing vertically cr horizontally oriented patterns,
perhaps because of the basic cellular structure of the visual system?"

Other visual pattern characteristics which may influence a person's det-
ection decision are contrast between bordering areas, and the shape of the pat-
tern presented. A line can be considered as the edge between two contrasting
areas, and the line intensity can be measured as the amount of contrast present.
Pattern shape, although a somewhat vague area to define, is included in this
investigation to compare man's detection capability of lines with that of areas
containing the same information content.

The remainder of this paper investigates these areas---pattern shape,
intensity, and orientation---by comparing man's ability to detect visual patterns

from a noisy environment with that of an ideal detector.




2.0 Description of Display System

The equipment used in the experiment consisted of a cathode-ray tube,
random-dot display controlled by a PDP-5 computer. A detailed description of
th. «isplay system is given in reference 6. The displays used in this éxpor-
iment were two-dimensional random-dot patterns (72 rows x 72 columns) in which
72 cells were assigned as a target ---line, rectangle, or square. The back-
ground noise was controlled by sampling a Gaussian noise source about the mean
to determine whether or not a specified cell should be intensified. Sampling the
same noise source at a different level determined whether or not a target cell
should be intensified. A push button matrix was available for subject responses
to the presented displeys, and the cormputer was used to store and procéss data

as the experiment progressed.
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3.0 Ideal Detector

It is quite desirable in any research effort to determine a basis for

performance which can be used as a measure of the quality of the outcome of

an experiment or study. One possibility is to obtain a large amount of prev-

ious information in the area of interest and use this as a basis of comparison.
Another approach is to determine the ideal results of an experiment and find
out how the actual results compare with the ideal. In general, the latter

" method is to be preferred, because specific areas which may be lacking are
more apt to be evident and because the latter method more readily lends itself
to modelling.

An ideal detector can be defined as a device which counts the nﬁmﬁer of
intensified cells in the target area and compares this with a predetermined
optimum threshold to form a target, no target decision. The decision amounts
to deciding whether or not the target plus noise, or just noise alone is

present. A detailed treatment of this decision process can be found in reference

7|
Distribution of Noise Alcne

Distribution of Target

’f’ Plus Noise

Signal-to-noise ratio = % where o = standard deviation of the distribution

Figure I Noise and Target Distributions
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The state of each cell in the target area is determined by sampling either of
the above Gaussion Distributions about the mean of the noise.
If the noise alone is present: ' .

Py (prob. of an intensified point) = Q, = 0.5

If the target plus noise is present:

)

1l 2
o= {1/2}x-u
Py /‘5;5 e {T) dx
0

Using 72 samples -- the entire target area;-—, and applying optimum decision

theory to form the likelihood ratio:
N N-N
where N

Nl N—Nl Nl

72, total number of target area cells
the number of intensified cells

c
n
Hon

The decision task is now:

L > Lth decide target

L < Lth decide no target

where the Lth is a threshold
Using the Bayes criteria for equal costs and an a-priori probability of 0.5,
the optimal Lth = 1.

Solving for N ,- the decision threshold;

1

Nl = -N log 2Ql '
Tog P\ /Q
The expected results for the ideal detector in a decision task can now be

determined by calculating, based on the optimum decision threshold, the detection,




R

false alarm, correct dismissal, and false dismissal probabilities defined

below where the discrete binomial distributions are approximated by uniform

Qmus Noise ‘

i
- :
N >k

- optimum decision threshold

Gaussian distributions. Noise

T

detection probability X-u
(decision target when target D=-1\ e (1/2)¢ a ) dax
is present) vor
T
false alarm probability i X 2
(decision target when no F =i e-(l/z)(a') dx
target is present) /5-1-)
T
T
2
correct dismissal 1 ( wX
(decision no target when ] o e (1/2'(0) dx
. . n
no target is present) )
-0
.T 2
false dismissal / X-u
(decision no target when D = - e ~{1/2)( o ) dx
a target is present) Var

The decision process of a person can be likened to that of an ideal

detector to which a Gaussian noise source has been added.7
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N = DEISICA THRESHOLD
N ~ (# of intensified points in the target area)

Fig. II Nonideal Decision Process

The ability of a person to make a decision can be measured by deter-
mining the standard deviation of this operator noise under different condi-

tions.
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4.0 Experimental Design -

The pattern characteristics selected for the experiment were the
following:

Shape: line,rectangle, square

Orientation: vertical, horizontal

Intensity: -3.5db, -8.5db, -14.5db signal to noise ratios

Three shapes were included to provide an intermediate target area between

a line (minimum area) and a square (maximum area). Oblique orientations were
avoided because of the difficulty in obtaining equal oblique dot spacing in a
rectangular dot matrix. The signal-to-noise ratios were selected to’take ad-
vantage of past experimental data for comparison purposes. Each possible
combinaticn of these factors was used as the basis of an experimental session.
Four subjects were used in an alerted operator, no feedback, signal detection
task in which, during each of the fifteen experimental sessions, one hundred
displays were randomly presented (fifty target, fifty no-target). The sub-
jects' task was to decide whether or not a target was present. Initially
before each session, the subject was given a brief training run to affix his
decision threshold at or near that of the ideal detector. The training session
consisted of ten patterns with feedback which allowed the subject to reexamine
the pattern after learning the outcome of his decision., If the subject desired,

the training session was repeated.
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Fig. III TARGET PATTERNS
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The target areas were indicated by markers along the bottom and right
hand side of the display. (see Fig. III). The overall matrix size and
intensity were preset before each session. The subjects were told not to
waste time trying to locate the exact target perimeter, but rather to scan
the target area denoted by the markers and then indicate their decision by
depressing one of two buttons. The data collected zonsisted of the detection

time, to the nearest tenth of a second, and both the ideal detector and operator

decisions for each target display. After a session was completed, the com-

puter printed out the experimental results with the following format:.

number of intensified target area Ideal operator decision
points in the target source detection decision time
col. distribution decision (T or N)

(T or N) (T or N)

(for all displays)
ideal det operator
detection probability D
false alarm probability F
correct dismissal CD

false dismissal FD




5.0 Results - Conclusions

The data analysis plan was to determine the standard deviation of the
distributions representing the subject's decision characteristics, as a measure
of his detection ability. In order to have a large number of data slnpiOl
and obtain results typical of an average subject, it was desirable to pool
all subject 's data for each condition. However, initial data analysis of
the individual subject 's decision characteristics revealed that in spite of the
attempt to reduce the between subject decision threshold variation by initial
training a significant difference persisted. Thus any attempt to pool the data
must first take this effect into consideration by subtracting from each set of
data the mean of its assumed-Gaussian distribution. This was accomplished by
writing a Fortran program which will find the one Gaussian approximation which
best fits the data points using a minimum mean square error criterion. (see
Appendix I) Now the means of the individual distributions could be determined
and subtracted, and the data pooled for an investigation of the decision un-
certainty--operator noise--characteristics. The results are shown below in
Table I.

In general the results show that the subjects could detect a target imbedded
in noise almost equally well over the range of parameters considered. Effects
of orientation are negligible, and only a slight difference in avg. decision
uncertainty was evident over the signal-to noise ratio range. The most difficult
shape appeared to be rectangular; the easiest a line. However,the manner in
which the patterns were presented may have contributed to this result. fhc
location of the pattern in the matrix was indicated to the subject by markers
along the bottom and right hand side of the display, (see FigureIll), For lines,
all the points in the target area were easily locatable by the subject by

scanning along the identified line. For rectaagular and square targets, the
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Signal/Noise Ratio

-3.5 DB \ -8.5 DB -14.5 DB Avg.
Vertical Line 4.8 4.4 3.7 4.30
Horizontal Line L.y .y 4.5 4,43
Vertical Rectangle . 4.5 .y 5.8 4,90
Horizontal Rectangle 4.5 4.8 4.9 4.73
Square 4.4 5.0 4.5 4,63
Avg. 4,52 4.60 4.68 4,60
Orientation: Vertical 4,60
Horizontal 4,58
Shape: Line 4.37

Rectangle 4,82
Square 4.63

Each Entry Represents The Standard Deviation of The Subjects'
Decision Uncertainty In The Number of Points In The Target Area.

TABLE I POOLED OPERATOR NOISE RESULTS

subjects had the problem of identifying all four edges of the target area.
Since they were told not to attempt to accurately locate the target perimeter
but rather just scan the indicated area, they had the additienal uncertainty
of exactly what points were considered the target. Thus, in general, they
could be expected to either use a smaller sample for the decision, or perhaps
include some points outside of the target area. On this basis, the small
difference between the results for different shapes does not seem significant.
Decision time was considered by determining first the average over all \
subjects for each condition. (see Table II), and then determining the average
variation in decision time as a function of the number of points in the target

area for each condition. (see figure IV )
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Vertical Line Vertical Rectangle

5 5 1 )
10 4 4
3 3+ -
2 2 -
1 1 o
¥ Y
30 uwd  s6  sd 30 40 50 60
Horizontal Line

5 -
Y o®®

3 ;',r \e

® o
7 .//A_
1

Square Signal/Noise Ratio
5 e, =-3.5 DB
- e "8-5 DB
4 eess -14.5 DB

Vertical: Decision Time (Sec.)
Horizontal: Number of Intensified Points

FIGURE IV DECISION TIME VS NUMBER OF TARGET AREA POINTS
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Signal/Noise Ratio

-3.5 DB ~-8.5 DB -14.5 DB Avg.

Vertical Line 2.32 3.00 3.42 2.91
Horizontal Line 1.63 2.67 3.93 2.74
Vertical Rectangle 1.75 2.52 3.06 2.48
Horizontal Rectangle 1.uu 2.35 2.82 2.20
Square 1.42 1.88 2.17 1.82
Avg. 1.71 2.50 3.08 2.43

Orientation:  Vertical 2.69

Horizontal 2.47

Shape: Line 2.82
Rectangle 2.34

Square 1.82

TABLE II AVERAGE DECISION TIME (SEC.)

F::om the preceding data several effects are apparent. As should be ex-
pected, average decision time increased as the signal/noise ratio decreased,
and asymptotically approached a constant. The slight difference between
vertical and horiznntal conditions is not significant since the individual
subject's data does not consistently show the same result. However, as the
shape of the target changed in the direction of decreasing perimeter (line,
rectangle, square), the decision time decreased significantly. There are two
possible reasons why this might be true: first, there may be a difference in
the time required to scan the expected target area before the decision is made;
and second, if the scanning times are not different, the subject must be process-
ing the information in a different manner. It is evident, from Figure IV , that
for obvious decisions -- ones with extremely low or high target point density
-~ that the decision times do not significantly differ, implying that the

scanning times do not significantly affect the decision time. The behavorial
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explanation of this result may be the. following: When observing a line target
the subject must base his decision on two partitions of information: the number
of target points presently in view; the recall from memory of the previously
scanned target points. When observing a more compact target shape, a larger
portion of the target is within view and less memory recall is necessary. On
this basir the shorter decision times for more compact target patterns indicatad
. that more rapid decisions may be made when less memory processing is required

of the operator.

In conclusion, it appears that

1. Orientation (vertical vs horizontal) has little effect on a subject's
decision.

2. Target shape does not affect a subject's ability to make a correct
decision, but may alter the manner in which he processes target
information. In general the decision time decreases when the target
information is presented in a more compact shape.

3. Signal/noise ratio (contrast), over the range considered, does not
significantly affect a subject's ability to make' a consistent
decision, but lengthens the decision time as the target strength

decreases.
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Appendix I

Best Fit Gaussian Approximation
PDP-5 Fortran

Pregram Description
This program was written to simplify and improve the curve fitting
problem of approximatirg a psychometric function with a Gaussian Distribution.

Essentially, the program begins with an estimate of the mean and standard

deviation of a set of date, and iteratively varies the mean and standard

deviation, in that order, until a mean square error measure is minimized.
It was found, experimentally, that for the resolution of the program (0.1),
three iterations were sufficient. Total running time is about 3-5 minutes.

Output results are printed on the ASR-33.




Operating Instructions:
1) Load Rim loader at 0020"

2) Load Dec 8-2U binary loader viaRim

3) Load Fortran operating system

4) Change location (ouou)e to (‘7000)e

5) SA = 200 Press load address

6) Turn ASR-33 on line, punch off.

7) Insert INTerpretive BFGA program in High Speed reader

8) Enter 2000 in the switch register

9) Press start - program will load and halt with AC=0.
10) Press Continue and load data*z.

k] - gee Rim loader

#2 - gee Data format

An output of "mean square error = " will occur for each iteration. If
the error is the same for two successive type outs the pr. am has converged
on the best solution. If the error has not repeated itself a  the program
completion, reenter the data in the same format but use the "new'" estimates

(results of the first run).
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Operating Jescription:
Once the program has been loaded, operation will commence as soon

as sufficient data has been introduced. Data may be initially on paper

*
tape typed in ASC-11 form in the proper format 2 or it may be entered from

the keyboard as the program is running. If an error is made during input
data:
1) press RUB OUT and the program will ignore the preceding
word
or, 2) stop the computer and restart at SA=0201 - then reenter the
complete data.
Numbers are separated by commas or carriage returns.
This program is in a continual loop so that when a set of data

has been processed, a new set may be immediately entered.




Data Format

Code number (any pumber
number of data points
Est. of mean

Est. of Std. Dev.

variable, rate of occurrence - (one data point)

" " "
»




Example of data input format and output results,

0111,11,39,4
34.5,0,36.5,.133,38,.17,39,.33,40,.4,41,.375,42,.625,43,.7,44,.8,46,.86

"

Mean square error = +0.257997E-1

1t

Mean square error = +0.25799E-1

Mean square error = +0.257997E-1
+111
STD DEV = +0.389999E+1

Mean = +0.411997E+2

I
. l A-21
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Gaussian Approximation -
The area under the normalized Gaussian curve is calculated by the

following polynomial

7

Y= .398 x - .0663)(3 + .0099!'»(5 - .00118x

> %

Approximation Error

ERROR T
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Flow chart
Start S(K)-Mean Square Error

Initialize Xi-Hean
Counters Dv-Standard Deviation

J,K,=1

}

ea
ata Set

i

Calce.
S(K)

x

K=K+1
XM=XM-0.

4

Calc
-'il(-li)-———- [ ————————
XM=XM+0.2
S{1)=s(x~1

K=K+1

Lal.S(K)

KM=K+1 =XM-0.1
XM=XM+0.1 €S I5(1)=s(K-1)

| K=2;8YiDV-

l M Cale. S(K

K=k+1 | _ NO yes DV=DV+0.2 | |

DV=DV-0.1 N S(1)=5(K-1
K=2

e

{ Type out
Error S(}D

bype out

Dy
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FORTRAN Listing

c ; Best Fit Gaussian Approximation

3 Dimension X(20), P(20), C(8), S(70), D(20), ¥(20),
3 C(1)=-,118E-02

3 C(2)=0

3 C(3)= .995E-02

s C(4)=0

s C(5)= -.663E-01

3 C(6)=0

3 C(7)= .398

3 C(8)=0

3 Accept 3, T, N, XM, DV

; Format (E, I, E, E)

s DO 4 I=1, N

; Accept 5, X(I), P(I)

3 Format (E, E)

3 Continue

$ DO 29 J=1,4

3 K=1

; M=l

; SM=0.

