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ABSTRACT

A modification to the Dantzig and Fulkerson tanker scheduling problem
is described. An insufficient number of vehicles and a utility associated
with each vehicle delivery are assumed. The new problem is shown to be
equivalent to a transshipment problem, the solution of which is the same
as the maximal utility solution of the modified tanker scheduling problem.
An example is given.
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SECTION 1
INTRODUCTION

This paper treats a modification of the tanker scheduling problem solved
by Dantzig and Fulkerson.[ 1] The problem was to minimize the number nf
vehicles, M', needed to meet the entire schedule with zero deviation (i. e.,
no shipment is to be early or late). Dantzig and Fulkerson were able to show

hat what appeared to be a combinatorial problem could actually be formulated
as a Hitchcock transportation problem,

The problem considered in this paper treats the case when there are
insufficient vehicles, M < M', * to meet the entire schedule, and, therefore,
some deliveries must be cancelled, Utilities are assumed for each delivery,
and the schedule is found which maximizes the sum of the utilities of the

deliveries made with zero deviations.

A directed linear graph, G', is constructed with the property that each
chain is a feasible vehicle schedule. A set of costs is determined by employ-
ing a longest chain algorithm, A new problem, in the form of the transship-
ment problem, is solved to obtain the maximum flow solution with minimum
cost, This flow of value M is shown to represent a feasible scheduling of

M vehicles, which maximizes the total utility of deliveries.

If all utilities are positive and equal, then the number of shipments
made with zero deviation is maximized. For simplicity, it is assumed

that the utilities are positive integers.

(Wherever positive integers are assumed in this paper, any set of

positive rational numbers might also be assumed. )

*The method can be used also when M = M',




SECTION 11

NOTATION

(1]

Throughout this paper, the notation of Dantzig and Fulkerson will be

adhered to wherever possible. When needed, additional notation in the spirit
(2]

of Ford and Fulkerson will be employed.,

Let I = {1‘ correspond to the set of ports at which shipments can
originate; let J = 3 j% correspond to the set of ports at which a delivery
is to be made. * Associated with the sets I and J are sets of positive
integers A = i au‘ , the transit time from i to j (including loading and
unloading), and B = iblji , the return travel time from j to.i.

i(j > 0 vehicles, leaving
(more accurately, starting to load at ) port i at time t

The kth shipment from i to j requires m

and arriving

i

(more accurately, completely unloaded) at port j at time

k
Ti; = tlj + aij (1)
k k k k k
Each partial shipment has a utility, dij vil = mij vij’ where vij is
the utility of a single vehicle delivery and di{j are the number of vehicle
loads delivered. It is assumed that t:(j = tl;j+ 1 0

A directed graph G', is defined consisting of sets of nodes, 8', s,
X, Y, t. Each node x € X is denoted by a unique pair of positive integers
(@, i). A node x ~ (@, i) exists if, and only if, at least one ti‘j =a, In
like manner, each node y € Y is denoted by a unique pair of positive integers

B, J) Anode y ~ (8, j) exists if, and only if, at least one

*Note that the intersection of sets I and J is not necessarily null.
2




Ti(j = ti(j + alj = # . Further, a source node, 8', corresponding to an

artificial source of vehicles, a sink node, t, and a node s are defined.

For each pair of nodes, x ~ (@, i) and y~ (8, j), asetof P

parallel arcs, (x, y)p , i8 defined if, and only if, ti(j = ti(j+ 1. 5 0 g
k+P-1 k_ . k+1 _ _ . k+P-1_

= tij =a, (Note also, that Tij- Tij =,.. = Tij =8,

since Ti?p = ti(j+ P, aij .) The capacity and utility of each arc are

defined as A x,y) = mi(;p ~1 and = x,y) = vl;j+p == respectively,

p=1,2,...,P.

Further, for each pair of nodes, y~ (8, j)and x ~ (@, i), an arc,
v, x)1 , i8 defined if, andonly if, = 8 + bij ; with capacity, c1 (v, Xx)

= o and utility, v1 (y, x) = 0. Finally, arcs, (s, x). , and arcs,

1'
(v, t)l, are defined for x ¢ X and y € Y, with c1 (8, x) = N y.,t)
=wand v, (s,X) =V (y,t =0




SECTION III
EXAMPLE

Consider a tanker scheduling problem involving two origins and two
destinations. The shipment departure times are given in a rectangular
array, one row for each origin, and one column for each destination.

