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ABSTRACT

T,,-,i- paper presents a new and simplified method of performing a dispersion

ana.ysis. The technique consists of performing a single analysis in which

appropri.ately scaled system tolerances are applied simultaneously in the

sane direction. This contrasts with the popular and well-known root-sum-

square approach, which requires conducting a series of analyses in which the

system parameters are varied one at a time and the results are then root- _

urTn-squared. An interesting corollary of the technique k3 the estimation of

the number of standard deviations contained in a dispersion resulting from a

number i.f parameters being displaced from their nominal values in a worst-

on-worse fashion.
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SYMBOl ,S

K. ith influence coefficient of the function Y (partial derivative

"--- -j -j " uith r,,.snect to X.)

k .aumber of sta:dard deviations contained in the dispersion AY

due to the statistical combination of k0- dispersiois in the X.I

parameters

m number of stand rd deviations contained in the AX. dispersionsI

when applying the simultaneous tolerance technique (may be

interpreted as a scaling factor on the t- dispersions in the X.

parameters)

X. ith parameer of he function "X, which is subiect to tolerance1

deviations

AX. incremental change in X. due to a pertlirbation from, nominal

Y ,tunction being investigated for the effect of tolerances (is a

function of ti' parameters X,, X. ...... X

AY dispersion in Y due to perturbations in the X parameters

mean of the IKix. I set of tolerance termis

V coefficient of variation (defined as the ratio of the standard

deviation to the mean of a statisticai sample)
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standard deviation of the IK .I set of tolerarca termys

cr X. standard deviation of the distribution of i



SECTION I

INTRODUCTION

System designs are usually optimized on the basis of nominal parameters;

then, some kind of dispersion analysis is performed to verify that the system

performs satisfactorily under toleranced conditions. Of the two well-known

techniques for accomplishing a tolerance study, i. e., the Monte Carlo approach

arnd the Root-Sum-Square (RSS) method, the latter is by far the more popular

for the simple reason that the former is often too costly. Because of this,

only the RSS approach will be discussed in this paper as a basis for compari-

son with the technique proposed herein.

Normally the RSS method is conducted by first calculating a nominal

case and then successively varying one parameter at a time, while observing

the deviation from nominal caused by the perturbation of that particular

parameter. These deviations from nominal are then root-sum-squared to

obtain the expected resultant deviation under toleranced conditions.

In this paper it is shown that, under most conditions, it is feasible to

perform a single analysis in which the various parameters are toleranced

simultaneously, and accomplish essentially the same end result that the RSS

method yields.

.-



SECTION II

CONVENTIONAL ROOT-SUM-SQUARE (RSS) APPROACH
I

Assume Lhat the function Y, which is being investigated for the effect

of tolerances, is a function of the parameters X1 , X, .. . , Xn . The approx-

imate dispersion in Y due to parameter variations can be expressed by the

linear expansion

n

Y= KiAXi (1)
i= I

where the K. terms are usually referred to as "influence coefficients" and the
Im

AX. terms represent the parameter deviations from nominal.

Since the X. parameters are subject to tolerances, they can be con-

sidered as random variables which are statistically distributed about their

nominal v!iues. If the Xi parameters are independent, then the k-sigma dis-

ersimn in AY is given by the familiar RSS relationship

n (1/2kary =i=(KikorXiZ (2)

where the orx values represent the standard deviations of the individual AX
1

distributions.
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'o apply Eq. (2), it is first necessary to evaluate the . influence

coefficieits. Normally, the relationship between Y and its parameters is

known only implicitly; therefore, the influence coefficients cannot be evaluated

analytically simply by taking the partial derivatives, Instead, use is made of

Eq. (1) where the parameters are varied one at a time and an -ialysis is per-

formed to determine the corres-.nding influence coeiiicient for each parameter

variation. The important point here is that tF 3 procedure recuires : separate

analyses for n given pa ane, trs.
Once kory has been evaluated it is customary to relate it to a probability

of success figure, thereby completing the analys s. This can be ac omplished

in elegant fashion if the distrib'ution of 1Y turns out to be Gaussian. To be

assured of a Gaussian distribution for AY, -ie assumption is usually made

that the X. parameters are Gaussian in nature. As such, the resultant dis-

tribULion of AY will also be Gaussian, since a linear combination of normally

distributed variables is itself normaiiy dist,'ibuted. It should also be noted

*that even if the individual terms compri!,ing AY -re not Gaussian, the Central

will approa,.h t Gaussian distribution.

