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ABSTRACT 

This investigation is directed to the analysis of a composite 

disc in plsne elastic equilibrium.    The disc consists of concentric 

regions, each of homogeneous properties, end is loaded on its outer 

surface by sn arbitrary load«   Reactions at the center are prescribed 

to provide the necessary equilibrating force and moment.   The equations 

of equilibrium are specific in terms of the radial end tsngential 

displacements, giving a pair of psrtial differential in plsne polar 

coordinates. 

A finite Fourier transform is applied to reduce the partial 

differential equations to a pair of ordinary differential equations 

with the radial coordinate ss independent variables.    Inversion of the 

transformed solution yields sn infinite series.    The analysis is 

continued in further detail for uniformly distributed end concentrated 

normal and shear loads. 

The deformations associated with the uniformly distributed 

normal load are used as the basis of a postulated friction phenomenon 

called the deformation coefficient of friction.    Assumptions about the 

behavior of the strain energy as a load is translated an incremental 

% distance give rise to a friction force, which in turn permits a 

friction coefficient to be calculated.    This coefficient is charac- 

terized by being proportional to the load rather than constant.    The 

contribution of the deformation coefficient to the total friction 

behavior is ordinarily quite small. 

vii 

■ 

.• 



■ 

PART i. 

lUTRODUCTIOH AliD HISTORICAL REVIEW 

A.    Introduction 

This thesis is concerned with a problem in the plane theory of 

elasticity.    Je shall consider a composite disc consisting of two per- 

fectly bonded,  coplaner, and concentric regions which are each isotropic 

and homogeneous.    The disc is loaded by arbitrary stresses on tne outer 

boundary.    A concentrated central force and moment eouilibrate the 
" 

boundary tractions.    A formal solution in the form of an infinite series 

is obtained for the general case.    Solutions are obtained explicitly for 

a few special loadings, and numerical values obtained for the particular 

case of a normal stress of unit intensity distributed over a segment of 

the boundary. 

A friction mechanism is postulated, based on the strain energy 

stored in the system during an incremental translation of the area of 

application of the normal stress.    This deformation coefficient of 

friction depends on the elastic behavior of a smooth disc under the 

influence of a normal load.    It does not take into consideration other 

possible sources of friction, such as sticking and the interaction of 

asperities.    The deformation coefficient is ordinarily quite small 

compared to Columb friction, and has the unusual property of being 

proportional to the load.    The frictional force contributed by this 

mechanism, therefore, varies as the square of the normal load. 

The mathematical analysis used is somewhat unusual.    The 

equilibrium equations are established in terms of displacements.    A 

»• 



finite Fourier exponential transform is used to reduce the system of 

partial differential equations to ordinary differential equations.    The 

transformed solution is inverted by an infinite series.    The transform 

method has properties which make it quite useful in circular regions. 

Unlike the more familiar Kolosoff-Muskhelishvili method, in which 

complex potentials of known form are required, the transform method 

leads to the solution through a direct process.    The resulting infinite 

series corresponds to the series required to establish the harmonic 

functions in a composite region when the Kolosoff-Muskhelishvili method 

is used.    In the particular case when the disc is homogeneous the series 

solutions may be exhibited in closed form.    When the distributed load is 

condensed to a concentrated load the solution agrees with previously 

known solutions. 

B.    Historical Review 

The analysis of circular regions in a state of plane elastic 

equilibrium has been the subject of substantial investigation.    One of 
22» 

the earliest reports on the subject was that of Mlchell       in which he 

examined a class of problems in the plane disc.    Mlchell considered 

concentrated loads in the interior of an infinite plane and on the edge 

of a plane half-space.    By superposition of these effects he developed 

formulas for the disc loaded at the center and edge by concentrated 

loads.    He gave explicit formulas for the stress field due to concen- 

trated loads at the edge with an equilibrating reaction at the center. 

fThroughout this thesis, superscript numbers refer to the 
similarly numbered items in PART VII, BIBLIOGRAPHY. 
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These formulas are unfortunately incorrect due to failure to properly 

annihilate the reactions on the boundary due to the edge load. 

Mindlin^ extended Michell's problem to consider the effect 

of translating the central force to an arbitrary interior point, 

directed along a diameter.    As a starting point he used Michell's 

problem, for which he expresses, without derivation, the correct Airy 

stress  function. 

The development of the Kolosoff-Muskhelishvili27» 3    complex 

variable method made it possible to solve a large class of problems in 

the disc.    In most cases it is necessary to use a catalog of harmonic 

functions to satisfy the boundary conditions.    Mikhlin'"' examined a 

composite disc loaded on the boundary by self-equilibrating forces.    His 

solution is in the form of infinite series of harmonic functions. 
a 

Dokos    examined a composite consisting of a disc loaded at the 

center and embedded in an infinite plate.    His method consisted of super- 

position of field equations for stress ana displacement.    Dundurs and 

Hetenyi    *      *        examined a series of problems of the elastic disc 

embedded in an infinite plate.    The tColosoff-Muskhelishvili formulas 

were user! somewhat in their development, but the method was basically a 

superposition of appropriate Airy stress functions. 

Ng      resolved Michell's problem using the complex variable 

method.    His results, given in terms of displacements, can be shown to 

be in agreement with those of Mindlin. 
20 

A recent investigation by Maye and Ling     used finite Fourier 

transforms, along with the theory of couple stresses, to examine the ring. 

Maye developed the equations for a composite disc as a special case. 



Due to the complexities associated with couple stresses an explicit 

analytical solution was not given. His technique of inversion uses 

only the real part of the series. 
o 

Finite Fourier transforms have been developed by Doetsch 
18 and Kniess    .    Applications of these transforms to various vibration 

2    3    U 
and heat conduction problems have been developed by Brown *     *      and 

Roettinger3 .    Generally these investigations have been restricted 

to the sine or cosine transform. 



PART  II. 

THEORY 

A.     rormulation of the  Problem 

Consider a circular region in a state of plane elastic equilib- 

rium.    The equations of equilibrium in cylindrical coordinates nay be 

written in terms of the radial and circumferential displacements 

a. 
r 

u 

1    ^""nr            -fc+2    'ö'O- = 0 

Ä+L 

r   ^r           r               v 

(1) 

For a composite, as in this analysis, Eqs. (l) must hold in both regions. 

Constants and variables associated with the core will be distinguished by 

a bar (e.g.Ü )» while the unbarred symbols will apply to the ring, or to 

the whole system,  as appropriate. 