3y DO 7 I=1,N

3 Y(I)=(X(I)-XM)/DV

s D(1)=Y(I)*C(1)+C(2)

; DO 8 L=3,8

3 D(L-1)=Y(I)*D(L-2)+C(L)

3 Continue

3 AR=0.54D(L-1)

3 IF(AR-P(1)) 27,28,28

+ SM=SM+(P(I)-AR)#**2

3y Go to 7

; SM=SM+(AR-P(I))%*2

; Continue

s S(K)=SM

3 Go To (9,10,1),12,13),M

s M=M-1

s K=K+l

s XM=XM-0.1

3 MM+l

: Go to 6

3 If (S(K)-S(K-1)) 1u4,14,15
3 XM=XM+0.1
3 S(1)=8(X-1)
y K=l

3 K3K+l

3 MzMe)
$AM=XM+0.1
1 Go To 6
If (S(K)-S(K-1)) 16,16,17
MsM-1

Go To 18
XMzXM-0.1
5(1)sS(X-1)
K=l

KsK+l

@ W W Po We Yo W B
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M=M+1
DV=DV-0.1
Go To 6
IF (S(K) - s{k-1)) 20,20,21
M=M-1
G0 TO 19
DV=DV+0.1
§(1) = S(k-1)
K=1
K=K+1
M=M+1
DV=DV+0.1
GO TO 6
IF (s(K) -~ s(k-1)) 22,22,23
M=M-1
GO TO 24
DV=DV-0.1
Type 1, S(K-1)
Format (/"Mean Square Errorz",E)
Continue
Type 25, T, DV, XM
Format (I,/,"STD DEV=", E,/,'"Meanz",E)
GO TO 26
STOP
END

12
20

21

24

13
22

23

25

WO W B I W WS WS M W WS P B B WS M U W W B WP W P P B W
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Preface

When analyzing or designing a man-machine system used to perform
signal detection or pattern recognition, it is important not only to
know the specifications of the computer and other hardware, but also the
capabilities and limitations of the human operaior. Visual displays
generated by statistical processes provide one means of controlling the
information presented to the operator, and thereby studying his performance.
While other workers have used visual displays generated only by statisti-
cally independent processes, this thesis studies the effects of inter-
symbol dependencies on human visual infcrmation processing ability. In
particular, the range of human sensitivity to dependent information, the
form of ~peratcr noise, as compared to an ideal detector, and the relative
utility of statistically independent and dependent information are deter-
mined. Also, a method of generating Markov sequences by a small scale
digital computer is discussed.

This werk was supported in part by an NDEA (National Jefense Education
Act) Title IV fellowship and also the Office of Naval Research through a
prime centract (NOnr 2512(00)) with General Dynamics/Electric Boat as a

part of the SUBIC (Submarine Integratel Zontrol) progran.
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Chapter 1

Introduction

1.1 The Problem Under Investigation

An accurate description of human visual information processing
capabilities, and knowledge of the factors affecting human performance
in visual detection tasks, are particularly important if the human is
to be successfully integrated with a computer in a man-machine signal
detection or pattern recognition system.

In an attempt to analyze the human as a visual information processor,
investigators have used displays similar to Figure 1.1, composed of an
array of dots generated by statistical processes, in order to control the
information in the stimuli. In the typical "alerted operator" détection
task all columns, except one near the center, called the target column,
represent a random background. The 'target", if it is present, appears
in the marked column (target column) as a difference in secme statistical
parameters, for example, the number of intensified points. The operator's
task is to determine the presence or absence of a target, or to classify
the target column on the basis of some subjective measure. In general
this work has been limited by the basic assumption that successive points
in the display are statistically independent. In this thesis human visual
detection performance is analyzed using patterns generated by dependent
statistical processes in order to determine the human's ability to use
information provided by inter-symbol dependrn._ies. The three general areas
investigated are:

1. The range of human sensitivity to visual dependent information.

2. The form of human "operator noise" in a visual detection task

* note: numbers in parentheses refer to references listed in the bibli-
graphy.
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Typical Statistical Display Used in Human

Visual Information Processing Experiments
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with dependent information.
:4' : 3. The relative utility of independent and dependent visual
information to the human operator.

1.2 Background

Recent work by Kaufman, Levy, Booth, and Glorioso, (1)%*, has

v A considered many aspects of the problem of integrating a small scale

digital computer and a human operator to combine the high speeu processing
and display control capabilities of the computer with the visuai detection
capabilities of the human operator. The basic display used in these in-
vertigations was an array of binary dots on the face of a cathode ray
tube as shown in Figure 1.1. All columns except the target column were
essentially generated by a statistically independeht binary process with
P(0)=P(1)= 1/2. The target column was generated by this same process for
the no-target condition, and was obtained by increasing P(1) un&er the
condition of target present. The basic assumption of theée Qofkers.was
the statistical independence of each gcint in the display. For such
ratterns it may be easily shown (2) that an optimum detector need only
count the number of intensified points in the target column and compare
this number to a threshold determined by the statistics of the underlying
processes, the a priori probabilities of the occurrence of target and no
target conditions, the costs associated with each decision, and the desired
detection probability. It is not necessary for the optimum detector (in
this case)to consider higher -order statistics arising from inter-symbol
dependencies in the pattern.

Brazeal and Booth (2), in 1966, considered the problem of “op?rator
noise" in an alerted operator signal detection task. Theylfound that the

operator could be modeled as an "optimum detector" with an added noise




|
i
i
|

source. The operator noise was found to be Caussian (normally) distrib-
utéd with a mean which tended to zero with sufficient training.

This work was extended by Moran (3) to curved targets, while
Glorioso (4) developed a stochastic model which describes the dynamics
of the human operator and his ability to learn, adjust decision thresholds,
etc.

In general, information contaired in the first-order staiistics of
a display is only one component of the total visual information. In
addition to this component, higher—order information may be present when
there exist dependencies between the symbols. In this paper the term
"higher-order statistics" is used to mean probability distributions of
sequences of symbols of length greater than one. First-order statistics
refer to sequences of length one, the individual symbol frequencies,
second-order statistics refer to sequences of length two, and so forth.

Consider the two displays shown in Figure 1.2. Each of these displays

‘has 84 rows and 64 columns of binary dots, with the target column marked

by arrows. Each target has exactly 42 intensified points ("1's), which

is the expected number of intensified points in the other 63 "noise oﬁly"
columns. The target column of Figure 1.2b, however, has eight more se-
quences of‘two consecutive intensified points ("11's") than the target
column of Figure 1.2a, which has a total of 21 "11" sequences. An
"optimum" first-order detector; making use of only first-order statistics,
would view these two target columns as exactly the same since they both
have exactly 42 "1's". Although an untrained observer may not be able to
distinguish between these two target columns, it is a simple matter for an
operator who is trained to look for cues such as clusterings of l's and

Q's to use this dependent information to distinguish between the two
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displays. Also a true optimum detector, which takes the inter-symbol
dependencies into consideration, can distinguish between such displays
extremely well.

1.3 The Present Investigation

This paper investigates the ability of human opzrators to make use
of information.presented by higher-order statistical processes, and the
relation of the human to an optimum detector. As such, this effort
represents an extension of the previously mentioned work to the more
general case, and also answer- some basic questions concerning the cap-
abilities of the human to process dependent statistical information.

It should be pointed out that Julesz (5) has studied a different,
but somewhat related, problem. Julesz was concerned with the ability
of the human to discriminate between simultaneously presented visual
fields of dots. The brightness of each point in his displays took on
one of either 2,3, or 4 val':s and were determined by the output of a
Markov chain. His investigations were concerned with finding specifiec
visual properties of the display which allow human discrimination,in
contrast to the present study which is concerned directly with the in-
formation content of the display and the ability of the human, as well
as an optimum detector, to use different types of statistical information.

1.4 General Outline of Experiments

The experiments involved in this study may be grouped into three
major classes. These experiments are discussod in general her: to
briefly outline the approach of the remainder of the paper, and will be
presented in detail in the following chapters.

Experiment 1 was designed to answer three basic questions.

l. Are humans sensitive to information contained in the higher-




order (greater than first-order) statistics of a finite-
valued, discrete information source?

2. If so, what is the approximate range of sensitivity, i.e., that
region of stimulus intensity which does not lead to the two
trivial detection probabilities of zero and one?

3. Within the range of sensitivity, does the human consistently
favor one form of infcrmation over another?

Experiment 2 extends the domain of visual stimuli to a sub-set of
the patterns generated by a stationary, firstorder, binary Markov process.
The questions asked in Experiment 2 are:

1. When using patterns which fall into overlapping clasées (a
pattern may exist in more than one class) does the human
perform better or worse than with patterns from non-overiapping
classes?

2. What is the form of the "operator noise'" introduced in the
visual detection process?

On the basis of the data obtained, the operatcr noise, as compared to
a "noiseless" optimum detector, is determined, as well as the just
noticable difference (j.n.d.) of the stimulus intensity.

Experiment 3 first provides a definition of amount of information,
or "dissimilarity", contained in patterns in terms of independent and
dependent components, and then goes on to discuss the question of the
human's relative use of indepenience and dependent information when both
are presented simultaneously. The questions specifically answered by
Experiment 3 are:

1. What is the form of the change in operator's probabillty of

correct detection when the relative amounts of independent




and dependent "dissimilarities'" (information) in the displays
are varied?

How does the performance of a human operator compare with that
of a first-order detector and a true (Markov) optimum detector
when varying amounts of component "dissimilarities" are

presented?



Chapter 2
General Experimental Conditions and Apparatus

In the following chapters three experiments are discussed to
answer the questions posed in Chapter 1. Throughout these experiments
the same apparatus is used and certain psychophysical conditions
remain constaﬁt. In this chapter these invariant properties of the
experimentsare discussed. Later, the specific details pecul@av to
each experiment are presented in greater detail.

The heart of the apparatus is a Digital Equipment Corp. PDP-5
digital computer - a flexible, small scéle (4096 - 12 bit word core
memory) general purpose machine. Other major elements of the system
include a wide band (DC - 100kHz) Gaussian distributed neiée generator,
analog to digital converter, and Fairchild 737A 17 inch electrostatically
deflected oscilloscope display (CRT). The computer in conjunction with
the above equipment and miscellaneous external sweep and logic cir-
cuitry, is used to generate the displays under program control. In
addition, the PDP-5 is used to control the sequencing.of the e#periments
and to collect and process experimental data. TFigure 2,1 shows a gen-
eral block diagram of the system, and a more detailed description has
been discussed in the literature (6,7).

The display consists of z & by 7 inch array of dots (64 by 84) on
the face of the CRT. The points in all but one column of the display,
the so-called "target column', are zenerated by a computer simulated
statistically independent process with the probability of intensifying
each point (corresponding to a binary "1") equal to the probability of
not intensifying the point (a "0"). This is accomplished by independently

sampling the ncise generator at a slow 3kHz rate and converting the

305t Available Copy
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resulting analog voltage into a 12 digit bimary number, which is then
"clipped" about its mean value generating a 0 or 1. Thus P(0)=P(1)= 1/2
with no inter-symbol dependencies in any columns except the target column.
The statistical process used to generate the binary points in the target
column depends on the particular experiment and is discussed in detail in
the following chapters. Figure 2.2 shows a typical pattern as seen by
the operator. The points are intensified at such a rate that ao flicker
is present, and markers are used above and below the target column to
indicate its position to the operator.

The operator views the dispiay through a hood which positions him
23 inches directly in front of the display. A small amount of 1ight
is shown around the edge of the display to eliminate any visual "burst"
when the display comes on and goes off. The operator is allowed to con-
trol the br;éhtness of the display to compensate for dark adaption. The
operator's decisions are signalled to the computer by push buttons loc-
ated in an array in front of him.

The display and operator are located in a 7 ft. high by 4 ft. wide
by 6 ft. long darkened and soundproofed booth. The usé of the previously
mentioned hood, and the presence of nearly "white" background noise
from a cooling fan isolate the operator from external stimuli and allow
him to focus his full attention on the display screen.

In a typical session, the operator loads a program tape into the
computer, adjusts the equirment, and enters the booth. Upon pressing
a "start" button the first display appears. There is no time limit on
how long he may view the display before making a decision, but he is
asked to work as rapidly as he feels he can without diminishing confidence

in his decisions.
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Figure 2.2

Typical Random Display
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The operator's decision time is measured by a computer controlled
clock, and recorded, along with his decision, when he presses a decision
button. At this point in most of the experiments hit (H) or miss (M)
information (and for the case of three choices of decision, the correct
decision also) appears on the screen below (or above) the target column
in place of the markers, as illustrated in Figure 2.3. This feedback of
knowledge of results, is used as an immediate corrective factcr to train
the operator in the task which he is performing.

Between displays the screen is dark (except for the glow of the
lights in the hood) for about two to four seconds (depending on the
particular experiment) while the subsequent display is being generated.
For any one experiment the display generation time is equalized for all
types of displays which may be presented so that no clue as to the type
of display can be obtained extraneously through this factor.

At the end of a session, consisting of either 100 or 150 trials,
the display goes off and does not return. A tabulation of the data
from the session is compiled by the computer, and is typed out on a

teleprinter, as well as on paper tape for further proce~sing.
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Chapter 3
The Optimum Detector

3.1 Discussion of the Optimum Detector

Before discussing the experimental aspects of the thesis, it is
helpful to develop a mathematical description of the statistically
optimum detectoﬁ. Knowledge of the form and capabilities of an "opti-
mum" or "ideal" detector serves two purposes. First, the form of
the optimum detector lends some insight into the possible factors affect-
ing human detection capabilities. Second, the performance of an opti-
mum detector provides a yard stick against which human performance may
be compared.

Consider two information sources, S, and S?, which generate dis-

1

crete outputs at event times 1 Ty If one or the other of these

1720
sources is chosen at random, as depicted in Figure 3.1, and the out-
put sequence yy,---y, observed, the problem which exists is to deter-
mine which source is the generating source. In the experiments which
are discussed in the following chapters, this is the problem given to
the subject.

Let H, and H2 be the hypotheses that the output sequence Yi¥pr Yy

1

was generated by Sl and 82 respectively. To simplify notation let Ya b
*

be the sequence of consecutive outputs vy of length b-a+tl,

atl” " Yp-1Yp
and let Ya be the sequence of length one consisting of the single output
symbol Yu
An ideal detector (8) should calculate the likelihood ratio,
L(Yl,t)’ defined as
P(Y, /H))
MU RIS CANLN) 311

1,t 2

where P(Y1 tlui) is the probability of the output sequence of length t
1]

B-14




Random Selection

YlY2 o 'yt

Source

Figure 3.1

Random Selection of One of Two Sources

B-15




. g

beirg generated, assuming hypothesis Hi is true. The likelihood ratio
vepiz~ents the confidence that Sl' rather than 52, is the generating
source. To make a decision, the likel ihood ratio must be compared to a
threshold, T, which is determined by the a priori probabilitios‘P(Hl)
and P(H2) of Hl and H2, respectively, being true, and the relative costs

of making each‘decision. The decision rule is:

LY, .)>T :D, (source S,)
1t 1 1 3.1.2

<T: D2 (source 82)

where Dl and D true., Let

are the respective decisions Hl true and H

2 2

g (1=1,2) be the cost associated with making the incorrect decision Di'
Assume that no charge is made for correct decisions. When a priori
probabilities P(Hl) and P(H2) are known, the linear average cost function
( Bayes Strategy) is:

¢ =cy P(Dl/HQIP(Hzl + c2P(D2/Hl)P(Hl) 3.1.3

It has been shown (8) that the optimum decision threshold, which minimizes

e, is
. B(Hy)e) 3.1.u
PlHlSc2

3.2 Development of Optimum Detector for Markov Sources

In the previous section/;g:eral form of a likelihood ratio decision
strategy with a linear cost function was discussed. Here this technique
is applied to the case in which Sl and S2 are Markov processes of order
r and r, respectively with identical output symbol sets {si;i=1,m}

consisting of m elements.

