
+ a C k~ sc;z nd. J0031 Bi. 5s

IDO

-- ~~~- 
Do' 

tY1r~tr

A M~tiC *CAtIFORWfA--



ME" IORANDUM

RM-5933-PR
FEBRUARY 1969

A CHARACTERIZATION OF

CLIQUE GRAPHS

Fred S. Roberts and Joel H. Spencer

I Ii, TIMcanlh i-IupwiIIIvtin O 1 1111( sltut kir b 4m , lile IjI Iw *Vf (Gm.
mlt No. V I 1620)T(H 0 . nitu 111i IIIItt'ii(lurtiIIiiiiuit

ani D l Iqunwnt Mall'. Ihjtv l iu i f Stall. Ho-' 1su wl Dvii~vulujwu ItI. [II;I S' kV.
Viv~m uuuntioiii qmlutini in iluik nulu 'lt nit k- intviproiul Ia rcloo-itiI!

the' illiuiii yjiiil pF oliu.\ of tihe riitul >tmc Air lr.

DISTIi31TION STATTEMENT
[in iix'~ili'iitI~lslI~I .luji ufl ii fr pi

1 I t au;t' m l v i t i' i't r; 1u .1 u I ii 111intl'l.



Tfhis mm~ly is IIv~etedt4h a' .~a t wpooI Irc~wni of the. sui,jei. oArhthN of pull-
liration. The Rand (borpoiationuhm r thequIWl o 110 0!t 1C~ otiCAroh. wAidikjt

ml ecs'qrily tlldllr.gII2 h -110 1iIliIon dliii ('IhI l1tiol of the allillO.

Published by The RAND) Cxrpwimion



In this Memorandum we solve the graph-theoretical problem

of charaterizing clique graphs. The body of the Memorandum

divides into two parts. The first part, consisting of pages 1-11,

contains the main results and several principal applications of the

nmain theorems. An abridged version consisting of this first part

only has been submitted for publication in the Jcurnal of Combinatorial

Theory and also prepared for presentation at the American Mathe-

matical Society Meeting in New York, April 4, 5, 1969. The second

part of the Memorandum consists of additional applications of the

mair theorems, some partial results, and some questions posed

for flur'her research.

Thil results in this Memorandum have possible application in

genetics and in tht theory of measurement in psychology, through

their connection with the interval graph research of Fulkerson and

Gross (Incidence Matrices with the Consecutive Onos Proper-t,

RVN j984--PR), For the measurement applications of interval gra, s,

the reader ,, i-eferred to RM-5782-PR, On Nortransitive Indifference

(Roberts). Tbere is also a potential qociological application-the

graph-theoretical term "cliq.iIe" arises from the corresponding

,oci ological not .rn.



ABSTRACT

In a recent paper [4], Hamelink obtains an interesting sufficient

condition for a graph to be a clique graph. In this Memorandum

we give related conditions which are necessary as well as sufficient.

As an application of our result we show that Hamelink's condition

is also necessary in certain special cases and that here it can be

greatly simplified. As another application, we derive certain

theorems useful in practice in reducing the question of whether

a given graph is a clique graph to whether certain smaller or

simpler graphs are. Next, we relate the clique graph results to

some work of Fulkerson and Gross [2] on interval graphs and the

consecutive ones property. Finally, we include some remarks,

motivated by our clique graph results, on graphs with no independent

cut sets.
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A CIIAFACTF:BIZATION OF C:LIQUE GRA IAfS

1INTRCO)UCTION

Our graphs will all he finite, noniret ihn loso

Multiple edges. If G is a graph, V(C)1 will denote the set of vertices

of G an(! E(G) the set of edges. We denote the adjacency relation by

I, i. e. , f x , v( V(G), then xly iff (x, Y) E W) A clique of G is a

mnaximal comnplete suhii aph. (Somne authors use the termninology

dominant clique. ) C iven C, let K V . K he its cl iques.

I",, w II b1 V(1) K K . K 3and (KC, K ) e lI) iff and

K. '> K. # 0. 'Ph en Aw: call if the clique g~raph .)f G1 md wArite If IK(().

Tfhe mnain problem~ we are concerried 'Aith is this: giver a kpaph It,

is- !t the clique g~raph of som G

I'he authors,- would1 like to acko clcthe heloful 'U1 ert
oFjJon 1l onan and Hav Fulkers on.
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2. THE CHARACTERIZATION

Let X be a collection of complete subgraphs of a graph H.