-4-



SCTION III

PROPOSED APPROACH

A. ASSUMPT'ONS

In addition to the usual assumptions cf linearity and statistical

independence requi~ed for the RSS method, the proposed approach is predicated

on the. following assumptions:

1. The directional characteristics of the tolerance effects,

i. e. , the signs associated with the products of the influence

coefficients and their corresponding tolerances, are known.

2. The significant or strong tolerance effe-ts outnumber the

insignificant or weak tolerance effects.

The first assunmtion is v+.al to the proposed dispersion analysiL technique

since it depends on applying the tolerances such that their effects are all in
7

the same direction. Satisfaction of this assumption may require some previous

experience or some ? riori reasoning based on the physics of the problem.

For example, in the case of booster applications, it is generally true that a

thrust increase leads to an increase in burnout velocity, that a decrease in

wind magnitude leads to a decrease in vehicle loads, that an increase in auto-

pilot gains leads to a decrease in stability margins, and so on.

Should the problem be such that the directional characteristics of the

tolerances cannot be predetermined without extensive analysis, then the

obvious choice would be the more laborious RSS method. It is noted, however,

-5-



that once this is done the experience gained could then be used to apply the

proposed method in succeeding problems of similar nature. For example..

optimization studies which require dispersion anal-. es about different sets

of nominal conditions could utilize the RSS method for one set of nornials

and. having established the directional characteristics of the tolerances,

could employ tne proposed method for the remaining sets of nominals.

The second assumption is aimed at achieving good accuracy sinc.' the

accuracy of the method depends on constraining the value 3f a statistical

parameter known as the coefficient of variation* between zero and unity.

Should a prepo- iderance of small terms be toleranced in proportion to the

significant terms, then it is possible for the coefficient of variatio., to exceed

unity-.thereby diminishing the accuracy of the method.

From z practical standpoint, however, this assumption will tend to be

satisfied automatically as the analyst will not (knowingly) include mostly

negligible effects. In fact, quite the contrary is true; negligible effects are

usually excluded from the analysis.

B. DESCRIPTION OF THE METHOD

The approach suggested in this paper is to perform a single analysis and

obtain -asentially the sam-e result for kaythat would normally be obtained from

the conventional RSS approach using Eq. (2). The procedure is simply to apply

appropriately scaled tolerances simultaneously, in the proper direction, and

note the resultant dispersion in Y due to the combined effect of the toleran,.es.

This -.q discussed further in the following paragraphs.

*Defined -as the ratio of the standard deviation to the mean of a statistical sample.
See H. Cramer, Mathematical Methods of Statistics, Princeton University Press,
Princeton, New Jersey 095T8).
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Referring to Eq. (1), it is noted that if all the tolerance effects

(products of the influence ccefficients and their correspunding tolerances;

were in at the samne time and in the same direction, say positive, then all

the parameter deviations would contribute uniquely to an increase in AY.

Without this restriction on polarity, some of the tolerance effects could can-

cel each other and resilt in a non-unique value for AY-the particular value

of AY depending on the sigr' associated with the tolerances.. Therefore, this

particular assumption -that of having all the tolerance effects in the same

direction - is vital to the tolerance analysis method proposed in this paper.

Using the above ground rules, the resulting dispersion in Y can be

expressed by a modified form of Eq. (1) as

n
AY = K.AX .

i=l1

here the absolute values denote that all the terms are forc ' to be positive

by proper selections of signs associated with the tolerances.

What we are striving for is a resultant dispersion AY that represents

the same number of standard deviations k that would be obtained from the

conventional RSS analysis. Thus, we can let

AY = kay Y(4)

Similarly, the 'XX. tolerances can be assumed to represent a certain number

of standard deviations m (as yet undetermined, of their corresponding dis-

tributions, that is

-7-



Axx. = rnx. (5)
1

Inserting Eqs. (4) and (5) into Eq. (3) yields

n

krZy ZIm°X ( (6)
i=l

Equation (6) represents the basic philosophy of the proposed tolerance

analysis method. The significant thing is that the right hand side of Eq. (16)

is obtained directly as the result of a single analysis effort in which all the

tcoerances are applied simultaneously, whereas the conventional approach.

requires n analyses to evaluato the individual tolerance effects which are

then combined according to Eq. (2).

