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PREFACE

This Memorandum, prepared as part of RAND's continuing study of
long-distance optical propagation through the atmosphere, gives a work-
able solutjion to the second-order Rytov approximation,

Recently there has been a controversy .u the ranges for which the
first-order Rytov approximation gives an adequate engineeriug estimate
of the effect of a turbulent medium on laser propagation. Therefore,
it is felt that an explicit derivation of the second-order Rytov approx-

imation should be of interest to those concerned with optical communi-

cation and laser radar. Furthermore, the second-order approximation
is necessary because it is the lowest order nontrivial approximatiom

which conserves average energy to the order of the approximation.




SUMMARY

\,

]
An explicit and useful formulation of the sclution for the

second-order Rytov approximation is given. From this solution a con-
dition of validity for the Rytov solution is obtained. It is concluded
that, in general, both the Born and Rytov approximations have e samc

domai~ ~f validity.
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I. INTRODUCTION

A great deal of theoretical effort has been given to caiculations

(1-3)

based on the so-called Rytov approximation. However, the valid-

ity of the Rytov approximation has been questioned by a number of

(2,4) (5)

authors. In a recent paper Fried

(4)

centinues to take issue with

(2)

the arguments of Hufnagel and Stanley and Browm, who claiwm chat
the Born and Rytov approximations have the same domain of validity.

In view of this continuing controversy, it is felt that an explicit
derivation should be given of the second-order Rytov approximation
(defined below). In this Memorandum the hierzichy of Rytov equations
is presented. The explicit soiution (in quadrature) of the second-or-
der Kytov approximation is obtained. In Ref. & the Born approximation
was examined in detail, and it was assumed that the domain of validitv
of the Rytov solution was the same. Here we present an explicit demon-
stration that this is indeed the case.

The soluticn obtained is correct through terms of second order in

nl, where n

1 {s the fluctuating part of the index cf refraction. From

this solution a conditior of validity is obtained for the Rytov approx-
imation with the conclusion that both the Born and Rytov approximaticns
have the same domain of validity.

As in Ref. 6, the analysis {s .Ime independent and r~stricted tc
weakly inhomogeneous media which are assumed to be statistically homo-
geneous and i{sotropic, characterized by an index of refraction corre-
lation function. Furthermore, the electrical conductivity and magnetic
rermeability of the medium are taken as zero and one, respectively.

Scalar waves at optical wavelengths are considered, with the extens{cns




to vector fields being straightforward. For further details of the
tueory of optical propagaticn through a turbulent medium, the reader

is referred to Ref. 6 and the refere.ces therein.

The scalar wave equation is

720 + knl(0)u = 0 (1) :

Risbed LR b AR ¢ S

where U is a typical component c¢f the field, k is the optical wave

)

: number, and

S e

a(r) = 1 + nl(;) (2)

- wieiar

where ny is the fluctuating part of the index of refraction assumed

. to satisfy lnll << 1 and ;I = 0 (the bar over a quantity indicates the

ensemble average of the quantity).
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II.‘ THE SECOND-ORDER RYTOV APPROXIMATION

The Rytov transformation consists of setting U = exp[!] in

Eq. (1) and thus obtaining

A2+ L+ @1 =0 (3)
In the literature it is customary(l-B) to seek a solution for V as a
power series in n,. Let
>
It =
¥ Z‘Wm %)
m=0

where wo is zero order in nl, wl is first order in n, and so forth.

Then it can be shown that the &m's satisfy

P+ (Wt + k=0 (5)
0 0
2, 2 -
vy + vao . V$1 + 2k nl(r) = 0 (6)
2 . 22~ 2
v, + 208, ¢ WU, + kTn)(x) + ()" =0 (7
and
m-1
2, . 5 .
A IO 3 Vi, e W =0, m= 34,5, (8)
p=0
Equation (5) gives the solution to Eq. (1) for tha case ny * 0. Thus
if U0 = exp - then Eq. (5) 1s equivalent to VZUO + k200 = 0,
(1)

The function "1 is what is usually referred to in the literature

as the Rytov approximation. In this Memorandum, {1 is referred to as



the first-order Rytov approximation, while 5 is referred to as the

second-order Rytov approximation,

(1)

It can be shown that within an arbitrary constant the general

selution of Eq. (6) is given by

o2kt
vl - —-
Uy(D)

Ldr’ G(r - 1) nl(}") UOG’) (9)

where the integration in Eq. (9) extends over .he region of space
where nl(?) is different from zero and

—
: 14
1k]r-r !
€

-

1 (10) |
e |

is the Green's furction in the absence of turbulence, which satisfies
the outgoing radiation condition at infinity.
Others have failed to obtain a useful workable solution to

Eq. (7) (e.g., Schmeltzer(3)

)« It is noted that Eq. (7) can be solved
by the use of a transformation suggested by a comparison of the Born
J

and Rytov expansions. Upor equating second-order terms in the expansions

we have 4

AR (11)

whoce ., 1s given in Eq. (9). Upon substituting Eq. (11) into Fq.