We shall say )t has property J (for intersection) if whenever

Lip L 2 , ... , L are ir.X and L. flL 0 for all i, j then the total
2p P

p
intersection j'1 L. 0. We say X( has property J if the aboveJul I m

holds whenever p = m. Finally, let )((H) be the collection of all
cliqes of 'he graph H.

THEOREM 1. (Hamelink): If X(H) satisfies

i property 0' then H is a clique grah

Note how the condition that the points of H represent cliques is

reflected in the cliques of H itself. The converse of Theorem 1 is

not true. To give an example, let H and G be the graphs shown in

Fig. 1. Then H - K(G), but the set X(H) does not satisfy property

S. For, take

L 1 = A, B, C, D), LO2 f[E, B, F, G) and L 3  I, D, G, H).

THEOREM 2. (Characterization of Clique Graphs):

A graph H is a clique graph iff there is a collection X of

complete subgraphs of H which satisfies the following two

properties:

(1) X covers all the edges of H, i.e., ifx, yeH

and xly, then (x,y) is contained in some element of X.
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(2) ,h satisfies property J.

Proof. The proof of sufficiency is essentially Hamelink's

proof of Theorem 1. Let K-- iL, L 2 ,L . Define the' 2 ' p

graph G as follows.

V(G) v V(H) U X

If h, V(H), then hI L. iff hc L.
1 1

L. I L. iffi jand L. L. 0 0I 3 1 3 F J

If h, W ( V(H), then not hlh'.

The claim is that H = :"(G). To prove this, let C(h) = (h)U £L.:h Lr

It is easy to see that each 2(h) is a clique of G. Moreover, these

are the only cliques of G. For, let C be a complete subgraph of G.

Then if C contains an element h of V(H), we have C C C(h). And

,ther6ise, C is contained in some C(h) by property J.

To prove the necessity of the conditions, suppose H K(G).

Let V(G) ( fg 1 ,g 2, ... , gn, let V(H) [hlh .I . h 1, and let
1'P f- 2' m

K K . ., K denote the cliques of G, t.%belled in such a way'' m

that h.h. iffK. fK. #n0. For i 1, 2,..., rl, defineL.--h.: gi K.)
L j t .I31

Each L. is complete, because if hj and h k are in L., then g, f K. l K k

and ,, h Ih k . The claim is that )(= fL, L 2 , . Ln ] satisfies

pronerties (1) at" (2). Property (1) is satisfied because if h Ih
jk

then K n K 0. Finally, ) satisfies property J. For, suppose
j k

L. I I i . Li pairwise intersect. Then for all j, k, there1l 2 r



is a point h nL . Thus g . ind g. are bot.,'h i n K jkand
j k jk

therefore we have g, 1g. i follow that gi Yg . P~ .. 9g. is
~j ik I r A.2

contained in some clique K of G and thus h c C', L. Q. E. D.
S 5 tZ 1+

RE-nark- Theorem 2 is remninis7cent of Krausz' [-5] character-

ization of line graphs.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _3
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3. THE CASE OF CLiQUE NUMBER < 3

There are certain situations where the conditions of Theorem 2

may be simplified, i. e., where the conditions of Hamelink become

necessary as well as sufficient. This fact will follow by a simple

applicaticn of Theorem 2. We first require one lemma.

LEMMA 1. Suppose h is a collection of comrnlete

subgraphs of a graph H, h satisfie' (I) and (2) of Theorem 2,

end suppose no member of h is contained in any other. Then

h contains a 2-element set iff this set is a clique of H.

Proof. Every 2-element clique is contained in h by property

(1). Conversely, suppose L1 = [h, h') e and there is a poirnt

h" # h, h' which is adjacent to both h and h'. Then there are sets

L 2 and L 3 in h such that (h,h")c L 2 and (h', h" C L 3 ' It follows

that L 1 , L 2 , L 3 pairwise intersect but have no point in common,

violating property J. Q. E. D.

Definition. w(H) -clique number of H = max IL I:L is a

clique of H3

THEOREM 3. If w(H) 3, then H is a clique graph

iff )((H) satisfies prop,.rty J.

Proof. If H is a clique graph then there is some collection X

of complete subgraphs satisfying properties (1) and (2) of Theorem 2.



Let X' be tne collection of all (setwise) maximal elements of h

together with all one-element cliques of H. This collection still

satisfies properties (1) and (2). We shall show that X' - h(H).

