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ABSTRACT
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Saint Louis 30, Missouri

Differential game theory is applied to several
classes of pursuit-evasion problems. For these
differential games the dynamics of the participants
are described by linear nonstationary differential
equations.

One class of c'Ifferential games that was formu-
lated and studied is the differential game, where the
evader'has to out maneuver a pursuer, if it is to
strike the target that the pursuer is defending.
This differential game will be called the differ-
ential endgame.

The differential endgame's payoff functional
is the square of the terminal engagement miss
distance weighted against the difference of the
pdrticipants' control energies, spent during their
respective flight times. The evader's target
constraints are the position coordinates of the

• target and the evader's kinetic energy as it
strikes the target.



The necessary and sufficient conditions for
the existence of a saddle point, and the partici-
pants' control algorithms are determined for
this differential endgame.

4 For this type of differential endgame when
the intercept and target times,, and the pursuer's

initial position and velocity vectors, constrained
in magnitunde., are unknown, -the. relationships- that

[Ii - determine these parameters,-are derived.

For a class of differential games, which
results when the evader's target constraints and
postengagement flight time are not considered, it
is shown how the relationshiDs that determine the
intercept time and the pursuer's initial state
are used in determining when the pursuer is
launched.

Another class of differential games, formu-
lated and studied in this dissertation, is the
one where an additional pursuer is cooperating
with the primary pursuer that is trying to
intercept the evader. Here the payoff functional,
which is constrained by the inner product of the
terminal miss vector between the cooperating

Q-pursuer and the evader, is the square of the
terminal miss distance between the primary
pursuer and the evader weighted against the dif-
ference of their control energies. For this
differential game the two point boundary value
problem is derived and solved.
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PURSUIT-EVASION DIFFERENTIAL GAMES

1. INTRODUCTION

I UISTORICAL BACKGROUND

In 1954 Isaacs (1, 2)* studied the pursuit problem by

trying to-determine the optimal Path for a pursuer in order

to intercept maneuverable targeLts. Isaacs' formal and

hueristic approach, which was, similar -to Bellman's dynamic

0 programming method, initiated the study of differential

games.

In 1957 Berkovitz and Fleming (3) applied the calculus

of variations technique to a class of differential games.

Later Berkovitz (4) gave a rigorous treatmentof a wider

class of differential games, based upon the calculus of

variations. Here Berkovitz obtained the necessary con-

ditions that mist exist along a path resulting from the

use of optimal strategies of the two adversaries, by

relating the differential game problem to a Bolza problem

with differential inequalities added as side constraints-

*The numbers in parentheses indicate references in the

SBibliography..

-------------------------
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Berkovitz also developed a sufficiency theory which in0
principle verifies the existence of a saddle point.

Kelendzheridze (5)studied the problem a: two maneu-

verable adversaries to which he determined the minimax

time it takes for the pursuer to capture an evader. Here

hi used the minimax analogue of the Maximum Principle to

determine the necessary conditions for optimality.

Ho, Bryson, and Baron (6,7), assuming the existence

of a ,saddle point, u-ed, variational techniques to derive

conditions for capture and optimality of a linear class of

differential games. These conditions depend on the

authors' definition of the relative controllability matrix.

Baron (8), assuming the existence of a saddle point, derived

Q conditions for capture and.optimality for a linear class

of differential games where the adversaries have limited

energy resources or where the magnitudes of the control

forces are limited. Baron also derived necessary and suf-

ficient conditions for a class of nonlinear differential

games. Gahzhiev (9) solved a similar version of the

problem that was studied by Ho et al (6,7) but without the

relative controllability condition.

More recently Meschler (10) and Chattopadhyay (11)

have formulated Dursuit-evasion problems where the objec-

tives of the evader are not only to avoid interception-of

the pursuer but also to strike the target, the pursuer is

defending.
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Meschler has formulated his pursuit-evasion problem as

a differential game. Its payoff is the square of the

terminal miss distance. The dynamics of the participants

are represented by linear time-invariant differential

equations and the participants' control force components

have specified magnitude constraints. Here the extremum

of this differential game is determined analytically by

dynamic programming. A serious drawback of this differ-

ential game is -that it was optimized with respect to one

component of the participants' control vectors. Mesdhler's

work was published after the solutions for this dissertation

were obtained. In the pursuit-evasion problem studied by

Chattopadhyay, although it contains the notion of the

O pursuer defending the evader's target, it is not a differ-

ential game because the trajectory dtf the evader is pre-

determined.

1.2 SCOPE OF INVESTIGATION

j On, -of the objectives of this dissertation is to apply

I differential game theory to the endgame problem. The ,end-

game problem is d,,fined as the terminal flight stage of an

offensive missile that tries to penetrate its target by

out maneuvering a maneuverable pursuer. This class of

differential games will be called the differential endgame.

For this differential endgame the payoff functional

is the square of the terminal engagement miss distance,

weighted against the difference of the control energies,

spent by the participants during their respective flight

times.
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flThe dynamics of the participants are described, by

linear time-varying differential equations. The evader's

I target constvaints are the position~coordinates of the
target and the evader's target speed which is a measure of

'i the evader's terminal kinetic energy.

For this differential endgame the necessary and suf-

ficient conditions for the existence of a saddle point are

derived by the calculus of variations method. From these

necessary conditions- ?ontrol algorithms are developed for

the participants.

Meschler (10) is the only one who studied the endgame

problem in terms of differential game theory. His work

was published after the solution to the differential

Qendgame problem proposed in Chapter 3 was obtained. In

Meschler's differential endgame the payoff functional is the

square of the terminal engagement's miss distance. The

dynamics of the participants are defined by linear time-

invariant differential equations. The target constraint is

target zone. Here the minimax value of the differential

game is determined with respect to one component of the

participants' control vectors. This component of the

* participants' control vectors is constrained in magnitude.

This differential endgame is solved 'by dynamic programming.

In all previous classes of pursuit-evasion differ-

ential games important parameters such as the intercept

time, target time, and the pursuer's initial position and

velocity vectors were assummcd to be some known values.



In Chapter 4 these parameters are considered unknown and0 they are determined via differential game theory. For

these differential games the pursuer's unknown psition

and velocity vectors have constrained magnitudes. Here

I the necessary conditions needed to determine these optimal

parameters are derived for these classes of aifferential

games. Also in Chapter 4 it is shown how the differential

game with its optimized parameters is used to determine

when the pursuer is launched.

Finally, in Chapter 5 a class of differential games

involvirg two pursuers, trying to intercept an evader, is

formulated. The two point boundary value problem, which

determines the value of this type of differential game,

is derived by the calculus of variations method. The

solution of this two point boundary value problem is

determined.

_________________________________________________
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1 0 2. DIFFERENTIAL GAMES

2.1 PARTICIPANTS' LINEAR NONSTATIONARY SYSTEMS

Both participants of the differential games studied in

this dissertation have linear, n6nstationary, continuous

systems of the following form:

x F (t)x + G (t) u + n (2.1.1)

Fe (t)x + G ft) v + n (2.1.2)

where x and x are n-vectors describing the state of the
D e

pursuer and evader respectively; u and v are m-vectors,

representing the control vectors of the pursuer and evader

respectively; np and ne are n-vectors, representing any

disturbance acting upon the pursuer and evader; F p(t)
and Fe(t) are nxn matrices, continuous in t; and

G p(t) and G.(t) are nxm matrices, continuous in t.le

p e
The participants' state vectors are determined by

solving the set of differential equations, describing

their systems,

tI

xe(t):4 je(t,t 0 )Xe (t 0 )+ f je(t,r)[Ge(Tr )v(r)+ne(r )]dr (2.1.3)
0:t O

where L')(tt ) and t.t), the state transition matrices

are the so'utions of the following set of differential

equations:

S Fkt)kt,t0); kp,e (2.1.5)

0 subject to the initial conditions

)k(t0,to) I (2.1.6)
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Since the state transition matrix is used to derive the

optimal solution of the differential games -that are formulated

in this dissertation, it is appropriate to point out the fol-

!owig properties of the state transition matrix. Proof of

these statembnts is in (12).

1) By definition

S(1t,t) i (2.1.7)

2) The group property of the state transition matrix is

(2 ,t 0  5L )e2 tI (t 1 , t 0o)  (2.1.8)

3) The inverse of the state transition matrix is

-l(t,r) = ,Xr,t) (2.1.9)

In physical terms the participants' state vectors

represent their position and velocity components. The

position vector for the participants is defined as

xkl=Axk ; kzp,e 2.1.10)

where lhe 2mxm matrix A is partitioned into the mxm

identity and null matrices

A = [110] 21.1

The velocity vector, for the participants is defined as

Xk 2 = QXk; k=pe (2.1.12)

where the 2mxm matrix, Q, is partitioned into the mxm

null and identity matrices

Q = [0!I] (2 1'3)

The participants' position, velocity, and control

vectors are considered to be three dimensional vectors for

the differential games studied in this dissertation.
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2.2 GENERAL DEFINITION OF A DIFFERENTIAL GAME

The basic differential game problem is nonrigorously

condensed from Berkowitz (4) as follows:

For the payoff functionalT

J =(xT),T)+ fL(x,u,v,t)dt (2.2.1)
t
0

and the participants' optimal strategies, u* and v ,

determine W(x0,t0 ), the value of J, such thdt*

W(X0,t0) MinMax J (2.2.2)

ueUveV

subject to the constraints

x =  F(x,u,v,t) (2.2.3)

x(t 0) : 0  (2.2.4)

and.

uEU(t), vEV(t) (2.2.5)

Here x(t), which is defined as the state of the game, is

Composed of the pursuer's and the evader's state vectors,

and u and v are the control vectors of the pursuer and

evader, respectively. T is the fixed termination time of

the game,ard the game's fixed time interval is [t0 ,T].

TI(x(T),T) is some terminal nonlinear function of the state

variables of the game,and L(u,v,x,t) is some nonlinear

penalty functional of the control energy spent by both

players.

Now a saddle point for the differential game is

defined as the pair (u',v*) satisfying the relation

-J(uv) 5 JwuVv) - J(u,v*) (2.2.6)

• t is assumed that MinMax J MaxMin J
ueUvEV v-VuEU
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Q for arbitrary uEU, vEV. If and only if (2.2.6) is satisfied,

u* a nd v* are optimal strategies and J(u*,v*')=W(x0 t 0 ).

2.3 FEEDBACK CONTROL LAWS

There are two types of control strategies, one is

open loop cont-ol and the other is closed loop control.

The open loop contx(ls are admissible controls which deter-

mine the saddle point for (2.2-1) subject to (2.2.3-2.2.5)

The open loop controls are optimum for a particular initial

state and its corresponding optimal path.

u* = h1 (X 0 ,t 0,t) (2.3.1)

v* = h 2 (x 0 ,t 0 ,t) (2.3.2)

Closed loop optimal controls are optimum for any initial

0 state and any deviation from the optimal nominal trajec-

tories along these optimal nominal tiidjctories

u"=k 1 (x0 ,t0 ,x~t) (2.3.3)

v.=k 2 (x0 ,t0 ,xt) (2.3.4)

Although optimal closed loop controls, which are

determined by solving the Hamilton-Jacobi eqiation, are

more desirable than" the optimal open loop controls, the

opt-imal open loop controls are determined because it is

easier to solve the two point boundary value problem than

the Hamilton-Jacobi equation. The optimal open loop con-

trols can approximate closed loop control by instanta'-

neously and continuously computing optimal open loop

controls from updated measurements on the present state

of the game.

it- 'IF ' . . . ... . . . . .. .
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These optimal open loop strategies are derived by the

calculus of variations method.

2.4 NECESSARY AND SUFFICIENT CONDITIONS

FOR THE DIFFERENTIAL GAME

The calculus of variations techiiiue is used to derive

both the necessary conditions which must be satisfied if

a saddle point for the differential game exists, and the

set of sufficiency conditions. which determine the saddle

point. From the necessary conditions the optimal open

loop strategies are derived. The differential game's

value and the participants' optimal control strategies are

determined when

Min Max J f4c l MaxTT
uGU veV cuU vV . L(xuvt)+

o 
to

Now defining the Hamiltonian as

H(x,X,u,v,t) = L(x,u,v,t) + XF(x,u,v,t) (2.4.2)

one can :ewrite the minimax operation (2.4.1) as

Min Vax1J =MinV ax (x(T)T) + (H(x,ku,v t)- X!)dt (2.4.3)
uGU veV uFU Ve tO I

where t0, T, and x(t0) are fixed, and x(T) is free.

The variation of J is written in the following form

2

where 8Jcis the first order variation and 6 icis the second

order variation.

The necessary conditions that must be satisfied over

the time interval [t0,T] if Jchas a saddle point for the
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strategies v v* and u u* are:

1) The Euler-Lagrange equations and the boundary condi-

tions must be satisfied such that 8J is zero.

2) The analogous Legendre-Clebsch conditions satisfy

Juu 0 (2.4.5)

Jvv 0 (2.4.6)

3) Nonexistence of a conjugate point for the accessory

minimax problem.

If J has a saddle point for the control strategies

u =u and v =v* then the following conditions are

sufficient if they are satisfied simultaneously:

1) u* a'nd v ' satisfy the Euler-Lagrange equations

Q and their boundary conditions,.

2) Along u*', and v* (2.4.5) and (2.4.6) are satisfied

over the interval Et0 ,T].

3) No conjugate points exist over the interval [t0,T] for

the accessory minimax problem.

2.4.1 Determination of the Euler-Lagrange

Equations and their Boundary Conditions

The variation of the constrained payoff functional,

Jc' excluding all terms higher than second order is

AJ= q Sx(T) + 8x(T)"l 6x(T). - X(TY'8x(T) +
c X xx

T (H. + X*')Sx + Hu u + Ha~d 8
u u + H)dt+

0
T xx xu xv 1X0

1/2 f x'ouux' uvu H 114u H -u 5u dt .(2. .7)
LH H Jvv-j
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Requiring the first order variation to vanish on an

op2timal trajectory and control leads to the Euler-Lagrange

equations and -their boundary conditions from which the

optimal strategies of the pursuer and evader can be deter-

mined. The first order variation is set to zero by

equating the coefficients of the variational' equal to

zero. This leads to the Eu2er-Lagrange equations

Hx + A' = 0 (2.4.8)

H : O (2.4.9)u

H : 0 (2.4.10)

The set of terminal boundary conditions for the state

vector x(t) and costate vector A(t) are:
TI' - (T) 0 (2.4.11)

x
X(t) X0 (2.4.12)

Equations (2.4.8) and (2.2.3) are the differential equations

representing 'the unknown nth order state vector x(t) and

the unknown nth order costate vector X(t). Equation (2.4.11)

represents the terminal boundary conditions of the costate

vector, and equation (2.4.12) is the initial boundary con-

dition of the state vector. The solution of equations

(2.4.8-2.4.12) and (2..2.3) determines x(t) and A(t).

Knowing x(t) and A(t), the participants' optimal open loop

strategies are determined by (2.4.9,2.4.21C

2.4.2 Determination of the Analogous

Legendre-Clebsch Conditions

Q OThe Legendrc conditions that must be satisfied if a

saddle point exists are



J Hu = 0 (2.4.213)

Jvv H vv 0 (2.4.14)

These are a direct analogy to the two- s.ded calculus

extremum problem.

2.4.3 Conju'gate Point Problem

One of the sufficiency conditions that form the set

of suffici6ncy conditions is the nonexistence of a conjugate

point along the optimal path. The following definition of

a conjugate point for the differential game is similar to

the one .for the one-sided optimization problem (13).