The elastic constant It    is related to the more  familiar Lame 

constants  and Poisson's ratio,  in the case  of plane strain, by 

jk =(Ä+f>/r =i/o-2v) (2) 



and for plane stress by 

i,  =(3A+2r)/>A    =  Cl+S))/Cl-v) 

Stresses in each region may be expressed in terms of the 

displacements by 

We shall take as our dimensions a disc whose outer radius is 

unity and for which the radius of the interface is   8.    Prescribed 

surface tractions on the outer circle are equilibrated by concentrated 

force and moment at the center.    The polar coordinates  (l",-G-) of a 

generic point are measured from the center of the disc and the x   axis« 

Figure 1 is a representation of the elastic system. 

(3) 

(k) 

Figure 1.    Composite Elastic Disc 



It is  convenient to separate the boundary stress into its 

normal and tangential components.    Therefore we express the conditions 

at    r = 1      by 

(5) 

In order to establish the conditions at the center of tne disc 

we consider the requirement that the concentrated central force and 

moment equilibrate the force and moment resultant of the boundary 

stresses. The force will be compactly expressed in complex form terms 

of its X   and y components. The force and moment resultants are then 

given by 

(6) 

^e will first look at a central hole  of radius   £.    Consider the surface 

of the hole to be acted on by a constant shearing stress  •f/6       and by a 

normal stress   &(&)/€ .    The boundary conditions  associated with these 

requirements  are given by 

(7) 

We,«»   = ?AZ 



The condition of equilibrium with the surface tractions requires that 

i 
(8) 

^  {dte-   =M => f = h/2TT 

The condition of concentrated force and moment at the center is obtained 

from the limit as €"* O . 

The boundary problem is completely prescribed when we add the 

conditions that   U, rvT»   O^, and  T^   are continuous at the interface 

between the regions, 

Eqs.   (1),  (U)t  (5)* and the limit of (7)» subject to the side 

condition (8) and the matching conditions at the interface, establish a 

boundary value problem for the disc.    We shall examine the problem in 

the general case and then look at some particular examples in detail. 

fl.    Transformation of the Problem 

The solution of the posed boundary value problem will be 

obtained by means of the finite Fourier transform.    Our definition, 
o 

which is similar to that of Doetsch , is 

Z4=(ZC*)} ^ ^ zCS) e-'* dS (9) 

whose inverse is 



00 .     A 

ZCe-)   =Xzs e
l do) 

The correspondence of Jqs.   (9)   and (10)  is well known from the theory of 
7 

Fourier series  .    Except  for the fundamental analysis by Doetsch and the 

20 
recent work of Maye     , however, the use of Kq,   (9)  as a transform is 

rare.    The  correspondinc Fourier sine and cosine transforms have been 

used somewhat more  frequently for the solution of initial and boundary 

2    3    ^    30 
value problems   *    ' .To obtain the transforms of derivatives we 

apply the definition to the   Tl th derivative of    zfCw,     Integrate once 

by parts, to obtain 

[z^m] = is[z(*-%)] 
-^[Z'-'OD-Z^C-TT)] 

in a circular region O" = TT   and & — "Tf  coincide. Tnerefore if   H COv 

and its  first T\ - 1    derivatives  are  continuous, the constant part of 

Lq.   (ll) vanishes.    Transforms of any derivative of Z wO   can then be 

written in terms of R ^   as 

Uf"V*)] = (is)" {Z(S)} = (is)" 2S (i2) 

The power of the finite Fourier transforms in circular regions is 
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enhanced by this simplification. For any function which is reasonably 

veil behaved it is possible to orient the coordinates to assure the 

required continuity. In the analysis which follows it is assumed that 

Eq. (12) holds. 

The transformed equilibrium conditions £qs. (1) are 

+ i[^v-^«-.]=o 
(13) 

This coupled pair of ordinary differential equations may be 

solved by elementary methods, giving for |5 | £ 2 

ii k*1 M -f*+1) ii     .«"»      .     ii "^"1) 

ilk) 

s"1 A*- 
s+2 "** j 



For   5-0    the eiuaticns become uncoupled, 

< + T < 

V   +7-^ 

7^  ^o 

r1 ^o 

-0 

= 0 

vnose solution is 

11 

(15) 

■u0 = U01 r   -f Uo2 r"1 

^o = V01r    + Y0i r"1 

^nen   |S|=1      the solution ßiven by Eqs.   (lM  is incomplete 

Lecauso of a repeated function,    iiowever,  if we rewrite Eqs,   (13)  for 

s=±i 

(16) 

JLu^4.A±A 
r       * r1 us -is ^T<-^^]     =0 

(17) 

we  ootain the  solution 

Us=  U6i ^   +Üsz^+Us3   +Us^r 

Ar5=. is 4^- U    r' -U    r"x 4- U, 
4^-2        51 52 S3 

+ ^I^+Us^r] 

(18) 
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The transformed stresses are expressed in terms of the 

transformed displacements 

a;s = u [(JUD u/ +^(u4 + c5^t) 

More explicitly, for 5 = 0 

crt0 =2y*aU01 -U01r   ) 

Tn    =-2MY>, r"1 

»flien S =± 1 

""r. 

(19) 

(20) 

(21) 



For S  ^ 2 

13 

o;s = -^ Tw Usir   -C^OUsir 

4.(5-1) U 
33 

r»^      A(s-0(s-2)        r-s 
>s ti s + 

(22) 

t, = 2 ^ ^^U.r^Cs.uU^-' 

*5 AS+ 2       WS4 

-s 

C.     solution and Inversion 

The solution of the disc problem reiuires tne determination 

of eifi.lt  constants  for each value of   5 •  four in each of the rinjä and 

the central core.     The eight boundary  conditions to be satisfied are 

(a) 

(23) 

(b) 



Ik 

(jr4 CS) - ö"rs (l) = 0 (c) 

Ts CO -^(O  =  0 (d) 

^»(0   -U5(Ü =0 (e) 

(23) 

ar,(« -AT, (0 = 0 (f)0"1. 

^(o =9$e-1   = ^ L gC^)e"1-d«- 
yÄ-lr^ 

tr/e) = fs c- = If in e-W 

(e) 

(h) 

where (g) and (h) are to be satisfied in the limit.    Evaluating the 

integral in (h) gives 

Cn/lTT (5=0) 
f $   =  ) (210 

1^0 (S = 0) 

We will exanine the boundary conditions for three classes of 

values of   5, that is,  for   3=0,   |<S| = 1   , and   |s|^2   . 