In each space, (i, j), is the sequence of shipment departure times:

2
i=1 1 9,9 K
1, 5 =§tij$

The number of vehicle deliveries comprising each shipment is given

below:

j=1 i=2
i=1 2 1,1 i mk
i=2 1 1,1 ij
The utility of each vehicle delivery is:

j =1 j =
1=1 2 2,1 ) vk
i=2 2 2,1 ij

For this example, assume that the transft times are:

“Jouf = 1ol

j=1 j=2
=1 7
1

[ - ]




From Equation (1) we construct the table of shipment delivery times

and, thus, the time when vehicles are available for reassignment:

j:l j=2
i=1 8 12, 12

k
i=2 10 3,17 =’Ti(j§=;tlj+alj§

Consider the shipment from port i = 1, departing at time til =1,

= 2 vehicle loads, and arrivingat port j = 1 at

1
consisting of m,,
1

1
T11 = 8. Each load has utility Vi1

shipment is 4. For this delivery, construct thenodes, x ~ (@ = 1, i = 1)

= 2, hence the total utility of this

and y ~ (8 = 8, j = 1), and the arc, (x, y)1 , with capacity, c1 x,y

= m1 = 2, and utility, \f) (x,y) = = 2. In a similar manner, the

v
11 11
arcs and nodes corresponding to the other shipments are constructed as
shown in Figure 1. (Note the two parallel arcs between x ~ (@ = 9, 1 = 1)
and y ~ (8 = 12, j = 2), which correspond to two vehicle loads having

different utilities.)

Arcs are now added to correspond to feasible reassignments of vehicles
from a destination port to an originating port. For example, consider the
node, y ~ (8 = 3, j = 2). If this shipment is made, then the vehicle
could be reassigned to any origin, x ~ (a, i), suchthat o = 8 + bij ,
specifically, to either y ~ (@ = 5,1 = 2), (@ = 9,1 = 2), or
(@ =9, i = 1), Noother origins are feasible with respect to transit
times, Each of these arcs has infinite capacity (recall arcs terminating
at y ~ (8, j) have finite capacity) and zero utility. Fipure 2 illustrates

the construction so far.

Since any shipment may be made by assigning a new vehicle instead
of reassigning an existing vehicle, arcs are added from s to each node

5
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x ~ (a, i). Each such arc has infinite capacity and zero utility. In a similar
manner, we add arcs of infinite capacity and zero utility from each node,

y ~ (8, j), to t which correspond to not reassigning the vehicle after a
delivery is made. Finally, we add node, s', and arc, (s', 8)1 , with
capacity equal to the number of vehicles available, M, and zero utility.

The completed graph is illustrated in Figure 3.

From the method of construction, it is seen that there is a one-to-one
correspondence between shipping schedules for M vehicles and flows of

value M from s' tot in the constructed graph, G',

G' is an acyclic graph, since arcs from x ~ (o,i) to y~ (8, j) have
the property that 8 > o and arcs from y ~ (8, j) to x~ (o, i) have the
property that « > 8, and, hence, for any chain, the times, o or 8, are

monotonically increasing and no cycle can occur,
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SECTION IV
DETERMINATION OF ARC COSTS AND PROBLEM SOLUTION

Since it has been assumed that M, the number of vehicles available,
is less than or equal to M', the minimum number of vehicles required to
meet all shipping dates, a method to find a flow of value M which maximizes
the total utility of all shipments delivered, i.e., use all available vehicles,

is desired.

Next, a method is presented of assigning positive arc costs such that
the minimum cost flow of value M corresponds to the maximum utility

solution to the original problem. *

A simple modification of the shortest chain algorithm can be made
which will find the longest chain from any node to a specific node in an
acyclic graph, (3] (4] Denote 7(e) as the length of the longest chain
from any node, e, in G' to node t, where the length of an arc is vp(e , f).
At the termination of the longest chain algorithm, the 7 (e) correspond to the

node numbers.

Define ap (e, f) = n(e) - 7(f) - vp (e , f) as the cost associated
with all arcs (e, f)p , of G'. Figure 4 shows the costs and node numbers
associated with the graph G' . Each node has been assigned an identifying

number for future reference.

*Since G' is acyclic, an alternative solution method is to assign arc costs
equal to the negative of the utility of the shipments over each arc and to find
a minimum cost flow in G'. One could use the "Out-of Kilter" algorithm
described in (2) or the primal method described in (5).