Definition 1: The point i(ga) is said to be conjugate to

the point a, if the Euler-Lagrange equations for the dif-

ferential game have a solution which vanishes for t=a and

Q t=a, but is not identically zero. Another definition of

a conjugate point which can be used to formulate a pro-

;edure for determining the existence of a conjugate

point is Definition 2 The point t=a is said to be

conjugate to the point t=a with respect to the payoff

functional of the differential game if it is conjugate to

t=a with respect to its second order variation.

2.4.4 Procedure for Determining the

Existence of a Conjugate Point

If the necessary conditions exist such that the first

variation vanishes, the total variation of the payoff

functional (2.2.1) is reduced to the following

AJV8x(T)'Y Sx(T)+f['x'H8u':8v'H [xxaxu xXx c j H H H u dt (2.L.15)L 0' vI I
H vx H vu' vvJ8
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subject to the constraints

0 6x = F xx + F uu+ F Vv (2.4.16)x U

Sx(t 0 ) 0 (2.4.17)

Now- according to Definition 2 a test is devised to determine

whether conjugate points exist for the quadratic functional

(2.4.15) subject 'co the c.nstraints defined by (2.4.16) and

(2.4.17). This procedure is called the accessory minimax

problem. This is analogous to the one-sided accessory

minimum(maximum) problem (14).

2.4.4 Accessory Minimax Problem

Adjoining the differential constraint of equation

(2.4a6) to the quadratic second order variational

T ~H x Hxvi axl
AJ x (T) I T.. x(T,, [x', u# v H H HI au +cx.uv uu uvL

0 0 HuH HI av
vx vu vvJ

AX' (Fx 8x+ Fu 6u+Fv v-8k)} dt (2.4.18)

and redefining

y (2.4.19)

Su = 77 (2.4.20)

av = V (2.4.21)

.:(2.4.22)

the Hamiltonian for (2.4.18) is

H(jH,'H,v,y,t)=[. y': ': H H xv y

1Luv U t,?] -
Hvx Hvu Hv i V

Q I., (Fx, y+F u 7-F v ) (2.4.23)
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and

(Pb(y(T),'T) =x(T)'qixxSX(T) (2.4.24)

The second order variation can be written as

L \J~ 4(y(T),T)+ f ( (L7bVy~t)-II' )dt (2.4. 25)

H 0

Now the necessary conditions for an extremum of AJ are the

Euler-Lagrange equations

y = Fxy+ Fu7-i F v (2.4.26)

H + - 0 (2.4.27)
SH U  0 (2.4.28)

HV 0 (2.11.29)

subject to the boundary conditions

Y(to 0 (2.4.30)

p-(T) = y (y(T),T) (2.4.31)

It is possible to devise the following test for the

existence of conjugate points. From (2.4.31) one sees that

there are 2n unknowns and n equations. Assuming that (2.4.31)

is linearly independent, one can in principle solve n

unknowns in terms of the n unknowns which are free. The

free unknowns are labeled as y (T).Y(T), which is composed

of the column vectors yi(T), is defined as
l. 0

Y(T) [Yi (T) YT] [. 0 (2.4.32)

:0 o
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Now corresponding to these choices of yi(T) vectors, one

can determine the i(T) vectors from (2.4.31) and form the

matrix:

ACT) = [1 1 (T)' "n(T)] (2.4.33)

After obtaining matri.x solution of the Euler-Lagrange

equations (2.4.26-2.4.29) with boundary conditions Y(T) and

ACT), if Y(t) becomes singular at some time t during the

interval[t0 ,T],then a conjugate point of Y(t) exists on

the interval [t0,TI.

2.5 SUMMARY

The purposes of this chapter are:

1) To define the dynamics of the participants for the

* type of differential games studied in this dissertation.

0 2) To illustrate the general concept'of the differential

game and the techniques for determining the necessary

and sufficient conditions for the differential game.
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3. DIFFERENTIAL ENDGAME

3.1 INTRODUCTION

The endgame problem is one where an offensive type

missile has to out maneuver an antimissile if it is to

strike its target. It is the purpose of this chapter to

place -the endgame problem within the framework bf differential

game theory. This particular type of differential game will

be oalled the "differential endgame". The necessary and

sufficient conditions for the existence of the differential
endgamcs saddle point are determined.

3.2 FORMULATION OF THE DIFFERENTIAL ENDGAME

The special class of differential endgame to be studied

is as follows:

For the payoff functional

d a[X T)-e x (T )]A'A[xpCTl)-x (T ]T T2 1 e2p ~
+ 1/2 fluR (t)udt .- 1/2 f2v'R e(t)vdt (3.2.1)

to  to

and the participants' optimal strategies, u* and v*,

determine W(xp(tO), Xe(t 0 ),t0 ),the value of the game, such

that

W(xp(t 0 ) , xe ( t 0 ),t o ) Min Max J (3.2.2)
ueU veV

subject to the constraints

x pF (t)x +G p(t)u+n (3.2.3)

X =F (t)x +Ge (t)v+n (3,2.4)

xcI Xp(t 0 ) x Do (3.2.5)

-v-}. - -
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x(t) (3.2.6)
e 0 e

Xel(T 2) 0 (3.2.7)

Xe2 (T 2 )'Xe 2 (T2 ) VT2  (3.2.8)

and
3

-t UvGR. (3.2. 9)

where the state vectors, x and Xe, represent the position
p

and velocity components of the pursuer and evader; the

control vectors, u and v, represent the components of the

pursuer's and evader's acceleration commands; np and ne

represent any disturbance vectors such as the earth's
R3

gravitational field; R is the three dimensional open

Euclidean space; the 6x6 matrices, F p(t and F e(t), and the

6x3 matrices, G Ct) and G (t),are continuous in time; R (t)
p e p

and Re.(t) are 3x3 positive definite matrices, continuous in

2
time; a is a weighting factor.

The differential endgame considered in this chapter

has a finite duration of(T2 -t09, t6 being the fixed com-

mencement time of the game, and T2 being the evader's fixed

target time. The differential endgame has a finite engage-
= i ment interval (Tl-t0), T1 :being the fixed terminal engagement

or intercept time. The postengagement time interval of the
differential endgame is(T 2-T )

For the differeptial endgame the payoff functional

proposed by (3.2.1) is the engagement's final miss distance,

squared, weighted against the difference of the control

energies spent by the participants. The pursuer's control
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energy is spent over the engagement interval and the evader's

control energy is spent over the duration of the game. When

interception occurs the evader's postengagement trajectory

is the optimal. path it would have if it were not destroyed.

Both paxticipants have linear nonstationary dynamics,

defined by the differential constraints (3.2.3, 3.2.4).

In order to facilitate the application of the method

of Lagrangian multipliers the evader's differential con-

straint over the postengagement interval is converted to an

integral constraint

Xe(T 2 ):2e(T 2 ,Tl)Xe(T1)+

f 16e(T2,t)[Ge(t)v(t)+n (t)]dt; TI< t T2  (3.2.10)

0e 2 e e 1 2 (..0T 1e

where e(T 2,t) is the evader's state transition matrix and

xe(TI) and Xe(T2 ) are the evader's state vectors at the

intercept and target times respectively'.

The evader's target constraints are expressed by

(3.2.7,.3.2.8). Equation (3.2.7) defines xel(T 2), the

evader's target position vector, which is the origin of the

differential endgame's coordinate system. By specifying

the inner product of the evader's target velocity vector

(3.2.8) represents a measure of the evader's kinetic energy

as it strikes the target.

In conclusion, the interpretation of this differential

endgame is that at some fixed time, TI, the pursuer tries

to interceDt an evader, which is attempting to penetrate
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the pursuer's defense in order to strike its target at some

fixed time T2. Both participants have limited energy

sources. An open-loop version of this endgame problem is

considered since 'the optimal control forces of the partic-

ipants are considered only as functions of time.

Variational calculus as applied to one-sided optimal

control Droblems (14, 15) is applied to the differentia-

endgame problem as follows. Vector Lagrangian multipliers

X andX are introduced in order to adjoin the differential
p e

constraints (3.2.3) and (3.2.11) to the payoff functional

(3.2.1) over the engagement interval. Also the vector

Lagrangian multiplier Ai adjoins over the postengagement

interval the integral constraint (3.2.10) to (3.2.2), and

Q the scalar Lagi.?angian multiplier -q adjoins the evader's

target constraint (3.2.8) to (3.2.1). in terms of the

differential endgame's constrained payoff functional, the

differential endgame is mathematically expressed as

2Min MaxJ .Min Max a x (T "
SuU vGV cuU vV 2  D 1l)Xe(Tl)AA[X p(T )-X e(

T 1

+ f [i/2u'R p(t)ui/2v'R e(t)V+P'(F p(t)xp+G p(t)u+n p-)
t p0

+X e'(Fe(t)xe+G e(t)v+ne -X' e]dt+q/2(xe2 (T 2 )'Xe2 (T2 ) _VT
2

+ I' [xe(T 2 )-e(T 2 ,T l )xe(T1 ) ]

T 2

- '(T~ ,t) (G e(t)v+n )Jdt}(2.1

T1
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3.3 DETERMINATION OF THE EULER-LAGRANGE EQUATIONS

FOR THE DIFFERENTIAL ENDGAME

Applying variations, 3u and 8v, about a particular

Dair of controls, u and v,the total variation of the dif-

ferential end-game's constrained payoff functional J is

AJ[a2 (x (T)-xe (Tl))'A'A-X p(T)]8x (T)
C p e1p 1 p

+[a2 (xe (TI)-xD(Tl))A'A-X' (T )-(6)e(T2 ,TI)].xe(T1)

+[A'Q' +nxe(T2)'$Xe (T 2e2 2 e2 C 2)

+ [(uIR (t)+X 'G (t))&u+(-v'R (t)+ X'G (t))6v
p p e ee

ii + (Xp +,\IF F( t) )b p+ (X I+X e IF e, t ) )X e ] dt
p p p p e-)~ed

-fT2 [v'Re(t)+W',)e(T 2 ,t)Ge(t)]&v dt

T1

+a 2/2[&Xp(T)-aXe(T )]'A'A[6Xp(Tl)-aXe(T1)J

+ 77/2 6x CT )pax(
e2 2 e2(2 )

T [R (t) 0 ault T 2
1/* 1[u:av'l I jt1 2 1R (t)8v dt (3.3.1)f12 i0[ -' Re (t.)]a vd f-i

to0 
T1

From AJ the necessary and sufficient conditions for
c

the existence of a saddle point fox the differential end-

game's payoff functional are determined. Of primary

interest are the necessary conditions which result in the

determination of the Euler-Lagrange equations and their

associated boundary.conditions. These necessary conditions

Q 0 are derived by requiring the first order variations of Jc

to vanish. Table 1isummarizes these necessary conditions.
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Table 1

Differenti4al Endgame's Necessary Conditions
Required fox, 6J to Vanish

Varia-
tional Coefficients of Variationals Equated to Zero

p p p-

VtR .(t) + jM'e (T t)G (t)=O;T <T (3.4

ze 2' e ;T 1 <t T2  (3.)

~x X t+X tF (t)=O;,, t ! t~ T1  (3.3.5)

ax e Xe '+Xe 'Fe (t)=O;t.0 5 t T1  (3.3.6)

axe(T2) 7?Xe2 ( C 2 )+[ ~2 =*(3.3.9)

*.The (3x1) partitioned vector, P 2 is obtained by pre-

multiplying the (6x1) ve ctor, It) by the matrix Q.
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The complete set of Euler-"Lagrange equations is formed

by combining the differential constraints of the partic-

ipants (3.2.3) and (3.2.11) with the necessary conditions

(3.3.2-3.3.6). The boundary conditions for the unknown vari-

abls o t. Eue-1range equations a-re formed by combining

the known boundary conditions(3.2.5-3.2.8) with the necessary

condditions (3.3.7-3.3.9). Therefore the Euler-Lagrange

equations are:

x p ( t p M t T G t ( )0

F 0t 0 -G (t) pe

e 0 e~t) 0 e(t)R' (t)Ge' t) 'xe- ne

+
X0 0 -F -(-t) 0 X 0

p p p

for t0  tT 1  e e: 0Te't (3.3.10)

x =F (tx -G (tR(t) MG MOt)(TtL +n'e; for

The boundary conditions for the state vectors, x and xe) the
pe

costate vectors, X and Xe, in terms of the constant costate
pe

vector g~ and the scal1ar Lagrangian multiplier -q are:

Fx (t )L;P J KP2] (3. 3.12)
e 0 e

Xe (T 2~ 0 (3. 3.13)

q x 2 (T 2  -112 (3.3.14)

Xp1 T aA'A[x p(T )-x eCT ) (3.3.15),
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( T )+a 2 AA[x CT )-x CT )14 $'T ,Tl) l=0 (3.3.16)ei D e 1 -%e 2

<0V 2X e2 CT 2 x e 2 2C 3. 3.17)

The simultaneous solution of these linear differential

equat.-.orns and their nonlinear algebraic set of boundary

equations yields the costate -vectors A-~ and . and,

the scalar Lagrangian multiplier 17. With the determination

of these Lagrangian multipliers the optimal. strategies for

the participants and the differential endga~me' s value can

be determined.

3.4 SOLUTION OF THE EULER-LAGRANGE EQUATIONS

The solution for the costate vectors of the Euler-

Lagrange equatiorn (3.3.10) defined over the engagement

interval [to, T1] I s

k Dk T ,t) Xk (Tl k =p, e (3.4.1)

where V CT1 ,t)- are the transition matrices for the costate

vectors, X~ and e and X (T) and Xe(Ti are the unknown
.p e

cdstate vectors' corner conditions. The participants'

state vectors at T1 in terms of the corner condition

vectors are:

x (TT1 0)) T x 0te e 1 Fxpe 0)i
p 1 (T 1t 0 Xp( T1t

01 (Te1 ,t0) X(T1 - eT1t,t)

M k(T11oM 1qe(Tl,O)lG (ti_ (Lk2tT'Ttd~~ 343

to
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and the 6xl column vectors kk(Tlt 0 ) due to the disturbance

vectors nk are

kk(Tl~t 0  1 i (Tl ,t)nkdt; k=p,e (3.4.1)

to

The solution of the Euler-Lagrange equation (3.3.11)

defined at tT 2 in terms of the unknown costate vector it

L and the evaders anknown terminal engagement state Xe(T ) is
Xe(T2 )=e(T 2 T iXe(T I Me(T2 T)A+ke(T2 Tl) (3.4.5)

where the 6x6 controllability matrix is defined as

,T 2e(T2T) e(T2,t)Ge LReT-Ge (t)6 1' U2t)dt (3.4-.6)

1

and the 6xl column vector ke(T2 ,TI) due to the distur-

bance vector ne. is

k(T 2 ,T)= fT27eQT2, t( ) nedt (3.4.7)
T1

Therefore, by solving for the unknown corner condition

vectors, X(T I ) and Xe(Tl1,and the costate vector I, the solu-

tion of the Euler-Lagrange equations are obtained.