A basic property of an rth order Markov process is that the value
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of the current output depends on only the past r outputs. Thus, the

following conditional probability relation holds for all i:
Bys/ypya i) = PO e Y1) 3.2.1

Using the simplified notation introduced in the previcus section, the
above may be rewritten:

P(Y, /Y ) = P(Y /Y, ) 3.2.2

1,i-1 i-r,i-1
Recalling the form of the optimum detector expressed in relation 3.1.2,

and making use of the above relation, the optimum detector for a

string of symbols emmited by one of two Markov sources may be written:

P(Y 'H ) P(Yr+ /Y 3H.) P(H2)c1

l,t 1,0 1° . D
fH )'ﬁ? H.) — ‘PI“H'S"’c2 g | 3.2.3

r+l, t l r'l 1

" -
< : D2

This expression may be further expanded intoc the form:

l r

P(Y /H ) P(Y 3H. ) P(Y /Y 3H. )e oo B(Y /Y )
1l,r 1 l+l l, 11 rl+2 2,rl*l’ 1 t Tt~ rl.t -1
s e P(Ye /Y 3H.)
P(Yl,r‘2/H2) P(Y +1/Yl 2H ) P(Y +2/ 2 “2+l H2) t t-r,‘,,t—l 2
) P(H2)cl : Dl
- P(Hlicz 3.2.4%
Otherwise : D2

Each conditional sequence probability in expression 3.2.4 represents
the probability that a particular output, Yio will take on some particular
value, given that the past r, outputs have taken on particular values

and that one of the two hypotheses is true. Since there are m values

r
which each sequence of length one may take on, and m k possible seq-

r. .+l
uences of length s there are m-m k=m possible values for each of

the t-r. conditional probabilities which must be considered in both the

k
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numerator and denominator of expression 3,2.4. Let these conditional

probabilities (and their asscciated r +1 length sequences) be ordered

k
as follows:
P, ,=P(S./S,...S5 ,H ) Yk'l=S S,+++8.S
k,1 1’71 1’k 171 171
P, ,=P(5,/S. +++5. ,H ) v¥12:5 5 ...5 5
k,2 2’1 Y1k 171 172
- s a0 k,m- L
Pk,m'P(Smlsl Sl,Hk) Y -Slsl SlSm
- ko gmdl_ La
Pk,m+1'P(Sl/slsl"“82’Hk) Y -Slsl .-azsl
- ti/
3.2.5%
= ene k’zm:. .
Pk,2m'P(Sm/SlSl Sz’Hk) Y SlSl-- S2Sn
o mrk+1
= LU ’ - v e
Pk mrk+l P(Sm/Sm Sm,Hk) Y SmSm Sm
)
for k=1,2

This represents a natural ordering of the r +l1 length sequences Yk’l

k
with the last (right most) symbol running through its m possible values

before the left adjacent symbol is incremented. The probabilities

Pk j are just those corresponding to the conditional sequences asscciated
]

with the Yk‘i. Note the following relations between these probabilities:

m
b, , %k =P(S,_/H, )
§=o kam Xgome ST 3.2.6a
pk+l
3 P, =1 3.2.6b '
ja1 ¥

for all 1 < w<m; k = 1,2,
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As an example of the above ordering consider two Markov sources, Sl

and S, with binary output sets. Let 5, be a first-order process (rlsl)

and 32 be of seoond-order (r2=2).

The following conditicnal probabilities and sequences must Le

defined.
P, ; = P(O/0,H)) vl =00
34 .
P, ,"P(L/0,H) v 2201
Py 5=P(O/L,H,) y13:10
Py =PCL/L,H,) ylota1y
P. .=P(0/00,H,) v2*}2000
2,1 Hy
P. _=P(1/00,H.) v2*22001
2,2 F(1/00,H, =
P, 4*P(0/0L,H)) v2232 010
P, ,*P(1/0LH,) y2otz011
P, .3P(0/10,H.,) Y2’5=100
2,8 L
P, =P(1/10,H,) v282101
)
-
P2 7=P(0/11,H2 Y2"=110
]
P, 4=P(1/11,K,) y28.11)

Let n 3 be the number of times the jth ordered sequence, Yk‘j,
9

appears in the output sequence Yl £ then n conditional prokabilities
9

kyj
of expression 3.2.4 take on the value Pk T and expression 3.2.4 be-
1

comes:
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1
m 1,]
P(Yl'Pllﬁl) i& Pl'j P(HQ)CQ
> : D
r.+1 = P(H, )c 1
P(Y,, /H.) o p2d v 3.2.7
1,727 | 2,3
2 j= ’]
otherwise : D2

Note that there will be at most t different sequences (i.e., of length

one), 30 at most t different n s are different from zero. Frem this
*

point on the threshold, T, will be taken as unity since this is the

only case which will be discussed in later chapters. Normally the

logarithm of this expressicn is taken, in which case we have:

rl+l r2+l | 3.2.8
m m
logP(Y), /Hl)+.§ n, ylog Pl,j:}ogP(Yl, /HQ)fZ ny 5108 Py 4 i D)
1 j=1 B ‘4=
otherwise : D2

which is the final form for the general optimum detector when a seq-
uence of output symbols may have been generated_by one of two very gen-
eral Markov processes.

In evaluating expressions 3.2.7 and 3.2.8 one should notice that
it is necessary to count the number of occurrences of each of mr "
sequences of length rk+l as well as making note of the exact form of

the initial sub-sequence Y The task of the optimum detector may

l,r°
k

be very greatly. reduced(especially for large m and/or rk) if some

approximations are made. These approximations are introduced and a

more useful form of the optimum detector is developed in the next section.

3.3 Simplification of the Form of Optimum Detector

Expression 3.2.8 may be greatly simplified if the following
approximations are made. First, if s the order of the Markov process ,

is much less than the length of the observed sequence, Y, _, the probability

1,t
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of the initial sub-sequence Y1 . nas little et{ect on the overall
oAkp

sequence probability. The log of the probability-of the initial sub-
sequence is small and of the same order of magnitude under the assump-
tion of each hypothesis; therefore, the first term on each side of
expression 3.2.8 may be dropped with 1little loss of accuracy. Expression

3.2.8 becomes:

rl+1 r2+l
m m
. log P. ., > ) n, . log P, . :D
jgg nka] g l’] —Z k’] & 2’] 1
j=1 3.3.1
otherwise )]

2
The complexity which remains in relation 3.3.1 is due to the facf that
evaluation of the expression requires observation of the frequency
counts, nk,j’ of all mv +lsequences of length rk+l. These sequences are
not independent however, and it is possible to represent the frequency
count of many of these sequences as a linear combination of some smaller
"basis" set of frequency counts. The approach used here is similar to
that presented in Booth (9), for determining a minimal generatecr set
of a random process. However, some modifications are necessary since
we are dealing here with actual frequency counts and not the underlying
probability structure.

Consider a Markov process of first-order (r=1l) with two possible
output symbols ({si;i=1,2}={sl,s2}=(0,1}). There are four sequences
of length r+l=2; these are:

Y" = 00

Y¢ =01

3.3.2
Y =190

Y =1
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However, certain constraints exist on the number of these sub-sequences

which may exist in a longer sequence, » of length t. If the symbols

L
of Yl + are considered in groups of tvo, they may be listed as:
]
Y12
Yo¥s
Ya¥y

3.3'3

Ye-1Ye
and each of these pairs is one of the suWrmquences listed in 3.3.2.
This makes up a set,'{Y1)1+l;i=l, t-1} each element of which is
one of the swb-smquences of expression 3.3.2. Observe that the fif‘st
element of each of the sequences listed in expression 3.3.3 when strﬁng

together farm the sequence Y Thus, the number of sequences of the

1,t-1"

set {Yi.1+l;i=l,t-l} wnich begin with a 1 (i.e., vy =sz=l) make up an

approximation of the number of l's in LI
H]
Denote the number of sequences of'{Yi 1+1;i=1,t-l} which take on
1]

12,3

values Y ,Y",Y", and Y“ {of expression 3.3.2) by N (Y. _),N__(Y )

@ '1,t" 0l 1,t ’Nlo

(Yl,t)’ and Nll(Yl,t) respectively. Let No(Yl,t) and N (Y, ) be the

number of symbols (i.e., sequences of length one) of Y, . which take on

9
values s, (i.e., 0) and s2(i.e., 1) respectively. lturther, let No(Yk) and
Nl(Yk) be a 1 if and only if Y, is a 0 and a 1 respectively, and let N be

the number of symbols in the sequence Y The following constraints exist:

1,t’

Nool¥y ¢) *+ N ¥y o) = NoC¥) () = No(¥,)

Moy, e + MY )

NOO(Yl.t) + Nlo(yl.t) NO(Yl,t) - NO(XI)

NOl(Yl,t) + Nll(yl,t) = Nl(Yl.t) - Nl(Y

Nl(Yl't) - Nl(Yt) 3.3.4

)
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The second term on the right side of each of the expressions 3.3.4 is
either one or zero. Thus, it may be dropped completely in most cases

with little loss of accuracy. Noto, also, that N=N0(Y1 t) + Nl(Yl,t) =

Nool¥y ¢ g Yy I (Y 4N, (Y ).

From expression 3.3.4 and the immediately preceeding relation we

may write the following relations:

N TN Y ) ]
NO(Yl,t) =N - Nl(Yl,t)

3.3.5
N (Y ) = N )
NlO(Yl,t) = Nl(Yl,t) - Nll(Yl,t)
Nol(Yl,t) = Nl(Yl,t) - Nll(yl,t)
Nool¥y () = N = 2N,(Y) )+ N (¥, )

Note that each of the four frequency counts of sequence: of length two
in the above relations has been written as a linear combination of the

"basis" counts {N, Nl’ N..}. This is not the only "basis" which could

11
have been chosen; among the others are:
{N, Nos Ngg }
Ny Ny» Noy ) 3.3.6
N, No» N}

In this case there are eight different basis sets which may be chosen.

Extending the above reasoning to the general case of an rth order
Markov process with m symbols, one may choose a basis set of frequency
counts by observing the constraints on equations 3.3.4, For sequences
of length one we have the constraints:

N (Yl t) + Ns (Y )+ cee 4 NS (¢

s, 1, e . ) = N(Y, ) 3.3.7
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Thus, if m-1 of the frequency counts of sequences of length one are
known (and N is known) equation 3.3.7 says that the mth frequency count
may be uniquely determined. For sequences of length two the follcwing

constraints hold:
r

iél Nsisj(Yl,t) - st(YQ ,t) ~ N

(Yl,t) 3.3.8

3
and ? N
S,S
i=l 374
The approximation holds only if N >>1. These 2m equations involve m2

(Yl,t) st(Yl,t—l) = st(yl,t) for j = (1,m)

unknown frequency counts for sequences of length two, One equation is
a linear comktination of the other 2m-1 because of restriction 3.3.7.
There are m2-(2m—1) = (m-1)° frequency counts for sequences of iength
two which must be selected according to expression 3.3.8.

Considering frequency counts of longer and longer sequences, up to
+1

length r+l, we see that there will be 2’ constraints on the m"

frequency counts of sequences of length r+l of the form:

m
Z Nsisj sj tesg, (Yl,t)=st sj ""Sj (YQ’t) =NS‘ seeS, (Yl,t)
i=1 172 Ir 172 r 3 Ip
3.3.9
and
)
N (Y, .)=N (Y BN (. .)

=7 S3 Sy **'S. S, "1,t7 s, 8, .8 1,t-1" 85 *+=*s, 1,t

i=1 jl j2 Ip i j1 j2 jr ) ]l ]r

-1

But there will be m" * restrictions on frequency counts of sequences

r+}(2mr_mr-1) - mr-l(m_l)Q

of length r. There will be, then, m frequency

counts of sequences of length r+l which can be selected independently.
There are a total of (m-)+(m-l)2+-“+(m-l)2 mr_l=(m-1) m* basis freq-

uency counts necessary to approximate all the frequency counts of sequences




of length r+l. In addition, the number of symbols, N, must be known.
Let us return now to the notation adcpted in section 3.2; in part-

icular let n, 3 be the number of times the k,jth ordered sequence
9

(see 3.2.5) appears in Y Call the elements of the set of basis

1,t’

frequency counts F There will be at most {m"K(m-1) + 1} Fk is needed
L]

k,i’

to specify frequency counts of sequences of length rk+l. Any one of

these frequency counts, n 5 may be expressed as a linear combination
r 9
of the m k(m-l) + 1 basis counts.
"
m “(m-1)

K5 Feiaifk, i 3.3.10

i=0

for all k=1,2; j=(1,m)

where Fk 0 is defined to be N, and fk j,1 is the integer weighting factor
] L) ;]

associated with the k,jth ordered sequence and the ith basis frequency

count.
The optimum detector (3.2.8) now becomes: 3.3.11
rl+l ry mr2 *t r?
m m “(m-1) m “(m-1) .
) £1,5,i 1,1 | L8Py 521 [ £5,5,iF2,1(%8 Py
j=1 i=0 j=1 i=0
Dl
otherwise : 02
Interchanging the order of summation, and regrouping gives:
r, rl+l r, r2+l 3.3.12
m “(m-1) m £, 5.0 m (m-1) m £, 5
. n . I > . n . ’J .
) F).; o8 () 5) > 7 Fp.3 Lo (P2’]) D,
i=0 j=1 i=0 j=1
otherwise : D2
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r
Note that the form 3.3.12 involves observation of only m k(m-l)

frequency counts of the sequences Y to evaluate the summation on

l'§k+l r T
each side. This allows a saving of m -m (m-1)=m =~ frequency counts

over the use of form 3.3.1. For large m and/or T this saving can be

substantial.

3.4 Special Forms of the Optimum Detector

In this section a few special forms of the optimum detector 3.3.12
are developed. These forms will be used in later chapters when the
Markov optimum detector is compared to the human operator.

First, for the case of r =r_=r, the optimum detector reduces to:

1
r v+l
m (m-1) m P, If, .
Fy log T 5411 i, . D,
i=0 =L (23 3.4.1

otherwise: D2

If one of the soyrces, S2 say, is actually a statistically indepen-
dent process (i.e., r=0), P(Yi/Yl i l)FP(Yi) for all i=1,2,-+-, and
,i-

expression 3.3.12 reduces to:

r r.+l
? l(m-l) m 1 fl - n J.4.2
*"J .

