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TTTANTUM DIOXTDE TO PL4STIC PROPELIENTS T

by o
R, D. Gould:

SUMMARY

L“*!I.‘he eff'ect of variations in the composition of solid propellents on thelr
tendehcy to show combustion instebility at 1000 pai '('6895-k.N/m2) hes been |
investigated using ‘éhej‘l‘ burner. It has been shown that ammonium. perchlord.te
particle size can have a large effect on the acoustic response and that this is
frequency~dependent, Titenium dioxide is usually added to plastis propellents
to promote stable combustion and the mechanism of its acrtion has been determined.
With a view to the potential use of oxygen-balanced propellents the effect of
varying the oxidizer/fuel ratio of plastic propellents has also been studied.” ‘,“
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1 INTRODUCTION ‘ ) : A

Progress in the underatanding of the factors goverm.ng com'bustion i . ‘L
instebility in solid propellent rocket motors has been made in tha last fow
years.. It is hoped thaet soon it will bg possible to pre(h.ct ’che rela’cn.ve )
stebilities of burning of solid propellents. in rocket motors before 1;}1,9, gctu&l

motors are fired, on the ‘basis of knowledge of the propellent oomposit:.on and

Ty,

motor dimensionse

- . B CPRN -
A t

& rocket motur may be regarded as.an acoustic. cavity withyvarious. : . -
sources of acoustic’ gains and acoustic losses Tor. each:mode. of. that cavitye

2
-

If the gains exceed the losses for a particulsr mode.-then: & :pressure, 6scilla~
tion in thet mode can be amplifiszd end will grow in:amplitude until, either
ﬁi‘assdres high enough to bturst the motor case .are developed, or until & steady
meximim pressure-~amplitude is maintained due to-one or ‘more .of: the.sources
of acoustic gain or loss becoming pressiure amplitide dépand_én‘b Ain: suoh a way-
that gains and losses balance.

The moré importaht sources of acoistic gain and loss are shown in'Figed,
taken from Hart1. The major source of acoustic. energy input is the burniug
zone and & measure of this is given by the -acoustic. résponse-u/e; whore
is -thé.fraétional perturbation of mass flow rate through the zong caused. by
a fractional perturbation of pressure, e. In general p/e will be a,complex
quantity reflecting the difference in phase between the osecillating ;)regss’ure
and the resulting osciliation of mass flow rate. An impcrtant source of
acoustic loss is c2us¢d by perticulete damping" of the acoustic waves both in
the burnt-gas phese end in the flame zomo. It was decided t0 concentrete
initially on studying the above two effects at the R.P:E., and experiments
have been carried out in T-burners to determinec how theso affdots re wvarised
by changes in propellent composition such as the ammonium perchlorate perticle
size and addition of titanium -dioxid‘e.,‘(Tin) to the propellents. Ti0, is now

generally added to Briwish plastic propellents to promote stable combustion,
All propellents discussed in this Report are based upon polylsobutene (p.I. B.)
as the fuel and ammonium perchlorate as oxzdlzer. j

Much interest has been shovn roocontly in devéloping propelldiits giving
an exhoust that is ef“coti§ely free from #ﬁtenuation or' modiulation 6f vadid
signels. The attenuation is knowm to be associated vr.l.th the free electron
concontration in the rocket e.a;haust Jet a.nﬁ. is th»refore enhanced vhen
socondary combustion and hence rise in tempereture of the exhaust occur. Ons

way of reducing the tondency of & rocket molus to produce socondery combustion

=




by

is to use propellents in which the oxidizer/fuel ratio approaches the stoioh:m-
metric value l.e. propellents ‘of which the exhaust gases contain-—only- sme.ll

artr re
oonoentrations of the combustib*e gdeds, hydtogen afid catrbon monoxide. .However,

A thaae stof}.ohiometrio or oxygen—balanced propellents are slightly more énergetic