3.11.1 Determination of the Costate Vectors'

Corner Conditions

With the use of the evader's boundary condition

x (T)- (T ,T )x. (T .T T)A+keCT ,TI)- 1 (3.4.8)
e e 2 e 1el e 2 ee 2/ l

The costate vector Ax is expressed in terms of the evader's

unknown terminal engagement state xe(TI) and the unknown

Lagrangian multiplier q as:
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=[Me(T TTl .qQQ -YO e(T2 ,T)Xe (T)+ke (T2 ,Tl)} (3..9)

(92 T1  2 --

Substituting for xe(TI) P be comes, in terms of the

evader's corner condition costate vector Xe(TI) and the

scalar Lagrangian multiplier 7:

z= [Me (T2 T) -/Q']-{ e(T2 t± )x (t0)+
/Me 21 e2

6e(T2 T 1) Me CTl,t0)xe CTl)+0)e T2 ,T )ke (T1 t 0)+k (T2 T)}(3.4.10)

Substituting -the .unknown vectors- xe (T1 ), xp(T and

giver, by (3.4.2) and (3..10) into the corner condition

equations (3.3.15,3.3.16) the unknown variables in the

corner condition equations are reduced to Xp(T) Xe(Tl)

and 7. The corner conditions become

FU+a 2 AAM (Ti t0 )Ia2A'AMe (T,(t0) 1 F p (T
1 )

La A'AMP(T1 ,t0) U-[a2 AtA-K()]Me TI, A(T)

a2AIA I -a2A'A ][ (TIt 0 ) 0 (t^)

-a2A'A Ia 2A'A -K( 7) 0 (1)(T t e(t

k C- - - J- - - )- - T )(3 .4 .11 )
ke (TI t0  K ('q )'-"T)e(Ti, T2 ) ke (T2 T1

e 1, 0e 1 T2)e 2' 1

where the matrix KM(j) is defined as

K(C)= e(T2,TI) CM (T  TI )- I / Q'Q ]- ' e (T 2 T l)  (3. .12)_e 21 e 21 1 _e 21 3k)

In shorthand form (3.4.11) is rewritten as

B(n)X(TI) fC)x(t0 )+?( 7 ) (3.xI.13)

The corner condition costate vectors A(T1 ) and X (T1 ) are

determined as functions of the unknown parameter 77 as

X" e(TI):[01U]B(1)- (C(')xt 0)+C(j)) (3.1t.14)

p
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(T')= [U 01B-±Z (C(q)x( )411)) (3. I. 15)

where the order of the null and identity matrices are 6x6

for the three dimensional coordinate system.
Substituting (3.4.12) and (3.4.14) into (3.4.10) the

costate vector y is expressed in terms of the parameter 77

as

IL:0(TIT K(2I[Ie(TI,t0Y[OIU]B( -) (C(7)x(tn)+)(Q))_e 1' 2 ~ (C(7)x&o 0 )

+C9)1(Tl t0 )xe(t 0)+ke (T ,t )+C'i) (T T )k (T2 , (3.4.16)

CT )t 1 0 Ae 1' 2 e(T~ 1 ](..6

The parameter 7 is determined by substituting the evader's

target boundary condition (3.4.8) into the evader's kinetic

energy target constraint (3.2.8).

x e2(T 2 )'x 2 CT2 )=I/ ILQ'QL=VT2  (3.4.17)

By substituting it (3.4.16') into (3.4.17) the evader's target

kinetic energy constraint (3.4.17) is expressed in terms of

the scalar multiplier 7.

2 , -VT 2 : 0 (3.4.18)

The value for_ is determined by extracting the roots of

(3.4.18).

Equation (3.4.18) represents an exact polynomial. L

depends on the weighting matrices, R (t) and e (t), and the

matrices, Fk(t), Gk(t); k=p,e, defining the dynamics of

the participants.

In the Appendix 8.1.5 it is shown that when

Fk [ 0I0] k=p,e (3.4.19)
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Gk j= (3.4.20)

Rk(t) = rk[U]; k: D,e (3.4.21)

the degree of the polynomial (3.4.18) expressing the

evader's kinetic energy constraint is six.

3.4.2 Determination of the Control Algorithms

for the Pursuer and the Evader

From the necessary conditions (3.3.2, 3.3.3) requiring

&J to vanish the open loop optimal strategies for both the
C

pursuer and the evader over the engagement time interval

are:

v*:R-(t)Ge(t) ()e(Tl,t) Xe(T I ) (3.4.22)

u*:-R p-(t)Gp(t) '-I(Tl,t) X(T) (3.4.23)

o Substituting the known corner condition vectors

(3.4.14) and (3.4.15) into (3.4.22, 3.4.23),the control

algorithms for the participants over the engagement interval

are:

v* = R-kt)G' (t) CT ,t) [04U]B(q)-I(c(n)x(t0)4(7)) (3-4.24)
e e e 1

u * =-R 1 (t)G (t) (3),(Tt) N'0]B(7)-I(c(77xWt0(3.4.25)
p p A

These time-varying optimal strategies are functions of the

initial state and initial parameters of the endgame.

The evader's optimal strategy over the postengagement

interval is derived from one of the necessary conditions

(3.3.4). requiring 8J to vanish. This strategy is expressed
-c

as

K)2 v*: -Re ( (t G ()b e ' (T 2 ,t)L (3.11.26)
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Substituting for fL, given by (3.4.9), (3.4.26) becomes0
v*= -Re(t)-lGe ' (t ( 2 ,t l,2) K()2

[Xe(T1)+e(T1 T2 )ke(T2 ,T1)] (3.4.27)

where the evader's state vector Xe(T1) is considered as

the evader's initial state vector to be measured during the

postengagement intervel. The scalar multiplier 7 is

determined by substituting the vector iL, defined by

(3.4.9) into the evader's terminal kinetic energy constraint

(3.4.17).

These strategies do not take into account errors

such as noise from radar measurements and the approximations

of the exact dynamics of the participants. The uncer-

tainties due to these errors during the endgame's duration

can be reduced by continuously measuring the initial state

of the participants and updating the initial parameters of

the differential endgame.

3.5 NECESSARY AND SUFFICIENT CONDITIONS

FOR THE DIFFERENTIAL ENDGAME

The necessary conditions that must be satisfied over
the differential endgame's time interval, [t0,T2],if the

payoff functional, J, defined by (3.2.1) has a saddle

point for the strategies,u u* and vv*, are:

1) The Euler-Lagrange equations and their boundary con-

ditions must be satisfied when the first order vari-

ation of AJ is equated to zero. This has been pre-
c

Q viously accomplished in Section 3.2.
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2) An analogous Legendre-Clebsch condition for the saddle

point must be satisfied over the time interval of the

differcntial endgame.

3) Nonexistence of a conjugate point for the accessory

minimax problem over the time duration of the differen-

tial endgame must be shown.

If J has a saddle point for the control strategies,

u =.u* and v = v*, then the three previous necessary

conditions are sufficient if they are satisfied simulta-

neously.

3.5.1 Analogous Legendre-Clebsch Conditions for

the Differential Endgame

With reference to the variation of the constrained

Q payoff functional (3.3.1), when the first order variation

SJ vanishes,AJc becomes

a2Jc=a2/2[Sxp(T ) - &x e(TI T 1 ) - x e ( T 1)]+
71/26x e2(T 2 )Pa x e 2 ( T 2 ) + 1 / 2 f WuR p(tL)8udt

to

-1/2 v'Re(t)vd(3.5.1)

to

Another necessary condition for J to have a saddle point

with respect to the control strategies (u, v) is that the

second order variational terms with respect to bu must be

nonnegative and the second order variational terms with

respect to 5v must be nonDositive. These conditions are

I satisfied if
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R (t) e 0 (3.5.2)
p

R ( t ) _ 0.

These conditions are analogous to the one-sided optimiza-

tion problem (13).

3.5.2 Conjugate Point Problem

The final necessary condition for the existence of a

saddle point (u*,v * ) is the nonexistence of a conjugate

point for the accessory minimax problem of the differential

endgame.

3.5.2.1 Accessory Minimax Problem
Min Max 2J

The accessory minimax problem is Su 8v 0* IlXin a2/2[ xpT1)-&e(Tl)]tAA[xpTl
- 8x(T1)Min Mae

10 eu5v )QQSx (T )x(T)AA[ PT)8xeT1

+'7/28xe(T2) Q'Q Xe(T 2

/T R (t) 0 a

tot
T 0

-1/2 f v'Re()8vdt }  (3.5.5)
TT

Dsubject to the constReaints
S=Fp Maxp+Gp Mau (3.5.6)

,b: XeFe(t)aXe+Ge (-L)v; t o IS t < T 1  (3.5.7)

T

T 1  < t < T 2  (3.5.8)

8X (t o) 
(3.5.9)8,et0

r'
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axe I 2 (30''

x e (T 2 )Q QaXe(T 2  0 (.l)

where the payoff functional for the accessory minimax

problem is the second order variation of the differential

* endgame's constrained payoff functional (3.2.11); the dif-

ferential constraints (3.5.6, 3.5.7) and the integral

constraint (3.5.8) represent the perturbated dynamics of

the participants, due to the variationals 6u and Sv; the

boundary condition constraints (3.5.9-3.S.11) represent

the perturbated boundary and target corasfraints due to the

variat'ionals Su and 6v.

If the solution of the Euler-Lagrange equations that

r Min Max5?Jc*results from au 6V does not vanish, then the non-

existence of a conjugate point is assured.

Adjoining to & J ,the differential constraints,C. c

(3.5.6, 3.5.7) by 6X and 8X the int-egral constraint

(3.5.8) by 81i,and the target constraint (3. 5.11) by877,

the accessory minimax problem becom-es

+77/28xe(CT 2)t Q'QaXe(T 2 ')+87xe( C 2)P QQaxe (T 2)

+ J 1/26utR (t'L)Bu-1I28v'R (t)8v+SX '(F (t)Bx +G (t)au-8x )t p ep p p p

+8X '(F (t)&x +G Ct)av-&x))dt+S1L'(x (T )-'(T TT)x CT)
e e e a e)e e21e 1

- fT(1/2 6vtRe (t)6 v+( Q(T 2 t)G (tL)Sv)dt} (3. 5.12)

e e20

T- --
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Applying variational calculus to (3.5.12) the varia-

tion of &2j is

2 2
A(2e (2d)+ + (3.5.13)

where 8( 2J c ) is the first order variation of c  A

necessary condition required for the existence of a saddle

point for J is
c8 j2 0 (3.5.14)

The necessary conditions satisfying (3.5.11) are in

Table 2.

3.5.2.2 Solution of the Accessory Minimax Problem

Before proceeding to establish the test for the

existence of a conjugate point it is necessary to eliminate

the unknown costate vector 8/t from the corner condition

equations (3.5.22) and (3.5.23). With the aid of the neces-

sary condition (3.5.19) defining the optimal control Sv

over- the interval (TI T2], and the integral constraint

'(3.5.8) the boundary condition for &Xe t) is written as

axe(T2  / 2) T )ax

e ~ 7X 2 T) 2 112J &e 21 1 eT1

-M e(T 2 T-) (3.5.15)

Solving for 8t

Sp= [Me(T, %>-l/nQ' Q -l '')(T , x(T1

+[ - 2  (3.5.16)

Substituting.81t in the corner condition equations (3.5.22-

3.5.23) the corner conditions become:

'7 40
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Table 2

tO Necessary Conditions for 8( 2J) to Vanish

Varia-
tional Coefficients of Variationals Equated to Zero

5(6u) (t)Su+Gp (t)SXp=0 (3.5 ,17)
p p

S(&v -Ret)&v+Ge' ( t)xe = 0 ; t 0 -t=T 1  (3.5.18)

:-Re ( t)8v-G' ( t) 1(T2 llt) =O; T<tT (3.5.19)

8(ax p) \+8'X F (t)=0 (3.5.20)

$($Xe) &e +S'e Fe(t)=0 (3.5.21)-

8(axD (T1 ) ) -X '(Ti)+a [EXe(T )-aXe(Tl)]'A'A=0 (3.5.22)
p e1

(ax (T ) -e (T )'-a 2 [8x (T )-ax (T )]A'A

-iPe(T 2 T1)=0 (3.5.23)

4 &C(8Xe2 CT2 ))e 2X 2 e2 2 + e2 (T.)+ 24 0 (3.5.24)
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2 1a2.' !-a2A'A

where 6-(T and -x(T are defined as

(T)

e x(T) (3.5. 27)

axe (eT(T

From the corner cond iti on equations (3.5.25) one can solve

for the unknown corner condition of the costate vectors,

w eD(Tl ) and & x (T ),and the constant costate vector 611 in
e 1Q terms of the unknown state vectors,8x~(~ad~eT)

terms ~ I (T1 ) TSe(

Now sp ~~Eying the free unknowns 8x (T1) k p,easi,

NowTl )p i L ke (Ts (3.56

the system of the free unknowns, XCT) is

Xp 0T

X(T) I M (3.5.28)

The system of the corner condition costate vectors ACT

! (T)whereTl, n the marxCscm osofthn oae num e fcolum n

0vtrs eqalt th e uro re unknown column vectors, pT ) a d eT)

n.These olum vhecors wchaarition saed nto ATwo

is

A(T )  C (3.5.29)
-aA Ac [a AA-K(1

where the matrix C is composed of the number- of column

vectors equal to the number of free unknown column vectors

mi  These column vectors which are partitioned into two

6xl column vectors are defined as:
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Sci= - "- - - - (3.5.30)
871D' (T2 ,TI) [VMe(T2 ,TI)-I/77Q'Q]-I /- XRe2T

Substituting the mI vectors into (3.5.16) the system of

costate vectors composed of 6i5. becomes

M= e'(TIT 2 )[K(?)+C] (3.5.31>

Now for the accessory minimax problem, the system of Euler-

Lagrange equations over the engagement time interval

] [t0 ,TI] is

-X F (t) 0 -G Pt)R t) GI(t) 0
p p

0Fe(t) 0 G (t)R (t)Gt)I, (3.5.32)

O 0 0 -F I(t) 0
A P

L 0 0 0 -Fe'(t)

subject to the boundary conditions X(T1 ) and A(T) defined

by (3.5.28) and (3.5.29). The solution of the Euler-

Lagrange equations over the engagement time interval is

7 (t ,T 1 ) 0 0 0X(t) "
0 (e(t,T) 0 0

t'( t T 0
I A~t)

0 0 0 eCt,T 1 )

U00 M(T l1 t o  0
X(TI )0U 0 -Me (TI ,t 0 )o U 0 MeCT~t 0)(3.5. 33)

0 0 U 0

00 0 U ,

Substituting the corner condition equations (3.5.28,

3.5.29) into (3.5.33)

SL111* _
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00
0 (t, Tl)

/ M ( T i t ) 00 l r a 2 A ' A 2 Cj

LM0 -e (T 1 t 0L-a 2 ' A a2A A-K(7] I

St < T., (3.5.34)
0

As shown by (3.5.30) the matrix C is a function of the

unknown scalar Lagrangian multipliers 8i. 871i is determined

as follows: substituting Sxe(T2) obtained from the neces-

sary condition (3.5.24) into the target constraint (3.5.11)

one obtains

3Xe(T )'xe(T 2  2eT2)' (3.5.35)

Substituting for Sy2' (3.5.35) becomes

87X2 e2 2 T2 e2 2 e2 (T2)P Qe'I (TI 2 )K( ) x e (TI1

- ./7QC)R' (T] ,T2 )K(n)Y)e(TI,T 2 )Xe(T 2 ) (3.5.36)

Solving for 8. and using the terminal kinetic energy

constraint

S 2(T ,(TI T2z (3537)
VT2+I/ Q1 'q (T1 T2) K N )CI)e(T1 , T x e(T2

Now for each selection of the column vector mi

Xe2 (T 2 e(*) I (TI T2 )K(7 )m.

