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ABSTRACT

This investigation is directed to the analysis of a composite
disc in plane elastic equilibrium. The disc consists of concentric
regions, each of homogeneous properties, and is loaded on its outer
surface by an arbitrary load. Reactions at the center are prescribed
to provide the necessary equilibrating force and moment. The equations
of equilibrium are specifin! in terms of the radial and tangential
displacements, giving a pair of partial differential in plane polar
coordinates.,

A finite Fourier transform is applied to reduce the partial
differential equations to a pair of ordinary differential ecuations
wvith the radial coordinate as independent variables. Inversion of the
transformed solution yields an infinite series. The analysis is
continued in further detail for uniforaly distriduted and concentrated
normal and shear loads.

The deformations associated with the uniformly distributed
normal load are used as the basis of a postulated friction phenomenon
called the deformation coefficient of friction. Assumptions about the
behavior of the strain energy as a load is translated an incremental
distance give rise to a friction force, vhich in turn permits a
friction coefficient to be calculated. This coefficient is charac-
terized by being proportional to the load rather than comstant. The
contribution of the deformation coefficient to the total friction

behavior is ordinarily quite small,

vii



PART I.

INTRODUCTION AND AISTORICAL REVIEW

A, Introducticn

Tnis thesis is concerned with a problem in the plane theory of
elasticity. We shall consider a composite disc consisting of two per-
fectly bonded, coplaner, and concentric regions which are each isotropic
and homogeneous, ‘The disc is loaded by arbitrary stresses on tne outer
ooundary. A concentrated central force and moment equilibrate the
boundary tractions. A formal solution in the form of an infinite series
is obtained for the general case, Solutions are obtained explicitly for
a few special loadings, and numerical values obtained {pr the particular
case of a normal stress of unit intensity distriovuted over a segment of
the boundary.

A friction mechanism is postulated, based on the strain energy
stored in the system during an incremental translation of the area of
application of the normal stress. This deformation coefficient of
friction depends on the elastic behavior of a smooth disc under the
influence of a normal load. It does not take into consideration other
possible sources of friction, such as sticking and the interaction of
asperities. The deformation coefficient is ordinarily quite small
compared to Columb friction, and has the unusual property of being
proportional to the load. The frictional force contributed by this
mechanism, therefure, varies as the square of the normal load.

The mathematical analysis useé is somewhat unusual. 7The

equilibrium equations are established in terms of displacements. A



finite Fourier exponential transform is used to reduce the system of
partial differential equations to ordinary differential equations. The
transformed solution is inverted by an infinite series. The transform
method has properties which make it quite useful in circular regionms.
Unlike the more familiar Kolosoff-Muskhelishvili method, in which
complex potentials of known form are required, the transform method
leads to the solution througn a direct process, The resulting infinite
series corresponds to the series required to establish the harmonic
functions in a composite region when the Kolosoff-Muskhelishvili method

is used. In the particular case when the disc is homogeneous the series

solutions may be exhibited in closed form. When the distributed load is .

condensed to a concentrated load the solution agrees with previously

known solutions.

B. Historical Review

The analysis of circular regions in a state of plane elastic
equilibrium has been the subject of substantial investigation, One of
the earliest reports on the subject was that of Michellea. in which he
examined a class of problems in the plane disc. Michell considered
concentrated loads in the interior of an infinite plane and on the edge
of a plane half-space. By superposition of these effects he developed
formulas for the disc loaded at the center and edge by concentrated

loads, ie gave explicit formulas for the stress field due to concen-

trated loads at the edge with an equilibrating reaction at the center.

#Throughout this thesis, superscript numbers refer to the
similarly numbered items in PART VII, BIBLIOGRAPIIY.



These formulas are unfortunately incorrect due to failure to properly
annihilate the reactions on the boundary due to the edge load.

Mindlin2% extended Michell's provblem to consider the effect
of' translating the central force to an arbitrary interior point,
directed along a diameter. As a starting point he used Michell's
problem, for which he expresses, without derivation, the correct Airy
stress function.

The development of the Kolosoff-Huskhelishvi1127' 32 complex
variable method made it possible to solve a large class of problems in
the disc, In most cases it is necessary to use a catalog of harmonic
functions to satisfy the boundary conditions. Mikhlin23 examined a
composite disc loaded on the boundary by self-ejuilibrating forces. His
solution is in the form of infinite series of harmonic functions.

9 exanined a composite consisting of a disc loaded at the

Dokos
center and embedded in an infinite plate., His method consisted of supere
position of field equations for stress and displacement. Dundurs and

0
11, 16, 1 examined a series of problems of the elastic disc

Hetenyi
embedded in an infinite plate, The Kolosoff-Muskhelishvili formulas
were user somewhat in their development, but the method was basically e
superposition of appropriate Airy stress functions,

N328 resolved Michell's problem using the complex variable
method., His results, given in terms of displacements, can be shown to
be in agreement witn these of Mindlin.,

A recent investigation by !Maye and Lin520 used finite Fourier

transforms, along with the thecry of couple stresses, to examine the ring.

‘aye developed the ejuations for a composite disc as a special case.



Due to the complexities associated with couple stresses an explicit
analytical solution vas not given. His technique of inversion uses
only the real part of the series,

Finite Fourier transforms have been developed by Doetsch8

and Kniesnla. Applications of these transforms to various vibration

N
and heat conduction problems have been developed by Brownz' 3s

Roettinger3°. Generally these investigations have been restricted

and

to the sine or cosine transform.



PART 11,

TUEORY

Ae. rormulation of the Problem
Consider a circular region in a state of plane elastic equilib-
rium. The equations of equilibrium in cylindrical coordinates may be

written in terms of the radial and circumferential displacements

U 1 2w k+1 du ks
("'H)‘}r‘ T3 Y Tr RF T et S
a
& 2 k+2 v _
Y 3r o6 rt 36 =0
(1)
& 'u $+2 2u ' A+1 'w
rarde YT 3 YR YT BT
1 3w _ 1 -
e ar ol =0

For a composite, as in this analysis, £gs. (1) must hold in both regions.
Constants and variables associated with the core will be distinguished by
a bar (e.g.iI ), while the unbarred sympbols will apply to the ring, or to

the whole system, as appropriate,

The elastic constant‘k is related to the more familiar Lame’

constants and Poisson's ratio, in the case of plane strain, by

k=(A+p)/p =1 /(1-2) (2)

' b



and for plane stress by

& =(32+20)/p = (1+9)/(1-) (3)

Stresses in each region may be expressed in terms of the

displacements by

_ | ou h-1 2\
O, = p .(*H) 5+ = (w +'59£)

-1 LX'3 2y | (4)

S
i
<

[
Te = M| 5+ +1?('§J$'—"")j|

We shall take as our dimensions a disc whose outer radius is
unity and for which the radius of the interface is 8. Prescribed
surface tractions on the outer circle are equilibrated by concentrated
force and moment at the center. The polar coordinates (¥,©) of a
generic point are measured from the center of the disc and the X axis,

Figure 1 is a representation of the elastic system.

