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SUMMARY 

A.    Problem 

• 

. 

This report is addressed to the problem of developing procedures for 
clustering individuals or objects into similar "types."   Such procedures 
could be useful in producing an objective analysis and revision of the 
Navy rating structure by classifying positions with similar patterns of 
skill requirements into the same occupational category. 

B. Background and Requirements 

1. Cluster analysis methods of various kinds have been employed in the 
study of individual differences, in the taxonomy of biological organisms, 
in the classification of documents for information retrieval, in the study 
of Navy enlisted basic skill patterns, and in unsupervised pattern recog- 
nition of electronic signal patterns. 

2. Recent interest in this area has been stimulated by the advent of 
high-speed digital computers capable of carrying out cluster analysis 
automatically. However, most existing methods contain certain arbitrary 
factors or assumptions which are difficult to justify statistically. Since 
different methods can give different results, there is a clear requirement 
for the development of a technique which is rigorously derived from 
statistical theory. Such a technique was presented by Wolfe (1965,1967) 
for the special case of mixtures of multivariate normal distributions. The 
present report generalizes these methods to other distributions. 

C. Approach 

The approach involves reformulating cluster analysis as a problem in 
the estimation of the parameters of a mixture of distributions.    Maximum- 
likelihood (ML) methods are used exclusively because of the ease with 
which they can be generalized to multivariate distributions of various 
fonts. 

D. Findings 

1. Regardless of the shape of the distribution the maximum-likelihood 
estimate of the proportion of a mixture from a given type is equal to the 
sample mean of the probability of members'.ip of the objects in that type. 
The equations for the maximum-likelihood estimates of the parameters of a 
mixture are the weighted averages of the expressions used in obtaining ML 
estimates for pure types, where the weights are the probabilities of 
membership. 

2. The estimation procedures for normal mixtures with unequal co- 
variances, normal mixtures with equal covariances, and mixtures of latent 
classes are derived as special cases of the general theory. 

in 

■ 

■MM 



3. Various iteration techniques are discussed for obtaining numerical 
solutions to mixture problems. 

4. The examples of the results of two computer mixture analysis 
programs  (N0RM1X and NORMAP)  indicate that the theory is sound for large 
samples and that the procedures given in this paper are practical. 

E. Conclusion u 

A practical and statistically rigorous method of cluster analysis has 
been developed. 

F. Recommendations 

1. It is recommended that the computer programs NORMIX and NORMAP be 
used in Naval research studies requiring a cluster analysis of continuous 
measurement patterns. 

2. Further development of computer programs for clustering discrete 
data patterns is desirable. 

IV 
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1.     INTRODUCTION 

This paper is addressed to the problem which has been variously 

called cluster analysis,  Q-analysis,  typology,   grouping,   clumping,  class- 

ification,  numerical   taxonomy,  and unsupervised pattern recognition.    The 

variety of nomenclature may be due to the importance of the subject in 

such diverse fields  as psychology,  biology,  signal detection,  artificial 

intelligence,  and information retrieval.    Perhaps this multiplicity of 

names  also indicates a certain confusion in the basic definition of the 

problem.    This paper attempts  to clarify the  formulation of the problem, 

with a resulting improvement in conceptual simplicity and statistical 

rigor. 

In classification methodology,  one is generally given a sample of N 

objects or individuals,   each of which  is measured on m variables.    From 

this  information alone,   one must devise a classification scheme for 

grouping the objects  into r classes.    The number of classes and the 

characteristics of the  classes are to be determined.     If all the objects 

in a given class were  identical  to one another,   the problem would be 

simple.     However,   in the usual  situation the objects  in a class differ on 

most or all of the measures.    Most cluster analysis procedures try to 

measure the "similarity" of objects within a class,  and then try to group 

the objects so as to maximize within-class similarity.     Unfortunately,   the 

appropriate measure of similarity is a subject  of some controversy.     It 

MMH^HB 



would be desirable to derive a cluster analysis system without arbitrary 

assumptions about similarity. Such a system will be presented in this 

paper. 

