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ABSTRACT

This paper presents a new and simplified method of performing a dispersion
anaivsis. The technique consists of performing 2 single analysis in which
appropriztely scaled system tolerances are applied eimultaneously in the
gamme direction. This contrasts with the pocpular and well-known root-sum-
square approach, which requires conducting a series of analyses in which the
system parameters are varied one at a time and the results are then root-
sum-squared. An interesting corollary of the technique 13 the estimation of
the number of standard deviations contained in a dispersion resulting from a
number of parameters being displaced from their nominal values in a worst-

on-worst fashion.

-1ii-




B T T

CCNTENTS
ABSTRACT . . . i i e et e e e it e e e e e e e s e e 1ii
FIGURES . . . 0 it i i e e e e e e e e e e e e vi
TABIES........ e e e e e e e e e e e e e e e e vi
SYMBO LS . . i e e e e e e e e e e vii
L INTRODUCTION. . o v i vt e it st e e e e e e e e e e e e e t
II. CONVENTIONAL ROOT-SUi-SQUA RE (RSS)
APPROACH . . . i it i e et e e e e e e i e e e e 3
III. PROPOSED APPROACH . ... ... .. iviiii .. 5
A. ASBUMPLIONS . . v v v v v v v v v i v e e e e e e e e
B. Description of the Method . . . .. ... ... ... ... ....
C. Determination of the Tole. ace Magnitudes . ... ... .. 8
D. ACCUTACY & L v ittt e e e e e e e e e e e e e e i
E. Example . ... ... e e 14
APPENDIX. A DISCUSSION OF THE LOWER BOUNDS OF THE
CCEFFICIENT OF VARIATION V OF THE
TOLERANCE TERMS . . .. . .. ... . v vt Al




i e o, g

FIGURES

Error in Proposed Tolerance Method as a Function of the

Coefficient of Variation. . . . . v« v v v e v v v v v o

TABLES

Resultant Error in Proposed Tolerance Method for
Various Distributions of Component Tolerance
Terms . ... ..o v i e

........

.Computatiion ¢ " » 3¢ Dispersion by the Simultaneous

Tolerance Tec.aique . . . . .. oo v v v v v o e

Computation of a 30 Dispersion by the RSS Method

-vi-

12

Lo




SYMBOT.€

ith influence coefficient of the function Y (partial derivative

vi 1 vith resnect to X,)
A

aumber of stardard deviations contained in the dispersion AY
due to the statistical combination of ke dispersious in the Xi

parameters

number of stand~rd deviations contained in the AXi dispersions
when applying the simultanecus tolerance technique {may be
interpreted as a scaling factor on the {¢ dispersions in the Xi

parameters)

ith parame.er of the function Y, which 13 subject to tolerance

deviations
incremental change in X. due to a perturbation frem nominal
i

«aanction being investigated for the effect of tolerances (is a

function of th: parameters X , X,, . . ., Xn)
i o

dispersion in Y due to perturbations in the X1 parameters

mean of the ‘Ki"x | set of tolerance terms
i

coefficient of variation (defined as the ratio of the standard

deviation to the mean of a statistical sample)

~Vil-




T standard deviation of the ’Ki"xi, sot of tolerancs terms

standard deviation of the distribution of AXi

e R oo e e
sramuarl ceviaticon oo ciic diotirtwuliva ol AY
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SECTION 1

~

INTRODUCTION

System designs are usually optimized on the basis of nominal parameters;
then, some kind of dispersion analysis is rerformed to verify that the system
performs satisfactorily under toleranced conditions. Of the two well-known
techniques for accofnpliahing a tolerance study, i.e., the Monte Carlo approach
and the Root-Sum-~Square (RSS) method, the latter is by far the more popular
for the simple reason that the former is often too costly. Because of this,
only the RSS approach will be discussed in this paper as a basis for compari-
son with the technique proposed herein.

Normally the RSS method is conducted by first calculating a nominal
case and then successively varying one parameter at a time, while observing
the deviation from nominal caused by the perturbation of that particular
parameter. These deviations from nominal are then root-sum-squared to
obtain the expected resuitant deviation under toleranced conditions.