Ir
1l =

K

Figure 1. Composite Elastic Disc



It is convenient to separate the boundary stress into iis
normal and tangential components., Therefore we express the conditions

at r=1 Uy

o.(1,8) = g@@)
f®©)

Tve (1,8

In order to establish the conditions at tne center of tne disc
we consider the requirement that the concentrated central force and
moment equilibrate tne force and moment resultant of the boundary
stresses., The force will be compactly expressed in complex form terms

of its X and y components., The force and moment resultants are then

given by

Fovi Fy = S: [g(e)+ 1 4(9)] e de
(6)

M = SWW f@©) de

We will first look at a central hole of radius €., Consider the surface
- a

of the hole to be acted on by a constant shearing stress {/e and by a

normal stress g@)/é . Tne boundary conditions associated with these

requirements are given by

o, (e,8)

g®@)/€

£/e*

(7)

I

T, (€,8)



The condition of equilibrium with the surface tractions requires that

)., §® *de = F +iF,
(8)

Sw fde =M = f=MAT

The condition of concentrated force and moment at the center is obtained
from the limit as €*> O,

The boundary problem is completely prescribed when we add the
conditions that U, A7, O, and ‘t,, are continuous at the interface
between the regions.,

Eqs. (1), (4), (5), and the limit of (T), subject to the side
condition (8) and the matching conditions at the interface, establish a
boundary value problem for the disc., We shall examine the problem in

the general case and then look at some particular examples in detail.,

B. Transformation of the Problem
The solution of the posed boundary value problem will be
obtained by means of the finite Fourier transform. Our definition,
which is similar to that of Doetsche. is

-isG

A= {Z@)} :)__lﬁ SWW Z@ e do (9)

whose inverse is



= 156
Z®) =Z Z, e (10)

§c-00
The correspondence of Zgs. (9) and (10) is well known from the theory of
Fourier seriesT. Excent for the fundamental analysis by Doetsch and the

20
recent work of Maye , however, the use of kq. (9) as a transform is
rare. The corresponding Fourier sine and cosine transforms have been
used somewhat more frejuently for the solution of initial and boundary

2y 3, 4, 30 . . .

value problems « To obtain the transforms of derivatives we

apply the definition to the M th derivative of Z(e'). Integrate once

by parts, to obtain

z°®) = is{z2"w]
S [z - 207 m)

(11)

In a circular region © =T and © = -1 coincide., Therefore if Z ©)
and its first N~-1 derivatives are continuous, the constant part of

+q. (11) vanishes. Transforms of any derivative of Z(‘e') can then be

written in terms of Zg¢ as
{Z7®)] = G)" {Z@)] = (19) 2, (12

The power of the finite Fourier transforms in circular resicns is

%ﬁ,
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enhanced by this simplification. For any function which is reasonably
well behaved it is possible to orient the coordinates to assure the
required continuity. In the analysis which follows it is assumed that
Eq. (12) holds.

The transformed equilibrium conditions Eqs. (1) are

a
Ao uf + 22l o Aesoal gy,

+i[-§;_§-m;/_ Q‘—:{Z‘E(\I’s] =0

(13)

$ v 7, (ht2)s
%'us L Y,

2
- vl s _(A+1)Ss + 14 -
¢ [m‘a +— 3 v, =0
This coupled pair of ordinary differential equations may be

solved by elementary methods, giving for |5|2 2

8ol ~(s+1) s-4 ~(s-1)
A As+2h+2 S+1 -(5+1)
s “[TT Uy r Ut (1)

+u”r

$=1 hs-24-2 r-(s-l)
hs+2 4
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For § = O the ejuaticns become uncoupled,

V74 1 =
(15)
V4 +._l.rv/__;l_ _O
qu r 0 |‘1 ’U_o -
wiiose solution is
- -1
U = Ugy v+ U, v
(16)
= Vgt + Y, r
0] 01 02
dnen LS|= ! the solution given by Eqs. (1b) is incomplete
tecause of a repeated function. iiowever, if we rewrite Lkgs. (13) for
S=21
(et YU Ly 2 "*2u +¢s["nrs’ %—'&inrs_l =0
(17)
l +2 - 4N s kel -~
—_ S ‘:— s—l.S N‘s+-‘_—f\fs — r; f\rs —-O
we obtain the solution
2 of
Ug= U, ro + U, o+ 53+Us.‘,&3r
(18)
o | dk+2 2 s
Ne= LS - r +
5 [-k-z st Y. Uss
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The transformed stresses are expressed in terms of the

transformed displacements
-1
T, = r [(.k-h-l) us’ +"‘—,(u, + LS f\!'s)]
1 .
s =p [(h-Duy + AU +ism)] (19)

T, = —J.).A[ LNy — 17(5115"' i.r\l's)]

More explicitly, for $=0
Oy = 2/.« (& on - U, r )
Too =2 p (AU + Uy, ™) (20)

To E= —2}.& voz r-l

= " _ 24+l -1
a-'-"—-z" I Zusar *ol," -3 Uy ¥ ]

(21)

_ - -
Oes =_‘)'f‘}é_%U31 ' -ZU&" +1_~I‘TU5* ' ]

— 9 2.4 3 -1
T —ZlS}-‘[&—_-,:Us,r +2U;, T +E; U ]
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For § 22
- R(s+1)s-2) s ~(5+2)
Ors = 2)‘[ Rs-2 Uy r -G+ v

- . €T3 =S
+(s-0OU,, r " - &:+z)(5+2) U“r ]

) rl (s+1)(5+2) -(s+2)

s
Tos = — /“L hs-2 USI" ‘(5*‘1) Uszr

(22)

s-r A(s-1(s-2) -5
+(S—1)U53r T T hs+2 U.s+r ]

-(5+2)

s
r +(5+1)U51 r

S ks -2 S

T. =) i)" [&5(5*1) U

52 As(s-1) -5
+G-DU ¢ 22 r
( $3 As+2 U,s«
C. oSolution and Inversion
The solution of the disc »roblem rejuires tne determination

of eight constants for each value of §, four in each of the ring and
the central core. The eight boundary conditions to be satisfied are
-i59
CL%& (a)

(23)

T.() =% =3% S_: £(8) e*% do (v)

o, (D - g, = ;_n3w q(@) e
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oL () -0,,() =0 (c)
T, () -1, () =0 (a)
U (8) -Ug(8) =0 (e)
=
() —a, (8) =0 (0
. © =3 € = £ S g@e*de (e)
- - Te (™ s
T (&) =f;¢€ * = :fT: S_“ e°de ()

where (g) and (h) are to be satisfied in the limit. Evaluating the

integral in (h) gives

M/JTT (s =0)

- (2L}
0 (s = O)
de will examine the boundary conditions for three classes of
values of §, that is, for S = Q, |3| =1, and |5|]22 .
If we express the boundary conditions explicitly for S =0

we can write for the Y“'1 constants

vOl =-'F°/2I,A (b)
(25)

FYor —4 Voo =0 (@)
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Vg + 8V =8V, -8V, =0 s
Cont
eV, =,/ 25 "
where
£, =F = M/ (26)