Since the objects within a class differ from one another, it is 

reasonable to assume the existence of a probability distribution of 

characteristics for a population belonging to this class. Elements of 

a different class will have a different probability distribution of 

characteristics. The combined population taken from all classes will 

have a probability distribution which is a mixture of distributions. 

The problem is to identify and describe the component distributions from 

a sample drawn from the mixture. Before it is possible to solve this 

problem, some assumptions must be made about the forms of the component 

distributions. For example, the component distributions are usually 

assumed to be unimodal. The purpose of classification methodology is to 

take a complicated multi-modal distribution and analyze it into simple 

familiar components. Therefore, the component distributions can usually 

be assumed to be standard statistical distributions with unknown para- 

meters. The classification problem can then be solved by standard 

statistical techniques of parametric estimation. This is the approach 

taken in the present paper. 

Over 70 years ago Karl Pearson (1894) used the method of moments to 

estimate the parameters of a mixture of two univariate normal distributions. 

Maximum-likelihood methods for a special case of the same problem were 

presented by Rao (1952). Studies of mixtures of univariate discrete dis- 

tributions have been reviewed by Blischke (1963). Maximum-likelihood (ML) 

 ^* . .. 
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estimation procedures  for mixtures of multivariate normal distributions 

were presented by Wölfe  (1965,1967).    Similar ML estimation methods were 

presented by Hasselblad  (1966)  for anivariate normals,  and Cohen   (1967) 

developed simplified moment estimators  for the univariate normal  case. 

Moment estimators for various special  cases of mixtures of multivariate 

normals have been presented by Cooper  (1967).     Stanat   (1968)  and Sammon 

(1968)  developed multivariate generalizations of Medgyessy's   (1961) methods 

for estimating  the parameters of a mixture from a Fourier approximation 

to the sample distribution. 

Lazarsfeld's "Latent Structure Analysis"  (1959)  is closely related 

to the mixture analysis problem.    In "Latent Class Analysis," the observed 

contingencies among several dichotomous  variables are explained by 

assuming the population is a mixture of "latent classes" within each of 

which the variables are independently distributed.    Gibson (1959)   succeed- 

ed in generalizing Lazarsfeld's model to mixtures of    spherical multi- 

variate normal  distributions. 

This paper summarizes this author's previous work on mixtures of 

multivariate normal distributions and generalizes  the theory to mixtures of 

multivariate distributions of almost any given form.    The approach is exclu- 

sively that of maximum-likelihood estimation.    Although other procedures 

are valuable in special cases, maximum-likelihood methods seem to be the 

! 
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easiest to generalize and the most efficient in the way they use the in- 

formation in the sample. They probably have been overlooked in the past 

because of the amount of computation required to solve the ML equations 

numerically.  Computation costs are no longer prohibitive wi"'-. modern 

electronic computers, as we shall illustrate by presenting the ML .solution 

obtained in one minute to the classic Fisher Iris mixture problem. 

1.  GENERAL MIXTURE ANALYSIS 

Let a.(x,6.), a-(x,6 ), . . . , a (x.O ) be r probability distri- 

butions defined on an m-dimensional space of random vectors: 

x = (Xj.X,,, . . . , X^) 

Assume each a    is a twice differentiablc function of its parameters, 
s ' ' 

9     =   (6   ,,6  -,...,   6     )   . s       v  si     s2 sq 

Suppose a mixture of distributions is formed by taking proportions 

{X   } of the population from types [a  }.    The probability distribution 

of the mixture is given by 

f(x) =  I   A^^y.U^, (2.1) 
s = l 

r 
where E  A  = 1  , (2.2) 

s = l 

The "probability of membership" of a vector x in type s can be 

defined as 
nr , n<-  I  1     A a (X.O ) 

p(s|x) = 
Pts).P(x|s) s  s s^  s [27)) 

P(x) f(x) 
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Suppose a sample of N random vectors is drawn from the mixture. 