In this paper it is shown that, under most conditions, it is feasible to
perform a single analysis in which the various parameters are toleranced

simultaneously, and accomplish egsentially the same end result that the RSS

method yields. o

haY

-1-



SECTION II

o
s

CONVENTIONAL ROCT-SUM-SQUARE (RSS) APPROACH
,
Assume that the function Y, which is being investigated for the effect

of tolerances, is a function of the parameters Xl, Xz, cee xn. The approx-

imate dispersion in Y due to parameter variations can be expresased by the

linear expansion

AY K,AX, (1)

(1]
'ﬁ'Mu
[

[

where the Ki terms are usgually referred Eo as "influence coefficients' and the
AXi terms represent the param‘eter deviations from nominal.

Since the Xi parameters are subject to tolerances, they can be con-
sidered as random variables which are statistically distributed about their
nominal values. If the X, parameters are independent, then the k-sigma dis-
ersion in AY is given by the familiar RSS relationship

n 2 1/2
key =[): (Kikc-x.) ] ()
i=1 !

L}

where the X values represent the standard deviations of the individual Axi
i

distributions.
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To apply Eq. (2), it is first necessary to evaluate the Ki influence
coefficien.s. Normally, the relationship between Y and its parameters is
known only implicitly; therefore, the influence coefficieats cannot be evaluated
anaiytically simply bv taking the partial derivatives. Instead, use is made of
Eq. (1) where the parameters are varied one at a time and an waalysis is per-
formed to determine the corres~nnding influence coeuiicient for each parameter
variation. The important point here is that tt'3 procedure requires n separate
analyses for n given pa ame :rs.

Once ko-Y has been evaluated it is customary to relate it to a probability
of success figure, thereby completing the analysis. This can be ac:omplished
in elegant tashion if the distritution of &Y turns out to be Gaussian, To be
assured of a Gaussian distribution for AY, ae assumption is usually made
that the Xi parameters are Gaussian in nature. As such, the resultant dis-
tribucion of &Y wiil alsc te Gaussian, since a linear combination of normally
distributed variables is itself normaiiy disteibuted. It should also be noted
that even if the individual terms comprising AY are not Gaussian, the Central

. .
T imait T . avarm o nuarvmhar Af thaoa tanmne
2ATVIAY A S oreny T NRMISSY X IR88L erme

will approach a Gaussian distribution.




STCTION I

PROPOSED AFPPRCACH

Al AS5UMPTIONS

Ir addition to the usual asgumptions cf linearity and statistical
independence requi.ed for the RSS method, the proposed approach is predicated
on the following assumptions:

1. The directicnal characteristics of the toclerance effects,

i.e., the signs associated with the products of the influence

coefficients and their corresponding tolerances, are known.

(Y]

The significant or strong tolerance effe~ts outnumber the

insignificant or weak tolerance effects.

The first asswumtion is vital to the proposed disper sion analysic technique
since it depends on applying the tolerances such that their effects are all in
the same direction. Jatisfaction of this asswmrption mey require some previous
experience or some 2 priori reasoning based on the physics of the problem.
For example, in the case of booster applications, it is generally true that a
thrust increase leads to an increase in burnout velocity, that a decreasc in
wind magnitude leads to a decrease in vehicle loads, that an increase in auto-
pilot gains ieads to a decrease in stability margins, and so on.

Should the problem be such that the directional characteristics of the
tolerances cannot be predetermined without extensive analysis, then the

obwvious choice would e the more laborious RS5S method. It is noted, however,

ey
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that once this i8 done the experience gained could then be used to apply the
proposed method in succeeding problems of similar nature. For example,
optimization studies which require dispersicn anal, ses about different sets
of nominal conditions could utilize the BRSS method for one set of nominals
and, having established the directional characteristics of the tolerances,
could employ the proposed method for the remaining sets of nominals.

The second assumption is aimed at achieving good accuracy sinco the
accuracy of the method depends on conatraining the value of a statistical
parameter known as the coefficient of variation* between zero and unity.
Should a prepoaderance of small terms be toleranced in proportion to the
significant terms, then it is possibie for the coeificient of variatio. to exceed
unity--thereby diminishing the accuracy of the method.

