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SUMMARY

A. Problem

This report is addressed to the problem of developing procedures for
clustering individuals or objects into similar "types." Such procedures
could be useful in producing an objective analysis and revision of the
f? ” Navy rating structure by classifying positions with similar patterns of
[

skill requirements into the same occupational category.

B. Background and Requirements

1. Cluster analysis methods of various kinds have been employed in the
i study of individual differences, in the taxonomy of biological organisms,
in the classification of documents for information retrieval, in the study
of Navy enlisted basic skill patterns, and in unsupervised pattern recog-
nition of electronic signal patterns.

2. Recent interest in this area has been stimulated by the advent of
high-speed digital computers capable of carrying out cluster analysis
. automatically. However, most existing methods contain certain arbitrary
; factors or assumptions which are difficult to justify statistically. Since

' different methods can give different results, there is a clear requirement
: for the development of a technique which is rigorously derived from
o statistical theory. Such a technique was presented by Wolfe (1965,1967)

for the special case of mixtures of multivariate normal distributions. The
present report generalizes these methods to other distributions.

C. Approach

The approach involves reformulating cluster analysis 3s a problem in
the estimation of the parameters of a mixture of distributions. Maximum-
likelihood (ML) methods are used exclusively because of the ease with
which they can be generalized to multivariate distributions of various
forms.

D. Findings

1. Regardless of the shape of the distribution the maximum-1likelihood
estimate of the proportion of a mixture frem a given type is equal to the
sample mean of the probability of members'.ip of the objects in that type.
The equations for the maximum-likelihoud estimates of the parameters of a
mixture are the weighted averages of the expressions used in obtaining ML
estimates for pure types, where the weights are the probabilities of
membership.

2. The estimation procedures for normal mixtures with unequal co-

variances, normal mixtures with equal covariances, and mixtures of latent
classes are derived as special cases of the general theory.
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3. Various iteration techniques are discussed for obtaining numerical
solutions to mixture problems.

4. The examples of the results of two computer mixture analysis
programs (NORMIX and NORMAP) indicate that the theory is sound for large
samples and that the procedures given in this paper are practical.

E. Conclusion

A practical and statistically rigorous method of cluster analysis has
been developed.

F. Recommendations

1. It is recommended that the computer programs NORMIX and NORMAP be
used in Naval research studies requiring a cluster analysis of continuous
measurement patterns.

2. Further development of computer programs for clustering discrete
data patterns is desirable.
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PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS

1. INTRCDUCTION

This paper is addressed to the problem which has been variously
called cluster analysis, Q-analysis, typology, grouping, clumping, class-
ification, numerical taxonomy, and unsupervised pattern recognition. The
variety of nomenclature may be due to the importance of the subject in
such diverse fields as psychology, biology, signal detection, artificial
intelligence, and information retrieval. Perhaps this multiplicity of
names also indicates a certain confusion in the basic definition of the
problem. This paper attempts to clarify the formulation of the problem,
with a resulting impruvement in conceptual simplicity and statistical
rigor.

In classification methedology, one is generally given a sample of N
objects or individuals, each of which is measured on m variables. From
this information alone, one must devise a classification scheme for
grouping the objects into r classes. The number of classes and the
characteristics oi the classes are to be determined. If all the objects

in a given class were identical to one another, the problem would be

simple. However, in the usual situation the objects in a class differ on

most or all of the measures. Most cluster analysis procedures try to
measure the '"similarity' of objects within a class, and then try to group
the objects so as to maximize within-class similarity. Unfortunately, the

appropriate measurc of similarity is a subject of some controversy. It
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would be desirable to derive a cluster znalysis system without arbitrary
assumptions about similarity. Such a system will be presented in this
paper.

Since the objects within a class differ from one another, it is
rcasonable to assume the existence of a probability distribution of
chavacteristics for a population belonging to this class. Elements of
a different class will have a different probability distribution of
characteristics. The combined population taken from all classes will
have a probability distribution which is a mixture of distributions.

