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ABSTRACT 

A modification to the Dantzig and Fulkerson tanker scheduling problem 
is described.   An insufficient number of vehicles and a utility associated 
with each vehicle delivery are assumed.   The new problem is shown to be 
equivalent to a transshipment problem, the solution of which is the same 
as the maximal utility solution of the modified tanker scheduling problem. 
An example is given. 
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SECTION I 

INTRODUCTION 

This paper treats a modification of the tanker scheduling problem solved 

by Dantzig and Fulkerson. The problem was to minimize the number of 

vehicles,   M1 , needed to meet the entire schedule with zero deviation (i. e., 

no shipment is to be early or late).   Dantzig and Fulkerson were able to show 

that what appeared to be a combinatori ü problem could actually be formulated 

as a Hitchcock transportation problem. 

The problem considered in this paper treats the case when there are 

insufficient vehicles,   M  < M', * to meet the entire schedule, and, therefore, 

some deliveries must be cancelled.   Utilities are assumed for each delivery, 

and the schedule is found which maximizes the sum of the utilities of the 

deliveries made with zero deviations. 

A directed linear graph, G' , is constructed with the property that each 

chain is a feasible vehicle schedule.   A set of costs is determined by employ- 

ing a longest chain algorithm.   A new problem, in the form of the transship- 

ment problem, is solved to obtain the maximum flow solution with minimum 

cost.   This flow of value M is shown to represent a feasible scheduling of 

M vehicles, which maximizes the total utility of deliveries. 

If all utilities are positive and equal, then the number of shipments 

made with zero deviation is maximized. For simplicity, it is assumed 

that the utilities are positive integers. 

(Wherever positive integers are assumed in this paper, any set of 

positive rational numbers might also be assumed.) 

*The method can be used also when M = M1 . 



SECTION II 

NOTATION 

Throughout this paper, the notation of Dantzig and Fulkerson       will be 

adhered to wherever possible.   When needed, additional notation in the spirit 
[2] 

of Ford and Fulkerson       will be employed. 

Let I = j i | correspond to the set of ports at which shipments can 

originate; let J = j j | correspond to the set of ports at which a delivery 

is to be made. *  Associated with the sets I and   J   are sets of positive 

integers A = | a..| , the transit time from i to  j  (including loading and 

unloading), and  B = j b   { , the return travel time from j  to  i . 

th k The k    shipment from  i  to j  requires  m      > 0 vehicles, leaving 

(more accurately, starting to load at) port i at time t     and arriving 

(more accurately, completely unloaded) at port j at time 

^ - '5 * aiJ (1) ; 
k     k k    k k 

Each partial shipment has a utility,   d     v     < m    v   ,   where v     is 

the utility of a single vehicle delivery and d..   are the number of vehicle 
ij 

k        k + 1 
loads delivered.   It is assumed that t.    - t 

J J 

A directed graph G* , is defined consisting of sets of nodes, s' , s , 

X, Y, t.    Each node x e X is denoted by a unique pair of positive integers 

(a , i).   A node x ~ (a , i) exists if, and only if, at least one  t   = a.   In 

like manner, each node y e Y is denoted by a unique pair of positive integers 

(/? , j).  A node y ~  (/? , j) exists if, and only if, at least one 

'"Note that the intersection of sets I and J is not necessarily null. 
2 



k        k T     = t    + a.    = ß .   Further, a source node,   s* , corresponding to an 

artificial source of vehicles, a sink node,   t, and a node s are defined. 

For each pair of nodes, x ~ {ot, i) and y ~ (0 , j), a set of P 
k        k + 1 

parallel arcs,   (x , y)   , is defined if, and only if,   t     = t. =  .  .  . 

=  t[C
j
+P"1=a.   (Notealso, that  T^ -  T^ 1  =  . . .   =  Ty* P " 1-/!. 

k + p        k + p 
since T *« aH'^  The capacity and utility of each arc are 

defined as c   (x , y) = m.. and v   (x , y) = v.. respectively, 
P ij P ij 

P  =  1, 2 P. 