)0 C X(H) follows directly by Lemma I since u(H) < 3. To show

K(H) C h', suppose LE e(H). That L c X' follows easily if IL[ < 3.

Thus, let L = (hlh2) h . By property (1) h' has elements L ,L2,L 3

containing (h,h 2 , fhlh 3 ) and th2 h3), respectively. Since

' satisfies property (2), there is a point h in L I N L 2 0l L Since

h is in each Li, it is adjacent to or equal to each point h.. Thus

h h, h 2 , h 3 , h is complete in H and w(H) < 3 implies that h =h,

some i. If i I, say, then L3 = (h, h hI and soLc X!

The converse follows by Theorem 2. Q.E.D.

Actually it turns out that if w(H) < 3, property J is equivalent

to the much weaker property J 3" This will follow from the next

lemma, and will give us a very simple criterion for clique graphs

if w(H) < 3.

LEMMA 2. Suppose w(H) < m and X is a collection

of complete subgraphs of H. Then X satisfies property

J if it satisfies proper~ty Jr

Proof. The case m = I is trivial. Suppose m > I and suppose

K satisfies J but not J. Then there are L 1 ,L 2 , . L in K

which pairwise intersect but have no int in common. We begin

by observing that IL. L.l = m-1. a.1 i # j.

1 J1
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For Li0 L < L i < m. Suppose L f0L r < m-1. Let

LinL. =fk 1 , k2 , . kr  Then for each u there is Lt such
U

that k q L Hence [L.,L. Lt L , "', L I consists of < m
U t U ' t1 t tr

elements of X which pairwise intersect but have no point in common,

violating property .M

Since ILinL.I = m-i, all iij, it follows that there are disinct

points h h2 , ... , hm+ 1 inH so that

L. a h ! h ... , hi- hhi h i+ , hm+.,

where the symbol h. means h. is omitted. But now the points h.S1 1 3

and hk are adjacent in H for all j 0k, because hi, hk are in the

complete subgraDh L. for i J j, k. Thus (h I h2, ... , h rn 4 is a

complete subgraph of H, ; .id this violates w(H) = m. Q. E. D.

THEOREM 4. If w(H) < 3, then H i cli-e

graph Iff H) satisfi pro r J3

Proof. Theorem 3 and Lemma 2. Q. E. D.

Definition. A graph HI is a partial subgraph of a graph H 2

if V(H 1 C V(H 2) and E(H ) C E(H2

COROLLARY. If w(H) < 3, the n H is a clique

graph iff it has no partial subgraph isomorphic to the

graph of Fig. 2.
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Proof. Suppose H has such a partial subgraph. Since w(H) < 3,

the three outer triangles are cliques. These pairwise intersect but

have no point in common, violating proper-ty J 3 for XNH). Conversely,|3
suppose YH) does not satisfy property 3' Let K1, K K be three

31 2' 3

cliques which pairwise intersect but have no point in common.

Using w (H) < 3, it is easy to prove that each K. is a triangle.

Moreover, [K. f K.I = 1, i , j. For suppose for example3. J

. n K 2. Let K -hl, h2 , h3 I and let K2  h 1, h2 , h4 .
1 221 3 2nd 2 4K=

Then, since K n K # 0, K r K 0 and K, K2 K X 0,

we conclude K= fh 3 , h h 1, some h5 . It follow-7 that

(hi, h 2 , h 3 , h4 ] is complete, violating w(H) < 3. Thus, K1 , K 2 , K3

are triangles with no common point, each pair of which has exactly

one point in common. This implies that the vertices of [., K2 , K3

are the vertices of a partial subgraph isomorphic to the graph of

Fig. 2. Q.E.D.

Figure 2
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4. REDUCTION THEOREMS

As a further application )f Theorem 2, we present some results

which might be useful as tools in reducing the question of whether a

given graph is a clique graph to whcther, certain smaller or simpler

graphs are clique graphs. The proofs are straightforward using

the characterization.

THEOREM 5. Suppose H1 is disconnected and

Hl, H ... , H are its components. Then H is a
2' p

clique graph iff each H. is.

Proof. Trivial (even without the characterization).

THEOREM 6. .Su,.pse H is a connected graph

witha cut point h. Let H-h "H' +H' H'1H 2 '

and suppose there is no edge from H 1' to I . If

H. = H' + h, then H is a cliquegraph iff H and H are.

Proof. If h(. is a collection of complete subgraphs of H.

satisfying (1) and (2), then K = h I U h2 satisfies (1) and (2) for 11.