From @ practical standpoint, however, this assumption will tend to be
satisfied automatically as the analyst will not (knowingly) include mostly
negligible effects. In fact, quite the contrary is true; negligible effects are

usuzlly excluded from the analysis.

B. DESCRIPTION OF THE METHOD

The approach suggested in this paper is to perform a single analysis and
obtain 2ssentially the same result for ko-Y that would normally be obtained from
the conventional RSS approach using Eq. {2). The procedure is simply to apply
appropriately scaled tolerances simultaneously, in the proper direction, and
note the resultant dispersion in Y due to the combined effect of the tolerances.

This i discussed further in the following paragraphs.

¥Defined as the ratio of the standard deviation to the mean of a statistical sample.
See H. Cramer, Mathematical Methods of Statistics, Princeton University Press,
Princeton, New Jersey (1958).




Referring to Eq. (1), it is noted that if all the tolerance effects
(products of the influence coefficients and their correspunding tolerances;
were in at the same time and in the same direction, say positive, then all
the parameter deviations would contribute uniquely to an increase in AY.
Without this restviction on polarity, some of the tolerance effects could can-

cel each other and res:lt in 2 non-unigue value for AY —the particular value

of AY depending on the sigr~ associated withk the tolerances. Therefore, this
particular assumption — that of having all the tolerance effects in the same r
direction — is vital to the tolerance analysis method proposed in this paper.

Using the above ground rules, the resulting dispersion in Y can be

expressed by & modiried form of Eq. (1) as

n f
AY = }: lKiAXiI ) i
i=1

v here the absolute values denote that all the terms are forc ' to be positive
by proper selections of signs associated with the tolerances.

What we are striving for is a resultant dispersion AY that represents

the same nurnber of standard deviations k that would be obtained from the

conventional RSS analysis. Thus, we can let

el v i

AY = ko (4)

Similarly, the 'S.Xi tolerances can be assumed to represent a certain number
of standard deviations m (as yet undetermined) of their corresponding dis-

tributions, that is




Inserting Eqs. (4) and (5) into Eq. (3) yields

n
key =Z ¥ moy |
i=1 !

Egquation (6) represents the hasic philosophy of the proposed tolerance

analysis method. The significant thing is that the right hand side of Eq. (b)

{6)

is obtained directly as the result of a single analysis effort in which all the

tuierances are applied simultaneously, whereas the conventional approach

requires n analyses to evaluate the individual tolerance effects which are

then combined according to Eq. (2).

C. DETERMINATION OF THE TOLERANCE MAGNITUDES

Before the approach irdicated by Eq. (6) can actually be utilized, it is
first necessary to evaluate the .caling factor m, which determines the mag-

nitudes of the tolerances being applied. Equation (6) can be rewritten slightly

by factoring out m to obtain

n

Koy =m Z Koy |
. i
i=1

Similarly, Eq. (2) can be modified to read

n
_ 2
ke, = k Z ‘Ki"xi l
i=1

-

1/2

(1)

(8)
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(Here, insertion of the absolute value signs instead of the parentheses is
valid because o1 the squaring process.) Equating Eqe. (7) and (8) and solving

for m yields

m = Li=1 (9)

Exarnination of Eq. (9) indicates that m is a function of an unknown . st
of numbers representing the tolerance terms ]Kiqxli, [Kzo-xz I, oo lKnu-xn |

Considering the sequence {lKi"x I} as a random sequence with a mean
i

<}
S

i
b “n IKiUx_, {10)
i=1 !
and a variance
n
2 1 E" 2 2
o =-£ lKi(TX., - B (11)
i=1 !
and defining the sigma/mean ratio as the coefficient of variation V, Eq. (9)

can be simplified to

2
m - bt (12)
n
where V 8 ﬁ” Q Coefficient of Variation.




An exact solution for m is actually impossible since it requires a
knowledge of the influenge coefficients (which are and will remain unknown
under the current approcach). However, an approximate sclution is found which
turns out to be surpr:singly accurate under most circurmstances.

