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LINEAR STOCHASTIC DIFFERENTIAL GAMES 

By 

Robert Dietrich Behn 

Division of Engineering and Applied Physics 

Harvard University • Cambridge, Massachusetts 

ABSTRACT 

The solution for a class of stochastic pursuit-evasion differential 

games between two dynamic systems is given; this class includes those 

games where one of the players has perfect knowledge of the state of 

the game while the other player is constrained to make noisy measure

ments on this state. The dynamic systems involved are linear and the 

performance index which is optimized is quadratic. 

The strategy for the player with perfect information is not always 

a realizable one. It is shown that this player can implement his strategy, 

however, if the number of his control variables is as great as the number 

of the state variables involved in the pursuit and evasion. Thus the solu

tion obtained is applicable for the classical interception game in euclidean 

space. 

Several aspects of this game are studied in detail. The asymmetric 

ro:'.es of the pursuer and evader are discussed in general and relationships 

drawn between the deterministic and stochastic cases. It is pointed out 

that this game requires -- in reality -- the solution to a non zero-sum 

game since the two different information sets employed by the two players 

cause each player to evaluate the criterion differently. The "certainty

equivalence principle" which characterizes the .standard stochastic control 

problem is shown to be applicable to this class of differential games. 
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Example• of the cla11ical interception game are given and 

numerical results presented. 
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CHAPTER ONE 

AN INTRODUCTION 

1. 1 A Short Discussion of Game Theory 

The Theory of Games -- the mathematical study of conflict 

was first conceived and investigated by von Neumann and Morgenstern 

in their now classical, though only two-decade-old, work, Theory of 

Games and Economic Behavior [l]. Their analysis begins with Zero

Sum, Two-Person Games, for this class permits the most detailed 

and most satisfying mathematical study. It is defined by two 

specifications: 

i. exactly two players are involved, 

ii. the competition between them is perfect in the sense that 

what one player loses, the other player gains . 

This secnnd specification needs, perhaps, further explanation. 

Before the discussion of any particular game problem can begin, 

it is necessary to establish a payoff for each one of the players, 

denoted by J 1 and J 2 . These two payoffs translate the outcome of 

the game into particular numerical values for the two players, with 

each player desiring to maximize his own payoff; the payoffs must be 

scalars to permit a conclusive comparison of any two possible out

comes. If the scales and zero orientation can be selected so that 

for every outcome of the game 

-J 1 = J = +J 2 ' (1: 1) 

the game is said to be zero-sum, i.e. the sum of the payoffs to the 

J 
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competing players is zero. This is the meaning of specification ii. 

above. Throughout this thesis, the non-subscripted symbol J shall 

refer to a zero-sum payoff (alternatively called the criterion) which 

01-..e player attempts to minimize while the other to maximize. 

The theory of games attempts to determine general rules by 

which the players, when confronted with a conflict situation, deter

mine their optimal behavior. These rules, called strategies, are 

denoted here by U and V, for players one and two respectively. 

Thus the payoff is a function of the opposing players I strategies, 

J(U, V). 

As presented by von Neuma:nn and Morgenstern, the general 

game theory problem is then to determine the optimal strategies, 

u0 and v 0
, which minimize and maximize the payoff respectively, i.e. 

J(U0
, v0

) = Max Min J(U, V) (l:Z) 
V U 

or alternatively 

J(U0
, V0

) = Min Max J(U, V) 
U V 

(1 :3) 

Unfortunately, however, these two are not equivalent, min-max does 

not always equal max-min, for the Max and Min operators do not in 

general commute. If - - for a particular functional relationship 

between J, and U and V -- (1 :Z) and (1 :3) do give the same result, 

the optimal strategies and the optimal values of the payoff satisfy the 

saddle-point relation 

J(U0
, V) ~ J(U0

, v0
) ~ J(U, V0

) (1 :4) 

• 

---------~-· 
" 
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Strategies u0 
and v0 which satisfy (1 :4) are said to provide the 

"solution II to the game, in partic,.~ar a minimax solution. J(U0
, v0

) 

is called the value of the game. 

The rationale behind selecting (1 :4) as defining the so,lution 

to the game is that the optimal s t rategy pair (U0
, v0

) is said to be 

in "equilibrium. n One player cannot gain by changing his strategy 

if the other does not change. This solution also has the interesting 

sidelight that if the players are going to play u0 and v0 neither 

player will lose any-t~:ring by announcing his strategy. 

This concep~ of an eq·uilibriwn solution can be employed to 

solve non zero-sum games as well. Consider two different payoffs 

J 1 and J 2 where player one attempts to minimize J 1 and player two 

to maximize J 2,- Any equilibriwn solution (U0
, V0

) is one such that 

J 1 (Uo, Vo) ~ J 1 (U, Vo) 

J 2(Uo, V) ~ J z(Uo, Vo) 

(1 :Sa) 

(1 :Sb) 

Methods employed to obtain game theoretic solutions, as defined 

by either (1 :4) or (1 :5), are no end in themselves; either pure guess

work or logical argwnents founded on rigorous mathematics may 

prove successful. The only test is whether (1 :4), or (1 :5), is satis

fied or not. As used below, the combination of intuition plus mathe

matics may be disdained by some. Justification is found, however, 

in the fact that the strat,Jgies obtained are in equilibrium. 

In control theory, the equation which determines the optimal 

control (strategy), u0
, is 

J(U0
) ~ J(U) 

___,_, __ ..... ..-~-- ~ -· .. - - ---·--·~ 

( 1 :6) 

' ' 
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That this equation is the defining one for control theory is not open 

to question. lithe solution obtained is inappropriate, one need 

only modify the criterion or impose more realistic constraints. 

The role of (1 :4) (or (1 :5)) in game theory is analogous to that of 

(1 :6) in control theory. (From this view, games are two-sided control 

problems.) It is important to note, howev,;?r, that the van Neumann

Morgenstern formula (1 :4) is not the only possibility for defining the 

"solution" to a zero-sum game; reasonable men could obtain other 

rational standards. A strategy based on (1 :4) does not always pro

duce a result which cannot be improved upon, while (1 :6) -- in a 

theoretical sense -- does. Luce and Raiffa [2.] discuss this dilemma 

drawing on the insights of modern utility theory. 

The opposition to using (1 :4) to solve game theory problems 

usually arises in the form of the question: "Suppose one player 

doesn't play 'optimally'?" The implication is that if player two 

fails to employ strategy v0
, then player one may be able to do better 

by selecting a strategy other than the one obtained from a calculation 

based on (1 :4). This is, of course, true; if player two employs a 

strategy other than v0
, player one can find another strategy which 

will give a lower payoff than J(U0
, v0

). 

However, two observations must be made. First, by playing 

u0 player one insures that the payoff will have a value no greater 

than J(U0
, v0

). Second, if player two fails to employ v0
, the value 

of the payoff will decrease. Also, if player one -- on the assumption 

that player two will not select strategy v0 
-- employs a strategy other 

I • 



f ~,.... ..... wi •••• - .. 

1 .. 5 

than u0
, he opens the possibility that the payoff will be greater than 

J(U 0
, V0

), the value which is ~aranteed by selecting strategy u0
. 

This philosophical argument is equally applicable to non zero

sum games and could continue indefinitely. The author has accepted 

the von Neumann-Morgenstern approach, as defined by (1 :4) and 

( 1 :5), as providing the correct strategies to be employed in any game 

situation. Those who would question the validity of the solutions de

scribed below should be careful to make sure that they are not really 

raising this philosophical question. Perhaps the best method for 

dealing with the possibility that one player will not play "optimally 11 

is to assess the probability that he will not do so and solve a statis

tical as well as a game problem, or to place constraints on this 

player which appropriately model his incapacity to either calculate 

or employ the optimal strategy. 

1. Z Somt\ Essentials of Differential Games 

(i) Strategies and Time Functions - For any two-person game, 

the solution consists of two strategies which satisfy the equilibrium 

condition, either (l :4) or (1 :5). These two strategies determine the 

players I moves or behavior for every possible situation which may 

arise during the play of the game. The number of possible situations 

may be small, and consequently the strategies may delineate ~xpli

citly the possible moves . (If he hits me, I'll hit him back. Otherwise, 

I won't.) 

/· 
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However, if the number of situations which may occur during 

the game is quite large it would be unrealistic to require a strategy 

to explicitly state the optimal action for every situation. Rather a 

strategy will indicate a general relationship between the possj_ble 

situations and the corresponding optimal actions. (If I hold 4 aces, 

I'll raise my opponent twice his b~t. ) 

As used in this thesis, the term differential game shall mean 

a game in which the players must make a continuity of decisions, i.e. 

the decision process must produce a function. This does not mean 

that the strategy is such a function, but rather a set of rules by which 

the particular function is selected on the basis of the situations which 

confron~ each player. In this thesis, these functions have as their 

independent element time; the purpose of the strategies is to dictate 

how f)ach player will select his own time function as a result of the 

data ·which he receives. 

It is important to note the distinction between a player's strategy 

and the particular time function he will employ. In the game discussed 

and solved below, a player will probably use a different time function 

for every play of the game, simply because of the random nature of 

his information. His strategy, however, is the same provided that 

the parameters of the random processes encountered are the same. It 

is the strategy, not the time function, which must satisfy (1 :4). 

(ii) The Basic Equations - The strategies U and V produce the 

time functions u and v called controls. They effect the value of a 

.!!!!!, variable -- a vector, y, which describes the state of the game 

...._ ______ .. ____ ____ !lW'il"~ -----~~w,i.••----- ------ ~flllf li!U....,_ 7,• •---

' ' 
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usually through a differential equation 

y(t ) = y 
0 0 

( 1 :7) 

which shall be called the game equation. This state vector acts as an 

intermediate variable between the control vectors and the payoff; 

though the criterion may depend on the controls, the nature of the 

state's entry i_s usually primary to the character of the solution for 

it describes the game. The most general form of the payoff includes 

both a function of the terminal value of the state variable and a func

tional of the state and two control variables. 

(1 :8) 

Both f2 and f
3 

are scalars and termed the terminal criterion and in

flight criterion respectively; f3 is equivalent to the Lagrangian of 

control theory. All elements of this general form need not be present. 

(iii) Open-Loop and Closed-Loop Strategies - The strategies may 

uniquely determine ihe controls before the game begins on the basis 

of the initial data, e.g. 

u = u(t, y(t )) 
0 

(1:9) 

The term open-loop strategies -- one borrowed from control theory -

is applied here, for there is no feedback loop involved. They determine 

control functions that are merely based on the initial state and the time 

they are to be applied. 

The other possibility is for the controls to be determined as the 

game progresses, i.e. the value of the control function at time tis 

dependent on the value of the state at that time. The values of these 

. l 
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controls at timtt t could be obtained from a specific relationship to 

the statue of the game at time t. It is this relationship then that is 

the strategy, 
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u=u(t,y(t)) (1:10) 

and ia called closed-loop. This term also has its roots in control 

theory. A closed feedback loop is constructed so that the control is 

dependent on the state, which is in turn dependent on the control, 

thus producing the closed-loop. 

(iv) Necessary Conditions and Separability - The calculus of 

variations provides a method for solving control theory problems, by 

converting the problem of finding the minimum of a functional (i. e. 

the criterion) into one of finding the minimum of a special function 

which is called the Hamiltonian. Similarly the calculus of variations 

can be useful in obtaining solutions to differential games, by converting 

the problem of determining a functional minimax to one of selecting a 

function minimax. 

The Hamiltonian for the differential game of (1 :7)-(1 :8) is given by 

IJ. T :JC(y,u,v,t) = f3(y,u,v,t) + i (t)f1(y,u,v,t) (1:11) 

What is now desired is a set of conditions which are necessary to ensure 

that the Hamiltonian satisfies the saddle-point condition with respect to 

particular time functions u0 (t) and v0 (t), during the entire play of the 

game. 

:JC(y,u0 ,v,t) ~ :JC(y,u0 ,v0 ,t) .:E; :JC(y,u,v0 ,t) 

These conditions are 

(1 :lZ) 

,. 
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83C = 0 au (1:13) 

a:JC = 0 av (1 :14) 

a2·3C 
0 -~ 

au2 (1:15) 

az:JC 
'7" ~ 0 (1 :16) 
av 

These become necessary and sufficient when the partial inequalities 

of (1 :15) and (1 :16) become strict inequalities. 

As was noted in Section 1. 1, when attempting to satisfy a saddle·· 

point condition, here (1 :lZ), min-max will not always be found equal 

to max-min. It is well known (see for example, Bryson and Ho [3]) 

that here a simple condition for the two to be equal, i.e. for (1 :1 Z) to 

be satisfiable, is that the Hamiltonian be .: eparable. 

3C{y, u, v, t) = 3C '(y, u, t) + 3C "(y, v, t) (1 :1 7) 

If this condition is satisfied, and if (1 :13) and (1 :14) determine values 

of v and u which satisfy (1 :15) and (1 :16), then these values do indeed 

provide ;., saddle-point for the Hamiltonian. 

Separability means that there are no "cross terms II of u and v 

explicit in either the differential equation or the inflight criterion. 

f1 (y, u, v, t) = f1 (y, u, t) + f11 (y, v, t) ( 1 :18) 

f
3

(y, u, v, t) = f3(y, u, t) + f3 (y, v, t) (1:19) 

It guarantees that (1 :13), which is used to determine u0
, is independent 

-----··-·····- ··- .. ;r ... ,_-=a 
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of v, and that (1 :14), which is used to determine v0
, is independent 

of u. Thus (1 :13) and (1 :14) do not have to be solved simultaneously, 

but rather u
0 

and v0 can be obtained independently. 

In order for the values of u0 and v0 which are obtained from 

(1 :13) and (1 :14) to provide a minimax of the functional J, it is further

more necessary that X. be selected on the basis that 

iT = -~ 
8y 

(1 :20) 

Thus (1 :13), (1 :14) and (1 :20) provide a method for obtaining a u0 and 

a v
0 

which must be u~ed to obtain the optimal trajectory, i.e. these 

values of u and v must be used during the entire play of the game if 

the resulting play is to have been determined by optimal strategies. 

In particular (l :13) determines the time function u0 (t), and (1 :14) the 

time function v0 (t). Consequently, this is a method for deriving open

loop strategies. However, these open-loop strategies can often be 

converted into closed-loop ones as is done in Section 1. 4. 

The fact that values of u(t) and v(t) are determined which satisfy 

(1 :12) does not ensure that they satisfy (1 :4). The separability condi

tions guarantee only a saddle-point for the Hamiltonian; what would 

really be desirable is the separability of J, a condition which is much 

more difficult to aRcertain and generally not true. Consequently, solu

tions obtained by the above method provide only a candidate for a strategy 

pair which may satisfy (1 :4). It is merely a technique -- like guessing -

for obtaining a possibility; any pair of strategies must always be 

checked directly by substituting into (1 :4). 

I, 

_______ ..,....,~ u .... .....-.------•-iol--~•----·-------~~ 
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(v) Admissible Strategies - One difficulty encountered in 

differential games is that of defining the admissible strategies. In 

basketball, an unadmissible strategy for the leading team is to punc

ture the ball, deflate it and stuff it under a player's shirt in an effort 

to run out the clock. In thi~ thesis, admissible strategies shall mean 

those strategies which produce control functions that result in a 

meaningful play of the game. 

The question of admissible strategies cannot, in general, be 

settled by investigating each player individually; it is also important 

to investigate the problem of non-playable strategy pairs. It is 

possible that a particular strategy employed by player one is admis

sible against some of player two 1s strategies, but that against others 

will result in a play of the game which never terminates. For sudden

death overtime in some sports (e.g. soccer, lacrosse, hockey) a 

strictly defensive strategy by both teams (with each team huddled 

around its own goal) would be an unplayable pair; by these strategies, 

neither team would sen.d a man to attempt to score, and thus the game 

would never end. In general then, it is necessary to define not the 

admissible strategies, but rather the "admissible strategy pairs. " 

It is important to note that this possibility does not occur in the 

game investigated below. All games are of fixed time duration and 

consequently any pair of strategies, selected from the two independent 

sets of admissible strategies, will result in the termination of the 

game when the clock runs out. 

-··•--- ---
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lithe physics of a particular game demanded, the admissible 

strategies could be limited to open-loop ones. Then the solution to 

the game woul~ consist of two specific time functions and these time 

functions themselves would have to satisfy the saddle-point condition. 

In general, however, closed-loop strategies are permitted. Specific 

examples of related open-loop and closed-loop strategies are found 

in Chapter 5. 

(vi) Pursuit-Evasion GameCJ - Pursuit-Evasion games are an 

important sub,:iass of differential games. As the title suggests, this 

includes situations in which one player, the pursuer, attempts to 

minimize the 1diatance n between the two to implement capture; the 

other, the evader, attempts to escape. Thus, the state variable must 

• omehow describe, either implicitly or explicitly, this distance, 

however it is measured. Also these elements of y(t) must enter into 

the terminal function f2; other elements may be present in the total 

criterion, but this one is essential. 

Thus for pursuit-evasion games, player one -- who desires to 

minimize the criterion which includes terminal separation ""'.- is called 

the pursuer and player two is called the evader. Throughout this 

thesis, the subscripts p and e denote variables which relate to these 

two players, respectively. 

1. 3 A Short History 

Differential games were fir&t defined and studied by Isaacs in 

1954 (4). His initial work, accomplished without knowledge of both 

concurrent developments in control theory, independently obtained 

..._ _______ ._, _______________ ----
________ ,__,.,,_.,_.,.. l~ ,.,_, .... ,.,--
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the Euler-Lagrange equation of the calculus of variations and the 

Bellman equation of dynamic programming. Eschewing rigorous 

mathematical analysis, he studied a number of specific differential 

games and, by cataloging their peculiarities, discovered a set of 

"singular behavior. 11 This r~sulted in a number of different singu

lar surfaces, which though all similar in nature to the singular sur

face in control theory, characterized a number of different types of 

phenomena. As the nature oi the solution to a game problem is more 

complex than the solution of a control problem, so the nature of sin

gular surface is more complex in game theory than in control theory. 

These surfaces are discussed in detail in Isaacs book [ 5] which is the 

most comprehensive treatment of differential games. 

In 1957, Berkowitz and Fleming (6] applied classical variational 

techniques to simple differential games, with Berkowitz [7] expanding 

the applicable class of problems in 1963. The diverse approaches to 

control theory, as exemplified by the engineer and the mathematician, 

are mirrored in the field of differential games. Isaacs sought purely 

formal solutions to particular problems and in doing so discovered 

and catalogued numerous irregularities which he called singular sur

faces. On the other hand Berkowitz and Fleming examined abstract 

mathematical games; in particular Berkowitz rigorously investigated 

the mathematical nature of solutions near these singular surfaces 

determining specific restrictions needed to guarantee existence. 

In 1965, Ho, Bryson and Baron [8] used variational techniques 

to solve a general linear-quadratic pursuit-evasion game in phase 

space. A pursuer and an evader each controlled his own linear 

',I , 
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dynamic system. The terminal criterion was quadratic in the sepa-

ration of the two systems at the terminal time; the inflight criterion 

consisted of two individua.l quadratic energy terms, one measuring 

the evade r 's control effort, the other the pursuer 1s. Feedback 

control strategies based on a predicted terminal miss were shown 

to be optimal. ~aron [9] extended this work to include both energy 

and amplitude constraints on the two controls. 

In 1966, Ho [ l O] solved a stochastic differential game, again 

employing variational techniques. Player one, only, controlled the 

state, and attempted to minimize a terminal error and simultaneously 

to confuse player two. The latter merely made noisy measurements 

on the state and attempted to minimize the error of his estimate. 

Since only one player actually controlled the state, the game was not 

of the pursuit-evasion type. It was solved sequentially, by first 

determining the form of player one 1s controller, and then using this 

result to determine the form of player two's estimator. The solution 

to this problem indicated that at a specified time, player one would 

change strategies from one with the main goal of confusing player two, 

to one which concentrated on minimizing the terminal criterion. 

Speyer [ 11] has investigated the conditions for singular control during 

the period of switching strategies. 

Rhodes [12] has also studied stochastic games. 

An excellent summary of the progress and various aspects of 

differential games is found in Simakova [13]. 

I 
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1. 4 A Deterministic Pursuit-Evasion Game 

The pursuit-evasion game solved by Ho, Bryson and Baron [8] 

1s of particular interest to this thesis, for it is the deterministic 

model from which the stochastic game to be considered is taken. 

This game is defined by two linear dynamic systems: 

x = F (t)x + G (t)u(t) 
p p p p 

X (t ) = X 
p o po 

( 1 :21) 

x = F (t)x + G (t)v(t) 
e e e e 

X (t ) = X 
e o eo 

(1:22) 

and a quadratic payoff: 

tf 

l [ 11 u(t) 11 i (t) 
t p 

2 II v(t) II R (t)]dt 
e 

0 

( 1 :2 3) 

Here x is an n-vector describing the state of the pursuer 1s dynamic 
p 

system, u(t) is an m-vector representing the control of the pursuer, 

F (t) is an n x n matrix (the pursuer 1s system matrix) which is con
p 

tinuous int, and G (t) is an n x m matrix (the pursuer 1s control 
p 

matrix) which is also continuous in t. Similar statements apply to x , 
e 

v{t), F (t) and G (t), which describe the evader 1s dynamic system. 
e e 

R (t) and R (t) are respectively m x m and m I x m I dimensional, p e 

positive-definite, control weighting matrices. 

The matrix A is of the form [Ik:O], where Ik is the k-dimensional 

identity matrix, and where 1 ~ k ~ n. The effect of A is to include in 

the criterion only those components of the two-state vectors which are 

relevant to the pursuit and evasion. Consequently, though there are n 

components of both state vectors only k of those components are 

"interesting" from the point of view of the criterion. 
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The a 
2 

term permits a weighting of the importance of terminal 

miss against control effort. The game is of fixed duration, tf - t 
O

• 

u(t) and v(t) belong to m-dimensional and m '-dimensional euclidean 

spaces respectively . 

The pursuer attempts to minimize the criterion (1 :23), i.e. 

minimize the terminal miss distance and his own energy expended, 

while maximizing the energy expended by the evader. The evader 

attempts to maximize this same criterion. Thus the game is zero-sum . 

Each player is assumed to have knowledge of the other 1s capa

bilities, i.e. the F, G, and R matrices are known. For this deter

ministic problem, each player is also assumed to have knowledge of 

the other's state. Thus, this is a zero-sum game of complete 

informa,tion, and under certain conditions optimal strategies can be 

determined. 

Since there are only k interesting state variables, it is worth

while to reduce the dimension of the dynamics of (1:21) and (1:22). 

This is accomplished by defining a reduced state vector, denoted y(t), 

whic-h represents the relevant terminal miss, A[xp(tf) - xe(tf)], pre

dicted at time t on the basis that no control will be applied during the 

interval (t, tf). 

y(t) ~ A[e (tf' t)x (t) - e (tf' t)x (t)] p p e e 
(l:Z4) 

Here I and I are the transition matrices obtained from Fp and F p e e 

respectively. It should be noted that y(t) is, in itself, more meaningful 

than x (t) and x (t) -- even though y is k-dimensional, while x and x p e p e 

are n (~ k) dimensional -- for y(t) directly relates to the terminal miss 

term in the criterion. 
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Using {1:24), one can reduce {1:21), {1:22), and {1:23) to a 

simpler definition of the problem. The criterion is: 

tf 

a
2 

2 1 l 2 J = T II y{tf) II + 2 [ II u{t) II R {t) 
2 - II v{t) II R {t)]dt {1 :25) 

to p e 

subject to the differential constraint 

y{t ) = y 
0 0 

{1:26) 

where the new control matrix for the pursuer is given by: 

G {tf, t) = Af/J {tf, t)G {t) p p p 
(1:27) 

and similarly for G . By use of his control, u(t), the pursuer still 
e 

attempts to minimize this new form of the criterion, while the evader, 

with v(t), to maximize it. Note that the Hamiltonian is separable. 

The only relevant restriction to be placed on the strategies which 

can be employed is that they guarantee that ( 1 :26) is meaningful and 

integrable. Thus admissible strategies for both players shall be stra

tegies which produce controls, either u(t) or v(t), which are bounded, 

and which are continuous in both t and y almost everywhere for 

Ho, Bryson and Baron solve the problem of (1 :25) and {l :26) by 

11sing the calculus of variation techniques outlined in Section 1. 2 to 

obtain time functions, u*(t) and ~(t), 

(1:28) 

-1 T -1 
v*(t) = -R (t)G (tf, t)K (tf, t )y(t ) 

e e o o 
(1 :29) 

.. , 
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where 

~ 
K(tf, t ) = ~ + M (tf, t ) - M (tf, t ) 

0 G p O e 0 
a 

(1:30) 

and 

(1:31) 

A similar expression defines M (tf, t). It should be noted that M and e p 

Me are, from control theory, the reduced controllability matrices of 

the pursuer and evader respecti,,,ely. 

These time functions can be viewed as open-loop strategies, U* 

and ~, from which clo c; ed-loop strategies can be obtained. This is 

accomplished by noting that the current time can always be viewed 

as the initial time for defining a new problem. Thus, the relation 

between u(t ) and y(t ) as given by (1 :ZS) can be taken as the relation 
0 0 

between -~(t) and y(t) for any t
0 
~ t ~ tf" Similarly for v(t) and y(t). 

Consequently, the optimal strategies, u0 and v0
, are feedback stra-

tegies of the form, 

u 0 (t) = C (t)y(t) p 

0 
V (t) = C (t)y(t) 

e 

where the feedback matrix gains are given by 

C (t) = -R -l (t)G T (tf, t)K- l (tf, t)y(t) 
p p p 

C (t) = -R- 1(t)GT(tf' t)K- 1(tf, t)y(t) 
e e e 

(1 :3Z) 

(1:33) 

(1:34) 

(1:35) 

When these strategies are inserted into (1 :Zl ), the optimized game 

equation becomes 

• 
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y(t ) = y 
0 0 

(1 :36) 

The optimal value of the criterion is 

2 2 
J = ~ IIY<t

0
)II -1 

K (tf' t
0

) 

( 1 : 3 7) 

It is shown in [9] that the existence of K-
1

(tf' t) in the interval 

t 
O 
~ t ~ tf is equivalent to the nonexistence of a conjugate point for 

the game problem in this same interval. I.e. the existence of 

K-
1(tf, t) is a necessary and sufficient condition that u0 and v0

, as 

given by (1 :32) and (1 :33), satisfy the saddle-point condition (1 :4) . 

The existence of K- l is guaranteed if 

(1:38) 

M can be called the relative controllability matrix; the fact that it is 
r 

positive-definite indicates that the pursuer is "more controllable" 

than the evader for every component of y. 

The play of the game resulting from (1 :28)-(1 :29) is identical to 

the play from (1 :32)-(l :33), simply because the use of either pair re

sults in the constant vector 

-1 -1 
K (tf, t)y(t) = K (tf, t 

0
)y(t 

0
) (1 :39) 

However, there are two reasons for employing the closed-loop rather 

than open-loop strategies. First, the conditions under which U* and 

V* are optimal in the sense that they satisfy (1 :4) are merely a subset 

of the conditions under which U0 and v0 do. In particular there are 

conditions under which the pursuer's open-loop strategy permits the 

evader to employ a control other than (1 :29) or (1 :33) to get further 

I I 
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away. By using the corresponding feedback strategy, however, the 

pursuer forces the evader to use the optimized control (either (1 :29) 

or (1 :33)), thus ensuring the value of the criterion given in (1 :37). 

A detail~d discussion of this point is found in Section 5. 1. 

Second, by employing a closed-loop control, either player 

takes the fullest possible advanta.ge of any mistakes made by his 

opponent; he is better equiped to make inflight adjustments in his 

control. This is best seen by noting that even if U* and V* satisfy 

(1 :4) the following are true. 

J(U0 ,V) ~ J(U*,V) (1:40) 

J (U, yitt) ~ J(U, V0
) ( 1 :41) 

1. 5 A Preview 

A logical extension of this deterministic, linear-quadratic pursuit

evasion game is one in which the players have imperfect knowledge of 

the states involved. In particular, this thesis reports the results of 

an investigation of the problem where one player is endowed with per

fect information while the other is constrained to making measurements 

corrupted by additive, Gaussian noise. The difficulties encountered 

when both players have imperfect knowledge have not been resolved; 

a discussion of this problem is found in the concluding chapter. 

The results obtained are in the form of optimal feedback strate

gies. In the case of the player making noisy measurements, the 

strategy is based on an optimal estimate of the state with the feed

back matrix gain identical to the one this player employed in the 

---------... -·-------~ ... 
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deterministic problem. The other player's feedback control consists 

of two terms: one based on the value of the state, and the second 

on the error of his opponent 1s estimate. The first matrix gain 

which operates on the state vector is again identical to the one em

ployed in the deterministic problem; the other gain is a new result 

which is obtained from the solution of a two-point boundary-value 

problem of two coupled Ricc:ati equations. 

As seen from the general nature of these two strategies, the 

solution to this game can be interpreted in light of the 11certainty

equivalence principle II of (one-sided) stochastic control theory. 

(See Tou and Joseph, [14), and Franklin and Gunkel, [15).) This 

principle permits the optimal controller for the stochastic control 

problem to be divided into two separate units. The first is an opti

mal estimator of the state; the second is a feedback control scheme 

(the same one as for the corresponding deterministic problem) which 

operates on the optimal estimate as if it were the actual value of the 

state. 

For the stochastic pursuit-evasion game studied here, the 

player with imperfect information can employ this same "certainty

equivalence principle. 11 His optimal strategy consists of using the 

noisy measurements to obtain an optimal estimate of the state and 

then employing the feedback gains obtained for the deterministic 

problem (either (1 :33) or (1 :34)) in conjunction with this estimate . 

The other player uses the optimal feedback strategy obtained 

in the deterministic problem in conjunction with the state which it 
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knows perfectly, His strategy, however, includes a feedback gain 

applied to the error of his opponent's estimate. Under certain 

conditions," this error can be calculated exactly (see Chapter 3). 

This player's advantage results from the fact that his opponent 

must emplo1 noisy measurements, 2 ~,i thus cannot realize a stra

tegy which is as "good" as the one the opponent employed in the 

deterministic case. 

1-22 

One comment about differential games in general - - made so 

often that it has now become trite -- is that they reduce to optimal 

control problems if one player 1s control (strategy) is fixed. In this 

sense control theory is a subset of differential game theory. For 

this problem it is interesting to note the two control theory subsets 

to which this problem reduces. 

lithe control of the player with perfect info:r.mation is fixed, 

the game is reduced to a stochastic control problem with measure

ments corrupted by white noise (see Section .2. 4). When the control 

of the player who receives imperfect measurements on the state is 

fixed in a deterministic manner, the problem reduces to one of 

deterministic control theory. When, however, this player's control 

is fixed in some feedback manner based on an estimate obtained from 

the corrupted measurement, the problem reduces to a stochastic 

control problem with perfect information but also with colored pro

cess noise. It is thus interesting to note that what is viewed as 

measurement noise by one player is process noise to the other; see 

Section Z. 6. 