The problem is to identify and describe the component distributions from
a sample drawn from the mixture. Before it is possible to solve this
problem, some assumptioqs must be made about the forms of the component
distributions. For example, the component distributions are usually
assuned to be unimodal. The purpose of classification methodology is to
take a complicated multi-modal distribution and analyze it into simple
familiar components. Therefore, the component distributions can usually
be assumed to be standard statistical distributions with unknown para-
meters. The classification problem can then be solved by standard
statistical techniques of parametric estimation. This is the approach
taken in the present paper.

Over 70 years ago Karl Pearson (1894) used the method of moments to
estimate the parameters of a mixture of two univariate normal distributions.
Maximum-1likelihood methods for a special case of the same problem were
presented by Rao (1952). Studies of mixtures of univariate discrete dis-

tributions have been reviewed by Blischke (1963). Maximum-likelihood (ML)
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estimation procedures for mixtures of multivariate normal distributions
were presented by Wolfe (1965,1967). Similar ML estimation methods were
presented by Hasselblad (1966) for univariate normals, and Cohen (1967)
developed simplified moment estimators for the univariate normal case.
Moment estimators for various special cases of mixtures of multivariate
normals have been presented by Cooper (1967). Stanat (1968) and Sammon
(1968) developed multivariate generalizations of Medgyessy's (1961) methods
for estimating the parameters of a mixture from a Fourier approximation

to the sample distribution.

Lazarsfeld's '"Latent Structure Analysis' (1959) is closely related
to the mixture analysis problem. In '"Latent Class Analysis," the observed
contingencies among several dichotomous variables are explained by
assuming the population is a mixture of ''latent classes' within each of
which ;;e variables are independently distributed. Gibson (1959) succeed-
ed in generalizing Lazarsfeld's model to mixtures of spherical multi-
variate normal distributions.

This paper summarizes this author's previous work on mixtures of
multivariate normal distributions and generalizes the theory to mixtures of
multivariate distributions of almost any given form. The approach is exclu-
sively that of maximum-likelihood estimation. Although other procedures

are valuable in special cases, maximum-1likelihood methods seem to be the
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easiest to generalize and the most efficient in the way they usc the in-
formation in the sample. They probably have been overlooked in the past
because of the amount of computation required to solve the ML equations
numerically. Computation costs are no longer prohibitive wi*" modern
electronic computers, as we shall illustrate by presenting thc ML solution
obtained in one minute to the classic Fisher Iris mixture problem.
Z. GENERAL MIXTURE ANALYSIS

Let al(x,el), az(x,ez), e, ar(x,or) be r probability distri-

butions defined on an m-dimensional space of random vectors:
X = (XI’XZ’ g e - Xm)

Assume each ag is a twice differentiable function of its paramcters,

= )
O (651’852’ ’ OSq‘

Suppose a mixture of distributions is formed by taking proportions
{As} of the population from types {as}. The probability distribution

of the mixture is given by

T
f(x) = L Asas(x,os), (2.1)
[

T
where I A =1 . (2.2)
S

The '"'probability of membership" of a vector x in type s can be
defined as
P(s)-P(x]s) _ Asas(x’es)
P(x) f(x)

P(s|x) =

i

1
|
!
|
i
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Suppose a sample of N random vectors is drawn from the mixture.

The kth random vector is represented by

X = Gypokops o v o0 X

The maximum-likelihood estimates of the parameters are those values

of {As,es} which maximize the likelihood of the sample,

N
log L =¢ log f(x,),
k=1

S

T
subject to the constraint I x =1
s=1

Using a Lagrangian multiplier w, we form the function

N T
log L = ¢ log f(xk) - w(Z 2 -1
S
k= 1 s=]

The necessary equations for maximum likelihood are obtained by

setting the derivatives of log L” to zero as follows:

. N
) ;gg L = 5 1 e
S k

. N A d(a)

and 9 log L” _ 5 — 3L _ 9
a8 . f(x,) 38_.
si k=1 k si

9 log L~ .
LAl I P(s|x) - wa =0
5 k=1
S
5

(2.4) ,
(2.5)

3%

{
(2.6)

o
(2.7)

i
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Summing across s and using (2.1} and (2.2), we find that w=N.