F . log T (Pl,j) > 1 Nsu(vl’t) log P(s ) : D)

i=0 j=1 u=l

otherwise : D2
where N_ (Yl t) is the number of times the symbol s, appeared in the

u ]

observed sequence Yl e ard P(su) in the probability that vy takes

]
on value Sy (for all i=(1,t)). Note that the left side of 3.4.2 was
derived from the approximation that t >> r and the probability of the

initial subsequence Y could be dropped. This approximation has

l,r
more effect in 3.4.2 since no quantity of similar magnitude is being

dropped on the right side. A better approximation would be obtained




if the first r symbols were not considered in evaluating the right side,

Y in 3.4.2.

i. e., let Yl,t -+ rel,t

Specifically, for S, a first-order Markov process with a Linary

1
symbol set {Sj;j=l,2}={Sl,S2}={0,l} and S, a binary statistically
independent process with P(0) = P(1) = 1/2, the optimum detector may be

expressed in approximate form as:

2 4 £, .y .
Z Fl i log i (Pl ) ST > (t-1) log (5) PoDy (Independent)
izo j=1 +3 3.4.3
otherwise : D2 (Markov)
where the F, . {and f. . .) are chosen as in section 3.3. For the
1,1 1,3,1

"basis" set mentioned in section 3.3, one specific form of expression

3.4.3 is:
3.4.4
P(1/9P(0/1) P(0/0P(1/1) - 1
N log P(0/0) + N, log————= + Ny log BC170)P(071) >(t-1)log 5
P“(0/0)
Dl
Otherwise : D2
where {Fl,i}= {N,NlNll}
and 31 -2+ P, . = P(0/0)
2,1
fl - 0 +1 -1 p2,2 = P(1/0)
+151 0 +1 -l P, 5 = P(0/1)
0 0 +1 P2,u = P(1/1)

3.5 Implications of the Optimum Detector

In the preceeding sections it has been shown that it is possible
to formulate the design of an optimum detector which makes use of higher-
order information. Specifically, for a first-order binary Markov

process it was shown that the optimum detector results in a weighted
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summation of frequency counts of sequences of length one and two. It
is reasonable to ask if the human operator cam also extract this in-
formation, and, if 5o, to what extent. Also, does the human use dependent
information in a manner similar to the optimum detector, or does ﬁe
use different cues:

After determining, in the next chapter, the range of human sensitivity

to dependent information, experiments are discussed which answer the

above question.
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Chapter 4

Experiment 1 - Basic Questions

4.1 Introduction to Experiment 1

Before considering some of the detailed aspects of the effects
of inter-symbol dependencies on human visual detection capabilities,
it is necessary to determine the range of dependencies to which the
human is sensitive, and whether or not he favors certain types of dep-
endencies over others. Julesz's work in visual discrimination (5) has
shown that humans more easily discriminate between two visual fields
when the border exhibits a "connectivity " property. Ir other words,
if the human can subjectively "connect" a "line'" of equal brighfness
levels, his discrimination is facilitated. It was thought that perhaps
the subjects in the present investigation might, on this basis, favor
one type of dependency over another.

Specifically, Experiment 1 was designed to answer three fundamental
questions which provide some basic insight into human perfarmance in
this particular area. It also provides the information necessary for
the design of later experiments.

1. Is a human inherently sensitive to information provided

by the dependencies between consecutive symbols of a
visual display? In other words, without previous training
can a subject learn to correctly identify displays which
differ only in their inter-symbol dependencies when no
knowledge of results is provided to reinforce or modify
the subject's performance.

2. When feedback of knowledge of results is provided does the

human learn to detect information provided by inter-symbol
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dependencies, and does his performance improve to some

steady-state? if so, what is the level of this steady-state

performance?

3. What range of dependencies leads to non-trivial (other '

than zero and one) detection probabilities? What is the

range of human sensitivity where more detailed investigations

should be concentrated?

4.2 Design of Experiment 1

To answer the above three questions, the following experiment was

performed.

Using the general display scheme outlined in Chapter 2,

displays were presented to subjects for classification into one of

three groups. On each trlal the subject had equal chances (1/3) of

viewing any one of three types of patterns. Each pattern contained

63 columns of background noise consisting of 84 points in each column

which were generated by a simulated, statistically independent, process

with P(0) = P(1) = 1/2. The statistics of these 63 noise background

columns remained constant over all trials. The target column, located

near the center of the display, also contained 84 points, but was chosen

to possess very specific properties. On every trial the number of

1's and Q's ir the target column was each exactly 42. This is one half

of the total number of points,and also represents the expected value

of the number of l's aad Q's in the noise background columns. The number

of 11's(and 0Q's) is the cue on which the subject based his decision,

and was set randomly at one of three levels, N/4 = 21, 2i+6, and 21-§.

The parameter § was fixed for each session of 150 trials, and took on

values of either 2,4, or 6 depending on the particular experiment. Since




the number of 1ll's and 00's was increased or decreased by an amount §,

the number of 0l's and 10's had to be decreased or increased respectively
to maintain the same total number of points in each column. The properties
of these target columns are admittedly very special and are not related
specifically to any statistical process, but are, rather, of a deter-
ministic nature. These types of target columns were used, however, Le-
cause they were sufficient to answer the questions at hand, ana were simple
to generate. Once they were generated and stored on paper tape they
were available for all experiments with different subjects. Figure 4.1
shows some typical displays with Nll=2l + 6, for § of 2, 4, and 6.

The patterns used in this experiment are deterministic in the sense
that an optimum detector may employ a decision rule which leads to a
detection probability of 1. As demonstrated in Figure 4.2, the prob-
ability density function of the number of 11 sequences in the three types
of displays is simply three delta functions with magnitudes of 1/3

each. Placement of decision threshelds T, and T2 between the peaks of

1

the density function leads to an optimum detector with perfect performance.

Since Nl must vary by at least one count (i.e., § is an integer: § > 1)

1

placement of decision thresholds at T,=N/4 - 1/2 and T2=N/u + 1/2 leads

1
to perfect detection for any §. The problem under investigation is the
determination of the range of & to which the human is sensitive and

whether or not he consistently favors an increase or a decrease in Nll

over the opposite situation.

4.3 Results of Experiment 1

Since there were no data available on human performance :in a

visual detection task with statistically generated dependent symbols,
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Probability Density Function of Nll for Experiment 1

f(Nll)=(l/3)[G(Nll-(N/u-G))+6(Nll-N/4)+6(Nll—(N/u+6))]

Optimum Decision Rule:

N..<T.: D. (choose

11 1 1
T, <N <Ty: Dy (chocse
T2 < Nll : D3 (choose

Detection Probabilities:

P(Dl/Hl) = P(N11<T1/Hl)=

P(D,y/H )=P(T| < N | < T,/H,) = J

hypothesis Hl:
hypothesis H2:

hypothesis H3:

T

Ny =1 ~6)

leg’)

Nll=%-+ $)
T

N

1
J f(Nll/Hl)lel=J 6(Nll-(n--6))lel=l

-0

Ts

Bt

-0

ifrl>§-5

T? N
f(Nll/HQ)lel:J 5(Nll-EJlel=l

o0

P(Da/H3)=P(T2 < Nll/H3) = J f(Nll/H3)lel=J 6(Nll—(N/M+6))lel=l

!
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the first problem was to determine the range of human sensitivity
té dependent information so that further experiments could be meaningfully
designed.

In the first phase of Experiment 1 two subjects were run under .
various conditions on § without any previous discussion of the type
of patterns which might appear and without any feedback of knowled :
of re;ults. Both subjects for this phase had no previous display
experience.

First, Subject A w#as presented fur one session with displays
in which § = 2. He was told that the patterns would fall into three
classes, and was instructed to try to classify the patterns consistently
by pressing one of three buttons after each display appeared. He was
told to take his time and to look over the display carefully. Subject
A was also told that the differences between the three types of patterns
would occur in the target column, which was ma-~ked above and below by
pointers. He was not given any indication of the way in which the
pattern classes differed.

After 150 trials (50 of each type of display) Subject A showed
no consistent decision strategy related to the number of 11 sequences

in the target column. His overall estimulus-response matrix was:

STIMULUS
1 2 3

" ].133 .133 -1Q7
RESPONSE v 1.113 127 .113

"3" |.093 .073 .113

§ = 2, no training, no feedback
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It should be pointed out that this form of stimﬁlus-response (S-R) matrix
contains elements which represent the relative frequency of the joint
occurrence 'response-i to stimulus-j". The sum of all elements is one;
each column sum is the relative frequency of the occurrence of tﬁat
particular stimulus; and the row sums indicate the portion of the sub-
ject's responses which were of that certain type. The sum of the diagonal
elements represents the relafive frequency of correct decisions. In
this case the probability of correct classification was .33 which does
not differ significantly from a chance value of 1/3.

Since performance was so poor at § = 2, the next level of stimulus
investigated was § = 6. Under this condition the same subject iﬁmediately
began to classify the three types of patterns consistently. His overall

correct detection probability rose to about .68, the actual S-R matrix

being:
STIMULUS
1 2 3
"1 .32 .153 Q
RESPONSE "2".a06 .Q6 .24
"3, Q06 .12 .093

8§ = 6 no feedback
The subject had obviously chosen to call stimulus-3 by the name "type-2".
Thus interchanging rows 2 and 3 "corrects" the subject"s naming procedure

to that of the experimenter.
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STIMULUS

1 2 3

1 .32 .153 0

RESPONSE 2 .006 .12 .093

3 .006 .06 .24

"corrected" S-R matrix

Detection Probability = 0.680

The subject's performance on stimulus-2 was rather poor; he had trouble
deciding whether to make response-l or response-2. The S-R matrix
does, however, clearly reflect an ability to extract information
provided by a difference in the number of second order sequences only.
Recall that N1=N0=u2 for all target columns. The answer to the first
question posed in section 4.1 is that a human is inherently sensitive
to higher order information in this task provided that the information
is sufficient to separate Jisplays by at least five to six counts of
sequence& of length two.

Before commencing with sessions in which knowledge of results was
provided after each trial, a second naive subject was run under conditions
sim{lar to the above. However, prior ta running, subject B was informed
of the display generation procedure and the characteristics of the
various patterns which would appear. It was explained to him that
N1=No=u2 in the target column and that the background was random with
an expected value of the number of 1's (and 0's) of 47, but that the

target column would have either 21, 15, or 27 11 and (00) sequences,
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while the average number of these sequences in the background would be
21. No knowledge of results was provided during the 150 trials. The

subject's resulting S-R matrix was:

STIMULUS
1 2 3
1 .263 .0u 0
RESPONSE 2 .07 .26 .053
3 0 .033 .28

§=6 Initial Training, no feedback
Setection Probability = .803

Subject B performed with a probability of correct decision of about
8/10. Clearly detection of patterns with 6=6 is a relatively simple
task once the subject learns what to look for. The question which
arises is to what level will a subject's performance rise when he is
given extended practice and knowledge of results? What are the subjects'
Usteady-state" capabilities after learning dynamics have died out?
Phase two of Experiment 1 provides an answer to this second question.
Phase two of Experiment 1 was identical to phase one except that
the generation procedure and properties of the patterns were described
in detail to all subjects prior to the first session. Knowledge of
results was provided after each decision by changing the pointer below
the target column into an "H" for "hit" or "M" for "miss", and the upper
pointer into the correct pattern type, "1", "2", or "3". Three paid

subjects, in addition to the author, participated in this experiment,
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Subjects A and B, male undergraduate engineering students, were also
subjects A and B in phase 1. Subject C, a female graduate student, had
had no previous display experience. The author may be considered to be
subject D.

Under condition § = 2 subject detection probability averaged over
all classes of patterns and the three subjects (B, C, and D) partici-
pating was 0.576, well above a chance level. The overall S-R matrix
based on pooled data from 2550 trials of three subjects' later runs reflect
an ability to learn to detect patterns differing only by two second

order counts.

STIMULUS
1 2 3
1 .197 .067 .017
RESPONSE 2 .103 .169 .106
3 .033 .097 .210

Pooled Data,255¢ Trials,§ =2

Detection Probability = .576

In this experiment all subjects favored stimulus-?; that is they had a
bias toward making response-3. This effect diminished somewhat in later
sessions but never disappeared completely. If this increased ability to
detect stimulus-3 patterns is a consistent effect it should be enhanced
when the level of this stimulus is increased. However, the conditions
§ =4 and § =6 do not support this hypothesis.

Under the conditions 6 =4 and § 6, the learning period was shorter
and the subjects reached a steady-state performance after only about
five sessions of 150 trials. The pooled data for two subjects over the

last 900 trials indicates an increased detection ability over the § = 2
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condition.

STIMULUS STIMULUS
1 2 3 1 2 3
1].251 .0u0 .003 1 .300 .070 0
RESPONSE 2 { .071 .236 .033 RESPONSE 2 .033 .223 .020
3|.011 .057 .297 3 0 04O .313
Pooled Data 900 Trials Pooled Data 900 Trials
§=u § =6
Detection Probability=.784 Detection Probability=.836

An answer to the second question posed in section 4.1 is now possible.
When feedback is provided a human can learn to detect patterns which
differ by as little as two second-order counts at a level of about

58% correct classification. When there is a difference between patterns
of six second-order counts, about 84% of the patterns are classified
correctly. In any of these cases guessing would account for only about
33% of the correct classifications.

Furthermore, although some subjects favored one type of information
over the cothers in the early phases, this effect is based to a large
extent on initial response bias, and diminishes after training. Such
an effect becomes almost non-existent when the difference between patterns
is large. This indicates that there is no large, consistent favoritism
of any one type of second-order information after the subjeccs are well
trained. Subjects can learn to use alltypes of second order information

equally,
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4.4 Discussion and Limitations of Resulits of Experiment 1

As mentioned earlier, in section 4.2, an optimum decision strategy
for- the class of patte:v: used in Experiment 1 involves simply counting
the number of 1l sequences occurring in the target column and comparing

this number to the proper decision thresholds, T, and T,, located

1 2°

between the impulses of the density function of N The optimum

11°
decision strategy is, in this case, 100% correct and, as such, a mean-
ingful comparison with the subjects' periormance is not possible. Also,
Lzcause of the special nature of the patterns, there are very little data
on which to bace a measuremert of the operator's psychometric function,

i.e., the probability of a particular decison versus N,. for the target

31
column. One may, however, hypothesize as to the form of the human
nsychometric function, and determine whether this hypothesis fits the
data well or not.