If we express the boundary conditions explicitly for   S = 0 

we can write for the Y0.    constants 

V = -*oA/* (b) 

(25) 

^V02   -/ Vox  = 0 (.) 
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Cont. 

where 

ffl = ffl = n Air (26) 

Conditions  (b)  and (h) arc redundant.    As a result, one constant   (we 

choose VI j) oust remain undetermined.    The undetermined constant corres- 

ponds to a ricid rotation of the system.    The constants are found to be 

V0l =-fiAir/. 

v01=-r\MTrz (27) 

V0, = M Cy. -^ ) i'V+Vfj:  + Y0 j 

The boundary conditions for the Ug< coefficients are given 

explicitly by 

AU.,   - U.,   = OjQ/2u (a) 
(28) 

^uol-/,r
lu0i-ciu01+/s-luM=o (c) 
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(e) 

(28) 
Cont. 

(S) 

Application of the limiting condition to (g) shows that 

1^=0 (29) 

The remaining conditions, expressed in matrix form are 

s1 

Jki1 

7* 0 
% 1 

■/* 
-/i s1 

u.. 9. 
2. 

0 

1 -&1 .Üoi. .0 

(30) 

from which we find 

uoi = 
9«CA*+^) 

VDo 

^02 = 
_ g^O^j-r^ 

VDo 

Ü    =i*^ 
01 ZD. 

(31) 

where 

D0 =^^ci-s2) -fy j^a^2) 



IT 

Conoider next tae conditions for  ISl - 1 . oubötitutin, 

-qs, (16) ana (21; into ^-is. ^23; ^ives tne explicit conditions 

2k 
i»-2 

usi +*^~TrrUs< "-9SAA U; 

1-2.      61 52        -4^ZWS4 S/    ' 
it) 

(c) 

.i^liy    -2Fi"JU4A -^-^U,4 =0 
1-2. Sl        T SZ ^vj, 54 

(12) 

-I 
(d) 

(c) 

(f) 

.^Lö^s-'O..-^3-^,-^00^ = 0 
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(6) 

(32) 
Cont. 

Hf-Ü^Wc-Ü^^U.^O (h) 

From Eqs.   (6),  (8), and (9) we find 

9S  =9* - ^ (33, 

Combining nqs.   (32a)  and  (b)   gives   Us+;  (g)  and  (h)  give   U^ . 

Taking  (g)  or (h)   in the   limit  as   G — 0 gives    (J62   .     We  obtain, 

thereby 

U.. =0 SI 

US4  - 4^a+l) (3M 

Elimination of these  constants  from Eqs.   (32)   leaves   five 

equations  in  five unknown  constants.    The constants   U«.    and   U.% 

appear only  in  combination.     «e  can eliminate their difference by 

combining  (e)  and (f).     The  remaining four equations  have three unknown 

quantities.     The equations,  however,  are redundant.     One may therefore 

be eliminated.    We may write  the remaining three equations  in contact 

form.     Let us  define 



1^ 

xsl- 4U SI 

k-1 
X5i= 4-UM 

Os, = - Q.,=-  ^ 
i^U^iXi+O "   Vä^

+1)
^

+
^ (35) 

zr. =1 ^ =-(2A+l) 

.Ve mac now express tne remaining equations in matrix form. 

1 

A      T^k 

The  solution to Eqs,   (36)  is 

i°\ 
lx». r-i S^irt+DyX^lJ 

(36) 

or) 

1    I»» 
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oSJ --^g^-^ii^K.-^ 

-^[jki -i^a+iK1 -ax+jii~2i)%*] ]o. (37) 
*J      Cont. 

where 

One constant remains arbitrary.     (We choose   Uci)«    The remaining 

constant is then given by 

We have expressed the solution for   S = db 1 .    The two terms 

in the solution for each of the constants correspond to the normal and 

shear components of the boundary tractions. 

Let us next examine the constants for |3| ^ 2-.    We observe 

first that if we use äqs.   (22) to explicitly state boundary conditions 

given by £qs.  (23g)  and (h), we obtain relations of the form 

38) 

(39) 

UsarQi€        U*i   +a^    U&3  ^a^c    q5 

0S4=  b^U,,   +bz£a(5-üUs3   t^Q, 

where Q;   and b*. represent collections of constants.    If we take the 

limit as C->"0   for  6>  2 , we find 
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Corresponding statements can be written for    S$ "^ f fron 

which we  find 

u«. = uel = 0 S3 51 (5^-2) (hi) 

As in the case of the indices   S~0    and  Ssil  »it does not matter 

how the normal stress is distributed at the center. 

For ease in handling the equations, it will be convenient to 

express the indices in terms of the positive integer t, «  defined 

t = Is! 

We can now take advantage of the symmetry of form for positive and 

negative indices by defining 

(U2) 

IX. X.u. i =   Jk*-i    Luti LU] 

IX X-n. | =  ^ft + l) [Ut, U-ta] 

[x<5 x-.,; |= fii-l) [Ut, Ü.tl] 

IX* x.<*. 1        uktt-l)   m 
1 =  V^-i-    LU*'» U.ti] 

[X« x.t,; 1 =  ^Jt-i    Lu„ Ö-t+] 

[Xu x..»; 1 = fiCt-i) [Ütj ü.«] 

(U3) 

We  also define 
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0« = 9 */4 

A, = -1 X2 = 1 

If ve recombine the remaining six conditions of Eqs.  (23) in pairs we 

may write the boundary conditions explicitly and compactly in matrix 

form, as is shown in £q.   (1*5). 



23 

- < 

L 
r 

o 

o o 

—       o 

II 
^r       s        5}        *        a 

>< X X >< X 

$ 

o 

X 

1 
«-o u 

o N Q 

1 

X "^ 
v>« ^> 

G /^ 
4> + —« 

1 

«i 1 1^ 

1 
1 

,*- 
■u 

gd /^ <5 
wO ^N 

^ •-> + 
»    1 «—• ** arfK 

1 ■f S^ !•* 
Ä 

V 

'K 

i a 
o o 

o —' o 

(U5) 

i 

CXJ 

i 

+ 

uO 

v>0 

I 
+ 



21» 

The solution of r.q. {U5) may be written in relatively compact 

form if we define the following collections of terms: 

w =pJtU*2)  -yMi+2) 

X = jjJt-ßi 

Y = f-p 
Z = p(Si+2) +/.-A 

z = ^(1+1) +ul 

-2rt2-l)Jl2YZ S1* 

The solution, then, is 

XM r^Q.^AjAZZ -a+l+Aj)i2YZS2(t"0 

+(t+l)Jt YZ S   \ 

-Aj^'i'Yl +4i;a+l)x]si 

(W) 

(kr) 
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2 

-a-iXtH-i +A-)A2rz szt 

^[t^YZ + ^a.OAJS^10] 

S4 ^^([v^-iK^ 
J = l 

j = i 

-2Aj(rt-l)X^    -Ci-l)Ct+J+Aj)iiYS 

+[t^lY+2X]saCt*1>] 

2* 

(1*7) 
Cont. 
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The solution is now formally complete.    The coefficients have 

all been calculated, and nay be summed to give the desired functions. 