5'T 27) K(77))-(T, T)x e (T2 ) (3.5.38)
T e el2 e2

Over the postengagement interval X (t) is defined as

Xe(t) q)e(T 2 1t) - Me(t 1 )M (3.5.39)

0
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3.5.2.3 Conditions for Nonexistence of a Conjugate Point

The solution of the Euler-Lagrange equations X(t) for

the accessory minimax problem does not vanish, and con-

sequently no conjugate points exist, if

M(T 1 , o  0 /-a 2 A'A -a 2A AA

det U + +C0 -Me(Tl't0) -a2 A'A a2 A'A-K(-q

S0, OL= t 4- T!1 (3.5.40)F det{ 4e(T2,t)+Me(t+,TIMCt 0, T,< t < T 2(3.5.41)

e T2  (..

3.6 EXAMPLE OF A DIFFERENTIAL ENDGAME

Here the framework of the differential endgame is

defined by specifying the dynamics of the pursuer and

evader and their weighting matricesR p(t) and Re (t),. For

this particular differential endgame, which was programmed

on the digital computer, the dynamics of the participants

both have the identical form:
Xkl [0 U X kl

=l [0) +UF k~p,e (3.6.1)

k2  0 0 [xk2 LUJ ukL3

Xkl(tO1 [Xkl0 ; k=p,e (3.6.2)

Xik 0 L k20

The partitioned (3xl) state vectos, xkl and Xk2, represent

the position and velocity vectors of the participants

respectively. The components of "he (6xl) disturbance

vectors np and n e% represent the acceleration of gravity.

The weighting matrices are diagonal ones of the form
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Rk rk [U]; k = p,e (3.6.3)

3.6.1 Control Algorithms for the Participants

The control algorithms for the participants of this

endgame are specifically formulated as follows. For the

pursuer the components of the (3xl) control force are

uj(t) -TIXp=j ?l)/rpj+(XDl(T 1)/r .)t; t <t T1  (3.6.4)

For the evader the control components are
t) (Tl elj(Tl)+-( e C(T )/r e )t; t t

v (tej elj 1 ej 0
-(T2 lj+P 2 )/rej+(P 2./rej)t; T1 < t ! T2

j 1,3 (3.6.5)

The components of the corner condition costate vectors,

XT I( and Xe(T 1 ),and of the costate vectorg which are

defined by (3.4.14) and (3.4.15) are explicitly formulated

in the Appendix 8.1.

3.6.2 Determination of the Lagrangian Multiplier..

With reference to the boundary condition (3.4.17) the

target kinetic energy constraint is exDressed in terms of

the (3x1) partitioned costate vector 92 " In Appendix 8.1.5

the components of this partitioned costate vector are

rational fractional polynomials in terms of Lagrancian

multiplier q . Thus the scalar product of with itself

yields a sixth order polynomial function of 7.

Because of the degree of this polynomialis greater

than one, it appears that the existence of multiple values

of 7 would cause great difficulty in determining the true

* saddle point for the differential endgame. But, fortunately
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this polynomial generates one root which can be used

for the determination of a saddle point. In the numerous

cases of differential endgames that were simulated on J-he

digital computer four of the roots of the q dependent poly-

nomial were always complex. Of the two real roots, there

results the evaderls target velocities which are of the

same magnitude but of opposite direction. Thus from a

physical viewpoint one of the real roots is meaningless

for it assumes that the evader can reverse its direction

during the postengagement period.

3.6.3 Differential Endgame Simulated on the

Digital Computer

For this particular differential endgame the initial

state of the participants are

0000.(ft)1OO 50- 00l(ft9. )
[1000. 5000. .

(t. 70000. x t90000.(36)D 0 7000.(ftlsec) x( 0 ) -10000.(ftlsec .

- 100. 100.
L 50. - 200.

The other parameters of the endgame are: the terminal

engagement time, Tlis 6.4 seconds; the target time, T2, is

20.7 seconds; the evader's target speed is 9000 ft/sec;

the weighting coefficient, a 2 , is 1; the evader's weighting

matrix, Re (t) is 60[U] and the pursuer's weighting matrix

R (t) is r [U]; 1 r p 120. For these weighting matrices
p p -

the participants' controllability matrices satisfy the

following relationship

0 fen , &T (rp/re )Mp- It Tlt (3.6.7)O~~ ~ 0, i
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where (r /Pe ) is called the evader's controllablity factor.J~ pe

The effect of the controllability factor upon the terminal

engagement miss distance and the participants' maximum

control accelerations are studied.

Figure 1 shows how the terminal miss distance increases

with an increase in the evader's controllability factor.

From Figure 1 one can relate the evader's controllability

factor to the intercept capability of the pursuer's war-

head. For this differential endgame the evader can be

intercepted regardless of the evader's controllability

factor if a nuclear warhead is used (16).

Figure 2 illustrates how the participants' maximum

control accelerations vary wizh respect to the evader's

controllability factor for this particular differential

endgame. The pursuer:s maximum control acceleration occurs

at the commencement of the differential endgame. The

evader's maximum control acceleration occurs at the

terminal engagement time. From Figure 2 the participants'

control capability can be related -to the structural design

of the participants' airframes.
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Figure 1. Evader's Controllability Factor Versus

Terminal Engagement Miss Distance
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3.7 SUMMARY OF THE CHAPTER

The principal contributions contained in this chapter

are:

1. Formulation of the terminal endgame between an offensive

missile and its pursuer within the framework of dif-

ferential game theory.

2. Determination of the necessary and the sufficient

conditions for the existence of a saddle point for

the differential endgame problem.

3. Determination of optimal open loop strategies for 
the

participants of the differential endgame.

4. Through an example it is illustrated how the dif-

ferential endgame can be used in determining 
certain

Q design specifications such as structural capability

and the pursuer's warhead.
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4* PARAMETER OPTIMIZATION FOR MIFFLRENTIAL GAMES
:0

11.1 INTRODUCTION

For the differential endgame studied in Chapter 3 the

pursuer's initial state vector, the intercept time, and the

target time are fixed values. Now it is proposed to study

the differential endgame whose intercept time, target time,

and pursuer's initial state vector are unknown. Here the

relationships that determine these unknown parameters are

derived.

For the class of differential games studieby Ho

et al ( 6 ), the pursuer's initial state vector and terminal

engagemeht time are fixed values. This class of dif-

ferential games is formulated where the pursuer's initial

state vector and the terminal engagement time are unknown.

T h e re 1 ation s hips that determine these unknown param-

eters are derived.

For the differential game it is shown how the deter-

mination of the intercept time and the pursuer's initial

state via differential game theory is used to determine

when the pursuer is launched.

4.2 PARAMETER OPTIMIZATION FOR THE DIFFERENTIAL ENDGAME

For the participants' optimal strategies, .u*

and v., and the differential endgame's payoff functional

J = a 2/2[x D(T )-x (T 1)]'A'A[x p(T )-xe(Tl)
p 1 T 2

+1/2 u'R (t)udt-i/2 V'Re (t)vdt (4.2.1)

tr t
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subject to the constraints

pFp (t)x t)U+np (4.2.2)

e =Fe(t)xe+G e(t)v+ne 
(4.2.3)

Xe (t 0)=Xe0 (4.2.4L)

0 2  
(4.2.5)

xp2 (t0 ),X (t0)=V02  (4.2.6)

X el(T 2)=0 (1.2.7)

Xe2(T 2)x e2(T 2)=V T2 (4.2.8)

u,vER3  (4.2.9)

determine the differential endgame's parameters, Tl, T2,

and xp(t 6) such that W(xp(t0), xe(t0), t0 ), the value of

Q the differential endgame, is determined by

W(xp(t )Xe(t ),t) Min Max J (4.2.10)

p0'e 0)0) =uCU vCV

subject to the constraints (4.2.2-4.2.9).

The state vectors, xp and Xe, represent the position

'and velocity components of the pursuer and evader; the

control vec'zors, u and v, represent the components of the

pursuer's and evader's acceleration command; np and ne

represent any disturbance vector such as the earth's

gravitational field; R3 is the 3-dimensional open

Euclidean space; the 6x6 matrices, F p(t) and F e(t), and the

6x3 matrices, G p(t) and G e(t), are continuous in time; R p(t)

and Re (t) are 3x3 positive definite matrices, continuous

in time; a2 is a weighting factor.
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The differential endgame has an unknown duration

(T2-t0), t0 being the fixed com.encement time of the game,

and T2 being the evader's unknown target time. The Dar-

ticipants have an unknown engagement interval (T-t 0), T1

being the unknown terminal engagement or intercept time.

The unknown postengagement interval is (T2-TI).

For the differential endgame the payoff functional is

the engagement's final miss distance, squared, weighted

against the difference between the pursuer's control energy,

spent during the engagejae.nt interval and the evader's

control energy, spent during the duration of the endgame.

Both participants have linear nonstationay dynamics,

defined by the differential constraints (1.2.2, 4.2.3).

Over the postengagement interval the evader's differential

constraint (4.2.3) is converted into the integral constraint

Xe(T2 )=e(T2 ,T)xe (T )+ f )[(t)v(t)+n] dt

T < t 6 T2  (4.2.11)

where e(T2,t) is the evader's state transition matrix, and

Xe(T 2 ) and Xe(T I) are the evader's unknown state vectors at

T, and TI .

The evader's target constraints are its target position

(4.2.7) and its kinetic e.iergy as it strikes the target

(4.2.8). The pursuer's unknown initial state vector x (t
p

is composed of its initial position vector xpl(t0 ) and

velocity vector xD2(t0). The square of the magnitudes of

these vectors are constrained by ('.2.5,4.2.6). These
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magnitudes represeht the distance and speed of the pursuer

at the initiation of the differential endgamne. Vector

Lagrangian multipliers, and Xare in~troduced, in :order
pe

to~ adjoin the differential const-raints (4.2.2,4.2.3) to the

payoff functional (4.2.1). The vector p adjoins the

integral constraint ('I.2.1l)' to the payoff functional

(4.2.1). The scalar multipliers q, 'r , and -qV adjoin the

evader's~ kinetic energy constraint (4.2,.8) and the 'Inner

p roduct constraints of the pursuer:'s initial position and

velocity vectors (4-i2.5-,4. 2.6) to the payoff function~al

(4.2.1).

The differential end game is expressed as

MinMaxJ -MinMax a 2 2'x()x(T]AAx(T)XT
*uvuGEV U! pa 12 1 CT ) 1x()]'1 e')CT1

+ J [1/2u"R~ Ct)u-l/2v'Re (t)v+X '(F (t)x +G(tlu+n 4

t p p p p p p

+Xe I(-F- (t)xe+G (t)v+ne-e ))d~t

77j,/2 (x (t 2 -)R )7/,2-( )'X (t )-V2
-. 0~? v .- 0p20t p2 o0

+77/2(x 2 (T 2 ) )xe2T A[e2  (T2 TI-)eT

- T(1./2v'Re (t)v+e ))dt -~ (4.2.12)

e +!Te(T 2,t) E Gt v+n l

4,.2.1 Derivation of the Relationships that Determine the

Intercept-Timia,, Target Time and the Pursuer's

Initial State

Applying variat'ions,~u and 3v, about a particular-pair

Q of controls, u and vthe first order variation of the
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differential endgame's constrained payoff functional

(4.2.12) is

SJ = [a2 ( U(T )-xe(Tl )'A'A-Ap' (TI )]x (T1 )

+[a 2 (x (T )-x- (T ))'A'A-e'(T )- 1 'c (;TI) ]Sx (T 1 )

+ r +nx 12 (T2 )] ax (T )

2 e2 2 e 2

+ [1r 1 1 (t 0)+X 1 (t0 ) ],Xpl (t 0)+-vETv12 (t 0)+Xp2 (t0) ]axp2 (t0)

p pp+[i/2u(T 1 )R R(Tl')u (TI)+a 2 Exp (Tl)-xe (TI) ] 'A'A[Xp(TIe (T ) ]BT 1

+[?jXe2 (T2 )' e2 (T2 )-/2v(T2 ) Re(T 2 )v(T2 )J&T2

Sf RT t)+X'G (T))u+-v'R Ct)+Ae G (,t))8v
t p .pRpt (-v e'e0

+(XI' +Xp1 Fp(t) )aXp+ ( e +Ie IFe(t))Sx e ]at
p p p p e e e e

- f 2-v" Re(t)+ ILI e(T2) t )Ge (t)j]aVdt (4.2.13)

T 1

The rel.ationships that determine the intercept time

TI, target time T2, and the pursuer's initial state

vector xp(t 0) such that

WCXp(t Min MaxJ- (4.2,. 14)Wp d0)Xe(t0)1t0) = tc-uV

are the Euler-Lagrange equations and their boundary con-

ditions. The Euler-Lagrange equations and their boundary

cohditions are determined by the differential endgame's

constraints (4.2.2-4.2.8) and the necessary conditions

that result by requiring SJ to van'sh. Table 3 summarizes

the necessary conditions required for 6J to vanish.



Table 3

NecessAry Conditions Required for &J to Vanish

Variational Coefficients of Variationals Equated to Zero

u R (t)+A 'G (t)=O, t 0 = t~ T 1(4.2.*15)

-V'R eCt)+A e 'G e (t)=O; to !9 t T T1  (4.2.16-)

v 'R (t'"'.",ip4~T,) ()=0; T~ t~ T2  (4.2.17)

x )+=O; t t T1  -4218)p 0p 1
X++.x e ..t ).; 0 , ...19)e- e r e0 0

xplxo)1 [l/ U

-GO Ir+l )X' (t 0 (4.2.20)

8x x 'CT ),ra, xp(T,).x e(T1))'=0; AO (4.2.21)

axe( ke 1 e )+ N =T1)xe T1)I

xpp 1

8xe(TI)~ Xe'(Tl1 )+a2 [X Tl)-X(T))' A' A

+' e (Te ,T ) =O (4.-2.22)

8Xe2(T2) 7X 2 (T 2 )+A2 0 (4.2.23'

ST I  I/2u(T1) ' Rp (TI u CTI)

+a2 [xp(Ti)-xe (Tl)'A'A[ (T1 )- e(Tl)1=0 (4.2.24)

ST 2  Xe2 (T2)' e2 (T2 )-I/2v(T2 )'Re (T2 )v(T2)=O (4.2.25)

0
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The Euler-Lagrange equations are

x F (t) 0 -G (t)-T (t)G'(t) 0 x n
- P -P, nP

X 0 Fe(t) 0 G (t)R (t)G (t) x n
Xe e e e e [e e

0 0 0 -F '(t) '0~

for t T (4.2.26),

and

=F (t _G - I ' )D(T 2 ,t )A+neXe= Fe )e,t Re.t e et 2'

T 1 < t -  T 2  (4.2.21 )

The boundary -conditions are

Xe (t 0 )=XeO (4.2.28)

x pl (t 0 ) =-i/nrx p (t 0 ) (4.2.29).

- xP2 (to )=l/(vxP2 (t0) (4.2.30)

Xp' (t0)xP_(t 0 )= 0 (4.2.31).