--------·-----------------
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This thesis considers the various aspects of this particular 

game: schemes for one player to determine the error in the other 1s 

estimate; the difference between situations when the pursuer has the 

noisy measurements and when the evader does; the influence of the 

measurement noise variance on the strategies; and other generaliza

tions. The classical interception problem and proportional navigation 

are discussed as examples of the application of the theory to concrete 

problems; numerical calculations are given to shed further light on 

the nature of the solutions. 

This thesis does not concern itself with the rigorous mathema

tical problems of differential games. The objective is not an all

inclusive existence theorem but rather the solution to one particular 

problem, which may not only be useful in its own right, but also 

provide some insight for future pro gr es s. 

---· -·---········--·· -
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CHAPTER TWO 

A STOCHASTIC PURSUIT-EVASION GAME 

2. 1 Formulation of the Problem 

The dynamics of this stochastic problem are taken to be of the 

same form as for the deterministic case considered above, (1 :16) 

and (1 :1 7), which can be reduced to the single equation 

y(t) = G (t)u(t) - G (t)v(t) 
p e 

y(t ) = y 
0 0 

( 2: 1) 

where again y(t) is the predicted terminal miss as given by (1 :19). f 

For any stochastic problem, however, the form of the criterion 

(1 :18) used in the deterministic game is inappropriate, for it implicitly 

assumes that y(tf) is known or can be determined exactly. Thus, this 

criterion must be modified by the use of an expected value operator . 

tf 

J = E{ ; 2 II y(tf)II 2 + ½ l [II u(t) II i (t) - II v(t) II i (t)]dt} . (2 :2) 
t

0 
p e 

The problem to be solved here is one involving measurement 

noise. The pursuer is endowed with perfect knowledge of the state 

vector y(t), while the evader has only an estimate of the initial value 

of the state and noisy measurements of the state made during the play 

of the game.* The evader's initial estimate is denoted by y , whose 
0 

f For the remainder of this thesis, the tf argument will be omitted 
from G and G . p e 

i~ This roughly reflects the practical situation where the pursuing 
dynamic system has been observing the evader for some time 
before the game starts and has considerable ground support for 
determining the state of the evader. 

, 

-1 
I 
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variance from the actual value of y(t ) is known to be P . The 
0 0 

evader's measurements -- on the state of both the pursuer's 

system and his own - - are of the form: 

z 1(t) = xp(t) + w 1 (t) 

z 2(t) = xe (t) + w2(t) 

2-2 

(2:3) 

(2:4) 

where w 1 and w2 are Gaussian white noise vectors, with zero mean 

and spectrum a
1 

(t) and 0 2(t) respectively. The cross correlation 

between w1 (t) and w2(T) is C(t)6(t - T), 

Since the dynamical system for the pursuit-evasion problem is 

given by (2:1) the evader's measurements must be reduced to measure

ments on y(t), 

z = H(t)y(t) + w(t) (2:5) 

where w(t) is Gaussian white noise with zero mean and spectrum 

Q(t). 

By premultiplying (2:3) by A• , (2:4) by A• , and subtracting 
p e 

we can define a new measurement vector: 

(2:6) 

which means z is of the form 

z(t) = y(t) + w(t) (2:7) 

where 

(2:8) 

has zero mean and spectrum 

(2:9) 

- _ ________,JL.__ _ 
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In the solution obtained below it will be assumed that the measurements 

are of the general form (2:5) rather than the more limited case of 

(2:7) . How this type of measurement can be obtained in general is 

discussed in Chapter 6. 

The class of admissible strategies is defined as those U and V 

which give rise to controls 

and 

u = u(t, y(-r):t ~ 'T ~ t) 
0 

v = v(t, z(-r):t ~ ,,. ~ t) 
0 

that are bounded and that are continuous almost everywhere for 

(2:10) 

(2:11) 

t
0 
~ t ~ tC Note that these strategies utilize all available informa

tion . This class of strategy pairs is selected to insure that when the 

resulting controls u(t) and v(t) are inserted into (2:1 ), this differential 

equation is meaningful and integrable. 

The problem then, is to find a pair of strategies (U0
, V

0
), subject 

to (2:1), which satisfy the equilibrium condition (1 :5) for all admissible 

strategies. Here J 1 is the value of (2:2) based on the evader's informa

tion set and J 2 the value of (2 :2) for the pursuer 1s information set. The 

necessity for seeking a non zero-sum game solution is discussed in 

Sections 6. 1 and 6. 2. 

2 . 2 The Solution 

The approach used to obtain the solution to the problem outlined 

in the previous section consists of four basic steps: 

J 
I 

..· 



r 

,. 

l I 
I 

2-4 

[i] The structural form of the optimal strategies, u0 and v0
, 

are assumed to be given by 

V: V = C (t)y(t) 
e 

U: u = C (t)y(t) + D (t)y(t) 
p p 

(2:12) 

(2 :13) 

where y(t) is the evader 1s estimate of the state y(t) which he constructs 

from his estimate of the initial state and from his measurements, 

y(t) ~ E[y(t)/y 'Z(T): t ~ 'T ~ t] 
0 0 

~ and where y(t) is the error in the evader 1s estimate 

~ A y(t) = y(t) - y(t) 

(2 :14) 

{2:15) 

Here, y(t) is computed under the assumption that u0 and v0 are actually 

employed, and y(t) is assumed to be somehow given to the pursuer by 

a mystical third party. 

[ii] The values of the feedback gain matrices C , C , and D 
e p p 

are determined by standard optimization techniques based on the pro-

cedure outlined in Section 1. 2. This is the main concern of this 

section. 

[iii] By solving two separate optimization problems, these 

strategies are shown to be optimal in the sense that they are in equili

brium. In Section 2. 3, the strategy v0 determined in [ii] is assumed 

employed by the evader and the criterion is minimized over all possible 

U in the cla.;ss of admissible strategies, thus verifying that this stra

tegy pair satisfies the inequality of (1 :5a). The other inequality is 

verified by a similar procedure in Section 2. 4. 

·---•--D--- --•• -•••-•------•.,•••• -- ••• • . -·-... ~- ,.._, ... ,._,_..., ____ ,.. ,. .. ... ...... ""-
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[iv] It is demonstrated that under certain conditions the pursuer 

can indeed calculate directly the error of the evader 1s estimate. 

is the subject of Chapter 3. 

This 

The form of the evader's strategy assumed in (2:12) is sensible, 

since it reflects intuition gained in stochastic control theory. The 

first term in (2:13) comes from the form of the pursuer's strategy in 

the deterministic game; the second term comes from the suspicion 

that the pursuer should, somehow, be able to take advantage of the 

inaccuracies in his opponent 1s estimate, and the guess that a linear 

feedback relation might be appropriate. 

Step [ii] is now carried out under the assumption that the evader 1s 

error is available to the pursuer, perhaps provided by some mystical 

third party. Methods by which the pursuer can calculate y are the 

subject of Chapter 3. 

Using (2:12) and (2:13) to determine the values of u(t) and v(t) 

and using (2:15) to eliminate y(t), 

J = E{;2 II y(tf)II 2 + ½ s.tf [11 y(t)II 2 T + y T (t)C TR D y(t) 
t CRC PPP 

0 p p p 

+ 'y(t)D TR C y(t) + ll'y(t) 11 2 
T 

p p p D R D 
p p p 

jjy(t) - y(t)ll 2 
T ]at} 

C RC 
e e e 

(2:16) 

which is to be minimaximized subject to the dynamical constraint 

y(t) = [G C - G C ]y(t) + [C D + G C fy(t) 
pp ee pp ee 

y(t ) = y 
0 0 

(2 :1 7) 

I 

,, 
:, 
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Since the forms of u and v are specified, the evader 1s estimate 

of the state is obtained from a Kalman-Bucy filter [l] which deter

mines a Bayesian estimate or conditional mean of the state based on: 

a prior estimate of the initial state, y ; a prior estimate of the 
0 

variance of the error of this estimate, P ; the measurements of the 
0 

state, z(T) from 'T = t to T = t; and the dynamical equation (2:17). >:< 
0 

~(t) = [G C - G C ]y(t) + PHT0- 1[z - Hy(t)] 
p p e e 

O ji .::..A Si» 

(2:18) 

where P(t) is the variance of the error of the evader's estimate defined 

by 

P(t) i E(y(t)y'f (t)] (2:19) 

P(t) is obtained from: 

P = [G C +GD ]P(t) + P(t)[G C +GD ]T - P(t)HTQ- 1HP(t) , 
p p p p p p p p 

P(t ) = P 
0 0 

(2:20) 

and thus can be calculated and stored before the actual play of the game, 

once C , C , and D are determined. 
p e p 

The criterion can be further rewritten in the form 

* From (2:15) it can be seen that any two of the three variables (y(t), . 
y(t), y(t)) comp!,etely describe the state of the system. The selec
tion of y(t) and y(t) leads directly to results with useful interpretations. 
(2:18) may be more obvious, however, if (2:17) is rewritten in the 
form: 

y(t) = [ G C + G D ]y(t) - [ G C + G D ]y(t) p p p p e e p p y(t ) = y 
0 0 

,_, _____ _ 
--- ·---•--··-··•· 
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2 1 
J - Tr{~ Y(t ) + -- 2 f 2 

tf 

s. [Y(t)(C TR C - CTR C ) 
t PPP eee 

0 

+ P(t)(C TR D + D TR C + D TR D + CTR C )]dt} 
PPP PPP PPP eee 

(2:21) 

where Y(t) is defined by 

Y(t) ~ E[y(t)y T (t)] (2:22) 

and is obtained from 

Y = G C Y + YC T GT + G D P + PDT GT - G C [Y - P] 
PP PP PP pp ee 

Y(t ) = Y 
0 0 

(2:23) 

where Y is given by P + E(y y T ]. 
0 0 0 0 

The stochastic game has now been transformed into a determinis

tic one by use of the expected value operator. For this new game, P 

and Y are the state variables, C and D the pursuer's control 
p p 

variables, and C the evader's control variable. (2:20) and (2:23) 
e 

are the dynamical system or game equations. (2:21) is the determin-

istic criterion. 

For this new problem, the objective is to determine the time 

functions C (t), D (t) and C (t) which are effectively open-loop controls 
p p e 

for this new game. Their role as feedback gains in the original problem 

means that their values are part of the final specification of the closed

loop strategies for the original game. When checking the equilibrium 

condition it is the original stochastic game which must be considered; 

this new deterministic game is only a convenient vehicle for obtaining 

a solution to the original. 
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The procedure for solving this new problem is simply the one 

given in Section 1. 2. Adjoining (2:23) and (2:20) to (2:21) with 

multiplier matrices A 1 (t) and A 2(t) respectively, the Hamiltonian, 

JC, for the problem can be defined. 

+ DTR D + CTR C ] + A 1Y + A 2P} (2:24) p p p e e e 

Note that the Hamiltonian is separable; there are no cross terms 

between C and C , or between D and C . p e . p e 

As in Section 1. z, a set of necessary conditions for a saddle-

point of the Hamiltonian is : 

83C ac = o , 
p 

83C = 0 
anP 

~=O ac 
e 

(2 :2 5) 

(2:26) 

(2:27) 

Carrying out the operations indicated, these three conditions become 

R C Y + R D P + GT (Al + A Tl ) Y + GT (A z + A zT) P = 0 , ( 2.: 28) p p p p p p 

R (C +D )P+GT(A
1

+AT
1

)P+GT(A.,+AT
2

)P=O , 
p p p p p ~ 

(2:29) 

T T 
- R C ( Y - P) - G (Al + A 1 )(Y - P) = 0 e e e 

(2:30) 

-~------·-·--- ·--- _..,_ ~ ·-, ... ~ ...... - .. ,, ..... .._.,.,, ...... ~-
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The solution of the two simultaneous equations (2:28) and (2:29) is 

C = - R - l GT (A + AT) 
p p p 1 1 

D = - R - l GT (1\ + AT) 
p p p 2 2 

(2:30) directly gives 

2-9 

(2:31) 

(2 :32) 

(2:33) 

It should be noted that the solution of (2:28), (2:29) and (2:30} for the 

control gains is possible because of the separability of the Hamiltonian. 

The equations for the pursuer's controls, (2:28) and (2:29), are indepen

dent of the parameters of the evader 1s system, i.e. G and R . 
e e 

Similarly, (2 :30), which determines the evader 1s controls, is indepen-

dent of G and R , the pursuer 1s parameters. p p 

The Euler equations are: 

· T 8:JC 
A - --l - aP 

When the partial differentiations indicated in (2:34) and (2:35) are 

performed, these two conditions become 

(2:34) 

(2:35) 

AT -(CTGT - CTGT)AT -AT(G C - G C) - !cTR C 
1= pp ee 1 1 pp ee Zppp 

a
2
I 

Al (tf) = Z ' (2:36) 

, 

11 

... ~---·-· 
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- [D T GT + CT GT ]AT - AT [ G D + G C ] - ! CTR D 
pp ee 1 1 pp ee 2ppp 

(2:37) 

By defining a new set of multipliers, 

(2:38) 

A 'J. r 2{t) = (A 2(t) + A 2 (t)] (2:39) 

and using (2:31), (2:32), and (2:33), the differential equations (2:36) and 

(Z:37) can be replaced with: 

The solution to (2:40) is recogniz~d as 

(2 :42) 

where K(tf, t) is given by (1 :25). Thus, Cp .!W! Ce are the same feed

.2!£!.. gain matrices employed by the pursuer and the evader respectively 

in the deterministic problem, which was discussed in Section 1. 4. 



: , 

Employing (2:42) in (2:41), the differential equation for r
2 

becomes 

. r -1 T -1 T -1 T -1 
r2 = 2G R G r2 + r2[ G R G K + PH Q H] p p p p p p 

The optimal feedback strategies are: 

U
0

: u
0

(t) = -R-
1

(t)GT(t)K- 1(t
0

t)y(t) - R- 1(t)GT(t)r
2

(t)y(t) 
p p • p p 

2. 3 Proof of the Pursuer 1s Optimality 

0 0 In this section, it is shown that the optimal pair, U and V , 

as given by (2:44) and (2:45) does indeed satisfy the inequality of 

2-11 

(2 :43) 

(2 :44) 

(2 :45) 

(1 :Sa). This is accomplished by forming J(U, V0
) and demonstrating 

that u0 
minimizes this criterion. 

Let v(t) in (2:1) be given by: 

(2 :46) 

where 

~(t ) = y 
0 0 (2:47) 

and z(t.) is given by (2:5). 

l 
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It is understood that ~(t) corresponds to y(t) in the game; 

however, to indicate that we are solving a one-sided problem, this 

2-12 

revised notation is used. The term, ~(t), will be an optimal estimate of y(t) 

(based on z(t)) only if the pursuer employs the strategy given by 

(2 :44); otherwise it will be meaningless . The point of this analysis 

is to demonstrate that if the evader determines his control v(t) from 

z(t) by using (2 :46) and (2 :4 7) - - blindly ignoring the possibility that 

the pursuer may not use the control given by (2:44) -- that the optimal 

(i.e. minimizing) strategy for the pursuer is indeed (2:44). 

The pursuer can employ a different strategy and thus insure 

that ~(t) is not an optimal estimate of y(t), but this would accomplish 

nothing. As is shown in this section, this type of strategy could only 

mean an increase in the value of the payoff. Neither player cares if 

what the evader calls y(t) is actually an estimate of the state; y(t) is 

only an intermediate variable from which an optimal control vector, 

v
0

(t), is obtained. 

Now define 

17(t) i y(t) - ~(t) (2:48) 

where 17(t) in this one-sided problem would correspond to y(t) in the 

game, and is assumed known by the pursuer. The differential equation 

which governs 17(t) can be obtained by subtracting (2 :4 7) from (2 :1 ); 

then y(t) and 17(t) can be combined to produce a new state vector and a 

new dynamical equation for this problem. 

I I 

I 
l 
I 
' I I 
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[:]= 

(2 :49) 

Using (2 :46) in (2 :2) and employing the new state vector, a criterion for 

this one-sided problem is obtained 

where 

and 

f~~I-~ __ o_J 
0 I 0 

I 

(2:50) 

(2:51) 

(2:52) 

The expected value operation indicated in (2:50) is undertaken on the 

basis that y(t ) and 71(t ) are known but that their future values are 
0 0 

functions of the random variable w(t). 

,, 

.. 

. I 
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Now from stochastic control theory (aee Bryson and Ho [Z]), 

we know that if both y(t) and 71(t) are known at time t, the control 

which minimizes the criterion is a feedback one given by: 

where 

and where F(t) is the system matrix in (Z :49). 

Partitioning S(t), 

we can rewrite the minimizing control in the form: 

-1 T .. T ] 
u = -RP Gp[(5 11 + .::;1z'Y + <5 12 + 5zzh1 

The differential equations for s 11 (t), s 12(t), and Szz(t) are: 

+ [-S G R-lGTK-l - K-lG R-lGTS 
lZ p p p p p p 12 

-1 T 
+ (Su ,+ S1z>GpRp Gp(S11 + S1z>] , 

z s11 (tf) = a I , 

Z-14 

. I 

(Z:53) 

' 
~ I I 

ii, 
I 
I 
I 

,! 
Ii. 

(2:54) 
1r 
I 
1 

(Z :55) 

(Z:56) 

(Z:57) 
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-1 -1 T -1 T -1 
+ (S11 + s12 - K )GPRP GpS22 + S12(GPRP GPK 

T -1 -1 T 
+ PH Q H) + (S11 + S12)GPRP Gp s12 

s12(tf) = o (2:58) 

S = S [G R-lGTK-l + PHTQ- 1H] + [K-lG R-lGT 
22 22 p p p . p p p 

+ HT Q - l HP ]S + ST G R - l GT K- l + K- l G R - l GT S 
22 12 e e e e e e 12 

(2:59) 

Now substitute 

-1 
S l l ( t) = K ( t f, t) (2 :60) 

(2:61) 

and 

(2:62) 

into (2:57), (2:58) and (2:59). Then (2:57) reduces to (2:40) the 

differential equation for K-
1

(tf, t), (2:58) becomes identically zero, 

and (2:59) reduces to (2:43) the differential equation for r 
2

(t). Thus 

(2:60), (2:61) and (2:62) are indeed the solutions to (2:57), (2:58) and 

(2:59) respectively. Q. E. D. 
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2. 4 Proof of the Evader'• Optimality 

Asswning that the pursuer employs the strategy given by (2:44) 

the evader 1s strategy -- based on this knowledge -- will be deter

mined. This will be shown to be the same feedback control as given 

in (2 :45), thus proving that (2 :44) and (2 :45) satisfy the inequality of 

(1 :Sb). 

Since a basic assumption has been that the pursuer is given 

the error of the evader 1s estimate, the implication is that the evader 

does calculate such an estimate. The evader is, of course, under no 

such obligation. To avoid this difficulty, let us assume that the mysti

cal third party - - which was previously the vehicle for observing y(t) 

and transfering this information to the pursuer -- now observes the 

measurement, z(t). It is from this measurement that the evader 

would calculate an estimate if he desired. This third party can then 

construct the same filter that the evader employed in Section 2. 2 

above, and transfer this result to the pursuer. 

Thus asswne that the pursuer is given a yp(t), calculated from 

the measurement z(t). 

(2:63) 

Now employing this "estimate, • let the pursuer 1s control be 

-1 T -1 -1 Tr ... 
u(t) = -R G K y - R G 2(y - Y ) p p p p p 

(2:64) 
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Then, since z(t) is given by (2:5), we can combine (2:63) and (2:1) 

using (2 :64) to obtain an overall system equation with which the 

evader will have to contend. 

(2:65) 

where 

-G R-lGT(K-l + r2) : G R-lcTr 
pp p : pp p2 

--------------------•-------------------------------------1 

PHTQ-lH : -[G R-lGT - G R-lGT]K-l - PHTQ-lH 
• PP pee e 

( 2 :66) 

The criterion to be minimized by the evader can be obtained by 

using (2:64) in (2:2) and can be written in terms of the new state vector, 

where 

and 

{ 

tf } 1 y(tf) 2 1 y(t) 2 2 
-J = E 211 [... ] 11s + 2 l [11 r... ] IIA(t) + llv(t)IIR ]dt 

y (tf) f t y (t) e 
p O I. p 

s = f 

(2:67) 

(2:68) 
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-(K-l + r.,)G R-lGT(K-l + r2) ! +(K-l + r.,)G R-laTr2 
~ p p p I ~ p p p 

A(t) = -----------------------------J----------------------1 
I 
I 
I 
I 

(2:69) 

The certainty-equivalence principle is a well known result (see 

Gunckel and Franklin [3]) of stochastic control theory. The principle 

is usually proven for discrete-time problems. However, the continuous 

analog can be obtained by letting the time interval approach zero. 

When this is done it is seen that a sufficient condition for certainty

equi valence to be applicable is that the control weighting matrix (in 

this case R ) be positive-definite. Since R is positive-definite, the 
e e 

evader's optimal control to minimize (2:67) is a feedback control 

operating on the evader's optimal estimate of the state [:~t~J . The l yp(t)J 
feedback gain matrix is given by: 

(2 :70) 

where S(t) is obtained from 

· T e -1 T 
[

G j S(t) = -sP-_f -r S - A - S • 0. Re [Ge: O]S , 

(2:71) 

Of course, any solution which employs the certainty-equivalence princi

ple is dependent on the fact that S(t) remains finite. 
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Now it should be noted that the matrix S(t) can be partitioned 

that since the evader knows z(t) he can reproduce y (t) exactly and p 

that he can obtain an estimate of y(t) - - denoted y(t) - - from 

... (t) = -G R-lGT(K-l + r ) ... + G R-lGTr ... - G v 
Y p p p 2 Y p p p 2Yp e 

+ PH T Q - l ( z - Hy) , y(t ) = y 
0 0 

Thus the evader 1s optimal control is given by 

The differential equations governing S are: 

. 2 
S l l ( t f) = a I , 

· -1 T -1 T -1 T ··l 
S12 = -sl lG R G r2 + s12(G R G - G R G )K PPP pp pee e 

1 
2-19 

(2:72) 

(2:73) 

(2 :74) 

(2 :7 5) 

(2:76) 

l• 

, 
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(2.:77) 

By adding (Z:75) and (Z:76) and also adding {2:76) and (2:77) it can be 

seen tha.t 

(Z:78) 

and that 

(Z :79) 

When (2. :78) is inserted into (2. :74) the evader 1s control becomes 

-1 T[ -1... .. ... ] v(t) = -R G K y + S1 z(Y - Y ) e e p (2.:80) 

But, using (2.:80) in (2.:73) and subtracting the result from (2.:63), we 

.find that 

(2. :81) 

Thus the evader's strategy is indeed 

(2 ;82.) 

Q.E.D. 

In Chapter 3, a method is given whereby the pursuer can calculate 

the error of the evader 1s estimate, y(t). Thus, the pursuer can directly 

obtain the information from which -- on the basis of his optimal 

strategy -- he calculates his optimal control vector, u(t). He is then 

r 
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no longer dependent upon the mystical third party. Since the above 

proof is dependent upon the method by which the pursuer obtains 
,..., 

the information concerning y(t), the inequality of (1 :Sb) may not 

2-21 

be satisfied under these new conditions. Consequently, a second 

proof of the evader 1s optimality is given in Section 3. 3, based on this . 

method for directly calculating y(t). 

'I,. 5 The Criterion 

Having obtained the optimal strategies, a numerical value can 

be assigned to the criterion, based on the values of the system para

meters and the initial conditions. When the optimal values of C , 
p 

D and C are substituted into the expression for the criterion as 
p e 

given in (2:2), we obtain: 

tf 

J = Tr{ a
2 

Y(t) + ! (' [(G R-lGT - G R-lGT)K- 1YK-l 
2 f 2 Jt p p p e e e 

0 

(2 :8 3) 

This expression can be written in terms of the initial vdues of Y(t) 

and P(t). 

Consider the identically zero integral (see (2:23)) 

tf 

0 = (' K- 1[Y + G R-lGT(K- 1Y + r P) + (YK-l + pr )G R-lGT Jt p P p 2 2 p p p 
0 

. 
G R-lGTK- 1(Y - P) - (Y - P)K-lG R-lGT)dt 

e e e e e e 
(Z:84) 

, 

1 

~·-........... 1-

I -



- ·•~- w•--••••·-•-- _______ ,,.., "~·--------~-,-...........,..; ,... ~,~--

2-22 

Integrating the first term by parts, and employing (2:40) for the value 

d -1 
of dtK (Z:84) becomes 

tf 

0 = a 2Y(tf) - K- 1(tf,t )Y( t ) + s. [K-lYK-l(G R-lGT - G R-lGT) 
o o t pp pee e 

0 

Consider also the identically zero integral (see (2:20)) 

tf 

(2 :8 5) 

o = S, r
2
[P + a R-laT(K- 1 + r

2
)P + P(K- 1 + r

2
)a R- 1aT 

t pp p pp p 
0 

(2 :86) 

Again integrating by parts and employing (2:43), this becomes 

tf 

0 = -r2(t )P(t ) + s. [-K- 1G R-lGTK- 1P - HTQ-1HPr2p 
o o t e e e 

0 

(2:87) 

Taking the trace of (Z:85) and (2:87), and using these results in 

(Z:83), a more significant expression for the optimal criterion -- in 

terms of the system and initial parameters - - is obtained. 

__________ w_,_ft,---~----.....-.~ 
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(Z:88) 

The first term in this expression for J corresponds direc t ly to the 

total expression for Jin th~ deterministic: g>iW'l<'!, given by (1 :37). The 

second term accounts for the initial uncertainty of the evader 1s esti

mate of the state. The integral term accounts for the uncertainty 

of the evader 1s estimate during the play of the game, which is known 

to exist even prior to the actual play. 

Thus (2 :88) is of fundamental significance for it directly :-:-elates 

the outcome of the stochastic game to the deterministic outcome and 

to the quality of the information available to the evader. The nature 

of the evader 1s information is expressed by P(t ), and H(t) and Q(t) 
0 

fort:.> ~ t ~ tf; P(t) fort> t
0

, and r2(t
0

) are derived quantities. 

The differential equation for r2 , (2:43), can be viewed as a linear 

matrix differential equation, with r G R-lGTr + K-lG R-lGTK-l as 
2 p p p 2 e e e 

the d r iving term. Since R-l and R-l are both positive-definite, the 
p e 

driving expression is positive-semi-definite. Furthermore, the termi-

nal value of r2 is zero, and since r2 can only become less negative

definite as time progresses (because of the positive nature of the 

driving term) r2 must be negative-semi-definite for all t < tr 

Now recall that the trace of the product of two positive-definite 
. 

matrices is always positive (see (3]). Since P(t ) is positive-definite, 
0 

PH T 0- 1
HP positive-semi-definite and r2 negative-semi-definite, and 

since all are symmetric, the second and third terms in (2:88) are non-

T -1 -1 T -1 T 
positive. (They are negative if H Q H, G R G and G R G are p p p e e e 
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positive definite.) This reflects the decrease in capabilily of the evader -

the maximizing player . 

Z. 6 A Summary of thl"_Optimized System 

For the linear-quadratic differential game formulated in 

Section Z. 1, optimal strategies have been obtained in terms of feed

back control laws, which are repeated here. 

u0 (t) = -R -l (t)G T (t)K- l (tf, t)y(t) - R -l (t)G T (t)r
2

(t)y(t) 
p p p p 

(2:44) 

v0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) 
e e 

(2:45) 

When these are inserted in the system equation (2 :1 ), this differential 

equation becon1es 

(2 :89) 

This can be rewritten using (2:15) exclusively in terms of either y(t) 

and y(t), or y(t) and y(t). 

. = -G R-lGT(K-l + r ) + [G R-loTr + G R-lGTK- 1)'"' 
Y pp p 2Y pp p Z ee e y 

(2 :90) 

' = -(G R-lGT - G R-lGT)K-l - [G R-laTr + G R-lGTK- 1~. 
Y p p p e e e Y p p p 2 e e e JY 

(Z:91) 

The inputs to these equations results from either 

(2:9Z) 

or 

. I 
I 
I l 

--------4--'", ... IQ Bt WM~-•~ 
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Note that (Z :93) is self-contained, i.e. it is not coupled to other 

equations for it is only driven by the noise w(t). 

Z-Z5 

Thus, the entire play of the game ~an be described l:.y either 

one of two 2k-dimensional differential equations, which are obtained 

from either (2:90) and (2:9Z), or (2:91) and (Z:93). 

+ r---~---;]w(t) lPH Q 
(2 :94) 

(2:95) 

Note that as mentioned in Section 1. 5, the white noise, w(t) - - though 

it is additive measurement noise to the evader -- is process noise to 

the optimized system as a whole. 

--· ···-·- ·-----·--------· ·--------·-- - ,,----- -,. 

,, 
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At t
0

, predictions of the future state of the game are determined 

by two (k by k)-dimensional matrix differential equations which are 

obtained from (2:23) and (2:20) by. inserting the optimal values of 

C , D , and C . p p e 

Y(t) = -(G R-lGT - G R-lGT)K-lY(t) - Y(t)K- 1(G R-lGT - G R-lGT) 
pp pee e pp pee e 

Y(t ) = Y . 
0 0 

(2 :96) 

P(t ) = P 
0 0 

(2 :97) 

Note that P(t) can be calculated independently of the value of Y(t). 

Again, the optimized value of the criterion is given by 

(Z :88) 

• 

l ___ ·•--···--- -- --------"T-
I ' 
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CHAPTBR THREE 

REALIZATION OF THE PURSUER 1S STRATEGY 

3. 1 Two Realization Schemes 

The solution of Chapter 2 is dependent upon the ability of the 

pursuer to obtain exact knowledge of the error of the evader 1s esti

mate. Since the pursuer is assumed only to have perfect knowledge 

of the state, y(t), and no knowledge of the evader 1s estimate, y(t), 

the pursuer cannot in general obtain this i.nformation. There are 

certain conditions, however, which insure that y(t) can be obtained 

directly from y(t). 

Substituting (2:44) into (2:1) gives 

-G (t)R -l (t)G T (t)K-l (tf, t)y(t) = G (t)u(t) - y(t) 
e e e p ( 3 :1) 

Now, since the pursuer knows G (t), u(t), and y(t) perfectly, he can --p 

by differentiating y(t) with respect to time - - calculate the right-hand 

side of (3:1 ). The evader 1s estimate (and consequently the error of 

this estimate) can be calculated by the pursuer, if the inverse of 

G (t)R- 1(t)GT(t)K-l(tf,t) exists. 
e e e 

Two necessary con,:litions for the existence of this inverse are: 

i. The number of "interesting" state variables (i.e. the dimen

sion of y(t)) must be less than or equal to the number of the 

evader 1s control variables (i.e. the dimension of v(t) ), and 

ii. The inverse of G (t)R -l (t)G T (t) must exist for all values oft < tf. 
e e e 

Note,' condition ii. cannot be fulfilled unless condition i. is; also, the 

______ .. __ -- -- ·- .. -· -------1:111 

J 
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-1 -1 inver1e of R
9 

(t) and K (tf, t) mu1t exilt. Con1equently, condition ii. 

it1elf is both a sufficient condition for the pursuer with a known u(t) 

~ to calculate y (t). 