: tha.n th; uaual fuel-rioh propellents &nd concern had been expressed over the

u\; pouibility tfzat {'.hev may possess an inoreased. tendency to combustion instability.
¥ Aocfg;'dirfgly, the acostic response wis deberminéd of fowr propellents in which
the gxidizer/fuel ratio was varied., All the experimental firings were tarried
out at & ‘mean pressure: of 4000 psig (6895 kN/m?) which was chosen as & typical

éperﬁ‘tf{ﬁ'g?ipx“e‘si'uﬁé' of ‘modarn: solid .propellent rovket. motors. The ei‘fects of

3 i\. axiéﬁzer/fuel ratio<and-ammonium.perchlorate particle size on. tha acoustn.o

: ¥ :respéhses-hiave not been studied extonsively, Price at the Naval Ordnance Test

| B8tation-has ‘Garried .out sivorlé?’ 5 using an tamonium perchlorate/polybutyl aorylic
acid ‘0o~polymer (P. wAvhs:) propellenf; system and an operating pressure of

: 200: pst: (1379: L‘Vm») ‘The findings from the work now reported diffor in some

important reapects from those of Prise.

3 $T ey ?inally, -the. experimentally determined response functions for itwo groups
E of ‘thé-above:propellents were compared with values calculated by the methods

3 &géviSTejdG'Bjr:?Mocﬁmeb‘,anduhis: se-workers -at the. Jonns Hopkins University to

L, detérmine whethsr thaory oould. prediot the effect of change of one specifio

: vérdable, . i - o :

o 2 mmmw '

E N the theory of the, T—burner 51657 | has been desoribed elsevhere but is
briefly sumarized here. It has been shown that for e T~burner with propellent
-at both .ends, the ree.l part of the specific agoustio admittence of the burning
E surface, Ro (Y), where .Y is Gefined as the ratio of thé aooust:.o velooity
\ 49, tbe, Agougtio prossure, is glyen by

AT () et (@ - (1)

LA - - ngaso

£ ‘
i "
s ;,.‘ [

(The .symbols aro listad or p.17.)

chlurel" has_expressed the real part of the specific acoustic admittance

o for 8 propollent d.riving oson.llat:.ons in an end.-burm.ng motor &s

s 2 el e
e . .Re (¥) = Re [..g(u_.i)] )
- e ) « L, 0 t . ;“JP \e ) Y .

Qi Mt Sty

N "

———




gE DNty

e AR 55 e

(AFPE o peene
e 1

s
St

R O TR ST 3 LA

R
X

.
A a2 X e L e - T T e e

5 0

7

vhere M/c is the response function of the oombustion zone, p be:.ng the
o4
fractional perturbation of mass flow through thy zone, and ¢ the fraotional

perturbation of pressure.

vy
‘-l

Oomblm.ng (1) ana (2) ‘and introducing the ‘further substitutions that. . .
c=2Lf, v psa s
flow in the burner, yields

=P Pyoria’ and epplying HoClure's correctionf for the mean.. -

[P

b T pgoiia 8
3 EXPERTMENTAL :

The T—Burher7 is shown schematicelly in Fig.2 and consisis ibasically of
& tube 2,0 inches (50.8 mm) in ‘diameter closed at both ends in which the..gas - .
oscillates in the fundamental léngitudinal mode. The burner tube can be )
varied in length by using either extension tubes or different centre pisces,.
80 that frequencies in the range 0.7 to 4.0 kHz may be studied..-An -orifice,
0«5 inch diameter, located -centrally in, the burner tube is connected wi’th a
4 cu f't surge tank., This prevents any apprec.lable change in the mean pressure
during the burning and since the connaction is at, the centre of the tube, EN

at & pressure node, acoustic losses are minimised. The system is pressur.i.sed
with nitrogen to 1000 psig (6895 kN/m ) before firing and the propellent
ignited by small cartons co_pta.lna.ng Ouls gn of & standard pyrotechnic composi-
tion, SR 371C. The pressure in the burner tube was moasured by qdartz piezo=
elecotric pressure transducers (Kistler Instrument ‘Corp. or Vibro-meter Corp.).
and recorded photogrephically. ‘