The k      random vector is represented by 

Xk  =   (Xlk'X2k'   •   •   •   '  X
mk)     • 

The maximum-likelihood estimates of the parameters are those values 

of {A   ,9   } which maximize the  likelihood of the sample, 

N 
log  L =  Z log  f(x  ), 

k=l K 

subject  to the constraint E     A     =   1 
S=l 

Using a Lagrangian multiplier w,  we  form the function 

N r 
log L' =    Z        log f(x, )   - ud    A -1) 

k= 1 K s=l  S 
(2.4) 

The necessary equations for maximum likelihood are obtained by 

setting the derivatives of log L' to zero as follows: 

3 log L' 
9A s 

N 
=  E 1 

k=]   f(xk) 
as(xk) - ^ = 0 • 

(2.5) 

an 9 log L/ 
99 . si 

A    9(a ) s     s 
N 

k=l  ^V  aesi 
= 0 (2.6) 

Multiplying (2.5) by A , and substituting from (2.3), we have 

A  ß  = Z P(s x. ) - uA =0 1 ' k    s 9A k = l 
(2.7) 
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Summing across s and using (2.1) and (2.2), we find that u=N. 

After a little algebra on equation (2.7), we obtain the following: 

Theorem 1  The maximum-1ikelihood estimate of the proportion of a mixture 

from a given type is equal to the sample mean of the probability of 

membership of the objects in that type; and the likelihood equation is 

given by: 

1 N 

i E   P(s x )  . 
N k=l      k 

(2.8) 

The concept of probability of membership also helps to clarify 

equation (2.6).  When substitution is made in (2.6) from (2.3), the result 

is the following: 

Theorem 2 The equations for the maximum-likel iiiood estimates of the 

parameters oi the distributions comprising a mixture arc given by: 

a log L 
3 6 . 

si 

N 
I 
k=l 

3 log a 
P(s|xk). 30 

= 0. (2.91 
si 

If the entire population were drawn from one type, r< , the equati ons 

for the maximum-likclihood estimates  of 0    would be 
s 

N  3 log a 
7. 
k=l 

30 . 
si 

Thus the equations for the ML 

estimates of the parameters of a mixture are the weighted averages of the 

expressions usrj in obtaining ML estimates for pure types, where the 

weights arc the probabilities of membership. 

Usually the number of types, r, is only a hypothesis which can be 

tested against an alternative hypothesis of r' types by finding maximum- 
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likelihood estimates under both hypotheses and testing the likelihood 

ratio by the formula x2 = -2 log (L /L ,)  with degrees of freedom equal 

to the difference in the number of parameters estimated.  Likelihood 

ratio tests may also be used to test alternative hypotheses concerning 

the forms of the component distributions. Of course the distribution 

of the logarithm of the likelihood ratio is approximately chi-square for 

large samples only. 

In most cases, equations (2.8) and (2.9) will have to be solved 

numerically.  For this purpose and also for the purpose of obtaining 

confidence intervals, it is desirable to have some approximation to the 

information matrix: 

I 
\\ 

6A 

1 
(2.10) 

6G 

where I is partitioned into the sub-matrices I,s»I,Q»IQ,>IQQJ defined as AA   Au   ÜA    DO 

■u'H^^)} -"I ^rB(p(sU, P,p|x,)}  (2.11) 
1 x    s      P s P 

■xe'H1-^ Hf^)} -»   {   T  B(P(S|X)P(P|X,!5^)}C2.I2, 
1  X   s      P.i s  *             PJ  ' ' 

v  x    SI      PI ' ' '                si       PJ   ' 

3) 

The submatrix I   is the transpose of I  . Multidimensional confidence 
QX X0' 

ellipsoids can be developed with the help of the inverse of the infor- 

mation matrix 

V = I 
-1 (2.14) 
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which gives the large-sample dispersions of the ML estimators. The ML 

equations (2.8) and (2.9) can be solved iterativcly by the "method of 

scoring" (Kale, 1962) using the following equations: 

= V (2.15) 

where (AA } and {A0 .} are column vectors for the increments in the estimates 
s       si 

used in the next numerical iteration. 