Conditions (b) and (h) arec redundant. As a result, one constant (we
choose VOI) must remain undetermined. The undetermined constant corres-

ponds to a rigid rotatiin of the system. The ccnstants are found to be

Vo = 'M/4Tr/“

Vo,_ —-M/‘HT}: (27)

Vor = MGu-@ §7/4Tuz 4V,

Tihe boundary conditions for the UOJ coefficients are given

explicitly by

ku01 = UO?. = 90/2),( (a)
(28)

}Aj! UOl ‘};S-z Uoz "E.I DOI +JT.. S-IU =0 (c)

02
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-1 = -1 =
(28)
_ -2 — -1 Cont.
x U, -€ U, = 90 € /2/7 (g)
Application of the limiting condition to (g) shows that
Uy, =0 (29)
The remaining conditions, expressed in matrix form are
B - n ~ T A
/4& p 0 U°1 {
S - xS u, | = EL 0 (30)
M M M oo | =7
a 2 -—
|8 1 =& J L Upy 0]

from which we find

U = 9o (1 +FR)
01 = 2,7,
U.. = -2 (o4 -pFIE (31)
02 =~ 2,7,
U - 9 (k+1)
01 ~ 2D,

wvhere

Dy =pkh(1-5) + 5k (h+s")



7

Consider nex:t tae conditions ror !5' =], substituting

=3s. (18) and (21, into uys. (23) gives tne explicit conditions

2k 25+1 - ,
*2 Yss 2 Ug, - k12 Usa = -95/)'/* L
_2h i - - '
AU 42U+, = s, fop )

-1
2&&8 U +2,‘8'3U - ¢(2*+1)8 U

A-2 Vs s h+2 54
(c)
_2zRs 0, - 27570, +%(:§+1)8"U“ ~0
_21%—5%1 +2,87"U,, +ﬁ‘%uﬂ
(d)
SRR, 2T, -0, =0

8% Ugy + 87Uy +Ug + (Lg8) U,
-8 Ugy -8 Uy, -U,y (L §)U =0

c—_—w)su -8-1 US?. +U53 +It_z Usq +(LDS)U.S‘?

)

(£
22)8 7 om X5 _as)U..=0
—%"——Z—U +3% Usl‘Uss'*QU,, (‘E")S)Use
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2k€ T S CY TS S I

I_ZU_c,x +2€ U, %+ Us4“_95€ /2/‘ (&)
(32)
cont,

-1 -—

24€ 5 -3 (] €
T U r2e Ua rpUe =0 )

From Eqs. (6), (8), and (9) we find

9, =g, - ist (33)

Combining £qs. (32a) and (bt) gives LJS* ; (g) and (h) give LJGQ .
faking (g) or (h) in the limit as €—0 gives L}bz . de obtain,

thereby

-]

sz O
(& +2)(Ss- (sf,)

s¢ = T 4p(hey) (34)

-
|

(h+2)(9 = 5F5)
s4 4/7(1' +1)

-
J

Elimination of these constants from Egs. (32) leaves five
equations in five unknown constants. The constants Ljss and C753
appear only in combination. we can eliminate tneir difference by
combining (e) and (f). The remaining four equations have three unknown
quantities. The equations, however, are redundant. One may therefore

be eliminated. +We may write the remaining three ejuations in compact

form. Let us define



1

- AU - - 4U,
Xs1 = k-2 Ky = 4U52 Xss" I-2
q, ist,
Qo = - 2/-}(/7!1-1)(1 +1) S -lff(lul)(i +1) )
7, =1 7, =-Q&+1)
de may now exnress tne remaining equations in matrix form.
[ & L0 |[x,, O R CReD) ]
i
/“jls“r o '/-"L 84 Xsa :Z Qsj 31}:} (k-4) (36)
nds - B8 |xg| T SR A1) pR G
L JU sy L }‘ f‘

The solution to kqs. (30) is

- 2
U :E(L+])Ot-2) {/.[Jj(bz)-(zi e -2.&)81]

s1 4D, £
a:

+ 5 & (¥ 1Y )EQS:‘

Us, MZ{/‘}‘ 28 +23 -2h-7,(X+2)8]

- p R [&° -arjuwz)s]}osj
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- 2
T — pr+DD (R -2) Py
J=1

AR 27 (Benet -QAerE -20)8°])Q, o

Cont.,

where

D, =ph(Rh+2)(1-8%) + RR (h+hs"+25")

One constant remains arbitrary. (We choose Us3 )o The remaining

constant is then given by

Uss = Usy + (U, "Uu) 5 + Usz.g1 "‘(Us,,-U“)lch (38)
We nave expressed the solution for $=* 1. The tvo terms
in the solution for each of the constants correspond to the normal and
shear components of the boundary tractions,
Let us next examine the constants for |5| 2 1. We observe
first that if we use Eqs. (22) to explicitly state boundary conditions

given by Eqs. (23g) and (h), we obtain relations of the form

2(se1) — — S¢1 —

a,e” Uy +a,e” U, +a,€ g,

Us,

(39)

— 28 — 25— S-1_
where G:\ and bJ represent collections of constants., If we take the

limit as €E—>0 for §2 2, we find

U, = Uy, =0 (522) | (40)
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Corresponding statements can be written for § <=2 , from

which we find

Us3 = Usg = O (5 5"2) (k1)

As in the case of the indices $=0 and $=21 » 1t does not matter
how the normal stress is distributed at the center,
For ease in handling the equations, it will be convenient to

express the indices in terms of the positive integer t , defined
A |5| (42)

We can now take advantage of the symmetry of form for positive and

negative indices by defining

:Xtt X-u] = "ei:—(}jtll [U“ U-‘Q:

| Xea x-u] = }“”’-"’1) [Ut2 Ui ]

Xes Xoal = /A(t-l) Uy  U-e2

-XH x-u- = %(};_L) -Utﬁ U'“j

1 - ERG@+D 17 0
| Xes Xees] = ’ei_t% (Ui Ulga]
Xoo  Xew] = p@t-0 [Uy Uiy

(43)

We also define
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Qa1 = 9 5/4
Q,, = -i (/i) ﬂ/"f (kb)
A, = - A = |

If we recombine the remaining six conditions of Eqs. (23) in pairs we

may write the boundary conditions explicitly and compactly in matrix

form, as is shown in £q. (45).
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(45)

O ., 3@drt seyyt o v :::watoum
ST saurt @nd syl g 3 e
0 Lyl S» 0 ] -
wyed” WS- - 030 RIGEY
O o) [+3 0 1 1
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The solution of tq. (45) may be written in relatively compact

forn if we define the following collections of terms:
W =5k (&+2) - pk(k+2)
X =pk-pk

= pF

= G(h+2) +pk

(46)

A I

/u(1+2) +/':JZ

(t-1)

D, = -AZZ +t K YZ S
2 -DAYE §
HERYZ 14z X8 s arw s ™

The solution, then, is
2

X, = D Qy (A AZZ -(+1+ XD YZ 6
+(’c+1)Jz YZ §° 1

a(t-1)

Xs2 =2 ZQ” ([ ren-1]4vE n
-\ [E R YZ +4/‘ (heX]§
~(t+1+A) AYWS ]
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2