Condition i. is useful, however, for it immediately restricts 

the class of problems to which the sol,ltion obtained above is applicable, 

without considering the nature of G (t) in detail. For instance, the 
e 

rendezvous game in n-dimensional euclidean space is not solved by 

the above, since the number of "interesting" state variables is Zn, 

while the number of controls is n. The class of problems to which a 

solution has been obtained does include, however, the important inter

ception problem in n·dimensional euclidean space; here both the number 

of "interesting" state variables and the number of controls are n. 

The difficulties encountered when the pursuer cannot calculate 

perfectly the error of the evader's estimate -- either because there 

are more interesting state variables than the evader has control vari

ables, or because the pursuer does not himself have perfect knowledge 

of the state - ·· are discussed in Chapter 8. 

Figure 3-1 displays a flow-chart for implementing the optimal 

strategies of the two players. The method shown for the pursuer to 

calculate u(t) is termed Realization I. The pursuer differentiates y(t) 

and feeds back u(t) to calculate y(t); then subtracting this from y(t), 

~ y(t) is obtained. 

Examination of the pursuer 1s controller for Realization I indicates 

an additional difficulty: the feedback loop, inside the controller itself, 
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may be unstable. Adding the inputs which arrive at the summing 

junction which produces u(t) gives 

+ R-laTr (G R-lGTK-l)-1.(t) 
p p2 ee e Y 

Solving this for u(t) produces 

3-4 

(3:2) 

u(t) = M- 1(t)R-lGT[r
2

(G R-lGTK-l)-ly(t) - (r
2 

+ K-l)y(t)] , 
p p e e e 

(3:3) 

where 

M(t) =I+ R-laTr (G R-lGTK-l)-lG 
p p2 ee e p (3:4) 

Actually, (3:3) can also be obtained by solving (2:44) and (3:1) for u(t) 

in terms of y(t) and y(t), using (2:15) to eliminate y(t) and y(t). 

The condition that ensures that the feedback loop internal to the 

pursuer •s controller of Realization I be stable also ensures that M-l 

exists. Consider the general feedback network of Figure 3-2, with 

vector input i(t) and vector output o(t). The input-output relation of 

this system is given by 

o(t) = A(t)B(t)o(t) + A(t)i(t) (3 :5) 

Observe that no dynamics are involved; the system is merely a feedback 

amplifier. Fo~ the scalar case, if A(t)B(t) is positive there is positive 

feedback. 

For any realization of the feedback loop of Figure 3-2, the actual 

input-output relation will be 

o(t + 0) = A(t)B(t)o(t) + A(t)i(t) (3:6) 

----·-------------------',: 
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for 6 small but non·zero. Here the condition for stability is that 

all the eigenvalues, ). , of AB have magnitudes less than 1. 0. (If 

any eigenvalue of AB does become +l. O, then the inverse of (I - AB] 

will certainly fail to be finite.) Thus it is necessary to check not 

only the existence of M- l, but also the nature of the eigenvalues of 

-R -lG Trz(G R -l GT K-l )-lG (the AB for the pursuer 1s internal !eed-
p p e e e p 

back loop) to ensure stability. 

Now note that -R-lGTr
2

(G R-lGTK-l)-lG has a terminal value 
p p e e e p 

of zero. Thus when viewing time as progressing in a negative direc-

tion from the terminal time, M-l will certainly be finite and the eigen

values of AB will certainly have magnitudes less than one for at least 

some non-zero time interval. 

Another expression for u(t) in terms of y(t) and y(t) can be obtained 

directly from the game 'system equation as given in (Z:91). Solving this 

for y(t} gives 

where 

L(t) i G (t)R- 1(t}GT(t)rz(t) + G (t)R- 1(t)GT(t}K- 1(tf,t} (3:8) 
p p p e e e 

When (3:7) is inserted into (Z:44i the pursuer's control is given by 

(3:9) 



.....,__-- -·-

Thus u 
0

(t) can be written as a feedback strategy based on y(t) 

and y(t) multiplied by feedback gain matrices G1 (Gain 1) and G
2 

(Gain 2) respectively. 

u 0
{t) = G

1 
(t)y(t) + G2(t)y(t) 

where G1 can be given either by 

or 

and where G
2 

can be given by either 

or 
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(3:10) 

(3:11) 

(3:12) 

(3:13) 

(3:14) 

Thus (3:10) can be used to reduce the visual complexity of the 

pursuer 1s controller as shown in Figure 3-3. This is referred to as 

the pursuer 1s Realization II. If the inverse of G exists, it can be 
p 

demonstr.ated by simple matrix manipulation that the two expressions 

for G1, (3:11) and (3:12), are identical, as are the two expressions 

for G2, (3:13) and (3:14). Consequently, the inverse of L(t) will fail 

to exist at the same time that the inverse of M(t) fails to exist; thus 

either (3:11) or (3:12) and either (3:13) or (3:14) can be employed. In 

further discussion, the use of (3:11) and (3:13) will be assumed. 

j , 
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Note that for Realization II to produce a finite output u(t) for 

finite inputs y(t) and y(t) it is only necessary that L -l (t) exist; there 

is no feedback loop and thus no stability requirement. The terminal 

value of L(t) is a
2

Ge(tf)R~
1

(tf)G;'(tf) which is positive-definite and 

which certainly has an inverse. Thus when viewing time as pro

gressing backwards from tf, L(t) will certainly have an inverse for 

some finite time interval. 

In conclusion then, a third condition, 

111. The inverse of L(t) must exist for all values oft < tf, 

is needed in addition to ii. to insure that the pursuer can implement 

the strategy obtained in Chapter 2. In other words, ii. is sufficient 

for the pursuer to be able to calculate y(t) (or y(t)} when he employs 

a u(t) independent of y(t). But iii. is required to ensure that this 

information can actually be employed in realizing the pursuer 1s 

optimal strategy as defined by (2:44). This is true since u 0 (t) is a 

function of y(t), and thus u
0

(t) cannot be used to solve for y(t) with-

out some extra restrictions. 

3. 2. Reflections on the Pursuer's Strategy 

It should be pointed out that the above method of obtaining y(t) 

is similar to that of determining the input to a linear system by observing 

the output. In fact, the input v(t) can be determined exactly by differ

entiating the total system output, i.e. the vector y(t). This is not the 

question, however; what is needed is y(t) or y(t). Unfortunately -- as 

.. 



can be seen from (Z:45) -- y(t) cannot be obtained from v(t) unless 

condition ii. of Section 3. 1 is satisfied. 
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This condition is necessary because it is possible that more 

than one value of y(t) - - in fact an infinite number - - can produce the 

same v(t). No further differentiating of the output can resolve this. 

It is important to note why v(t) itself is not sufficient information 

upon which to base an optimal pursuit strategy. Certainly, v(t) is 

sufficient for the pursuer to determine the evader 1s deviation from 

his deterministically optimal control at time t. However, it is not the 

instantaneous control error which is important; if suddenly the evader is 

given perfect knowledge of the state so that this error can be corrected 

for all time greater than the current t, the result (from then on) will 

be identical to the deterministic game, despite the error at time t. 

What is significant is the fact that the pursuer knows that the evader 1s 

control will also deviate from the deterministic optimum in the future 

and it is this fact which permits the pursuer to make use of the error 

at time t. 

This does not mean that the pursuer makes an ~xplicit prediction 

of the evader's estimation error at future times. The pursuer does, 

however, assess the nature of this error at future times by employing 

P (the variance of the error) when calculating the control gain to be 

employed in conjunction with this error. This results from the fact 

that r z(t) is obtained by integrating (Z:43) backwards from tf, and that 

P(-r), t ~ 'T ~ tf, is a factor in this integration. 

I 

I 

I 

<• 



The equation for the estimation error is given by (2:93). At 

time t, the pursuer could make a prediction of the evader 1s future 

error by dropping the white noise term, PHT0- 1w. Then using y(t) 

as the initial condition, he could integrate this new equation forward 

in time. Note that to predict future deviations of the evader 1s control, 

it is necessary to integrate a k-dimensional differential equation; this 

requires k initial conditions. Therefore, v(t) must be k-dimensional 

(condition i.) and must not be confined to a manifold of less thank 

dimensions (condition ii.). 

The thought of calculating the value of y(t) by differentiating y(t) 

and then employing it in a feedback control exactly at time t may, to 

some, seem farfetched. Since y(t) will probably be obtained from y(t) 

and y(t - Ot) by the approximation formula 

. (t) ,_, y(t) - y(t - Ot) 
y Ot (3:15) 

it would appear that the number used in the actual control would be closer 

to y(t - Ot/2). Thus there would be a short delay in implementing this 

term in the feedback control. The obvious question is whether the 

actual outcome of the pursuit-evasion game is sensitive to this delay. 

In Appendix A of this chapter, a discrete-time, pursuit-evasion 

game is considered. Here, the pursuer 1s control is based on the state 
0 

at the current time interval, i, and the evader 1s estimation error at 

the previous time interval, i - 1. The control gain matrix used in con

junction with this delayed estimation error is, however, the one which 

is optimal for use with the estimation error at time t. It is shown that 

, 
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as the time interval approaches zero the expression for the criterion 

(found under such conditions) approaches the expression for the c ri

terion obtained for the continuous problem in Section 2. 5. The conclu

sion is that,by making Ot in the approximation calculation (3:15) small 

enough, the pursuer can ensure a value of the criterion as close to 

that given by (2:88) as he desires. 

By rewriting (3 :7), an interesting observation about the pursuer 1s 

stochastic strategy can be made. 

+ y(t)] (3 :16) 

-1 T -1 T -1 
Recall that -(G R G - G R G )K y is the system 1s acceleration p p p e e e 

for the deterministic game when both players use their optimal strate-

gies. See (1 :36). Consequently it can be seen from {3 :16) that the term 

added to the pursuer 1s deterministic feedback control law to form his 

stochastic one is proportional to deviations from the deterministically 

optimal acceleration, i.e. 

u(t) = -R-lGTK- 1y(t) - R-laTr L -l[yd0 (t) - y(t)] (3:17) 
p p p p 2 

where yd0 (t) is the deterministically optimal acceleration. Consequently, 

the second term in the pursuer 1s stochastic strategy takes advantage of 

the evader 1s deviation from his deterministically optimal acceleration, 

which results from the evader 1s error in estimating the state y(t). 

The procedure of feeding back y(t) along with y(t) is ,ruu common 

in control theory. For the general dynamic system of Figure 3-4, the 

input-output relathm is given by 

. I 
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o(t) = A(t)o(t) + B(t)i(t) {3:18) 

A usual control approach is to make the input some linear function of 

the output. 

i(t) = C(t)o(t) (3:19) 

As the above realizations indicate, however, the solution obtained here 

also feeds back the derivative of the output. 

i{t) = C(t)o(t) + D(t)o(t) (3:20) 

Several observers have raised the point that this approach could, 

when inserted into the physical system supplied by nature, produce 

meaningless results. This would be the case if the gain in either one 

of the feedback loops {there are essentially two, the y loop and the y 

loop) was the inverse of the mathematical function seen when looking 

into the system from the two ends of the gain. From an electrical 

engineering viewpoint, the question is: "Have we decided to construct 

a feedback gain whose impedance is the negative of the impedance of 

the system when viewed from the two nodes between which this feedback 

gain is inserted?" 

Inserting (3:20) into (3:18) gives 

o(t) = [A(t) + C(t)]o(t) + B(t)D(t)o(t) 

Then if D(t) was selected such that 

D(t) = B- 1(t) 

( 3 :21) 

(3:22) 

the result would be the absurdity of forcing the output to be identically 

zero. Note further that if 

A(t) + C(t) = 0 (3:23) 

1 
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the output could take on any valu.e, with the actual one depending on 

the eccentricities of the physical system, whether it be nature or an 

analog computer. 

It is obvious from (3:18) and (3:19) that this difficulty cannot be 

a consequence of ordinary feedback control based on the value of the 

state vector. The above solution, however, employs a feedback con

trol based on the value of the time derivative of the state vector; the 

possibility of this difficulty must therefore be investigated. 

Figure 3-5 shows the entire optimized system as viewed from 

the nodes of the pursuer 1s second feedback loop (the one containing G2) 

where the input is i(t) and the output y(t). The dynamic equation for 

this system is 

I 
I 
I 
I 
I -----------,-----------------------------------

y 

... 
y 

(3:Z4) 

-1 
But we have not selected G2(t) to be Gp (t), see (3:13), and thus the 

absurdity - - which would have occurred if we had indeed attempted a 

feedback control of the form given by (3:ZZ) -- does not exist. 
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3. 3 Another Proof of the Evader 1s Optimality 

As pointed out in the previous section, the essence of the pursuer 1s 

strategy is to take advantage of his opponent's deviations from the 

deterministically optimal control acceleration. The realization schemes 

presented are two methods for calculating and utilizing this deviation. 

Since, the evader knows that the pursuer will be using one of these 

schemes -- rather than receiving y (t) from the mystical third party p 

of Section 2. 4 -- it may be possible for the evader to take advantage of 

the pursuP.r 1s computational technique to fool the pursuer. 

Consequently, it is necessary to again prove the evader 1s optima

lity by ascertaining that indeed his strategy satisfies the left-hand in

equality of (1 :4) when u0 implicitly involves one of the realizations 

discussed above. The proof below is based on the asswnption that 

Realization I is used by the pursuer. Since from a blackbox, input

output point of view, the two realizations are identical, this proof is 

sufficient for both realizations. 

Let u(t) in (2 :1) be given by: 

u(t) = -R-lGT[K-ly + r
2
n] 

p p 

where 17{t) is obtained from v(t) in the following manner. 

(3:25) 

. {3:26) 

G (t)v(t) appears explicitly in the pursuer 1s calculation of his optimal 
e 

control for Realization I, see Figure 3-1. Observe that 17{t) of this one-

sided problem corresponds to the error y(t) in the game, and that the 

inverse in (3:26) does not exist unless condition ii. is se,tisfied. 

' 

, : 

I , 



•.. 

3-18 

Using (3:ZS) and (3:26) in (Z:l), the system equation for this one

sided control problem is 

y(t ) = y 
0 0 

(3:27) 

The criterion for this problem is obtained by using (3:25) and (3:26) 

in (Z :Z). 

(3:28) 

where 

(3 :29) 

(3:30) 

(3:31) 

Using the measurement of the state obtained from (Z:5), the evader 

can obtain an estimate of the state using a Kalman-Bucy Filter. 

y(t ) = y 
0 0 

(3:3i) 

where P(t) is the variance of the error of !hi.! estimate but is given by 

the same equation as used in Chapter Z. 

---------·--·-



.. ____ _ 

3-19 

P(t ) = P 
0 0 

(3:33) 

The evader 1s control which minimizes {3:28) is obtained by using 

deterministic control theory (see for example Bryson and Ho [I]) in 

conjunction with the certainty-equivalence principle. 

V {3:34) 

(3:35) 

In (3:34) and (3:35), F and l:J are, respectively, the system matrix and 

control matrix in the dynamic equation (3:27). Again in order for the 

certainty-equivalence principle to be applicable, B must be positive

definite, and S(t) must remain finite. 

B consists of two terms. The first one, R , results from the 
e 

evader 1s control weight. The second and negative one 

[-R G- 1Kr2G R-lGTr2K(GT)-lR ] results from the pursuer's control 
ee pp p e e 

weight. If the pursuer attempts to overcompensate for the evader 1s 

estimation error, the evader can take advantage of this and do better 

by heading in a "non-optimal" direction to throw the pursuer off the 

track. This, in short, is the meaning of the extra condition that B be 

positive-definite. Efforts to prove that this is always true, or to relate 

B to L have been unsuccessful. 
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It can be shown that (see Appendix B of this chapter) 

(3:36) 

Q.E.D. 

If the evader does not employ the feedback strategy given in 

(Z:45), 11(t) as obtained from {3:Z6) will not equal the error in the 

evader 1s estimate. However, calculating the error in the evader 1s 

estimate is not -- for the pursuer -- an end in itself, but rather 

merely a step in obtaining the optimal control. Thus, if the evader 

deviates from the optimal strategy, the value of the criterion will be 

reduced, despite the fact that the pursuer will miscalculate the error 

of the evader's estimate. 

3. 4 The Meaning and Existence of L -l 

The question of the existence of L-l is an intriguing problem, 

and still,unfortunately, a baffling one. As was pointed out in condition iii. 

of Section 3. 1, the pursuer is capable of implementing his optimal 

strategy only if this inverse does exist. Consequently, it is desirable 

to characterize this matrix as best as possible. For convenience, the 

definition of L is repeated. 

(3:8) 

It should be first noted that L appears explicitly in the optimized 

system equations, see Section Z. 6. In particular L(t) is the gain matrix 

for the driving term of the game equation, regardless of whether y(t) or 

y(t) is the input vector, i.e. see both (Z:90) and (Z:91) . 

• 
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A statement which is equivalent to, "L-l fails to exist" is that 

"one of the eigenvalues of L is zero, 11 with this eigenvalue correspond-

-1 
ing to a particular (non-zero) eigenvector. Consequently, if L fails 

to exist there will be a certain value of the error vector, y (i.e. this 

particular eigenvector) which will not effect the state. In other words, 

at the same time when L -l fails to exist, a certain value of y(t) can 

make the driving term L(t)y(t) identically zero. 

The possibility of this event occurring is obviously insignificant; 

however, there is a more general implication. Any particular value 

of the error vector y(t) can be decomposed into a unique linear combi

nation of the various eigenvectors of L(t). This linear combination can 

be calculated by observing L(t)y(t), which is available to the pursuer. 

However, when L(t) has a zero eigenvalue, the magnitude of the asso

ciated eigenvector cannot be determined, since this eigenvector does 

~ not effect the value of the vector L(t)y(t) which is being observed. 

Now recall that the pursuer can take advantage of deviations of 

the evader from his deterministically optimal control, not because the 

error at time t results in an irrevocable loss to the evader, but rather 

because it permits the pursuer to implicitly predict and take advantage 

of future deviations. Since the particular eigenvector in question does 

not effect the derivative of the state, it does not, in itself, produce an 

immediate deviation from the evader 1s optimal control. Its magnitude 

will, however, t~ffect future estimation errors and consequently future 

deviations by the evader from his optimal control. Thus the require

ment that L(t) have non-zero eigenvalues. 
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Since the terminal value of r 2(t) i1 fixed at zero, the terminal 

value of L(t) is given by 

(3:37) 

which, unless Ge(tf) is zero, is positive-definite. Consequently, the 

existence of L-
1

(t) is guaranteed for tf - t
0 

sufficiently small. In this 

respect, condition iii. is similar to a conjugate point condition; if the 

time duration of the problem is short enough, the condition is satisfied. 

Since G R-lGT, G R-lGT, and K-l are positive-definite while 
p p p e e e 

r 2 is negative-definite, L(t) is the difference of two products of two 

positive-definite matrices each. Furthermore, the first three can be 

determined exclusively from the deterministic properties of the game. 

Only r 2 is dependent upon the stochastic character of the problem, 

and for r 2 sufficiently small, the condition is satisfied. 

Not much more can be said, unfortunately, about the general 

nature of this condition. The differential equation for L(t) can be ob

tained from (2:40) and (Z:43). 

L(t) = L(G R-lGTK- 1) + (G R-lGTK- 1)L + G R-laTr2a R-laTr2 
pp p pp p pp p pp p 

(3:38) 

----·---
__ , __ 

,. 
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Note immediately that the values of _ddt[G R-lGT] and _ddt[G R-lGT] 
p p p e e e 

can be such as to force one of the eigenvalues of L to zero, for there 

are no general restrictions on these terms. Even the relative con

trollability condition (1 :38) represents only an integral constraint on 

G R-lGT and G R-lGT; it does not effect their values or derivatives 
p p p e e e 

at any particular time and consequently adds no insight to the question 

-1 
of L . 

Consider now the special situation where 

G (t)R -l (t)G T (t) = f(t)T (3 :39) 
p p p p 

G (t)R- 1(t)GT(t) = f(t)T (3:40) 
e e e e 

where T and T are independent of time. T and T can be assumed 
p e p e 

positive-df!finite, thus requiring that 

f(t) ~ 0 (3:41) 

without adding further restrictions. Note that the -relative controllabi

lity condition now requires that 

T > T p e 
(3:42) 

The condition that L··l exist reduces to the condition that [T r.2 + T K-lrl p e 

exists, and that (3:41) be a strict inequality. 

Given (3:39) and (3:40), the differential equations for K-l and r 2 

can be rewritten. 

( 3 :43) 
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(3 :44) 

From (3:43) and (3:44), the differential equation for the reduced L, 

L i T r + T K-l 
r p Z e 

can be obtained. 

L = f(t)L {iT (K-l + r.,) + ! (T - T )K-l} 
r r"'p "'"' p e 

+f(t){!T (K-l +r.,)+ !(T -T )K-l}L 
'-P "'"' p e r 

z 
L (tf) = a T r e 

(3 :45) 

(3:46) 

There still is no general statement which can be made about the existence 

-1 
of L . r 

Consider the scalar case. (3:46) reduces to 

. 
L = f '(t)L + d(t) , 

r r ( 3 :4 7) 
s s 

Because Tp, P, HTQ-l are all positive-definite and r 2 is negative

definite, d(t) in (3:47) is negative. Consequently, when integrating 

(3:47) backwards from tf, the driving term, d(t), is positive, forcing 

L to be larger and ensuring that 
rs 

(3:48) 

-------- ·-
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and thus that L -l exists for the scalar problem where the time depen

dencies of all elements of G R -l GT and G R -l GT are identical. 
p p p e e e 

The generalization of this result to the matrix case cannot be 

-1 
made and consequently the existence of L must be immediately 

checked for each problem. Yet the proof for the scalar case is in 

itself significant. The two-dimensional example of Chapter 7 is re

duced to a scalar one where these conditions, that ensure the existence 

-1 
of L , are met. This proof then prevents the necessity of calculating 

L(t) explicitly for such scalar cases. 
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APPENDIX III-A 

THE DIBCRETE-TIME GAME 

The purpose of this appendix is to demonstrate that it is indeed 

computationally possible for the pursuer to determine y(t) and to then 

employ it in his feedback control so as to nearly obtain the value of 

the criterion given by (2:88). This is accomplished by solving a 

discrete-time problem consisting of the following three steps. 

1. A discrete-time, deterministic game is solved. 

Z. A discrete-time, stochastic game is solved employing the gains 

already obtained in 1., adding only a new correction gain to the pur

suer's control at time i based on the evader 1s estimation error at 

time i. The evader obtains his estimate from a discrete-time Kalman

Bucy filter. 

3. The controls obtained in 2. are used, except that the pursuer's 

correction gain is applied to the evader 1s estimation error at time 

i - 1. This procedure is employed because it is always possible for 

the pursuer to calculate at time i, the evader 1s estimation error at 

time i - 1. The criterion is evaluated for this case and shown to 

approach the optimized, continuous-time criterion of Section 2. 5 as 

the time interval for this discrete game approaches zero. 

The aim of this appendix is not to completely solve the discrete

time stochastic game, complete with proof of the saddle-point condition. 

What follows below is sketchy in parts, though sufficient detail is 

provided so that the missing mathematical steps can be easily filled 

________________ , __ 
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in. This mathematical austerity is partially justified on the grounds 

that the discrete-time and continuous-time games are very similar . 

The real justification, however, is that the objective is merely 

to show that there exists for the pursuer some control which employs 

slightly delayed data {be it y or y) and that this slight error in the 

optimal control does not produce large deviations from the optimized 

value of the criterion. Thus the method by which this control is ob

tained need not be rigorous; the existence of such a control is what 

is important. 

It is shown below that slightly delayed values of y(t) can be em

ployed without drastic losses. Since y(t) is linearly proportional to 

the deviation of the acceleration vector y(t) from its deterministically 

optimal value (see (3:17)), this is equivalent to demonstrating that 

slightly delayed values of y(t) are not disasterous. 

A. 1 The Deterministic Problem 

Consider the difference equation 

x(i + 1) = x(i) + G (i)u(i) - G (i)v(i) 
, p e i=O,l, . . . ,n-1, 

(3:Al) 

where x(i), is an n-dimensional state vector, and u(i) and v(i) are 

respectively the pursuer 1s and evader's m and m I dimensional control 

vectors. G (i) and G (i) are the m x n and m I x n control matrices. p e 

The criterion for this game is given by 

(3:AZ) 

----------------------------·----____ ,_.,. 
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Let 

u(i) = C (i)x(i) 
p ' 

(3 :A3) 

v(i) = C (i)x(i) 
e (3:A4) 

be the feedback form of the controls. Inserting (3:A3) and (3:A4) into 

(3:Al) gives 

x(i + 1) = [I + G (i)C (i) - G (i)C (i)]x(i) p p e e 

i = O, 1, . .. , n - 1 (3:AS) 

This problem is to be solved by the method that must be applied 

to the stochastic game. Consequently , define 

X(i) = x(i)x T (i) (3:A6) 

Using (3:AS) and (3:A6) a difference relation which defines the propagation 

of X(i) can be obtained. 

X(i + 1) = [I + G (i)C (i) - G (i)C (i)]X(i)[I + CT (i)G T (i) 
p p e e p p 

i = O, 1, ... , n - 1 (3:A7) 

(3:A6) in conjunction with (3:A3) and (3:A4) can be used in (3:A2) to give 

another expression for the criterion. 

* 

-·----

n-1 · 

J = Tr{~ X(n) + -2
1 \ X(i)[C T (i)R (i)C (i) - CT (i)R (i)C (i}]} 

~ L pp p e e e 
i=O 

(3:A8) 

Defining the Hamiltonian for this problem* 

In all cases the argument of all matrices and vectors is assumed to 
be i, unless otherwise indicated. All equations are ase,:-..i··:oed valid 
for i :;.; O, l, . • . , n - 1 unless otherwise indicated. 

l 
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+ L\ T (i + 1 )[I + G C - G C ]X(i)[I + CT GT - CT GT]} 
pp ee pp ee 

two necessary conditions for stationarity of J can be easily found. 

83C (i) _ 
ac (i) - 0 ' 

p 

a:JC (i) _ 
0 ac (i) -

e 

Carrying out the partial differentiation indicated in (3:AlO) gives 

0 = R C X + GT L\(i + 1 )G C X + GT L\ T (i + 1 )G C X 
pp p pp p pp 

(3:A9) 

(3:AlO) 

(3:All) 

+ GT A(i + l)[I - G C ]X + GTAT(i + l)[I - G C ]X . (3:AlZ) 
p e e p e e 

Now certainly, if 

0 = R C + GT [A (i + 1) + AT (i + 1) ][I + G C - G C ] 
pp p pp ee 

(3:Al 3) 

is true, (3:AlZ) is satisfied. From (3:All), a similar procedure gives 

0 =-RC - GT[A(i + 1) +AT(i + l)][I + G C - G C] . (3:A14) 
e e e p p e e 

Another necessary condition for the stationarity of J is 

A( .> = a3C U> 1 aX(i) 
T a

2 
A (n) = 2 1 

which, after the partial differentiation is taken, becomes 

. (3:A15) 



Since, it can be seen from (3:Al 6) that A(i) and AT (i) are obtained 

from the same equation, A(i) is symmetrical. 

Thus (3:Al3) and (3:Al4) become respectively 

0 = 2
1 

R C + GT A(i + 1 )[I + G C - G C ] p p p p p e e 

0 = 2
1 R C + GT A(i + 1 )[I + G C - G C ] 

ee e pp ee 
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(3:Al 7) 

(3:Al8) 

(3:Al9) 

By premultiplying (3:Al8) by CT and subtracting this from (3:Al6), p 

and by premultiplying (3:Al 9) by CT and subtracting this also, a simple 
e 

difference equation for A(i) is obtained. 

A(i) = A(i + 1 )[I + G C - G C ] , p p e e 

z 
A(n) = ~ I (3:AZ0) 

Using (3:AZ0) in (3:Al8) and (3:Al9) the optimized feedback con

trol gains are given by 

C (i) = -R -l (i)G T (i)r
1 

(i) , 
p p p 

(3:AZl) 

C (i) = -R- 1(i)GT(i)r
1

(i) , 
e e e 

(3:AZZ) 

where 

r l (i) 6 ZA(i) (3:AZ3) 

Then, using (3:AZl), (3:AZZ) and (3:AZ3) in (3:AZO), a difference equation 

for r l (i) is obtained. 

rl(i) = {r-1 1(i + 1) + [G (i)R- 1(i)GT(i) - G (i)R- 1(i)GT(i)]}-l 
p p p e e e 

' 

z 
r(n) = a I . (3:AZ4) 

--·- .. -~· 
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{3:A21), {3:A22) and {3:A24) define feedback control gains for 

the discrete-time game. These results are the exact analog of those 

obtained for the continuous-time case, see Section 1. 4. It can, in 

fact be shown, that as the time interval involved in the difference 

equation {3:A24) a.pproaches zero, that r 1 {i) approaches K-
1

{tf, t). 

A. 2 The Stochastic Problem 

The same difference equation applies here, {3:Al ), but now the 

evader has an ii 1tial estimate of the state x{O), plus a series of 

measurements of the state which are corrupted by additive noise. 

z{i) = H{i)x{i) t w{i) i = 1, 2, ... , n - 1 {3:A25) 

where w{i) is Gaussian white noise with zero mean and variance Q{i). 

Let the control vectors be of the form 

u{i) = -R- 1{i)GT{i)r
1

{i)x{i) - R-l{i)GT{i)A{ifx{i) 
p p p p 

(3:A26) 

v{i) = -R- 1{i)GT{i)r
1

{i)x{i) 
e e 

(3 :A2 7) 

where °i{i) is the error of the evader 1s estimate x{i), and r 1 {i) is given 

by {3:A24), or alternatively by 

{3:A28) 

where 

{3:A29) 

Since r 1 {i) is predetermined, the only necessary optimization of 

the criterion 

.. 
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2 n-1 

J = E[T llx(n)ll
2 

+ ~ l { llu(i>lli (i) - llv(i)lli (i)}] 
i=0 p e 

(3:A30) 

takes place over the matrix A(i). 