Xp2 . (t0')xp2(t0)=V02  (4.2.32)

Xel(T 2 )=O (4.2.33)

17Xe 2 (T2 )+A 2
= 0 (4.2.34)

Xe2(T-2)'xe2 (T2 )  2 (4.2.35)

1 2p\T I )=a A[Xp (T1 )-xe'(Tl ) ] (4.2.36 )

e (T1 )=a 2A'A[xeCTl )-xp(TI) -e' (T2 1Tl )1=0 (4o2.37)

. /2u(T I1) 'Rp (TI1) u(T1 )

K +a2 EXp'(T )-xe (T )'A'A[Xp (T) Xe (T1) ]=0 (4.. 2.38)

?7Xe2(T'2)' Xe2 (T2 )-i/2v(T2 )'Re (T2) v(T2 
)=O -(4-.2.39)

The solution of the Euler-Lagrange equations (4.2.26)

defined at T]. in terms of the participants' unknown-boundary
states,xT l) (T ) and their unknown corner condition

vectors, Xp(TI) , Xe(Ti) are
?P
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k k(Tl)=4 ' (t 0,T l )x(t 0); k=p,e (4.2.40)

Xp (T)=p (Tl,t 0 x (t0)-Mp(Ti )t0)A (T )+k (T t (4.2.41)

Xe(Tl e(Tl~t)Xe(t0)+Me(TVt0 IXe (T1)+ka(T Vt 0  (4.2.42)

where (D(Tl,to) and k' (t0,TI ); k=p,e are the, transition

matrices for the state and costate vectors; ,the control-

lability matrices are defined as

M I ("Tt) ((Cl,It)Gk WR 2t)Gkl(t)((Tllt)dt;(42.3
i 0'

Sk~p-, e (4.2.43)

and the columnvectors kk(Tl,.t0); k=pe due to the dis-

[ turbance vectors nk are! T
k(T l t 0 )  ( (Tl t ) n k d t ; k=p,e (4.2.44)

to 

1

The solution of the Euler-Lagrange equation (4.2.27)

defined at T2 in terms of the evader's unknown state

I Xe(TI) and costate vector A is

X(T) T2 Tl)X(Tl )-M(T 2 T l )A+k (T2 ,Tl) (4.2.45)

- where the controllability matrix is defined as
T T2

Mee( 2 ,Ti)T et)R-l )(t)G t)e'(T 2 ,t)dt (4.2.46)
IT1

I and the column vector k (T ,TI ) due to the disturbance

vector. n is
e T2

k (T2 ,T% ) = f (T2,t)nedt (4.2.47)
'T I

The relationships that determine the Lagrangian

mUlL-pliers, X (T xe(Ti)and t,in terms of the unkn'Jwnl'A"



paralTMterS, T2 and ) .(t )- were derived in-Section 3.4.

They; are expressed as

aAIAM T,5to) aA'AM (T -

2, -Lto U -a A-K(71)JMeClt) L(T_)

a2 I (7.X1 0 e(~t.) 1L0e- 0.'

a+2)A( 2 ikeJAit 0 +kCT ,T (4 2- 0 4 9fto)

S2', , 2
( 4..-O

q) T( (4.2.52)T

2,T1 )'R 0T)G'(TTX(T

+4CT 2)J-R1 CT tG 0C ) T ,(424-

2 e= (422S

A~~~11 X'~G17'G111)zV (4.2.58)

p Or r p 0

+a CT )N T )x CT )+GCT~ (T (T )CT10 (4.2.52)
p l1'epLplIlel10fT (T)l/v(T)_
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e(Tl)=Fe T~~(T')+Ge(TllV(Tl)+ne(Tl )  (4. 2,i 6 0)©0 •
xe(T2 )= F e (C T 2 )xe (T2 )+Ge (T2 )v (T 2 )+ne (T2) (4.2.61)

P(t 0) (T ",t0 (T. (4.2.62)p p

Xe(T)=(TI ,t)Xe(t 0)+Me (Tlto )Xe (TI)+ke CTI ,t0 ) (4-.2.63)

xp(Tl)=1 (T1 t 0 )xp(t 0 )-M(T1 lt 0 )Xp(T 1 )+k p(T 1 t0 ) (4.2.64)

Xe (T2 ) =%( T 2 T1 )xe (T1 
)-Me (T2, T1 )A+k e (T 2 $ Ti1 (4.2.65)

The boundary conditions (4.2.51-4..2.56) are the neces-

sary conditions in Table 3. The boundary conditions

.(1.2.57, 4.2.58) are the inner product constraints of the

pursuer's initial position and velocity vectors. The

boundary-conditions (4.2.59- 4.2.61) are the participants'

differential constraints defined at times,T 1 and T2. The

boundary conditions (4.2.62-4.2.66) are the solutions of

the Euler-Lagrange equations in terms of t e Unknown boundary

vectors of the state and costate vectors.

4.2.2 Example of the Differential Endgame wiih

Unknown Intercept and Target -Times -

Presented here is a differential endgame whose

intercept time, TI, and target time, T2, are unknown.

The relationships that determine the boundary conditions

for the Euler-Lagrange equations and the time parameters,

T1 and T2. are (4.,2.48-4.2.50), (4.2.52-4.2.56), (4.2.59-

4.2.61) and (4.2.63 -4.2.65). The dynamics of both partic-

ipants have the form

kl F kl]+ AU + ; k=p,e (4.2.66)

S]k2 0 [ u xk2[ 32J

- -2
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50,000.ft 15000.ft

1,000. '5 , 000.

70,000. 90,'000.
po =eO (4.2.67)

7,000.ft/sec -e 0,,000.ft/sec

L t - OO. 100.

50. - 200.

The other parameters of the differential endgame are:

a 2 3 (4.2.68)

Rp(t) 90[U] (4.2.69)
P

R e(t) =60[U (42.70)

7000 - IIVTllft/sec 1 10,000. (4.2.71)

Tha procedure for solving the differential endgame

problem when its intercept time T1 and target time T 2 are

0 unknown is shown in AppedAix 8.1.5. For this differential

endgame the effect of the evader's target speed upon the

intercept time, target time, value, and the terminal

engagement miss distance are analyzed. Figure 3 shows the

variation of target and intercept times versus the varia-

tion of evader's target speed.

* Figure 4 shows how the: participahts' control energies,

spent over the duration of their flight times, and the dif-

ferential endgame's Value Vary with the evader's target

speed. These curves are normalized with respect to the

results that occur when the target speed is-10,000 ft/sec.

For the target speed of-10,000 ft/sec the pursuer's and

evader's control energies are 1.39 x 107 and' 8.32 x 107

units, and the value is -5.42 x 107 units.

i *
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OFgure 5 illustrates how the terminal miss distance

varies with the evader's terminal speed. Here the varia-

tion of target speed has slight effect upon the intercept

time and the value of the differential game.

F I Figures 4 aid 5 point out that when the evader is

required to spend its control energy in reducing its

kinetic energy, part of this energy is used in avoiding

interception. This conclusion is supported by the fact

that both the pursuer's control energy and the terminal

engagement miss distance increase as the target's terminal

speed decreases. The fact that increase of the pursuer's

control-energy partially eliminates the effect of the

increase of the evader's control energy and the terminal

miss distance, explains the slight variation of the value

as the evader's target speed is reduce.

4.3 PARAMETER -OPTIMIZATION FOR tHE DIFFERENTIAL GAME

For the participants' optimal strategies u* and v*,

and the differential game's payoff functional

2
J=a /2[xp (T)_xe (T)IAA[xp (T)-x e(T)]

T

+1/2 u'R (t)u-v'R (t)v~dt (4.3.1)

0

subject to the constraints

X=F(t)xp+G t)u+np (4.3.2)

x =F (t)Xe+Ge (t)v+n (4.3.3)

x C (t0 )X t R (4.3.4)

S ... x p (0 02(4.3.6)

r
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u,VR (4.3.7:)

determine the pursuer's initial state vector. x (t0) and

the intercept time T, if it exists, such that

W(xp(t 0 ),xe(t 0),t 0), the value of the differential .game ,is

determined by

Min MaxJW(Xp (t)x(t 0 ) t 0)u (4.3.8)

subject to the -cnrstraints defined by (4i3.,2-4.3.7,).

The- state vectors, x .and- xe, represent the position

and velocity components of the pursuer and evader; the

control vectors, u and v, represent the components of the

participants' acceleration commands; np and ne represent

-any distur-aice'vector such as the earth's gravitational

field; R3 Is the 3-dimensionai open Euclidean space; the

6x.6 matrices, F (t) and Feft), and the 6x3 matrices,
pe

G _(t) and Ge(t), are continuous in time; R (t) and Re(t)

are 3x3 positive definite matrices, continuous in time;
2
a is, a weighting factor.

The differential game has an unknown- duration (T-t 0),

to being the fixed commencement time ,f the game and T

being the unknown terminal engagement time.

S'The di'fferential game's payoff functional (4.3.1) is

the engagement"s final miss distance, squared, weighted

,against the difference between the participants' control

energies. Both partibipants have ,linear nonstatConary

dynamics, defined by thedifferential constraints (4.3.2,

4.3.3). The' pursuer's initial state vector is composed

of its unknown position and velocity vectors, xpl(t O) and
il
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Sxp2(t0). The square of the magnitudes of these vectors

are constrained by (4.3.5,4.3.6). These magnitudes

represent the distance and speed of the pursuer at the

initiation of the differential game.

Vector Lagrangian multipliers, X and ,are
p e

introduced in order to adjoin the differential constraints

(4.3.2,4.3.3) to the payoff functional (4.3.1). The,

scalar multipliers, nr and Y, adjoin the pursuer's

quadratic magnitude constraints of its initial position

and velocity vectors (4.3.5,4.3.6) to the payoff functional

(4.3.1). T-he differential game is expressed as

Min MaJC-Min Max a2/2 [x (.T)-xe(T))A'A[x (t)-x (T))
UE GV u CVp e p e'

2 2+ {/2 (x pl (t o) 'xpl (t0) -R02)+ i"v/2 (x p2(t 0)'XP2(t 0) Vo2

+ fT[l/2u'Rp(t)u-v'Re (t)v+AX '(Fp (t)x p+Gp (t)u+np-_p)
to

+ Xe'(Fe(t)xe+Ge(t)v+n-ee)]dt} (4.3.9)

4.3.1 Derivation of the Relationships that Determine

the Intercept Time and the Pursuer's Initial State

Applying Variations,Su and Bv,about a particular pair

of controls,u and v, the first order variation of the dif-

ferential game's constrained payoff functional (4.3.9) is

- - -- - - -- ---
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2+ =[a (x., (T)-x (T) A A-X '(T) ] x (T)

e p e e,+[a (x 
e (T )-x p (Tr)) 'A'A-X e '(T) ]Sx e (T )

<1 ,x[(t )+A; (t )]Bx (t2)+177 X(t 0 )+-At 0)x 2 (t0)

+l/2[u(T)'R p(T)u(T)-v(T) ' Re(T)v(T) +

2a C2 x T)-x e (T))'A'A(p (T)-x e T))T

+ fu'Rp(t)+X p'G P(t))Bu+(-v'R e(t)* e 'G e (t))Sv

to
04

+( p '+Xp 'Fp (t))p + e, +'Xe'Fe(t))axe dt (4.3.10)

The relationships that determine the terminal engage-

ment time, T, and the pursuer's initial state vector,

x (t0 ), such that

,_Mmn MaxJW p~ ) X t 0 ' 'uCU veV e (4.3: i

are the Euler-Lagrange equations and their boundary con-

-ditions.

The Euler-Lagrange equations and their boundary

conditions are determined by the differential , ame's

constraints 14.3.2-4;,3.6) arid the necessary conditions

that result by requiring SJc to vanish. Table 4 summarizes

the necessary conditions required for Jc to vanish.

The Euler-Lagrange equations are

PF t) 0 -G p(MR P (t)Gp(t) - 0 *xp ,

X 0 F Ct) 0 G (t) R-el Ct)G '(t ) x n
e e e e e e e

X 0 0 - p ' (t,) + (4.312)

Ae 0 0 0 Fe (t)

0
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Table 4

Differehtial Game's Necessary

Conditions Required for 8J to Vanish
C

Variational Aoefficients of Variationals Equated to Zero

S-v'R (t)+X 'G e(t)=0 (,4.3.14)
* 4u

i V -V' e~t+le'Ge~t= 0(4.3.-16)6Xp A I+' IFp(t)=0 (4.3.15:)

axe e Xe I Te )=0 (4,.3.16)

x lt + rr 0e l~o=

8x + 0 (4.3.17)L xp2 (to)J 0 1/,vUJL Xp2 (to

8x T) a2 [X (T)x e (T)]A'A-XL (T)= 0 (4.3.18)

2.0 eMT) -a Xe (T)-xp (T),A' A-X e (T)=0 (4.3.19)

8T 1/2[u(T)'Rp (T)u(T)-v(T)'R e(T)v(T)]

ep e+a2 [Xp(T)-xe (T))]' A' A[cp (T)-4e (T))]: (4.3.20)

-I

cj
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Q The boundary conditions are:

x(t 0):Xe (:4.3.21)

Xpl(t 0)+I/17x l (t0 ) 0  ( "4.3.22)

x2 (t )+l/77 Xp (t0)= 0  (4.3.23)

x I( I 1(t) O2 -(4.3. 24)Xpl(t o ) ' xp(t 0): R0 2(.32)

x  ,(4.3.25)

2 '
X (T)"a ,A'A~x p(T)-x (T)J (4.3. 26)

Ae (T)=-a2A'A'[x (T)-xe(T)] (4.3 27)

:** ~1/2 [u(T) iRp (Tu (T) v.T) Re (T) v(T) ]
p e

+a 2[Ix(T)-x e(T)] A.'A[ ,p(T )-Xe (Tl)3=0 C4.3.-26)

The solution of the Euler-Lagrange equations, defined

at T in terms of the state and costate vectors' boundary

conditions are:

0 Xk(t0)-'(T,t) Xk(T); k~p,e (4.3.29)

p(T)= (Tjt0)xp(t0)-Mp(T,%0)Mp(T)+kp(T~t0)  (4-.3.30)
(Tt ( (T(T)+ke(Tlt0 ) (4.3.31)

werMe dxetO+T tt0)e

where,(T,t0) and k'(Tt0); k~p,e are- the transition

-matrices for the state and costate vectors; the control-

lability matrices are ;defined as

T1

Mk(T~to) f OkTtG ) 1) _((T~t p,e (4.3.32)

to

and the column vectors kk(T,to); k=p,e due to the dis-

turbance vectors nk are:

T
kk(T,t0) /((T,t-)nkdt ; k=p,e (4'. 3.33)

C) t0

ffi77~ii~z§zTT7
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Substituting Xp_(t 0 ) (4.3.29) into the boundary con-

ditions (4.3.22,4.3.23) the pursuer's initial state vector

is' expressed in termsX p(T),as
x p(t 0)=-G(-qrl v o' (T,t 0)X p(T5 (4.3.34)

where /lI Ol 'G Oor$7vI 0 1U /,qvU] (4.3.35)

1 With the use of (4.3.34) x (T) is defined as
xp (T)=

[- p(Tt0)G(Or, 1v)D(Tt0)+Mp(Tto )IXp'(T)+kp(T,t0) (4.3.36)

Substituting for xe(T) and x (T), (4,.3.31) and (4.3.36)I p
into the boundary conditions (4.3.26,4.3.27), the boundary
condition in teims of X (T), e(T), ir and, v lare:

U+a2AIA[M p(TtO)+ (Tt 0)G7?r, 7v)P (T tO)] a 2 A'AMe (TtO) 0 x
-a 2 A, A[Mp(T, 0 .)+ (T, t )G(7,?,) ,(T,t 0 ) !U-&AAMe (Tlto)LP 0 a A A k k e~j ( . . 7

CF T) [0' 412 A'Ad,(T-,to) 0 a F '~ 1k

Le (T) 0 a2A"Ae(Tto)Jxe(to a A'A(ke-kp (3

The parameters, TI -and xp'(t 0 ), are determined' when

(4.3.37) and the following set of boundary conditions are

solved "simultaneously":

Xp(t0)0-G(1r 07v) p(t0) (4.3.38)

I/2u(T)'R (T)u(T)-l/2v(T)'R (T)v(T)
!-+a 2 Ixp(TI -x (T)' I= I 'Ag[xp(T)-- e-(T)3=0 (4.3.39)
iip ep e

u(T)=-Rp- ()G p(T)Xp (,T) (4.3.40)

v(T)=Re 1 (T)Ge(T)X (,T) (4. 3.41)

X (t o ) '!(1 $r WA AG(q ) Xp (t o ) =R 0 (4.3.42)

p~ 0 r v r vp 0X p t o ) 'G'(7r , v) Q' QG ( -7 7v)Xp (t o )= - 2 (4 .3.4L 3)-

p p0



x (T)=F (T)x (T)+G (T)u(T)+n (T) (4.3.44)
p p *p p p

Xe (T)=F e(T)xe (T)+G e(T)v(T)+ne (T) (4.3.48)

(T)=T) (4.3.46)

Xe(T)ep(Tt 0 )xet 0 )+Me (T,t0 )\e(T)+ke(T,t0 ) (4.3.47
.-x-O (T) )X-(T) +kp-(T 2t 0 )3-48Y__

The boundary conditions (4.3.38-4.3.41) are the necessary

conditions in Table 4, The boundary conditions (4.3.42.,

4.3.43) are the inner product constraints of the pursuer's

initial position and velocity vectors. The boundary

conditions (4.3.44,4.3.45) are the participants i dif-

ferential constraints defined at time, T • The boundary

conditions (4.3.46-4.3,.48Y are the solutions-of the Euler-

Lagrange equations in terms of the unknown boundary

* Qvectors of the state and costate vectors.
4.3.2 Launch Logic Example for the Differential Game with

the, Pursuer',s Initial State and-Intercept Time Unknowi,

Examples of differential games are presented where the

intercept 'time and pursuer's initial position-and velocity

vectors are _.nknown. The initial position and velocity

vectors are constrained by the, square of their magnitudes.