¥

The plastic propellent used in these studies contained polyise'buté‘ne
(P.I.B.) as tho fuel snd was mixed at the E.R.D.Z. Walthem Abbey. The propél-
lent charges were prepared by first coating the T~burner end caps with-‘Fliobond
and then pressing an acourately weighed amount of propellent, 33.4 gm, into-each
end cap., The thicknoss of tk resulting disc of propolleont was Ol inch
(102 mm)e The compositions and some of .the ballistic propertics of the
propollents used for this work arc given in Tablos 1 and 2,

4 RUSULTS
All the firings reported here were car..sd out at & mean pressurc of

1000 psig (6895 kN/m )+ This pressure was chosen a8 being reépresentative
of most solid propellent rocket motor firings.




Por each propollont tho logarithmic rates of growth and dooay of the
pressgrc ?ogﬁill-a{fzons TS p’lotted‘ ‘Againgt frequency. Since tho temperature
in. the burner tube was lower whon thé decsy conistants were measured then vhen
the..grovrl;h oonstants were measured, the decay constants were coorrected to the
'tcﬁpemitdi‘*e'at"ﬁiiéhathe growth-constants wero megsured by thg \methgd_desg'ribed

in an“oarlier roportz. I LIPS

-

The real part of the response function, Re (p,/e), and the: real pary of
= the :specific acoustioc admittance, Re (Y) . Were then oalcule.ted using equetions
e, (1‘));11& (3). e e o e ,__,3___”“_

Y . The effect of partiole s:l.ze on Re (Y) a.nd Ra (u/ g) has been examined
bo’ﬁ":’x in the .absence (Figs.3 and k4 respectively) end in the presence (Figes5 and
6. Fepeotively) “ce A% -of ‘titanium dloxido (P40,) in the propéllent. In the

na Jority1of {M-burrer :firings s steady maxinum pressure-amplitude waé reached
vhen- the*~acoust*,culosses .and .geins; for the .system wers balancede This has
been“plofted dgainst:fréquency in ithe &bsence of Ti0, (F:.g.?) and the presence
" of 1%"1‘10‘1*"(1'15.8). P A

W 2vw AL AP P
PEEE S : .
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no’c contaming "‘5.02 usmg as nany -axperimentally determined quantities as
pouible (l'ig.9) E‘urther details of the -calouldtions. are given in earlier

reportaT’ a.nd. the valu»s used in the calculations are given, in Table 3.
3 AR PO

&

Iiw,‘reduced ,p;‘essure-amplitude, .e. 1ncreased sta.bility, resulting
: from Jhe add.itmn of Tioa to prOpel'Lent conuam:mg fine, medium and coarse
‘oxidiser-is. phovm An I“ig‘(‘.w,ﬁ and 12 respectively. The effect of addition
of different 'J.‘:i.O:Z percentages to the propellent on ﬁhe experimentel Ko (¥)
and. Re((y./e) Aand on the the‘oretn:cal Re (u/c) 'aré snown in Figse13,1k and

o
K Yy ¥,
(S O/ Y ) :

mup‘litud» Lor, the, group of. propellents in wh:Loh the oxidizer/fuel ratio was
varied:is shown. :ln Figs.16,1 7 end 184 'l'ha dependenco of the maximum pressure-
amplitud.e ‘on fuel/oxidizer ratio at specific frequencies is given in Fige19.
¥ige20 shows tho thporetical fleme temporaturo and speoifio impulse ‘of the
propollents usod in Figs.16-19,

5 ‘, QIS%I‘I,SBION ) o -
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The propellents used for this seotion of the research are split into
two groups: first, propellents F, D and E in vwhich the oxidizer particle