The inversion formula, El.   (10), is somewhat more manageable if broken 

up into sine and cosine series.    Inversion of the results will therefore 

be effected using 

(1*8) 

00 

ftll 

00 

J {IX Cr) + Z.5 it] co«. (s0) + li ZsCr) - Z.,^ tU fse)j 
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tJART  III. 

üXA:IPLEJ 

A,    Uniform and Concentrateu llorma.1 Loads 

As tne first example we snail look at the composite disc 

loaded in its plane by a unit normal stress over the arc    (-4/2,4/2), 

The boundary conditions may be explicitly expressed 

ID      elsewhere (^9) 

The  corresponding conditions  for the transformed problem are 

(<p/zjr (5=0) 

^5    "    [^n.(S<P/Z)/jtS (5^0) 

f* =0 

«  Iiiü.tinb case of the distributed normal load is  tne con- 

centratod unit normal force.    To obtain this  case from the  distributed 

load, wc  first  divide by    2 ^ür^(^/Z)       to normalize the  force. 

As <&  vanishes  the  load approaches a concentrated force. 

(50) 
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The boundary conditions  for the natural problem can be written 

o-,(l,-e)=a (4) = * 
(51) 

^   U elsewhere 

The transformed condition for the concentrated normal force is therefore 

(52) Ss^iV      ^=o 

Substitution of these values into Eqs,   (29) and (31) gives, 

for    5=0 

Distributed Load Concentrated Load 

(53) 

Uo1 - 4vi>0    
u'"   ♦T/'D. 

(7   -±(i±il     n  -   ■t+1 
u

ol  - i|.T|l>0 
u01 -    4TTDo 

Ö0i  = 0 Üol = 0 

^e will assign the value     YAJ = 0       to the arbitrary constant.    Since 

the moment 1*1   is zero, Eqs.   (27)  give 

Voj   =     Voj    =  0 (5M 

The constants required to evaluate the coefficients  for 

|S|  =  1      .Je obtained from Eqs.   (3M,  (37), and (38).    Eqs.   (50) and 
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(52)  show that  for botn the distributed and the concentrated normal 

load 

9-s=gs ^ = 0 (55, 

The constants needed for    5 s±  1   are obtained using the quantities 

defined in Eq.   (3t)).    In particular, we find for the present case 

Q... =  Q.. = - ij'pU^Xl*!') 
(56) 

Q-u = Q«  =0 
iVe will define the arbitrary constants 

U.,3    =   Uu     =0 (57) 

i«/itn these results, we observe from Eqs.   (3M and (37) that 

and that these constants are all real.    From Lqs.  (18) and (21), 

tnerefore, we find 

(58) 

^-1   =  ^1 ^r.-l    =   CJTj ö; j = (% O-l 

(59) 

ar.j = -nri      T«! = - Ti 

for the barred as well as the unbarred values. We note also that the 

even coefficients are real and the odd coefficients are imaginary. 

In a similar fashion, using Eqs. (Uo), CO), (M) to find 

the constants for |q ^ 2 , we find that 
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U-sj ::: ^s(s-i) U.ij =  UsCs-p (60) 

In other words, the constants, associated with corresponding positive 

and negative indices and whicn multiply the sane power of T , are 

equal. Therefore, Lqs. (ll*) and (22) show that 

U -s = "Us     ^-5 = ^ri    ^-S = C^s 
(61) 

Here also, tne even and odd coefficients are real and imaginär;', 

respectively. 

The inversion of the transformed solution requires only the 

cosine terms of riq. (1*8) for the even coefficients and the sine terms 

for the odd.    Thus 

U   =  U0  -f- 2y>    U$   oa*'(&) 

(62) 
00 

'I OT =   2 1/   rvTc -Ai^ru C6-0-) s 

with corresponding formulas for the stresses. 

The solution is now completely determined in series form. 

The necessary coefficients are given by Eqs. (lU), (16), (18), (19), 

(20) and (21). The boundary values are given by Eq. (50) or (52) 
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dependinf; on tne loadt 

J. Unii'orm and Concentrated ohear Loads 

Tae loading of a disc by a unit snear stress distributed 

over tne arc ( -G»/1  , ^/z? ) jives the boundary condition 

T^(i.-e)=-f(e)=l 
\\J elsewhere (u3) 

cr/i^ - g(^) = o 
i'ae boundar:,' condition for the corresponding concentrated load is 

\ 0 elsewhere 

Ss =0 

(6M 

(65) 

■Fs    ^ TTT (66) 

for tne distributed and concentrated loads, respectively.    In each 

case 

(67) 

We now can determine the coefficients needed to evaluate the 

series  for displacements  and stresses.     If we assign to the  arbitrary 

constant      I _. the value 
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^oi      *  " ^0i (68) 

we  can write fron uqs.   (27) 

Vo,   = V2^ 

Vo2    =  -"fo/2/> 

(69) 

From Eqs.  (29)  and (31) we  find that the coefficients   UoJ        all vanish. 

To find the coefficients for    S = .+ I , we observe first that 

the only non-vanishing right hand members of Eqs.   (32) are in  (b)  and 

(g).    oince these are odd in   S    and imaginary the constants    Üs: 

and     U5!      will have the same property, if we again define 

U1S  = U.ls =0 (70) 

From Eqs,  (18)  and (21), therefore, we find that     U^ ,   0~r5      , and 

^"AS are 0<i<i ^n    5     and imaginary while nr$    and    [5  are even 

and real. 

For     |<S|£ 2.    ,  a symmetric or concentrated shear load is 

seen from Eqs.   (Uo),  (U3),   (kk) and (U7) to have the property 

U.äj-IVJ, asi = - U^.j, (7i) 
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::jerefore       "U5   ,    (JJ.S       ,  and     OQS        are odd in    S    and pure ir.at;inary 

w.ii-.e   f^s       an<i   t's    are even and real.     CciriOir.inr tae terms  in the  fore 

shown by  rJq.   (UB)  we  obtain 

u =: 21)   u5 uiUCsB-) 
Sil oo (72) 

or   =   Ar0    +   1 y   Ars cxra (54) 

wnere the coefficients have all been determined, öimilar expressions 

hold for tae stresses and tiie formulas hold for both tne unoarred and 

barred variables, 

C.    Remarks on an Aroitrary Load 

Tne examples  Just  cited were  chosen for illustrative pursoses 

because of their simplicity.    However,  any load may be treated by the 

same technique.    Ae can break an arbitrary load into four components, 

tiiat is, the even and odd parts of the normal and shear components.    The 

even part  of the normal component  and the odd part of the shear component 

lead to coefficients    Lls  »    O^.^      «  and    ^AS       which are even in S 

and real,  and to rr%    and    Ls   which are odd and imaginary.    The odd 

part of the normal component  and the even part of the shear component 

lead to coefficients witn the opposite character.    Thus each function 

when expanded in the  form of Eq.   ('»8)  is explicitly real.    The solution 

for any  load can then be written in series  form, where the  coefficients 

are Riven by the formulas  developed above. 