After a little algebra on equation (2.7), we obtain the following:
Theorem 1 The maximum-likelihood estimatc of the proportion of a mixturc
from a given type is cqual to the sample mean of the probability of
membership of the objects in that typc; and the likelihood ecquation is

given by:

N
= = I P(5|xk) . (2.8)
N

The concept of probability of membership also helps to clarify
equation (2.6). When substitution is made in (2.6) from (2.3}, the result
is the following:

Theorem 2 The cquations for the maximum-likelihood estimates of the

parameters oi the distributions comprising a mixture arc given by:

N a log a
3 log L s _ > g
— z P(s|xk)- T 0. (2.9)
si k=1 s

If the entire population were drawn from onc type, O the ecquations

for the maximum-1likelihood estimates of 0g would be

N g log ag

. ————— =0 . Thus the cquations for the ML
96 .

k=1 si

estimates of the parameters of a mixture arc the weighted averages of the
expressions used in obtaining ML estimates for pure types, where the
weights are the probabilities of membership.

Usually the number of types, r, is only a hypothesis which can be

tested against an alternative hypothesis of r” types by finding maximum-

0o
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likelihood estimates under both hypotheses and testing the likelihood
ratio by the formula x° = -2 log (Lr/Lr‘) with degrees of freedom equal

to the difference in the number of parameters estimated. Likelihood

T D S T TR

ratio tests may also be used to test alternative hypotheses concerning
the forms of the component distributions. Of course the distribution

of the logarithm of the likelihood ratio is approximately chi-square for

large samples only.

In most cases, cquations (2.8) and (2.9) will have to be solved

numerically. For this purpose and also for the purpose of obtaining
confidence intervals, it is desirable to have some approximation to the
information matrix:

I ’ I

A A0 . (2.10) ¥

IG)\ , 166 )

where I is partitioned into the sub-matrices I, ,1..,I I defined as

AA?TA6° 70X’ 7000
I _{F(alogL 3 MgL)}
AT 3 3x
S p

N { L E(P(s|x) P(p|x))} (2.11)

=R

3 log L 3 log | 1 o log o ‘

Hﬂ ={t( M 30 . )} =N { T t(P(ﬂx)P@|U 7%—7—2)}(112) j
S pJ S Pj 4 !
3 log a_ 3 log a |

_).. (3 log L 9 log L ~ . g p\\ (2.13)
Toe '{L( 36 . O )} T N{L(f’(SIX)P(pIx) T 5 )} i
> LY si pj
The submatrix IGA is the transpose of IAO' Multidimensional confidence

ellipsoids can be developed with the help of the inverse of the infor-

mation matrix

v=1l o, (2.14)

[




which gives the large-sample dispersions of the ML estimators. The ML
equations (2.8) and (2.9) can be solved iterativecly by the "method of

scoring" (Kale, 1962) using the following equations:

| N
] = Vo p k=1 (2.15)
{88, ) N > log a
{J i"[p|}¢k] _JF'_L}
k=1 P

where {AAS} and {Aesi} are column vectors for the increments in the estimates
used in the next numerical iteration. .

In most cases the expectations in the information matrix involve
integrals which are impossible to evaluate in closed form and difficult
to approximate by series. The usual approach has been to cstimate the

information matrix from the sample, replacing the expectation symbol L

N
L . This approach is satisfactory if the infor-
k=1

mation matrix is to be calculated only once for the purposc of obtaining

in (2.11-2.13) by 1
confidence regions. It is prohibitively expensive if T has to be re-
estimated many times during the iteration (2.15). Some alternative
iteration techniques will be developed in the next section.

- 3. ITERATION METHODS

Fortunately certain approximations are oftcn possible when solving
mixture problems numerically. First let us consider a limiting case.