C. DETERMINATION OF THE TOLERANCE MAGNITUDES

Before the approach ird~cated b, Eq. (6) can actually be utilized, it is

first necessary to evaluate the .aling factor n, which determines the mag-

nitudes of the tolerances being applied. Equation (6) can be rewritten slightly

by factoring out m to obtain

n

kory IK iX 1 (7)

Similarly, Eq. (2) can be modified to read

k -y = k IK iox 1 (8)

-8-



(Here, insertion of the absolute value signs instead of the parentheses is

valid because oi the squaring process.) Equating Eqs. (7) and (8) and solving

for m yields

n

k IK Tx! 2

nm(9)

i=1

Examination of Eq. (9) indicates that rn is a function of an unknown t

of numbers representing the tolerance terms IKiO~X , IK20x .... IKnXn II 1 , K 21Y , ,I n X I

Considering the sequence {iK O'X 0I as a random sequence with a mean

n
n= j n Ki"x. I (10)

i=t

and a variance

n
=--n [IKiTx. I _ t( )

nIxi

and defining the sigma/mean ratio as the coefficient of variatio. V, Eq. (9)

can be simplified to

m kIV+ 1 (12)

where V Coefficient of Variation.
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An exact solution for m is actually impossible since it requires a

knowledge of the influence coeff'cients (wlhch are and will remain unknown

under the current approach). However, an approximate. solution is found which

turns out to be surpr~singly accurate under most circumstances.

As shown irt the Appendix, the coefficient of variation V is generally

constrained between the limits of zero and unity, that i6

0 ! V I 1 (13)

Substituting Eq. (13) into Eq. (12) gives the lower and upper bounds on m as

k m-k f (14)

Taking the average of the minimum and maximum values ot n as an approxi-

mation to the true value of m gives the final result of

' k
m 1.? k IS

Two interesting ob. ervations with regard to Eq. (15) are noted here.

First, mn is always < k for n > 1. Secondly, m decreases as the number of

terms incleases. Both of these observations make physical sense and iend

credibility to Eq. (15).,

Finally, it is noted that Eq. (15) can be intei-preted two ways. The first

way concerns the method of conducting a tolerance analysis that is the subject

of this paper. Here k is given and the problem is to find the appropriate

scaling on the individual tolerances, i. e., we solve for in.

-10-



lut, an equally interesting facet of Eq. (15) is the inverse of the above.

Suppose it is desired to evaluate the worst case dispersion in AY due to the

simultaneous stacking of tolerances in a worst-on-worst fashion. Here, rn

is known and solving for k yields the probability of occurrence associated

with -this worst case dispersion.

D. ACCURACY

Accuracy tests of the proposed method of simultaneous tolerancing are

discussed in this section.

Since the dispersion computed by the proposed method is proportional

to the scaling factor ni, the error in the dispersion is equal to the error in

m itself. The error in m can be computed from the difference between the

approximate value of m given by Eq. (15) and the true value given by Eq. (12).

In terms of percent error, the result is

(m2 I OO (16)

The error given by Eq. (16) is shown in Fig. J as a function of the coef-

ficient of variation V. Note that the error is constrained to the limits of +20%

and -15% as long as V is constrained to the limits of 0 and 1, respectively.

To check the accuracy of the method under typical situations, the error

in m was computed for a wide variety of one-sided distributions of the IKix. Ia

array of terms. (For simplicity, the distributions were assumed continuous

rather than discrete. ) The results are summarized in Table 1. The error in

the proposed method of simultaneous tolerancing turns out to be surprisingly

-11-
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Tfable 1. Resultant Error in Proposed Tolerance Method
for Various Distributions of Component
Tolerance Terms

DISrRIBUI'ON OF X Mf21

2 6X -- -O.333 +13.8

P (X) --- y L 0.- =354 +13.1
3 1 3 -,-

L (X ~0.408 1+1 I

I L I L

P Mx -3_ kj3 zi 7hliz
Nil L 0.6t;) 0

h 5

ox' L X I

3 3 '2 N '2<2.
0 M LX I

L

22 ~ 2-

__ LX

-3-



small - on the order of 10 percent - and appears to be biased in a conservative

direction.