{7 and using 1g. (6), we find

[

e . : 2
7 LAV . = - +
. “+ V“U (k nl 2k l]l.l) (1 )
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W(r)
Uy ()
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and substitute this inte Eq. {(12). We firnd that W satisfies

+ 2k2n vy U

2
2+ 1w = - (Kn 11

— 8

6

Hence,

NE) = - K [ GG - T 1nl(E) + 20, (B0 - (?f)] u.(x?) dr’
: LM 1 1 0

Thus, the second-order Rytov approximation is given by Eq. (11),

where g and W are given by Eqs. (13) and (l4), respectively.

The transformation employed to solve Eq. (7) suggests that the sclu-

tion to Eq. (14) should be equal to the second-order Born approximation.

The Born expansion for U(?) is given by

where

-

. ? " — - — -
Uir) = - 2" dr/ g(r - ) nl(r') Uo(r’)

and for i -1

(13

(14)

(15)

(16)

(17)




— = - 2 r‘ a, {: . 4[ —al —4,\
Ui+1(r) 2k ] dr’ G{r r’) nl(r ) Ui(r )]
2 {‘ -sl - —4, 2 —0’ —4f
-k” ' dr G(r - ) nl(r ) Ui-l(r ) (18}
For i = 1 Eq. (18) gives
2 e ol T a2 2 2y
U, {r) = -~ 2k dr’ G(r - 1 Y n,{r) U, (x9)
2 1 1
S T aE 6E - T P @D Uy (1)
J 1

Comparing Eq. (14) with Eq. {19}, it is seen that to within an arbitrary
constant w(?) = Uz(?). Hence, to within an arbitrary constant the

second-order Rytov approximation is given by

G 52() RACEEEAGK:
bo(r) = == - —g— = - T 1 (20)
Uo(r) Uo(r) “Uo(r)'

The average field is determined, to terms of second order in s

as

U= exp [VO + Vl + tz}

= exp | ¥, + TJ (21)

where 12(;) = iUz(?)/Uo(?)w. For example, when the field in the
w o

absence of turbulence is a plane wave

B_(0) 2 ikR o
- - By KN\ oz e . 1keR
0, = ik« ¥ { s— + (‘m) [ dR = B_(R) e } (22)




where Bn(ﬁ) = nl(?) nl(; + ﬁ) is the correlation function of the

index of refraciion tluctuations.

It is shown in Ref. 6 rhat one must include the second-order
contribution to the field (Vg) in order to obtain an adequate engi-
neering approximation to the scatfered field in the prescnce of
turbulence. Furthermore, a second-corder expansion for the field
is the lowest order nontriviai approximation which conserves average

cnergy to the order of the . yroximation. That is, the field

U(T) = exp L«O(?) +u )+ vz(?)j (23)

which contains all terms through second order in n, gives the correct
average field, correct phase and intensity statistics, conserves aver-
age energy, and satisfies the optical theorem to this order. In the
present notation the optical theorem is, through terms of second

order in g given by

2 *
2Rew, + lwll =0 (24)

D PO .

*

In the usual notation the optical theorem is; ¢ = 4n Imf(0),

where ¢ is the total scattering cross section per unit volume and
£(0) is the forward scattering amplitude per unit volume.




1iI, VALIDITY CONDITICN

To obtain the conditien of validity for the Kytov solution
U=exp ¥, + Tt Wz + o127, it is sufficient to require that each
successive term in the expansion of . be smaller %S?n the preceding
term.(z) In view of this, and since the various t;rms in the expansion
of ¥ are random functions which can be described only in statistical
terms, it is assumed that the condition of validity on the Rytov solu-
tion is related to the relative magnitude of the square value of suc-

cegsive terms. Therefore, the condition of validity for the Rytov

solutions is taken to be

2

p? << (v? (25)

2
wl
where V2 =% "7 Now, it can be shown that |Im $2l SON ‘Re”2|

for all cases of interest: hence, by expressing Re:;2 in terms of Tl

by using Eq. (24), we find from Eq. (25, that two conditions must

be satisfied (from the real and imaginary parts, respectively).

The real part yields the condition (Revl)2 ~. 1, while the

*
imaginary part ylelds the stronger condition, since it can be shown
]

e

that (Revl)?‘ S (Im ¥

1, (2 _
AR (26)

Taking the ensemble average of Eq. (26), we conclude that the

condition of validity of the Rytov solution is given by

*
See Ref. 1, Chap. 7 and 9.
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It is noted that when V. - wl, the successive terms in the asymptotic

[N

expansion for ¥ (i.g., ¥V = JO + Wl + ¢2 + oe+) will all be of the same
order of magnitude. The solution given by Eq. (23) is therefore valid
only when Eq., (27) is satisfied.

The condition of validity of the Born approximation is given by
exactly the same expression (Eq. (57) of Ref. 6).

We conclude that, in general, both the Born and Rytov approxi-
mations have the same domain of validity. A critical range Rc is
determined by solving Eq. (27) with an equality sign. For R < RC,
the Born and Rytov solutions are valid, while for R Rc both
solutions fail to yield a valid solution. Treatments which apply
the Rytov approximation beyond RC, and therefore predict large dis-

(7

persion of intensity, are incorrect.,

s
b
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