When the component types of a mixture arc widely separated, each point

will have a probability of membership closc to unity for one of the types

Sttt Bttt st Il a2 i i 5 s




and nearly zero for the other types. In other words, the probabilities
of membership come close to defining a partition of the sample points into

discrete clusters. The product of two probabilities of membership can be

then approximated by

P(s|x)P(p|x) ~ épSP(slx), (3.1)
|
; where ¢ is the Kronecker delta.
i
Wi 1s approximation is inserted into the information matrix the
§
resc |
t
# EPS
, gy ol b g .
s
1 1)6'\, 0
3 log a 9 log a
Toe ™ Ngéps F‘( Y 36, P(Sl")>
si sj
I The information matrix for the mixing proportions is seen to be
approximately diagonal, and since IAGWO , the iteration for the mixing
proportions can be carried out independently of the iteration for the
other parameters. The approximation for Iee is seen to be 1
169 . épsls}’
where I_ is the information matrix of the parameters {Bsi} for a single
observation from a pure distribution, a . Thus, if the distributions do
not overlap very much, the itcrations for the parameters of one type do
&
not involve terms from the other types.
K
§
¥
%
) 9
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Equation (2.15) then reduces to the two approximations:

s °

Plslx) =5

-1 .% ; 3 log o
k=1 8

~—
=
w
=
——
n
w

The first cquation can be put in the form

P(s|x

),
=] k

)=

= A+ AN =
S S

M 2

PN

where A; is the estimate of As on the next iteration. This is precisely
the same form as (2.8), indicating that a pood iteration technique is

simply to calculate the right hand side of (2.8) with old estimates of the
paramcters and thus obtain improved estimates on the left side. For certain
distributions (3.3) also becomes extremely simple.

The approximations introduccd from (3.1) do not affect the final
solution of the likelihood equations, they only affect the rate of
convergence (or lack of it) in the iteration process. Lven when there
is an appreciable amount of overlap, the information matrix often is
dominated by its diagonal to a sufficient degree that the simplificd
iteration methods remain useful.

The preceding results have been derived for an extreme case; let us
scc what can be derived under a less restrictive assumption. The fact
thut many of the off-diagonal elements of [ tend to vanish in the cxtreme

casc of non-overlapping distributions makes it plausible to assume that

in many casces of interest, the diagonal will dominate the matrix, i.c.

10




for every i. (3.4)

When this assumption holds, Issacson and Keller (1966,p.122) show that

it is possible to acceclerate convergence of the iteration process without
explicitly calculating any part of the information matrix. The most
successful iteration method for mixture problems empirically tested

as of this writing has been a modification of Aitkens' acceleration
process applied to equations (2.8) and (2.9) as if they were independent.

Let As’ A;, Ag represent three successive iterations with equation

(2.8) and
)\ll_)\;
let D= max (I - 73775) . (3.5)
l<s<r s s

~

Then the accelerated estimate of AS on the next iteration is defined as
o= Loy an (3.6)
s D s s S

Suppose some simplificed iteration scheme (such as (3.3)) has been

= T

derived from (2.9) for the paramecters {0 .} and let 0 _., 67, .
si si si s

represcent three successive iterations.

8”._6‘.

S1 51
L .= - —_—— :
ot b =1 - (3.7)
S1 S1

Then the accelerated estimate of Osi for the next iteration is defined as

1
" — " - 2 "
Osi = b, (85 0si) AL (25

11

L




1 It is helpful to place sume minimum value (such as .05) on the values
that Dsi and D are allowed to attain, and to prevent D from taking on a
value so small that some A;' becomes negative or greater than one.

The above methods all require initial estimates to lie within some
radius of convergence of the true maximum-likelihood values; otherwise
iterations will diverase. The methods discussed represent only a few of
a large number of possible numerical technigues; 1t scems quite possible
that better methods for mixturc problems will be developed.

4. MULTIPLE SOLUTIONS AND INTTIAL ESTIMATES
The likelihood cquations defined by Theorems @ and 2 nave a large

number of solutions corresponding to absolute maxima, relative raxima,

saddle points and minima of the ltikelihood function. It is casy to sce
that there are at least r! absolute maxima, because it T is any permutation

r of the intcgers 1, 2. . . . , r and {\q,og} is an absolute maximum-likeli-

hood solution, then another absolute maximum is defined by the mapping

Between the absolute maxima will be relative minima and saddle points, |
which also satisfy the likelihood ecquations. For cxample, tf an absolute 1
maximum-likelihood solution is available for r-1 types, then r-1 families 1
of saddle-ridge solutions tor r types can be pgenerated by scetting the

paramncters of the rth type equal to those of onc of the otiher types. If |

| two tvpes have identical paramcters (Or=0<)’ then the likelihood remains

unchanged as long as Ag+Ar=constunt. Additional solutions can be gencrated




by restricting three of the types to have identical parameters, then four *

of the types, then two sets of two types, and so forth. These degenerate

solutions are easily spotted, and it is not difficult to program a computer

b i, B

to avoid them as well as the relative minimum likelihood solations.