'l'he theoret{cal aloe of He '(i/s) ‘hes been-oslculated for tne propellents

fxzs-7 1 The- frequency. dependence ‘of Re (¥), Re (u/e) and the maximum pressure=
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size was varied for a propellent containing 88% dmionilin perchlordts and-425%
USB2 (90 polyiscbutene + 10% S101 wetting agent), and sécond, :ﬁi‘opéilent'a' I
C, J in which the oxidizer particle size was &gain varied for propellents
containing 87% ammonium perchlorate, 12% USB2.and 1% titanium dioxide. -‘There
is & slight change in the oxidizer/fuel ratio between the two groupe of
propellents. but other experiments (sect:.on 5 L) have ahown that this small
chenge has little effeot on the acoustic response or any othéz associatea. B
property. e

e

Table 1 shows that, -as the oxidizer particle size is reduced, the

exporimental linear burning rate of the propellents under ~sﬂ:eta.dy sta:be" condi- -
tions increases, as prodicted by Nechber’, This is observed For Goth- Zroups
of propellents and the percentaga change as the ox:.dizer parta.cle gize 1§+ -

reduced is similar in each group.

Considering now the tendency of the propellents to burn unsta.bly, Fig.l;-
shows that as the frequency increases, the real parts of the acoustic rosponse
for tho throe propellents F, D and E all tond towards the samé Valis (%4.0).
This indicates that at high frequencies, Re (u/e) is independent of oxidizer
particle size and any chenge in the relative atability of burfiing stems 8olely
from & chenge in the steady state burning rate, as shown in equation (6):

The admittance of a solid propellent burning zone is given by

R ) IR ©

which may be written as

G, RN O
or

(6)

=
1
t
e
£
zlﬁ
/'\
=
H
>
S’

showing that for & oonstant pressure and acoustic response the acoust:l.c

admittance is direotly proportional to (m_ . -—f*\, vhich is a measurs of the.
rate of heat release of the propellent. This is the quantity responsible for
the differences in the admittences of propellents D, E and F at high
frequencics., ‘
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‘ -reeu..ting,‘inwthq aq:nittance of the three propellents al1 bemg simila,

. “"’r?he'presnure .exponiént. in’ . in:the burning ro.te 1a.w _
o . 0 gL . RIS o -
\ ' KR S-S I = a PII (7)

_fj;rmu &rlw AP f",;,,,

has been ehogm to be similar for aJ.l the propellents considered in this Report,
(aee Table 1o Since at zero frequency p,/e approaches n, the lines on Figd:

met again converge at frequencies below 0.7 kHz, There is thus a limited

frequency region where p./ [ is ’dependent ‘upon particle :sizee

Mﬁ\)jn!v‘

,_,m@im.’t_.lgn vork has been carr;ed out at N,0,7.S, by Price and his group
who v&ried. he amonium perchlorate parh.cle size in a propellent based upon
'polybutyl acrylic acid (P.B.A.A.) 8s the fuel, At & pressire of 200 psi

(1379 kN/mg)"Lt was found that changing the pa.rticle size of the oxidizex only

2,10

5‘50 RN
glganged ’che steady sta.te bu.rm.ng ‘Fate of the propellent,
~ a'-)‘n J“\"-hu VAR —:;.‘ "

«{G,Gonaideration. of the prcpellents cox“'a.ininv 17 titanium dioxide, I, C
and 1 d;-Figeby: ,showe that the raooustic reSponse has been reduced in each case
pompared: to_ the propellen 3 conta:.m.ng no t:.tamum dioxide but the most marked
effec’tfia ahown o propellent I. Wa.th all the other propellents used in this
work, the acouetio response has been comparatn.vely flat; howevor, with
"propellent I it decreases steadily over-the vholé frequency rangs, Oe7-4.0 Hz.
Th‘e agoustic response of propellente c and J both have similar values (~0.6)
at high frequencios as observea: for propellents containing no titanium dioxide,
but they also stay much closer together over tne rest of the frequency range.
.ﬂ;p ‘summarize; 1% titanium dioxide roduces the acoustic response of all ths
propellents but the cffcct.is 'gi"e(at'éfs\‘i;’ vhen codarse oxidizer has been used and

at the high froquencics.