Further, for each pair of nodes,   y ~ {ß > i) and x ~ (a , i), an arc, 

(y , x)   , Is defined if, and only if,   a > ß   +  b    • with capacity,   c   (y , x) 

= «o, and utility,   v   (y , x) =  0.   Finally, arcs, (s , x)   , and arcs, 

(y , t) , are defined for x € X  and y  e Y , with c   (s, x)   =  u   (y , t) 

=  " and v   (s , x)  =  v   (y , t)  ■  0. 



SECTION m 

EXAMPLE 

Consider a tanker scheduling problem involving two origins and two 

destinations.   The shipment departure times are given in a rectangular 

array, one row for each origin, and one column for each destination. 

In each space, (i , j) , is the sequence of shipment departure times: 

J =  1 ] ■ 2 

i =  1 

i 

1 9, 9       | 

9 1, 5        | 
= < t 

ij 

The number of vehicle deliveries comprising each shipment Is given 

below: 

j  =  1 j  = 2 

i =  1 

i = 2 

2 1 • !          i 
1 1,1         | 

m. 

The utility of each vehicle delivery is; 

j  =  1 J  =  2 

1 2 2,1 

2 2.1 = <v 
i] 

For this example, assume that the transit times are: 

J = 1 j = 2 

i = 1 

i =  2 
i      7 

3 

I 2              1 *ij ij 

  



From Equation (1) we construct the table of shipment delivery times 

and. thus, the time when vehicles are available for reassignment: 

j j 

i  »  1 

i =  2 

8 12, 12 

10 3. 7 l^Mt11  + a 

.1 
Consider the shipment from port i  =  1, departing at time t , =  1, 

1 
consisting of m     =  2 vehicle loads, and arriving at port j  =   1  at 

11 

11 

8.   Each load has utility  v      =2, hence the total utility of this 

shipment is 4.   For this delivery, construct the nodes,   x  ~  (a =  1 , i  =  1) 

and y ~  (ß 
1 

m 11 

8, j =   1), and the arc,   (x , y)   , with capacity, c   (x , y) 
1 

2, and utility, v   (x , y)  = v      ■ 2.   In a similar manner, the 

arcs and nodes corresponding to the other shipments are constructed as 

shown in Figure 1.   (Note the two parallel arcs between x  - (a = 9 , i  =   1) 

and y  ~   (/?   ■  12, j  =  2) , which correspond to two vehicle loads having 

different utilities.) 

Arcs are now added to correspond to feasible reassignments of vehicles 

from a destination port to an originating port.   For example, consider the 

node,   y  ~   (0   = 3,   j  -  2).   If this shipment is made, then the vehicle 

could be reassigned to any origin,   x  -   (o , 1) , such that a ^ ß   +  b    , 

specifically, to either y  ~  (CK =  5, i  =  2),   (a = 9, i  =  2) , or 

(0=9,   1  =  1).   No other origins are feasible with respect to transit 

times.   Each of these arcs has infinite capacity (recall arcs terminating 

at y ~  (/3 , j) have finite capacity) and zero utility.   Figure 2 illustrates 

the construction so far. 

Since any shipment may be made by assigning a new vehicle instead 

of reassigning an existing vehicle, arcs are added from s to each node 

5 
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x ~  (a , i).   Each such arc has infinite capacity and zero utility.   In a similar 

manner, we add arcs of infinite capacity and zero utility from each node, 

y ~  03 ■ j). to t which correspond to not reassigning the vehicle after a 

delivery is made.   Finally, we add node,   s' , and arc, (s* , s)   , with 

capacity equal to the number of vehicles available,   M , and zero utility. 

The completed graph is illustrated in Figure 3. 