o

k 3 There are many other relative maxima which are more difficult to
identify as such. 1If an absolute maximum-likelihood solution is available
for r types, then onc way of gencrating initial estimates for an r-1 type

solution is to combine two of the clusters into a larger one with greater

dispersions and a centroid somewhere between the two component clusters.

There are (;) ways of selecting two out of r clusters. Not all of these ]
different initial estimates will result in different solutions after

iteration, but experience has shown that some of them will. Given two or

BYS
pon

more solutions, it is always possible to choose the ”besf“ by selecting
the one with the largest likelihood. Unfortunately, there is no algorithm
for generating all possible solutions or for proving that a given soluticn i
is an absolute maximum. 1
Most other cluster-seeking algorithms suffer from the same difficulty:

they can converge on a sub-optimal solution. Ball (1967) and Friedman

and Rubin (1967) rcport they they can obtain different solutions depending
on the initial estimates. The practical answer is to try a variety of
initial estimates on any given problem and to use various heuristics for
generating plausible initial estimates. Some of these heuristics are Ball
and Hall's "cluster splitting," and "cluster lumping,' Friedman and Rubin's

" Forgy's '"rcassignment passes (1965)," and random partition- {

"forcing passes,
ing. A strong case can be made for including a human being in the system

for gencrating initial estimates. Ball and Hall's PROMENADE (1967) uses

dimimiicn
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CRT display consoles to produce on-line graphical representation of
sample scatter. The console operator can rotate the display through
several dimensicns and can select initial estimates by pointing to trial
cluster centroids with a pointing device.

The generation of initial estimates is a whole field in itself. We
will not pursue it further in this paper but will merely assume that
initial estimates for the iterative maximum-likelihood procedures have
been supplied by some other source. All of the various clustering
techniques developed by other investigators are valuable potential sources
of initial estimates.

5. NORMAL MIXTURE ANALYSIS
To illustrate the general principles of ML estimation for mixtures,

let us consider the case of mixtures of multivariate normal distributions.

m 1
s o) 1 .
Let a (X, ,07)=(2m) |os| exp {- F(x-u.) OS(X-uS)}, (5.1)
s_ S _sTh i
where g = {cij} and 0 =0 —{os }.

The derivatives are given as follows:

3 log o 2 ij
g o5 -3 ol (X.-u_.), (5.2)
BV .
si
d log o i :
and j = (1‘ 2 )(OIJ‘(XI-USI)(XJ-USJ)) . (5'3)

e
390
[
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Substituting the derivatives in (2.9) and doing a little algebra,

we find the following:

Theorem 3 The likelihood equations for the parameters of a mixture of
multivariate normal distributions with unequal covariance matrices are

equivalent to the following equations:

. 1 N -
o= § i=l P(s|xk) (5.4)
R PRI
w. o= = I  P(s|x)X, (5.5)
SL Na_k=l k7 ik
S
°s 1 5 " !
.. = — 1 P(S|X X - ) (X -u ) (5.6)
ij NAS k=1 k’ ik "si’t jk Tsj

Thus the equations for estimating the parameters of a mixture of normal
distributions are closelv analogous to the equations for estimating the
parameters of a pure type except that each sample point is weighted by
its probability of membership.