For these differential games the participants'

= dynamics are defined in the X-Y plane of the cartesian

coordinate system as

.u k +uk + ko~ 4. -9
Oe

xk

i3
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[0 the weighting matrices are defined as

R 9 (4.3.50)

IR (t)=X EU6U.3.51

L The other unknown parameters are the weighting coef-

fioient, a' 1; the pursuer's inftial distance,

R0=125,O0 ft; and the pursuer's initial speed,

V0=10,CrV6 ft/sec. The evader's ini.tial state is varied

as a iunkion of launch delay, At0. Launch delay is the

time the pursuer delays in achieving its initial state

with'respect to its earliest possible launch time, The

evader's trajectory is illustrated in Figure 6.

The results for the differential game are determined

by solving for the boundary costate vectors, X p(T) and

X . These boundary conditions are defined in

Appendix 8.2 in terms of the unknown intercept time for

the parameters specified by (4.3.49- 4.3.51). The

computational scheme used in determining the intercept

time is shown in the Appendix 8.2.1.

In this example it is desirous to choose the pursuer's

2aunch delay and initial state such that the terminal miss

distance is minimum and also that the pursuer's terminal

distance from the origin is greater than 155,000 ft.

Figure 7 depicts the intercept time and the pursuer's

terminal distance versus launch delay. Figures 8 and 9

show how the terminal miss distance and the pursuer's

estimated initial state vary with respect to the pursuer'-s

launch time-6\lay.
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From Figures 7 through 9 it is shown that if the pursuer

delays its launch by three seconds, it obtains the fol-

lowing initial state:

106185.ft

65950.
x(t O) (4.3.52)
p 0p 8495.ft/sec

5276.

The intercept distance for the- odifferential game will be

28 ft.

4.4 SUMMARY OF THE CHAPTER

The principal contributions contained in this

chapter are:

(1) Formulation of the differential endgame where

0 the target time, intercept time, and the pursuer's

initial position and velocity vectors are unknown.

The inner products of the pursuer's initial posi-

tion and velocity vectors are constrained. The

relationships that determine the intercept time,

target time, and the pursuer's initial position

and velocity vectors are derived.

(2) Formulation of a differential game where the

intercept time and pursuer's initial position and-

velocity vectors are unknown. The inner products

of the pursuer's initial position and velocity

vectors are constrained. The relationships that

determine the intercept time and the pursuer's

initial position and velocity vectors are derived.

-- - - - - -
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(3) Application of %.he differential game in the determi-

nation-.-wen the pursuer should begin the engagement

with the evader.

-0

<0

±- - - -
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5. DIFFERENTIAL GAME WITH AN ADDITIONAL PURSUER

5.1 INTRODUCTION

The differe-itial game proposed here is one where an

additional pursuer is cooperating with the primary pursuer

that is trying to intercept the evader. The objective of

this cooperating pursuer is to help the pbimary pursuer

intercept the evader or to increase the evader's cost; if

it is able to avoid interception. For this class of dif-

ferential g a me s the two poirt boundary value problem is

derived from the necessary conditions required for the

differential game's payoff functional to have a saddle

point. Fom the sQlution of the two point boundary v.alue

problem the value of the differential game is determined.

-5.2 FORMUt;ATION, OF THE DIFFERENTIAL GAME

WITH AN ADDITIONAL PURSUER

The special class of differential tames formulated

-in this chapter is a7 follows,-

If

lix (T)-x '1T)1 i H -11 < llz(T) il (5.2.1)
cpl el M

then for the primary purstier's and evader'.s optimal

strategies, u* and v*, the d-ifferential game's

payoff functional

J=a 2/2[x (T)-x (T))'A'A[x (T)-x (T))
Tp e p eT

+1/2 f[u'R (t)u-v'R (t)vldt (5.2.2)
p e

ft0

subject to the constraints
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X =F (t)X +G (t)u+n (5.2.3)

x e+Fe (t)Xe+Ge (t)v+ne  (5.2.4).

X (t0)=X 0  (5.2.5)

x e(t0 ()=X . (5.2.6)

u,yER (5.2.7)
Excp(T)- _X(T))],AA[xc (T)-Xe (T)) =izml ( 5.2.8 )

cp ()xe MPINcp ()xe (TI ~mI

determine the diifferential game's value,

W(Xp(t )', e(tO)5t o), such that
W (It )X ,(t ) Min Max J (5.2.9)

(p(t0 e 0 0t) 0 u vCV

subject to the constraints (5.2.3-5.2.8).

The state vectors, p and Xe, represent the position

and velocity components of the primary pursuer and the

evader respectively, and x is the state vector of thecp

Q cooperating pursuer; the control vectors, u and' v, represent

the components of the primary pursuer's and evader's

acceleration commands; np and ne represent any distrubance

Vectors, such as the earth's gravitational field; is

the 3-dimensional open Euclidean space; the 6x6 matrices,

F (t)- and F (t), and the 6x3 matrices, G (t) and G (t), are
p e p e

continuous in time; R (t) and R (t) are 3x3 Dositive defi-
p e

2nite weighting matriices, continuous in t; and a is a

weighting- factor. The differential game has a finite dura-

tion of (T-t0) seconds, T being the fixed intercept time.

The differential game's payoff functional (5.2.2) is

the terminal miss distance, squared, weighted against the

d'-:ference between the primary pursuer's and evader's

control energies, spent during the engagement interval
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(t0,T)• Both the primiary pursuer and the evader have linear

nonstationary dynamics, defined by the differential con-

straints (5.2.3,5.2.4)

ilZmll is the minimum intercept distance allowed between

thq cooperating pursuer and the evader, if the evader is to

avoid interception by the cooperating pursuer. If the

inequklity condition defined by (5.2.1) exists~then

IlXcpl(T)-x el(T)I , the terminal miss distance between the

cooperating-pursuer and the evader, is quadratically con-

-straihed by (5.2.8).

llz(T)l is the terminal miss distance that results
from determining W*(xp(t ) e ( t 0 ) , t o ) the value of the

differential game without the cooperating pursuer by

Min Max JW*(Xp(t0),Xe(t)$t0ueu v(V .10)

subject to the constraints (5.2.3-5.2.7). J is the payoff

functional, defined by (5.2.2). This differential game

has been studied in reference (6).

5.2.1 Terminal Miss Distance Constraint between the

Cooperating Pursuer and the Evader

Before playing the differential game defined by

(5.2.1-5.2.8-) the evader's terminal miss distance con-

straint with the cooperating evader (5.2.8) is determined

in terms of the evader's free terminal state x "T).
e

The cooperating pu-.suer's control strategy is determined

by

i Min 2Ucp acp/2[xcp(T )-x (T )]'A'A[X T )-x (T)]

cp cp e cp e

+1/2 i T -Upcp(t)u dtl (5.2.11)t to c~tc
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subject to the constraints:

x Xcp=F p(t)xcp+Gcp(t)ucp+ncp (5.2.12)

Xp(t0)=Xp (5.2.13)

u cpER3  (5.2.14)
cp

where the state vector x represents the position and

velocity components of the cooperating pursuer;x e(T),

the evader's unknown terminal state,represents the

cooperating pursuer's desired terminal state; u

represents the components of the cooperating pursuer's

acceleration commands; n represents the earth's ,gravita-! cp

tional field; R3 is the 3-dimensional Euclidean space; the

6x6 matrix F (t) and the 6x3 matrix G p(t) are ,continuouscp cp

in time; ap2 is a weighting factor and R (t) is a 3x3
cp cp

0 positive definite weighting matrix, continuous in t.

The performance criterion to be minimized is the

square of the norm of the error of the cooperating pursuer's

terminal position with respect to its desired terminal

position, weighted against the control energy, spent by the

cooperating pursuer. The dynamics of the pursuer are

defined by (5.2.12).

The t6minal miss vector that results from minimizing

th'e performance criterion (5.2.11) is derived in

Appendix 8.3 and is expressed as

Ex (T)-xe (T)]=A[x (T)-xe (T)]=

A[U+ a M p(T- 'W )A A-[cp( T 'to )Xcp0+kcp (T't 0 ) X (T)1] (5.2.15)
op cp c 0 e

00
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where( p(T,t 0 ) is the transition matrix for the state

vector x M (T,t 0 ), the controllability matrix, is

defined as

M (T,t0  f T ' (~tc (t)R ftY1G' (t4)1 (T~t)dt (5.2.16)
0-

and the column vector kcp(Tt 0 ) due to the disturbance

vector ncp is

kcpT 0= tocP(Tt)ncpdt(.2.7

In shorthand form the terminal miss distance between the

evader and cooperating pursuer (5.2.15) is
Ex (T)-x (T)]=Kl[,p [ Tt)X(t)+k (T,t0)-x(T)] (5.2.18)

cpl el 1 p(T'oxcptO +cp 0 O)-e-

whereo2
K=A [U+acpM (Tt )A'A-l (5.2.19)

5.3 DETERMINATION OF THE TWO POINT BOUNDARY VALUE PROBLEM

TOR THE DIFFERENTIAL GAME WITH AN ADDITIONAL PURSUER
Vector Lagrangian multipliers, p and Xe, are

introduced in order to adjoin the differential constraints

(5.2,.3,5.2.4) to the payoff functional (5.2.2). The scalar

multiplier, Y, adjoins the quadratic constraint of the

evader's terminal miss distance with the cooperating

pursuer (5.2.8) to the payoff functional (5.2.2).

ro
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The differential game is expressed as

Min Max J Min Max Np(T)-x (T)],AA[x (T)-x (T))

u-uU vEV CueU vEV P e p e
+Y/2[(x' !P04) (T,t o +ko (Tt )-xe T))K x

Kl( ep(Tt 0 )X 0 +k (T,t 0 ).:x(T))- liZ1z 11

K + I[l/2u'Rp(t)u-l/2v"R ( t r+Xp'(F P(t)x p+G p(t)u+n -X )

+ Ae(Fe (t)'xe+G (t)v+ne-e) ]dtl (S. 3.1)

Applying variations,8u and Sv, about a particular pair

of controls, u and v, the first order variation of the

differential game's constrained payoff functional is-

2
Jc-p' (T)+a 2 [Xp (T)-Xe(T))]-A'A) 8 Xp(CT)

+(-Xe(T)-a [x (T)-x (T)]'A'A
e p e

0 Y(X (T t )+kcp(Tjt) (T))KI'KI aXe(T)

+ J[(U'R (t)+XP'GP(t))Su+(-v'R (t)+Xe'G (t))8v

+(X IpX 'F (t))aX (e '+X"'e(t)8x )dt (5.3.2)Pp ,PP p e ec e

Necessary conditions required for the game's saddle point

are the coefficients of the variationals equated to zero.

The two point boundary value problem is the set of

Euler-L!agrange equations and their boundary conditions.

The Euler-Lagrange equations and their boundary conditions

are determined by the differential game's constraints

(5.2.3-5.2.6) and (5.2.8) and the necessary conditi-ons

that result by requiring tJ. to vanish. Table 5 summarizes

the necessary conditions for J to vanish.
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Table 5

Necessary Conditions for &J to Vanish

Variationals Coefficients of Variationals Equated to Zero

au u'R R(t)+Xp'G p(t) =0 ,5. 3.3)-

p p Tp

ev -ve eet)+ e (5.-3.5)

Xp lp'++\p'F F(t)=0(5")

'x +Xe , Fe(t)=0 (5. 3.6)

axe e tXe IFe =(536

8x (T) a2N (T)-xe(T) ' A' A Ip( 0 (5.3.)

e 1 p ex () ?X( )  1 K-a2 [ p (T) -e (T) 1 '"A 'A- Xe '(T)

" I )K(t0t)Kcp(T2t0)+kcp'(T,t0)]I 1< E=0 (5.3.8)

00

©
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The Euler-Lagrange equations and their boundary

conditions are

4 -1x F (t) 0 -G (t)R -(t)G'(t) 0 x n
p p p p p p p

0 e(t) G -(tR(t)G" (t) Xt] n

Ap 0 0-F 'Ct) 0 +0

e Fe e

x~, t 0 )(5. . 10)

xep (t 0 )=x (S..3.11)

X(T)a2 AAx(T)-x (T)J ('5.3.12)

-Y t Q) ) (T, t ) +kc (T,t0o)]K 1 'K, (5. 3.13)cp cp, '
[xc (T)-x e (T)J'A-'A~x~ T)-x e (T)I= l1z M1 -(5.3.14)

The solution of the two point boundary value problem

(5.3.9-5.3.14) determines the optimal strategies of the

partlicipants, the-terminal miss distance, and the value of

this differential game.

5.4 SOLUTION OF THE TWO POINT BOUNDARY VALUE PROBLEM

The solution of the Euler-Lagrange equationis (5.3.9)

defined at T in terms of the primary pursuer's and evader's

unknown state vectors,. x (T) and xe C-T), and their unknown
pe

costate vectors,X C T) and X e CT),are:

k ~k 0OT)k t0-

x, (T)= (T~t )x T -M T,t )A (T)+k (T~t) (5.4.2)-

P op0ee e e 0
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where @k(Tit0) and k'(to,T); kp,e are the transition

matrices for the. ,stdte and costate vectors; the control-

lability matrices are defined as
T

Mk(Tito) f (T,t)Gk(t) Rk(t) Gct)(,b a',t)dt; k~p~e (5.4*.4)t
t0-

and the-column vectors kk(7T,to); k=pe -due to, the distur-

bance vectors n k areT
k k(Tit 0) f k (T,t)n kdt,; k=p,e (5. 4,)

to0

The two point boundary value problem is solved when

the multiplier vectors, X p (T) and X e(T), and the scalar

multiplier, y, are determined. Substituting (5.4.2,5.4.3)

F into the boundary conditions (5 3.7,5.3.8) these boundary

conditions are expressed in terms of the multiplier vectors,

X Cp(T) and Xe(T),,and- the scalar iiiutiplier,Y.