In most cases the expectations in the information matrix involve 

integrals which are impossible to evaluate in closed form and difficult 

to approximate by series.  The usual approach has been to estimate the 

information matrix from the sample, replacing the expectation symbol 1. 

1 N 
in (2.11-2.13) by rr Z  . This approach is satisfactory if the infor- N k=l 

mation matrix is to be calculated only once for the purpose of obtaining 

confidence regions.  It is prohibitively expensive if I has to he re- 

estimated many times during the iteration (2.IS). Some alternative 

iteration techniques will be developed in the next section. 

3.  ITERATION METHODS 
Ü 

Fortunately certain approximations are often possible when solving 

mixture problems numerically.  First let us consider a limiting case. 

When the component types of a mixture are widely separated, each point 

will have a probability of membership close to unity for one of the types 
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and nearly zero for the other types.  In other words, the probabilities 

of membership come close to defining a partition of the sample points into 

discrete clusters. The product of two probabilities of membership can be 

then approximated by 

P(s|x)P(p|x) %  6 P(s|x), 
ps (3.1) 

where  6       is the Kronecker delta, ps 

'ms approximation is   inserted into the information matrix the 

resi. i ( 

I  ^ N  -P- AA      ) A 
I  s 

he-   0 

l„„ ^ 
i /3 log a  3 log a 

N|6PS E(~^7r ~^~P(s|x) 

The information matrix for the mixing proportions is seen to be 

approximately diagonal, and since I^^O , the iteration for the mixing 

proportions can be carried out independently of the iteration for the 

other parameters. The approximation for IQQ is seen to be 
96 

Ie6^ {N Vs}' 
where I is the information matrix of the parameters {6 .} for a single 

s ' si & 

observation from a pure distribution, a . Thus, if the distributions do 

not overlap very much, the iterations for the parameters of one type do 

not involve terms from the other types. 



^w 

Equation   (2. IS)   then reduces to the two approximations: 

1 
N 

AA     =  -     I Pfs  X. )   -   A     . 
S       N     k=l k S 

{'4 r1    ! i    •< 
s 

N 9   log   a 

K = 1 Si 

(3.2) 

(3.3) 

The first equation can be put in the form 

1 N 

X's   =   As+ AAs =- ^ P(s|xk). 

where X' is the estimate of A on the next iteration. This is precisely 
s s ' 

the same form as (2.8), indicating that a good iteration technique is 

simply to calculate the right hand side of (2.8) with old estimates of the 

parameters and tiius ohtain improved estimates on the left side.  For certain 

distributions (3.3) also becomes extremely simple. 

The approximations introduced from (3.1) do not affect the final 

solution of the likelihood equations, they only affect the rite of 

convergence (or lack of it) in the iteration process.  I.ven when there 

is an appreciable amount of overlap, the information matrix often is 

dominated by its diagonal to a sufficient degree that the simplified 

iteration methods remain useful. 

The preceding results have been derived for an extreme case; let us 

see what can be derived under a less restrictive assumption. The fact 

that many of tiic off-diagonal elements of 1 tend to vanish in the extreme 

case of non-overlapping distributions makes it plausible to assume that 

in many cases of interest, the diagonal will dominate the matrix, i.e. 

10 
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13 
for every i (3.4) 

When this assumption holds,   Issacson and Keller  (1966,p.122)  show that 

it  is possible to accelerate convergence of the iteration process without 

explicitly calculating any part of the information matrix.    The most 

successful iteration method for mixture problems empirically tested 

as of this writing has been a modification of Aitkens'   acceleration 

process  applied to equations   (2.8)   and  (2.9)  as if they were independent. 