Xg = ézQs){[)\s(t-l) -1) k2 Z

t
i=t

“-DG+t AR YZ 5

+[t’JL‘Y2 + 4/-. (& +1)X] Smml

S4 D

Sz(t-l)2 _
Xow = 25 Eos3{[,\3<t-1)-1]x’wrz
i=t

A DR YE S - ky s )

(L7)

- 2
Z'l(*'*l) on
X :--J,"Dt }Osj {/\jz Cont.
=1

-(t+1+A5) B Y5 (e ) YS“E

—

Xss :M QSJ {[)\j(f-l)‘l]iz

S2A (DX ST - (-1t +1 +A;) kA s

+[t’.&1 Y + ZX] Smm}
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The solution is now formally complete. The coefficients have
all been calculated, and may be summed to give the desired functions,
The inversion formula, L3. (10), is somewhat more manageable if broken

up into sine and cosine series. Inversion of the results will therefore

be effected using

(18)

Z2(r,8) = Z,(r)

+ ) {[2,00+ 2,(Y 0oo (58) + { 2,() - 2,,(+) 4im (50)]

sz



PART III,

LXAIIPLES

A, Uniform and Coancentrated .'ormal Loads

As tne {irst example we shall look at the composite disc
loaded in its plane by u unit normal stress over the arc (-0/2.“’/2).

The boundary conditions may be explicitly expressed

| (-$<0<F)
o (18)=q (e =

O  e1sewiere (49)

T,,(18)=f®B)=0

The corresponding conditions for the transformed problem are

cb/zTT (s=0)
9s .
ain(sd/2 )/TTS (s20) (50)

f. =0

n limiting case of tne distributed normal load is tne con=-
centrated unit normal f{orce.s 70 obtain this case from the distributed
load, we tipst diviae by 2,440‘.(4?/2) to norralize the force.

fis & vanisihes the load approaches a concentrated force,
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The boundary conditions for the natural problem can be written

1 <cne®
L TE@n (T7O<T)
O}(l,e)=c5 (9) = -

C) elsewhere

The transformed condition for the concentrated normal force is therefore

|
gs =5 -&:O (52)
Substitution of these values into Egs. (29) and (31) gives,
for $ =0
Distributed Load Concentrated Load

N _I
“’01 - ngszﬁ_7tlék_l. LJ°1 = -111221___

4T D, 4T D,
_$(p4-5F)§ _ (uh-pRI8*
Uoa = 41 D, U, = 4T p D, (53)
7 - DA+l = _ A+i
an ‘%r_bzl U01 ~ 4T Dy

0 U, =0

LIOZ
we will assign the value \(61 = () to the arbitrary constant. GSince

the moment M is zero, Eqs. (27) give
. = Y . = sh)

The constants required to evaluate the coefficients for

|5| =1 .re obtained from zgs. (34), (37), and (38). Egs. (50) and
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(52) show that for botn the distributed and the concentrated normal
load
= o (55)
9.s =G {,=0

The constants needed for S =+ | are obtained using the quantitics

defined in £q. (35). In particular, we find for the present case

Q_“ = Ou - 2),}1(L+1)(I +1) (56)
5

Q.= Q, =0

We will define the arbitrary constants

Witn these results, we observe from Eqs. (3U4) and (37) that

U, = U U (58)

-1) 1j -1j = Y

and that these constants are all real. From Lgs. (18) and (21),

U

tnerefore, ve find

U, = U Cr-t = Ony Os,-1 = Oo1
(59)
m-_lz-ﬂrl T"l =-T1
for the barred as well as the unbarred values, We note also that the
even coefficients are real and the odd coefficients are imaginary.

In a similar fashion, using Eqs. (L0), (L43), (LL) to find

the constants for H 22 » We find that
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U-sj = Us(s-j) U-Sj = US(5'J) {50
In other words, the constants, associated with corresponding positive
and negative indices and which multiply the same power of I, are

equal. Therefore, tqs. (14) and (22) show that

(61)
N_s =~ n ﬁ[-s =:--[$
Here also, the even and odd coefficients are real and imaginary,
respectively.
The inversion of the transformed solution requires only the
cosine terms of iq. (48) for the even coefficients and the sine terms
for the odd. Thus
o0
w =u°+25 U, cou (s8)
S=1
(62)

o= 2 i:é{.r“; 2in (s6)

$=1

with corresponding formulas for the stresses,
The solution is now completely determined in series form.
The necessary coefficients are given by Eqs. (14), (16), (18), (19),

(20) and (21). The boundery values are given by Eq. (50) or (52)
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dependinf on tne load.

3. UniZ'orm and Concentrated shear Loads

iae loading of a disc Ly a unit snear stress distributed
over tae arc ( ~®/2 , /2 ) gives the boundary condition

(-$<8<%)
T,.(1,8)=f(® - *

O elsewhere (03)

0,1,0) = g®@ =0

iile boundary condition for the corresponding concentrated load is

L —t (-2¢06<2)
- 2 ( 2 2
T.(1,9=F(8)=(""" ™7 -
O elsewhere
The transformed boundary conditions are
P
2m (5=0)
$. o= (65)
s :
ﬂ(—n’fm (520)

and

f3 = 3 (66)

for tne distributed and concentrated loads, respectively. In each

g, =0 (67)

Je now can determine the coefficients needed to evaluate the
series for displacements and stresses. If we assign to the arbitrary

constant YO! the value
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YVor = ~ Yoz (68)

we can write from Lgs. (27)

Vor = ro/zl"

“Fo/zl"

>
1

(69)

Vo, = 'FO [}; S-l +):(l -S'z)]/Zl..jT

vOZ

‘;0/2}‘_

From Eqs. (29) and (31) we find that the coefficients UOJ all vanish,

To find the coefficients for §=_* | s We observe first that
the only non-vanishing right hand members of kqs. (32) are in (b) and
(g). JSince these are odd in 8 and imaginary the constants USJ

and USJ will have the same property, if we again define

U,, = U-,, =0 (70)

From £gs. (18) and (21), therefore, we find that Wg, Oyg , and
O'os are odd in S and imaginary while afg and Ts are even
and real,