Using (3:A26) and (3:A27) in (3:Al) gives 

x(i + 1) = '1t(i)x(i) - {G R-lGTA+ G R-laTr
1
}i(i) 

p p p e e e 
(3:A31) 

The Kalman-Bucy estimation equation for the evader 1s estimate is given 

by 

x(i + 1) = '1t(i)x(i) + P(i + l)HT(i + l)Q-l(i + l}[z(i + 1) 

- H(i + l)'IJl(i)x(i)] , i=l,2, ... ,n-1 (3:A32) 

where 

P(i) ~ E(x(i)iT (i)] . (3 :A33) 

Subtracting (3:A32) from (3:A33), and noting (from (3:A31)) that 

(3:A34) 

the difference equation fo1· x(i) can be obtained. 

x(i + 1) = [I - P(i + l)HT(i + l)Q-l(i + l)H(i + l)]~H)i(i) 

-P(i + l)HT(i + l)O- 1(i + l)H(i + l)w(i + 1) , 

i = O, 1, ... , n - 2 (3:A35) 

where 

(3:A36) 

____ _,... - ----
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Postmultiplying (3:A36) by its transpose and taking expectations 

it can be shown that 

-1 
P-l(i + 1) = IT (i)P-l(i)~-l(i) + HT(i + l)Q-l(i + l)H(i + 1) 

Also, defining 

X(i) = E{x(i)x T (i)} 

and then postmultiplying (3:A37) by its transpose and again taking 

expectations gives 

X(i + 1) = '1t(i)[X(i) - P(i)]'1tT(i) + l(i)P(i)IT(i) 

(3:A3 7) 

(3:A38) 

(3:A39) 

Employing (3:A26) and (3:A27) in the criterion as given by (3:A30) 

and taking the expectation indicated gives 

1- -1 Tr } - (x - P) 1G R G 1] e e e 

Then adjoining (3:A39) to (3:A40) with Ai (i + 1) and also adjoining 

(3:A37) with Ai(i + ·I), a Hamiltonian can be defined. 

(3:A40) 

3C(i) ~ Tr{-
2
1 x(i)r

1
(i)[G (i)R-l(i)GT(i) - G (i)R- 1(i)GT(i)]r

1
(i) 

p p p e e e . 

t ½P(i)[(r1(i) t t?(i))Gp(i)R;
1
(i)G~(i)(rl(i) + 6(i)) 

. - rl(i)(G (i)R- 1(i)GT(i) - G (i)R- 1(i)GT(i))rl(i)] 
p p p e e e 

+ Ai(i + 1)['1t(i)(X(i) - P(i))\JIT(i) + •(i)P(i)IT(i)] 

-1 
+ A~(i + l)[IT (i)P(i)t- 1(i) + HT(i + l)Q-l(i + l)H(i + l))} 

(3:A41) 



r ! 

Note that the state variables are X(i) and P- 1(i), and the control 

variable is A(i). 
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Now necessary conditions for the stationarity of the Hamiltonian 

are 

A1(i) = 83C {i} ax (i) 

a:tc 
A(i) = 0 . 

(3:A42) 

Az(n) = O , (3:A43) 

(3:A44) 

Carrying out the partial differentiation indicated in (3:A4Z) gives 

A(i) = !, rl.(i)[G R-lGT - G R-laT1r1(i) + il/T(i)Al(i + l)il/(i) . 
~ . pp pee e 

(3:A45) 

It can be shown by induction that 

(3:A46) 

First a13sume that in {3:A45) A 1 (i + 1) is given by ! r 1 (i + 1 ); then using 

(3:A29), (3:A45) reduces to (3:A46). Thus since both A1 (n) and ! r 1 (n) 

2 
are TI, the induction proof is complet .!. 

Carrying out the partial differentiation of (3:A43) gives 

-1 1 
r 2(i) = .-l(i)r2(i + l)~T (i) + P(i){r1 - [r1 + A]GPR; G:[r1 + A] 

{3:A47) 

._,....____ -----·---.. -·--



where 

Finally, taking the differentiation indicated in (3:A44) gives 

after extensive algebraic manipulation --

or 

r z(i) = -P(i)A(i)P(i) 

Using (3:A50) and (3:A37) in (3:A47) gives 
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(3:A48) 

(3:A49) 

(3 :A50) 

A(i + 1) = [ZT(i + l)r1{A(i)'IJl-l(i) + r
1
(i)[~-l(i) - '11'-l(i)]}Z-l(i + 1), 

A(n) = 0 (3:A51) 

where 

Z(i + 1) ~ I - P(i + l)HT(i + l)Q-l(i + l)H(i + 1) (3:A52) 

Again, observe the similarity between the results obtained here 

for the discrete-time game and the results obtained in Section 2. . 2 for 

the one in continuous-time. In particular, if the time interval between 

i and i + 1 is allowed to approach zero, as n approaches infinity it can 

be shown that A(i) approaches r 2(t) as given by (2:43). 

A. 3 A Non-Optimal, Discrete-Time Game 

Again, the system difference equation shall be given by (3:Al) and 

the evader's control v(i) by (3:A27). However, let the pursuer's control 

be given by 

u(i) = -R-l(i)GT(i)[r
1

(i)x(i) + A(i)~(i - 1)] 
p p 

i = 1,2, ... ,n-1 (3:A53) 

--
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and 

(3:A54) 

Here it is assumed that r 1 {i) is given by (3:A24) and that 6(i) is given by 

(3:ASl) which must be solved simultaneously with (3:A37) which gives 

P(i). The evader 1s estimate of the state is obtained from (3:A32). 

By defining 

'i<-1) = o (3:A55) 

(3:A53) can be used to define u(i) for i = 0 also. P(i) is considered 

merely to be a multiplier in this section of the Appendix; the fact that 

the controls are non-optimal leaves it devoid of physical significance. 

In A. Z above, no thought was given to how the pursuer obtained 

x(i) at time i. For the control employed here, however, this question 

is irrelevant. The pursuer employs x(i - 1) at time i as if it actually 

was the error of the evader 1s estimate at time i. Since the pursuer 

knows x(i), x(i - 1 ), u(i - 1) and the form of the evader 1s controller, 

he can always calculate x(i - 1), or equivalently x(i - 1), provided the 

inverse of G (i - 1) exists. Consequently, though the pursuer's control, 
e 

as defined by (3:A53) and (3:A54), may be non-optimal there is no doubt 

that it is realizable. 

Now define the following 

M(i) 

N(i + 1) ~ E[x(i + l)xT(i)] , 

X(i) i E[x(i)x T (i)] 

(3:A56) 

(3:A57) 

(3:A58) 



S(i) 

U(i + 1) ~ E(x(i)xT(i + l)] 

These matrices have physical relevance and can be assigned the 

following initial conditions. 

M(O) = P 
0 

M(-1) = 0 

N(O) 

X(O) 

S(O) 

U(O) 

= 0 

=X 
0 

=P 
0 

= 0 
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(3 :A59) 

( 3 :A60) 

(3:A61) 

(3:A62) 

(3 :A63) 

(3:A64) 

(3:A65) 

(3:A66) 

The conditions (3:A62), (3:A63), and (3:A66) result from (3:A55). 

(3:A61) and (3:A64) are the definitions employed inA.2 above. (3:A65) 

results from the fact that the evader 1s initial estimate is assumed un

coupled from the error of this estimate. 

Using the assumed form of the controls, plus definitions (3:A56) 

through (3:A60) an expression for the criterion can be obtained from 

(3:A30). 

n-1 

J = Tr{ ~
2 

X(n) + ½ l [X(i)r l (i)Gp (i)R; l (i)G! (i)r l (i) 

i=O 

+ M(i - l)ll(i)G (i)R-l(i)GT(i)ll(i) 
p p p 

+ (X(i) - S(i) - ST(i) - M(i))r (i)G (i)R- 1(i)GT(i)r (i)} 
1 e e e 1 

(3:A67) 
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Inserting the controls (3 :AZ 7) and (3 :A53) in the system difference 

equation gives 

x(i + 1) = 'lll(i)x(i) - G R-lGTr
1
x(i) - G R-lGT A(i)x(i - 1) 

e e e p p p 

i = O, 1, ... , n - 1 (3:A68) 

Postmultiplying (3:A68) by the transpose of itself and taking expectations 

gives 

(3:A69) 

Subtracting the left side of (3:A69) from both sides, premultiplying 

the result by r 
1 

(i + 1) and summing from i = 0 ton - 1 gives 

n-1 

o = l r
1

(i + l){X(i + 1) - ['1t(i)X(i)'1t(i) - .•... . n 
i=O 

which can be rewritten as 

n-1 n-1 

(3:A70) 

0 = a
2

x(n) - r(O)X(O) + I r(i)X(i) - I r l (i + l}[w(i)X(i)'lll(i) - ...... ] . 

i=O i=O 
(3:A71) 

Then taking the trace and using (3 :AZ8) to eliminate r 1 (i + 1) gives 

----· -

. I 
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n-1 
1 1 I -1 -1 T -1 T = Tr[-::;-r1(0)X(O) + -2 r 1-q, {G R G r 1Mr1G R G 
~ e e e e e e 

i=O 

(3:A 72) 

Subtracting (3:A32) from (3:A68) gives the difference equation for the 

propagation of x. 

- Z(i + 1 )G (i)R -l (i)G T (i)A(i)x(i - 1) 
p p p 

- P(i + 1 )HT (i + 1 )Q - l (i + 1 )w(i + 1) (3:A73) 

Postmultiplying (3:A68) by the transpose of (3:A73) and taking 

expectations gives the following difference equation for S(i). 

(3:A74) 

_ .... , _____ , ___ - . 
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Subtracting the left side of (3:A74) from both sides, premultiplying 

the resul t by A(i + l) and summing from i = 0 ton - l gives 

n-1 

0 = \ A ( i + l ) { S ( i + l ) - Z ( i + l )[ (I - G R - l GT r l ) S'11 T - . . . . . ]} L P P P 
i=O 

which can be rewritten as 

n-1 n-1 

O = -~(O)S(O) + L A(i)S(i) - I A(i + l)Zl (i + l) 

i=O i=O 

x -1 T T {[I - GR G r 1]S'11 - •.... } p p p 

(3:A75) 

(3:A 76) 

Taking the trace of (3~76) and using (3:A51) to eliminate A(i + l)Z(i + 1) 

gives 

n-1 
1 l \ T-l . -1 

0 = Tr[z A(O)S(O) - 2 LAS - z (1 + l){[rl + A]~ 

i=O 

(3:A77) 
n-1 

Adding (3:A'TZ) to (3:A77) and then adding ½Tr L [M(i - l)AGPR;
1

G~ A 

i=O 

- Mr
1

a R·laTr
1

] to both sides gives 
e e e 



where 

J = Tr[~ .6(0)5(0) + ! r l (0)X(0) 

n-1 

+ ½ I {Bl (i)S(i) + B2(i)M(i) + B3(i)N(i) + B4(i)U(i) 

i=O 

3-41 

(3:A78) 

(3:A83) 

- ~-
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(3:A84) 

(3:A78) is one possible expression for the criterion resulting from 

the controls (3:AZ7) and (3:A53). The objective is to demonstrate that 

as the time interval between i and i + 1 approaches zero, it reduces to 

(Z:88), the expression for the criterion for the optimized continuous 

-1 game. Since t.(O) approaches r 2(t
0

), r l (0) approaches K (tf, t
0

) as 

the interval approaches zero, the first two terms match. Consequently, 

it is only necessary to demonstrate that the summation of (3:A78) ap

proaches the integral of (Z:88). 

The relationships between the discrete-time and continuous-time 

variables (see Bryson and Ho [l]) are given below. 

6(i) = t 

N - 1 n - 1 = 
6 

P(i) = P(t) 

. -1 r l (1) = K (tf, t) 

t.(i) = r 2(t) 

(3:A85) 

(3:A86) 

(3:A87) 

(3:A88) 

HT (i + 1 )Q - l (i + 1 )H(i + 1) = OH T (t + 0 )Q - l (t + 0 )H(t + 0 ) , 

Gp(i)R;
1

(i)Gp(i) = 6Gp(t)R;
1

(t)Gp(t) 

G (i)R -l (i)G (i) = 6G (t)R - l (t)G (t) 
e e e e e e 

(3:A90) 

(3:A91) 

(3:A9Z) 

---·--

1. 

,, 
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Using these, expansions can be obtained for the following inverses. 

~-
1

(t) = I+ oG (t)R-
1

(t)GT(t)[K-
1

(tf, t) + r2(t)] + O(o 2) , (3:A93) 
p p p 

'11-
1

(t) =I+ o[G (t)R- 1(t)GT(t) - G (t)R- 1(t)GT(t)]rl(t) + O(o2) , 
p p p e e e 

(3:A94) 

-1 
Z T = I + oH T (t + o )Q-l (t + 0 )HT (t + 0 )P(t + 0) + 0(62 ) . 

(3:A95) 

Using (3:A85) through (3:A95), the coefficients B
1 

to B
6 

can be 

expanded in terms of 0. 

+ r
2

(t)G (t)R -l (t)G T (t)r
2

(t)} + orn2) 
p p p (3:A96) 

B 2(t) = -0K-
1

(tf, t)Ge(t)R:
1

(t)G;°(t)[K-l(tf, t) + ll(t)] +· 0(02
) 

(3:A97) 

(3:A98) 

(3:A99) 

(3:Al00) 

(3:Al 01) 

Using (3:A96) to (3:Al0l) in the summation of (3:A78) which shall 
/)I 

be denoted by SUM, gives 

1111111!• 



N-1 
0 

SUM = Tr I c5 { S(t)H T (t + c5 )Q-l (t + c5 )P(t + c5 )r z(t) 

i=O 

3-44 

+ rz(t)G (t)R -l (t)G T (t)rz(t)[S(t) + M(t - c5) - N(t) - U(t)] 
p p p 

(3:Al02) 

As can be seen from the definitions of (3:A56), (3:A57), (3:A59) and 

(3:A60), S(t), M(t), N(t), U(t) and M(t - c5) all approach P(t) as defined 

by (3:A33) as 6 approaches zero. Consequently, as c5 approaches zero 

and the summation of (3:Al02) becomes an integral, the terms of order 

6
2 

approach zero gives 

Q.E.D. 

lim SUM= Tr 
6• 0 

tf 

s. P(t)H T (t)Q -l (t)P(t)r z (t)dt 
t 

0 

(3:Al 03) 

In summary then, the value of continuous-time optimized criterion 

can be approached by the discrete-time, non-optimized but realizable 

control given in (3:A53). Consequently, though the pursuer may not be 

able to determine y(t) or y(t) exactly at time t, a slight delay in this 

calculation does not produce a large change in the value of the criterion. 

This procedure of using slightly delayed values of y(t) does not 

eliminate the problem of instability of the feedback loop internal to the 

pursuer 1s controller. Figure 3-6 indicates the form the pursuer 1s 

------ -- -----··---
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controller which produces the control u(i) as given in (3:A53). This 

can be reduced to the form shown in Figure 3-7 where the gain 

matrix A(i - l) is given by 

x G (i - 1) 
p 

(3:Al 04) 

where 

A(n - 1) = 0 (3:Al 05) 

The stability condition for this feedback loop is that all eigenvalues of 

A(i - 1) have magnitudes less than 1. 0. Noting the correspondence 

between M(t) as defined in (3 :4) and I + A(i - 1 ), it is seen that this 

stability condition for the discrete-time problem corresponds to the 

stability condition iii. of Section 3. 1 for the game in continuous-time. 

-

J 
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APPENDIX III-B 

MATHEMATICAL DETAILS OF THE EVADER'S 

OPTIMALITY PROOF 

The purpose of this appendix is to demonstrate that indeed 

equation {3:36) 

which gives the feedback gain matrix when determining the evader 1s 

optimality (Section 3. 3) is correct. 

From Section 3. 3 the necessary definitions are 

Ai -(K-l + r )G R-lGT(K-l + r ) 
2 p p p 2 

N = -(K-l + r )G R-laTr [G R-lGTK-lrla 
Zpp pZ ee e e' 

3-48 

(3 :B 1) 

(3:B2) 

(3:B3) 

(3:B4) 

(3:B 5) 

(3:B6) 

Using these in the derived expression for the evader 1s feedback 

-1 T ~T gain, B (N + 'IU S), gives 

(3:B7) 

-----·-
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Now observe that for 

S(t) = -K-
1

(tf, t) (3:B8) 

(3:B7) reduces to (3:Bl). Thus it is now necessary to prove that (3:B8) 

is true. 

The differential equation which generates S(t), (3:35), can be 

rewritten in the convenient form 

(3 :B9) 

Inserting (3:B8) in the right-hand side of (3:B9) gives 

(3:B 10) 

which is exactly the negative of the expression for the time derivative 

-1 
of K (tf,t), as given by (2:40). 

Q.E.D. 

~------- -------
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CHAPTER FOUR 

A STUDY OF THE EQUATIONS FOR r 2 AND P 

The parameters which define the optimized strategies of the two 

-1 
players are R , R , G , G , K , r 2 , P, H, and Q. Of these, all p e p e 

-1 
but K , r 2 , and P are system parameters given in the definition of 

the game. K-l is a derived parameter of the associated deterministic 

game, and consequently is independent of the stochastic variables, H 

and Q. 

Thus r 2 and P are the only parameters whose character is still 

unknown. Their values are determined by the two-point, boundary

value problem of (Z:43) and (2:97). These coupled matrix Riccati equa

tions are repeated here 

(4:1) 

P(t ) = P . 
0 0 

. (4:2) 

-1 
Observe that although both equations are coupled to K , the equation 

for K- 1, (2:40), is coupled to neither r 2 nor P . Consequently in 

-1 
studying (4:1) and (4:2), K can be viewed as merely another time 

dependent matrix like G (t), H(t), etc. p 

-------·~ ...... ----
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Since r z and P describe the play of the optimized stochastic game, 

it is important to investigate the nature of the solutions to (4:1 )-(4:Z). 

The characterization and relevance of r z and P are the subject of this 

chapter 

Unfortunately, (4:1 )-(4:Z) cannot be written as a single Riccati 

equation. This would obviously simplify the investigation since it would 

reduce the question to an examination of a standard form. Even if a 

terminal condition 

(4:3) 

is substituted for the initial condition of (4:Z), r z and P cannot be written 

explicitly in terms of Pf (and r 2(tf) = 0). Thus the results of this inves

tigation must be derived from the general nature of the set of simultaneous 

equations (4:1)-(4:Z), rather than directly from a well known equation 

with a specific solution. 

Further comments on r z and P are found in Chapter 5, where a 

comparison is made between a new game where the pursuer makes noisy 

measurements ., and the game which was solved in Chapter Z where the 

evader makes the noisy measurements. 

4. l The Conjugate Point Condition 

For problems in optimal control theory, the conjugate point condition 

indicates when a control -- which is de l'.'ived by standard (first-order) 

optimization techniques -- fails to be optimal. It is always necessary 

to check this condition to ensure that the solution obtained is really a.n 

optimal one. The procedure for determining the existence and location 
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of the conjugate point - - that point, when viewing time as progressing 

backwards from the terminal time, after which the solution is no 

longer valid - - is to conside r the second-order accessory minimization 

problem. The conjugate point occurs when the identically zero control 

fails to be the solution or the unique solution for this accessory minimi

zation problem. 

For linear-quadratic control problems, the optimal control is a 

feedback one, related to the state by 

!_.(t ) ex S(t)x(t) (4:4) 

where S(t, ) is determined by a matrix Riccati equation which is obtained 

by the "sweep method II of solution. For this problem, it can be shown 

(see for example Bryson and Ho [l]) that the conjugate point occurs when 

and only when S(t) fails to be finite. 

As was mentioned in Section 1. 4, the conjugate point for the deter

ministic game occurs when K-l (tf, t) fails to exist. Baron [2] proved 

this by considering the second-order accessory minimization game. 

Consideration of this accessory minimization problem is required to 

determine sufficiency conditions for ensuring that the controls obtained 

are optimal; the fact that the controls are given by (1 :32), (1 :34) and 

(1 :33), (1 :35) are only necessary conditions and involve only first-order 

variations. The second-order variational terms are considered in the 

accessory minimization problem. 

The conjugate point condition could also have been determined by 

considering either of the one-sided control problems which are obtained 
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when one player declares his control and -- this given -- the other 

player optimizes to obtain his strategy. The conclusion from this ap

proach must be identical, for the strategies obtained in this manner 

must be the same to satisfy the saddle-point condition. Consequently, 

if one player's strategy is not optimal from this control-theoretic view, 

it must be non-optimal when viewing the game as a whole . Once one 

player 1s strategy becomes non-optim.al and fails to satisfy one side of 

'" the saddle-point condition, the other side of the condition becomes 

meaningless. 

For either one-sided control problem associated with the deter

ministic game the S(t) which is determined by the sweep method solution 

-1 
is K (tf' t). 

In Chapters 2 and 3, the technique which was employed to ensure 

that the solutions obtained from the calculus of variations approach of 

Section 2. 2 satisfied the saddle-point condition, was to again solve two, 

one-sided control problems. And too, the solution employed was obtained 

from the sweep method: (2:53) and (2:54); (2:70) and (2:71); (3:34) and 

(3:35). Consequently, the conjugate point for the game problem occurs 

when any of the S(t) matrices (as defined by either (2:54), (2:71), or 

(3:35)) fails to be finite. 

Consider first the one-sided problem of Section 2 . 3: Proof of the 

Pursuer 1s Optimality. This is merely a linear-quadratic control problem 

where the state equation (2:49) is also driven by white noise. This 

latter fact is ignored, for the conjugate point occurs at the same place 
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for both deterministic problems and stochastic ones involving process 

noise only . From (2:60), (2:61) and (2:62) it can be seen that the S(t) 

matrix is given by 

I 

-1 : 
K (tf, t) : 0 

S(t) = __________ _: ______ _ (4:5) 
I 

0 

-1 
Thus certainly there is a conjugate point when K fails to be finite. 

This is most reasonable for there should be a conjugate point to the 

stochastic game when one occurs in the associated deterministic game . 

However, there is a new condition - - r 2 should be finite - - which re-

flects the new complexities of the stochastic game and gives some insight 

into the meaning of r 2 . Certainly this latter restriction is also reasonable, 

for if r 2 fails to be finite, the pursuer would be adding an infinite cor

rection for the evader 1s error . 

-1 
The failure of K (tf, t) to be finite shall be termed the deterministic 

conjugate point condition, i.e . the conjugate point condition for the deter

ministic game. When attempting to solve any stochastic game, it would 

naturally have to be assumed (or determined) that there was no conjugate 

point for the associated deterministic game. Thus the stochastic conjugate 

point, i.e. the conjugate point for the stochastic game, can be said to occur 

when r 
2

(t) fails to be finite. 

Consider next the problem of Section 3. 3: Proof of the Evader's 

Optimality using Realization I. Here the S(t) matrix is merely K-
1

(tf, t), 

see (3:B8), and thus no further restriction need be added. 



For the third one-sided problem, Section Z. 4: Proof of the 

Evader's Optimality with the mystical third party, the S(t) matrix is 

given by 

-1 : 
K (tf, t) - s 12(t) : s 12(t) 

S(t) = I 

----------------i--------
1 

s1 z(t) : -s12<t) 

where s12(t) is obtained from 

4-6 

(4:6) 

(4:7) 

Thus a conj ugate point could also occur when s1 z(t) fails to exist. 

Certainly s12 will fail to be finite if r 2 does; however, the opposite is 

not necessarily true. 

This is true despite the fact that the evader 1s optimal control as 

given by (Z:8Z) is independent of s12(t). (2:SZ) was derived from (2:80) 

on the basis that when (Z:80) was inserted into (Z:73) it was found that 

y and yp were identical. However, when s 12(t) fails to exist, (2:73) does 

not make sense and thus these results cannot be obtained. 

It seems contradictory at first that different conditions should 

result from the two procedures f'1r optimizing the evader's strategy. 

j 
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Yet, the implementation of the pursuer 1s general strategy is quite 

different for the two cases. In Section 2. 4, the pursuer's strategy is 

based on data obtained from the mystical third party; in Section 3. 3 

he calculates the data directly from the evader 1s control. Consequently, 

when the pursuer implements his strategy as de<Jcribed in Section 3. 3 

he is more capable of taking advantage of the e vad t. r 1s actual deviations 

from the deterministic optimal control, than when the implementation 

of Section 2. 4 is used. In Section 2. 4, the pursuer can c.mly determine 

what the evader 1s deviation "should II be, not what it actually is. By 

implementing his strategy in the manner of Section 3. 3 the pursuer can 

ensure that the evader 1s control, as given by (2 :44), will be optimal for 

less restrictive conditions. 

By employing the implementation of Section 3. 3, the pursuer is 

in effect using a closed-loop control feeding back the error of the evader 1s 

estimate. In Section 2. 4, the pursuer 1s approach to using y(t) is more in 

the open-loop category, for the value of y(t) actually employed is a calcu

lated one which may differ from the actual value as the game progresses. 

Thus there exists an analogy between this situation and the deter

ministi c pursuit-evasion game. In Section 5. 1 it is shown that for the 

deterministic game there exist situations where the pursuer 1s closed

loop strategy is optimal while his open-loop one is not -- despite the fact 

that for the optimized trajectory they both lead to the same control time 

function. In other words, the conjugate point for the open-loop strategy 

lies closer to the terminal time than the conjugate point for the closed

loop strategy. 

----- - - - --- -- ----------- - - - -
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Here there is a similar result. s12 may fail to be finite, thus 

indicating that the pursuer 1s strategy as given in Section 2. 4 is not 

optimal. However, unless r 2(t) also fails to be finite, the strategy 

of Section 3. 3 would still be valid. Again this is true despite the fact 

that the two strategies produce the same time functions u(t). 

Since the pursuer is required in practice to employ one of the 

realization schemes described in Section 3. 3, the problem posed by 

s12 failing to be finite will never be encountered. Future references 

to a stochastic conjugate point condition shall mean only that r 2(t) fails 

to be finite. 

Now consider that values of r 2(t) and P(t) are needed to determine 

the values of the pursuer 1s feedback gain and the evader 1s estimator 

for a particular stochastic game with some P(t ). Assume that these 
0 

values are to be obtained from (4:1 )-(4:2) by integrating them backwards 

in time from tf by selecting a terminal condition Pf (4:3). Then it can 

be seen from (4:2) that if r 2(t) fails to be finite before time t
0

, that P(t) 

will immediately fail to be finite too (unless P is identically zero). 

However, such an integration process will .!!2!, produce a value of 

P(t
0

) which is finite. Thus the values of r 2(t) and P(t) obtained do not 

provide feedback and estimator gains for any game with time duration 

tf - t ; the definition of a game includes some finite value of P(t ) . 
0 0 

Consequently, a new terminal condition Pf must be selected and the 

integration performed again. 

Now suppose that a particular Pf (and the accompanying integration) 

produces values of r 2(t) and P(t) which are finite over the entire inte1·val, r 
,l 
I 



-:-: .. .... .1 ... ,:T,.t!Ji'ltti. _ ..., ___ ...._. 

t
0 
~ t ~ tf' and also produces a finite P 1(t

0
). Thie gives the feedback 

and estimator gains for optimal strategies for the game of duration 

tf - t with initial variance in the evader 1s estimation error of P '(t ) . 
0 O 

If the initial condition P 1{t
0

) is finite, then r 2(t) must be finite for 

t
0 
~ t ~ tf. 

Consequently, the stochastic conjugate point condition adds no 

new restriction. If there exist values of r 2 (t) and P{t), t
0 
~ t ~ tf, 

which satisfy (4:1)-(4:2) including the finite initial value P(t
0

), then r 2(t), 

t 
O 
~ t ~ tf, !!ill!!. be finite. 

Recall that the conjugate point condition determines when a solution 

obtained by ordinary {first-order) optimization techniques is not the opti

mal one. However, the solution obtained for this problem automatically 

satisfies the conjugate point condition. This is true because the solution 

involves a two-point boundary-value problem, with a finite initial condi

tion. This finite initial condition guarantees that the feedback gain will 

be finite. 

Considering time moving in the negative direction, it is possible, 

however, that r 
2

(t) will get very large as t approaches t 
O

• Thus it is 

certainly possible that the inverse of L(t) -- which is defined by (3:6) 

may fail to exist. Therefore, though r 2 is finite, it is necessary to 

determine if L -l is also finite to be sure that a solution not only exists 

but can also be realized. 

More discussion of the coupled equations for r 2 and P is found in 

Chapter 5. Some specific curves of r 2(t) and P(t) are found in Chapter 7. 

I• 

- ·-
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4. Z Strategies for Infinite Noise Variance 

The limiting case when the noise variance, O, approaches infinity 

is of interest for it permits specific solutions to be obtained for the 

parameters P and r 2 and thus adds insight to the nature of the solution 

of the general problem. 

As Q approaches infinity, it is certain that the term HTQ-lH will 

approach zero, but because P(t) is dependent on O, it is by no means 

certain that either 

(4:8) 

or 

(4:9) 

T -1 T -1 · h p h · f' · t For PH Q Hor PH Q HP to be non-zero requires t at approac m 1m y. 

From (4:Z) it can be seen that the driving term in the differential equation 

which describes Pis always negative-definite; since P(t) is positive-

definite the driving term is always forcing P(t) towards zero. Thus 

P(t) must remain finite, and consequently (4:8) and (4:9) are true. 

Using (4:8) and (4:9), (4:1) and (4:2) become 

'I' = r G R-laTr + r G R-lGTK-l + K-lG R-loTr 
Z Zpp p2 Zpp p pp p2 

(4:10) 

P(t ) = P 
0 0 

(4:11) 
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Here r 2 is decoupled from P, and thus (4:10) can be solved independently 

of (4:11 ). 

By substitution, it can be shown that 

r I -1 -1 
2 ( t) = [ z + M ( t f' t)] - K ( t f' t) 

a p 
(4:12) 

where Mp(tf, t) as given by (1 :31), is the solution to (4:10). This method 

of solution may be unsatisfying to the reader, but it was the one actually 

employed. 

Using (4:12), (4:11) becomes 

P(t ) = P 
0 0 

The solution to the general linear differential equation 

P(t) = F(t)P(t) + P(t)F T (t) 

is given by 

where 

P(t) = ~(t, t )P ~ T (t, t
0

) 
0 0 

P(t ) = P 
0 0 

~(t , t ) = I 
0 0 

-1 T I -1 
Using -G R G [ 2 + M (tf, t)] for Fin (4:16) and solving gives 

p p p a p 

/ 

(4:13) 

(4:14) 

(4:15) 

(4:16) 

(4:1 7) 

,.. 

r . 

C 
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Thus 

I I -1 I -1 
P (t) = [ - 2 + M (tf' t)][ - 2 + M (tf' t )] P [ - 2 + M (tf' t )] 

m a P p o o p o a a 

X [ 1z- + M (tf, t)) 
a p 

(4:18) 

which is written here with the subscript 00 , to denote the value of Q. 

Since, Mp(tf' t) is positive-definite, r 2 as given by (4:12) is always 

finite. Thus there certainly is no conjugate point for the stochastic 

game with infinite variance. Using (4:8) in the equations for the optimized 

system shows why. 

Using (4:8), the evader 1s estimation equation (2:92) becomes 

y(t ) = y 
0 0 

(4:19) 

-1 
Taking the time derivative of the quantity, K (tf, t)y(t), gives zero. 