Earliar work by Brazeal (2) and Glorioso (4) showed that a model
of the human ovperator (in a detectiorn task with first-order information)
as an ideal detector with an inherent Gaussian distributed noise source
fit the data very well. Using the same model in the present study
results in a model detector which counts the number of 1l's in the target
column, adds a random number, ﬁ(u,oz)-due to operator noise- and compares
the sum to the decision thresholds. This nodel is depicted in Figure
4.3, and the associated probability densities are shown in Figure 4.4.
Glorioso (u) found that for a four-choice decision human operators set
decision thresholds very near the optimum values. By determining the
value of the operator's decision thresholds and the variance of the

operator noise (the mean is taken 3s zero when decision thresholds are

allowed to vary) it is possible to fit a model to the operators' S-R
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matrices very closely. Using the values of thresholds and variance which
clesely fit the operators' performance, it was possible to obtain the
modeled S-R and difference matrices of Figure 4.5. The elements, Dij’

of the difference matrices are given by,

= (Mij - Oij) x 150

where Mij is the element in the ith row and jth»column of the model's

S-R matrix and Oij is the corresponding element of the operator's actual
S-R matrix. The close agreement shown by such small values in the
difference matrices is encouraging and lends support to the hypothesis
that the operator can be modeled as an ideal detector with an additive
Gaussian distributed noise source. Operator decision thresholds were
set very near the optimum values, which are located at the intersections
of the density functions in Figure 4.4. It is interesting tc note that
the operator noise variance is roughly constant, or, at least, that
there is no apparent systematic change in operator noise over a wide
range of stimulus (Nll) intensity. Compare this result with the approxi-
mately linear relation between operator noise and stimulus variance for
first order information reported by Brazeal (2). The result agrecs

in that here the stimulus variance is constant (actually zero),and operator
noise variance is also constant. It differs from Brazeal's result, how-
ever, in the existence of an operator noise with zero stimulus variance.
This may be interpreted as a "fundamental' operator noise to which is
added a term related to stimulus variance. Fitting S-R matrices is not,
however, a particularly accurate method of determining operator noise,
and the next chapter discusses more exact measurements through the use
of psychometric functions. The purpose of the present discussion is
only to point out that, even with little data, the possibility of a

Gaussian distributed operator noise source for second-order information
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.127 .076 .0lu 0 +1.65 =~.uS
[mij]6=2 = 1.119 .172 .1l09 [dij] = +2.4  4+.45 +.45
.017 .085 .210 -2.4 -2,1 0
.252 ,029 0 +.15 =1.65 =.45
[mij]6=u = | .080 .236 .036 [dij] = +1.35 0  +.45
.001 .069 297 -1.50 +1.80 0
.300 .Ou4 0 0 -3.90 0
[mij]6=6= .100 .222 .060 [dij] = 0 -.15 0
0 .067 .313 0 +4.05 O
&=2 S=y 8=
T, 19.47 18.35 18.2
T, 22.32 22.6 23.1
o 2.04 1.95 2.5
Figure 4.5

Modeled S-R and Difference Matrices for § = 2,u4,6
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is quite feasible.

4.5 Summary of Results of Experiment 1

Two questions emerge as a result of Experiment 1. First, the
patterns used in this experiment were very special in that, although
they appeared to be random, they actually fell into three non-over-
lapping classes, and were perfectly identifiable by the simple strategy
of counting the number of second-order sequences in the target column.
More interesting, and nacessary for an investigation of deeper quest-
ions, is a study of the larger class of patterns which may be generated
by some statistical process which has dependencies between consecutive
output symbols, for example, a Markov process. In these cases the
pattern classes may overlap. That is to say, any one particular pattern
may be generated (with different probability) by various statistical
processes. No detector will be infallible for this larger class of
patterns, and a comparison between the human and statistically optimum
detector becomes meaningful. Also it is possible by using such displays
to determine the precise form of the operator's psychometric function,
i.e., the parameters of the operator noise. The question of human
performance with patterns generated by a Markov process is discussed in
the next chapter.

Second, information in Experiment 1 was provided only through a
difference in second-order sequences. It is interesting to know not
only whether or not a human can use dependent information, to what
degree, and in what way, but also how dependent information is related
to independent information in terms of its ability to be perceived. Is

there some level of independent information above which depenilent
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information ceases to be a factor in determining human detection
capability? By combining various amounts of independent and dependent .
information, the question of the relative utility of each is answered

in Chapter 6.
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Chapter 5

Experiment 2-Markov Displays

5.1 Introduction to Experiment 2

In the last chapter human performance in a visual detection task
with a set of very restrictive patterns was discussed. This class of
patterns was sufficient to answer some basic questions about human
information processing of higher-order information, however, the answers
obtained raised other questions. To answer these questions requires the
use of patterns generated by a statistical process with inter-symbol
dependencies. In the present chapter Experiment 2 is discussed in an
attempt to answer the following questions.

First, when using a set of patterns, each of which has the
possibility of being generated by more than one statistical process,
does the human perform better or worse than with the restrictive (non-
overlapping) set of patterns used in Experiment 1? Consider the problem
of classifying a pattern which may have been generated by one of two
statistical processes with Jdensities described by the envelopes shown in
Figure 5.1. The first process is assumed to be a binary statistically
indapendent process with P(1)=P(0)= 1/2. It can be readily shown (see
Appendix B.u4) that the number of 11 sequences in a target column of
length 84 is binomially distributed with a mean of NP(1ll)=84 x 1l/4 = 21
and variance of NP(11)Q(11)=15.75 where Q(11)=1 - P(11). Let the second
process be a first order Markov process with the same firsteorder prob-
abilities as the statistically independent process. However, set the
conditional probability, P(1/1), such that it is greater than P{l)= 1/2.

In particular let P(1/1, = Q.642 in which case the number of 11 sequences
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Nll’ in the target column of length 84 is binomially distributed with

mean of about 27 and variance of 17.75. It should be noted that the

means of the two distributions shown in Figure 5.1 coincide with the
impulses of the density function for Nll in Experiment 1 for stimulus-2

and stimulus-3, under the condition 8§ = 6. With the sources shown, however,
there is a non-zero variance in both distributions and some patterns will,
therefore, be misclassified even by an optimum detector.

The second question which Experiment 2 answers is concerned with

the form of the operator noise. Is the operator noise actually Gaussian

distributed as the close fit obtained in Chapter 4 between the actual

and modeled S-R matrices would suggest? Also, how does the operator
perform compared to a statistically optimum detector?

In the last chapter, the parameter used by the optimum detector
was the number of 11's in the target column. The optimum Jetector
achieved 100% correct performance, and it was hypothesized that the
human performed as an optimum detector corrupted by an internal operator
noise, which was assumed to be Gaussian distributed. By using a first-
order Markov process to generate the displays, it is possible to obtain
a plot of the probability of the subject making a particular decision
versus whatever decision parameter an optimum detector would use. For
an optimum detector the decision strategy results in a sharp boundary
at some decision threshold, T, as indicated by the solid line in
Figure 5.2. All patterns witha/val%ﬁé¥;ion parameter, P, greater than
T are put into one class, and the rest into another class. The human,
however, cannot accurately determine the value of P for each patterh. Thus,

his classification performance (see dotted line in Figure 5.2) in general
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only approximates that of the ideal detector. This "psychometric
function" characterizes the operator's use of the particular parameter
as a cue in detection. If the resulting curve follows a cumulative
Gaussian distribution the model is supported. In this chapter a measure
of the mean and variance of the operator noise is obtained by such a
method.

If the human psychometric function is acfually Gaussian distributed,
the standard deviation of the operator noise may be determined by
taking one half the difference in parameter values, P, which correspond
to probabilities of 0.16 and 0.84. A useful psvchological measure of
human sensitivity is the "just noticeable difference", or j.n.d;, which
may be defined as one half the amount of stimulus change necessary for
a change in probability of classification of 0.5. From the psychometric
function a j.n.d. is one half the change in P which corresponds tc a

change in probability from 0.25 to 0.75

5.2 Design of Experiment 2
Making use of the specific form of the optimum detector expressed

by relation 3.4.2, with a basis set {N, N l}’ the optimum decision

1° Nl
strategy for patterns which may be generated by either a first-order

Markov process or a statistically independent process may be expressed

as
5.2.1
. P(1/0)P(0/1) P(0/0)P(1/1)
84+ log P(O/0)+NllOg -3 +Nll log Pm > 83 log 1/2
P7(0/0)
D, (Markov)
otherwise : D, (Statistically

Independent)




e

This relation may be further simplified to read,

1
lel+Nllkll > log 75 5767 D, (Markov)

5.2.2
otherwise :Dl (Statistically Independent)
where k= log PéI/O)P(O/l)
P°(0/0)

P(0/0)P(1/1)
k1* 198 50o/1IP(I/0)

As pointed out in Chapter 3 and discussed in deteil in Appendix B.2 ,
kl and kll may not vary independently. What, then, is the form of th~
displays which may be presented in an experiment which uses a first-
order Markov process and a statistically independent process? For

the questions which are to be answered by Experiment 2 it is desirable
to use a Markov process which results in the simplest decision strategy.
From the weighted summation of equation 5.2.2 it is obvious that the

case k1= + k.. =k would be a desirable choice. However, as pointed out

11
in Appendix B. 2, the condition k1=kll is impossible, but klz-kll is
entirely feasible. If kl=—kll=k it is shown in Appendix B.J3 that

the Markov transition matrix must be double stochastic; this implies
ejual first-order probabilities, P(0) = P(1)= 1/2, and the Markov process
is completely specified. Although it will not be verified until

Chapter 6, one cther reason for choosing kl=-kll is that this condition
corresponds to vhat will later be called "purely dependent" information
content in the display. This added condition is not necessary to answer
the questions asked in the present chapter, but the proper choice ct

this point provides a bonus when combination of information is discussed

later.
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~ Thus for the present, only the limited case of kl=-kll=k will be
- studied. Under this assumption the optimum decision rule involves counting
the number of 1's and the number of 1l's in the target column and com-

paring the difference to an appropriate threshold.

84 1 _ .
Ny -Nj, > 5 log 350570) : D, (Statistically Independent)
| 5.2.3
} otherwise : D2 (Markov)
%

Y Note : k<o

For the case in which the observed sequence is much longer than the order

11

Nlo’ following the reasoning used in section 3.3.

of the Markov process (r << t), N.~-N. . is approximately equal to NOl or

With the optimum decision parameter, Nl-Nll= Nlo’ specified, the

conditions on P{1/1) must be determined. Since it was found in Experi-

ment 1 that the subject did not favor either an increase or a decrease

in Nll over the opposite situation, the "one sided" case in which P(1/1)
; > P(1) was used in Experiment 2. Two conditions, as outlined in Table
i 5.1, were studied. The means of the Nll distributions governing the
é generation of patterns were set to correspond to stimulus-2 ;nd stimulus-
f 3 patterns of Experiment 1, for the two conditions 6§ = 2 and 6 = 6.
The same three subjects participated in all display conditions in
. ¥ Experiment 2. Subject A was also subject A in both phases of Experiment
7 1, while two additional subjects, E and F, both undergraduate engineering
students paid for their services, participated in this experiment. Each
i session consisted of 10Q trials rather than 150 used in Experiment 1
| in order to reduce any undesirable effects due to fatigue. On each
trial the subject was required to make one of two decisions qhich were

indicated by pressing ons of two buttons located in front of him. The
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possible decisions were:
D,: Display generated by soufce -1 - a statistically independent
process with P(1)=P(0)= 1/2.
D,: Display generated by source-2 - a Markov process with
statistics known to the subject before running.
Before the first session the statistics related to the generation of
displays by each source were explained to the subjects and after each
trial knowledge of results was provided in the form of an "H" for "hit"
or an "M" for "miss" (see Chapter 2). Tﬁe subjects were tcld to work
as quickly as possible without diminishing confidence in their decisions.
After each decision, the computer determined the first and secoﬁd—order
sequence counts in the target column, and typed out the following
data:
-subject's decision,
-correct decision,
-Nl, NQ in the target column,

-N in the target column,

11 Moo Y100 S
-subject's decision time
At the end of each session the subject's S-R matrix was outputed, and

the subject was told how well he had performed. All of the data for

each session were also recorded on paper tape for further processing.

5.3 Results cf Experiment 2

The main goal of Experiment 2 was the determination of the form of
the human psychometric function, and, thus, the form of the operator
noise. As such, only data representative of the subjects' steady-state

performance, such as those obtained from the later sessions, were retained
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for further processing. The data from these later sessions, consisting
of an average of 600 trials per subject, were processed by a special
computer program which extracted the information necessary to plot the
psychoﬁétric function.

The program first calculated the value of the parameter Nl-Nll
in the target column for each trial. Recall from section 5.1 that Nl--Nll
is the parameter used by the optimum detector in making a decision. Based
on the value of this parameter, the remaining information from each trial
was categorized and summed over all trials. This procedure provided
the following measures:

-number of times a pattern appeared for each value of Nl'Nil’

-number of times a Markov pattern appeared for each value of

Ny Ny
-number of times decision-2 (Markov display) was made by the
operator for each value of Nl-Nll.

From these processed data the subject‘'s psychometric function was
obtained. Also, the overall S-R matrices for both the subjects and the
optimum detector were calculated..

Figure 5.3 shows the S-R matrices for both the pooled subject
data and the optimum detector under both experimental conditions, A
(strong dependency) and B (weak dependency).

In Chapter 4 the question was raised of whether or not the
subject would perform better with the overlapping set of patterns used
in this experiment. The stimuli used in the present experiment correspond
with respect to means of the probability density function of Nll to the

stimulus-2 and stimulus-3 conditions of Experiment 1. However, there

is no counterpart in the present experiment to the stimulus-1 condition
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STIMULUS

STIMULUS
1 2 . 1 2
1 40 .10 1 Uy .06
Response Response |
2 .09 A1 2 .06 Ul

Subjects, P(D)=.81 Optimum, P(D)=.gg

Condition A

STIMULUS STIMULUS
1 2 1 2
1 31 .18 1 42 .12
Response Response
2 .21 .30 2 .10 .36

Subjects, P(D)=.61 Optimum, P(D)=,78

Condition B

Figure 5.3
S-R Matrices for Pooled Subject

Data and Optimum Detector
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of Experiment 1. As such, it might be argued that in comparing
performance in these two tasks, classification of stimulus-2 as
stimulus-1 (in Experiment 1) should actually be considered as correct
classification of stimulus-2. Making such an assumption, the modified
probability of detection (correct classification) assuming only the
presence of stimulus-2 and stimulus-3 patterns, is 0.688 for § = 2
and 0.91 for § = 6. Comparing these values to the corresponding

probabilities of detection in Experiment 2 of 0.61 and 0.81 indicates

that the patterns from the overlapping set used in Experiment 2 are

consistently more difficult to classify than those chosen from the
restrictive, non-overlapping set used in Experiment 1.

It is not meaningful to compare the optimum detector's performance
in Experiment 1 to that shown in Figure 5.3 for Experiment 2 since
the former achieved 100% correct performance. However, comparing
the subjects' performance to that of the optimum detector demonstrates,
as expected, the superior ability of the optimum detector. Notice
for strong dependencies, however, that the subjects' 0.81 detection
probability compares quite favorably to 0.88 obtained by the optimum
detector.

Figure 5.4 is a plot of the psychometric function for the three
subjacts participating in Experiment 2 under the condition of strong
inter-symbol dependency. The abscissa of this figure is a normal
probability scale, thus, a cumulative Gaussian distribution plots as a
straight line. Notice that a particular distance at the extremities

represents much less change in probability than an equal distance near
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the center. A computer program was used to find a best fit (minimum mean
square error) Gaussian distributed approximation to the data points for
each subject., The results are shown ir Table 5.2. Since the mean of
these distributions were nearly equal, the variances were averaged to
obtain an overall best fit model of the pooled subject psychometric
function. This is shown in Figure 5.4 as the straight line with mean

of 18.2 and standard deviation of 3.48. It should be noted that the

mean is extremely close to the optimum decision threshold of 18.4 cal-
culated from equation 5.2.3.