Let  X   ,  X',   X" represent three successive  iterations with equation 

(2.8)   and 

let 
X"-X' 

D =  max     (1  - ~-i-) 
l<s<r X '-X s    s 

(3.5) 

Then the accelerated estimate of X    on the next  iteration  is defined as s 

X'"   = ~  (X"-X')+X" s D      s     s       s 
(3.6) 

Suppose some simplified iteration scheme (such as (3.3)) has been 

derived from (2.9) for the parameters (0 .} and let 0 ., 6'., 0". 1 si si       si      si 

represent three  successive   iterations. 

Then  the accelerated estimate of 0   .   for the next   iteration is defined as 
si 

V!   = i (0".   -   0'.)   +   0". 
si       D   , si si si 

si 
(3.8) 

■ 

Let I)  .   =   1 s 1 

e".-0'. 
SI      si 

0'. -e . 
si    si 

(3.7) 

11 
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It is helpful to place some  minimum value (such as .05) on the values 

that D . and D are allowed to atta'n, and to prevent D from taking on a 

value so small that some X"'  becomes negative or greater than one. 

The above methods all require initial estimates to lie within some 

radius of convergence of the true maximum-1ikelihood values; otherwise 

iterations will diverge.  The methods discussed represent only a few of 

a large number of possible numerical techniques; it seems quite possible 

that better methods for mixture problems will be developed. 

4.  MULTIPLE SOLUTIONS AND INITIAL I.STIMATLS 

The likelihood equations defined by Theorems 1 and 2  nave a large 

number of solutions corresponding to absolute maxima, relative r.axima, 

saddle points and minima of the likelihood function.  It is easy to see 

that there are at least rl absolute maxima, because if T is any permutation 

of the integers 1, 2, . . . , r and {A ,0 } is an absolute maximum-likeli- 

hood solution, then another absolute maximum is defined by the mapping 

s   T s 

0   ^    !JT,  ! s   I{s) 

Between the absolute maxima will be relative minima and saddle points, 

which also satisfy the likelihood equations. Vor  example, if an absolute 

maximum-1ikelihood solution is available for r-I types, then r-1 families 

of saddle-ridge solutions for r types can be generated by setting the 

parameters of the r  type equal to those of one of the other types.  If 

two types have identical parameters (6 ='),), then the likelihood remains 

unchanged as long as A +A ^constant.  Additional solutions can be generated 

12 
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by restricting three of the types to have identical parameters, then four 

of the types, then two sets of two types, and so forth. These degenerate 

solutions are easily spotted, and it is not difficult to program a computer 

to avoid them as well as the relative minimum likelihood solutions. 

There are many other relative maxima which are more difficult to 

identify as such.  If an absolute maximum-likelihood solution is available 

for r types, then one way of generating initial estimates for an r-1 type 

solution is to combine two of the clusters into a larger one with greater 

dispersions and a centroid somewhere between the two component clusters. 

There are (9) ways of selecting two out of r clusters. Not all of these 

different initial estimates will result in different solutions after 

iteration, but experience has shown that some of them will. Given two or 

more solutions, it is always possible to choose the "best1' by selecting 

the one witli the largest likelihood.  Unfortunately, there is no algorithm 

for generating all possible solutions or for proving that a given solution 

is an absolute maximum. 

Most other cluster-seeking algorithms suffer from the same difficulty: 

they can converge on a sub-optimal solution.  Ball {19b7)  and Friedman 

and Rubin (1967) report they they can obtain different solutions depending 

on the initial estimates.  The practical answer is to try a variety of 

initial estimates on any given problem and to use various heuristics for 

generating plausible initial estimates.  Some of these heuristics are Ball 

and Hall's "cluster splitting," and "cluster lumping," Friedman and Rubin's 

"forcing passes," Forgy's "reassignment passes (1965)," and random partition- 

ing.  A strong case can lie made for including a human being in the system 

for generating initial estimates.  Ball and Hall's PROMENADE (1967) uses 

13 
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CRT display consoles to produce on-line graphical representation of 

sample scatter. The console operator can rotate the display through 

several dimensions and can select initial estimates by pointing to trial 

cluster centroids with a pointing device. 