D.     The Homogeneous Disc 

The homogeneous   disc may be treated as  a limiting  case of the 
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coaposite disc  in several ways, such as  letting tne interface radius 

8      vanish or become unity, or Dy assigning the same set of values to 

the material constants  in each region.    Alternatively, the  aomogeneous 

disc may be treated as  a boundary value problem in one region.    The 

technique is straightforward by any of the methods.    The solution has 

been obtained both by solving the problem directly and by equating the 

material constants.    The agreement of the solutions provides a check on 

tne calculations,    because of the relative simplicity of the series co- 

efficients, we will write them explicitly,    rfe prescribe the values 

U..,   = U.s = 0 Vot   = - V0l (73) 

to the rigid displacements,    ^e obtain the values for tne coefficients as 

follows: 

For  S   =  0 

^o  =    So ^0 = ^0 A' 

0*o =   9o 
For 5 -±1 

(75) 

"^ "vTÄTn ^l)f'   ^ -^^^ 
+■ >i^4l) [(3^42)C2i4i)rV2ia + 2ia+2)i^r] 
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^=Iclfö[-Oitnr-]+^ff(r-r-') 

(Cent.) 

For I 51 ^ c  it will be convenient to work only with positive values 

of 5 . Je  combine the positive and negative values of the index by 

defininc 

(76) 

rv 

^-9»-^S-»        F.^»-^-. os=gs -a- 
where the symbol d" is assigned the value plus or minus one, as appro- 

priate. The coefficients for the series are then 

^5 

•^[st^LCs-a^Fjr5-1 
^ ^-CS-D l-" " "» ' ' ^ -' -SJ- (77) 
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^rs   ^CTr.-s   = f (-(5-2)(&s-K F.  )r$ 

+ [5GS +l(s-2)Fs] rs"^ 

cr^s + 2raV4 ~- f {(s+2UGs+i F,. )rs 

-[sG4+ l(s-2)F$]r
,'a] 

(77) 

rs ♦ yr.. = ^{-S(L&$ -FJ 
s r 

^[csG. -(s-2)F5] rs"a] 

We have now exhibited explicitly the coefficients required for 

the solution in series form for any loading on a homogeneous disc. 

For the four specific loads described above, we can carry the 

solution a bit further. For the unit normal load, distributed over cm 

arc 4», the explicit solution is 

_1 j" ^ 
( 

Ss2 
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s = z 

00 

S-2 

00 

y (r*-rs-Z)uU^(b<*>/l)^(sQ) 
00 

+ 

S:2 

(78) 
(Cont.) 
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Let us define 

oc = 4^ f 0- (5 = <X>/l - -G- (79) 

Combining the terms of 'iL\%   (77), we obtain series expressions of the form 

CCr.w) --   >   ri Sg-^ 

r.co)   =   2    i  s 

»si 

(80) 

S = i 

These series are all convergent inside the unit circle, to the formulas 

17 given by Jolley    . 

CUw) = -{\/l)JU^ Mfr.o)) 

-1        r-a^^o? 
CO«' OS 

H(r,a)) 
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wnere 

MCr.co)  =  1 ■•- r2  -Zrocraoj 

In the same fashion we can examine each of the other loadings. 

For the concentrated loads we need two more series expressions, 

s-\ 
(82) 

Eqs. (31) and (82) hold in the interior of the unit circle. By analytic 

continuation we can take them to hold at those points on the unit circle 

where the formulas exist. It is precisely at the discontinuities of the 

loads that the expressions become singular. 

On the following pages we tabulate the closed form solutions 

for the four problems examined.    The formulas for concentrated load 

,25 
agree with those derived from the stress  functions given by Hindun 

28 
and Hg    •    The concentrated normal load disagrees with that denvd 

22 
from f'ichell    , but apparently a term was left out of his formula. 
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DISTP.IJUTED Uiir UOHKAL J'Ii^öJ 

) 

+ ^[a+i)C(r.oc)-^ruoc + U+i)C(r>0)^i<n,/3 

+ S(r>oc)^n. «c   - S(rJß)-*^n./3]J (83) 

-»-2[S(r,oc) 4-5Cr,ß)] - 2r"1[k(r.öc)^vcc+ ^^3)^.0] ] 
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)IJTRiiiUT£D UI.IT iiiLAR JTHJ-JJ 

* b L J 

+ (r tAr-OLCfr.oc) - C(r,0)] -S(r.<<)^^oC fS(r^)^u^ 

r n T 

+ ao)»-'l[K(r.ß)cx^ß -KCr)<)cc^<] (eM 

+U+3-2r->)[k(r.K)-k(r.6)]-UMV-1[kM)c(^<-kM)^ 



1*2 

CONCEIITRATKD UIJIT NORMAL FORCil 

■U = ^{-Mr + [a-^fl-^Cl + n+2(Jta)A3r]-^- 

■i -»-^[a+Oar^co^OfSCr^^rcOj-Cr-r-OKCr^)] 

4 

+-2 [5(r^) Gou.^ -UuKC^-^^J+Cr-KMZCr^)] 

(85) 
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:z.:c.ii:':?jiit.z u:^: j;:tAH OTP.^UO 

+f[(JL4-l)C(rl€-)^^-9- -SCr.^)CcU/ö-] 

-hCr-r-MZCr.-e-)" 

-^   *• •- JJ2C4 + 1) 

l U+l)r (ö6) 

+ a-f'z)2C^)-(l-r-')?Crn) 
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PART IV 

NUMERICAL RESULTS 

In a formal sense, the solution is now completed and all 

required numerical values can be obtained from the summation of the 

series. In practice, however, this summation can not be done for 

certain configurations. In particular, if the ring thickness, 

A = 1 *" *    , is small, convergence is so slow as to be meaningless. 

We can see this more clearly if we look at one of the series expressions 

in detail. 