Consequently the evader 1s control can be given by 

-1 T -1 ... 
v(t) = -R (t)G (t)K (tf' t )y(t ) e e o o 

(4:20) 

without any loss of generality, for the evader can calculate y(t) for all t 

before the game begins, since he receives no data during the game. In 

reality then, the evader is employing an open-loop control -- in fact 

the same form of open-loop control as was employed in the deterministic 

game (1 :29) except that y(t ) replaces y(t ). 
0 0 

In this sense it is reasonable that the (non-existent) conjuga.te 

I -1 
point occurs when [ z + M (tf, t)] fails to exist, for this is the same 

a p 
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conjugate point condition which is as sociated with the optimali ty of the 

evader 1s open-loop strategy (1 :29) in the deterministic game. Conjugate 

point conditions for the deterministic game are further discussed in 

Section 5. 1. 

Using (4:8) in (2:93), the equation for y(t) becomes 

A.- -1 T -1 ~ 
y = -G R G (K + r2>Y p p p 

~( ' ~ y t J = y 
0 0 

(4:21) 

This can also be integrated before the play of the game . Taking the 

time derivative of the quantity, K-
1

(tf' t)y(t) + r 2(t)y(t) again gives zero. 

Thus the pursuer can also operate op en-loop using the control 

u(t) = -R-
1

(t)GT(t)[K- 1(tf,t )y(t) + r
2

(t )y(t )] . 
p p O O O 0 

(4:22) 

It can be shown that P(t) is a monotonically decreasing function oft, 

or equivalently that P(t) < P . From (4:18), P - P(t) can be written aR 
0 0 

I -1 I -1} 
- [ - 2 + M (tf, t )] P [ - 2 + M (tf, t )] p O O p 0 a a 

I 
x [ 2 + M (tf, t)] 

a p 
(4:23) 

which is positive-definite if 

I -1 I -1 [ z + M (tf, t)] P 
0

[ z + M (tf, t)] > 
a P a P 

I -1 I -1 
[ - 2 + M ( tf' t ) ] P [ - 2 + M ( tf, t ) ] p O O p 0 a a 

(4:24) 

I 
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Obse1·ve that 

ar1d thus that 

[ I -1 I -1 z + M ( t f' t)] > [ z + M ( t f' t ) ] 
a p a p o 

t > t 
0 

t > t 
0 

Consequently, (4:Z4) is true and the proof is complete. 
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(4:2 5) 

(4:Z6) 

That the variance of the error of the evader 1s estimate decreases 

with time -- despite the fact that the evader receives no information 

during the ·,i:llay of the game - ·• results from the basic stability of the 

differential equation governing y. Since the evader 1s control, 

-R-lGTK- 1y, enters in an identical manner into both the equation for 
e e 

y and t:~e one for y, it does not effect the equation for y. Thus the 

system matrix of the P equation is -G R -l GT (K-l + r
2

) which, although 
p p p 

it is not necessarily negative-definite, is certainly not positive·-definite. 

For finite values of Q(t), the pursuer will have more information 

than in this section. Thus the value of P(t) must be less than Pa:i(t). 

P(t) < P a:i(t) (4:Z 7) 

4. 3 The Results for Zero Noise Variance 

As Q approaches zero, w(t) becomes identically zero and Q-l 

approaches infinity. Then the only value of P(t) which will satisfy (4:Z) 

is 

P(t) = 0 t < t 
0 

(4:Z8) 

. 
for any non-zero value of P that would cause P to be - 00• (4:28) indicates 

----------(, 

j 

;....------'- -,· ~----~-------·· ------·-·----·----- --- -~ 
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that 

y(t) = 0 t < t 
0 
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(4:Z9) 

This is certainly reasonable for as the evader is given perfect informatio:n 

of the state, the error of his estimate should become zero. 

This means that both the pursuer 1s and the evader 1s control ~re 

given by their deterministic values 

u(t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) , 
p p 

(4:30) 

v(t) = -R -l (t)G T(t)K-l (tf, t)y(t) 
e e 

(4:31) 

This is the required result: the optimal stochastic controls must approach 

the optimal determiristic controls as the noise level approaches zero. 

By writing 

(4:3Z) 

it can be seen that 
t 

-1 -1 T s. T -1 T P (t) = ~(t, t )P t (t, t ) + ~(t, T)H (T)Q ('T)H(T)~ (t, 'T)dT 
0 0 0 t 

where 

0 

_ddt~(t,t) = [K- 1(tf,t) + rz(t)]G (t)R- 1(t)GT(t)~(t,t} 
0 p p p 0 

~(t , t ) = I . 
0 0 

(4:33) 

(4:34} 

. ··--··---·-·--- ~------- .... --- ----··-·-··---------

., 
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For Q very small the second term in (4:33) dominates and thus 

(4:35) 

Now write 

Q(t) = qQ(t) (4:36) 

where q is a time-independent scaler. Then 

x HT(t)Q- 1(t)H(t) (4:37) 

Thus as q approaches zero and thus Q(t) approaches zero, P(t)H T (t)Q -l (t)H(t) 

is non-zero and finite. Unfortunately, this cannot be written in terms 

of the basic parameters of the problem, and thus r 2(t) cannot be given 

explicitly as it was when Q(t) approached infinity. 
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CHAPTER FIVE 

THE ASYMMETRIC ROLES OF PURSUER AND EVADER 

The solutions to both the deterministic pursuit-evasion game 

(see Section 1. 4) and the stochastic game inoicated no basic difference 

in the roles of the two players. In the deterministic game, for example, 

the pursuer 1s and evader 1s feedback strategies were found to be 

u(t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) 
p p (5:1) 

v(t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) 
e e 

( 5:2) 

respectively. 
-1 

From these relations (and the fact that K depends solely 
.. 

on R , R , G , and G ) one might naively conclude that any difference p e p e 

between the capabilities of the pursuer and evader would depend strictly 

on the numerical values of R and R , and G and G . 
p e p e 

Chapters 2, 3 and 4 above examine the solution to the pu?·suit-

evasion game which has a basic asyinmetry due to the evader's inability 

to make perfect measurements. Logically then, the optimal feedback 

strategies should have some asymmetric characteristics; they are given 

by 

u(t) = -R- 1(t)GT(t)K- 1(tf, t)y(t) - R- 1(t)GT(t)r
2

(t)y(t) 
p p p p 

(5:3) 

·v(t) = -R - l (t)G T (t)K- l (tf, t)y(t) 
e e 

· (5:4) 

However, an examination of the first-order variational process 

whereby this solution was obtained indicates no basic difference would 

arise if the pursuer was constrained to making imperfect measurements 

I ------•------- -------•----

I I 

I ' 
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while the evader had perfect information. It would appear that the 

forms of (5:3) and (5:4) would simply be reversed. 

5-Z 

There is, howeve r , a fundamental asymmetry in the roles of the 

two players which produces some asymmetric properties of the solu

tions for both the deterministic and stochastic games. This asymmetry 

effects specifically the abilities of the two players to use open-loop 

control, and results from the different manner in which the two players 

view the criterion. 

The pursuer is attempting to capture the evader and is minimizing 

both the terminal separation and his control effort. The evader is 

merely attempting to get away and is minimizing his control effort but 

maximizing the terminal separation. In short, the goals of the pursuer 

and the evader are .!!2!, symmetrical. 

Thia chapter is a study of asymmetry in both the deterministic 

and the stochastic games. 

5. 1 The Deterministic Case 

In Ho, Bryson and Baron [l], the feedback strategies for the deter

ministic game were obtained by first determining Lpen-loop control 

functions (see Section 1. 4). These were converted to feedback strategies 

by noting the value of the feedback gain which produced the same tra

jectory in state apace and then proving that these strategies indeed 

11 
1ati1fied the saddle-point condition. The original open-loop time func

tion• given by (1 :28) and (1 :29) are repeated here. 
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The conjugate point condition when closed-loop strategies are 

employed is that K-
1

(tf, t) fails to be finite, as was pointed out in 

Chapter 4. However, suppose one player elects to employ an open-

(5:5) 

(5:6) 

loop strategy; then where does the conjugate point occur? This problem 

is also discussed in Bryson and Ho [2.]. 

Assume, for example, that the pursuer elects to employ the open

loop strategy of ( 5:5) and announces this fact to his opponent. It is then 

necessary that the evader determine if his open-loop strategy (5:6) is 

optimal, if his closed-loop strategy (5:2) is optimal, or if he should 

employ an entirely different control. 

The evader maximizes a new criterion 

tf 
2 2 1 r 2 

J = r II y(tf) Ii - 2 \ II v(t) II R dt 
"t e 

(5:7) 
0 

subject to the constraint 

y = -G (t)R -l (t)G T (t)K-l (tf, t )y(t ) - G (t)v(t) 
p p p o o e 

y(t ) = y 
0 0 

(5:8) 

Note, that the tf;rm indicating the pursuer 1s control effort has been 

deleted from the criterion (5:8) for it is completely predetermined and 

thus not subject to the evader 1s influence. 

___ ""_.._...,.,_,., __________ ____.._,_.._....._.._. _____ _ __ .... _ _._ , .............. ,,., __ .,.._ ______ _ . I: ' 
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The Hamiltonian for this problem is 

(5:9) 

where >.(t) is the adjoint vector. A necessary condition for the evader's 

control to be optimal is 

.§K = 0 av 
which gives the form of the control as 

The Euler equation is 

which gives the value of the ad.ioint vector, 

Using (5:11) and (5:13) in (5:8) gives 

y = -G (t)R- 1(t)GT(t)K- 1(tf,t )y + a 2G (t)R- 1(t)GT(t)y(tf) 
pp p oo e e e 

y(t ) = y . 
0 0 

(5:10) 

(5:11) 

(5:12) 

(5:13) 

(5:14) 

Integrating with respect to t, gives the terminal value of the state as 

-1 2 
y(tf) = y0 - Mp(tf, t 0 )K (ti, t

0
) + Me(tf, t

0
)a y(tf) (5:15) 

(5:15) can be solved explicitly for y(tf). 

2 -1 -1 
y(tf) = [I - a Me(tf, t

0
)] [I - Mp(tf, t

0
)K (tf, t

0
))y 0 (5:16) 
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(5:16) can be reduced to 

(5:1 7) 

Thus, (5:11), (5:13) and (5:17) indicate that the evader's optimal control 

is 

v(t) = -R- 1
(t)GT(t)K- 1(tf' t )y(t ) 

e e o o (5:6) 

This is the original open-loop strategy; the closed-}oop strategy (5:Z) will 

produce the same trajectory. 

This result is not valid however, if (see (5:16)) the inverse of 

[I - aZM (tf, t )] fails to exist. In fact, this represents the conjugate e o 

1-.:>int condition for this one-sided control problem. This can be demon-

strated by solving the same problem in a slightly different manner. 

The evader is assumed to be permitted to play!!!£!: the pursuer 

has played. Since the pursuer 1s strategy is assumed to be open-loop, 

the effect of the pursuer 1s control on the outcome is detexmined before 

the evader acts anyway, and thus this adds no new rest:riction. Here 

the initial condition from which the evader begins is given by 

y' = y + 
0 0 

tf 

s. G (t)u(t)dt 
t p 

0 

where u(t) is given by (5:5). Performing the integration indicated in 

(5:18) gives 

-1 
y' = [I - M (tf, t )K (tf, t )]y 

0 p O O 0 

( 5:18) 

(5:19) 

Thus the differential equation which governs the new state variable y'(t) is 

y = -G (t)v(t) 
e 

y'(t ) = y' 
0 0 

(5:Z0) 

I 

I 
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The new criterion to be maximized is 

tf 

5-6 

z 
J = ylly'(tf>ll

2 
- ~ (' llv(t>lli (t)dt (5:21) 

jt e 
0 

which is subject to the differential constraint (5:20). For any particular 

value of v(t), t
0 
~ t ~ tf, the y 1(tf) obtained from (5:2-0) is identical to 

the y(tf) obtained from (5:8) and thus the value of the criterion given by 

(5:Zl) and (5:7) is the same. 

From optimal control theory, it is known that the solution to (5:Z0)

(5:Zl) is g iven by 

-1 T 
v(t) = -R (t)G (t)S(t)y 1(t) e e 

(5:ZZ) 

where 

(5:23) 

The solution to (5:23) is 

I -1 
S(t) = [ z - M (tf, t)] 

a e 
(5:24) 

and the failure of S(t) to be finite is the well-known conjugate point con

dition. Consequently, if the pursuer employs an open-loop control, and 

if S(t) as given by (5:24) fails to be finite, there exists a control for the 

evader other than (5:6) or (5:Z) which maximizes the criterion. 

It is also enlightening to determine the pursuer 1s optimal control 

if the evader employs an open-loop strategy. An analysis similar to the 

one above finds that the pursuer 1s strategy should be given by either 

(5:1) or (5:5); the conjugate point condition is that [ 1z + M (tf, t)r1 
fails 

a p 
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to be finite. However, since Mp(tf, t) is positive semi-definite, the 

conjugate point condition can never be satisfied. Consequently, the 
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evader can always replace his feedback strategy (5:2) with the open

loop strategy (5:6) and still guarantee that under no conditions wi ll the 

value of the criterion be less than that given by (2:88). 

This difference in the ability of the two players to employ open

loop control is certainly intuitively reasonable. Since he is merely 

trying to get away, the evader - - after an initial look at tl.e pursuer's 

location - - can simply run away blindly; the evader can always calculate 

where the pursuer should optimally be, and that the pursuer can get no 

closer . The pursuer, however, since he is attempting to catch a parti

cular moving tar , t cannot (always) close his eyes for fear the evader 

may try a tricky "non-optimal" maneuver, like running around behind 

him . 

This point can best be demonstrated with an example. Consider a 

particular pursuit-evasion problem in two-dimensional euclidean space. 

This is the Classical Interception Problem which is the subject of 

Chapter 7. 

x = F x + G u(t) 
p pp p 

X (t ) = X 
p o po 

(5:25) 

x = F x + G v(t) e e e e X (t ) = X e o eo 
(5:26) 

where 

(5:27) 

-

' \ 

•. 

~ 
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(5:28) 

The control weighting terms in the criterion are assumed of the form 

R = r 12 , 
p p 

R = r 12 e e 

The pursuer 1s state vector is given by 

xlp 

Xzp 
X = p 

x3p 

X4p 

(5:29) 

(5:30) 

(5:31) 

where the scalars x 1p and xzp represent the pursuer 1s position in the 

two euclidean dimensions and x
3 

and x4 the pursuer's corresponding . p p 

velocities. A similar vector defines the evader's state . 

The transition matrices corresponding to F and F are given p e 

by 

[ 

12 ! (tf - t)I2~ 
• (t t) =. (t t) = ----!---------p p e p I 

0 l 12 I 

and thus the control matrices for the reduced problem are 

(5:32) 

(5:33) 

The state vector for the reduced problem is two-dimensional and 

given by 

- --'----------------

-~-- - - - .....,._ ... -··--·- ·· 
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(5:34) 

and the state equation is 

y(t) = G (t)u(t) - G (t)v(t) 
p e y(t ) = y 

0 0 
(5:35) 

The initial conditions for this problem are taken to be 

X (t ) 0 = p 0 
(5:36) 

UJ X (t ) = e o (5:37) 

Thus in the two-dimensional euclidean space, the initial configuration 

of the two players is as shown in Figure 5-1 with no initial velocities. 

Using (5:34) these initial conditions can be transformed into initial con

ditions for the reduced problem. 

(5:38) 

which are displayed in Figure 5-2.. Note that y 1 represents the predicted 

terminal distance between the players in the first euclidean dimension, x 1, 

and y2 the same in the second euclidean dimension, x2 . 

In the reduced space of Figure 5-2, the pursuer's aim is to bring 

y(tf) close to the origin, while the evader attempts to move y(tf) away 

from the origin. 

From Figure 5-2, it can be seen that the evader should employ no 

control in the Yz (x2) direction and positive control (note the negative sign 

which preceeds Ge in (5:35)) in the y 1 (x1) direction in order to take y(t) 

in the negative direction along the y 1 axis. 

-----------· .. 

I ' 

. , 
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However, suppose that the pursuer employs the open-loop control 

of (5:5) . For the particular problem considered here, this time function 

is given by (see Section 7. 1) 

2 [ ] 
3a re (tf - t) b 

u(t) = 2 3 
3r r + a (r - r )(tf - t ) 0 p e e p o 

Integrating G (t)u(t) with respect to time from t to tf gives p 0 

-1 
M (tf, t )K (tf, t )y = p O O 0 

___ a_z_r_e_(t_f_-_t_o)_3 ___ [bo] 
3r r + a 

2
(r - r )(tf - t ) 

3 
p e e p o 

Using this in (5:19), y 1(t ) is found to be 
0 

( 

a
2

r (tf-t )
3 

) 
Y '(t ) = -1 + e o 

0 3 r r + a 
2 

( r - r ) ftf - t ) 3 
p e e p o 

[:] 

( 5:39) 

(5:40) 

(5:41) 

The possible locations in y space of y 1(t ) are shown in Figure 5-3. Note 
0 

that if in ( 5:41) 

2 3 
a r (tf - t ) e o 

2 3 
3r r + a (r - r )(tf - t ) p e e p o 

> 1 

which can be simplified to 

then y 1(t
0

) will be located on the positive y 1 axis, as is indicated in 

Figure 5-3b. 

(5:42) 

( 5:43) 

However, if (5:43) is satisfied, it can be seen from Figure 5-3b that 

the evader should employ negative control (again recall the minus sign 

I . 

! I 
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which preceeds Ge) so as to move in the positive y 1 direction. In 

the y-plane the evader desires to get the point y as far away from the 

origin as possible, and thus if y begins on the positive side, he cer

tainly will want to move y in the positive direction. 

In the x (euclidean) space this pair of controls will result in the 

trajectories indicated in Figure 5-4. The paths of the two players will 

cross, but the terminal separation will be larger than if the evader 

(using the same energy) moved in a positive x
1 

direction. 

Condition (5:43) does represent the conjugate point condition found 

above. Simple integration gives 

( 5:44) 

(tf - t*) 1 

31· = 2 
e a 

( 5:45) 

which will occur if (5:43) is satisfied. 

In summary then, for the deterministic game initial data is suffi

cient for the evader to determine an optimal strategy, i.e. for the evader 

an open-loop strategy is always optimal. However, the pursuer must 

check to see if [ 1z, - M (tf, t)r l always exists before he uses an open-
a e 

loop control. If G (t)R-
1

(t)GT(t) is always non-singular, this one-sided 
e e e 

conjugate point condition will occur if the time duration of the game is 

made long enough. 

If the objective is escape, the optimal strategy is much simpler 

than it is if the goal is capture. 
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5. 2 The Pursuer with Noisy Measurements 

The problem considered in this section is one where the evader 

has perfect information while the pursuer makes noisy measurements 

of the state y(t) of the form 

z(t) = H(t)y(t) + w(t) (5:46) 

where w(t) is Gaussian white noise with zero mean and variance Q(t). 

This is the analog of the problem solved in Chapter 2, with the quality 

of the information available to the two players reversed. Because of 

the similar nature of this problem to the one of Chapter 2, the details 

of the solution are not given. Rather this section summarizes the re

sults of an analy8is which is identical in form to that of Chapter 2. 

One might expect the results here to be very similar to those 

obtained in Chapters 2, 3 and 4 for the game where the evader is making 

the noisy measurements. However, the precedent of Section 5. 1 would 

also indicate that the results would not be identical. In particular, one 

would certainly expect some difficulty when the noise variance, Q, ap

proaches infinity; then the pursuer would be effectively employing an 

open-loop strategy - - one which the previous section indicates has certain 

fallacies. 

Again the game equation is given by 

y = G (t)u(t) · G (t)v(t) 
p e 

y(t ) = y 
0 0 

{5:4 7) 

and the criterion by 

II v(t) II i ]dt} ( 5:48) 
e 

____ ,_.......,__,...,,,......,,_ __ , ·-- _ ......... --.. -------··----

t---------------- -..;._-'-- - ·---------- ---:-:-;--:----- - - ·--·~ 



The pursuer 1s and the evader 1s optimal strategies are 

u0
: u 0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) 

p p 

V0
: v0 (t) = -R- 1(t)GT(t)K-l(tf,t)y(t) - R- 1(t)GT(t)r.

2
(t)y(t) 

e e e e 

5-16 

(5:49) 

(5:50) 

where y(t) is the pursuer's estimate of the state, and y(t) is the error of 

this estimate. The pursuer 1s estimate is obtained from the Kalman-Bucy 

filter which is given by 

y(t
0

) = y 
O 

(5:51) 

K-1(tf, t) has the same definition as always, while the other two 

parameters, r 2(t) and P(t), are derived from the two-point boundary

value problem consisting of two coupled Riccati equations which are 

similar, but not identical, to the ones obtained in Chapter 2. 

r 2(tf) = o (5:52) 

P = G R-lGT(K-l + r )P + P(K-l + r )G R-IGT 
ee e 2 2 ee e 

P(t ) = P . 
0 0 

(5:53) 
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The equation which gives the optimized value of the criterion is 

the same as for the previous problem 

tf 

J = Tr{½K-
1

(tf, t
0

)Y(t
0

) + ~ r 2(t
0

)P(t
0

) + ½ ~ PHTQ- 1HPr 2dt} 

0 

(5:54) 

But it should be noted from (5:52) that r 2 is positive-definite for this 

problem. Thus the second and third terms in the criterion (5:54) are 

positive indicating a decrease in the pursuer's (he is the minimizing 

player) capabilities with respect to the deterministic problem. 

The optimized game equation and the estimation equation can be 

written in the form of a 2k-dimensional vector differential equation. 

[ ;] = 

r -1 T -1 , 
+G R G (K +r): e e e 2 , 

I 
I ------------------~- -------•·--------------... -----------

(5:55) 

The optimized game equation can also be written coupled to a differential 

equation which gives y(t), the error of the p1.!rsuer 1s estimate. 

-(G R-lGT -G R-lGT)K-l: (G R-lGTK-l +G R-laTr) 
pp pee e I pp p ee eZ 

I 

------------------------~---------------------------• 

y 

[t] = 
: G R-lGT(K-l +r )-PHTQ-lH y 
I e e e 2 0 

(5:56) 

' _,__..,.,.,....~------·-•--------, .. 
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Y(t) is obtz.i;:~d from 

Y(t ) = Y 
0 0 

( 5: 5 7) 

The three conditions which together are necessary and sufficient for the 

evader to be able to calculate y(t) and actually realize his optimal strategy 

as ~ven by (5:50) are: 

i. The number of the pursuer's control variables (i.e. the 

dimension of u{t)) must be equal to or greater than the number of 

"interesting" state variables (i.e. the dimension of y{t) ). 

ii. The inverR~ of G (t)R -l (t)G T (t) must exist for all values of t < tf . 
p p p 

iii. The inverse of L(t) must exist for all values oft < tf. 

Here, L(t) is defined as 

L(t) t [G (t)R- 1(t)GT(t)K- 1{tf,t) + G (t)R- 1(t)GT(t)rz(t)). {5:58) 
p p p e e e 

The condition required for the certainty-equivalence principle to 

hold when proving the pursuer 1s optimality {the proof corresponding to 

the one of Section 3. 3) is that 

{ 5:59) 

which can be reduced to 

( 5:60) 

- -----
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Again the stochastic conjugate point occurs when r 2(t) fails to be 

finite. And, as before, for a solution to exist r 2(t) must be finite 

because of the finite initial condition in ( 5:53). 

5. 3 The Asymmetry of the Two Stochastic Gam,~s 

As can be seen by comparing the results summarized in Section 3. 2 

for the stochastic game when the pursuer has noisy measurements with 

the results of Chapters 2, 3 and 4, the descriptions of the two solutions 

are similar but not identically symmetrical. This section analyzes these 

differences. In order to differentiate between the analogous parameters 

for the two different problems, the subscript e is used to denote the 

parameters resulting from the problem in which the evader makes noisy 

measurements; the subscript p indicates parameters for the pursuer

with-noisy-measurements problem. 

Consequently, the r 2 and P parameters which describe the problem 

for the evader with noisy measurements are given by 

r ze(tf) = 0 ( 5:61) 

P = -G R - l GT (K - l + r )P - P (K - l + r )G R - l GT 
e p p p Ze e e Ze p p p 

p (t ) = p 
e o eo 

(5:62) 

----- - ---·-·---- ___ ., ___________ ------------
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while the samt• parameters for the pursuer-with-noisy-measurements 

problem are calculated from 

p (t ) = p 
p o po 

The differential equation for r Zp is much more pro11e towards 

instability than the equation which defines r Ze. This can be seen by 

writing 

ll -1 . r 3P(t) - I( (tf' t) + r zp<t) 

(5:63) 

( 5:64) 

(5:65) 

(5:66) 

and then writing the differential equations for these new parameters. 

(5:67) 

z r lp(tf) = a I 

(5:68) 

l 
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In (5:67) the quadratic term is positive-definite, while in (5:68) 

it is negative-definite. Thui., when integrating (5:67) backwards in time, 

the quadratic term will have a stabilizing effect as long as the eigen

values of r Je remain positive (i.e. as long as the driving term does 

not force one of the eigenvalues below zero). However, in (5:68) the 

quadratic term is destabilizing, for r Jp is positive-definite and thus 

when integrating backwards in time the quadratic term will drive the 

eigenvalues of r Jp even larger . 

Consideration of the scalar case permits one to be even more 

specific. In this case, again when viewing time as progressing back

wards, (5:67) is stable; the terminal value is positive, the quadratic 

term negative (thus stabilizing) while the driving term is positive 

ensuring that r Je does not become negative. However, (5:68) is un

stable . Here the terminal condition is again positive but the quadratic 

term is also positive and thus destabilizing; the driving term is also 

positive contributing to the instability. In fact, if G R-lGT is non··zero · 
e e e 

for the entire duration of the game, and if the game interval is made 

long enough, then r Jp will fail to be finite. 

If Q is allowed to approach infinity, r Ze and r Zp become 

I -1 -1 r 2e(t) = [ az + Mp(tf, t)] - K (tf, t) (5:69) 

as was shown in Section 4. 2, and 

r I -1 -1 r zp(t) = L z - Me (tf, t)] - K (tf, t) 
a 

(5:70) 

respectively. Using (5:65) and (5:66), these easily give the values of r 3e 

and r Jp' 

----- - --- -------··· 
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( 5:71) 

( 5:72) 

These latter matrices are exactly the ones for determining the open-loop 

conjugate point condition ior the deterministic game. And since K-l is 

implicitly assumed to be finite, (5:69) and (5:70) can also play the same 

roles. 

This is intuitively sensible . For the game with the evader making 

noisy measurements, as Q approaches infinity the evader 1s strategy 

approaches an open-loop one. Thus as Q approaches infinity the extra 

stochastic conjugate point condition (which is determined by optimizing 

the pursuer 1s control against a fixed evader 1s strategy) should approach 

the conjugate point condition obtained for the deterministic game when the 

evader operates strictly open-loop (and where the conjugate point is deter

mined by optimizing for the pursuer against this fixed strategy). For 

the case where the pursuer makes noisy measurements, the opposite 

should hold true. 

(5:71) and (5:72) add further insight to the question of stabilit,r for 

equations (5:61) and (5:63). Note that (5:69) will always remain finite, 

indicating that (5:61) is certainly stable for Q infinite. However, (5:70) 

will fail to exist if G R-lGT is non-zero (it is always positive-semi-definite) 
e e e 

during the entire game, and if the duration of the game is made long 

enough. Thus as Q approaches infinity, (5:63) certainly will become 

unstable. 

- ----,...,...- - --·-------·--.. -. ------------------------
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The graphic description of this phenomenon on the time axis is 

perhaps worth the proverbial thousand words. From Figure 5-5 it can 

be seen exactly where valid s olutions can be found. Observe that the 

stability-instability property does not effect the existence of a solution, 

though it does effect the ease with which solutions can be determined; 

the examples of Chapter 7 illuminate this point better than further dis-

cussion. 

One more point needs to be discussed in light of the asymmetry 

of the two problems . For each game there was found to be a matrix, L(t), 

which was required to be non- singular if the player with perfect informa

tion was to be able to implement his optimal strategy. For the game with 

the pursuer with noisy measurements, and for the one with the evader 

with noisy measurements these are given by 

L (t) = G {t)R- 1(t)GT(t)rz (t) + G (t)R- 1(t)GT(t)K-1(tf,t) (5:73) 
e pp p e e e e 

L {t) = G (t)R- 1(t)GT(t)K- 1(tf,t) + G (t)R- 1(t)GT(t)r2 (t) (5:74) 
p pp p e e e p 

re spec ti vely. 

Again it is difficult to state anything that is both exact and universal 

about the singularity of these two matrices. However, recall that r le is 

negative-definite while r Zp is positive-definite. Thus while L is the 
e 

difference of two matrices which are each products of two positive

definite matrices, L is the sum of two matrices which are also each 
p -

products of two positive-definite matrices. Certainly then for the scalar 

case, L will always be positive, while L could become zero. 
p e 

- . --·•-"'1 . 
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CHAPTER SIX 

INSIGHTS AND GENERALIZATIONS 

6. 1 Non Zero-Sum Properties of the Game 

The outcome (actual payoff), <A, , for the stochastic pursuit-evasion 

game studied in Chapter 2 is calculated at the conclusion of the play of 

the game by 

tf 

a
2 

2 1 s. 2 i = T lly(tf) II + z [ llu(t) II R (t) 
t p 

0 

2 II v(t) II R (t))dt 
e 

(6 :1) 

This payoff can be viewed as the amount of dollars the pursuer gives the 

evader at the end of the game. In this sense the game is zero-sum; the 

actual payoff, once the game is completed, is a single number determined 

by (6:1 ). 

The value of~ is dependent on ~he actual control sequences u(t) and 

v(t), t
0 
~ t ~ tf, employed during the game. In general, however, the 

strategies U and V do not fix the values of these control sequences before 

that game begins, but rather assign values to them for every possible 

stat,e of the game (i.e. for every possible spatial configuration of the two 

players) which is of course dependent on the realization of the white noise 

w(t). For the p1·oblem under consideration, then, the state cannot be pre

dicted, for w(t) which corrupts the evader 1s measurements effects the 

state on which both player 1s control functions depend. Thus the numerical 

value of~ which is realized at the end of the game is a function of: the 

initial state y(t
0

); the evader 1s initial estimate of the state, y 0; the two 

strategies employed, U and V; and the actual value of the noise sequence, 

w(t), t
0 
~ t ~ tf. 

n_.__., ·----
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(6:2) 

Before the game starts and even during the play of the game, the outcome, 

i, cannot be precisely determined. 