From the method of construction, it is seen that there is a one-to-one 

correspondence between shipping schedules for M vehicles and flows of 

value  M  from s'  to t in the constructed graph,  G' . 

G' is an acyclic graph, since arcs from x ~ (a,l) to  y ~ (/3 , j) have 

the property that /3 =• a and arcs from y ~ (/3 , j) to x ~   {a, i) have the 

property that a > /3 , and, hence, for any chain, the times,   a or ß , are 

monotonically increasing and no cycle can occur. 

 —— 



< 
to <D 

8 

1 



SECTION IV 

DETERMINATION OF ARC COSTS AND PROBLEM SOLUTION 

Since it has been assumed that M , the number of vehicles available, 

is less than or equal to M' , the minimum number of vehicles required to 

meet all shipping dates, a method to find a flow of value M which maximizes 

the total utility of all shipments delivered, i. e., use all available vehicles, 

is desired. 

Next, a method is presented of assigning positive arc costs such that 

the minimum cost flow of value M corresponds to the maximum utility 

solution to the original problem. ♦ 

A simple modification of the shortest chain algorithm can be made 

which will find the longest chain from any node to a specific node in an 
fal [41 acyclic graph. Denote ir(e) as the length of the longest chain 

from any node, e , in G' to node t, where the length of an arc is v (e , f). 

At the termination of the longest chain algorithm, the ir(e) correspond to the 

node numbers. 

Define  a   (e , f)  =  JT (e)  -  TT (f)  -   v   (e , f)  as the cost associated 
P P 

with all arcs  (e , f)   , of G' .   Figure 4 shows the costs and node numbers 

associated with the graph G' .   Each node has been assigned an identifying 

number for future reference. 

♦Since  G'  is acyclic, an alternative solution method ib to assign arc costs 
equal to the negative of the utility of the shipments over each arc and to find 
a minimum cost flow in  G' .   One could use the "Out-of Kilter" algorithm 
described in (2) or the primal method described in (5). 

10 

__—  



CJ 

<T> 

Ui 
O 
O 
O 

= o 
(O — 

LU 
o 

11 



THEOREM 

th 
The total cost associated with a unit chain flow, in the q     chain, 

[ s' , (s' , s) , s . (s , x )   , x   , (x   . y1)     , y1 
xn • (xn ' ynK   * 

, 1 n 
y   . (y   • t), , t] , in the directed graph  G' , is given by: 

n       n       1 

C    =  Ms') 
q Li     P   q    q 

(x  , y )   4 
* q      q 

for all nodes  x c X , y «Y in the chain. 
q        q 

PROOF 

The total chain cost is: 

Cq = aj (s' .  s) « a, (s . Xj) - ap   (x1 . y^ + a1 (y1 , x2) 

- ...   - ^(.v,, • t) 

C    =  ir(s')   -   ;r(s)  - v   (s* , s)  +  T(S)   -   7r(x )  - v   (s , x ) 
q 1 111 

+ MXj» -  -(yj - v    (x1 . y1) + My^ - T(X2) 

-  v1 (y^ , x2) + .   .   . + 7r(yn) -   ff(t)  -  v1 (yn , t) 

but, the only nonvanishing utilities are v      (x    , y   )  and TT (t)  = 0. 
Pm    m      m 

V th 
Hence, letting       7       be the summation over all arcs in the q     chain 

(Xq ' V 
of G', 

12 



C    = irte') - 
q 

^      vp   (xq . yq) . aj.D. 

K' v q 
q    q 

Note in the theorem, the total cost of a unit flow in chain q is     c    = "■(a1) 
q 

- (the utility of loads delivered over chain q).   The total cost of a chain flow 

of value M is the sum of the costs of the M unit chain flows, and is given by: 

M M 

C   =      £       Cq-MM8')  -    1 ^      vp   (xq,yq) 
q =   1 q=l     (xq,yq)     q 

C  =  Mjr(s«)   " J^^d» V   n   M'^') k 

i   j   k 

where. 

i   j    k 

For M fixed,   Mir(sl) is a constant and the flow of value  M which mini- 

mizes the total cost also maximizes the total utility of the loads delivered by 

M vehicles. 