U+a2 A'tAM(Tt0  a 2 ;-A + 'e(TeIo)T)

[-aA' AM (Tt) U-[a A!-A+YK K I(TTl)]p (T)
p 0  1 1 e

2A' (Tit0 ) [a2A' A+YK1 ' K1

aA' A -a A A [k (T t Y)1 . 0 01 x cpt 0):a2AA a2A ' A+YKI K I k T,t 0 j (Tt)

(5.4.6)

The terminal miss distance constraint between the evader

and the cooperating pursuer is expressed, in terms of X (T)

as

Xcpl (T)-x 1 (T) ],[XcpI (T)-Xel (T)]=

2 K - (T)Me-(Tit0)]KlK1 2-M e (Tit z)me(T)U= IlZmII (2.4.7)
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where

= cp (T~cp0,t 0rT,t 0 )x 0-k (T,t0) (5.4.8)

The boundary costate vectors, kp(T) and Xe(T),, and the
Sscalar multiplier , y5 are determined by soili-*ng the simul-

taneo-us, equatilons (5.Lf 6,&.4.7). With 4 (T) and A e(T)

knowh, the solution of the two point boundary value problem
is determined. Know-ng the solution of the two ,oint

boundary, value problem, it is determined whether or-not the

primary pursuer intercepts the evader.

*5. EXAMPLE OF A DIFFERENTIAL GAME WITH

A COOPERATING PURSUER

For this differential game the dynamics of all partiu-

ipants are defined as

0 - 0
+ X [02L"] 32] iaPcpe

the weighting matrices are

Rk(*)=rk[U]=90[U]; k=pcp (5.5.2)

R e(t)=re CUJ60[U] (5.5.3)e e
the weighting coefficients are
a2  2
acp =a2= (5. 5.4)

The initial state for all participants is

103600.ft 99800.ft SO000. ft
0 0 0

75200. 75200. 90000.ft
xp0 8079.ft/sec ;Xcp0 8079.ft/sec ;Xeo- -10000.ft/sec

0 0 0 0

L894. 589 •. - 100 5

T. 'a - - 5 5 5
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The results for this differential game depend on the

determination of the Lagrangian multipiiersX (T), Ae(T)-
p e

and y. These Lagrangian multipliers are defined in

Appendix 8.4 in terms of the paiameters specified by

For this particular differeni- game IZ(T)ll q- 4 ft

while lix CP(T)-x el(T)II = 1357 ft. The problem is to

determine the minimum value of 1IZ 11 such that
m

1357ft L IIZmll - 4744 ft (5.5.6)

and

lixp (T)-x el(T)l A iZ m1 (5.5.7)

Figure 10 illustrates how llxpl(T)-xel (T)I varies

with IIZ 11 From Figure 10 it is seen that the value ofM

0 1Zmll -,3125 ft satisfies (5.5.6,5.5.7)

5.6 SUMMARY

The-principal contribution contained in this "chapter

is the formulation of a class of differential games where

an additional pursuer is cooperating with the primary

pursuer that is- trying to intercept the evader.

T.

-: 2r

g(
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6. CONCLUSION

It is evident that differential game theory is an

effective tool for analyzing pursuit-evasion problems. Here

it is attempted to apply differential game theory to two

types of pursuit-evasion problems, the endgame problem and

F the differential game with a cooperating pursuer. Also, it

is ,shown how differential game theory is used to -determine

the differential game paramteers such as intercept time,

pursuer's initial state: dndin the case of the differential

endgaMe, the target'cime.

Further areas of research resulting fr&m this

dissertation could be:

(1) A differential endgame with an additiQnal pursuer,

cooperating with the primary pursuer that is trying

to intercept the evader.

(2) Development of a differential game t-eory that can be

applied to a differential'game that has more than

three participants.

S
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APPENDIX 8.1

Determination of the Corner Condition Costate Vectors

and the Postengagement Costate Vector in Terms

of the Specific Differential Endgame Parameters

Here the corner condition vectors, (T and'e(Tle),

and the post engagement costate vector L, as defined by

(3.4.12) and (3.4.16) , are expressed in terms of the specified

parameters of the differential endgame. These parameters

include the ir.itial state of the game, target constraints,

participants' dynamics and the diagonal weighting matrices

as specified in Section 3.6.

8.1.1 Determination of B(I)

With .reference to the participants' specified dynamics

0 (3.6.1) and the diagonal weighting matrices (3.6.3), the state

transition matrices and the contr6llability matrices are

defined in terni of partitioned diagonal matrices as

Mk(Tt) krU k p; e(8..)

(De(T2  Tl) [Li (8.1.2)

2 2

Me(T 2 ,T,) - ej ej (8.1.4)
r 2r .1 r/r Iej ej

*The elements of the partitioned matrices represent the
general diagonal term.

0
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ihere the engagement interval is defined as

EiO (Tl- tO) kr (8.1.5)

and the post engagement interval is defined as

(T2 - TI) r (8.1.6)

The factor k must be chosen such that

t+ k r = (T2 - t0 ) (8.1.7)

In terms of the evader's state transition matrix and

controllability matrix over the post engagement interval

the matrix K() defined by (3.4.12) is expressed in terms

of partitioned diagonal matrices as

12r (r-rej/7) /6r37(-2re*/?)-
T-.e ej 6 ei

KW =(8.1.8)6re- (r-2r e3/77 ) [4r ej ( r- 3r ej 77).
r 2(r-r j /q r(r-re//1)
[eJ

The matrix B(O) defined by (3.4.11) is partitioned into

four (6x6) matrices which, in turn, are partitioned into

four (3x3) diagonal matrices. Thereforei the four (6x6)

partition matrices are
"'" r2 (k 2

2 [,[i+a 2(kr)'/r iI [a] /2r
U+a A'A MATI [0] /  pj  p]

MCTt) [[a2 (kt) 3/3rej] [a2 (kr) / v ej 1
[00 L] [0)

J2 3 2 2
2 (k r) /3r [-a (kr)72'

-a AA M (T (8.1.11)

Lnd[0
and

T --
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B22 (W1) U -[a2A'A - K(?)]M (t,t0) (8.1.12)[ tB 22(C))n1  (B2207))12.

(B22(.))21  (B22 (7))22  13

where the following (3x3) diagonal matrices are defined as

a2k3r3  k2 (,4k+3")r-2k2 (2k+3)r ./,7
(B22(77) 1 3rej  r- 4r /7

-a2 (kr) 2 6k(k+l)r -6kre~k+2)/8

2: 12 .2 -r8 .5
2rej, r(r- 4 rej/?I)

( 2k2 (k+l)r2  2k2 (2 k+3 )rejr(1

(r- 4rej/q )

k(3k+4)r - 6k(k+2)re/Yi (8.3i.17-)
(B2(1)) 1 + T r 4 1e7

.22 22 4 ej/7

Q Now in terms of the (6x6)"partitioned matrices

, () (B1- B12B2(37) B21)-lI - (BI-BI2B22( ) B22 B-- 1
B (7 f 1 12 22, 21 1 1 22 Bi B220.1 8

(B22 (7)-B 2 BiB 12TB 1 3B I (B2 (17)-B 2 1BlB 12 rl J
B(n)- I is partitioned in-to (x3) diagonal matrices as

follows. The general diagonal terms of these partitioned

matrices are defined as

B. 1 ~ (J (n D/k~17
;i + 1, 4; k = ., 4 (8.1.19)

where A(i) and a.k(;) +

3. +/ik~j 1 7 are expressed as

SA2 () 3r .r(k+l) +a k (k+l) .r (k+l)T1 q pjrej r~ k1 'ej p
-12rp re*2(k+l) 3+r eja 2k 3[(4+3k)rpj-4re (k+l) 3]r3 l/77 (8.1.20)

-OPe e j e
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3 233

[+3rpjrej[1-4-(k+l) 3rej +a 2k 3(4+3k)T3 /3)/1 (8.1.21)

(j) + 3 j)/17 -15 a 2k 2(k+1) 4r
12 12 e

+ 6i .2a 2k 2(k+1) 3r2 1q(8.1. 22)

r~a k (k+l)r4

+r .r .a 2k 3 (3k+4)rt (8.1.3)

pJ pJ

a + o; 3 4 -(8.1. 25)

a + -0 ~31 () 7

23 2. 4 2 3 2- 2 3
=r e.a k3(k +4k+l:)'r -a k (R, +12k+4)re r /17(81.6

(j)+ - 1.5r, .a k(3k2 +4k+1)T r
32 17ej

3a k (6k +12k+4_) 2 2 (8.1. 27)
217 ej

a 33 (j)+/ 33(i)7 EXrpj rej(3k +4k+l)r+a k r ej(Ok +4'k+l)T

2 6 2 +1k~ 2 3  2 2
-[3rpj (6rejk4)+ k re (-6k +1,2k+4)r 1/7) (8.1.28)

p 7 pj ej p

63 4 Q r kr kk1k12)El.-Sa 2 k 2 (k+2)-6 a 2ak'2 (8.1.2'r93
34e)e pj- 2k3 2.

118r,222 4 (2 k ]r,1 /77 (8.1.29)

a 4 1(j)+p4 (j/7 2a k (k+1)re.j 5 +25 2+)
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2 ()(24 It 2 4 2342( )+ A J)/~= - 3r ja 'k (k+l )T +3a k (2k+3 )rej i/2 (8.1./31)

ci(.)+ ( .A E/:[6x k2 (.k+l) r2 _ 2r ja2k5 (k+l)r5

43 043, pjreje2,2a2k 5  4g

+[6r pjrej" Lk (2k+ 3)t +2rej a k (2k+3) r 1/v (8.1.32)

() + {3rr (+3k2+4k)r+'44 pjej

a2k3 [rej-rpj+k 2 (4k+3)rej]r4 }

2rpjrej (2+3k 2 +2k3)

+2r a 2k 3 [2r1 -2r .+r k 2 (2k+3 ) ] r3/ (8.1.33)
ej ej Ap ej

8.1.2 DetermifiAtion of the Corner Condition Costate Vectors

The solution for the. corner condition costate vectors

iderived in Section 3.4 is:

X(TI) B(7)-1 C() x(t 0) + 2(2)1. (8.1.34)

With the aid of (3.4.11) and (8.1.1-8.1.4) the column

vector, C(N) x(t 0 ) + 90 1), is partitioned into 3xl column0

vectors:

ckl(j) + dkl(j)/n

C(O) x(t0 ) + () 4-r r 4 / (8..35)

c Ckl(j,)+dkl(Q )

4 3-
r _-4r . 7)L ej

whose general terms ckl(j)+dkl(j); 1, 4 are expressed as

Ck1(j)+dkl(j)/7) r 4-4rej r3/] (a2[xplj (tO )-xelj (to)]+

a 2krEx (t )-X (to) ( (8.1.36)
pj-2j- 0
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c(j + d Q 7) 0 (..37)

21 24

plj 0 p2jO 0jej

+[a2 kr5-Sre .(2k+l) r 23x .j(to)-6-(j-l) -2)r '~jk~k+),r gf

+ f4re .a2 r 3 [x i .(t 0 )+r 2 t0 ,[rej 2 4reja 2 3dxe'-t0
ejp p )k~))E2r)

+[12r e2 (k+)r..-4r eja kr4 IXe2j('t-o)

[+6(j-l).,(j-2)r e 2 (k+-) 2 r2 g/7 C8.l1. 38)

and

941 Q +d -1-6rej r2x eij(to )2rej-(3+- 3x e2' t o)

-(j-1)(j-2)r .(k1).(k+l)r g}+II2r .2 x (t)

+12rej2 (+) 2 x (t )+6r -2(~')2_ (8.1.39)
ej, e~~j 0 ej j-1(?

Now -carrying out the matrix operation defined by

(8.1.34) the corner condition -costate vectors par'titioned

into (3x1), column vectors are expressed in terms of,

-4 4

X-(T~ a 3 (a Qd (j)+1
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Ap2 (T1) 2 CT1)

where (8C A.41)
Xcl (T1) X3 T1
A CTi) XT 1)

Le2 "l 4- 1j

8.1.3 Determination of the Evader's Costate Vector During

the Postengagement Interval

With reference to (3.4.16) the components of

the (3xl) partitioned costate vectors A, and 12 are defined

in terms of the components of the corner condition costate

vectors as

A. (J) {12r ejCr-re/ )(x e l j ( t
0 )+C(-k+l)rXe 2 j(; 0 )

+[k 2(2k+3)r 3x .(T)+3kr 2 (k+2)X 2 j(T)/6rejSel3 1: e2 e-

2 2 2+(_j-1)(j-2)(k+l) r g/2)'-6r r ,X ( t )

+10 r , . T )+2kr-X (T ) )/2.r+f
,elj 1 e2j 1 r r,+-l)(j-2)(k+l)rg)1

/fr4r 3 •(8.1.42)

an~d (t ej )4kl- 
lJ(

elj (t)+'Ck+l)Xe 2 j (to)+[k2 (2k+3)Tr3Aer(Ti)

+3kr (k+2 )Xe2j (T1-/6r +Cj-1)(--2)(k+l) r g/2)

+4r ejr (Xe 2 j t 0 )+[k 2 r 2 Celj(T1 )-2krAe2j (TI)]/2ej

.. ' 2• 5 -) =-) (+ g /i[,r2- 4re -/ ]-q (8.1,o43s)
ej
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8.1.4 Generation of-the Target Kinetic Energy Constraint

as a Polynomial in Terms of 71

With reference to (3.4.17) th.- target kinetic energy-

constraint is

2 y T#2 VT2 (8.1.44)

Since

R r [U) (8.1.45)
P P

and

Re r [U] (8.1.46)

The coefficients of .the (1/71) terms in the denominators

of the corner condition costate vectors A(j) become

invariant 'with respect to the j index

AjM) =A); j -1 (8.1.47)

If the components of X, (T are substituted in 92(J),e 2 usiue

(8.1.4-3) p 2 () has the form

a0 (j)+al(j)/-q+a 2 (j )/7)2
2/3 (8.1.48)

b +b /)+b2/7) +bi7

Now substituting the -components of A 2 (j) into (8..44). the

resultant rational fractional polynomialinterms of i/-q

is
'3

2= 222

3 _2 1/q (ao( a )+aa( / (8.1.49)

Now-by multiplying (8.1. 49) -by (bbq 3+bl'Q2+b271+b3 one obtains

a polynomial of the form

6( 0
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8.1.5 Procedure for Solving-the Euler-Lagrange Equations

when the Intercept and Target Times Are ,Unknown.

With reference to (3.4.1,3.4.2) and (3.4.5) the solu-

tion of the differential endgame's Euler-Lagrange equations

depends on the determination of the vector multipliers,

Xp(Tl) , Xe(Ti) and A, when the intercept and target times

are known. The relationships, derived in: Chapter 3, that

determine X (Tl)2 Xe(Tl) and p are:

07 C() t0  + ,07i) (8.1.51)
(T1) Xe(t 0

- ....--; "t a]~t) + (q))It= -e(T ,T )K(77)[M (Tljt0) [0i1 B ( 7)  "",C.()7 ep. 0)

+e (Ti,t0)xe (t)+k CT1 ,t 0 )e(T 1 T 2 )ke (T 2 Tl)] (8.1,52)

Q ./?2 QQ= VT2  (8.1.53)

When the intercept and target times are unknown, the

,additional boundary conditions needed to determine the

intercept time Tl, and the target time T2 are:

1
u(T1)=-Rp-(Tl)Gp,(Tl)Xp(T) (8.1.54)

V(T )=Re (Tl)Ge'(Tl)Xe(T1) (8.1.55)

v(T2)=-Re-l(T)G'(T 2 )A (8.1.56)

Si)=F p(T1)x pC(TT 1))+Gp(Tl)uOrl)+np(Tl) (8.1.57)

e (T1 ),=Fe (T1 )xe (T1 )+G e(T)V(T1)+ne(Tl) (8.1.-58)

Se (T 2)=Fe(T2 )xe(T2 )+Ge(T 2 )v(T2 )+ne(T 2) (8.1.59)

Xe (Ti)=e(Tl ,tO)xe('tO)+Me(Tl ,tO)Xe (T)+ke(TltO) (8.1.60)
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(T (T )x( T X T+ (8.1.61)

x (T )= (TT ).(Ti)-MVTT)+k(f 2T) -(8.1.62)

1/2(TPR(T)uT +a2 Ex(C- T )J'A'A[ (T )c(T)I=O(8163)

In T2PQQe( -/vT2P lT2)( = (8.1.64)

The procedure for-~determining the multiplier vectoris,

Y(T,), X e(Ti) and Ip,and-the intercept and target times is

as follows:

1) Choose a combinatibn of discrete values for the intercept

and target times

T2 =T 2i+nA&T'2 ; n =,.1..k (8.1.66-)

where Tii and T 2  are the initial intercept and target

0times; AT and AT are the incremental changes of the1 2
intercept and target times.