E. EXAMPLE

Given the transfer function

aoS 2 +aS+a 2

G(S)= 0 1 2

b0S3 + bIS + b2 S + b3

where S 4 the Laplace operator, find the 3o- variation in its gain characteristic

at w = 10 rad/sec, assuming the 3o- dispersion in each parameter is 10 percent.

The 3 r dispersion in gain will be computed in two ways: first by the method of

simultaneous tolerancing and then by the RSS method.

Applying Eq. (15) with k = 3 and n = 7 gives an m = 1. 36, which corres-

ponds to tolerance deviations of 4. 53 percent. Calculation of the nominal and

toleranced values of IG(S) I is illustrated in Table 2. (Note that the signs

associated with the tolerances were deliberately chosen so that the effects of

the tolerances were in the same direction.)

The RSS method is illustrated in Table 3. Here the toleranced values of

JG(S) I are obtained by tolerancing the corresponding parameters one at a time,

rather than simultaneously as was done previously.

Note that the difference between the two methods is less than 2 percent

in this particular example.

-14-



Table 2. Computation of a 3 c- Dispersion by the
Simultaneous Tolerance Technique

Tolerance Toleranced
Parameter Nominal Value Applied, 0/ Value

a 0  1 +4.53 1.0453

a 1  20 +4.53 20.906

a. 75 -4.53 71.6025

b00.1 +4.53 0.1045

b13 -4.53 2.8641

b 2  27.5 -4.53 26.2542

b75 +4.53 78. 3975

IG(S) Is jI0 0.7071 0.8102

3wG =Gtl Gno 0. 1031

Tabl#A 3. Computation of a 3w Dispersion
by the RSS Method

Tolerance GtlA
Parameter Applied, 0/to (G tol - G nom) ____&G)____

*a0  +10 0.7123 0.0052 0.000027

a 1  +10 0. 7768 0. 0697 0. 004858

*2 -10 0.7108 0.0037 0.000014

b 0  +10 0.7224 0.0153 0.000234

b 1-1.0 0.7693 0.0622 0.003869

b2-10 0.7492 0.0421 0.001772

b3 1 +10 0. 7220 0.0149 0. 000222

EA)z= 0. 0 10996

3 wG =RSS =EGT 0. 1049



As & tratter of interemt: tOw alternate tnterpretaticin ol th~e analysis

technique i* nmfsriorad herve. T hus, Uf 1. 36or pavamet--r de. iationn were

?-rNckej in a worst..om-worst mTxanner it woculd lead to a 3c- dispersion in jG(s!

equal to 0. 1031.
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APPENDIX

A DISCUSSION OF THE LOWER AND UPPER BOUNDS OF THE
COEFFICIENT OF VARIATION V OF THE TOLERA'fE TERMS

If the distribution of the IKifx. I ter--is were not one-sided., (i. a, if
' I

the terms could take on positive and negative values), then V would be com-

pletely unbounded. Because the distribution is, in fact, one-sided, this puts

a severe constraint on the range of variation of V, as will be noted shortly.

From Eqs. (10) and (I t) hi the text the square of the coefficient of vari-

ation can be expressed as

nnE xZ

V n 2
( x

where

x. >0
I

The Schwarz inequality for the trivial case of a set of positive numbers states

that

nn

x i  < n x. (A-2)

* The notation is changed here from that used previously, i. e., KiT x . I to
x. for convenience.
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Comparing Eq. (A-1) with Eq, (A-2) it follows that V 2 0 fLus establishing

the lower bound on the coefficient of variation. (This lower bound can also

be arrived at inti"'tively and corresponds to a set of terms having zero stand-

ard deviation and finite mean-which simply means that all the terms are

equal.)