For the particular pursuit-evasion game considered the two players 

have different information sets from which they can evaluate the state of 

the game. At time t, the pursuer knows the value of the state vector, y(t), 

while the evader has only the initial estimate y and the measurement of 
0 

the state, z(T), t ~ T ~ t. From this -- if the evader desires -- he can 
0 

construct an estimate of the state, 

y(t) i E[y(t)/y , z(T) :t ~ T ~ t] 
0 0 

(6:3) 

A problem immediately arises: since the two players have different 

information sets, they will each assess the value of the payoff, '1-, differ

ently. In particular at time t during the play of the game, the pursuer 

will expect the value of the outcome to be 

(6:4) 

while the evader expects it to be 

J (t, u, V) = E[a/y 'z(T):t ~ T ~ t] e 1' o o 
(6:5) 

The pursuer 1s expectation is over the noise sequence w(T), t ~ 7 ~ tf, 

and is concerned with how it will effect the final value of the criterion 

through the evader's strategy. The evader's expectation is not only con

cerned with this noise sequence, but also with his assessment of the 

state y(T), t
0 
~ T ~ t. 

Both players will probably be wrong. The actual outcome, g., can 

only be determined after the game is completed; in fact, no one can deter

mine i's value until he is given the noise sequence w(t), t
0 
~ t ~ tf. JP 
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and J e do represent, however, the pursuer's an!i evader's best estimate 

of ~. And what is important is that for the same strategy pair (U, V), 

J and J will in general not be equal. 
p e 

Since at any time t for every strategy pair, (U, V), the two players 

will as sign different values to the criterion, it appears that it will be 

necessary to solve a non zero-sum game. For if the pursuer knows that 

the evader 1s optimal strategy is v0
, then before the game begins he will 

0 look for a strategy U such that 

J (t u0 V0
) ~ J (t U V0

) 
p o' ' p o' ' 

(6:6a) 

Convo rsely, the evader attempts to find a V0 such that 

J (t U0 V) ~ J (t u0 V0
) 

e o' ' e o' ' 
(6:6b) 

Thus if the strategy pair (U0
, V 0

) can be found which satisfies (6:6) then a 

solution has been obtained. The evader is satisfied since he has maximized 

his assessment of the criterion against u0
; the pursuer is also satisfied 

since he has minimized his assessment of the criterion against v0
• Thus 

u0 and v0 are in equilibrium on the basis of the two players I assessments 

of the payoff. 

This is exactly the approach indicated in Section 1. 1 as the appro

priate one for solving non zero-sum games; equilibrium strategies which 

satisfy (1 :5) provide the solution. However, this extra complexity .;._ besides 

being mentioned in Section 2.. 1 - - was not considered in detail in Chapter 2. 

when detel'mining the "solution; " the distinction was ignored thus implicitly 

assuming that the solution was of the zero-sum form. It is the purpose of 

the first few sections of this chapter to point out that the ans~ers given in 

Chapter Z do in fact provide the solution to the non zero-sum game defined 

by (6:6). 

------------------------------·~-·-··-----;--------

; 
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It is important to note that this does not mean the game itself is 

non zero-sum. In the end the value of <A- as determined by (6:1) will 

be the same for both players, and the objectives of the players with 

respect to !hi! payoff are completely in competition. However, because 

of the different information sets, the two players assess the end objec

tive differently and thus the problem rr~ust really be solved from a non 

zero-sum viewpoint. 

An analogous matrix game would be one in which the two players 

did not have perfect knowledge of the (monetary) value of the elements 

of a zero-sum payoff matrix. If they each thought the elements were 

different, they would attempt to do different things, though once their 

strategies had been declared and the actual values of the payoff elements 

revealed, any transfer of money would certainly be zero-sum. Unfor

tunately, this particular type of matrix game is not discussed in the 

literature. 

The assessments of the criterion by the two opposing players are 

different only during the actual play of the game; before the game begins, 

the information aets - - identical for both players - - are the values of the 

system parameters and the nature of the different data that will be avail

able during the game. The pursuer (and the evader) know that at the 

beginning of the game, the pursuer will be informed of the value of y(t ); 
0 

but when determining his strategy the pursuer must design it in such a 

general way as to accommodate a r~y value of y(t ) . Consequently, it shall 
0 

be assumed that before the game begins, J is calculated on the basis of 

(a) the system parameters, (b) two variables which specify in a probabilistic 

- - ·-- .. - --- .. - · - -· ··-··- --·---
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way th~ initial status of the game, Y(t ) and P(t ), where 
0 0 

Y(t) ~ E[y(t)yT(t)] (6:7) 

P(t) ~ E[y(t)yT (t)] (6:8) 

and (c) the knowledge of the two different information sets which will be 

employed during the game. 

The game may still not be zero-sum in the sense that the two 

opponents assign different values to Y(t ) and P(t ). It has previously 
0 0 

been assumed that the pursuer is aware of his opponent's system para-

meters, F (t) and G (t). A second, equally plausible assumption is that 
e e 

the pursuer is also aware of the quality of th.e evader 1s information, i.e. 

the pursuer knows P(t ) and Q(t). A critic may question the validity of 
0 

this assumption for a particular problem, but not the answer derived 

from it. 

Thus, before the game begins the expected value of the criterion 

for both players will be a function of the strategies, U and V, and the 

initial status of the game Y(t ) and P{t ), as given by 
· 0 0 

Jb ~ E[J/Y(t
0

), P(t
0

)] (6:9) 

The functional dependence of J is given by 

(6:10) 

On the basis of this new evaluation of the criterion then, a solution is a 

pair of strategies u0 
and v0 

su.:h that the following saddle-point condition 

is satisfied. 

(6:11) 

' .. ~,.., 
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Leaving the discussion of these non zero-sum properties of the 

stochastic pursuit-evash."'n game to this late chapter is justified because 

(a) it would have needlessly confused the presentation of Chapter 2, and 

(b) because the solution obtained there does indeed solve both the non 

zero-sum gam defined by (6:6) and the zero-sum game defined by (6:11 ). 

These solution& are repeated here. 

u0
: u0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) - R- 1(t)GT(t)r

2
(t)y(t) (6:12) 

p p p p 

v0
: v0 (t) = -R~1(t)G;°(t)K-

1
(tf, t)y(t) (6:13) 

Consider first the non zero-sum game of (6:6). In Section 2. 3, it 

was demonstrated that the feedback strategy (6:12) indeed minimized the 

criterion against the evader 1s optimal strategy (6:13). The assessment 

of the value of the criterion which was used here was based on the pursuer's 

information set, i.e. the minimization was performed with respect to J . p 

Consequently, in Section 2. 3 it was proven that (U 0
, V0

) satisfies (6:6a). 

In Section 2. 4, the evader 1s feedback strategy which maximized the 

criterion against the pursuer's strategy (6:12), was shown to be (6:13). 

Here the criterion was evaluated on the basis of the evader's information 

set; the maximization was performed with respect J . Thus in Section 
e 

2. 4, it was shown that (U0
, v0

) satisfies (6:6b). 

Consequently, the results of Chapter 2 do provide a solution to the 

non zero-sum game defined by (6. 6) . This is true despite the fact that 

this aspect of the problem was not explicitly considered there. 

Before the beginning of the game, the pursuer's evaluation of~ is 

Jb. However, as soon as the pursuer is given the initial vdue of the state 

. -- -- · _ . .,, ________ _ 

' 
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y(t ), his evaluation changes to J . There is a discontinuity in the 
0 p 

pursuer's assessment of~ at time t
0

• 

No such discontinuity occurs for the evader 1s assessment. When 

(U
0

, V
0

) is employed, the value he assigns to the criterion is dependent 

only upon Y(t ) and P{t ). The value of y(t ) does influence his control 
0 0 0 

v(t ), but not his assessment of the criterion. Consequently, 
0 

J (t u0 v0
) = J (U

0 
V

0
) (6:14) 

e o' ' b ' 

By proving in Section 2. 4 that (6:6b) is satisfied, it was shown that the 

left-hand inequality of (6 :11) is also satisfied. 

To the pursuer, Jb{U, V) is the expected value of J {t, U, V) where p 0 

the expectation is taken over the possible values of y{t
0

) and y(t
0

). Thus, 

since (6:6a) is true for all values of y(t ) and y(t ), then the right-hand 
0 0 

inequality of (6:11) must also be satisfied. 

Thus the results of Chapter 2 do really provide the solution to the 

stochastic pursuit-evasion game as defined by both (6:6) and {6:11 ). 

6. 2 The Criterion Reconsidered 

Since, as it was pointed out in Section 6. 1, the pursuer and the 

evader assign different values to the criterion, it is important to discover 

which assessment was considered in Section 2. 5. Here the optimized 

value of the criterion is given by 

(6:15) 

' . . 
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This evaluation is based on the two variables, Y(t ) and P(t ), which 
0 0 

describe probabilistically the initial status of the game. Consequently, 

(6:15) gives Jb and it is so denoted. 

Certainly then J (t ) is also given by (6:15), see (6:14). In fact e o 

the analysis which produced (6:15) could be carried out for any time t. 

The point is that the evader 1s assessment of the criterion at t is inde
o 

pendent of the value of y ; it is based solely on the two variables Y(t ) 
0 0 

and P(t
0

), which describe probabilistically the initial status of the game. 

Thus the generalization of (6:15) for any time gives the evader's evaluation 

of the c rite rion 

o o 1 -1 1 r 
J e (t, u 'V ) = Tr[ 2 K (tf, t)Y(t) + 2 2<t)P(t) 

(6:16) 

Observe that for values oft other than t , the criterion evaluation (6:16) 
0 

ignores the integral Jf the quadratic control terms from t to t; this part 
0 

of the total criterion has already been determined and is thus of little 

significance to either player. 

To determine the pursuer 1s assessment of the criterion during the 

game or once given the initial conditions y(t ) and y(t ), consider the 
0 0 

form of the criterion given in Section 2. 3, i.e. see (2:50). Using the 

pursuer's optimal control law as given by (2:56), (2:60), (2:61) and (2:62) 

u(t) = -R-1(t)GT(t)K- 1(tf,t)y(t) - R- 1(t)GT(t)r2(t)11(t) 
p p p p 

(6:1 7) 

I ' 

I I 

----·------------· ... 
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this expression for the criterion becomes 

where 

(6:18) 

M(t) i E[y(t)r, T (t)/y(t ), 17(t )] , 
0 0 (6:19) 

(6:Z0) 

Using (6:1 7) in (Z:49) gives a new system equation 

[:]= 

-(G a·lGT - G R-lGT)K-l : -(G R-lGTr. + G a·lGTK-l 
PPP ee e : pppZ ee e 

I 
I 

-----------------------J---------------------~-----1 

0 

I 

0 : -G R-lGT(r. +K- 1)-PHTQ-lH 
: p p p z 

y(t ) 
0 

+ -------- w = (6:Zl) 

r,(t ) 
0 

~ 

from which the equation which determines Y(t), M(t), and N(t) is derived . 

y 

YI 

. - .. ,. -~ 

L-- -------- - ----·---------- - -------- ···-•·•• 
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I 

= -----------------------r---------------------------
0 

-K- 1(G R-lGT - G R-lGT): O 
PPP ee e, 

I 

X ---••••••••••••••••-•••-~----------------------~----
I 

-r. G R-lGT -K-lG R-lGT !-(r +K- 1)G R-lGT -HT0- 1HP 
2ppp ee e: 2 PPP 

[

Y(t) : M(t )] [ l[ T, ~Tl ____ ".__+ ___ ".__ = -~~ Y0 I Y0 

MT (t ) l N(t ) y 
• 0 I O 0 

(6:22) 

From that part of (6:22) which determines Y(t), the following iden

tically zero integral can be written. 

tf 

0 = s. K- 1{Y + (G R-lGT - G R-lGT)K-lY + YK- 1(G R-lGT - G R-lGT) 
t pp pee e pp pee e 

0 

(6:23) 

- ··---·- ,- - -------



Integrating by parts results in 

tf 

0 = a
2
Y(t) - K- 1(t t )Y(t) + s. [K- 1YK-l(G R-lGT - G R-lGT) 

f f' o o t p p p e e e 
0 

(6:24) 

Again from (6:22), this time from that part which determines N(t), another 

identically zero integral is constructed. 

tf 

o = l r 2 { N + [ a R - i a T ( r 
2 

+ K- 1 ) + PH Ta - 1 H]N 
t p p p 

0 

+ N[(r + K- 1)G R-lGT + HTQ- 1HP) + PHTQ-lHP}dt z p p p 

which, upon integrating by parts, becomes 

tf 

(6:25) 

0 = -rz(t )N(t) + s. [-K- 1G R·laTrzN - HTQ- 1HPrzN 
0 0 t p p p 

0 

(6:26) 

Taking the trace of (6:24) and of (6:26) and adding, the expression 

for the criterion, (6:18), reduces to 

.. ... . - .. . -·----.. ·- -. ·- - --· 
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Using the initial conditions from (6:ZZ) and generalizing to any time 

t, the pursuer 1s evaluation of the optimized criterion can be written as 

( 6 :ZS) 

In a sense then, a generalization of (Z:88) 

tf 

J = Tr[~K-
1
(tf,t)Y(t) + ~r2,(t)P(t) + ½ ~ PHTQ-lHPr2dt] (6:Z9) 

can be used to evaluate the criterion from all points of view. The evader 

merely in• erts his values of Y(t) and P(t) to make his calculation. The 

pursuer does the same if the game has not yet begun; once the game is 

in progress however, he employs 

T Y(t) = y(t)y (t) 

~ ,Jf P(t) = y(t)y (t) 

(6:30) 

(6:31) 

which are -- on the basis of the pursuer 1s information set -- the correct 

value• of these expectations. 

6. 3 The Irrelevance of Unigueneas 

It waa ahown in Section 6. 1, that the atrategies U0 aa given by 

(6:12) and v0 aa given by (6:13) provide a solution to the stochastic pursuit

evaaion game. They satisfy the saddle-point condition before the game 

(6:11) 

·--· .. ,.,._._...... - --# --
'• 
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and they satisfy the equilibrium condition during the actual play of the 

game, 

J (t Uo v 0
) ~ J (t U V0

) 
p ' ' p ' ' 

(6:6a) 

J 1t U0 V) ~ J (t u0 V0
) 

F.:' ' ' e ' , 
(6:6b) 

However, is this solution unique? 

In particular, there might exist a pair of non-linear strategies, U* 

and V•'F-, that provide a solution. In Section 2. 3 all possible strategies 

for the pursuer - - both linear and non-linear - - were checked against 

v0
, and it was determined that there was no strategy, including a non

linear one, that was better than u0
• In Section 2. 4, all the evader's 

possible strategies -- again both linear and non-linear -- were checked 

against U0 and it was also determined that there existed no strategy, 

not even a non-linear one, which was better than v0
• However, it was 

never determined that there was no pair of both non-linear strategies that 

satisfied the equilibrium conditions. 

The question of uniqueness is not merely a mathematical nicety, 

but of fundamental importance. In control theory, any solution to a 

minimization problem is suitable as long as it provides the true minimum; 

tht: control theorist is completely happy with just one solution and cares 

little whether there are none or a hundred other solutions. In game theory, 

however, it is important to discover all the solutions or at least to charac

terize them all. 

Consider what would happen if player one found the equilibrium 

solution (U0
, V0

), while his opponent by an entirely different thought process 

L---------- ~~-----------·---·------·-- --·- -- .. - - -·---· 

I· 

-



' ) 

I 
I 

I 

. I 

6-14 

obtained the equilibrium solution (U*, V*· ). What would happen if the 

strategy pair (U
0

, V*) was played? Unless player one is convinced his 

solution is unique, he will have to worry about his opponent discovering 

a solution he did not even dream of. It is consequently important to 

either prove uniqueness, or determine some relationship between all 

the possible equilibrium points. 

Suppose that there does exist a pair of non-linear strategies, U* 

and V*, that satisfy the saddle-point condition 

(6:32) 

Then, from the left side of (6:32) and since all strategy pairs are playable 

(6:33) 

Aleo, inserting U* into the right - hand inequality of ( 6: 11 ) gives 

(6:34) 

From (6:33) and (6:34) 

(6:35) 

Again, inserting u0 into the right-hand side of (6:3Z) and V* into the 

left-hand side of (6:11) gives 

(6:36) 

(6:37) 

From these last two inequalities 

(6:38) 

_ __,.,.._ .. _____ _ 

I 
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On the basis of (6:35) and (6:38) it can be concluded that if there 

does exist a pair of non-linear strategies which produce a saddle-point 

(as in (6:32) above) the value of the criterion evaluated before the game 

begins at that saddle-point must be identical to the value obtained with 

the pair of linear strategies, u0 and v0
. 

(6:39) 

0 0 0 In fact there will then be four saddle-points located at (U , V ), (U , y,lc), 

(U*, V0
), and (U*, V*) with the value of the criterion the same for all 

four combinations of strategies. 

(6:40) 

(6:41) 

The conclusion of all this is the well-known result of equivalence 

and interchangeability for zero-sum games. See Luce and Raiffa (1). If 

two saddle-points exist their values are equivalent, and the strategies 

which give these saddle-points can be played interchangeably with still 

the same value of the criterion, as long as such combinations of strategies 

are admissible pairs. 

(6:42) 

Consequently, the que.stion of uniqueness is irrelevant. 

Unfortunately, there is no analogous procedure for non zero-sum 

games. Thus for this pursuit-evasion problem there is no general method 

to ascertain the nature of a pair of non-linear strategies. Asswne, 

--··--........ , ... ~--···· -. 
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however, that the non-linear strategy pair {U*, V*) which satisfied (6:32) 

also satisfies the equilibrium condition at time t . 
0 

J {t U• V*) ~ J {t U V*) {6:43a) 
p o' ' p o' ' 

The question is how do the values J {t , U*, V*) and J {t, U*, V*) relate to p o e o 
0 0 0 0 J {t , U , V ) and J {t , U , V ) . p o e o 

First recall that at time t , the evader 1s evaluation of the criterion 
0 

is not discontinuous 

{ 6 :44) 

Thus from (6:42) and {6:44), it can be seen that 

J (t ,U*,V*)=J (t ,u0 ,V*)=J {t ,U*,V0 )=J (t ,u0 ,v0
) e o e o e o e o 

{6:45) 

Consequently, the evader is not worried that the pursuer may find a 

different (non-linear) strategy pair than he does, and thus employ U*. 

His expected value of the payoff does not change. 

Also recall that the initial time t has no special characteristics 
0 

to differentiate from the other values oft during the game. At any time 

t•, the game can be temporarily halted, and the continuation of the game 

can be defined as an entirely new game. Thus the time t 1, at which the 

original game was stopped, becomes t for the newly defined game. Con-o 

sequently, (6:45) can be generalized for all t. 

Now consider the difficulty from the pursuer 1s point of view. Again 

assume that there exists a non-linear strategy pair (U*, V*) which satisfies 

... r -
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both (6:32) and (6:43) . The pursuer 1s first point of inquiry is whether 

his strategy U0 is minimizing against V*, i.e. is the inequality 

J (t u0 V*) ~ J (t U V''I-) 
p o' ' p o' ' 

( 6 :46) 

true? This is the primary question for the pursuer must be reassured 

that his strategy U0 is in equilibrium against a possible non-linear stra

tegy that he has not discovered. After being so reassured, the pursuer 

would like to determine the relationship between the value of J (t , u0
, V*) p 0 

0 0 
and the value of J (t , U , V ) . p 0 

Recall that Jb(U, V) is merely the expected value of J (t , U, V) where p 0 

the expectation is taken over the possible values of the initial state y(t ). 
0 

Thus the proper functional dependence of J is 
p 

J = J (t, u, v, y(t)) p p ( 6 :4 7) 

Since from the original assumption of (6:43a) U* minimizes J against V*, 
p 

the inequality (6:46) can be established if it can be shown that 

J (t , u0
, V*,y(t )) = J (t , U*, V*,y(t )) p O O ' p O 0 

Consider the set A consisting of values of y(t ) such that 
0 

J (t , u0
, V*, y(t )) < J (t , U*, V*, y(t )) p O O p O 0 

and the complementary set B consisting of values of y(t ) such that 
0 

J (t , u0
, V•, y(t )) ~ J (t , U*, V*, y(t )) p O O p O 0 

(6:48) 

(6:49) 

(6:50) 

Then define the strategy U I which is equal to U
0 

when y(t ) is in A, and is 
0 

equal to U* when y(t ) is in B. Thus 
0 

J (t ,U',V*,y(t ))<J (t ,U*,V*,y(t )) p O O p O 0 

. . ....... ___ -· _,,., ___ _ 

(6:51) 
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Then taking the expectation of (6:51) over the possible initial state y(t ) 
0 

gives 

(6:52) 

Since this contradicts the original assumption that u•:c minimizes Jb 

against V7'/I. (see the right-hand inequality of (6:32)) the conclusion is that 

the set A must be of measure zero. 

Now consider two complementary subsets of B: the set C consisting 

of those values of y{t ) such that 
0 

0 
J (t , U , ~,y(t )) = J {t , U*, V*,y{t )) p O O p O 0 

and the set D which consists of those values of y{t ) such that 
0 

J (t , u0
, V7'/I., y(t )) > J {t , U*, V*, y(t )) 

po o po . o 

(6 :48) 

(6:53) 

Now taking the expectation over all possible values of y(t ) in B gives 
0 

{6:54) 

This violates the result given in (6:42), unless D is also of measure zero. 

Consequently, (6:48) is satisfied for all values of y(t ) except for a set of 
0 

measure zero, and thus (6:46) is satisfied as well. 

By the same general method it can be shown that 

J (t , u0
, yitc, y(t )) = J (t , u0

, v0
, y(t )) {6:55) p O O p O 0 

is true for all values of y(t ) except again for a set of measure zero. The 
0 

generalization of these results for any time t during the game is the same 

as before. 

Consequently, the pursuer is assured that if there does exist a pair 

of non-linear strategies {U*, V7'/I.) which does form a saddle-point pair for 

·- --·~--- ·-·~· ____ .. __ .,_ .. ______ ,_ --- ' 
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the zero-sum a priori problem, and an equilibrium pair for the in-flight 

problem, that his strategy u0 is both optimal against the resulting V* 

and will give him the same (expected) criterion J . 
p 

Consequently, this game is also characterized by the properties 

of equivalence and interchangeability and thus the question of uniqueness 

is irrelevant. If another thought process produces a different solution, 

the results of the game played under those conditions will be the same 

and any crossing of strategies - - (U 0
, V*) or (U*, V0

) - - does not effect 

the play for the unknowing player who sticks with his linear strategy. 

The fact that these results could be obtained for the particular non 

zero-sum game considered -- when it is not true in general -- results 

from two facts. First of all recall that the outcome (actual payoff) of the 

game is zero-sum; if a transfer of payments is involved it is direct from 

one player to the other. Second, the initial assessments of the game by 

the two players were identical, thus permitting an expected value zero-sum 

game to be defined before the actual play began. The in-flight non zero-sum 

game is then related to this original game through the expected value 

operator. Using the a priori game as a base, and relating the in-flight 

game to it, permits the uniqueness-irrelevance conclusion. 

6. 4 The Certainty-Equivalence Principle 

The optimal feedback strategies given in (6:12) and (6:13) indicate 

the applicability of the "certainty-equivalence principle" of optimal control 

theory to the stochastic differential game problem. 

·--------·---·- ---- ---- --·--·- -··. 
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From (6:13) it can be seen that the evader merely uses the feedback 

strategy employed in the deterministic game to operate on his optimal 

estimate of the state y(t). Note that the estimation equation, 

y(t ) = y 
0 0 

(6:56) 

is the same estimation equation that would be employed by an imperfect 

outside observer of the deterministic game. However, because the 

pursuer employed a second, correction term in his control, the differen

tial equation governing P is different. 

P(t
0

) = P
O 

(6:57) 

-1 -1 
K (tf't) + r 2(t) replaces K (tf,t). Thus the evader must calculate r 2(t). 

The coupled differential equations for r 2 and P may be solved simultaneously 

before the actual game begins, but the evader only needs to store the values 

of P(t), t
0 
~ t ~ tf. 

For the pursuer, the optimal strategy consists of the same feedback 

control used in the deterministic game, plus an additional term to take 

advantage of the inaccuracy of the evader 1s knowledge of the state. From 

(6:12) it can be seen that whenever the evader 1s estimate of the state is 

exact, the pursuer 1s control will be exactly the same as in the determin

istic case. Though the pursuer knows that the evader will deviate from 

---·· ····---··-· -·--·-----
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the deterministic strategy in the future - - because of the noise in his 

future measurements -- the pursuer cannot utilize this information. 

The direction of this deviation is completely unpredictable; the measure-

ment noise is zero mean. 

The second term in the pursuer 1s strategy actually results from 

the immediate, non-deterministically optimal velocity vector of the 

evader. To the pursuer, the game has c. ;~k-dimensional state equation 

(Z:95), governing the Zk-dimensional state vector [~(t)] . y(t) is inde-
y(t) 

pendent of y(t), as is shown in (Z:93) which is repeated here. 

~ ~ y(t ) = y 
0 0 

(6:58) 

When y(t) I O, y(t) differs from the value it would have in the deterministic 

game; this is called a deviation from deterministic optimality. If the 

pursuer knows this deviation, he can p,redict values of the state vectors 

y('T) and y('T), ,,. > t, and thus predict future deterministic non-optimalities. 

To predict y('T), .,. > t, w(t) is set equal to zero in (6:58) and the 

resulting differential equation is integrated forward in time from time t 

using y(t) as the initial condition. Thus if y(t) equals zero, any prediction 

of y(7), ,,. > t, will also be zero. Of course, this prediction is not perfect, 

for the actual equat: .:m for y(t), (6:58), is driven by white noise w(t). 

It should be noted that the evader cannot employ y(t) in his controller. 

y(t) is the error in the evader's estimate, and if the evader had any 

--- - ---------------- - -- •··· ·· -
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knowledge of this vector, he would use this knowledge to improve his 

estimate of y(t). By definition, the evader 1s estimate of y(t) is zero. 

6. 5 General Measurements 

The stochastic pursuit-evasion game solved in Chapter 2 con

strained the evader to make noisy measurements on the state y(t) of the 

general form given by (2:5) which is repeated here . 

z(t) = H(t)y(t) + w(t) (6:59) 

w(t) is zero-mean Gaussian white noise with variance Q(t). 

The presentation of Section 2. 1 considered the case wherE. ~lie 

evader's measurements on the states of the individual players were of 

the form: 

(6:60) 

(6 :61) 

This resulted in a measurement on the reduced state vector y(t) of the 

special form where the Hof equation (6:59) was the identity matrix. This 

section demonstrates how the general measurement of (6:59) can be ob

tained. 

Consider the general £-dimensional and g·dimensional measurements 

on the individual players I states 

with w
1 

and w 2 possessing the same characteristics as above. If either 

I 

I 
t 

l , 

,, 

~----··-------·-·- - ·--··---···· ...... ---- -··---- ---------~·- - - ·------
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-H1 or H2 are not square, the necessary rows are added to produce square, 

non-singular* matrices H1 and H2. The corrupting noise of these addi

tional measL1rements will be assumed to be white with variance of the 

form q 1I f and q2I . After the analysis has been completed the 
n- n-g 

scalars q 1 and q2 can be permitted to approach infinity, thus eliminating 

any information gained from these additional measurements. 

There now exist two new n-dimensional measurement vectors 

(6:64) 

( 6 :6 5) 

where w1 and w2 are zero-mean, white noise vectors with spectra 

t~!_ktJ and 
----:------- respectively. 

[
02 : 0 ~ The cross correlation 
0 : q 2I 

I n-

LO(t - T) I oj 
between w (t) and w (T) is ---------~---- . 

1 2 0 : 0 
I 

A measurement of y(t) in the form given in (6:59) can be obtained by 

defining 

(6:66) 

where A is the matrix of the form [~! O] which weights the terminal separa

tion of the two players in the original criterion (1 :23) and • and • are p e 

the transition matrices associated with the individual dynamic systems 

of the pursuer (1 :21) and the evader (1 :22), respectively. 

* If Hi (or Hz) is square but singular, some of the resulting measure-
ments are linearly dependent on others. Consequently, elements of 
the z1 (or z 2) vector should either be combined to produce more accu
rate measu:t"ements, or deleted as superfluous. 

_ __._ ____ , ___ _ --------- - ~ - - -·- - ····- -·- --· ,, ' - -·-----· ----·--- --\ 



Using (6:64) and (6:65) in conjunction with the definition of the 

reduced state (1 :24), which is 

A 
y(t) = A[~ (tf, t)x (t) - ~ (tf, t)x (t)] p p e e 

(6:66) becomes 

The zero-mean, white noise vector of (6:59) would be given by 

with spectrum 

[
al : o j -1 [c ! o~ -1 · -1 , T -1 1 T 

Q = A • H - - - -,- - - - - - H e - ~ H - - _.,_ - H ~ 
pl o: I 1 p pl olo 2 e 

, ql n-f 1 
I 

6-24 

(6:67) 

(6:68) 

(6:69) 

[ ~ f 
I j } TI Q I 0 

_1 C : 0 T-1 -l 2 : T-1 
- e H ----~-- H ~ + e H ---~------ H • A . e2 , 1 p e2 

0
, 

1 
2 e 

0 I Q I qz n-
1 I 

(6:70) 

(6:68) would indicate that the H matrix is 1t· However, , when q1 and 

q2 are made to approach infinity, certain components of z, as given by 

(6:68), will become meaningless. Such components can be dropped, and 

upon rearranging the order of the elements in y, an H matrix of the form 

[I ! O] is .obtained. The variance matrix associated with w(t) in (6:59) is 

obtained from (6:70) by omitting all rows and columns which have diagonal 

elements that are functions of q 1. or q2 . 

.. 
·--- -•--·-• --·- - ·- ··-·r ... ·---••oo,~----·---- ·--. 
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This procedure may produce a Q matrix in which all diagonal 

elements are dependent on q 1 or 42,, indicating that z of (6:68) contains 

no information pertinent to y. This is perfectly reasonable, since ar

bitrary measurements on x and x can.not necessarily be transformed p e 

into a useful measurement of y. It is always necessary to determine if 

specific measurements on x and x really permit the reduced dynamic p e 

system (2.:1) to be observable. 

6. 6 Process Noise 

Suppose the problem of Chapter 2. is further complicated by process 

noise in the dynamical system of (2:1) 

y = G (t)u(t) - G (t)v(t) + 8(t) 
p e 

(6:71) 

Here 8(t) is a k-dimensional, zero-mean, Gaussian white noise vector 

with spectrum 8(t). 

The analysis of Chapter 2 is still valid with the only change in the 

results being in equations (2:96) and (2:97) which govern Y(t) and P(t). 

+ 8(t) Y(t ) = Y , 
0 0 

(6:72) 

P(t ) = P . 
0 0 

(6:73) 
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The optimal feedback strategies are still 

U0
: u 0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) - R- 1(t)GT(t)r

2
(t)y(t) 

p p p p 
(6:12) 

(6:13) 

This is true because, although 8(t) enters the Hamiltonian, when the 

Hamiltonian is differentiated with respect to either the controls C , C p e 

and DP or the states Y and P the result is never a function of 8(t). 