If the maximum pressure-amplitude reached in the T-burner is used as &
mea.sure of the stab:.lity of burnixag of the propellent, Fige7 shows that with
no titenium dioxide in the propellent, the propellent containing coarse
axidizer (F) is able to sustain the highest pressure-smplitude of oscillations.
'However the reverse is true with 1/0 titenium dioxide present; Fig.8 shows that
the propellent conta:i.m.ng coarse oxid.izer ‘(7). -supports the iowest amplitude of
’preseure oso:.lla.u.ons. .

The offeot of titenium dioxide oh each of the propellonts containing a
different partiole size of oxidizer may now be compared:

i B

63
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(i)  fine oxidizer: 1% T10, rcduces the maximum pressure-amplitude
by a faoctor of approximately 2.5 (Fige10)

(i) medium oxidizer: 1% Ti0, reduces the maximum pressure-amplitude
by a factor of approximately 2.5 at high
frequencies and by a factor of 10 at low
frequencies (Fig.11)

(131) ooarse oxidizer: 4% TiO, rcduces the meximum pressure—~amplitude
2
by a factor of 100-150 over the whole frequency
range (Fig.12). )

It should be noted that with the propellents containing coarse oxidizer,
the maximum pressure~amplitude decreases with increase of frequency whercas
with the propellents containing fine oxidizer it increases with increase of

frequency.

502 Effect of addition of titanium dioxide to the propellent

Four propellents (4,B,C and D) were used for this ssction of the work
containing 4%,2%,1% and 0% of titenium dioxide respectively and & constent
12% USB2., Their burning rates are given in Table 1, Addition of 1% titanium
dioxide to propellent D causes an increase in the burning rate of 37% whercas
the addition of a further 1% T:0, increases the burning rate only up to 45%,
i.ee by no more than 8% additional. Increasing the titanium dioxide content
from 2 to 4% increases the burning rate by only a further 1%, Thus, under
stecdy state conditions, an addition of 1% titanium dioxide has a marked effect
on the burning rate, whilst further additions have only slight effects. The
mechanisms by which titanium dioxide influences the steady state burning rate
is uncertain at present; however, it is known to have little effect upen the

decomposition temperaturs of ammonium perchlorate“ .

The real parts of the acoustic response, Re (u/e), for all thres
propellents containing titanium dioxide are similar (Fig.14) and significantly
less than for the propellent not containing titanium dioxide. Titanium dioxide
has, therefore, quite ¢ marked ef'fect on the change in mass burning rate for a
given perturbation in pressure and, as in its effect on the steady state
combustion, the change is similar for 1%,2% or 4% of titanium dioxide. The
actual relative stability of burning under motor conditions, which takes into
account the difference in steady state burning rates of the propellonts, is
shovn in Figd13. It is evident that addition of 1% titenium dioxide is
suffiocient to promote stebility, and that addition of 4% titanium dioxide results
in a higher admittance than that for the propellent with 1% titanium dioxides

R 3
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Fige11 shows that all the propellents containing titanium dioxide
5uppor'téd‘a. ];dwei' meximum px:essure-a.mplituaa in the T-burner than the propel-
lent withéut titanium dioxide. The propellent ocntaining A% Ti0, sustained
the lowest pressure-amilitude but the inoreased effect of L% as opposed to 1%
was most noticeable at the higher frequencies. At the lower frequencies where
the reduction in prossure-amplitude was the greatest, the effect was similer
regardless of whether 1% 2% or 4% of titanium dioxide ha@ been added to the
propel],eﬂt. 4 similar trend was ovident when the rates of decay of tho
pressure (‘oso:‘gllgtliohs in the T-burner were plotted against frequencye These
affects are caused by pertioulate damping of the titenium dioxide in the gas
phasc.