U  = u0 + u.  -^[[a^Ca^aJS"] r*'1 

4SI     -S-i 
(87) 

where 

Ds = e, + (Cz + e,s2)Sxs   + e4S4t (88) 

and where     Oij,    bj  ,  Cj    . Oj    , and   6:     are constants dependent on 

material properties and independent of l"    and   S .    This series repre- 

sents the formula for radial displacement in the annulus of a composite 

disc of unit outer radius  loaded by normal stress uniformly distributed 

over the arc (-♦/Z,*/*-).    The  formulas for other quantities are similar. 
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Terms of the type C5S   d      f » for example, increase for a 

substantial number of terms before starting to decrease.    For a small 

value of «^   the factor -4*^.(3^/2) also increases with S  for many 

terms.    As  a result of these  conditions convergence is  very poor in 

many cases.    For example,  a case in vhich A   and 4*   each had the 

value  .01 was run for five thousand terms with no sign of convergence. 

A scheme was developed for improving the convergence of the 

series by establishing as a first approximation the solution to the 

case  for the homogeneous  disc.    The approximation is then corrected by 

adding to it the difference between the corresponding terms of the 

composite and the homogeneous  disc solutions.    Since the terms of the 

two series  approach one another asymptotically this offers a chance 

of improvement.    Two forms of this scheme were used.    In one, the 

material properties used for the homogeneous disc were those of the 

core region of the composite disc; for the second the properties used 

were those of the ring.    In the homogeneous disc, the only elastic 

property affecting the stresses is  Poisson's ratio.     This dependence 

shows up in the series in only the term for   S=-tl«    Therefore, regard- 

less of the form used for the first approximation, the speed of convergence 

for the stress series is the same.     For the displacements, however, 

the choice of first approximation does maiie a difference.    It was found 

that about half as many terms  are required if the ring properties are used. 

The bulk of the computations, however, had been performed using the 

properties  of the core.    These computations were spot checked using the 

more  rapidly convergent technique. 
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Numerical values have been ootained for 3electeii points 

on tue outer surface  and along the interface for the case of unit 

normal load acting  on  a composite  disc  in  plane stress.     Two confi6- 

urations  of material constants aave  been  u^ed,   corresponding  respec- 

tively to a  layer of ^old or alumina on  a base of steel.     The  proper- 

ties of tnese materials are shown below in Table  I. 

Table I,    Material  Properties 

Materi .1 A*(psi) >) Jk_ >V>* 

dteel 1.153(10)' 0.300 1.86 1.000 
b 

Qola U.OlMlO) 0.U20 2.^5 0.3^81 

Alumina 2.086(10) 0.2U6 1.3'' 2.1*10 

Values  are  cairulated for a dimensionless  configuration  of 

unit radius, unit shear modulus in the  base region, and unit normal 

stress.    We can  convert results to a system with dimensionalized 

luantitios.     Let      HC^j^)      and    C (r ,Q}     be trie  displacements 

and stresses  in  a disc  of radius O   , witn  a snear modulus ^x   in  the 

core,     we can convert the dimensionless  results  to values  for a 

corresponding dimensionalized disc by  formulas  such as 

vi'rß) =^-uCr/p,^) 

o-(r.e-) = o-Cf/e.o) 
Table II lists some results for the disc wnose layer 

thickness X   and load width 4* ooth are equal to 0,01.  Values in the 

vicinity of tne ^.oad, both on the surface ana -t the interface, are 

(O) 
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given.    A Jumrj discontinuity in the hooc 3tress at the interface is 
A B 

indicated by listing as    G"^ the value in the ring and as CT^, 

the value in tne core.    A list is shown for botn a ßold (soft) and 

alumina (hard)  layer on a slcel core.    Figure 2 snows graphically 

tnese and some other results. 
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Table II 

Part A. Gold Layer on Steel 

100 Surface Tnterf*ee 

X 100 u 
^ 

100 U SV T^ V 
0.00 1.833 0.797 1.096 0.612 0.000 0.219 0.063 
0.05 1.831 0.798 1.096 0.610 -0.023 0.216 0.064 
0.10 1.823 0.799 1.091» 0.603 -0.045 0.217 0.066 
0.1$ 1.809 0.802 1.091 0.594 -O.O66 0.215 0.069 
0.20 1.790 0.805 1.067 0.580 -O.O67 0.212 0.092 
0.25 1.763 0.810 1.061 0.563 -O.IO6 0.209 0.097 
0.30 1.730 0.615 1.075 0.543 -0.123 0.205 0.103 
0.35 1.666 0.621 1.068 0.519 -0.139 0.200 0.109 
0.1*0 1.631 0.628 1.060 0.494 -0.153 0.195 0.116 
0.i»5 1.560 0.835 1.051 0.467 -0.164 0.169 0.123 
0.50 l.W»l m 1.042 0.436 -0.173 0.183 0.130 
0.55 1.321 -0.1U8 1.032 0.406 -0.180 0.177 0.137 
0.60 1.2Vr -O.lUO 1.021 0.376 -0.184 0.170 0.143 
0.65 1.188 -0.131 1.011 0.349 -0.187 0.163 0.149 
0.70 1.138 -0.122 1.000 0.319 -O.I87 0.156 0.155 
0.75 1.097 -0.113 0.988 0.291 -0.185 0.150 0.159 
0.80 1.060 -0.103 0.977 0.264 -0.182 0.143 0.163 
0.85 1.029 -0.091» 0.965 0.236 -0.177 0.136 0.166 
0.90 1.001 -0.066 0.95'» 0.214 -0.172 0.129 0.166 

0.95 0.976 -0.077 0.9U3 0.191 -O.I65 0.123 0.169 
1.00 0.95i» -O.O69 0.932 0.170 -O.I56 0.116 0.169 
1.25 0.871 -0.033 0.660 0.093 -0.116 0.089 0.156 
1.50 0.817 -0.009 0.83^ 0.050 -0.064 0.068 0,136 
1.75 0.778 O.OOU 0.795 0.028 -O.056 0.053 0.116 
2.00 0.7Vr 0.011 0.762 0.017 -0.041 0.042 0.097 
2.25 0.721 0.013 0.732 0.011 -0.030 0.034 0,081 
2.50 0.697 0.012 0.706 0.006 -0.022 0.028 0.066 

2.75 0.676 0.010 0.663 0.006 -0.017 0.024 0.058 
3.00 O.656 J,OOB 0.661 0.005 -0.013 0.020 0.050 

3.25 ü,637 0.006 0.642 0.004 -0.011 0.016 0.043 
3.50 0.620 0.005 0.623 0.003 -0.009 0.015 0.038 

3.75 0.603 0.003 0.606 0.003 -0.007 0.013 0.033 
i».00 0.588 0.002 0.591 0.002 -O.OO6 0.012 0.029 
U.25 0.571» 0.001 0.576 0.002 -0.005 0.010 0.026 

U.50 0.560 0.001 0.562 0.001 -0.004 0.009 0.023 

'♦.75 O^ 0.000 0.549 0.001 -0.003 0.006 0.021 
5.00 0.535 0.000 0.536 0.001 -0.003 0.007 0.016 

•in a eoaposite disc of unit radius loaded by a unit tensile radial stress 
over the arc (-0.005, 0.005) and by a concentrated reaction at the center. 
Layer thickness is 0.01. 