The generation of initial estimates is a whole field in itself. We 

will not pursue it further in this paper but will merely assume that 

initial estimates for the iterative maximum-likelihood procedures have 

been supplied by some other source. All of the various clustering 

techniques developed by other investigators are valuable potential sources 

of initial estimates. 

5.  NORMAL MIXTURE ANALYSIS 

To illustrate the general principles of ML estimation for mixtures, 

let us consider the case of mixtures of multivariate normal distributions. 

m 

Let as(x,ys,o
S)=(2Tr) 2|a |2 exp {- jCx-u.,)'^ (x-us) } ,   [5.1) 

where o = {o. .} and a =a  ={o }, ij      s      s 

The derivatives are given as follows; 

9 log as = E 

9M si j = l 
c^(XrPsj). (5.2) 

and 
9 log a 

3o ij 
= (l--li)^r(Vys.)(Xrusj)) (5.3) 

14 
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Substituting the derivatives in  (2.9)  and doing a little algebra, 

we find the following; 

Theorem 3 The likelihood equations for the parameters of a mixture of 

multivariate normal distributions with unequal covariance matrices are 

equivalent to the  following equations: 

N 

S ^    k=l 

1 
N 

si 
NX  k=l K     1K 

s 

(5.4) 

(5.5) 

s 
0.  . 

1J 

1 
N 

■4-1      p(slxkHXik-u ^(X   -,   ) 
NX    k=l k       lk    S1      }K    SJ 

(5.6) 

Thus the equations for estimating the parameters of a mixture of normal 

distributions are closely analogous to the equations for estimating the 

parameters of a pure type except that each sample point is weighted by 

its probability of membership. 

s 
When the types have a common covariance matrix o,  so that o =o  for 

Ij^s«^,  then equation   (2.9)   is no longer valid,  since it was derived under 

the assumption that the parameters of different types were not  functionally 

related.     The correct   likelihood equation  is 

or 

9L 

da ij 

3L 

8o IJ 

s = l     9o1J   Bo^ 
0, 

6. . N 

k=l ik jk 

r 
+  I 

s=l 
\i   .pi   .}= 0. 

.  si  sj 

15 
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These results are summarized in the following: 

Theorem 4    The  likelihood equations  for the parameters of a mixture of 

multivariate normal distributions with a common covariance matrix are 

equivalent  to equations  (5.4),   (5.5)   and the  following: 

1 N r 
a. .   = — Z    X..X.,    -£     A   p.p.   . 
ij       N ,   .   lk  IK .   s  si  si J k=l ■' s-1 J 

(5.7) 

The equations of Theorems 3 and 4 define a simplified iteration 

method which is optimal in the limiting case of very widely separated 

types and which can be accelerated in many other cases by applying 

equations (3.6) and (3.8) to the mixing proportions and the means.  Two 

computer programs have been written to implement this procedure: the 

program for Theorem 3 is called NORMIX and the program for Theorem 4 is 

called NORMAP, Some results of the programs will be presented in 

section 7. 

6.  LATENT CLASS ANALYSIS 

The general principles of mixture analysis given in Theorems I and 2 

are applicable to a wide variety of distributions. The first application 

involved continuous distributions.  Next, let us consider the quite 

different discrete distribution employed in Lazarsfeld's "Latent Class" 

model for attitude item responses: 

See Anderson (1959) for a discussion of ML estimation and Stanat (1968) 

for Fourier transform estimation procedures. 