An upper bound can be determined by considering the worst case dis-

tribution of a set of tolerance terms, i. e. , the one that leads to the largest

possible value for V. If all of the terms are required to satisfy xm , x SXM,

where x is the minimum value of the set and XM is the maximum value, it

can be shown using the Principle of Optimality* that V is maximized when one

of the terms akes on the maximum value and all the remaining terms take on

the minimum value. Therefore, the configuration

x =xM =I(A-3)
x x m  i = Z, 3,.., n

when substituted into Eq. (A-1) leads to the maximum value for the coefficient

of variation of

VaxM x+ n- ) - T(A-4)max X M + (n T

However, Eq. (A-4) is much too improbable a situation to be encountered

in practice since it represents the most severe condition possible based on the

R. BeIman, Adaptive Control Processes, A Guided Tour, Princeton
University Press, Princeton, New Jersey (1961).
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the worst possible configuration oi tolerance term... Furthermore,

distributions which tend to approa-h this worst case condition are specificailv

prohibited on the basis of Assumption 2. In the more general case where

n - 2 of the terms do not take on the value x but take on other values in them

interval between x. and xM much smaller vlues of V will prevail.

After consideration of many random sequences which do not contradict

Assunption 2, it appears that a much more realisc upper bound on the coef-

ficient of variation is unity. This corresponds to a distribution where x is

zero ai. i where half the terms are enual to xm and the remaining half are

equal to xM.

On the basis of the foregoing heuristic reasoning, the coefficient of

variation is taken to be constrained to the region between zero and unit-,,

thaL is

0 - V -S I (A-5)

That Eq. (A-5) is reasonably valid is borne out in Table I in the text

where V varied only from 0. 333 to 0. ., cases considered. Although

this does not constitute proof that this constrain is satisfied in all instances,

it does illustrate the compelling tendancy for V to satisfy the constrait of

Eq. (A.5) for a wide variety of one-sided distributions. Additionally, fulfill-

ment of Assumption 2 will help assure satisfaction of this constraint in prac-

tically all instances.

A-3



UNG LASSIFIED
Siecurity Classification_______

(Seuty~I.AfetQnoft~te bdvDOCUMENT CONTROL DATA - -1D
(Seurty 14ossict en ft#it, bdyofabst Act soo d oax ar-r (a to wi rnu be Prit *red when the ovoral I epor( a rIs~ s*:jed)

I OR IGINA TING ACT I II (Corporate Author) 2& NT:PORT SECuin Ty C LASS'FICA TION

Aerospace Corporation A U assfi1
El Segundo, California

3 R4EPORT TiTLE

DISPERSION ANALYSIS BY A STNGLE APPICATION OF SIMU. -ANEOUS
TOLERANCES

4 DESCRIPTIVE NOTES (Ty"e of report and intclusive dotes)

3 AUTHOPI(S) (Lost natio. first name. iWdtial)

Lazarus, Abram

S. REPORT ATE71 
rA Nn O A Is0"M Fs69 FEB 19 2O5A 0~~ AK ~f~

$a CONTRACT ON GRANT No 9A OftIGINATOWS REPORT NUMISCR(S)

F04701 -68-C-O..jO
6. P,,Ojffc M~O TR -0200(41 22 -40) -1

C. th. X7C RPORT NO(S) (Any otlhezrumbere thdi may be .i*oasde

d ___jSAMSO-TR-69-50
'0, AV AIL ASILiTY/Li~iYATION NOT=*~

This document has been approved for public release and sale; its
distribution is unlimited

11. SUPIPLEMENTARY NO-E ! IS10P450CINO AWLTARY ACTIVITY

Space and Mlissile Systems Organization
Air Force Systems Commnand
Los Angeles, Califcrnia

13 ABSTRACT

Ti-paper presents a new and simplified method of performing a
dispersion analysis. The technique consists of performing a single
analysis in which appropriately scaled syztemn tolerances are applied
simultaneously in he same direcAon. This contrasts with the popular
and well-known root -s um- square approach, which requires conducting
a series of analyses in which the system parameters are varied one at
a time and the results are then root -sumn-squared. The difference
between the proposed approach and the conventional approach is on the
order of 10 percent, usually in a concervative direction.

An interesting corollary of the technique is the estimation of the number
of standard deviations contained in a dispersion resulting from a number
of parazncto rs being displaced fromn their nom-inal values in a worst-on-
worst fashion.

DoFOMI4 UNG LASSIFIED
Security Classification



UTNCLASSIFIED

- - Securilty Classifi-fo
114

D., spersion Analysis

Root-Sum-Square

Coefficient of Variation

Simxultaneous Tolerances

Influence Coefficients

Abstract (Coi tinued)

UNCLASSIFIED

Security Clasificatim e