However, the results of Chapter 3 are ~ valid. This is because 

the pursuer now cannot merely differentiate y(t), subtract G (t)u(t) and p 

multiply the results by G-
1

(t) to obtain the evader's control v(t). The 
e 

noise vector, B(t), which is unknown to the pursuer, prevents him from 

calculating the evader 1s control and thus the evader 1s estimation error. 

Consequently, though equilibrium strategies can be determined when the 

pursuer is provided with data on his opponent's estimation error by the 

mystical third party (Chapter 2), the pursuer cannot calculate this error 

(Chapter 3) in the presence of process noise. 

Note that if the variance of the evader 1s measurement noise decreases 

to zero, optimal feedback strategies exist. Then (6:12) and '(6:13) reduce 

to 

Uo: u0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) p p (6:74) 

Vo: v0 (t) = -R- 1(t)GT(t)K- 1(tf,t)y(t) 
e e 

(6:75) 

which are the feedback strategies for the deterministic game. The pursuer 

no longer needs to calculate the . evader 1s estimation error since it is zero. 

. . - ·-------· , __ ,.. __ ., .. __ ··-------·-• 
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For this case - - as in control theory - - the two player •s merely ignore 

the process noise since it is zero-mean. 

6. 7 The Generalized Game 

A more general linear stochastic differential game than the one of 

(2:1) and (Z:Z) in Chapter 2 can be defined R-nd solved. The game equation 

has a non-zero system matrix F(t), 

y = F(t)y + G (t)u(t) - G (t)v(t) p e y(t ) = y 
0 0 

(6:76) 

and the in-flight criterion has a more generalized form. 

J=E 

I I 

tf A : B : -C ----'- ----·- ----
111 (t ) 112 + 1 l f T: T: T] BT : R : 0 z Y f r z LY : u : v : : 

f t - - - -.- - .P.. •- - - - -
0 -CT l O : -R 

I I e 
I I 

y 

u dt 

V 

(6:77) 

Here again u(t) is the control of the player who attempts to minimize the 

criterion (6:77) while v(t) is the control of the player who attempts to 

maximize it. R and R are positiv~-definite and A is positive-semi· p e 

definite. This game has no direct relation to a pursuit-evasion problem; 

however, the minimizing player shall still be called the pursuer and the 

maximizing one the ev~der. The two zero submatrices of the partitioned 

weighting matrix of the in-flight criterion are so selected because it 

seems unreasonable that the penalty placed on one player's use of his own 

control should be a function of his opponent 's control. 

The evader is again assumed to have noisy measurements of the 

form 

z(t) = H(t)y(t) + w(t) (6:59) 

....-~-•--•-•--•--,.•--oM.llU, .,_..,,... ~ .............. ,,._.,.., .. ,_ -• -- --• --
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where w(t) is 1 zero-mean white noise vector with spectrum 

Q(t). The pursuer is again as&ll.llled to have perfect measurements of 

the state y(t). 

Thus there are two different information sets, and thus two different 

definitions that can be placed on the expected value operator of (6:77). 

Yet, the purpose of this section is only to present the solution and --

since the analysis of Section 6. 1 is valid for this more general problem 

too - - further elaboration of this point is not required. 

Here the optimal feedback strategies are assumed to be of the form 

u(t) = C (t)y(t) + D (t)y(t) 
p p 

(6:78) 

v(t) = C · (t)y(t) 
e 

(6:79) 

The analysis to obtain the optimal values of Cp, D and C procedes in p e 

a manner identical to that of Section 2. 2 . The results are that: 

C = -R- 1(GTr +BT) (6:80) 
p p p 1 

C = -R- 1(GTr + CT) ( 6:81) 
e e e 1 

D = -R-lGTr ( 6:82) 
p p p 2 

where 

( 6:83) 

'l 

. - • .... , ... _ ..... OH-- ·- ·•-• ·-•-•--••- • ••-- ••- .. 
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and 

{6:84) 

The evader 1s Kalman-Bucy filter for determining his estimate of 

the state is given by 

y(t ) = y 
0 0 

( 6 :8 5) 

where P, the variance of tl1e error of the evader 1s estimate, is obtained 

from 

P(t ) = P 
0 0 

(6 :86) 

which is coupled to (6:84), the differential equation which determines r 2 . 

Note, that when A, B, C, and Fare all set equal to zero the above results 

all reduce appropriately to the corresponding results of Chapter 2. 

Again the condition necessary for the pursuer to calculate the 

evader's estimate is that the inverse of G R-lGT exist. The condition which 
e e e 

is necessary for the pursuer to be able to ~ this data in his controller, 

.- .. ---~- -····- -·--·· .. - ---·--.. ---··•--·------ ·-----·-··- ---·-
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as specified by (6:78), is that the inverse of [G R-lGTr'} + G R-l(GTr1 + CT)] 
PPP" ee e 

exist. 

The additional conjugate point condition for the generalized stochas

tic problem is that the solution must have a finite r 2(t), t
0 
~ t ~ tr This 

is guaranteed by the finite initial condition on P(t), (6:86). 

When determining the evader 1s optimality, the condition that is 

necessary for the certainty-equivalence principle to hold is that 

R - R (C + r G )- 1r G R-lGTr (GTr + CT)- 1R > 0 (6 87) 
e e le 2pp pl el e ·: 

The equation for determining Y(t) is 

P(t ) = P 
0 0 

(6 :88) 

-----•~· 
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CHAPTER SEVEN 

THE CLASSICAL INTERCEPTION PROBLEM 

This chapter presents specific solutions and numerical results 

which illuminate the results of the previous chapters. 

7. 1 The Solution to the Classical Interception Problem 

The classical interception problem in euclidean space, with the 

evader making noisy measurements, can be formulated in such a manner 

that the above analysis provides the solution. For this problem there 

are two state variables (position and velocity) and one control variable 

.,,.. 

for each euclidean dimension. In general terms, the pursuer desires to 

capture the evader, i.e. to minimize the distance between them at the end 

of the game; the evader desires to escape, or to maximize this distance. 

Neither player cares about the difference in the velocities of the two 

players at the terminal time -- the game is one of interception, not ren

dezvous. 

Since for each euclidean dimension there is one "interesting" state 

variable (position) and one control variable, condition i. of Section 3. 1 is 

satisfied. It is shown below that conditions ii. and iii. are also satisfied. 

The problem considered here is one in two euclidean dimensions; 

the extension to higher dimensions involves no extra complications; The 

pursuer's and evader's dynamical systems, respectively, are given by 

x = F x + G u(t) p pp p X (t ) = X p o po ( 7 :1) 

x = F x + G v(t) e e e e 
X (t ) = X e o eo 

(7:2) 

- - ~ -----·---·"------··- ···-·--·----
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where 

(7:3) 

(7:4) 

Thus both u(t) and v(t) are two-dimensional vectors. 

The state vector of the pursuer is 

xlp 

'JC 

X = 2p 
p 

x3p 

(7:5) 

x4p 

where x1p and x2p represent the pursuer 1s position in euclidean space and 

x
3 

and xA the corresponding velocities. A similar statement is valid p "Jtp 

for the evader 1s state vector. Since F = F , the corresponding transition p e 

matrices are identical. 

[ 

I ] 

12 : (tf - t)I2 t (t t) = • (t t) = ____ J _________ _ 
p p e ~ I 

0 ! 12 

(7:6) 

For this problem, the criterion is given by: 

a 2 2 2 
J = E{ z[(xlp - xle) + (xzp - Xze) 1 

llv II i ]dt} (7:7) 
e 

---·--
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Since the terminal separations (x1p - x1e) and (x2p - x2e) are the only 

ones of significance, the A matrix which reduces the dimension of the 

state vector is 

A = [I2 l o] 

Thus from the definition (1 :24) which gives the reduced state vector, 

y(t), in terms of x , x , ~ , ~ and A, it is found that p e p e 

where the components of this two-dimensional state vector are: 

(7 :8) 

(7:9) 

( 7 :1 0) 

( 7 :11) 

(1 :27) defines the control matrices for the reduced game, which for this 

problem are given by 

(7:12) 

It can be seen from (7:12) that the inverse of Ge exists for all t < tf' thus 

satisfying condition ii. of Section 3. 1 which ensures that the pursuer can 

calculate the error in the evader 1s estimate. 

It is now assumed that the energy weighting matrices have non-zero 

elements only along the diagonal, i. e. 

R = p (7:13) 

and similarly for R . Further R and R are assumed time independent. 
e p e 

- --------- -•-·~•-••·• •- ••••• . ------· -H -•• ---•- - ••---- ....... - --- --• -------- - •--- - -• • • • 
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Here observe that although the original problem is stationary 

(F , F , G , G , R , and R are all independent of time) the reduced p e p e p e 

problem is not. The time dependency of the two transition matrices 

causes the control matrices, for the reduced problem, G a.nd G , to 
p e 

be functions of the time-to-go . 

-1 
Then K {tf, t) can be found to be 

-1 
K = 

0 

0 

{7:14) 

where in terms of the individual components, the following definition is 

found useful. 

0 

{7:15) 

0 

This particular form of K-l is dependent on the fact that R and R are p e 

assumed to be independent of time; however, the fact that K-l is diagonal 

depends only on the diagonal properties of R and R . p e 

Thus the feedback gains for the deterministic game are given by 

•· · ..... _ ... -----~-···~-··~•-··----·-·---
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-3a r (t - t) le f 

0 

2 
-3a r (t - t) lp f 

0 

• 'I 

0 

2 -3a r (t -t) 
2e f 

0 

2 
-3a r (t - t) 2p f 
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( 7 :16) 

(7:17) 

The three matrices which define the quality of the evader's informa

tion are H(t), the evader 1s measurement matrix, Q(t), the covariance 

matrix of the meas,irement 1s noise, and P , the covariance of the error 
0 

of the evader's initial estimate. Here, all three are assumed to be 

diagonal, and Hand Qare further assumed to be time independent. 

(7:18) 

- -----... -. ... •- •·----·. --· ... -- -··-·--- - -·· -·- -··----
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Qi 
[ 

qOl 
(7:19) 

P=[ 
0 

( 7 :20) 

Defining 

(7:21) 

Y12 l 
Y22 

( 7 :22) 

the following set of simultaneous differential equations are found for the 

components of P(t) and r 2(t) which are the matrices which define the 

nature of the evader's estimator and the second term in the pursuer's 

controller. 

( 7 :2 3) 

. 
pl2 = 0 ' ( 7 :24) 

- --· ... ·- - -- ·-·-·-·---·---
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r 2 ] 
2(t .. t) 

f -1 
-P22 r (kz + Yzz) -

L zp 

( 7 :2 5) 

(7:26) 

. 
'112 = O ( 7 :2 7) 

. 
'122 

( 7 :28) 

Note that (7:23) and (7:26) are coupled as a1·e (7:25) and (7:28). Unfortunately, 

these cannot be solved in closed form. 

Since the off-diagonal elements of r 2 are zero, the feedback matrix, 

with which the pursuer operates on the evader's estimation error, is 

given by 

---- ------ - --···---------------------- - -
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-(tf - ·d 
~- Y11 

Ip 

0 

0 

with y11 and Yzz determined by (7:26) and (7:27) respectively. 

7-8 

(7:29) 

It is signifir:ant to observe that the feedback matrices are all diagonal 

and thus the resulting feedback control in one euclidean dimension is in

dependent of the control and state in the other dimension. As defined 

above, the game itt .·eally two separate one-dimensioll~l problems rather 

than a single two-ciimensional game. The analysis and ?lay can take place 

separately, and at different times. 

In general then, a classical interception problem in n-dimensional 

euclidean space (with the stochastic properties defined above) can be 

reduced ton separate one-dimensional interception problems if there is 

no coupling in the dynamics and estimation between the various euclidean 

dimensions. The absence of coupling is guaranteed if: 

a. The energy constraints placed on the controls do not 

i.nvolve cross products between the controls along d'if

ferent euclidean axes, i.e. R and R are diagonal. p e 

b. The estimation process in one euclidean dimension is in-

dependent of those in the other dimensions, i. e. P(t ), 
0 

· H, and Q are diagonal. 

It should now be recalled that it was shown in Section 3. 4 that for 

a scalar game condition iii. of Section 3. 1 was guaranteed to be satisfied 
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for certain restrictions. These restrictions were that the time depen

dencies of G R ·laT and G R-lGT were the same, and that the relative 
p p p e e e 

controllability condition was satisfied. Indeeri, the time dependencies 

-1 T -1 T 2 
of G RP G and G R G are both (tf - t) . Also, by assuming that p p e e e 

(7:30) 

(7:31) 

the relative controllability condition is certainly satisfied. Consequently, 

condition iii. -- which ensures that the inverse of L(t), defined by (3:8), 

exists and thus that the pursuer can actually utilize his calculation of 

the evader's estimation error in his controller -- is satisfied and the 

solution given here i! realizable. 

It is worthwhile to note that for the scalar problem the individual 

values of P 11 , hi, and q 1 are not in themselves significant; only the 

2 
Pllhl 

factor --- is important. This factor appears explicitly in the equation 
41 

which determines y11 , (7:26), and also in the evader's estimation equation; 
. h2 

see (2:92). Multiplying (7:23) by ...l and using the fact that this factor is 
41 z 

pllhl 
time independent, a differential equation for ----- can be written. 

41 

Puhf[z(tf·t)z k·l+ ]-(P11hf)z· 
q r ( 1 Y11) q ' 

1 lp 1 

(7:32) 

L 
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Thus this equation, in conjunction with (7:26), 

2 
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should be used to calculate 

Pllhl 
the pertinent parameters, -- and y11 . 

ql 
The same is true for 

2 
Pzzhz 

q2 

and Yzz· 

In the lat •~er sections of this chapter, numerical examples for this 

game are given. 

l: 2 Proportional Navigation 

One of the simplest strategies used in pursuit-evasion problems is 

the proportional navigation control law. This law gives a form for per

turbation control for the pursuer when the pursuer and evader are on a 

nominal collision course of constant bearing, er. That is, if the bearing 

of the pursuer's sighting on the evader, er, deviates from its nominal 

value, the proportional navigation law states that the pursuer's optimal 

perturbation control in the direction perpendicular to his nominal flight 

path is of the form 

u = n, V , lr 
C 

(7:33) 

Here V c is the nominal closing (or relative) velocity between. the two 

players, and n is the navigation constant. From experience the "best" 

values of n have been found to lie between 3 and 5. See Puckett and 

Ramo (1). 

In Ho, Bryson and Baron (2], it was shown that the optimal (deter

ministic) pursuit strategy given in Chapter 1, reduced to the proportional 

2 
navigation law when the players were on a col,lision course. Here, a 

waa permitted to approach infinity, indicating that the pursuer's objective 

" 
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is strictly capture while employing a minimum amount of energy. It 

was found that the navigation constant is given by 

3 
n = (1 - r /r ) 

p e 
(7:34) 

i ''igure 7-1 displays the geometry of the proportional navigation 

problem in relative coordinates, i.e. in the coordinate system moving 

with the evader . (Consequently, the evader 1s nominal velocity is shown 

as zero . ) The nominal value of the bearing '1' is taken to be zero for 

convenience. Figure 7-1 also displays the positions and velocities of 

the two players perturbed from the nominal values. 

For the deterministic case, the control to be applied by the pursuer 

in the direction perpendicular to the nominal line of sight is obtained from 

(7:16) and (7:11 ). 

2 
do = -3a rze(tf - t)[(xzp - xze) + (tf - t)(x4p - x4e)] 

Uz 2 3 
3rzpr2e + a (tf - t) (rze - rzp) 

Letting a
2 

approach infinity, (7:35) becomes 

do Uz = 
-3[(x2 - Xz ) + (tf - t){x4 - x4 )] p e p e 

(7:35) 

(7:36) 

Under the assumption that the deviations from the constant bearing 

are small, '1' can be writ'~en as 

(1' = 
•(x • X ) Zp Ze ( 7 :3 7) 

Taking the time derivative of (7:37) gives 

I· 
I 

·l 
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tr = 
•[(xzp • Xze) + (tf • t){x4p • X4e)] 

(tf - t)ZV C 

Now using (7:38) in (7:36) it can be seen that indeed u is of the form 

given in (7:33) with the nc>.vigation constant given by (7:34). 

7-13 

(7:38) 

From (7:38) it can be seen that a non·ze .ro a- can re t'i ult from a 

nwnber of causes. Either of the players could have been blown off 

course by an act of nature over which he had no control. The pursuer 

could have accidentally introduced some control perpendicular to the 

flight path (thus making x2p and x4p, the pursuer 1s position and velocity 

perpendicular to the nominal, non-zero), and his resulting pe1·tu rbation 

control is an attempt to remedy this error. If these events do not occur, 

a non-zero lr can only result from a deviation of the evader from his 

optimal velocity in the direction perpendicular to the nominal flight 

path, x4e; in this case, the pursuer 1s pert·..irbation control takes advan- . 

tage of the evader's deviation from his optimal velocity. 

In Section 3. 2 it was pointed out that the second term in the pursuer 1s 

control for the stochastic problem takes advantage of the evader's 

deviation from his optimal acceleration. This is not done when a stan

dard proportional navigation strategy is used, since an acceleration 

deviation does not -- under ordinary circumstances -- permit predictions 

of future deviations. 

Differentiating (7:38) with respect to time gives 

(7:39) 

---- -- ---- ------ -- ---
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where a and a are respectively the pursuer's and evader's accele:ra-p e 

tions in the direction perpendicular to the nominal flight path. From 

(7:4) it can be seen that a and a are exactly the pursuer's and evader's p e 

controls (uz and v 2 ) in this dimension. Thus if lr is zero, both ap and 

ae will be zero if the players behave optimally, and thus tt- will be zero -

a most reasonable result. 

However, suppose that for some reason lr is not zero. Then a p 

should be given by (7:33) in conjunction with (7:34), and a should be 
e 

given by the "deterministically" optimal value of v 2 , 

do Vz = (7:40) 

However, if the evader's acceleration differs from this value by some 

~ error, ae, where 

~ do 
ae = v2 - ae 

then It will be given by 

which reduces to 

~ ae 1 
t = [ -1r + V 1 (t - t) 

C f 

( 7:41) 

(7:42) 

(7:43) 

(7:43) can be rewritten to give a explicitly in terms of lr and It . 
e 

a = V [(tf - t)f + Ir] e C 
(7:44) 

.,.. _ _.,...,,,..- ,__...,ICII .... 
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Now suppose that the evader's control (acceleration) differs from its 

deterministically optimal value because of noisy measurements which 

produce estimation errors. Then it can be seen that the second term 

in the pursuer's control will be propo i.-tional to the sum of (i) the first 

time derivative of the pursuer's bearing on his opponent and (ii) the 

second time d£;:rivative of this bearing times the time-to-go. It will 

be recalled from mechanics that acceleration is not proportionally re

lated between rectangular and curvilinear coordinates; thus the lr term 

in (7 :44). 

Because r 2 cannot be written explicitly, the second term of the 

pursuer 1s controller cannot be written in terms of the original parameters 

of the problem. 

(tf - t)y22 v 
u = n• v . er - c [(tf - t)cr + er] 

C r2!p 
(7:45) 

(7:45) does ,B2! imply that if er is zero, the pursuer will add an extra 

correction for non-zero values of ir. ii' and er are intimately related by 

(7:39). If for some non-2:ero er, both players behave optimally, it can 

be seen from (7:44) that er will be given by -er/(tf - t). The second 

term in (7:45) will be non-zero only if tt differs from this value, pre

sumably because of the evader 1s estimation error. 

There is a distinct similarity hetween the second term in (7:45) and 

the second term in the general pursuer's control as given by Realization 

II, of Section 3. 1. In (3:14) the pursuer's second control term is a func

tion of [(G R-lGT - G R-lGT)K-ly + y]. This function of y and y will be 
p p p e e e 

~--.,;~-------·•--·-·· -- - -· 
- __________ , ___ _ 
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ze r o if the evader use s his deterministically optim a l control. The 

fact that both y and y appear in th i. s term certainly cl oea not mean that 

tlH3Y are independent ; they are intimately related and under determinis

tic '\ Uy optimal conditions, this control term is zero. The same is true 

in (7:45). 

7. 3 Optimal Parameter Values and Feedback Gains 

In this section a particular scalar pursuit-evasion problem is 

considered; it can be viewed as the game in either or both of the two 

euclidean dimensions .analyzed in Section 7. 1. Essentially this sec tion 

is a parameter study, presenting numerical results* to illuminate the 

general nature of the .l'esults obtained in Chapters 2-6. This scalar 

problem is defined by the following numerical values which are assigned 

to the game parameters. 

2 10. a = 

R = 0.4 
p 

R = 1.0 
e 

p = 100. ( 7 :46) 
0 

t = 0.0 
0 

t • 
f = 10.0 

H = 1.0 

The notation of the original problem (i.e. the capital letters) rather than 

* All calculations were done on MINIC, a digital computer program for 
solving systems of differential equations on an IBM 7090/7094 r.omputer 
with a Fortran IV IBSYS Monitor. 

- -- . •;- - -------------------------
(, 
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the scalar notation of Section 7. 1 is used in this section, and units have 

been omitted since any consistent set can be used. The parameter Q is 

permitted to vary over several orders of magnitude, 1. 0 ~ Q ~ I 0. 5. 

Observe that there is no loss in generality in assuming that H has 

the value of 1 . 0. Recall that for any scalar estimation p r oblem where 

information is obtained from the scalar measurement 

z =Hy+ w ( 7 :4 7) 

the quality o! the information obtained is completely determined by 

the ratio of H
2 

to the variance of the measurement noise w, i.e. H
2 /O. 

If H is increased while this r a tio remains constant, only the magnitude 

of t h.n measurement is increased, not its information content. Thus for 

the t:lcalar ca se, the quality of the measurement information can be varied 

ove r the entire range of possibilities by fixing H, and allowing Q to vary 

fr cim zero to infinity . 

Recall that at the end of Section 7. 1 it was pointed out t l t the only 

pertinent combination of P and 0, to either the evader or pur ter when 

implementing their strategies, is P/0 (since H has already been set equal 

to one). Thus setting P equal to 100. does not represent any loss in 
0 

generality either. The full spectrum of possibilities of the character of 

the information can be investigated by varying Q; this is done below for 

5 the range 1. 0 ~ Q ~ 1 0. . For cases when other values of P are needed, 
0 

appropriate scaling from the calculations below will produce the desired 

result. This value of P means that the standard deviation of the evader's 

initial estimate is 10. , a not unreasonable value for initial predicted 

terminal separations, y(t ), on the order of 50. 
0 

----·-··-·------- ------------ - -·--- ---------------

I, 

I 
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Note that R is less than R making the pursuer more controllable p e 

than the evader and thus ensuring that no deterministic conjugate point 

exists. Further observe that a 
2 

is an order of magnitude larger than both 

R and R . p e 

In the previous section it was mentioned that as a 2 approaches 

infinity, the goal for the pursuer becomes strictly one of capture. For 

a
2 

= 10. O, simple integration of the deterministic game equation shows 

that when both players employ their optimal strategies, y(tf) is 2. 0 x l0-4y(t
0

). 

2 
Thus it can be seen that moderately large values of a can ensure that 

capture "almost" occurs. Here the evader -- because he is less control

lable than his opl?onent - - employs a strategy which 1) prevents capture 

from occuring till the terminal time, and 2) makes sure that the pursuer 

uses the maximum amount of energy necessary for capture. 

Figure 7-Z displays K-
1

(tf' t) and r z(t) for the scalar game with 

the parameters as given in (7:46}. One should not jump to the hasty 

conclusion that -- because K-l is so large near the terminal time 

moat of the control in the deterministic case will be applied late in the 

game. Recall that the pursuer 1s feedback gain matrix, C , is composed p 
-1 T -1 

of three factors in the form, -RP Gp K RP is a constant and Gp is a 

linear function of the time-to-go, i.e. it is a linearly decreasing function 

of time. Thus the value of Cp, see Figure 7-3, is not!.!. lopsidedly 

weighted at the end of the game. Also, since the pursuer is more con

trollable than the evader, y(t) will be larger at the beginning of the game, 
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further indicating that the control itself will not be applied excluflively 

near the end of the game. This discussion is continued in Section 7. 5. 

The curve for r 2 in Figure 7-2 is appropriate for all values of 

Qin the range 1. 0 to 10
5

. r 2 is completely independent of Q near the 

terminal time and varies by less than 1% at t = 5 for the values of Q 

indicated. Only near the beginning of the game does Q appreciably 

effect r 2 ; however, because r 
2 

is so small during this part of the game 

this difference cannot be displayed on a linear graph. The insensitivity 

of r 2 to Q means that, as given i~ Figure 7. 3, the curve of DP -- the 

pursuer 1s second feedback gain for the stochastic problem -- is appro

priate for all values of Q. 

The reason that r 2 is so independent of Q can be seen from Figure 

7-4, which displays P(t) for various values of the parameter Q. The 

curve for Q = l o5 
is not displayed because it falls too close to the one 

for Q = 104 for a visual distinction to be made, while the one for Q = 1. 0 

the curve is very near the axes. Now recall from Section 4. 2 that for 

Q large the evader is essentially operating open-loop; consequently, the 

4 
curve for Q = 10 represents the upper bound of P. Thus during the 

second half of the game P(t) is very small no matter how large Q is; the 

P equation is very stable. Also -- as was pointed out at the end of 

Section 7. 1 -- Q only effects r 2 through the term P/Q; see (7:32). • Thus 

for P(t) very small, Q cc nnot have a large effect on r 2. 

Figure 7-5 displays L(t). Defined as G R-laTr., + G R-lGTK-l 
PPP'- ee e 

in Chapter 3, (3:8), this term must be positive (definite) for the pursuer's 

~ - . -·---·-·---- -
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strategy to be re?.lizable; note that it is always positive. This is a 

further graphical demonstration of the fact that L -l always exists for 

-1 T -1 T 
the scalar game when G R G and G R G have the same time p p p e e e 

dependency. (See Section 3. 4 for proof.) 

K-l (tf, t} and two curves for -r 2(t) are also displayed in Figure 7-5. 

When viewing time as progressing backwards from tf, observe that L(t) 

displays the effect of different values of Q before r 2 (t) does. This is 

because the r
2

(t) in L(t) is multiplied by G R-lGT which for this problem 
p p p 

is 2. S(tf - t)
2

; this factor becomes quite large for tf - t large. Thus when 

adding G R-lGTr2 and G R-lGTK-1, which have nearly opposite values, 
p p p e e e 

small differences in r 2(t), resulting from different values of a, will show 

up sooner. 

For this scalar game, the expression for the criterion is 

tf . 2 
1 -1 1 1 (' P (t)rz(t) 

J = 2K (tf, t
0

)Y(t
0

) + 2 r 2(t
0

)P(t
0

) + z jt Q dt 

0 

(7:48) 

where values of Y(t ) and P(t ) can be appropriately assigned by either 
0 0 

player depending on his data. Since ·Y(t ) can be selected without effecting 
0 

the gains, the second two terms alone represent the change in J because 

of the presence of measurement noise. Consequently, a reduced represen

tation of J, called J or the reduced criterion, indicates more appropriately r 

the dependence of J on Q. 

( 7 :49) 



. • 

-
7-25 

From Figure 7-6, which displays J as a function of Q, several r 

observations about the criterion can be made. J is always negative, 
r 

indicating a reduction in the evader 1s or maximizing player 1s capability . 

For small measurement noise, J is approaching zero, for in this r 

region the evader has almost perfect knowledge of the state, and thus 

deviates little from his deterministically optimal control. For large 

values of Q, J asymptotically approaches a constant; this 1·efiects the r 

fact that the evader is operating open-loop for large values of Q; conse-

quently, the pursuer cannot take extra advantage of an increase in the 

variance of the measurement noise from Q = 1 o4 to Q = 1 o5 for the 

evader's control is now solely a function of his initial estimate. 

Figure 7-7 displays the pursuer 1s gains G1 and G2 for Q = 100. 

These are employed by the pursuer in Realization II where his control 

is given by 

u(t) = Gl (t)y(t) + Gz (t)y(t) (7:50) 

Comparing this figure with Figure 7-3, it can be seen that G1 and G2 

have values much larger than C and D . This does not mean that the p p 

control applied for this realization is greater. Since G R -l GT is larger 
p p p 

than G R-lGT, the deterministically optimal y, as given by 
e e e 

(7:51) 

will be negative when y is positive, and unless the evader's estimate is 

very bad, the stochastically optimal y will also have the opposite sign 

from y. Consequently, the two terms in (7:50) are also of opposite sign, 

producing the appropriate control. 
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Figures 7-8 and 7-9 display families of curves for G1 and G2 

which are dependent on Q. These curves display substantial differences 

as a function of Q, despite the fact that D in Figure 7-3 does not. p 

However, observe the similarity between the curve families and recall 

the fact that the two terms in {7:50) are subtracted from one another. 

This means that very large differences in the two individual curve 

families do not result in very large control differences. 

These curve families do not imply that Realization II is so sensitive 

to computation errors as to destroy the utility of this realization. a1 

can be thought of as consisting of two terms -- from {3:11) 

I n 
= G1 + G1 (7:52) 

I 
-- the first of which (G1) is the standard deterministic gain for y. The 

" second term (G1) multiplied by y equals the negative of the result of G2 

multiplied by the deterministically optimal y. Thus the difference, 

" G
1 

y - G2(-y), is certainly sensitive to deviations of y from its deter-

ministically optimal value, but this is its purpose. 

7. 4 A Numerical Study of r 2(t) and P(t) 

This section consists of a compilation of numerical data on the 

equations which govern r 2 and P for the scalar game, and consequently 

which determine the character of the solution for this problem. For 

the game with the evader making noisy measurements these coupled 

quadratic equations are: 

•. 

1, 
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r z(tf) = 0 (7:53) 

G2 p2 
P= -z--2 (K-l + r )P - - P(t ) = P 

R 2 Q 0 0 p 
( 7:54) 

Consider the game where the values of the parameters are given 

by (7:46). Figures 7-10 and 7-11 display families of curves for P(t) and 

r 2(t) respectively, where pertinent values of Qare the parameter. This 

is done on logarithmic scales to display the entire character of these two 

parameters. 

Figure 7-10 points out that P(t) does indeed decay rapidly for all 

possible values of t h e noise variance; the curve labeled Q ={lo: is the 
10 

upper bound for P(t). When the game is a little more than half over, 

P{t) has already decreased by at least two orders of magnitude even if 

no measurements are taken. This is partially a function of the fact that 

the associated (optimized) deterministic game equation 

. 2 1 1 -1 
y = -(tf - t) ( R - R )K (tf, t)y y(t ) = y 

0 0 
{"l:55) 

p e 

is quite stable for the parameter values of {7:46); y(t) is given by 

{7:56) 

Since y{t) is naturally getting smaller, the variance of any estimate will 

decrease with it. 