. 
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Table II 

DISPLACEMEBTS AID STRESSES 

Part Bt    Alualna Layer on Steel 

55 

100 Surface Interface 
X 
0- 

100 u 
^ 

100 U °-r tr« i 

0.00 1.151 1.271 1.020 O.U85 0.000 -0.227 0.006 
0.0$ 1.150 1.271 1.020 0.1*83 -0.017 -0.225 0.006 
0.10 l.ll»8 1.269 1.018 0.1*80 -0.031» -0.220 0.008 
0.15 1.1U5 1.266 1.017 0.1*71* -0.051 -0.211 0.011 
0.20 1.139 1.262 1.011* 0.1*65 -0.066 -0.199 0.015 
0.25 1.133 1.257 1.010 0.1*55 -0.082 -0.181* 0.019 
0.30 1.12U 1.250 1.006 0.1*1*2 -O.O96 -0.166 0.025 
0.35 l.UU 1.21*3 1.002 0.1*28 -0.109 -0.11*6 0.031 
o.uo 1.101 1.236 0.996 0.1*12 -0.120 -0,121* 0.038 
0.1*5 1.081» 1.227 0.990 0.395 -0.130 -0.100 0.01*5 
0.50 1.059 • 0.981* 0.377 -0.138 -0.075 0.052 
0.55 1.033 0.208 0.977 0.358 -0.11*5 -0.050 0.060 
0.60 1.015 0.198 0.970 0.339 -O.I5O -0.021* 0.067 
0.65 0.999 0.187 0.963 0.320 -O.I5I* 0.001 0.075 
0.70 0.985 0.176 0.955 0.301 -0.157 0.025 0.082 
0.75 0.972 0.165 0.91*7 0.282 -O.I58 0.01*8 0.088 
0.80 0.960 0.151* 0.939 0.263 -0.158 0.070 0.091» 
0.85 0.91*9 0.11*2 0.931 0.21*6 -0.157 0.090 0.099 
0.90 0.938 0.131 0.922 0.229 -0.155 0.108 o.ioi* 
0.95 0.927 0.121 0.911* 0.213 -O.I52 0.121* 0.108 
1.00 0.917 0.110 0.906 0.198 -0.11*9 0.139 0.111 
1.25 0,871 0.063 O.865 0.135 -0.127 0.186 0.119 
1.50 0.830 0.028 0.827 0.093 -0.101» 0.201 0.116 
1.75 0.791* 0.005 0.792 0.06U -0.081» 0.197 0.107 
2.00 0.761 -0.010 0.761 0.01*1» -0.068 0.185 0.097 
2.25 0.731 -0.017 0.732 0.031 -0.055 0.169 0,087 
2.50 0.705 -0.020 0.706 0.021 -0.01*1* 0.153 0.077 
2.75 0.681 -0.020 0.682 0.015 -O.O36 0.137 0.068 
3.00 0.659 -0.019 0.660 0.010 -0.030 0.122 0.060 
3.25 0.639 -0.017 0.61*0 0.007 -0.021* 0.109 0.053 
3.50 0.621 -0.011* 0.622 0.005 -0.020 0.097 0.0l»7 
3.75 0.601* -0.012 0.605 0.003 -0.017 0.087 0.01*2 
U.00 0.588 -0.010 0.589 0.002 -0.015 0.078 0.037 
lt.25 0.573 -0.008 0.571* 0.002 -0.012 0.070 0.033 
1».50 0.559 -O.OO6 0.560 0.001 -0.011 0.063 0.030 
»♦.75 0.51*6 -0.005 0.51*7 0.001 -0.009 0.058 0.027 
5.00 0.531* -o.ooi* 0.531* 0.001 -0.008 0.052 0.025 

*in a composite disc of unit radius loaded by a unit tensile radial stress 
over the arc (-0.005,0,005) and by a concentrated reaction at the center. 
Layer thickness ia 0.01. 



% 

PART V. 

DEFORMATION COEFFICIENT OF FRICTIOH 

If a load is applied to a portion of the surface of a 

body there will be an associated deformation. There will then be 

stored in the body strain energy which is equal to the work done by 

the }oad in deforming the body. We shall make certain assumptions 

regarding the behavior of this strain energy when a load is trans- 

lated an infinitesimal distance on the surface. From these assump- 

tions we will determine a friction force which leads to the idea of 

a deformation coefficient of friction. It must be emphasized that 

this deformation concept is not suggested as an alternative to the 

more commonly suggested mechanisms such ns rupture of asperities and 

sticking. Rather it complements them as an additional possible 

mechanism« 

Consider the case of a constant normal stress acting on a 

surface element of the disc. A neighboring state of loading is 

defined as a condition in which the load has been translated circum- 

ferentially an incremental distance, say OX . Clearly the amount 

of strain energy in the disc is unchanged as the system goes from 

one state of loading to a neighboring state. In a local sense, 

however, there has been a change. The radial displacement of each 

point on the surface has changed to that of its neighbor. Part of 

the disc has increased in strain energy while some has decreased. 

Specifically, a certain amount of work is done by the normal stress 

acting on that part of the loaded segment in which the magnitude of 
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the deformation increases.    An equal amount of work is done by the 

deformed body over that part in which the deformation decreases. 

The basis for the postulate of a deformation coefficient of 

friction stems from the assumption that the strain energy added to 

the system is supplied by the action of a circumferential force, 

while the strain energy released by the system is dissipated in the 

form of heat, noise, or other non-reversable action. 

Although the model does not distinguish between sliding and 

rolling, the phenomenon is somewhat easier to visualize if we think 

of a rigid roller indenting a surface as it rolls.    Work is required 

to deform the surface ahead of the roller.    The energy released by 

the restoration of the initial configuration behind the roller is 

assumed lost.    Siakins    suggests that interaction of molecules of the 

mating surfaces during sliding causes an additional dissipative 

effect not accounted for in this model.    This interaction would be 

missing during rolling, however.    He suggests, therefore, that the 

model is more realistic when thought of in terms of rolling contact. 