As sbown in the Appendix, the coefficient of variation V is genrerally

constrained between the limits of zero and unity, that is

0<V -1 (13)

Substituting Eq. (13) into Eq. (12) gives the lower and upper bounds on m as

-li--smsk/-z (14)
Jn Nn

Taking the average of the minimum and maximum values ot m as an approxi-

mation to the true value of m gives the {inal result of

m > 1.2 — {15)

Two interesting ob:ervations with regard to Eq. (15) are noted here.
First, m is always <k for n > 1. Secondly, m decreases az the number of
terms inc:cases. Both of these chservations make physical sense and iend
credibility to Eq. (15)..

Finally, it is noted that Eq. (!5) can be interpreted two ways. The first
way concerns the method of conducting a tnlerance analysis that is the subjec:
of this paper. Here k is given and the problem is to find the appropriate

scaling on the individual tolerances, i.e., we solve for m.

10




But, an cqually interesting facet of Eq. (15) is the inverse of the above.
Supposc it is desired to evaluate the worst c;se dispersion. in AY due to the
simultancous stacking of tolcrances in a worst-on-worst fashion. Here,
is known and sclving for k yields the probability of occurrence associated

with this worst casc dispersion.

D.  ACCURACY

Accuracy tests of the proposed method of simultaneous tolerancing are
discussed in this section. |

Since the dispersion computed by the proposed method is proportional
to the scaling factor m, the error in the dispersion is equal to the error in
m itself. The error in m can be computed from the difference between the
approximate value of m given by Eq. (15) and the true value given by Eq. (12).

In terms of percent error, the result is

f 1.2
m,_ = (JF_;—: - :) x 100% (16)

‘

The error given by Eq. (16) is shown in Fig. | as a function of the coef-
ficient of variation V. Note that the error is constrained to the limits of +20%
and -15% as long as V is constrained to the limits of 0 and 1, respectively.

To check the accuracy of the method under typical sitﬁations, the error
in m was computed for a wide variety of one-sided distribufions of the 'Ki"x. |
array of terms. (For simplicity, the distributions were assumed continuous l
rather than discrete.) The results are summarized in Table 1. The error in

the préposed method of simultaneous tolerancing turns out to be surprisingly

-11-
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Resultant Error in Proposed Tolerance Method
for Various Distributions of Component
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small — on the order of 10 perceat — and appears to be biased in a conservative

v

direction.
E. EXAMPLE
Given the transfer function
aOS2 + aIS + a,

G(S) = — 3
byS> + b,S” + b,S + b,

where S 2 the Laplace operator, find the 3¢ variation in its gain characteristic
at w = 10 rad/sec, assuming the 3¢ dispersion in each parameter is 10 percent.
The 3¢ dispersion in gain will be computed in two ways: first by the method of
simultaneous tolerancing and then by the RSS method.

Applying Eq. (15) withk = 3 and n = 7 gives an m = 1. 36, which corres-
ponds to tolerance deviations of 4,53 percent. Calculatior of the nominal and
toleranced values of |G(S)| is illustrated in Table 2. (Note that the signs
associated with the tolerances ﬁvere deliberately chosen so that the effects of

the tolerances were in the same direction.)

The RSS method is illustrated in Table 3. Here the toleranced values of
| G(S)| are obtained by tolerancing the corresponding parameters one at a time,

rather than simultaneously as was done previously.

Note that the difference between the two methods is less than 2 percent

in this particular example.

-14.
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Tzble 2. Computation of a 3¢ Dispersion by the
Simultaneous Tolerance Technique

Tolerance Toleranced
Parameter Nominal Value Applied, % Value
a, 1 +4.53 1.0453
a, 20 +4.53 20.906
a, 75 -4.53 71. 6025
bo 0.1 +4.53 0. 1045
b1 3 -4.53 2. 8641
b2 27.5 -4.53 26.2542
b3 75 +4.53 78.3975
|G(S) 's = j10 0.7071 0.8102
3o'G = 'C'nom= 0.1031
Table 3. Computation of a 3¢ Dispersion
by the RSS Method
Tolerance G AG
Parameter Applied, % tol (Gt ol C'n orn) (AG)Z

a, +10 0.7123 0.0052 0. 000027
a, +10 0.7768 0.0697 0.004858
a, -10 0.7108 0.0037 0.000014
bo +10 0.7224 0.0153 0.000234