For |5|? 2 s & symmetric or concentrated shear load is

seen from iqs. (40), (43), (44) and (47) to have the property

U-.sj =-U3(5-J) U-Sj = - US(S-,)) (71)
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_hierefore Uy, 0,5 , and Ogs are odd in § and rure imaginary
walle ANg  and 'fs are even and real. Combining tae terms in the form

nown Ly 3. (L8) we ottain

u =21 ) u, 2in(s9)
821

oo (72)
o= o, + ZZM}, cou (58)
$=1

wanere tae coefficients have all been determined. 3Similar expressions
nold for the stresses and the Iormulas hold for both the unoparred and

varred variables,

C. Pemarks on an Arbitrary Load

The examples Jjust cited were chosen {or illustrative purpocses
because of their simplicity. ilowever, any load may be treated by the
same technique. We can break an arbitrary load into four components,
that is, the even and odd parts of the normal and shear components. The
evan part of the normal component and tne odd part of the snhear component
lead to coefficients Wy , Oypg o, and O’os wnich are even in §
and real, and to Ng and ]Ts which are odd and imaginary. The odd
part of the normal component and the even part of the shear compcnent
lead to coefficients witn the opposite character. Thus each function
when expanded in the form of Eq. (48) is explicitly real. The solution
for any load can then be written in series form, where the coefficients

are given by thne rormulas developed above,

D. ihe Homogeneous Lisc

The homogeneous disc may be treated as a limiting case of the



composite disc in several ways, such as letting tne interface radius

b vanish or become unity, cr by assigning the same set of values to
the material constants in each region. Alternatively, the nomogeneous
disc may be treated as a boundary value problem in one region. The
technigue is straightforward by any of the methods. The solution has
been ovtained both by solving the problem directly and by equating the
material constants. The agreement of the so.wtions provides a check on
tne calculations. Because of the relative simplicity of the series co-

efficients, we will write them explicitly. We prescribe the values
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U, =U,=0 Vo1 = - VY, (73)

to the rigid displacements, we obtain the values for tne coefficients as

follows:

For $ = O

Uy = Sa<>r//42)‘,l Ny = ‘{})(l -r?) 2&6;J'

- - 2 (74)

For S =21

Uy = -2 (k-2)r* = 24(k+2) Leg ]

- 5)»1(‘4-1)

wst, T 2
S ey (24 D(k-20r" + 24(k +2)JZa3r]

159 J 2
g = -m _(3.&+2)rz -24 -2.’2(&+2)lo13 r]

i [(342)2ae0)r 28 4 24(s2) derg 1]

+o,..&(,u 1)

(15)



35

= s [r+(2l+1)r"]+£——"2"*l)ls‘ (r-r-‘)

Crs = 2+ D) 20k +1)
_ g, -1 ist -1 (75)
Cos = Tahen (3r - )+ 20.:1) [3(“‘*1)' tr ] (Cont.)
- 159, f -1
T = 7 YY) (r- 2(1:+1) [(2.&+l)l' w il ]

For |5| 22 it will ve convenient to work only with positive values
of §. de combine the vositive and negative values of the index by

defining

65:95 +a‘9-5 Fszwcs +3“F_s
(76)

~

C;s==9 - 0g.s Fo=f, -0f
5 - s — 's -s
wherc the symbol & is assigned the value plus or minus one, as appro=

priate. The coefficlents for the series are then

_ sk-2 . Ty, st
U +O"U,s = —w(c’s U Fs)f

[sG +L(s- 2)F]

)-‘(5- (77)

_ shbe2 (.7 S+1
IU'S +6m._s -— —W (t("s Fs)r

[isG, —(s-z)Fs]rs 1

1
_4, (s-1)
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s +00,5 = %{-(5-2)(Gs+l?. )’
+ [sGS +i(s-2) ﬁ,] rH}

Ogs + 00,5 = ﬂ(sn\ (G, +i F )’ -

-[sG,+i(s-2)E,]rM]
T, +0T,, = il[-s(ias -F)r’

+ [is 6, -(5-2) F_.,] rs-z}

We have now exhibited explicitly the coefficients required for
the solution in series form for any loading on a homogeneous disc,

For the four specific loads described above, we can carry the
solution a bit further. For the unit normal load, distributed over an

arc @, the explicit solution is

br
U = o
ain (®/2) con®
-[(Pz-l)r2 + 24(k+2) Loy r] Chsl) (78)
S ol o
_szﬁ;‘ﬁ-rs -’ 1].u'm(s)cb/?.)c,cm(sﬁ)}



37

e o (9f2) i &
v o= {[(31+z)r‘-u‘-uu+2),e,3 r]ﬁ:(*/:l)

N

+

00
Z i:(?lu;z - ﬁf‘-i]m(scb/z)m(se)}

o=t { % + [r+@aer] “""Efi’ cou®

Z(‘s—a*s £ im (s8/2) coro(59) |

S

(78)
(Cont.)

r1) sin (®L2) Cou©
& +1

+§( 2 % _ o) bin (59/2) cou(sH)

= -1y 2in (P/2) 0im &
Toe = F{(r-r ") i

+z (r®- r""z)m(sq:/p_)m(sg)

§=2
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Let us define

oC=¢/2_ + & (3=CP/2—9' (19)

Combining the terms of i&3. (77), we obtain series expressions of the form

: )
C(r,w) = i ! “:(sw
S(r,0) =y Laimle)
sz (80)
K(r,w) =§ r* oo (sw)
2(r,w) =§ r® ain (sw)
$=1

These series are all convergent inside the unit circle, to the formulas

given by Jolley17

Clr,w)

~(1/2) oy H(r,w)

r e W

S(r,w) = tam ™ s

P (g 10D (81

H(r, w)

K(r,w)

—_ e W
Z(r’w)_ H(r,w)
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where

Hir,ad) = 1+ 1% =21 coe w

In the same fashion we can examine each of the other loadings.

For the concentrated loads we need two more series expressions,

Q(r, w) '“'isr’c,m(sw) =l w -2
$:1

H(r,w)
(82)

. s . - rd-reinw
P(r,w) = i st° ain (W) TIPS

Eqs. (81) and (82) hold in the interior of the unit circle. By analytic
continuation we can take them to hold at those points on the unit circle
where the formulas exist., It is precisely at the discontinuities of the
loads that the expressions become singular.

On the following pages we tabulate the closed form solutions
for the four problems examined. The formulas for concentrated load
agree with those derived from the stress functions given by Mindline5

28
and g .+ The concentrated normal load disagrees with that deriv:d

22
from tichell , but apparently a term was left out of his formula.
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DISTRISUTED UJIL WORMAL S[Ruoos

N | or 2 n K +.2in B8
W= g {00 4 244 2) g r]din Lt

*':’Z‘[(" +1)Cr o ain < + (2+C(r,B) ains

- 5(r,«)(cov - ) = S(r,B)(coup - )] }

1 2 i} Coa o = Coufl
Vo= o {[(3.&+2)r + 2(R+l)logr + 24] 20k +1)

+ 2[R+ DC(r, k) (cond = r) ~(Gh+1)C(r,B)(conB-r)

+5(r,o0) ain < - S(r,B)MB]} (83)

a'r=2"{¢' ~(kr?-24 - l)&aﬁﬁ—fr—“"—”—é

+2[5¢ra) +5(r,8) + Lr [K(rQain« + k(r,B)-aan]}
To '—'—lﬁ{q’ <3"”' +1) (k+1)r '
+2[8Cr,u0) +8(r,8)] — 217 (KN aimec + K(r,B)ain 8] }

T.o= J—{(lrzifl)fﬁ'ﬁrwa

v Z(r k) sin = Z(r,8) 2ins }
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SIOTRIBUTZD ULLIT GUEAR STRLoS

-1 I.ry_ 2 < — B
“'W{[“‘ ) + 40k +1)+2 (A+2) Loy r] o= C00

+2[ -+ D[C(h conx -C(r,8) cou ]