The transshipment problem (general minimum cost flow problem) is 

to find a maximum flow solution having the minimum cost.   Since the maxi- 

mum flow for our problem is M = c   (s1 , s) £ M' , the transshipment 

problem is to find a maximum flow of value M having minimum cost, and 

therefore maximum utility. * 

* 
If it were not for c   (s' , s) , a flow of value  M' or greater would be 

feasible. 

13 



The above construction of the graph,   G' , has transformed the tanker 

scheduling problem with a limited number of vehicles into a transshipment 

problem.   Most transshipment algorithms produce the optimum flow in node- 

arc form; however, since G1  is an acyclic graph, the optimum flow can 
[2] easily be transformed into arc-chain form. 

METHOD OF SOLUTION 

(1) Construct the directed graph, G*. 

(2) Use a longest chain algorithm to find T (e) , for all 

nodes, e . 

(3) Calculate the arc costs,   a   (e , f) = ir(e) - 

ff(f)  -  vp(e, f). 

(4) Solve this transshipment problem using an appropriate 

algorithm to obtain the maximum utility solution. 

(5) Construct individual vehicle schedules from the optimum 

arc flows in G' by transforming them into M unit chain 

flows, each corresponding to an optimum vehicle schedule. 

NUMERICAL RESULTS FOR THE PREVIOUS EXAMPLE 

For M =  1 , the transshipment algorithm terminates with unit flow 

in the following arcs:   (s', s)1 , (s , x^ ,  (x2 , y^ , (y2 , x^ , 

(x3 ' Vl ' ^3 ' Vl '   (X4 ' y4)l ' ^4 ' ^1 *   The minlmum c08t i8 zero 

and the utility of deliveries made is T(S') -0 =  5.   Transformation of this 

flow yields the following schedule for the single vehicle (which is unique). 

14 



Leave From Arrive At Utility 

a =  1 1 =  2 0=3 J   =  2 2 

a = 5 i =  2 B  =  7 J  =  2 1 

a = 9 1 «  2 0   =  10 J  =   1 2 
V =  5 

The solution for M =  2  vehicles is: 

Vehicle 1 

Leave From Arrive At Utility 

n =  i i   =   ] 0=8 j   =   l 2 

a « 9 i   =  2 /i   =  10 j   =   1 2 
Vl=4 

Vehicle 2 

Leave From Arrive At Utility 

tv       1 i  =  2 /j   =  3 j   =   2 2 

a = 9 i  =  1 /(   =   12 j   =   2 2 
V2  =  4 

v ■ = Vj + v2 =   8 

For two vehicles, the optimum schedule is unique and does 

not include the optimum schedule for the case when M =  1, which serves 

to show that a universally optimum schedule does not exist. 

All deliveries can be made when M = M1  = 5.   If M = 6, the 

algorithm would use all six vehicles and should not be used for values of 

M  > M' .   M'  can be determined either from the Dantzig and Fulkerson 

algorithm or by using this algorithm iteratively,   M =  1 ,   2 M' , 

and determining  M'   as the minimum value   M      for which all shipments 

15 
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are made (i. e.,    C   = M ir (s1) - / 7 / ».i vii) '   obviously» thlB 

i   j   k 
would not be done unless a complete parametric analysis is desired. 

An alternative procedure, employing the "Out-of-Kilter" algorithm, 

would assign a small positive cost v (s', s) = e > 0 to the arc (s1, s) ; 

assign costs v'    (x , y )  = - v     (x , y ) to the delivery arcs; and 
pq q   q pq   q   q 

determine the minimum cost flow solution in the graph G1.   This proce- 

dure may be employed even when M > M1. 

Ifi 

"MlT^7"' 
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