,. 
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Figure 7-11 displays the effect of Q on r 2, which a linear graph 

{
10 5 

could not do . . The curve labeled Q = 4 represents a lower bound 
10 

on r 2 ; this curve is in fact the one obtained in Chapter 4, (4:12), for 

the value of r 2 (t) when Q equals infinity. 

r 1 -1 -1 
2(t) = [ z + M (tf, t)] - K (tf - t) 

a p 
(7:57) 

As Q approaches zero -- so that the stochastic game approaches a 

deterministic one -- r 2(t
0

) approaches zero. This certainly must be 

true if the optimized value of the reduced criterion, J , is to approach 
r 

zero, or what is equivalent, that the optimized stochastic criterion is 

to approach the d.eterministic value. J , (7:49), is composed of two 
t r 

l (' f pZr 2 
terms. The second, 2 J

4 

Q dt, certainly approaches zero as Q does 
t 

0 

since P approaches zero as Q; see (4:8) and Figure 7-10. The first term, 

Zl P r2(t ), must also approach zero as Q. Since P is fixed by the defini-
o O 0 

tion of the problem, r 2(t
0

) must approach zero with Q if this latter condition 

is to be satisfied. 

,figures 7-10 and 7-11 are particularly applicable for a _game of 
\ •: 

time duration 10. and initial estimation error variance of 100., though 

other problems can be discussed through scaling. Figures 7-12 and 7-13 

provide a more general picture by displaying Pcit) and r 2(t} respectively, 

in a format that is applicable for games of time duration less than 20. 

The horizontal scales are plotted in time-to-go, i.e. (tf - t). 

It was necessary to divide Figure 7-12 into two parts, 7-12a and 

7-lZb, so that all appropriate values of Pdt) could be displayed. The 

----------------
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p 
interesting range of initial conditions is 10

2 ~ 
0
° ~ 10- 3. But since 

the game can be of any time duration, data on Pdt) must be available 

over this range for all t. Data for Pcit) ~ 10. is omitted, however, 

since all curves are almost vertical in this region. 

Figure 7-12 demonstrates again how P(t) decays with time, here 

for a substantially l~.rger range of initial conditions and time durations 

of the game. Consequently, this characteristic - - while it is a function 

of the values of a
2

, R and R -- is not dependent on Q, P or tf - t. 
P(t ) p e o 

Observe for T > l. O, that Pdt) drops off quite quickly, certainly 
P(t ) 

more so than when T < l. 0. This is because for large values of the 
P(t ) 

ratio T the measurements will help to improve the estimate. For 

small values of this ratio the measurements will have little effect; the 

estimate will be based largely on y(t
0

) and the decay will result mostly 

from the natural stability of (7:55). 

Figure 7-13 demonstrates that the possible curves for r 2(t) can be 

quite varied, though this was not obvious from the sinile problem dis-

1 -1 -1 
cussed above. Again observe that [ z + M (tf, t)] - K (tf, t) is the 

a p 
limiting lower bound on r 2(t); since both [ 1z + M (tf, t)r1 

and K-
1

(tf, t) 
a p 

approach zero as (tf - t) gets large, so does this lower bound. 

The labels on the various curves in 7-13 can be used to identify 

them with the corresponding curve in 7-12. Viewing time as progressing 

1 -1 -1 
back,T:ards, one can see that r 2 (t) keeps near [ 2 + Mp(tf' t)] - K (tf, t) 

.E(tl a 
until Q gets large enough to force r 2(t) to zero. r 2(t) breaks away from 

P(t) -2 
the bounding curve when Q reaches 10 . 

---!lml>V'-••-""·--------~---

. I 
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P P(t
0

) 

Observe that all possible initial conditions 
0
° = c:r- are crossed 

by the family of curves in Figure 7-12. Further note that for every such 

possible initial condition there exists an initial value of r 2(t
0

) which is 

finite and that the curve of r 2(t), t
0 
~ t ~ tf, originating at this point 

always remains finite. Consequently, it can be seen graphically that the 

conjugate point condition (that r 2(t) fails to be finite) is never satisfied 

because of the finite initial condition on the pair of equations (7:53)-(7:54). 

For the problem where the pursuer is the player making the noisy 

measurements, Section 5. 2, the equations for r 2(t) and P(t) are (5:52)

(5:53). For the scalar game, these reduce to 

[ 
2 ] • p G 1 r = 2 - - _sK- r 

2 Q R 2 
e 

G2 
-~ r -

R 2 
e 

G2 
-E. -1 
R K 

p 

P(t ) = P 
0 0 

(7:58) 

(7:59) 

For this game, also consider the parameter values given by (7:46). 

Figures 7-14 and 7-15 display families of curves for P(t) and r 2(t) 

respectively, where pertinent values of Qare the parameter. Logarith

mic scales are again used to display the full range of values. 

Figure 7-14 indicates that for large noise variances, Q = l o2
, 1 o3, 

or 1 o4, that P(t) initially increases with time, despite the fact that the 

pursuer is making measurements. From Figure 7-15 it can be seen that 

~ ... ._., .. ., .. I •- - -- ---- - --·--·--·- -

1 -, 
I 

j . 
I 
I• 
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the evader uses large initial values of r 2 for large 0, thus taking 

substantial advantage of errors in the pursuer 1s estimate. These 

7-42 

two characteristics are a consequence of the fact that if the measure

ments are not sufficiently accurate, to provide continual correction 

of the pursuer's estimate, the pursuer will initially direct himself 

towards a spot which is apt to be quite far from the evader 1s location; 

furthermore the pursuer will not correct this error very quickly. Unless 

the pursuer's initial estimate is fortuitously perfect, y(t) can actually be 

increasing with time, despite the fact that the pursuer is more control

lable than the evader. In short, the pursuer is all muscle and no 

brains. 

It can be seen from Figure 7-14 that P(tf) is linearly dependent 

upon Q. 

(7:60) 

In fact, after t reaches 0. 4 the variance of the p11rsuer 1s estimation error 

is essentially independent of P(t ); the curves are almost parallel and 
0 

are displayed on an order of magnitude for every order of magnitude 

change in Q. 

It appears after the game has progressed for a sufficiently long 

time for the effect of initial conditions to disappear, that a kind of equili

brium is established. The evader does not attempt to get too far away; 

if he did so the pursuer would be able to use nearly the proper control 

even though his estimation was quite imperfect, for the standard deviation 

of his estimation error would be small compared to y. The level of this 
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equilibriwn is dependent upon the quality of the measurements - - for 

these are used by the pursuer to sustain his knowledge of what the 

evader is doing -- not the initial estimate. 

Figure 7-15 demonstrates that as Q approaches zero r 2(t
0

) also 

approaches zero; again insuring that the criterion approaches its deter

ministic value. 

Figures 7-16 and 7-1 7 provide. the general picture of the game for 

the pursuer with noisy measurements with durations up to 2. 4. From 

Figure 7-16 it can be seen that for games of durations greater than 1. 0 

(7:61) 

When integrati:ag backwards, the differential equation governing P(t), 

(7:59), is very unstable; cnly terminal conditions of Pjt) near two produce 

curves that fail to go to infinity or zero immediately. 

Consider games of time durations greater than 1. 0. For any initial 
P(t

0
) 

value er- Pjt) quickly goes to an equilibrium value somewhere be-

tween 1. 0 and 10. If the initial error variance is substantially larger 

than the measurement noise variance, the measurements quickly improve 

the estimate. If the initial error variance is very small, compared with 

the measurement noise variance, the estimate will become worse with 

time, because the pursuer will be going in the wrong direction while col

lecting data that is not accurate enough to provide sufficient information 

as to how the game is progressing. 

Figure 7-17 displays r 2(t) for the game with the pursuer making 
P(tf) 

noisy measurements. Observe as c:r- approaches zero that r 2(t) 
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1 -1 -1 
approaches [ 2 - Me(tf, t)] - K (tf - t) . The curve for this latter 

a 
term goes to infinity at the conjugate point for the game with the pursuer 

ope rating open-loup . 

Note in Figure 7-1 7 that some curves for r 
2 

(t) do go to infinity. 

This does not mean that the stochastic conjugate point has occurred. 

Rather this corresponds to Pef- dropping off to zero (when viewing time 

P(t':') 
as progressing backwards). For every finite value of Q , there 

exists a finite value of r 2(t':') and the curve of r 2(t) passing throagh 

r 2(t*) is finite for all values oft ;;:::. t*. 

A comparison of Figures 7-12 and 7-13 with Figures 7-16 and 7-17 

provides a visual demonstration of the asymmetry of the two games: 

the game with the evader making noisy measurements and the one with 

the pursuer making the noisy measurements. 

Figures 7-18 and 7-19 display Pdt) and r 2(t) for the game with the 

evader making noisy measurements, but also with a deterministic conju-

gate point at (tf - t) = 1. 49. With the exception of the fact that 

RP = 1. 1 ( 7 :62) 

all the parameters are the same as given in (7:46). This change, however, 

-1 
means that the evader is more controllable than the pursuer; K (tf, t) 

goes to infinity when t = 1. 49. Note that the equations P(t) and r 2(t) are 

still (7:53) and (7:54). 

The charac'i:er of the family of curves for Pdt) in Figure 7-18 is 

not substantially different from the curves in Figure 7-12. The only 

difference is that all curves go to infinity at the deterministic conjugate 

-1 
point, because K (tf, t) does. 

1, 

11 
I' 
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The curves for r 2(t) of Figure 7-19 do differ from those of Figure 

7-13 in that some do go to infinity. This results from the fact that as 
P(tf) 1 -1 -1 
~ gets small,r 2 (t) approaches [ 2 + M (tf, t)] - K (tf, t). However, 

a p 
for the game with a deterministic conjugate point, this latter term does 

go to infinity since K-
1

(tf, t) does. 

For the game with the pursuer making noisy measurements plus a 

deterministic conjugate point at (tf - t) = 1. 49, .Figures 7-20 and 7-21 dis

play Pdt) and r 2(t). The only major differences between these curve 

families and those given in Figures 7-16 and 7-17 is that the conjugate 

point appears to act as a barrier forcing the curve families towards the 

terminal time. 

7. 5 Optimal Trajectories 

This section presents some optimal trajectories -- both stochastic 

samples and the associated deterministic path - - for the interception 

problem in two-dimensional euclidean space which was discussed in 

Section 7. 1. Here the values of the system and estimation parameters 

are the same in the two dimensions and given by: 

2 
a = 10. 

rlp = rzp = rp = 0. 4 

r 1 = r 2 = r = 1. 0 
e e e 

pllo = p22o =po= l0O. 

q 1 = q2 = 100. 

t = 0. 
0 

tf = 10. 

hl = hz = 1. 0 

(7:63) 
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Note that these are the same parameters which were used in the previous 

section for the numerical discussion of r 2(t) and P(t). 

Consider the deterministic game defined by (7:63) and the initial 

conditions on the pursuer 1s and evader 1s state vectors 

X = rn po 

[20.] 
X 

_ 10. 
eo - 0. 

0. 

(7:64) 

( 7 :6 5) 

The first two components of these vectors indicate the players I position 

on the x 1 and x 2 axes, while the other two components indicate the corre

sponding velocities. These translate, using (7:10) and {7:11 ), to the 

initial condition for y which is 

y = [-20.] 
0 -10. 

{7:66) 

Figure 7-22 gives the optimal deterministic trajectory for these 

initial conditions. Note that since neither player has an initial velocity, 

the pursuer heads directly towar1s the original location of the evader, 

while the evader merely heads directly away from the pursuer 1s initial 

location. There is a very small terminal separation, but it cannot be dis

played on the graph. (Recall from Section 7. 3 that y is reduced by a 

factor of 2. 0 x 10 - 4 in each dim ens ion during the play of this game. ) 
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The values of the criterion in the two separate dimensions are: 

-1 -2 
J 1 = 3. 9992 x 10 and J 2 = 9. 998 x 10 These can either be com-

puted by integrating u
2

(t) and v
2

(t) during an actual play of the game, or 

-1 -3 
from (1:37) and the value of K (tf, t

0
) which is 1. 9996 x 10 

Figure 7-23 gives the y(t) corresponding to the game along the 

x 1 axis in Figure 7-22. The shape of this curve is appropriate for all 

deterministic games with the parameters as given in (7:63) regardless 

of initial conditions; this is due to the fact that K-l (tf, t)y(t) is indepen

dent of time and K-
1

(tf, t) is fixed in the form displayed in Figure 7-2. 

Figure 7-24 displays the pursuer 1s and evader 1s controls for this 

-1 
deterministic game. Note that since K (tf, t)y(t), r , and r are all p e 

constant, the time dependencies of u(t) and v(t) are the same as G (t) p 

and G (t) respectively. However, since G (t) and G (t) are both propor-
e p e 

tional to time-to-go, the controls decrease linearly with time. This is 

true despite the fact that C (t) and C (t), the deterministic feedback gains, p e 

peak sharply near the terminal time; see Figure 7-3. 

Now consider the stochastic game, with which the deterministic 

game of Figure 7-ZZ is associated, where the evader is making noisy 

measurements. It might be argued that the standard deviation of the 

initial estimate (standard deviation = /P-: = 10. ) is too large compared 
0 

to the initial values of y(t) to make the problem realistic. However, if 

the standard deviation is small compared with y , the problem is esseno 

tially a deterministic one, since the evader 1s estimation error will cause 

I 
I, 
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little deviation from the deterministically optimal control. The value 

of P used was selected to ensure that the deviations from the deter
o 

ministic game would be quite visible graphically. 

7-57 

Figure 7-25 displays an optimal trajectory for a particular sample 

of the noise process w(t), with the evader making a perfect initial esti

mate of the reduced state, i.e. y = y . Observe that there is substantial 
0 0 

deviation from the deterministic trajectory, indicated by a dotted line, 

which is also the expected stochastic trajectory. 

Since the evader 1s initial estimate is known, the most accurate 

determination of the criterion for either dimension is the one given by 

(6:28); for the scalar case this is 

J (t u0 V
0

) 
p o' ' 

tf 

+ 1 s. 
2 t 

0 

P
2
(t)f 

2
(t) 

-----dt 
q 

This is precisely the pursuer 1s evaluation of the criterion after being 

given the initial data. The first term is merely the deterministic cri

terion and the second is zero since the initial estimate is perfect. The 

third term has been calculated numerically and is given by 

t 
1 r f P2(t)r z(t) 
2 4 q dt = -8. 39 53 X 1 o- 3 

0 

This number is valid for all games with parameters given by (7:63). 

(7:67) 

(7:68) 
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The values of JP in the x 1 and x 2 dimensions are 3. 9152 x 10·
1 

and 
-2 -3 

9. 158 5 x l O re spec ti vely; these are merely 8 . 39 53 x l 0 

subtracted from the deterministic criterion. Observe that the two 

-1 -2 
outcomes, 'di = 3. 9664 x 10 and ~ 2 = 8. 7164 x 10 , are slightly 

higher and lower respectively than the corresponding J . p 

Figure 7-26 displays y(t) and y(t) corresponding to the sample 

trajectory along the x 1 axis in Figure 7-25. The deterministic value 

of y(t) does not differ enough from the stochastic value to be displayed 

at the scale used. The curve of y(t) which is displayed was obtained by 

connecting samples of y(t) taken at intervals of At = 0. 05; the actual 

process would have been impossible to display . From the optimized 

stochastic system equations, (2:94), it can be seen that y(t) is once in

tegrated white noise, while y(t) is twice integrated. Thus the curve 

for y(t) is relatively smooth compared with y(t). 

Figure 7-2 7 displays the controls for this play of the stochastic 

game. Again because of the random nature of the controls, the curves 

were obtained by connecting samples taken at intervals of bt = 0. 05. 

Note that u(t) is less than its deterministically optimal value when v(t) 

7-59 

is also. The controls are (usually) less than the values for the associated 

, .eterministic game because the estimate y(t) is (usually) less than the 

actual value. 

The above game has also been played using certain non-optimal 

strategies for the same sample of the noise process w(t) . The resulting 

trajectories were too near the optimal ones to be displayed graphically, 

,, 
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though the outcomes (i) did differ. Figure 7-28 displays these and other 

evaluations of the criterion in tabular form. 
I I I 

I Consider the case where the pursuer employs a non-optimal stra-

tegy. Here the pursuer fails to take advantage of his opponent's estima

tion errors and merely employs his deterministic strategy, 

(7:69) 

The evader still employs his optimal strategy as previously determined. 

The result is that the outcome increases in both the x1 and x2 dimensions; 

the pursuer, who is playing non-optimally, is the minimizing player. 

For the evader playing non-optimally, his strategy was altered to 

employ a different calculation of P(t). Instead of using (7:23), the depen

dence on r 2(t) was omitted. 

The resulting estimation equation is !:he one appropriate for an outside, 

noisy observer of the deterministic game. 

(7:70) 

From the last column in Figure 7-28, it can be seen that the 

criterion decreases in one dimension but increases in the other. Thus 

in one instance the evader actually gains (increases the value of the out

come) by playing non-optimally. This does not mean that the results of 

this thesis are invalid. The strategies obtained herein are only optimal 

from the point of view of the expected value of the criterion. They are 

optimal on the average, though for particular noise sequences other 

strategies may produce better outcomes. 
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The trajectories of Figures 7-22 and 7-25 may appear to be slightly 

dull since the initial velocities for the two players are zero. Conse

quently consider the deterministic game where the initial conditions 

are given by 

(7:71) 

[ 

2. ] 20. 
xeo = 1. (7:72) 

-0.5 

The optimal trajectories are found in Figure 7-29. 

The vectors originating at the initial location of the two players 

indicate their respective velocities. Note the pursuer must reverse his 

direction of travel in the x 1 dimension, while the evader must slow his 

progress towards the pursuer in the x 2 direction. Again, the terminal 

separation cannot be displayed graphically. 

Figure 7-30 displays a trajectory for the stochastic game associated 

with the deterministic one of Figure 7-29. The initial value of the state is 

(7:73) 

while the evader 1s estimate of this state is 

y = [·20.] 
0 -10. 

(7:74) 

Again the stochastic trajectory differs from the deterministic one, even 

more so because the evader 1s initial estimate is in error. 
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To predict the value of the criterion, for this case, the term 

1 ~2 
2 r 2(t

0
)y (t

0
) must be included. 

0 . 9950 and 1. 311 5 x 10-
2 

in the 

These expected values, J , are p 

x
1 

and x
2 

dimensions respectively. 

Note that the outcomes, 1. 0036 and 1. 2621 x 1 o- 2
, are near these ex-

pected values . 
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CHAPTER EIGHT 

CONCLUDING REMARKS 

8. 1 A Summary of the Approach 

There are three significant steps which are fundamental to the 

solution of the stochastic differential game considered in this thesis. 

1) It must be realized that the pursuer can take advantage of the 

error of his opponent 1s estimate of the state; in particular, the pure 

guess that the pursuer's control is of the form 

u(t) = Cp(t)y(t) + Dp(t)y(t) (8:1) 

is essential for the solution of this problem. The discovery that the 

evader's control is of the form 

v(t) = C (t)y(t) 
e 

(8:2) 

takes less luck for this folJows more or less directly from the certainty

equivalence principle of optimal control theory. 

2) The stochastic problem is converted to a deterministic one 

using the assumptions of the control forms in (8:1) and (8:2). 

3) Now standard calculus-of-variations techniques can be employed 

to simultaneously optimize both the pursuer's and the evader's .. ontrols. 

This gives the values for the feedback gains as determined by the equations 

-1 
for K , r 2 , and P. 

Then, as is standard for any problem in game theory, the strategies 

must be shown to satisfy the saddle-point or equilibrium condition. It is 

essential to note, however, that the equilibrium inequalities 
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J (U 0 V0
) ~ J (U V0

) 
p ' p ' 

(8 :3a) 

J (U 0 V) ~ J (U 0 V0
) 

e ' e ' 
(8:3b) 

cannot be used to solve the problem in a sequential manner, first opti

mizing one player 1s control (8 :3a) and then the other 1s (8 :3b) . In fact, 

even knowing the answer, the author has not found a different, logical 

approach which will produce the correct solution. 

To see this, attempt to solve this problem by first letting the evader's 

y would be obtained from the esti-

mation equation 

y(t ) = y 
0 0 

(8 :4) 

Certainly this approach is both reasonable and on the right track. All the 

terms in the estimation equation (8:4} -- with the exception of P -- are 

either given in the definition of the problem or derived in the deterministic 

game. Since this approach is assumed to be based on no previous analysis 

of the problem, the only form of the equation governing P that could 

"logically II be used would be the one employed by an inaccurate, outside 

observer of the deterministic game. 

Thus P would be derived from 

P(t ) = P 
0 0 

(8 :5) 

'l 
I 

l 

I 

I 

1 
) 

I 
I 

\ 
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j ' 
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which is similar to the one obtained in Chapter 2, (2:97). The depen

dence of Pon r 2 is omitted however, for the very existence of r 2 is 

yet unknown. 

The next step in this method of solution would be for the pursuer to 

attempt to satisfy (8:3a) by minimizing J against the evader's strategy 
p 

as determined by (8:4) and (8:5) . Here he would essentially follow the 

analysis of Section 2. 3, Proof of the Pursuer's Optimality. Since (8:5) 

differs from (2:97), the evader would obviously obtain a value for his con

trol which would be different from the one obtained in Chapter 2. As can 

be seen from Section 2. 3, the pursuer would determine a control that had 

the form of (8 :1 ), but that had different values from the feedback matrices 

that were determined in Chapter 2. 

Now the evader would attempt to satisfy (8 :3b) by maximizing J 
e 

against the pursuer 1s strategy which resulted from the previous para-

graph. His approach would be similar to that of Section 2. 4, Proof of 

the Evader 1s Optimality. But because the values of the pursuer 1s feed

back gains would differ from those in Section 2. 4, the evader would not 

obtain the exact results of this section. Recall that in Section 2. 4, the 

pursuer was given a y , by the mystical third party, which was based on p 

the assumption that the evader played "optimally. 11 When the evader 

determined his strategy, he found that y was indeed identical to his 
p 

optimal estimate. However, if the pursuer 1s feedback gains are not 

-R-lGTK-l and -R-lGTr this will not in general be true, and conse-
p p p p 2' 

quently, the evader will employ a feedback strategy consisting not only 
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of the term dependent on y, but also on a second term which is dependent 

on y which is different. p 

Suppose the attempt to satisfy (8 :3b) and obtain the evader 1s optimal 

strategy follows the approach of Section 3. 3, Another Proof of the 

Evader 1s Optimality, instead of the one of Section 2. 4. Then the result 

will be of the form given in (8:2), but C will not be -R-lGTK- 1 . 
e e e 

Thus at the end of one iteration of this sequential approach to the 

solution, neither method for optimizing the evader's control has pro

duced the correct result. A series of iterations might converge to the 

correct solution, but the labor involved and the possibly awkward form 

make this approach impractical. Unless the form and values of one of 

the player 1s strategies are guessed correctly, the sequential approach 

seems doomed on a bier of algebra. 

Possibly a discrete-time, dynamic programming approach similar 

to" the one discussed in Appendix 3A could be employed to obtain the cor

rect solution by considering one time interval at a time. However, the 

algebraic complexities of this Appendix warn that the result may be 

difficult to obtain from first principles, and obscure once de~ermined. 

The particular sequential approach - - consisting of alternately 

employing the analyses of Section 2. 3 and Section 3. 3 -- can be viewed 

as an alternative to guessing the forms of the optimal strategies as given 

in (8:1) and (8:2). Note that the forms of the feedback controls do not 

change over one cycle of the iteration; only the values of the feedback 

gains do. Consequently, this approach demonstrates that if only the 

appropriate values of the feedback gains can be found, the equilibrium 

' ,, 
,, 

I ' 
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condition (8 :3) can be satisfied. Once this has been established, simul

taneous optimization can determine these values. Thus, in a sense, the 

sequential approach provides an alternative to the guess employed in 

Step 1 ). 

Consequently, it appears that the only approach which produces a 

closed-form solution is the one where 1) the correct form of the feedback 

strategies is somehow obtained, 2) the problem is converted to a deter

ministic one, and 3) the criterion is optimized simultaneously with respect 

to both players I controls. 

8. 2 The Closure Problem 

Chapters 2 through 7 of this thesis present the solution and impli

cations of the pursuit-evasion game in which one of the two players has 

noisy measurements of the state of the game, while the other player has 

perfect information as to this state. This particular problem was tackled 

after attempts to solve the game where both players have noisy measure

ments proved unsuccessful. It is worthwhile to note why this second, 

more general problem (here denoted Problem II) is much more difficult to 

solve than the first. 

The problem solved in this thesis does not include all games where 

one player makes noisy measurements. Unless one is willing to accept 

the implausible existence of the mystical third party, it is necessary to 

check the three conditions of Section 3. l to ensure that the solution is 

applicable. 

i. The number of interesting state variables must equal the number 

of the evader 1s control variables. 
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ii. 

iii. 

-1 T 
The inverse of G R G must exist. e e e 

The inverse of L must exist. 

8-6 

A problem which satisfies these three conditions is denoted as Problem 

IA. 

If conditions i. and ii. are not satisfied'!<, the problem is entirely 

different, for the pursuer cannot obtain the data necessary to implement 

the optimal strategy of Chapter 2; this problem is called Problem IB. 

The difficulty encountered in solving Problem IB (in particular for the 

cases where the dunension of the reduced state vector is smaller than 

the dimension of the evader 1s control vector) is essentially the same one 

which obscures the solution to Problem II. 

It is interesting to see how the analysis of Problem IB proceeds. 

The first step is to assume that the evader's controller is as given in 

Chapter 2. Then from the analysis of Section 2. 3 and the certainty

equivalence principle of control theory, it can be seen that the pursuer 

would employ a strategy similar to the one obtained in Chapter 2. How-

-1 T 
ever the inverse of G R G does not exist and thus the pursuer cannot 

' e e e 

calculate y(t); he must build a Kalman-Bucy filter -- based on the evader's 

estimation equation -- from which he obtains an estimate of the evader's 

estimate, denoted y. Thus his control would look like 

* 

(8:6) 

Condition iii. determines the time duration of the game for which the 
pursuer can realize his strategy; it does not effect the existence of a 
general solution, however. Conditions i. and ii. ensure that a solution 
will exist if the game 1s time duration is short enough . 

• 
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Obviously, this control would deviate from the one employed if the 

pursuer could calculate y, or if he was given this data by the mystical 

third party. 

Consequently, the evader should be able to take advantage of this 

error in the pursuer's estimate of the evader's estimate of the state. 

The above analysis suggests that the proper approach would be to add an 

additional term to the evader's control. However, such a correction 

term would be based on noisy data, and thus would be "imperfect. 11 The 

pursuer could then take advantage of such an imperfection. 

The difficulty that is encountered is now obvious; there :ippears to 

be an infinit~ number of terms in the optimal strategies of each of the 

two playe1·s. These terms are based on estimates of estimates of 

estimates of . . . . . This problem shall be called the "closure problem 11 

of stochastic differential games. When conditions i. and ii. of Chapter 3 

are satisfied, closure is possible for the game in which only one player 

makes noisy measurements; in this case the strategies can be written in 

closed-form consisting of a finite number of terms. 

I 

The closure problem is also a part of the second problem when both 

players make noisy measurements on the state. Here the first step would 

be to assume that the forms of the players' strategies are 

u(t) = C (t)y (t) + D (t)y 
p p p e 

(8 :7) 

v{t) = C (t)y (t) + D (t)y 
e e e p (8:8) 

where y and y are the pursuer's estimate an.cl estimation error, respec-p p 

tively; similar statements apply to y and y . However, since neither e e 
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player can determine his opponent 1s estimation error, these strategies 

are nonrealizable. Consequently, correction terms must be added, 

initiating the vicious cycle of estimates of estimates. 

It can be argued that this sequential approach is improper - - that 

one only need guess the correct form of both players I strategies and 

then optimize simultaneously to obtain the proper values. After all, 

didn't the author just criticize the sequential method of solution as in

valid even for Problem IA? The argument would continue to point ot.t 

that the above analysis does not prove that optimal strategies do not exist. 

Certainly it is possible that closed-form, linear strategies exist 

for these wo problems. Perhaps it is only that the author has not been 

clever enough to guess them correctly. However, recall that the sequen

tial process of Section 8. 1 (which coneisted of using the approach of 

Section 2. 3 to optimize the pursuer 1s strategy followed by the approach 

of Section 3 . 3 to optimize the evader 1s strategy) produced results that 

always had the form of (8 :1) and (8 :2); only the values of the feedback 

gains differed from the optimal ones. The problem of convergence was 

one of m.unerical value, not one of mathematical form. Consequently, 

sequential analysis for Problem IA leads directly to strate:gy forms 

which are closed upon sequential iteration, and thus permits the values 

to be determined by simultaneous optimization. 

The analysis above for Problems II and 1B immediately reveals a 

need for an infinite number of correction terms, which prevents the use 

of the calculus-of-variations for simultaneous optimization. This 

- -------- ' 
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discussion is prese nted to point out the problem of extrapolating the 

logic used to obtain the results in this thesis to guess strategies for 

these two other problems. If the optimal control laws for either 

Problem II or IB are to be linear, it would appear that the number of 

simple and "logical II choices for strategy forms would be finite. Yet 

no solutions have b~en found. Perhaps an entirely new approach is 

needed to solve Problems II and IB. The author is aware that both 

Rhodes [l] and Willman [2] are working on this. 

8. 3 A Summary of the Significant Results 

Chapter 2 presented the optimal feedback strategies for a stochas

tic pursuit-evasion game in which one player had perfect information of 

the game's state, while his opponent had only noisy measurements. The 

values of these strategies were determined, and shown to satisfy the 

equilibrium condition. 

Chapter 3 demonstrated how the player with perfect information 

could realize his strategy which called for him to feedback his opponent's 

estimation error . Conditions under which the player with perfect infor

mation could calculate thif1 estimation error were determined. 

Chapter 4 discussed the coupled equations for r 2 and P which are 

fundamental to the solution. It was pointed out that the additional conju

gate point condition for the stochastic game was that r 2 remain finite. 

However, it was also observed that because of the nature of the equations 

determining r 2 and P and because of the finite value of P(t
0

) this would 

always be true. 

'I 
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Chapter 5 considered the asymmetric character of the capabilities 

of the pursuer and evader for both the deterministic and stochastic game. 

The limiting rehtionship between the stochastic game and the open-loop 

deterministic game was demonstrated as the measurement noise variance 

approached infinity. 

Chapter 6 pointed out the need to carefully consicl.er the non zero

sum properties of this game which result fr 1.)m the two players I different 

information seh. It was demonstrated, however, that the strategies 

obtained in Chapter 2. did satisfy the equilibrium condition. Further, it 

was shown that if other, non-linear strategies satisfied the equilibrium 

condition, they gave the same value for all evaluations of the criterion 

and satisfied the equilibrium condition when. pJay~d against the strategies 

of the original solution. Consequently, the certainty-equivalence prin

ciple was found to apply for this game. 

Chapter 7 demonstrated that the solution obtained in this thesis was 

applicable to the interception game in euclidean space. Numerous graphs 

illuminated this solution, and illustrated the points made in previous 

chapters. 
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