10
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THEOREM

The total cost associated with a unit chain flow, in the qth chain,
1 1
[s',(s',8),8, (s, xl)l,xl.(xl.yl).pl.yl. 5 0 a0 xn.(xn,yn)p 3

Yy Wty t] , in the directed graph G', is given by: n

Cg = TENE z 4 (xq. Yo

q
(xq : yq)

for all nodes xq( Net yqe Y in the chain,

PROOF

The total chain cost is:

C = a (s .8 = (s, xl) - a (xl.yl) + al(yl’xz)

C r(s') - n(s) - vl (8' , 8) + m(8) - n'(xl) - v1 (s, xl)

TN - T - vp1 (x;+ ¥ * Ty - ﬂ(xz)

A AT TR I TR A AR

but, the only nonvanishing utilitiesare v. (x_, y ) and m(t) = 0.
Pp m’'°“m

Hence, letting Z be the summation over all arcs in the qth chain

(Xq ) yq)

of G',

12




Cq = n(s') - z qu (xq , yq) . .E.D,
(xq. yq)

Note in the theorem, the total cost of a unit flow in chain q is Cq = 7(s')
- (the utility of loads delivered over chain q). The total cost of a chain flow
of value M is the sum of the costs of the M unit chain flows, and is given by:

M
¢ = z c = Mn(s") - z Z (X.y)
=1 )

M 7 (s") -ZZZdu vy T Mr(s) -V

i 3§ k

on

For M fixed, Mn(s') is a constant and the flow of value M which mini-

ol
[}

where,

mizes the total cost also maximizes the total utility of the loads delivered by
M vehicles.

The transshipment problem (general minimum cost flow problem) is
to find a maximum flow solution having the minimum cost. Since the maxi-
mum flow for our problem is M = < (s', 8) = M', the transshipment
problem is to find a maximum flow of value M having minimum cost, and

therefore maximum utility. *

If it were not for , (8', 8) , aflow of value M' or greater would be
feasible.

13




The above construction of the graph, G', has transformed the tanker
scheduling problem with a limited number of vehicles into a transshipment
problem, Most transshipment algorithms produce the optimum flow in node-
arc form; however, since G' is an acyclic graph, the optimum flow can

(2]

easily be transformed into arc-chain form.

METHOD OF SOLUTION
(1) Construct the directed graph, G'.

(2) Use a longest chain algorithm to find = (e), for all

nodes, e .

(3) Calculate the arc costs, ap e, f) = w(e) -
4 - v (e, f).
(H 5 (e, f)
(4) Solve this transshipment problem using an appropriate
algorithm to obtain the maximum utility solution.

(65) Construct individual vehicle schedules from the optimum
arc flows in G' by transforming them into M unit chain

flows, each corresponding to an optimum vehicle schedule,

NUMERICAL RESULTS FOR THE PREVIOUS EXAMPLE

For M = 1, the transshipment algorithm terminates with unit flow
. t
in the following arcs: (s', s)1 s, (8, :'(2)1 - (x2 3 yz)1 5 (y2 : x3)1 :
(X3 ) ys)l ' (}'3 h x4)1 v Xy y"‘)1 . (y4 » b)) - The minimum cost is zero
and the utility of deliveries made is 7(s') - 0 = 5. Transformation of this

flow yields the following schedule for the single vehicleé (which is unique).

14




Leave From Arrive At Utility

a =1 i =2 B =3 j =2 2
a=35 i=2 B =17 j =2 1
a=9 i=2 g =10 j=1 2
V=25
The solution for M = 2 vehicles is:
Vehicle 1
Leave From Arrive At Utility
o =1 i =1 B =8 j=1 2
@ =9 i=2 3 =10 j=1 2
V1 = 4
Vehicle 2
lLeave From Arrive At Utilitz
@ % 1 i=2 = A j=2 2
a =Y i=1 o= 12 j =2 2
V2 = 4

For two vehicles, the optimum schedule is unique and does
not include the optimum schedule for the case when M = 1, which serves

to show that a universally optimum schedule does not exist.

All deliveries can be made when M = M' = 5, If M = 6, the
algorithm would use all six vehicles and should not be used for values of
M > M', M' can be determined either from the Dantz'ig and Fulkerson (1]
algorithm or by using this algorithm iteratively, M = 1, 2, ..., M',

and determining M' as the minimum value M  for which all shipments

15




are made (i.e., C =Mnr (s') - ZZZ mlj “ . Obviously, this

iJk
would not be done unless a complete parametric analysis is desired.

An alternative procedure, employing the "Out-of-Kilter" algorithm,
would assign a small positive cost vl(s', s) = e> 0 to the arc (s', s)l;

assign costs v'_ (x , = -v (X, to the delivery arcs; and
gn pq( q yq) pq ( q Yq) y

determine the minimum cost flow solution in the graph G'. This proce-

dure may be employed even when M > M'.

16
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