To calculate the deformation coefficient we shall consider 

the elastic deformation of the surface due to a normal stress   Q    . 

With reference to Figure 3, divide the loaded half-interval into n. 

segments of width   S^T   , where   Sx    is the amount of the circum- 

ferential displacement.    Associated with this displacement, the 

radial deformation of point   X {   becomes   U ^.j   .    The work required 

to deform the loaded surface in the   I th interval is 

•Thomas E. Simkinst    Private communication. 
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The expression for the last Interval is one half of this.    Summing 

over the pertinent half-range and simplifying gives 

Since     o AT is small and 1\    is large * we may write 

(91) 

The force P required to effect the translation must, by 

hypothesis, provide the energy SW. Therefore 

p = sw/ix  = g(u0 -un) (93) 

In a disc of radius p  loaded by a uniform normal stress 

Q  over an arc of width 4* , the total force F exerted by the load 

is 

F = g ^ <s*) 
The coefficient of friction P is defined similar to the usual form 

r = |P/F| = |u0 -un|/pct> (95) 

where the absolute value must be taken since the model does not 

distinguish between tensile and compressive forces. Since the defor- 

mation is directly proportional to the intensity Q of the stress, 

the friot?en coefficient is a linear function of the normal force 
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applied over a constant element of arc« 

To illustrate the computation, let us again use the caret 

to distinguish dimensional quantities. Then 

aad 

r   = 3.^(10)"S|g| (98) 

The friction coefficient due to the deformation is therefore 

quite small.    For loads of moderate intensity, the effect is negligible 

compared to other friction mechanisms. 

When the loaded are width <£ is small the friction coefficient 

is essentially independent of 'P for a fixed ratio Jk/& ,    Results will 

be given in texms of the DFC, that is the coefficient which multiplies 

the stress to obtain the conventional coefficient of friction.    Shown In 

Figure 1» is the behavior of the DFC for  ^ =0.01, for both cases, gold 

on steel and alumina on steel.    Table III lists some values of the 

normalized friction coefficient for these two cases. 

u  = (g p/p ) uCi,^) (96) 

^ (97) 

Applying the data for gold on steel as shown in Table II, we obtain 
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Table III 

DEFORMATION COEFFICIENT OF FRICTIOIJ 

Part A,    Gold Layer on Steel Base 

DFC    X (10)8 (in2/lb) for prescribed <t> 

X/<*> 1.0 

1.23 

0.1 0.01 

1.1*7 

0.001 

0.0 (All Base) 1.U5 1.1*7 

0.00? 1.2l4 1.1*6 1.1*9 - 

0.01 1.25 1.1*7 1.1*9 - 

0.02 1.27 1.1*9 1.51 - 

0.05 1.33 1.56 1.58 w 

0.1 1.U3 1.67 1.69 1.70 

0.2 I.65 1.90 1.92 1.93 

0.5 2.61* 2.70 2.71 2.71 

1.0 3.31 3.1*0 3.1*0 3.1*0 

2.0 - 3.71 3.73 3.73 

5.0 - 3.81 3.81* 3.85 

10. - 3.82 3.86 3.86 

20. - - 3.86 3.87 

50. - - 3.86 3.87 

100. - - 3.86 3.87 

200. - - - 3.87 

500. - - - 3.87 

(All Layer) 3.31 3.82 3.86 3.87 
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Table III 

DEFORMATION COEFFICIENT OF FRICTION 

Part B. Alumina Layer on Steel Base 

DFC  XUO)8 (in2/lb) for prescribed <P 

0.0 (All Base) 

1.0 

1.23 

0.1 

1.1*5 

0.01 

1.1*7 

0.001 

1.1*7 

0.005 1.22 l.U - - 

0.01 1.22 1.1*1* 1.1*6 - 

0.02 1.21 1.1*2 1.1*5 - 

0.05 1.18 1.1*0 1.U2 - 

0.1 1.15 1.36 1.38 - 

0.2 1.06 1.26 1.28 - 

0.5 0.72 0.97 0.99 0.99 

1.0 0.56 0.78 0.80 0.80 

2.0 - 0.70 0.72 0.72 

5.0 - 0.68 0.69 0.70 

10. - 0.68 0.69 0.69 

20. - m 0.69 0.69 

50. - - 0.69 0.69 

100. • - 0.69 0.69 

200. - - - 0.69 

500. - - - 0.69 

(All Layer) 0.56 0.68 0.69 0.69 
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PART VI. 

COHCLUSIONS 

Th« finite Fourier trans font has been used to develop a 

field solution for a eoaposlte disc in a state of plane elastic 

equilibriuB.    The «ethod has the advantage of being explicit compared 

to aore familiar Methods.    No prior knowledge of the solution is 

required.    On the other hand it has the disadvantage of being somewhat 

cumbersome, and it does not make use of the accumulated collections of 

known solutions to the biharmonlc problem. 

The properties of the finite Fourier transform cause the 

method to have merit for circular regions with all boundazys concentric 

circles.    The problem examined in this investigation was a fundamental 

elasticity problem of the first kind.    If displacements were prescribed 

instead of stresses the technique should be equally useful*    In the 

event of mixed boundary conditions, however, the method msy lead to 

difficulties associated with transforming the boundary conditlonb. 

In the present problem the transform of the pair of partial 

differential equations in two Independent displacement variables 

reduces to a pair of ordinary differential equations.    These are 

solved explicitly.    The Inversion of the transformed solution is 

obtained by summing the series of solutions to the transformed problem. 

The numerical evaluation of the sum was accomplished with 

some difficulty.    In most of the esses of interest, direct evaluation 

could not be performed«    Convergence was obtained, however, by using the 

closed form solution for a homogeneous disc as a first approximation. 

Even then, convergence is slow.    Because an increasingly large number 



65 

of terms is required as the loaded sector becomes small, there may be 

an accumulated rounding error for some results.    Double precision 

computation could eliminate some of these.    If results are required 

only in the vicinity of the load, the solution to the problem of a 

semi-infinite plate would be adequate for the small loaded sector 

where curvature effects are negligible.    It vas found that for 

3*    ^   0. 1      one could essentially disregard curvature effects. 

A postulated mechanism for friction on a smooth surface vas 

developed.    Friction results from assumptions about the dissipation 

of strain energy when a deformed body is transformed to a neighboring 

deformation state.    The friction coefficient found by this method is 

very small; its presence would be obscured by more significant factors. 

However, this frictional contribution could be a limitation on the 

complete elimination of friction between solid surfaces.    To the 

extent that this theory ia valid, bodies with a high elastic modulus 

will exhibit less friction than one with a low modulus due to the 

smaller amount of strain energy associated with a given load. 
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