Conversely if h is a collection of complete subgraphs of H satisfying

(1) and (2), then X. tL h- LCV(H.) is a collection of complete
i - 1

subgraphs satisfying (1) and (2) for H.. Q. E. D.• 1



COROLLARY 6. 1. Spos e if is a connected

graph with a cut point h. Let HI, H' . H' be the
- - 1' 2~ n -

components of H - h and let H. be the subgraph generated

by HI plus the vertex h. Then H is a clique graph iffI

each H. is.
I--

Proof. The argument is similar. Q.E.D.

Definition. Suppose H is a graph and S is a subset of V(H) so

that h, h' E S implies not hIh'. Then S is an independent set. If 11

addition ,e is a cut set; S will be called an independent cut set.

COROLLARY 6. 2. Suppose H is a connected graph

and S is 'n independent cit et of H. Let H - S zH'1 + H,

11'I 11 0 and suppose that there is no edge from H to

H2 . If 11. is the subgraph of I generated by HI plus S,

then 11 is a clique graph iff I and H are.

Proof. The argument is again similar. Q. E. 1).

COROLLARY 6. 3. Suppose If is a connected graph

and for some h, (h': hIh'} is an independent set. Then H

is a clique graph iff H -- h is.
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We make some remarks on identifying those ,rapns which

have no independent cut sets in Sec. 6.

We next turn to another type of reduction which has proved

useful in similar problems on interval graphs. (Cf., Roberts [7]).

Let us say that two noints h, h' of a graph H are equivalent, denoted

hEh', if they belong to the same cliques. Thus hEh' holds iff

h 2 h' cr hlh' and in addition h and h' are adjacent to exactly the

same points x # h,h'. It is easy to verify that E is an equivalence

relation. We define H to be the graph whose vertex set is the

set of equivalence classes and so that two distinct equivalence

classes are adjacent iff their representatives are adjacent.

THEOREM 7. If H is a clique graph then I is.

Proof. Suppose h is a collection of complete subgraphu <f

H satisfying (1) and (2) of Theorem 2. If L, f , let
t*

L z [h: [h] L }, where [h] is the equivalence class containing

h. It is easy to show each L is complete and h L: L h I

Satisfies (1) and (2). Q. E. D.

THEOREM 8. Suppose !(,{H) < 3. Then H is

a clueraph iff H is.

Proc f. One direction follows by Theorem 7 and the other

dirt tion h. the corollary to Theorem 4. To Thow the 12_ter, nOte



that if H has a partial subgraph H0 isormorphic to the graph of

Fir. 2, then so does H-; namely one whose vertices con-,'St of

one representative from each vertex in H .Q. E. D.
0*

'We have been unable to settle the question of whether the

converse of Theorem 7 holds without any spec lal assumptions about

the clique number i. To close this section we include a result

which. though not -reduction theorem itself, appears to be helpful

in deriving reduction theoremns.

Def inition. We say a point g ini a graph is simnplictai, following

Lekkerkerker and Boland [r6], if (g': gIgij is complete. We s ay

a graph 1H is a strong cliqe graph if there is a G sc that H =K(G)

and so that each cl ique of GI contains a simplii al point (Fquivaiently,

each clique of G consists of' a si!rnp.iicial point and all its neighbors

I THEIOREFM 9. Hi is a clique graph if and niuAvif

Proof. If Ii -s a strong clique graph it certainly is aclique

graph. The coniverse follows by adding to each clique a point

adjacent to all points .ri the clique. Formally, let

1'2' n m

and let K ItK 2F... K nbe the cliques of G, so labelled that h Lh iff

K,~ K. 0 Then deiine G' by
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(V(G) I gh 2- rl h . hn

9 11 g'h iff g E K

ii

Each h.i generates 'he clique (h.i) U g. g. K. L Any other clique

K in G' would have to miss all the h C Therefore it would be a

clique in G and so there would be an h.i adjacent to all the points

of K in G'. Thus K would not be maximal and therefore would

not be a clique. Q. E. D.