Summarizing, the above results have shomn that titanium dioxide is able
to reduce the level to which acoustic pressure oscillations may rise. There
is an advantage in using mors than 1% titeniva dicxide at the higher frequencies
(34 kHz), but there is nothing to be gnined at lower frequencies (1 kxHz) by
using 4% rather than 1% of titanium dioxides Tho acoustic response has also
boen shown to be lowered by the titenium dioxide, uniformly over the frequency
rengo considered, the reduction boing independent of whother 1%, 2% and 1% viere
0ddod. Since the decsy oonstents for all. the propellents (I, € ond J ) contain-
ing 1% titonium diokide are similer and the ccoustio response and meximum
pressure-tmplitude to which tho oscillations build up to ore so depondent upon
tho oxidizor particlo size, it follows tnet titanium dioxide must also oxert
. on offoct in the combustion zone., The stabilising effect is groetest vhen

coorse: ammonium perchlorate is used as oxidizer.

5.3 (Comporison of the experimentolly determnined responge function with that
ozloulnted by the McClurg theory

Figs.h and 9 show the response functiond for propellenis D, E and F as
found exporimeatolly and celoulated thoorctico.llyB. Sinco the vericbles had
baon roduced to & minimum (veriation in only tho -cmmonium perchlorate particle
#ize), onc might have expocted theory to predict the trend correctly. As moy
be seén from Figs.h. and 5, the two are at variance, both in shape of the curves

and in relative order.

4 further test was made %o compare McClure'sL" theory using propellents
4,B,C and D in which the only varieble was the amount of titenium dioxide.
Figseil4 and 15 show respectively the real part of the response function as
found experimentally end calculated from McClure's theory. There is an element

e e p——
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of egreement, in thaf both show propellent D to have the highest responsé’
function in the frequency range covered experimentally. Apart from this,

however, there are no obvious correlations.

It must be acoepted that even with these model propellents, theory has
failed to predict the trernds found in the experimental results.

5.4 Effect of variation of the oxidizer/fuel ratio of the propellent

The effect on the acoustic response of varying the ammonium perchlorate/
USB2 ratio is shown in Fige17. The change in oxidizer/fuel ratio was from
6e1 10 945 (stoichiometric is at 9,81) but the change in acoustic response
was slighte Propellent M which is close to the stoichiometric mixture does have
& marginally higher acoustic response, but propellents D,L and M are all
similare. Propellent N, which is the most fuel-rich, shows a more definite
trend to exhibit the lowest acoustic response, at the higher frequencies,
Fig.20 shows the probable explanation for this, in that the energy content for
propellent N is considerably lower than for the other propellents. The flame
temperature and specific impulse were calculated theore*ically for propellent
compositions D,L,M and N for motor pressures of 1000 psi (6895kﬂ/n?) end
expansion to 14.7 psi (10143 kTV%F) and are shown in Fig.20,.

Figs18, which illustrates the maximum pressure-amplitude reached in the
T-burner firings, shows a similar finding, in that the propellents are all
able to supnort approximately similar pressure—amplitudes. However, if the
pressure-amplitude is estimated fer each propellent at specific frequencies
(15, 2.5 and 4.0 kHz) and plotted against oxidizer/fuel ratio, Fig,19
suggests that the maximum pressure~amplitude at each frequency is proportional
to the oxidizer/fuel ratio. As the propellent becomes more fuel-rich so the

frequency corresponding to the meximum pressurc—amplitude is increascd,s

The zhange in lineer burning ratc of the propellent as the ratio of
ammonium perchlorate to USB2 is varicd is given in Teble 1. As expected the
almost stoichiometric propellent, M, has a faster burning rate than the

more fuel-rich propellentse

Ricej, vho has carried out similar experiments on an ammonium perchloratq/
P.B.A.A, propellent system, found that the propsllent most fuel-rich had the
highest acoustic response and vice voersa. This is in direct contradiction to
the results found here. The most likely cause for the differcont findings is
that Rice's exporiments wore carricd out at a moan pressure of 200 psi
(4379 krbﬁnz), whoreas the present firings wore all at 1000 psi (6895 kﬂLﬁmz)




and a. dlrrerant r.Lame aturcture was probably present. These results illustrate
‘ . the. importance of determining the acoustic response of the propellents at
. 'preasures‘ representative of motor firings. *

6.  /CONGLUSTONS

Y bu* st e
{1) The stability of burning of a solid propeilent can be affectod by &
changs in the.ammonium perchlorato particle sise:

. (i) _ In the absence of titanium dioxido, at high froquoncios (4 kHz)
the aoouetio responso is independent of ammonium perchlorate particle

eize, but at the lover froquencies (1 kHz) the cosrse oxidizor produces
. the least stable propellen*b.