When the types have a common covariance matrix o, so that 0°=0 for
l<s<r, then equation (2.9) is no longer valid, since it was derived under
the assumption that the parameters of different types were not functionally

related. The correct likelihood equation is

ij
T g
aLi. = 3 aLi‘ i =0,
30 J s=1 ach ] J
or L (1 Eiia N{ . g X X +1 - }= 0
— = = ..~ — . . M _.H_.}=
ao1J 2 ij N k=1 ik jk s=] ° si sj
15




These results are summarized in the following:
Theorem 4 The likelihood equations for the parameters of a mixture of
multivariate normal distributions with a common covariance matrix are

equivalent to equations (5.4), (5.5) and the following:

N P

I X, X., - % XAy .u.. . (527%)
k S-

The equations of Theorems 3 and 4 define a simplified iteration
method which is optimal in the limiting case of very widely separated
types and which can be accelerated in many other cases by applying
aquations (3.6) and (3.8) to the mixing proportions and the means. Two
computer programs have been written to implement this procedure: the
program for Theorem 3 is called NORMIX and the program for Theorem 4 is
called NORMAP. Some results of the programs will be presented in
section 7.

6. LATENT CLASS ANALYSIS

The general principles of mixture analysis given in Theorems 1 and 2
are applicable to a wide variety of distributions. The first application
involved continuous distributions. Next, let us consider the quite
different discrete distribution employed in Lazarsfeld's 'Latent Class"

model for attitude item responses:

lSee Anderson (1959) for a discussion of ML estimation and Stanat (1968)

for Fourier transform estimation procedures.




e oA

m X, 1-X,
6.1
as(x,us) = n " 1 (1-u_.) 1, where Xi=0 or 1. : )
i

= - . (6.2)
ausi Usi(l usi)

Substituting this derivative in (2.9), we obtain

d log L _ Vs b
gy b (-ngy) UsiT W

= ™~ Z

P(s|xk)Xik] = 0. (6.3)

s1 s k=1

Setting the term in brackets to zero gives us the following remarkable
fact.
Theorem 5 The maximum-likelihood estimates for the parameters of a
mixture of latent classes are soluticns to equations (5.4) and (5.5).

Thus, the estimation equations for this discrete distribution are
formally identical to those for a multivariate normal distribution, the
only difference being that %(slxk) is calculated with (6.1) instead of
(5.1).

7. EXAMPLES OF COMPUTER ANALYSES

This section presents some results from computer runs with programs
NORMAP (normal mixtures with common covariance matrix) and NORMIX (normal
mixtures with different covariances matrices).2 Both programs arec written

for flexible input so as to be suitable for general use in a statistical

library.

3

“Both programs are written in FORTRAN 63 for the CDC 1604 and will
shortly be available from CO-OP, Control Data Corporation, 3145 Porter
Drive, Palo Alto, California 94304,

17
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The progra s are currently limited to 10 variables, 1060 individuals,
and 20 types. NORMAP is so named because it produces a ''map" of the
data by generating a printer-plot of the sample points in discriminant-
space. In each example to be reported, NORMAP required about one minute
to estimate parameters under four hypotheses concerning the number of
types, while NORMIX required as much as nine minutes. Several runs werc
made with different initial estimates. In those cases where multiple
solutions were obtained, only the greatest likelihood results were used
in the analysis.
7.1 1Iris data

The classic Iris data published by Fisher (1936) have been used by
Kendall (1965) and Friedman and Rubin (1967) for illustrating their
cluster analysis methods. Of course Fisher knew the correct classifi-
cations of each of the 150 irises in his sample, but the cluster analysis
studies and our mixture analyses attempt to discover and describe the
types of irises without using any a priori classification information.

NORMAP and NORMIX were run on the data using hypotheses of one type,
two types, three types, and four types. Each hypothesis was tested
against the previous one with x2 = -2 log(Lr_l/Lr) and degrces of freedom
equal to the difference in the number of parameters in the two hypotheses.

The results are given in Table 1.

18




T T T ra—— ™ T T T T T P WY P

e b e S

19

ﬁ
. zo0- il Y peo” vo-ct /€
g 01> re 89 g 01> 61°08 €/2
g-0T> ) B £ g-01> £6°991 /1
d (s1="3P) ;X d (s="3-p) ;X dATIRUILITY/sTsaylodiy 11nN
XIIWNON dYINJON sadAL 3o -ox

S1SAL JADNVOIJINODIS SIYI-Y¥IHSId "1 FT1dVl

=i s i i i L 5 -




The significance tests definitely indicate that the hypothesis of
one type should be rejected against the alternative of two types, and
that the hypothesis of two types should be rejected against the alternative
of three types. It is not quite so clear whether the hypothesis of three
types should be rejected against the alternative of four types. Perhaps
the obtained values of four types are due to a slight skewness in the
component distributions, or perhaps the sample size is sc small that the
distribution of the log likelihood ratio differs significantly from its
asymptotic chi-square distribution. The results seem to show room for
improvement in the hypothesis-testing part of the analysis.