+Cr+h ,-')[:(,(r,oc) - C(r,8)) =S(r,&)ain« +5(",B)-oimﬂj}

-1 (& 2 din o +oim B
N'——‘*TTr{ P [Ca+2X7+2) + 2k +2) g i bt

+%E[(1+1>r -2 [S(ra) + S(r.B)] -S(r.c)een

= 5(r,B) couB +(J¢+1)[C(r &).acnoc +C(r, fs)me]j}
o,:—#r{(.&r‘-ZL-l)%) Cav b 4 (- r‘)[C(r,x)-C(r,Bﬂ

+(h+3)r " [k(r, B) cowB - K (1<) cou =] (4)

¢ Bl [Z(h-ﬂM-( ~Z(r,B)ain B] +(Je+1+2 r")[l((r,-() - k(r,B)]}

o-_m{(ur #1)&enx —Coo B o0y, rc(r,«) - C(rB)]

(Je+l)
+(k+3-2 r")[k(r,<)- K(r,B)]—(lu 1)r [K(r,-()com( - K(r,B)cmB]

-(‘& +3)r" [Z(r,a()moc ‘Z(r,e)MlB]}

gin o +aim 3

T =2 (Pr 7+ (A et e 2
4—!‘-1[2(?'.'()000‘( +Z(r 8) w5]+(1-zr")[2(r,a<)+2(r,Bi]

7 [k aim < +K(r,B)aim ] +217 [S(r,-c)+5(r,l3):]}



h2
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Nl = AT {;&.il.r +[(.k 2)r —2Q+1)+2(&+2)£3r]§ﬁ°,—,y

+ 2 [ D) cooB +5(r,8) aim 8] -(r- ) K(r @)

{ [(3,&+2)r -2 +2(.k+2)lc3r]%

+2[508) con® ~(ha)C(-D)ain]e(r -t )Z(r0) |

<
o=z it -(het -2 -G (%)

e (v + con®IK(r8) - P(r @) 0in 6] |

o
0'1,;-_-2-117{ 1 -(3kr* +”ﬁ

2r [Z(r8) + P(r,G)]Me'}

i .
Treo =)_]T{ (kr? +l)()¢+1)r

-2¢" [Q(r,e) 2in® + Z(r,e)congn
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2
ms U-2)r" 220 1 2 (42 g v ] 2B

[(JH-I)C(rQ winS - S(r,8)cead]
+(r-r"" )Z(r,{})}

-4

LAy v {[(3}¢+2)r +2QA+1)42(ke2) g r] T2 i

+T[(.&+1)C(r,€}) Coad — S(T.Q)M@' _rJ

+(r-r K O) - (r+r_')}

2\.4in €

+(+r D28 +(-r"2)P(r,0)

+ R+ r T K(r8)ain© - (k+1)r™ Z(r8) covb ]

_—1— = 2 _Le
O—G'Z‘T{ (1 +3kr TV

+ (-r 208 - (1-r71) P(r D)

+ (R +1)r 7 K0 ) ain © - (h+3)F! Z(r,e)woe}

T,6= {(H-Jl *) (?‘”3", A XS

+(1-r")Q(r®) -+ Z(r ) aim & #1* k(r,g)me}

(86)
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PART IV

NUMERICAL RESULTS

In a formal sense, the solution is now completed and all
required numerical values can be obtained from the summation of the
series, In practice, however, this summation can not be done for
certain configurations. In particular, if the ring thickness,

A =1- S » is small, convergence is so slow as to be meaningless,
We can see this more clearly if we look at one of the series expressions

in detail.

- 2
W ~u0+U-. +i{[a‘*cals+a3)s‘] rsu
8z2

+ [bls *(b; + 5334 b4$‘)§zs]rc-’

ay\ cas 43 Csi| (87)
+[(C,+C,S+C35 )6*° +C s § ]r
3 [(d: +d2s)8 " + d,g“] Rt }M(S";/L)Ooo(se)
S
where
Ds = e, +(c,,,+c=.,s.")5"s +e4g“ (88)

and where Gj, bJ . Cj ’ dj , and eJ- are constants dependent on
material properties and independent of ¥ and S§. This series repre-
sents the formula for radial displacement in the annulus of a composite

disc of unit outer radius loaded by normal stress uniformly distributed

over the arc (-0/2,‘3’/2). The formulas for other quantities are similar,
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2 cas -$-1

Terms of the type C4$ S r » for example, increase for a
substantial number of terms before starting to decrease, For a small
value of @ the factor _aum (sd’/Z) also increases witn § for many
terms., As a result of these ccnditions convergence is very poor in
many cases. For example, a case in which A and @ each had the
value .0l was run for five thousand terms with no sign of convergence,

A scheme was developed for improving the convergence of the
series by establishing as a first approximation the solution to the
case for the homogeneous disc. The approximation is then corrected by
adding to it the difference between the corresponding terms of the
composite and the homogeneous disc solutions, OSince the terms of the
two series approach one another asymptotically this offe.s a chance
of improvement. Two forms of this scheme were used. In one, the
material properties used for the homogeneous disc were those of the
core reglon of the composite disc; for the second the properties used
were those of the ring., In the homogeneous disc, the only elastic
property affecting the stresses is Poisson's ratio. This dependence
shows up in the series in only the term for § =+1. Therefore, regard-
less of the form used for the first approximation, the speed of convergence
for the stress series is the same. For the displacements, however,
the choice of first approximation does make a difference. It was found
that about half as many terms are required if the ring properties are used.
The bulk of the computations, however, had been performed using the
properties of the core., These computations were spot checked using the

more rapidly convergent technique.



wumerical values have been ovtained for selected points
on tue outer surface and along tne interface for tie case of unit
normal load acting on a composite disc in plane stress., Twe conlie=
urations of material constants nave been used, corresvonding resvec-
tively to a layer of gold or alumina on a base of steel. The proper-
ties of tnese materials are shown below in Table I.

Table I, Material rroperties

lMaterial i Y __’c_ )-‘/)7
Steel 1.153(10)7 04300 1. 86 1.000
ol 4.014(10)" ) 00 5,45 0.3481
Alumina ?.056(10)7 0,2Uut 1.3 2okile

Values are calculated for a dimensionless contisuration ol
unit radius, unit shear modulus in the base region, and unit normal
stress. we can convert results to a system with dimensionalized

A N -~ a
quantities. Let ‘IA(I",G) and O'(r,e-) be tne displacements
. = 0
and stresses in a disc of radius P witn a snear modulus M in the
core. de can convert the dimensionless results to values for a

corresponding dimensionalized disc by formulas such as

G (r.8) = £ u(i/p,0)

A A - ~
o(r,8) = 0 (¥e,8)
Table II lists some results for the disc whose layer

thickness A and load width @ both are equal to 0,01, Values in the

vicinity of tne .ocad, bcth on the surface ana ~t tne interface, are

&0



given, A Jumn discontinuity in the hoor stress at the interface is
indicated by listing as O'GA the value in tne ring and as O
the value in tne core. A list is shown for botn a gold (soft) and
alumina (hard) layer on a sicel core. Figure 2 shows graphically

these and some other results.