16 

mm^m 



K •*%   ■ 

1-X. 
a-(x,p )   = H      MC4   (1-WCJ      1,  where X.=0 or 1 J i> ,si si i 

i = l ± 

(6.1) 

3   log  a X. -p   . &    s  _    i    si 
3M   . si SI si) 

(6.2) 

Substituting this  derivative in   (2.9),   we  obtain 

-NA N 
og L = —rr—>--Fr-E     P(S|X.)X..] = o. P   .(l-M   .)     si     NX     .    . '   k     ikJ 

si        si s k=l 
3p   . 

si 
(6.3) 

Setting the term in brackets to zero gives us  the following  remarkable 

fact. 

Theorem 5    The maximum-1ikelihood estimates  for the parameters of a 

mixture of latent  classes are solutions   to equations  (5.4)   and   (5.5). 

Thus,   the  estimation  equations   for this  discrete distribution  are 

formally  identical   to those for a multivariate normal  distribution,   the 

only difference  being  that  P(s|x. )   is  calculated with   (6.1)   instead of 

(5.1). 

7.     EXAMPLES OF COMPUTER ANALYSES 

This section presents  some results   from computer runs with programs 

NORMAP   (normal  mixtures with common covariance matrix)  and NORMIX   (normal 

2 
mixtures with  different  covariances matrices)."     Both programs  are written 

for flexible  input  so as  to be suitable   for general  use  in  a  statistical 

1ibrary. 

"Both programs are written in FORTRAN 63 for the CDC 1604 and will 

shortly be available from CO-OP, Control Data Corporation, 3145 Porter 

Drive, Palo Alto, California 94304. 

17 
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The prograis are currently limited to 10 variables, 1000 individuals, 

and 20 types. NORMAP is so named because it produces a "map" of the 

data by generating a printer-plot of the sample points in discriminant- 

space.  In each example to be reported, NORMAP required about one minute 

to estimate parameters under four hypotheses concerning the number of 

types, while N0RMIX required as much as nine minutes.  Several runs were 

made with different initial estimates.  In those cases where multiple 

solutions were obtained, only the greatest likelihood results were used 

in the analysis. 

7.1  Iris data 

The classic Iris data published by Fisher (1936) have been used by 

Kendall (1965) and Friedman and Rubin (1967) for illustrating their 

cluster analysis methods. Of course Fisher knew the correct classifi- 

cations of each of the 150 irises in his sample, but the cluster analysis 

studies and our mixture analyses attempt to discover and describe the 

types of irises without using any a priori classification information. 

NORMAP and N0RMIX were run on the data using hypotheses of one type, 

two types, three types, and four types. Each hypothesis was tested 

against the previous one with x2 = -2 log(L ./L ) and degrees of freedom 

equal to the difference in the number of parameters in the two hypotheses. 

The results are given in Table 1. 
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The significance tests definitely indicate that  the hypothesis of 

one type should be rejected against the alternative of two types,  and 

that the hypothesis of two types  should be rejected against the alternative 

of three types.     It is not quite so clear whether the hypothesis of three 

types  should be rejected against  the alternative of four types.     Perhaps 

the obtained values of four types  are due to a slight skewness in the 

component distributions,   or perhaps the sample size  is so small  that the 

distribution of the  log  likelihood ratio differs  significantly from its 

asymptotic chi-square distribution.    The results  seem to show room for 

improvement in the hypothesis-testing part of the analysis. 

Table 2 presents  the maximum-likelihood estimates of some of the 

parameters obtained by NORMAP  and NORMIX  for three  types  and compares  them 

with the estimates obtained by  Fisher when he used a priori knowledge of 

the correct classifications.    The row labeled "number misclassified" gives 

the number of sample points whose highest probabilities of membership 

occurred in types different  from their actual  species.     Both NÜRMIX and 

NORMAP gave estimates very close to the Fisher values,  with NORMAP slightly 

better than NORMIX in most  cases.    The three  flowers "misclassified" by 

NORMAP were  identified  as  numbers   71,  84,  and  134.     These  are precisely 

the  same plants  which  Friedman  and Rubin   (1967)   misclassified by  their 

|T|/|W|   maximization procedure.     This  is not  surprising,  because NORMAP 

could be considered to be  a continuous version of the discrete partition- 

ing procedure of Friedman  and Rubin.    The two methods  tend to coincide   in 

the  limiting case of widely  separated types. 
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7.2 Artificial clusters 