‘ b1 -10 0.7693 0.0622 0.003869
b, -10 0.7492 0.0421 0.001772
b3 +10 0.7220 0.0149 0.000222

30, = RSS =

$(aG)° = 0.010996

G JZ (AG)™ = 0. 1049

-15-




Ag & matter of intersat, the alternate interpretation of the analysia

technigue is meationsd here. Thas, i . 36¢ paramet=r de.iations wers

arached in @ worst-cm-worst manner it would lead to a 3¢ dispersion in [G{s}/

egual te G. 1031,




APPENDIX

A DISCUSSION OF THE LOWER AND UPFER BOUNDS OF THE
COQEFFICIENT OF VARIATION V OF THE TOLERAMZE TERMS

It the distribution of the iKi"x. | ter.ns were not one-sided, (i.e., if
the terms could take on positive and 1nega}tzive values}), then V would be com-
pletely untounded. Because the distribution is, in fact, ons-sided, this puts
a severe constraint on the range of variation of V, as will be noted shortly.

From Egs. (1C) and ({1) in the text the square of the coefficient of vari-

ation can be expressed as

VE 5 e - (A-1)%

rrris i RS eI )b A NAIEARY ek

where

e e Ay i B 2 3

The Schwarz inequality for the trivial case of a set of positive numbers states
that

n 2 ,
x.) <n) ¥ (A-2)
1 1

i=1 i=1

* The notation is changed here from that used previously, i.e., |Ki<rx [ to
x, for convenience. i

A




Comparing Eq. {A-1) with Eq. (A-2) it follows that V 2 § .nus establishing
the lower bound on the coefficient of variation. {This lower bound can also
be arrived at intuitively and corresponds to a set of terms having zero stand-
ard deviation and finite mean — which simply means that all the terms are
equal.)

An upper bound can be determined by considering the worst case dis-
tribution of a set of tolerance terms, i.e., the one that leads to the largest
possible value for V. Ifall of the terms are required to satisfy xS X, < XM,
where X is the minimum value of the set and XM is the maximum value, it
can be shown using the Principle of Optimality* that V is maximized when one

of the terms .akes on the maximum vaiue and all the remaining terms take on

the minimum value. Therefore, the configuration

x
X :{x ' (A-3)

when substituted into Eq. {A-1) leads to the maximum value for the coefficient
of variation of
X5y - xm) NG

v = (A-4)
max Xpp +{n 1) x

However, Eq. (A-4) i8 much too improbable a situation to be encountered

in practice since it represents the most severe condition possible based on the

* R. Bellman, Adaptive Control Processes, A Guided Tour, Princeton
University Press, Princeton, New Jersey (1961).




the worst posaible configuration oi tolerance termJ. Furthermore,
distributions which tend to approa.h this worst case condition are specificai’v
prohibited on the basis of Assumption 2. In the more general case where

n - 2 of the terms do not take on the value X but take on other values in the
interval between X and xM,much smaller v.lues of V will prevail.

After consideration of many random sequences which do not contradict

Agsumpticn 2, it appears that a much more realis..c upper bound on the coef-

ficient of variation is unity. This corresponds to a distribution where X is
zero anl where half the terms are eaual to X and the remaining half are
egqual to Xy

On the basis of the foregoing heuristic reasoning, the coefficient of
variation is taken to be constrained to the region between zero and unit:,

that is
0=V {A-5)

That Eq. (A-5) is reasonably valid is borne out in Table 1 in the text
where V varied only from 0. 333 to 0. .. . cases considered. Although
this does not constitute proof that this constraini is satisfied in all instances,
it does illustrate the compelling tendancy for V to satisfy the constraint of
Eq. (A-5) for a wide variety of one-sided distributions. Additionally, fulfill-
ment of Assumption 2 will help assure satisfaction of this constraint in prac-

tically all instances.
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