k7
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Figure 2. Behavior of a Composite Disc
Part A, Radial Displacement of the Surface
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Table II
DISPLACEMENTS AND STRESSES"
Part A. Gold Layer on Steel
100 Surface Taterface
X

A 0o0u g, w00u o, T=a o * e
0.00 1,833 0.797 1.096 0.612 0.000 0.219 0.083
0.05 1.831 0.798 1.096 0.610 «0,023 0.218 0,08k
0.10 1,823 0.799 1,094 0.603 -0.0L5 0.217 0,086
0.15 1.809 0.802 1,091 0.59% <0,066 0.215 0,089
0.20 10790 0.805 10081 0.580 -00087 0.212 00092
0.25 1.763 0.810 1,081 0.563 =0.106 0.209 0.097
0.30 1,730 0.815 1.075 0.543 =0.123 0.205 0.103
0. 35 106% 00821 10068 00519 -09139 00200 00109
0.50 1.631 00828 10060 0. 59" -00153 00195 0.116
0.'05 10560 00835 10051 0."67 -0016.‘ 00189 00123
0.50 1.kb1 - 1,042 0.438 <0.173 0.183 0.130
0.55 1.321 <«0,1L8 1,032 0.408 <0.180 0.177 0.137
0.65 1,188 <0.131 1,011 0.349 =0,187 0.163  0.1k49
0. 10 1. 138 -0 (] 122 1.000 0. 319 -O . 181 O. 156 0 [} 155
0.75 1,097 =0.113 0.988 0.291 «0,185 0.150 0.159
0.30 10060 .00103 009.’7 0026" -00182 °olu3 0.163
0.85 1,029 =0.094 0.965 0,238 <0.177 0.136 0,166
0090 10001 .000“ 0.95‘. O.2l’t -00172 00129 00168
0.95 0.976 =0.077 0.943 0.191 «0.165 0.123 0,169
1.00 0.955 '00069 00932 00170 -00158 0.116 00169
1025 00871 .00033 0.880 0.093 -0.118 00089 00158
1075 00"8 0.00“ 00195 0.028 -00058 00053 0.116
2.00 0.Th7 0,011 0.7T62 0.017 «0,041 0.0k2 0.097
2.25 0.721 0.013 0.732 0.011 =0.03n 0.03h 0.081
2.50 0.697 9,012 0.706 0.008 <0.022 0.028 0,068
2.75 0.676 0.010 0.683 0,006 <0.017 0.02h 0.058
3.00 0.656 v.008 0.661 0,005 =0.013 0.020 0.050
3.25 0.637 0,006 0.6k2 0.004 =0.011 0.018 0,043
3.75 0.603 0,003 0.606 0.003 =0,007 0.013 0,033
b,25 0.5Tk 0,001 0.576 0.002 «0.005 0,010 0,026
4,50 0.560 0,001 0.562 0.001 <0.004 0.009 0.023
4,75 0.547 0,000 0.549 0,001 =0.003 0.008 0,021
5.00 0.535 0,000 0.536 0,001 =0.003 0,007 0,018

*in e composite disc of unit radius loaded by a unit tensile radial stress
over the arc (-0.,005, 0.005) and by a concentrated reaction at the center.,
Layer thickness is 0.01.
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Table II

DISPLACEMENTS AND STRESSES"

Part B,
Surface

100w O%
1,151 1,271
1.150 1.2711
1,148 1,269
1,145 1,266
1,139 1,262
1.133 1.257
1.124 1,250
1,114 1,243
1,101 1.236
1,084 1,227
10059 -
1.033 0.208
1,015 0.198
0.999 0.187
0.985 0.176
0.972 0,165
0.960 0.154
0.9k9 0.142
0.938 0.131
0.927 0.121
0,917 0,110
0.871 0.063
0.830 0.028
0,79k 0,005
0.T61 =0,010
0.731 «0.017
0.705 =0.020
0,681 =0,020
0,659 =0.019
0.639 <0.017
0,621 =0,01k
0,604 0,012
0,588 =0.010
00573 -00008
0.559 =0.006
0.5“6 '00005
0.534 0,00k

Alunina Layer on Steel

e = e e S

Interface

A 3
100 u (T; T:F‘ a;r o,
1,020 0.485 0.000 =0,227 0,006
1,020 0.483 =0.017 =0.225 0.006
1,018 0.480 «0.034% «=0,220 0.008
1,017 0.UTh «0.051 =0,211 0.011
1,01k  0.465 =0.768 =0.199  0.015
1,010 0.455 «0,082 =0.184 0.019
10006 0. MO2 -00096 .00166 0.025
10002 0. "28 -00109 -0. 1h6 00031
0.996 0,412 -0.,120 -0,12k  0.038
0.990 0.395 =0.130 =0,100 0.0k45
00971 00 358 -Oolhs -00050 00060
0,970  0.339  =0.150 =0.024 0,067
00963 0. 320 -OQISh 00001 00075
0.955 0.301 =0.157 0,025 0.082
0.957 00282 -00158 0.0’68 00088
0.939 0.263 =0.158 0.070 0,09k
0.931 0.2k6 =0.157 0.090 0.099
0.922 0.229 =0.155 0.108 0.104
0.914 0.213 =0,152 0.12h4 0.108
0.906 0.198 «0.1k9 0.139 0.111
0,865 0.135  =0.127 0,186  0.119
00827 00093 -0010“ 00201 00116
0.792 0.064 -0.08k 0.197 0.107
0.732 0.031 =0.055 0.169 0.087
0,706 0.021 «0,04b 0.153 0.077
0.682 00015 -00036 00137 00068
00660 0.010 -00030 00122 00060
006"0 00007 "0002“ 00109 00053
0.622 0,005 =0,020 0.097 0,047
00589 00002 -00015 00078 0.037
0,57k 0.002 «0,012 0.070 0.033
0,560 0.001 =0,011 0.063 0.030
0.547 0.001 =0,009 0.058 0.027
0.53k 0.001 -0,008 0.052 0.025

over the arc (-0,005,0.005) and by a concentrated reaction at the center.
Layer thickness is 0,01,
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PART V.

DEFORMATION COLFFICIENT OF FRICTION

If a load is applied to a portion of the surface of a
body there will be an associated deformation. There will then be
stored in the body strain energy which is equal to the work done by
the ’nad in deforming the body. We shsll make certain assumptiors
regarding the behavior of this strain energy when & load is trans-
lated an infinitesimal distance on the surface. From these assumpe
tions we will determine a friction force which leads to the idea of
a deformation coefficient of friction. It must be emphasized that
this deformation concept is not suggested as an alternative to the
more commonly suggested mechanisms such as rupture of asperities and
sticking. Rather it complements them as an additional possible
mechanism,

Consider the case of a constant normal stress acting on a
surface element of the disc. A ncighboriné state of loading is
defined as a condition in which the load has been translated circum-
ferentially an incremental distance, say &x . Clearly the amount
of strain energy in the disc is unchanged as the system goes from
one state of loading to a neighboring state., In a local sense,
however, there has been a change. The radial displacement of each
point on the surface has changed to that of its neighbor., Part of
the disc has increased in strain energy while some has decreased.
Specifically, a certain amount of work is done by the normal stress

acting on that part of the loaded segment in which the magnitude of



|

the deformation increases. An equal amount of work is done by the
deformed body over that part in which the deformation decreases.