Under the condition of weak inter-symbol dependency, condition B,
the subject's data points, Figure 5.5 were not very consistent. Best
fit Gaussian distributed models of each subject's psychometric function
are shown in Table 5.3. The mean of 19.92 used by Subject A was very
close to the optimum decision threshold of 19.85, however, the other
two sybjects deviated considerably. By adjusting the subjects' data
points so that the resulting means coincided with the optimum decision
threshold, Figure 5.6 was obtained. A "hest fit" Gaussian distributed
model of the pcoled subject psychometric function is shown by the straight
line with mean of 19.85 and standard deviation of 5.22. However, this
m>del is strongly biased by the extreme variance shown by Subject F.
Deleting Subject F's data peints results in the model with standard
deviation of 3.64. It is obvious that a precise measure of the variance
of the operator's psychometric function under the condition of weak
dependency is not possible, however, a value between 3.6 and 5.2 seems
appropriate. Also, a value of j.n.d. of from 2.5 to 3 second-order

counts is indicated by the psychometric functions.
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5.4 Discussion and Summary of Results of Experiment 2

This section provides an interpretation of the experimental
findings of Experiment 2, and a summary of results.

It is apparent that with strong dependencies the subject m&y set
a threshold very near to the optimum decision threshold, and that he
appears to operate with an internal operator noise which is Gaussian
distributed with a standard deviation of about 3.5. However, when
there are only weak dependencies (P(1/1)= .543 in this case), the sub-
ject does not set his decision threshold as precisely. Nevertheless,
it is still set near the optimum value. With weak dependencies, the
value of operator noise variance varies considerably between sdbjects,
but is consistenilylarger than for strong dependencies. Calculation of
the precise relation between operator noise variance and stimulus var-
iance is nou possible with the cCata available. However, it is clear
that operator noise variance and variance of the cue used by the operator
(Nlo in this case), are directly related, as Brazeal found for first-
order information. As an approximation, the linear relation found

by Brazeal results in:

2.2,
o =k VAR(NlG)

with a vaule of k2 of about 1. for first order information, Brazeal
found that a value of k2= 1/2 described the subjects' performance well.
It is clear that operator noise variance is greater by a factor of about
2 when the cue used for detection is a second-order rather than a first-
order parameter..

In summary, Experiment 2 has pointed out the following factors
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related to human information processing with dependent, statistical,

visual information:

1.

.

In a two-choice decision task, humans can learn to use
statistical information related to the inter-symbol
dependencies of the source. Correct classification
performance rises from about 60% when the pattern classes
are separated by dependencies of about 0.043 (i. e., P(1/1)
of 0.5 and 0.543) to a level of about 80% with 0.1u43 separa-
tion between dependencies of the two pattern classes.
Subjects learn to set near optimum decision boundaries,
indicating that the mean of the operator noise is near zero.
The decision thresholds are set more accurately when dep-
endent information is strong than when it is weak.

Operator noise variance in a task involving dependent infor-
mation is about twice as great as in a task using first-
order information as the cue. The variance ranges from
about 12 for patterns with strong dependencies to roughly

20 for patterns with weak dependencies.
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Chapter 6
Experiment 3 - Combination of Information

6.1 Introduction to Experiment 3

In an attempt to determine to what extent various cues are
used in visual pattern detection, it was suggested in Chapter 4
that subjects be presented with patterns containing various amounts
ol independent information, which is related to the individual sym-
bol probabilities, and dependent information, which arises from the
joint probability structure of the underlying process. Although
we know the form and magnitude of operator noise for purely indepen-
dent and purely dependent information, there are no data which pertain
to the operator's relative use of each type of information when they
are presented simultaneously. By measuring the probability of
detection under vaﬁious conditions of independent and Zeperdent
information, the answers to the following questions might be obtained.
How much dependent (second-order). information is equivalent to a par-
ticular amount of independent (first—order) information? How does
the human performance compare to an optimum detector when more fhan
one type of information is present? When "equal amounts" of informa-
tion ou both levels are presented, which is used the most? Over what
range is independent information superior to dependent information in
visual pattern detection?

Before an experiment can be designed to answer these questions,
it is necessary to give a mare precise meaning to the term "amount of
information", and how it is related to the visual displays used in this
paper.

Consider, once again, the problem proposed by Figure 3.1. One of

two sources is chosen at random to produce outputs, on the basis of
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which an observer is to determine which source is the generating
sburce. It is assumed that the output symbol sets are identical,
and that the sources differ only in their underlying probability
structure. At first, assume that both sources are governed by’
binary, statistically independent processes. Furthermore, assume

that P(1) > P(0) for both sources; this implies P(1) >1/2.

Under the.c conditions, the entropy (10), H(Si)’ of each (ith) source
lies between one and zero and decreas :s monotonically with increasing
F(1).

H(Si) = -[Pi(o) log Pi(O) + Pi(l) log Pi(l)] 6.1.1
A measure of the "dissimilarity", U, of the two sources is proposed as,

U= | H(Sl) - H(Sz)l 6.1.2

If the sources are very dissimilar (U is high) their prébability
structures (just P(1) in this case) must differ greatly. Note that
0 <U <1,

Assume, now, that one source, S, say, always has P(l) = 1/2, and

1
H(Sl) = 1. Since H(S2) <1, the dissimilarity is,

u=1- H(Sz) 6.1.3
and represents a measure of how greatly the probability structure of
82 differs from that of source Sl’ or pure chance. What, now, if 82
(henceforth called simply S) is allowed to be governed by a first-
order Markov process?

The total dissimilarity, U, is composed of two parts, one part
due to the independent information (i.e., the first-order probabiliity
structure of the Markov source), and the other part arising from
inter-symbol dependencies. Call these the independent dissimilarity,
UI' and the d @endent dissimilarity, UD’ respectively. Thus U'UI’UD'
To obtain a quantitative measure of each component, consider a source
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g; called the adjoint source (10), which has P(1l) and P(0) equal
to the first-order probabilities of S. However, let there be no
inter-symbol dependencies in'S, i.e., P(1/1) = P(1/0) = P(1) and
P(0/0) = P(0/1) = P(0). Furthermore, let S2 be a source which
has output symbols, 9, composed of pairs of output symbols of s,
and let EE be the adjoint of s2.  Thus the probability F(oi) of
each output symbol from 52 is equal to the probability of sequences
of length two from S. It is shown in Appendix B.S5 that the entropy
of a Markov source is,
H(S ) = H(s?) - KD 6.1.4

For example, assume that S is a binary firsteorder Markov process

with, P(0/0) = P(1/1) = 0.7

P(0/1) = P(1/0)

0.3 6.1.5

P(0) = P(1) = 0.5
S is a statistically independent source with,
P(0) = P(1) = P(0/0) = P(1/0) = P(0/1) = P(1/1) = 0.5, 6.1.6

and S2 has an output symbol set, and symbol probabilities, of:

01 = 00 P(0;) = 0.35
gy = 01 P(cQ) = (.15
6.1.7
oy =10 P(OS) = 0.15
o, = 11 P(o,) = 0.35

Also, 82 is a statistically independent process with first-order
symbol probabilities the same as those of 6.1.7. From the above

probabilities, the entropy of the Markov source, S, may be calculated.

HS2) - H(D)

H(Sm)

1]

(2)(.35 log, 1/.35) + (2)(.15 log, 1/.15)
- (2)(.5 log2 1/.5) 6.1.8

1.8813 - 1 = .8813
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Returning, now, to the problem of determining the individual
components of dissimilarity, assume that §.were the actual genera-
ting source. There would be no dependent information available
to contribute to dissimilarity, and the independent component of
dissimi’arity is,

U, =1 - H(S)
Since the total dissimilarity, U, is the sum of the component
dissimilarities, the additional ‘amount of dependent dissimilarity

arising from actually using S, a Markov source, instead of §, the

adjoint source. must be,

UD U - UI

[1 - H(s8)] - [1 - H(S)]

H(S) - H(S)
2H(E) - H(5?)

Equations 6.1.9 and 6.1.10, along with tables of entropy for
various sources, permits the design of a unique source for any
specified component dissimilarities.

As a measure of the "dependency" in patterns arising from the

use of sources described above, the following ratio is proposed, and

is used in the remaining development.

UD + JI

Dependency, D, ranges from zero, for a statistically independent
process (UD z 0), to +1 for a Markov process with P(1) = P(0) = 1/2
~(UI = 0). A D measure of 1/2 indicateas that equal amounts of

independent and dependent components of dissimilarity are present.




Using the above definitions of "dissimilarity" and "depen-
dency", Experiment 3 was designed to answer the questions posed
earlier.

6.2 Design of Experiment 3

By using either a statistically independent process with
P(1) = P(0) = 1/2, or a first~order Markov process, patterns were
generated which contained the same total amount of dissimilarity
as the patterns used in Experiment 2, however, they possessed
varying amounts of component dissimilarities, UI and UD' Table
6.1 summarizes the experimental conditions used in Experiment 3.
There were two amounts of total dissimilarity in the displays,
U= .007 and U = .06, with three levels of dependency, D = 1/3, 1/2,
and 2/3. Data from Experiment 2 and interpolation from the results

of Brazeal (2) fill in the cases of D = +1 and D = 0, respectively.

A new subject, G, was added to those who had participated in

the past experiments. SubjectsA and B participated in all condi-
tions with U = .007, while Subjects F and G ran all conditions of
the experiment with U = .06. All subjects were required to make

one of two decisions, Markov or Independent Jdisplay, as in Experi-

ment 2, on each trial. There were 100 trials per session. As
before, feedback of knowledge of results was provided immediately

after each decision, and the subjects were informed of their overall
level of performance after each session. Each subject participated
in an average of seven sessions for each conditior, Subject detection
probability rose rapidly in early sessions and leveled off to a value
which varied less than 7% over the last three sessions. Because of

this steady performance, and the fact that all subjects except G had
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i

participeted in other .xperiments, the data from the subjects'
last three sessionswere taken to be a measure of the subjects'
steady-state performance.

6.3 Results and Discussion of Results of Experiment 3

With total "dissimilarity", U, of 0.06, average subject
detection (correct classification) probability, P(D), was about
0.85. TFigure 6.1 indicates the change in P(D) with dependency,D,
for the two subjects participating in Experiment 3. Data points for
the D = 0 and D = 1 conditions are taken from other work, as mention~d
earlier, and there are no data for Subject F at D = 1/2. The three
lines in Figure 6.1 compare the performance of an optimum detector
(for Markov sources), the average of the two subjects, and a first=-
order detector (one which uses only independent information).

It is clear that the subjects' performance rose when less dependent
(more independent)information was presented; however, the change was
only on the order of 10%. The subjects seem to perform very much like
a poor Markov optimum detector. This result agrees with the results
from the psychometric functions obtained in Experiment 2, although
only dependent information was used there. For dependent dissimilarity
UU greater than 50% of the total, subjects outperformed the first-order
Jdetector.

When total dissimilarity was only €.007, Subjects A and B perform-
ad with a probalility of detection of about 0.60. Avorage subject
performance shown in Figure 6.2 indicates that there is very little
change in P(D) over the complete range of dependency. An optimum
Markov detector achieves about 68% correct decisions, and, again,

subjects perform roughly 10% worse than the optimum detector. The
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first-order detector is superior to the subjects until dependencies
make up about 2/3 of the total dissimilarity.

From this experiment we see that, although operator noise is
greater for dependent information than for independent information,
subject performance suffers by using greater amounts of dependent
information only when the total information is high. At low levels
performance is roughly constant, irrespective of the level of depen-
dency. In both cases studied, the subjects' detection probability

\
fcllowed the form of the optimum detector, and not the first-osrder
detector. Apparently, independent information can be extracted more
accurately, but its presence never causés the trained subject to ignore
the available dependent information.

Also, we see that if the dependency, D, of the patterns is less
than 1/2, implementation of the simple firsteorder detectc., which
only counts the number of 1l's in the target column and compares this
to a threshold, provides performance superior to that of the human
operator who uses the dependent information as well. However,
when the dependent dissimilarity is high, the perfurmance of the first-

order detector deteriorates rapidly.




P S R i A

Chapter 7
Conclusions

7.1 Objectives and Method

This thesis has attempted to pfovide a better understanding
of the effects of inter-symbol dependencies on human visual infor-
mation processing ability. Three general experiments have provided
the answers to the followinquuestioné. |

1. Is the human operator inherently sensitive to information
provided by inter-symbol dependencies? If so, within
what range?

With extended practice, what level of performance can the
human operator achieve in a visual detection task involving
dependent statistical information?

v Does the model of the human operator as an optimum detector
corfgpted by an internal noise source hold for a task involving
dependent information?  What is the form of the 6perator noise?

4,  When presented with patterns containing both dependent and
independent statistical information, does the human operator
use one component of the information to a greater extent
.than the other?

The first experiment determined the range of human sensitivity

to d=pendent information. Experiment 2 proceeded to determine the
form of the human operator noise through the use of an ideal detector
and experimentally derived psychometric functicns.  Experiment 3
provided definitions of "dissimilarity" and "d=2pendency'" of patterns
penerated by either & statistically independent or a Markov process.
It then went on to discuss the relative usefulness of independent

ind dependent informaticn.
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7.2 Summary of Results

From the three experiments conducted, the following results
were obtained:

1. It was found that the human operator possesses an inherent
ability to recognize differences in patterns on the basis
of second-order sequence counts only, provided that the
patterns are separated by at least five or six second :rder
counts. .

2, With extended practice in a three choice decision task with
patterns from non-overlapping classes, the human operator can
learn to consistently classify patterns which differ by only
two second-order counts at about a 60% level.

3. Classification of patterns drawn from overlapping classes used
in Experiment 2 was consistently more difficult than classifi-
cation of patterns from the non-overlapping classes used in

Experiment 1 over a range of separation of N 1 (or its mean) of

1l
from 2 to 6 counts.

4. Operator noise in a pattern detection task with dependent
statistical patterns was found to be approximately Gaussian
distributed with near zero mean and a standard deviation of
from 3.5 to 5. The variance of the operator noise is roughly
twice the variance associated with operator noise in a similar
task using statistically independent visual information.

S. Operator performance, as measured by probability of detection,
in better for independent information than for dependent infor-

mation when the overall level of information is high, specifi-

cally U = 0.06. At low levels, U = 0.007, performance is
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nearly constant, irrespective of the form of the information.
No point was found at which operators overlooked the presence
of dependent information. Even when independent information
made up a large portion of the total amount, operators made
use of whatever dependent information was present.

For a level of dependency less than about 1/2 a simple first-
oerder detector is capable of outperforming the human operator;
however, the performance of this simple detector falls off

rapidly as dependency increases above 1/2.
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Appendix A
Computer generation of Markov sequences
A.l Introduction

This Appendix describes a method for the generation of Markov
sequences by a small scale digital computer. The machine language
computer program was written particularly for a Digital Equipment
Corporation PDP-5 data processor, a 4096 12 bit word machine.