2) For any set of' T. and T2 values, A (T1) (eT X and/.

are- determined 1by solving (8.1.51-8.1.3).

3) -with the solution. of (8.1.51-8.1.53) the boundary

conditions defined by (8.1.54-8.1.62) are determined.

4) Substituting the boundary conditions determined by

(8.1.54-8.1.62) into (8.1.63,8.1.64) it is determined

whether (8.1.63i8.1.641) are satisfied simultaneously.

5) If (8.1.'63_$,J.64) are -not satisfied --simultaneously,

then T1 and T2 are- updated. this procedure is

repeated-for all combinations of-T1 and-T2 values until

(8.1.63-8.1-64) are satisfied.
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APPENDIX 8 .2

Determination of the Boundary Condition Costate

Vectors in Terms of the Terminal Engagement

Time and the Specific Differential Game Parameters

The solution of the following equations, derived in-

Section 4.3, determines the boundazy costate vectors,

p(T) and Xe CT), in terms of the terminal engagement time T.
pe

| (T),[ U+a2 A'A[M (T ,t),.) (T,t )G 5q /)%'t(T., 0))aa2A AMe (Tt 1p lp p 0 pr v pMe

CT) " -a 2t AM (T,t0 (Tjt0)G(,77 )Opt (T,ti)] U-a2AAMe (T2

S a2 A'A4,(T,t0 T10F + [a2 AJA(k -k

2AA4ITDJ t a2A(kT-) tX) (8.2.2)
.p',(T)p(T,t 0)G' 01 nr07v)A'AG (n ro) ' (To t0). P (T)=R 2 ( .. )

0 p (T) T,t )G'0 i,/v )Q'QG('ir4v)I'(Tst0)X (T)=V02 (8.2.3)

*p t 0)GC v r' p 0Op 0

When the dynamics for both participants are specified

as

+ Uk+ ; k:p,e (8.2.4)Xk2J Xk2 _

and the weighting matrices are specified as

Rk(t)=rk[U]; k=p,e (8.2.5)

-' the transition matrices for the participants become:

l k (T-t )-U

_k(T,t0) [ " ; k=p,e (8.2.6)
0 U

and the controllability matrices for both participants

become:

1
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(T-t 0 )
3  (T-t 0 ) 2

Q Mk(T,t0) = r k  U 2r U k=p,e (8.2.7)

(T-t0 )2  (T-t0)

2r__ US 2rk rk

Substituting k(Tt 0 ) and Mk(T,to); k=p,e into (8.2.1,8.2.2)

these relationships are reduced to

Y-2 = 1/R0 2  (T)2 (8.2.8)

r Xp li

17v = R 0(T-t 0 Vo (8.2.9)

and the components of the costate vedtord boundary 
con-

ditions become:

2I1 2 3
X .(T )=a[x e (t )+(T -t )x e(t0)]/[l+a 

(T -t o) X
eli eli 0 0 e2iO0

(1/3rp- 1/3r)ea 2 (l+(T -t0)V0/R0)/I ]qr; i=1,3 (8.2.10)

a Mi)a0!i (T  = -b0 (i),b~I)M/17 ; i=1,3("2i)

S2i(T ) X e21'(T1 ) -0 . i=1,3 (8.2.12)

where
a (T -t 0

a Ci) =-a2 [Exel t )+ (T-t 0 )xe 2i (t 0)] 1+ -a 2 (  t )  (8.2.13)

a2 (T -t0 )
3  a4(T -t0) 6

bCi)=l+ 3rp 3r 3r -a2 (T

P p -e CTt 0Y)8.1)

(T -t0 )V0  a4 (T -t 0 ) 3
bl(i)=[l+, R I [a2+ 2 "] (8.2.15)

1 ~ R 0 [a + -a2 (T-t )3
0 3re (T-0

By substituting (8.2.11) into (8.2.8) there results

a second order polynomial in terms of qr" The roots of

this polynomial determine two initial state vectors 
-which

;L
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are symmetrical to each other with respect to the origin,.

One root is superfluous from a physical viewpoint.

8.2.1 Procedure for Solving the Differential Game's Euler-

Lagrange Equations when the Terminal

Engagement Time Is Unknown

With reference to (4.3.29-4.3.31) the solution of the

differential game's Euler-Lagrange equations depends on

'the determination 'of the vector multipliers, X p(T) and

x e (T). Th= relationships that determine Xp(T) and Xe(T)

in terms of the terminal engagement time are (8.2.1-8.2.3).

When the terminal engagement time is unknown, the

additional boundary conditions needed to determine the

engagement time are:

u(T)-R -. )T)G, I T(8.2 16)
p p

v(T)Re-1 (T)GI(T)X (T) (8.2.17)

p(T) TD (T0 (T)+ke(T~t0 ) (8.2.18)

xp(M4: (T,t0)xp(t0)-Mp(T~t0)Xp(-T)+k (T~t0 (8.2.19)

Xe(T)=Fe(T)x (T)+Ge(T)v(T)+ne(T) (8.2.20)

xp(T)=F (T).xp(T)+G (T)u(TY+n (T) (8.2.21)
p' p, p p

1/2[u(T)'R (T)u(T)-v(TYR (T)v(T)]
p e

- +a2[x p(T)-x e(T)'A'A[x P(T)-x e(T)]=0 (8.2.22)

The procedure for determining the boundary costate

vectors and the terminal engagement time is as follows:

1) Choose & discrete value for the terminal engagement

1 time:

* I
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T=Ti+nAT ; n=l,...k (8.2.2,3)

where Tiis the initial terminal engagement time and-T

is the incrmnental change in the terminal engageme.,nt

time.

2) For a discrete value of T the boundary costate vectors

are dLt~rmined by solving (8.2.1-8.2.3).

3) -With the determination of the boundary costate Vectors

the boundary conditions determined by (8.2.16-8.2.21)

are determined.

4) Substituting the boundary conditions determined by

(8.2.16-8.2.21) into (8.2.22) it is determined whether

(8.'2.22) is'satisfied.

5) If (3.2.22) is not satisfied, then T is updated.

oK

_-0~~



- 103 -

APPENDIX 8.3.

Determination of the Terminal Miss Distance

Vector between the Cooperating Pursuer and the

Evader in Terms of the. Evader's State Vector

The terminal miss distance between the evader and the

cooperating pursuer is determined by

Min JMin acp/2[xcp (T)_xe (T)] A'A[xcp(T)_Xe (T)U cp U cp. •p C ec

T

+i/2 fuR -(t)u cp dt }  (8.3.1)
cp ~cp

subject to the constraints

Xp- CP(t)x cp+G cp(tyu cp+ncp (8.3.2)

Q X P(tO)'=Xp 0  (8.3.3)

where the state vector x -represents the position and
op

velocity vectors of the Cooperating pursuer;Ax e(T), the

evader's terminal engagement position, is the-cooperciin-

pursuer';s desired terminal position; the control

vector -U is the Cooperating pursuer's accelerationcp

command ; n represents any disturbance vector such as thecp
earth's gravitational field; the 6x6 matrix FopCt) and the

ccp-6x3 matrix G (t) are continuous in time; R cp(t) is a 3x3

positive definite matrix continuous in time; a is a

weighting factor; T is the fixed terminal time.

The cooperating pursuer's performance criterion J

is the square of the error norm between the cooperating©o

1
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pursuer's position and its desired positior, weighted
ko against the energy spent by the cooperating pursuer. The

dynamics of the cooperating pursuer are defined by (8.3.2).

Adjoining the cooperatihg pursuer's differential

constraint (8.3.2) to the performance criterion by the

vector multiplier X the minimization of the performance

-criterion is expressed as

MinJc:Min ia2/ A'U c p  =U c p  a cp /2[x cp (T)-X e(T)]'A A[x cp(T)-x e ( T ).]

T
+ f[1/2u' R Mtu +X' (F(x +G (t)iA' +n X ])dr

cp cp- cp cp cp cp cp cp cp- cp)

to (8. 3. :.

The cooperating pursuer's terminal state is determined

Qi by solving the Euler-Lagrange equations that result from

minimizing Jc" By the method of calculus of variations the

conditions necessary for an extremum is that the- first order

variation-of J vanishes
c

2SJ=[a x (T)-x (T))'A'A-A' (T)J Sx  (T)cp cp e cp cp

T

+ fl(up R (t)+ kp G- (t))8u
t cp cp cp-cp cp

+ (Xc +X pFcp(t))8xcp dt=O (8.3.5)

The Euler-Lagrange equations which result from the dif-

ferential constraint (8.3.2) and the necessary conditions

resulting from equating the coefficients of the first order

variationals to zero- are:

- -©
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1 F~(t) -G (t)R -1(t')G-Ct xC [n
* cpI cpP cp cp i C p~ (836

subject to the boundary conditions

xop(t0 )=X 0  (8.3.7)

( : cp(T)a 2cpA"A[xcp(T)-Xe (T)] (8.3.8)

The solution for xc defined at T is
-Np

9P cp,(Tt 0 )Xcpo-Mcp (T t 0 Xcp M +kcp (T,:t0 ) (8.3.9)

where ~c(Tit0)Y is the transition matrix; Mcp(Tit 0 ).1 the

controllability matrix,is defined as

Mcp(Tt 0 ) p(T,t)G p(t)R (t)Gp(tp (Tt)dt (8.3.10)p 0 cp cp cp cp

and the column vector kcp (Tt due to the disturbance

o vector ncp is

(Tit) (T ,t)n dt (8.3.11)
6cP 0 p cpt0

Substituting for Acp(T), defined by the boundary con-

dition,(8.3.8) into (8.3.9)
x M (Tt )~p-a 2 M (Tit0)AN o(T)-x MT)

cpT cp0)cp0 cp cp' cp e

+kcp (T,t0) (8.3.12)

Subtracting x e(T) from bo-th sides of (8.3.12) and solving

for the error vector Ex c(T)-x e(T)

Ex (T)-x (T)J=[U+ac2p M (Tit0)AIA]-I
cp e - cp cp 0 AtX

[Ecp (T,t0 ) xp +kcp (T,t )-xe (T)) (8.3.13)cp 0p°c
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The terminal miss distance vector between the cooperating

'-Ipursuer and the evader is obtained by prqmultiplying

Ex cp(T)-x e (T)) by the 3x6 matrix A.
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APPENDIX 8.4
D

Determination of the Boundary Costate Vectors

in Terms of the Specific Parameters for the

Differential Game with the Cooperating Pursuer

The solution- of the following equations derived in

Section 5.4 determines the boundary costate 
vectorsX (T) and

F 
p

a2 AAM (T,t0) a 2A'AMe e(Ti) ( j (T)1

L-a 2 A'A T 2 A I T e ]lIXe(T)0

-_a2A-A p(Tit0 ) [a2AtA+YKI'K 1 Ie(Tit0) 0 e<(t)

+ [a2AtiA _a,A'Aj[kp(T~t0)] [ 00

cp~t0 ) (8.4.1)

kcp(T ,t0)

[K2 'CT)Me ( T t ) ]K [K -e (T t )e (T)

[a 2 (8.4.2)

where
KIA[U+aj'pMp (T ,t0 )A' A?

-I  ( 8.4 .3 )

A and
a2 2 Ao Aa2tX1 A+k C Kto )-bC (i ) -k (Tt) q X

2 Oc p cpr e 0  (8.4.1)

When the dynamics for the participants are specified as

11 Uk ] (8.4.2)

where..*

, ~ ~ ~A.~ M-~ T~OAA 
(8.4.3)~ ---- ~
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and the weighting matrices are specified as

* Rk(t)=rk[U]; k~p,cp,e (8.4.6)

the transition matrices for the participants become

,(T,t 0 )=[ 0] ; kp,,cpe (8.4.7)

and the controllability matrices for the participants

become

(T-t ) (T-t0 )2oU U
3rk  2rk

(,t); k~p,cp,e (8.4.8)

(T-t0)2 (T-t0)U U

2rk r k

Substituting k(T,to) and Mk(T,to); k~p,cp,e into (8.4.1-

8.4.4) the boundary costate vectors are expressed in terms

of the unknown scalar Lagrangian multiplier, y, as

a .+~b .i/Y
X ; j=1,2,3 (8.4.9)iP CpI+Cp 2/Y  -

p1 p2

M .(T)= 0; j=4,5,6 (8.4.10)!p]

a e.+b ej/v
.(Te ; j=1,2,3 (8.4.11)

el e2

X .(T) 0; j=4,5,6 (8.4.12)ej

where

ap =a Exp (t0)-Xej (t o )+(T-t 0 )(xp]3- (t0)-x 3+- (to ) ];

j=1,2,3 (-8.4.13)

sa . + a ( -t( T- [ 3T e

b . 3r .p 2 -t 0 ) 3] [art
[2 3r1

cp X[x (t )-x (t0)+(T-t
3r+2 C .)3j ej 0 cpj 0)+- 0 ) )(xe5'T(t0)-xcpj+3 0))]13r '+a 2 ( T- - ^  p

L cp

=1,2, 3 (8.4.14)
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p1 2 3 1 *~/e/0 1+a (T-t 0 ) X [i/r P_ (8.4.1e5):0

][re(Txtr 3Tt (8.4.16)3 3 r +a (T-t )e

a. [a2 (T-t0) 33+a 2 (T )3

efapi L r 3r ; j=1,2,3 (8.4.17)
pjpi p 1I PP

2[ "[ 3rp

e] a3r +az(T-t 0 ) 3 JX Xcpj (t 0 )Xej (t 0 0

(x , (t )-x-- jO,,3(.4.18)
cp5-( 0 -e+3(tO))]; j=1,2,3

3r -a2 (T-t 3r a64 (T-t0)6
c + 2 X (8.4.19)
el= 3re  3rp+a 2(Tt0 )3  9rerp

r 3r, 12 (T-to)3

Se2= +a2 (Tt)3 3re (8.4.20)

cp0

The unknown scalar multiplier Y is determined by sub-

stituting Xe(T) into (8.4.2) and solving for)'. For the

dynamics and weighting matrices specified by (8.4.6,8.4.6)

the evader's quadratic terminal miss distance constraint

with the cooperating pursuer' is exactly expressed in terms

of y as a second -order polynomial. The root which. yields

the minimum change of control energy for the evader due 'o

the cooperating pursuer is sought. The minimum change of

control energy is determined by comparing the evader's

control energy for the differential game with the cooperating

pursure to the evader's control energy-for the game played

without the cooperating pursuer (6).

--r . .... .. ... ... . . . .. .. ...
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