The basis for the postulate of a deformation coefficient of

friction stems from the assumption that the strain energy added to
the system is supplied by the action of a circumferential force,
vhile the strain energy released by the system is dissipated in the
form of heat, noise, or other non-reversable actiorn,

Although the model does not distinguish between sliding and
rolling, the phenomenon is somewhat easier to visualize if we think
of a rigid roller indenting a surface as it rolls. Work is required
to deform the surface ahead of the roller., The energy released by
the restoration of the initial configuration behind the roller is
assumed lost, Sinkins' suggests that interaction of molecules of the
mating surfaces during sliding causes an additional dissipative
effect not accounted for in this model. This interaction would be
missing during rolling, however. He suggests, therefore, that the
model is more realistic when thought of in terms of rolling contact.

To calculate the deformation coefficient we shall consider
the elastic deformation of the surface due to a normal stress g .
With reference to Figure 3, divide the loaded half-interval into N
segments of width 8)( » vhere §x is the amount of the circum-
ferential displacement. Associated with this displacement, the
radial deformation of point X ; becomes W;_; . The work required

to deform the loaded surface in the i th interval is

#Thomas E. Simkins: Private communication.
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$Wi =g Bx[ bt = “] (90)

The expression for the last interval is one half of this. Summing

over the pertinent half-range and simplifying gives

I

S\W =)W, = g 6x[" Mg b, Uyt ""](91)
~ 4

Since $X is small and M is large, ve may write

SW =g §x (4, - U,) (92)

The force P required to effect the translation must, by

nypothesis, provide the energy $W. Therefore

= sW/x = 3(\4o -Uy) (93)

In a disc of radius @ loaded by a uniform normal stress
9 over an arc of width & s the total force F exertea by the load

is

:SQCP (94)

The co=fficient of friction r is defined similar to the usual form

IP/FI = |u0-uh

vhere the absolute value must be taken since the model does not

/?d’ (95)

distinguish between tensile and compressive forces., Since the defore
mation is directly proportional to the intensity g of the stress,

the fricticn coefficient is a linear function of the normal force
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applied over a constant element of arc.

To illustrate the computation, let us again use the caret

to distinguish dimensional quantities, Then

A

u =(gp/ k) u(1,8) (96)

and

rv - Ug-Upn

£e (97)

Applying the data for gold on steel as shown in Table II, we obtain

ro=3.400)"|g (98

The friction coefficient due to the deformation is therefore
quite small, For loads of moderate intensity, the effect is negligible
compared to other friction mechanisms,

When the loaded arc width @ is small the friction coefficient
is essentially independent of P for a fixed ratio J\/d? « Results will
be given in terms of the DFC, that is the coefficient which multiplies
the stress to obtain the conventional coefficient of friction. Shown in
Figure U is the behavior of the DFC for @ =0.01, for voth cases, gold
on steel and alumina on steel, Table III lists some values of the

normalized friction coefficient for these two cases,



Table III
DEFORMATION COEFFICIENT OF FRICTION

Part A, Gold Layer on Steel Base

DFC X (10)8 (in°/1b) for prescribed b

(e
R/ Lo i om oom
0.0 (All Base) 1,23 1.45 1.47 1.47
0.005 1.24 1.46 1.49 =
0,01 1.25 1.L7 1.49 -
0.02 1.27 1.L49 1.51 -
0.05 1.33 1.56 1.58 - '
0.1 1,43 1.67 1.69 1.70
0.2 1.65 1.90 1.92 1.93
0.5 2,6k 2.70 2.71 2,71
1.0 3.31 3.40 3.40 3.L0
2.0 - 3.71 3.73 3.73
5.0 - 3.81 3.8 3.85
10. - 3.82 3.86 3.86
20, - - 3.86 3.87
50, - - 3.86 3.87
100, - - 3.86 3.87
200. - - - 3.87
500, - - - 3.87

(All Lwer) 3031 3.82 3.86 3.87



Table III

DEFORMATION COEFFICIENT OF FRICTION

Part 8.

DFC )((J.CJ)8 (in2/1b) for prescrived ¢

NG

0.0 (All Base)

0.005
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10.
20.
50.
100.
200.
500,

(A1l Layer)

Alumina Layer on Steel Base

1.0

1.23
1l.22
1.22
1.21
1.18
1.15
1.06
0.72

0.56

0,56

0.1

1.45
1.k
1.4k
1.2
1.0
1.36
1.26
0.97
0.78
0.70
0.68
0.68

0.68

1,46
1,45
1,42
1.38
1.28
0.99
0.80
0.72
0469
0.69
0.69
0.69
0.69

0.69

0.001

1.47

0.99
0. 80
0.72
0,70
0.69
0.69
0.69
0.69
0.69
0.69
0.69

62
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PART V1.

CONCLUSIORS

The finite Fourier transform has been used to develop a
field solution for a composite disc in a state of plane elastic
equilibrium., The method has the advantage of being explicit compared
to more familiar methods. No prior knowledge of the solution is
required. On the other hand it has the disadvantage of being somevhat
cumbersome, and it does not make use of the accumulated collections of
known solutions to the biharmonic problem.

The properties of the finite Fourier transform cause the
method to have merit for circular regions with all boundarys concentric
circles. The problem examined in this investigation wvas a fundamental
elasticity problem of the first kind. If displacemsnts vere prescribed
instead of stresses the technique should be equally useful., In the
event of mixed boundary conditions, hovever, the method may lead to
difficulties associated with transforming the boundary conditions.

In the present problem the transform of the pair of partial
differential equations in tvo independent displacement variadbles
reduces to a pair of ordinary differential equations. These are
solved explicitly. The inversion of the transformed solution is
obtained by summing the series of solutions to the transformed problem.

The numerical evaluation of the sum was accomplished with
some difficulty. In most of the cases of interest, direct evaluation
could not be performed. Convergence vas obtained, however, by using the
closed form solution for a homogeneous disc as a first approximation.

Even then, convergence is slowv, Because an increasingly large number



of terms is required as the loaded sector becomes small, there may be
an accumulated rounding error for some results. Double precision
computation could eliminate some of these. If results are required
only in the vicinity of the load, the solution to the problem of a
semi-infinite plate would be adequate for the small loaded sector
vhere curvature effects are negligible, It was found that for

® <0.1 one could essentially disregard curvature effects.

A postulated mechanism for friction on a smooth surface was
developed. Friction results from assumptions about the dissipation
of strain energy vhen a deformed body is transformed to a neighboring
deformation state, The friction coefficient found by this method is
very small; its presence would be obscured by more significant factors.
Howvever, this frictional contribution could be a limitation on the
complete elimination of friction between solid surfaces. To the
extent that this theory ii valid, bodies with a high elastic modulus
vill exhibit less friction than one with & low modulus due to the

smaller amount of strain energy associated with a given load.
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