The order of the process, r, and the number of symbols, m, are
completely general, and only limited by the available memory of the
computer. The basic machine language program uses about 70 locations
of core memory. A maximum of an additional 2m’ losations are required
to store statistical informacisn about the process being generated.
This information must be storwed in the computer memory prior to execution
of the program. One step of thi» inveives converting probabilities to
coded numbers which are used by the computer.

A.2 Theory of operation

An r-th order Markov process - one whose¢ pr2sent >utyut cepends on
at most the past r outputs - may be described 'y a state iiagram con-
taining n=m’ states, where m is the number of different ocutput symbols
allowed. The states correspond to all possible r-length sequences of
the m output symbols. For each state m condi-ivnal probabilitiss must
be specified to define the '"next state"” trarsiticns ~f the process. An
example of such a stéte diagram is given in figure 4.) for a seccnd-
srder process (r=2) with 2 poasible output symbols (a=2). The conditional
predaniiities are derived from those listed in Table A 1. It should be
woted trat ceriain states (shown in dotted lines in the diagram) have no

transciiong [oc¢ them; they are cever reachad, and may be eliminated from
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11 » q

12 » q,
21 + 3

22 + q,

Figure A.1l

Typical Transition Diagram of A Markov Process
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P(11)=1/3

P(12)= 1/3

P(21)= 1/3

P(2)= 1/3

7\

P(22)=a

Table A.l
Probability Tree Associated

With A Markov Process




the diagram. Hence,

n:pr.
Also, not every state has m transitions from it. This may happen in
certain processes when the transition probabilities for these cases
are zero. Nevertheless the sum of all transition probabilities from
any state is always unity, In the computer program, which orders the
transitions from lowest to highest probability, some states must be spec-
ified for these non-existent transitions and assigned a zero probability;
the actual states specified are of no importance since the tr;nsitions
will never occur.

To generate a Markov process the computer needs all the information
contained in the state diagram. This is:

- numbher of states, n.

- number of output symbols, m.

- ordered listing of next states and corresponding probabilities
for every state of the process.

- coded numbers corresponding to the transition probabilities.

- starting state,

- outputs corresponding to each state.

The flow diagram of Figure A.2 describes the operation of the program
in the generation of Markov sequences.

The "next state" transitions of the process are determined by
sampling a Gaussian noise generator connected by an analog-to-digital
convertor to the computer, adding to the sample a constant which corre-
sponds to the probability of going to the least likely state, and check-
ing the magnitude of the resultant binary number to see if it is above
or below a specified limit. If the limit is exceeded, the particular

state corresponding to the constant added to the sample is specified as
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Present State =
Starting State=q1

L

Sample Noise Generator
A/D Convert

L)

Sample + Kij>7777

Present State=qj

yes

X

Put Output Symbol

in Accumulator

Present State=qm

ranch

Option

Subroutine

Figure A.2

Flow Diagram-Markov Sequehce Generatcr Program




the next state of the process. If the limit is not exceeded, a second
constant (corresponding to the next most likely state transition) is
added to the same sample and again checked in a like manner. This pro-~
cedure continues until the limit is exceeded; the state corresponding
to the added constant is taken as the next state. Only m-1 iterations
at most are necessary to effect a state transition, since, if m-1 states
are not chosen as the next state, the m-th ordered state must he. The
state transitions are always checked from least probable to most prob-
able, thus the necessity for their entry in an ordered manner. The
constants which are added to the a/d converted sample of the noise gen-
erator are those which are stored in memory prior to execution, and
correspond to shifting the mean of the Gaussian noise source to a

point where the desired transition probabilities are obtained by the
given decision ile.

Figure A. 3 demonst “tes how the statistical properties of)ggise
source are related to the transition probabilities of the Markov process.
The noise source has a mean u of 5 volts and a standard deviation ¢ of
1 (variance =02=1). The binary conversion of any sample between 0 and
10. volts corresponds to the octal numbers 0000 through 7777. The com-
puter program cheiks to see if the constant Kij’ corresponding to Pij
(the probability of a transition from state i to the state corresponding
to the j-th ordered probability) plus the noise sample exceeds 7777.
This procedure is eéuivalent, in the analog case, to seeing if a voltage
kij (the analog equivalent of the binary constant, Kijf actually used in
the program) plus the noise sample voltage, v, produces a result greater
than 10 vclts. . we denote the Gaussian density function of tﬁe ran-

dom variable v corresponding to a distribution with a mean of y and a
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I gv(u+kij,o2)dv = P(Transition Stateri + State-j)

T

Figure A.3

Noise Source and Transition Probabilities of Markov Source
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” ~
va ‘ance of o” by gv(u;o‘), we see (/) that the following probabilities

correspond to the sample plus constant, v+kij, being greater or less than

10 volts: flO 1
- =D = . e == -K. . 1
1 Pi,j .[v+ki,j<10v§°° gv(5+kl’3, Ddv 5+ erf(5 kl’j] A2
1
= . J= ,.’l = — =ap K. . 022
Pi,' P[v+ki,j >10v.] J gv(5+kl,], ) dv > -e ffs kl,]] A
10

Equation A.1 is just the probability of not choosing the transition

corresponding to ki,j’ while equation A.2 is the probability of chcosing
it. If this particular transition is not choosen, it is necessary to see
if the transition with the next highest probability will cause the sample

plus constant to be greater than 7777 {octal), i.e., v+ki »10 volts.

,jtl

We must remember, however, that we know from the j-th iteration that

v<lO-ki jand, so, the constant which is added must be sufficient so that:

’

PL10<v+ik, , .<10-k. .+k, . . J=P, .
{lO_y+xl,]+l L0-k; 1,3+1] §.941
lO-ki jfki S+l
- - 3 3
But, P[loiv+ki,j+l<lo ki,j+ki,j+l] J gv(5+ki’-‘l+l;l)dv

10

zerf[(10-k, .+k )-(5+k,
1 1,

AL +l)]-erf[10-(5+ki'j+,)]

-~

j

=er‘f[5~ki j]-erf[s-ki,j+l}

k]
and from the j-th iteration we know:

-1 } . - =1
P. 372 -erf[5 ki j]' or erf [§ ki .= 3 P.

1, : ») i,j
. 1o g e -
Thus, pi,j+l‘[ > Pi,j] erf [5 ki,j+lj
3 o0
. o = = - 5=k, . = S | . . 2.3
or, Pi,] + Pl,]+l > erf($ kl,]+l] ] gv(5+kl,]+l, }dv A

10
We must, then, choose ki 541 so that equation A.3 is satisfied; the proce-
3

dure is to add Pi i to Pi j41° subtract this sum from 1/2, and use tables
, b ] -

of the Gaussian error function to find k, If the transition to the

i,j+l°
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jol1 ordered state is not made, the next iterazicn will use k added

1,32

to the same sample. and by the above reasoning we may find ki 542 by
1 ]

the equation: k, , .= S-erf'l(%-(P )] volts A.2.u

i,5+2 1,4*%1,401'F5, 542

In general' -1 1
* ok =25~ E - =! g
k,j'w 5 e!‘f -{( P. 'j g) 2] olts Ao2.5

The actual constant used by the computer is the a/d converted binary
number corresponding to this voltage. Note that erf-l(x) may run from
-» to +» for values of x equal to - %-and + % respectively. The a/d
converter, however, is limited to a 10 volt range, and this restriction
must be imposed on the voltage ki,j+w’ This approximation causes no
problem, however, since erf 3.87= 1/2 when rounded off beyond 4 places,
and this corresponds to the limits of only 1.13v and 8.87 v respectively.
The binary numbers 0000 and 7777 \correspond to 0 and 10 volts) may be
used for the probability of zero and one respectively.

Once a transition is made, the same process is repeated but uses
the set of probabilities and state transitions which were entered for
that particular state. The process continues to generate next state
transitions with the desired probabilities until the program is halted
by the operator or control is removed by programming in a special sub-
routine described below.

After each state transition, the main program branches to a sub-
routine (written by each user) which allows the present state information
to be used in producing the desired output information in the required

form. Some possible options might be:

- store a sequence of outputs for future processing by another
program.

- convert the output information to an analog voltage, and hold
this voltage on an output line.
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- activate particular relays or control circuits which
correspond to the various states of the Markov process.

Also by proper programming within this subroutine, control may be
removed from the Markov Sequence Generator Program and transferred to
some other location.

Since output assignmeétaoccurs after state transitions ocecur,
and the state-to-output mapping may be specified in any way, it is
pessible for the output process to be a projection of a Markov process,
or, in general a Linearly Dependent Process. A discussion of the prop-
erties of such statistical processes is presented in more detail by

Booth (9).
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Appendix B
Miscellaneous Derivations

B.1 Steady State Probabilitiss of A Markov Scurce

In this section the steady-state probabilities associated with
a Markov process will be found and a useful form presented for a
first-order binary Markov process.
Let T be the transition matrix of a Markov process.
T = [tij] B.1l.1
Each element, tij’ represents the probability of a transition from
state-i to state-j, where the states may be assumed to correspond to

the past r output symbols for an rtq-order process. Figure B.l shows

the transition diagram for a firsteorder binary Markov process.

P(1/0) |
peo/oXJG /0 j:/b P(1/1) 1
P(0/1) ;

Figure B.l

Following the presentation by Booth (9), let "i(n) be the
probability that the system is in the ith state at the ntb obser-

vation. The probability (row) vector ¥(n) represents the proba-

bility of the sysiam being in each state at observation n. The
probability vector at ovservation n+l is related to the probability
vector at observation n by the matrix equation,

w(ntl) = ¥(n) T B.1.2
It is assumed here that the elements of T are time invariant. ‘Thus.
w(nel) a¥(n) T = R(n-1) T1 T

B.1.3
z ¥(n-1) T2
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s e ey

or in general,
041

T(nel) = F(C) T B.l.u
or
T(n) = wo) T B.1.5

It is shown by Booth (9) that the z-transform of T is,
201"] = W(z) = z [l - 717" 3.1.6
where I is the identity matrix.
Using the final value theorem of Zntransforms, we may write,

lim [Tn] = 1lim (z-1) W(z) = 1lim (z-l)(z)[zI-T]"l
e 2>l 2>l B.1.7

Consider, now, specifically the following binary first order

Markov process:

a 1l-a
T = B.1.8
1-b b
z-a a-l
{21 -T]) = B.1.9
b-1 z-)b
2b  z-a |
. 1 z-C z-¢ B.1.10
(zI - T] "= ode
G FE S ™}
z-C z-C
where ¢ = a+b-1. And from the final value theorem,
b l-a
-1 l-¢c l-c n
lim (2-1)(z)[2I-T] ~ = = 1im[T] B.1l.11
21 b l-a| me
l-¢ 1l-c

Notise that this matrix has identical rows, and hence the steady-

state probability vector is,

—
o
—
]
(]

[

Um T(n) = UmFTO) T = [ B.1.12

nee e

—
]
(o)
-
1
[¢]
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B.2 Dependrnce of Weighting Fac*ors in A First-Order Markov

Optimum Detector

In section 3.4 the following expression was obtained for the
optimum detector of patterns which may have been generated by either

a statistically independent process or a first-order Markov process:

| P(1/0)P(0/1) P(0/0)P(1/1)
NlOgP(O/O) + N, log ————g+——— + N, log —-(——-;—TTY
1 P‘(O/O) 11 P(0/1)P(1/0
B.2.1
> (t-")log 1/2 : Dy
otherwise : D2
_ P(1/0)B(0/1) P(0/0)P(1/1)

Let ¢, = ——m——+r and C. = '—(——’-—(——T
1l P2(0/0) 11 P(0/1)P(1/0

It is shown in this section that for a fixed first-order probability
distribution, P(0) and P(1), ¢ and Cll may not vary independently.
The relation between these factors, and thus the form of the displays
which may be generated by such processes is also indicated.

Let the transition matrix for a first~order Markov process be,

a l-a B.2.2

1-b b

where the tij entry represents the probability of a transition from
state-1 to state-j. If the states associated with this matrix are

chosen to correspond with the output symbols of the process, it is

possible to write C1 and Cll as,
_ (1-a)(1-b) . a-b
¢ ® 2 and €y = [TR)ID) B.2.3
Let the product of Cl and C11 be Q,
Q= Cl-Cll = b/a B.2.4

B-92




Assume, now, that . may be held constant while C . is allowed

71 11
to vary. The producr, {Q, shouta pe able to take on two possible
1 A2
! values, Ql and QQ, corresponding to the two values Cll and <l
- 1.
Q =Cp - €y = b/
5 B.2.5
_ Q=€ Oy 7 by,
'1: . However, in section B.l it was shown that the steady state proba- )
bility vector is,
e = . kb la
(=) = [PO) PD] = [ 721 4,5
[ 1-b l-a ]
(1-a)+(1-b) (1-a)+(1-b)

Thus, for a fixed P(0) and P(1l), their ratio is,

P(0)/P(1) =(1-b) / (1-a)

and is constant. So, b/a is also constant. But this contradicts
the assumption that Cll may vary independently of Cl‘
It bas been shown in this section that Cl and C11 may not vary

independently. In fact, once the steady-state (first order) probabil-
ities are set, the ratio b/a is set, which determines the relat%og

between Cl and Cl Note, hcwever, that b and a may vary over wide

1
ranges for a constant b/a ratio. It is necessary to insure only that

0<(a 6b)<1

B.3 Value of Cl and Cll for P(0) = P(1) = 1/2

When it is desired thatl (=) = [1/2 1/2], what values may C

1
and Cll take on? From relation B.l1.12 the condition P(0)=P(1l) implies
l-b = 1-a , or a=b
Thus the transition matrix becomes,
a l-a
T = B.3.1
l-a a




This results in,

C, = ———p" and C z - B.3.2

or log C. = - log Cll B.3.3

1

B.4 Distribution of Second-Order Sequence cCounts

Let P(0) and P(1) be the first-order probabilities of a 0 and
a 1 respectively, and P(0/0), P(0/1), P(1/0), and P(1/1) be the
conditional probabilities associated with the output symbols.

Assume that dependencies extend only to the adjacent symbols. This
describes the statistics of a first-order binary Markov process.

The problem is to determine the distribution of Nll’ the number of
11 sequences which occur in a longer sequence of length N.

If one observes the symbols generated by the Markov process one
at a time, the chance of a symbol being a 1 is just P(1l). The
distribution of Nl, the number of 1l's in an N length sequence, is
binomial with mean of N*P(1). Now, consider the symbols emitted
by the Markov process two at a time as depicted in Figure B.2. Each
pair of symbols may be classified as being a 11 sequence (Y) or not

being a 11 sequence (N).

Figure B.Z

——— 031010111010L.....

R R I L N N N A A

Source e
S NYNNNNYYNNNN. . ...

The problem has been transformed into determining the distribution
of the Y's in the classified sequence. A Y occurs only when a 1l
occurs, so P(Y) = P(11) = P(1)P(1/1). But the Y's, and hence the

11's, are obviously binomially distributed with mean of N:P(1l). The
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same approach may be used to find the distribution of any other
sequences of length greater than or equal to one.