Table 2 presents the maximum-likelihood estimates of some of the
parameters obtained by NORMAP and NORMIX for three types and comparcs them
with the estimates obtained by Fisher when he used a priori knowledge of
the correct classifications. The row labeled '"number misclassified" gives
the number of sample points whose highest probabilities of membership
occurred in types different from their actual species. Both NORMIX and
NORMAP gave estimates very close to the Fisher values, with NORMAP slightly
better than NORMIX in most cases. The three flowers '"misclassified" by
NORMAP were identified as numbers 71, 84, and 134. These are precisely
the same plants which Friedman and Rubin (1967) misclassified by their
|T|/|W| maximization procedure. This is not surprising, becausec NORMAP
could be considered to be a continuous version of the discrete partition-
ing procedure of Friedman and Rubin. The two methods tend to coincide in

the limiting case of widely separated types.
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7.2 Artificial clusters

The second example involves three artificially generated clusters
consisting of 100, 75, and 50 points in two dimensions. The clusters
were deliberately constructed to have multivariate normal distributions
with different covariance matrices. Also, the clusters overlup somewhat
more than the iris species did. The raw data, scatter plots and some
computer printouts are available in a previously published report (Wolfe,
1965).

The results of the hypothesis testing phase of the analysis are
given in Table 3. A routine application of the x? likelihood ratio test
would indicate the existence of more than three types in the data. However
an examination of the parameter estimates for the '"fourth' cluster (mnoc*
shown here) revealed that NORMIX had estimated the fourth cluster's mixing
proportion to be .030 - the equivalent of a sample of seven points. The
chi-square approximation is inaccurate for this sample size. Lvidently,
further research is required to develop appropriate significance tests
for small samples.3

The parameter estimates for three types are given in Table 4.
NORMIX shows a clear superiority in the accuracy of its estimates, as
would be expected in a situation where the types have unequal covariance

matrices.

3Onc possibility is a better approximation of the form
2
a _ . .
X = -2 log Q/(1+ H) where Q = (Lr-l/Lr)’ n =N Amin’ and a is a constant
to be determined by methods similar to those given by Lawley (1956), or if

necessary by Monte Carlo methods. The examples in this paper scem to

require a value of avl0.
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8. CONCLUDING REMARKS

By reformulating cluster analysis as a problem in estimation for
mixed distributions, we hope to have put the subject on a more rigorous
foundation. No "similarities" or '"distances' nced to be assumed a priori.
The closest analogy to a "similarity" in our system is the probability of
membership of a point in a cluster, but this probability is the result
of an iterative solution to the likelihood equations rather than an arbi-
trarily given function. ‘The partitioning methods of cluster analysis are
seen to be approximations to maximum-likelihood solutions, valid when the
clusters are widely separated. Mixture analyvsis is a "smoothed" version
of cluster analysis. The difricult combinatorial preblems entailed by
discrete partitioning methods arc avoided by weighting the sample obser-
vations with a continuous probability of membership function.

The feasibility of the iterative solution of the maximum-likelihood
cquations has been demonstrated by the examples in this paper. The
iterations involve re-calculating the probabilities of membershin of every
point in cach type. The amount of computation is more extensive than
statisticians are accustomed to, but it is of the same order of magnitude
as many other cluster analysis systems.

Maximum-likelihood estimation procedures have been used throughout
the paper because of the case with which they can be generalized to multi-
variate distributions of various forms. The general theory of mixtures
has been applied to the multivariate normal and the multivariate Bernoulli
distributions. Considerably more work nceds to be done "o applying the

theory to other distributions, in developing signithicance tests for small




samples, and in finding confidence regions. Further research is desirable

in the areas of iteration methods, initial estimation procedures and
multiple solutions. Nevertheless, we believe that a good beginning has
been made towaid the development of logical and practical procedures for

the analysis of mixtures.
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