5. THE CONSECuTiviL ONES PROPERTY

Fulk- son an(, (ross !F21 stady a certain property of graphs

whcin the light, of Theorem 1, see,,as quite relevant to the

clique gra,,h notion. If H ~sa graph, 1I ulkerson and Gross study

its (dominant) clique-vertex incidence matrix 7i(11) =(inm) If

V(H) 11 H , h, . h and L, L9 ., L are the cliques of
n 1'2'M

H, then mn is defined by
ii

1 if h 1

0 otherwise

In) particular, Fuikerson and Grob study thos-e graphs Hf whose

matrices -(H) have 'tie consecutive 6nes__prope~jjy (for co" inns),

i., the rows may be permuted so that the oncs in each column

appear c"IrSeCutively .It i. easy to see that ii ,'If) sat ~sfies the

c~onsecutive ones pr operty, then )%(I) satisfies property J9 For

suppose the cliques of Hi are listed in :I-k order 1, .,

so that the resulting matrix nas ones it, each~ column appearing

Consecutively. Suppose the collection L. i, L. , Liwt

< i,) < <K , has pairwise intersections noninull. Then therte

is an h in L.~ L Since ones in each column appear coosecujivvly,
I I p

this h is in all the L. We have thus shown
r

THEOREM 16- Tf 1(H) has the consecutive ones

L then ii isa cI !u e granah.
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The converse of this theorem is false. For the collection --f

cliques of a square (a 4--cycle) has property J9, but the clIique--vertex

incidence matriy does riot have the consecutive ones property.

The following result now holds for the interval graphs which have

been studied in Fulkerson and Gross [2]j, Gilmore and Hoffman

[3], Lekkerkerker and Boland [5]. and R~oberts [71.

COROLLARY 10. 1.Every interv I grEELL s

If grejaph.

Proof. By t~he results of Fulkerson and Gross, H is an,

interval graph iff has the consecutive ones property. Q. E.
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6. GRAPHS WITH NO INDEPENDENT CUT SETS

Corofiary 6.2 suggests that it would be interesting to identify

graphs with no independent cut sets. Our aim in this section is to

present several reduction theorems relevant to this problem. We

do not pretend to have solved it, but suggest it might be interesting

ar.I useful. The first reduction theorem concerns an interesting

class ,f graphs which contains the interval graphs, the so-cailed

rigid circuit graphs of Dirac [ 1.

THEOREM 11. A rigid circuit graph has an

independent cut set iff it has a cut point.

Proof. By a theorem of Dirac, every minimal cut set in a

rigid circuit graph is complete. Q. E. D.

Another helpful reduction result is the following.

THEOREM 12. SupMo(se H is a graph and h is a

vertex of H so that (h': hlh'] is not independent. Then

if Hi-h has no independent cut set, neither does H.

Proof. Let S be an independent set in H and assume H-h has

no independent cut sets.

Case 1. hc S. Then if S were a cut set in H, S-h would be a

cut set in H-h.
i*

The results in this section were all obtained in conversations
with Jon Folkrnan.
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.Case 2. h ' 5, Then S :. not a cut set in H-h. Hence for all

X, y cH-h, x, y i S, there is a path in H-S-h from x to y. Hence

there is such a path in H-S. Suppose now x 0 h, x J S. We show

there is a path in H-S from x to h, Since (h': hIh)3 3 not independent,

there is v such that hy and y i S. We know that there is a path in

H-S from x to y and hence there is one from x to y to h. Thus S

is nota cut set inH. Q.E.D.

Dirac proves that every rigid circuit graph has a simplicial

point, as defined above. (There are other grap'-s which have

simpiicial points well, ) The following reduction result is helpful

for those graphs which have simplicial points.

THEOREM 13. Supjse b is a simplicial point

ain a ph H and h has de1.ree > I Then H has an

iniependent cut set iff H-h has.

Proof. If H-h has no independent cut set, then by the previous

theorem, H has none either. Next assume that H has no independent

cut set. Suppose S in H-h is an independent cut set in H-h. Then

there are x, y in H-h so that there is no path from x to y in H-S-h.

Next, S is not a cut set in H, so there is a (simple) path from x to y in H-S.

It follows that the path goes through h i- -id we may denote it

X, X1 ,X 2 , X xp h, yly 2, ... , ym,y. Now x and y are

adjacent to h and so since h is simplicial, xnYIy. Thus there is a

1N
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path from x toy in H-S-h: XX, ... , yxmy.

This is a contradiction. Q. E. D.

This result together with he Dirac result that every rigid

circait graph has a simplicial poi-t provides another fairly simple

proof ")f Theorem 11.

|I
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