B.5 Entropy of a Markov Source

Consider a first~order Markov information source, S, which has

an output symbol set Sy» S e S s with associated symbol probabil-

2
ities P(sl), P(sQ), . P(sm), and the set of conditional symbol

probabilities {P(Si/sj)’ i,j = 1,m} . The entropy (10) of a

Markov source is defined as,
mm
H(S) =.Z.Z P(sisj) log2 l/P(Si/Sj)
1,j=1
Rewriting the conditional probabilities,
m m
H(S) = -L £ P(s,s.) log P(s,s.)/P(s.)
i,§=1 1] 1] ]

which may be split into two terms,

mm m m

H(S) = -[ £ I P(s,s,) log P(s.s,) - L L P(s,s.) log P(s.) ]
i3 oy ?
B.5.3

The second summation may immediately be taken over i, giving,

mm

m
H(S) = - L L P(sisj) log P(sisj) +.E P(sj) log P(sj)

1,351 1=l B.5.4

Let S2 be a source which has m2 output symbols, oi, composed
of pairs ot output symbols of S, with symbol probabilities of,
P(0)) P(s;s,)
P(02) P(sls?)

P(ca) P(slsa)

-




Furthermore, call S the adjoint of S, and let it be a source which d

has identical first order probabilities as S, but no dependencies,

i.e., a statistically independent process. Let S2 be the adjoint

of S2. Equation B.5.4 may be written in terms of these special

sources ds,

H(S) = H(SD) - H(D) B.5.6
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PREDICTION OF REACTICN TIME FROM INFORMATION OF INDIVIDUAL STIMULI

1.0 Irtroduction

There has been continuing disagreement in the literature over the effects on
reaction time of the information load of unequally probable stimuli. It has been
shown that while RT is linear with average stimulus information, the same function
does not apply with regard to the information of individual stimuli. Kaufman and
Lamb (1966) advanced the hypothesis that S’s behavior in this type of situation
is a function of his threshold for differential stimulus probabilities. Their experi-
ment differed from previous studies on two variables. First, they used only two
stimuli for all conditions in which stimuli were not equally probable; and second,
they used an absolute judgment situation, where other studies have used discrimina-
tive judgments. The present study was conducted to explore the significance of the
numbzr of equally probable and unequally probable stimuli, io test the validity of
Kaufmai. and Lamb’s hypothesis, and to attempt to modify the hypothesis to allow
quantitative predictions. The experiment varied the number of unequally probable
stimuli in a discrimination setting and was designed to follow as closely as possible
the procedure used by Hyman (1953).

2.0 Experiment

The Ss were 48 male and female undergraduates. The apparatus consisted of a
Gebrand tachistoscope, voice key, and Hunter millisecond timer. Stimuli consisted
of white cards with black stimuli, X’s and O’s, 7/8 inch in size.

The stimulus locations used were the four outermost corners and next inner
four corners of an imaginary 6x6 matrix. Bun, boo, hee. bore, bive, bix, bev,
and bate were the eight location names of which two, four, or all were used, depending
on the condition, Each side of the matrix made a visual angle of approximately 5
at 8’s location. The matrix was centered on the white card.

The data ior the information in the individual stimuli are of the same form as
that reported by Hyman, that is, RT to high probability stimuli are longer than would
be predicted from the regression line for equally probable stimuli, and the reverse
for low probability stimuli. Figure 1 shows that stimuli with the same probability
of occurrence (7 8 or 1/2) had approximately the same RT regardless cf tie number
of alternatives in the condition.

While the data are of the same general form as that reported by Hyman (1953)
and Kaufman and Lamb (1966), the present results provide quantitative values for
testing an extension of the hypothesis advanced by Kaufman and Lamb., They had pro-
posed that, in an absolute judgmen -.tuation with unequal probabilities, Ss would
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be prepared to respond with the name of the more frequent stimulus provided that

the disparity in probabilities was large enough and the cost of a mistake was not
excessive. The extension is that, with three or more alternatives, S makes a chain
of decisions, the order of which depends on the probabilities of the alternatives and
the time for each of which depends on the amount of information in each step, On
every trial, S makes an initial decision as to whether the most probable stimulus

has occurred. If it has, thenS’s reduction in uncertainty is equivalent to the informa-
tion in the most probable stimulus plus the residual information in all remaining
stimuli. Thus, for a set of stimuli, 1 to n, ranked in order of probability, the reduc-
tion in probability for the most probable stimulus is

P, 10g2 p, - (A-p)) log2 (t-p,) )

Note that the second term (residual information) is not the same as average informa-
tion,

If the most probable stimulus does not occur, then the time required for this
decision is the time that S uses to process the inform tion in the first term of eq. 1.
Next, 8 decides if the second most probable stimulus has occurred. The total re-
duction for the second most probable stimulus occurring is

-p, log, p; -P,log, p, - (1-p,-P,) log, (1-p,-P,)

or first stimulus reduction plus second stimulus reduction plus residual information.
This process is repeated until a decision has been made for all stimuli.

If, at any point, the remaining stimuli are all equally probable, the residual
term is simply log_ of the number of stimuli remaining. Thus, for the present
experiment, two equations are sufficient, eq. 1 for the most probable stimulus and

—p1 log2 p1 + log2 n remaining (2)

for all other stimuli.

The reduction in information for each stimulus was calculated and the RT tc that
amount of information was estimated from the regression line for equally probable
alternatives. Table I gives predicted and actual RTs for the present experiment;

1 - tests were used to test for significant departures from predicted values. None
were found to be significant. Table I also shows values estimated from other published
data; these values are consistent with the results obtained in this study.

Thus, for discrimination situations at least, a quantitative method using only
the information loadings of individual stimuli can predict RTs to individual unequally
probable stimuli,

c.
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An experiment has been conducted using the same conditions for absolutely
judged stimuli. Preliminary results are of the same form as the present experiment,

Table 1. Reduction in Uncertainty, Predicipd and Actual RTs for Three Studies

EXPERIMENTAL CONDITIONS
CONDITION  NO. ALTER-  PROB- STIMULUS AVERAGE
NATIVES ABILITY INFORMATION  INFORMATION
1) 2ELA
2) 4ELA
3) SELA
4) 2ULA

1/2 (.500) 1.0 1.0
1/4 (.250) 2.0 2.0
1/8 (.125) 3.0 3.0

7/8 (.875) 0.1926 0. 5436
1/8 (.125) 3.0

7/8 (.875) 0.1926 0.7417
1/24 (.042) . 585

/8 (.815) .1926 0.8945
1/56 (. 018) . 8074

1/2 (.500) .0 1,7925
1/6 (.167) . 585

1/2 (.500) 0 2.4037

5) 4ULA-High

6) 8ULA-High

7) 4ULA-Low

8) S8ULA-Low

w3 = O b s e GO Pe s s 0O B BN

1/14 (. 071) .8074

REDUCTION IN
PROBABILITY TOTAL N UNCERTAINTY PREDICTED ACTUAL

Present Study

0. 5436
0. 5436
0. 5436
1.0
1.0
2,585
0.5436
3.807
2.129
3.351

wF D Nl et LD M s s et e
T b O N > OO GO N
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Table I. (Cont’d)

REDUCTION IN
PROBABILITY N TOTALN UNCERTAINTY PREDICTED ACTUAL

Hyman (1953

4 0.69
4 1.72

Stone & Calloway (1964)

0.695
1,827
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ALPHABET SIZE, IMPLICIT CODING AND
THE MEMORY SPAN

1.0 Introduction

Miller (1956) suggested that the immediate memory span (IMS) is constant for
chunks, where a chunk represents a unit of response. Hymar and Kaufman’s (1966)
results indicated, to the contrary, a constancy for information. The present experi-
ment was an attempt to resolve the disagreement between the two sets of results,
Miller’s interpretation is based primarily on the IMS for sequences of familiar binary
stimuli presented aurally. With the use of various coding schemes, the IMS increased
for the amount of info. mation transmitted but was constant for the number of response
units or chunks. Hyman and Kaufman presented tachistoscopically simultaneous
messages of 4 to 8 symbols selected from alphabets of either 3 or 5 bits per symbol.
Their symbols were either eight forms (3-bit alphabet) or combinations of the forms
with four colors (5-bit alphabet), and the messages were exposed for either 160 msec,
or 500 msec. No significant differences were found in the number of bits recalled,
approximately 13,3, as functions of the exposure time or bits per symbol conditions.

Hyman and Kaufman (1966) suggested that the difference between the two sets of
data might be in the human’s ability to code stimuli. With familiar stimuli, such as
in Miller’s experiments, Ss might be able to encode them during the brief interval
that an exposure remains. The typical sequential presentation allows relatively large
amounts of time for coding.

Two parameters appear to be of fundamental interest, viz., alphabet size and
familiarity. The chunk hypothesis is based on binary alphabets of familiar symbols.
Sperling (1960) found a constant IMS of 4. 5 symbols for brief tachistoscopic exposures
of messages selected from alphabets of either 21 consonants or 21 consonants plus 10
digits. Hyman and Kaufman’s results are based on relatively unfamiliar alphabets of
3 and 5 bits per symbol. Therefore, in order to resolve this contradition, certain
features of the Hyman and Kaufman experiment were replicated with familiar symbols
and an alphabet of size two was included. In the present experiment, alphabet size
was varied from 1 to 4.7 bits per symbol with familiar symbols —leiiers of the
English alphabet,

2.0 Method

2.1 Stimuli, Apparatus, and Subjects

Familiar subsets of letters from the English alphabet were selected to give
“alphabets’’ of 2, 4, 8, 16, and 26 alternatives corresponding to 1, 2, 3, 4, and
4,17 bits of information per symbol (table I), The sets were the letters A-B, A-D,
A-H, A-P, and A-Z, Messages were always of length 12 and were formed by random
sampling with replacement. Fifty messages were prepared for each alphabet, For
the two-alternative case, the distribution of number of symbols on each card followed
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Table I. Alphabet Sets

NUMBER OF LETTER
SYMBOLS BITS/8YMBOL SET
2 1 A-B
4 2 A-D
8 3 A-H
16 4 A-P
26 4.7 A-Z

a binomial distribution. The letters were printed on 8~1/2 x 11 inch white cards
using a primer print typewriter. Each letter was 1/4 inch high and 1/8 inch across.
The 12 symbols were arranged in a diamond 2 x 2-1/8 inches, which subtended an
angle of approximately 5° (figure 1). The cards were presented in a Gebrands two-
field tachistoscope, The second field contained a center fixation point and was
brightly lit to minimize afterimages,

Figure 1. Symbol Arrangement

Two groups of 88 were run. In the first group of 10 8s, 2 Ss were assigned
randomly to each of the five alphabet conditions. In a single session, each S saw
100 messages in a single condition. In the second group, each of 5 Ss observed all
of the conditions four times over the period of ten sessions.

2.2 Procedure

The S was seated at the tachistoscope in a darkened room and asked to fixate on
the fixation point. He then initiated a trial by pushing a button which exposed the
stimulus for 500 msec. The S was then given as much time as he needed to write
down the symbols on a response grid. The Ss were instructed to not guess.




3.0 Results and Discussion
For the 2-, 4-, 8-, 16-, and 26-symbol alphabets, the average number of sym-
bols recalled were (figure 2):

Alphabet Size

2 4 8 6 28
L Repeated measures 5.2 4,5 4.1 4,2 4.1
il Independent groups 5.1 3.7 4,1 3.7 4,0

The most striking feature is the nearly constant level for all other conditions follow-
ing a decrease from the level for the two-symbol alphabet. Since there were no

5.5~

repeated measures

4.5+

4. N4

Symbols correct

independent groups

1
3

Input in bits per symbol

Figure 2. Symbols Recalled as a Function of Alphabet Size

coding conditions, the number of symbols recalled corresponds to the number of
chunks recalled. With the exception of the binary alphabet, the data support the
' chunk constancy hypothesis. Certainly, a constancy for inforination is out of the !
question. Even the deviant (alphabet size of two) data may be explained within the ‘
framework of the chunk concept. The explanation is based on the assumption that
the chunk is not the single symbol in the binary case. With a binary alphabet, the S
is able to increase his IMS by invoking a simple implicit coding procedure,

One possible code i8 to operate on the basis of runs, i.e., sequences of the
same symbol. A coded response wou.d be 2A, 4B, 1A, etc. This code has twa
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response units per cbunk, one specifying number and vne specifying kind. Therefore,
the § would use it only when the run length is greater than two. Analyzing the dis-
tributions of samples of size 12 for the binary alphabet, we find that the probability
of & run of length two or less is .79, in-~rporating .56 of the symbols. Calculating
from the data (repeated measures) for the larger alphabets of 8, 16, and 26 symbols,
we find that the number of response units available is 4.1. The number of recalled
symbols used by runs of length two or less 18 .56 x 4.1 = 2.3. The runs of length
greater than two, which average 3.6, are divided into the remaining 1. 8 response
units giving 3,2 symbols for the 1.8 response units. Adding 3.2 to 2.3, we obtain
5.5 as the predicted number of symbals to be recalled in the two-symbol alphabet
condition. The observed figure of 5.2 i8 close enough to the predicted figure to sup-
port the notion that some such process might be operating. The hypothesized implicit
cading strategy is most useful with two alternatives. However, some gain would be
expected for a four-symbol alphabet, ThLus, Ss run repeatedly show a slightly better
performance for the four-alphabet condition; this may be a systematic effect enhanced
by practice. The explanation of some forms of information processing behavior in
terms of repetiion has been proposed previously by Kornblum (1967).

‘Thus, the results of the present experiment support Miller’s hypothesis that the
IMS is constant for ‘‘chunks’’ or units of response. If this is the case, Hyman and
Kaufman’s (1966) data are open to reinterpretation. They found that the maximum
number of symbols correctly recalled was 4,5 in the 3-bit per symbol form group.
Two points are important about this; First, the number of symbols recalled is the
same as found in the present experiment for comparable conditions and also found by
Sperling (1960). Secondly, the stimulus figures were complex forms which may well
have been as distinctive and, with some training, as familiar as the letters used in
the present experiment. The maximum number of symbols recalled for the 5-bit per
symbol color-form conditions was approximately 2.75, well below the comparable
figure for the present experiment. Inspection of Hyman and Kaufman’s data suggests
that, at least for the 500 msec. exposure condition, asymptotic performance was not
obtained. Whercas the form-alone alphabet was relatively familiar, it may be that
the color-form alphabet was relatively novel. Unfortunately, the two alphabets are
not comparable, If performance is still improving at ihe end of their experimental
sessions in the color-form condition, then Hyman and Kaufman’s interpretation of
their data is open to doubt. However, one feature of their data may support the con-
tention of a constancy for bits., For the 100-msec. exposure conditions, which were
run after the 500-maec. conditions and were, therefore, more practiced, there is
no evidence of a further increase in IMS over the final two sessions. If it should be
the case that the interpretation applied to the 500-msec, exposure group is correct
but that their 100-msec. exposure group had, in fact, stopped improving, then the
significance of the exposure times becomes crucial. Possibly the 500-msec. ex-
posure is already allowing processes to be invoked different from those available with
the 100-msec. exposure.

Alternatively, the chunking and information capacities represent different limits

on the organism’s IMS. The {nformation capagity may not have been reached in the
present experiment because of the familiarity of the symbols. “Therefore, a chunk
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capacity was imposed by some other process in memory. Finding larger alphabet
sizes which provide homogeneous subsets poses a problem for further research.

We conclude that at least for the conditions tested, the results support a modified
chunk hypothesis.
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