The second example involves three artificially generated clusters 

consisting of 100, 75, and 50 points in two dimensions. The clusters 

were deliberately constructed to have multivariate normal distributions 

with different covariance matrices. Also, the clusters overlap somewhat 

more than the iris species did. The raw data, scatter plots and some 

computer printouts are available in a previously published report (Wolfe, 

1965). 

The results of the hypothesis testing phase of the analysis are 

given in Table 3.  A routine application of the x2 likelihood ratio test 

would indicate the existence of more than three types in the data.  However 

an examination of the parameter estimates for the "fourth" cluster (not 

shown here) revealed that NORMIX had estimated the fourth cluster's mixing 

proportion to be .030 - the equivalent of a sample of seven points. The 

chi-square approximation is inaccurate for this sample size. Lvidently, 

further research is required to develop appropriate significance tests 

3 
for small samples. 

The parameter estimates for three types are given in Table 4. 

NORMIX shows a clear superiority in the accuracy of its estimates, as 

would be expected in a situation where the types have unequal covariance 

matrices. 

One possibility is a better approximation of the form 

2 a 

X = -2  log 0/(1+ —)  where Q =   (L    ,/L ),   n = N'A       ,  and a  is a constant A s x/ v      n^ x      v  r-1    r nun 

to be determined by methods similar to those given by Lawley  (1956),  or  if 

necessary by Monte Carlo methods.    The examples   in this paper seem to 

require a value of aMO. 
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8.     CONCLUDING  RliMARKS 

By reformulating   cluster analysis  as  a  problem  in estimation  for 

mixed distributions,   we hope  to have put  the   subject  on a more  rigorous 

foundation.     No "similarities"  or "distances"  need  to be assumed a priori. 

The  closest  analogy  to  a  "similarity"   in our  system   is  the probability  of 

membership of a point   in  a  cluster,  hut  this   probability  is  the  result 

of an  iterative solution  to  the   likelihood equations   rather than an arbi- 

trarily given function.     The partitioning methods of cluster analysis  are 

seen  to be  approximations  to maximum-1 ike 1ihood  solutions,  valid when  the 

clusters  are widely  separated.     Mixture analysis   is  a  "smoothed" version 

of cluster analysis.      The difficult  combinatorial  problems  entailed by 

discrete  partitioning  methods are  avoided by  weighting  the  sample obser- 

vations  with  a continuous probability of membership  function. 

The  feasibility  of the   iterative  solution  of the maximum-1ikelihood 

equations has hecn demonstrated  by  the examples   in  this  paper.     The 

iterations  involve  re-calculating the probabilities of membership of every 

point   in  each type.     The amount  of computation   is more extensive than 

statisticians  are accustomed  to,   but   it   is  of the same order of magnitude 

as many  other cluster  analysis  systems. 

Maximum-likol ihood  estimation procedures  have been used  ihroughout 

the  paper because of the ease with  which  they  can be  generalized  to multi- 

variate distributions   of various   forms.     The  general   theory of mixtures 

has been  applied to the  multivariate normal   and  the multivariate  Bernoulli 

distributions.     Considerably  more  work  needs   to  lie done   ' ,1  applying  the 

theory  to other distributions,   in  developing   significance  tests   for small 

ttmmmm 
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t 
samples,  and in finding confidence regions.    Further research is desirable 

in the areas of iteration methods,  initial estimation procedures and 

multiple solutions.    Nevertheless,  we believe that a good beginning has 

been made toward the development of logical and practical  procedures for 

the analysis of mixtures. 
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