(;li) In the presence. of 4% titanium dioxide, the acoustic response is
lowered for each propellent containing & different oxidizer particle
size:but the effeot is groatest for the coarse oxidizer at the higher

- " .fre.que;icieso-

(2) .Titanium @ioxide promotes stable. burning in plastic propellents by two
‘hajor ‘routés: P

(i) ' In thé gas phase it promotes acoustic damping by means of the fine
suspended solid particulate matter. The amount of gas phase particle
damping is proportional to the perocentage of titenium dioxide added to

’the ‘propellert,- The proportionality is most noticeable at the high

frequenon.es (440 kHz) whereas the effectiveness of the damping is most
N ovident-at Yowér fréquéncies (1.5 kHz)s
L (ii) Titanium dioxido also eoxerts an influence on tho combustion zone

= and uddltlone of 1,o,2% or 4% titenium dioxide to the stendard medium
grade axidizer propellent all lower the acoustic rosponse by a gimilar

L ew L .

amount, approximately 50%, over the whole froguency range. However, 1%

N

titaniuin dioxide exerts a far greator stabilising influonce on the
* " oombustion of the ‘propellent conta.:m:mg coarse oxidizer at highor ;

,‘.,M.t,,‘,,.,f,.\?,.
! .
1
e,

froquonciss.

L (3) The experimental results for simple propcllent systems containing a
‘ "minimum number- of variables :do not endorse the theory proposed by McClurce

(4) Tho vaz‘iation of the oxidizor/fuel retio ovor & ccmparatively large

: rezi‘g’e hes little effect on the stability of burning of plastic propellents.

- The results show that as tho enorgy lovel of the propellent is roduced so

is its tqnd,ono& to instability, but the offoct is smell, This finding is in
diroet contradicticn to some carlier rosults clsowherc but & probable explana-
tion has been suggestoed.
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Table 3
ADDITIONAL VALUES USED FOR THEORETICAL CALCULATION OF

THE RESPONSE- FUNCTION

: Body —ﬁehpérature of propellent
|8urface temperature of solid
|Ignition temperature

';I’hermal conductivity of solid
"Therm'al conductivity of gas
Specific heat of solid

1Density of solid
Enthalpy of solid phase reaction
|Moleoular weight of gaseous products

"Ra.tj.o of specific heats for the
’Agaseous products

{Sensitivity of mass buring rate
to temperature gradient of solid
surface

Aotivation energy

<N

= 293%
o .
, - = 660K
T = 2100% .
9 = 5 x 10~ cal seo tem | %K~
A =5 X 104" cal seod' cmn‘I OK-1
()s = Spei:ific heav of gas at constid
pressure, C_ = 0.333 ocal gm"1
o=t P
Py =105 em om™
h = 200 cal gm'1
M = 21{-03
Cp/Ov = 1.22
a =

-

A.s = 50000 cal ,mole'-.‘1

6t
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T

velocity of sound

froquency

length of burner tube

molecular weight

mass burning rate of solid propellent
pressure‘exponent

mean pressure
acoustic pressure amplitude

linear burning rate
flame temperature
mean velocity of product gases at the burning surface

spacific acoustic admittance
logarithmic rate of growth of pressure oscillations

logarithmic rate of decey of pressure oscillations

retio of specific heats Cp/Cv
fractional perturbation of pressure

density of product gascs

density -of solid propellent

fractional perturbation of mass ‘flow rate associated with

R
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