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Abstract

A brief introduction to continuous mathematical. control theory i4

presented first. Then a model havi'" two state variable accounts, cash and

wheat, is defined by means of differential equations. Adjoint functions,

the Hamiltonian function, and the optimum (bang-bang) policy are derived.

Interpretations of the Hamiltonian and switching functions and a numerical

example are then given. Finally the results are extended to the case where

transaction costs and spoilage costs are incurred.

II
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APPLICATIONS OF MATHEMATICAL CONTROL THEORY TO

ACCOUNTING AND BUDGETING

I. THE CONTINUOUS WBEAT TRADING MODEL

by

Yuji Ijiri and Gerald L. Thompson

i. INTRODUCTION

In this paper we shall apply mathematical control theory to the

analysis of a simple model of an accounting and budgeting problem. Our ob-

jective is not only to make the model operational for practical applications

but aiso to use the framework and results of mathematical control theory in

order to get new insights into accounting and budgeting problems. In the

present paper we shall, however, limit our objective to the latter point,

leaving the former objective to our follow-up paper [3] which deals with the

discrete wheat trading model.

We shall be primarily concerned here with the process of the ope:ations

of the firm looked at from an accounting standpoint. In accounting, a firm

is represented by a set of quantities that indicate the stocks of assets of

various types that are under the control of the firm, and the firm's

activities are indicated by the changes in these quantities. Using mathe-

matical notation we may say thaL the firm at time t has a vector x(t)

whose components indicate the physical. amounts of each asset the firm has at

time t. Fhe results of the activities of the firm between t and t 2 re

measured by the vector difference x(t2 ) - x(t1 ). From a conceptual point

of view it is convenient to consider derivative A(t) defined as,

x( - im x(t 2 ) - X(tl)£(t)~ ~~ = x ) im

dt t - t I

t 2 1
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Then we can say that the firm's activities ct time t are indicated by k(t),

,which in turn affects x(t).

The activities i(t) of a firm are aimed at changing the state x(t)

of the firm; but they are constrained by the state of the firm. For instance,

the production rate at time t may be constrained by plant capacity at time

t; interest paid out depends upon the amount of loans outstanding, etc. Such

relationships between assets x(t) and activities A(t) need not be fixed.

They may be changed exogenously by factors outside the control of the firm,

or they may be changed as the result of th' intentional effort of the firm.

For instance, plant deterioration occu3 because of weather, machine wear

and other natural causes, but it may be corrected by the firms engaging in

repair activity. The prices of raw materials may be determined exogenously,

but the firm's sale price may be partially or whoily at its own discretion.

When there is freedom in the asset-a( tvity relationship that the manage-

ment of the firm may exercise, it implies that management has resrinsibility

to exercise the freedom in the most favorable way for the firm. It must

answer questions such as: Should the plant b.' operated in two shifts? Should

the plant be repaired? Or should the ware !se be modernized?

In answering these questions, it is necessary to take into account not

only the production side of the problem, but simultaneously the marketing

side, the finance side, the personnel side, etc. The accounting system offers

a Zram-awork by which such aspects of the firm and its activities may be

simultaneously considered. This point has already been demonstrated in the

paper by YJiri, Levy, and Lyon [2), in which linear programning techniques are
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used in budgeting and financial planning based oiu the doible-e. try bookkeeping

system.

The presenL paper is similar to the above paper [2] in approach and

objective, however, the mathematical technique we shall employ here is that

a iieLLi.al CORLEOL Lheory. In the next .cction we sh:ll give a very

brief introduction to this theory, but only enough to indicate the steps we

are going to take. A reader who wishes to go into the reasons behind these

steps should consult some of the references to mathematical control theory

that appear in the bibliography. See [1, 4, 5].

2. AN OUTLINE OF THE MAXIMUM PRINCIPLE

We shall give a brief outline of the continuous maximum principle, in

a form general enough for applications to the rest of the paper. Consider

the problem

(1) Maximize P T F(x,m,T)dT
x'm 0

subject to the differential equation constra!nts

(2) A, = fi(xImt), xi( = X

for i = l,...,n. Here the n-component (column) vector x consists of the

state variables, and m is a k-component vector of control variables. It is

assumed that m belongs to some prespecified set M of admissible controls,

and we usually assume that M has certain properties, e.g., convexity. The

functions F, f, and the initial values xc are assumed known. The problem
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is to choose a sequence of admissible control variables m from M in order

that the resulting trajectory in the state space, determined by (2),

maximizes the objective function (1).

We now proceed to put the problem in a certain standard form. Define

a new variable,

(3) X, t F(x,m,r)dT, x 1 (0) 0.
0

Then it is clear chat

(4) xn 1 = F(x,m,t) = fn+l(x,m,t), xn1 (0) 0 X0

n+Inl n+1n+
This defines the function f and the value xn0 I . We now can restate

the problem in (1) and (2) as

(5) Maximize 6x X nl(T) , 6 =(0,...,0,i)

(6) ki = fi(xpm-t) I x(0) = X

for I = l,...,n,n+l. This is the Mayer form of the problem. Note that the

objective function is now a linear function of the state variables.

We now introduce n+l adjoint variables (functions) z and require

that they satisfy

n-fi

(7) zx = Z i  = k,
i=~l

where k is a constant, for all values of t. Differentiating (7) with

respect to time we obtain

iI
JI
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n+l
(8) !X+zA E (IiXi + zi0i)

i=l

We now define the Hamiltonian function as

(9) *(x,z,m,t) = -ix = zk = zf

where the second equality follows from (8) and the third equality follows

from (6). Differentiating (9) with respect to x1, yields

i O

The boundary conditions for the aAjoint variables will appear later. Note

also that, differentiating (9) with respect to zi we obtain

(11)- )i = z

Note that condition (7) is a kind of "perpendicularity" condition

connectiiig the state variables and the adjoint variables. In many ways the

adjoint variables play the same kind of role in control theory that the dual

variables play in linear programming. However, adjoint variables, being

functions over time, are inherently more complicated than dual variables.

We are now in a position to state the Pox,1ryagin Maximum Principle,

as follows: In order to solve the problem

(12) Maximize 6x

subject to

(13) - x(0)

a necessary condition is that there exist adjoint functions z satisfying,
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(14) Maximize -zf =

subject to

(15) ,i z(T)

The reader is not expected to accept this result as obvious, and we are not

going to o r!'_ _ proo;f of the result here. However, we are going to use the

above procedure to solve a management science problem which we call the con-

tinuous wheat trading model.

There are severai iuyortant things to note about this theorem. First

of all it gives necessary conditions only. Second it does not provide a

computational method for finding the adjoint functions -- it merely gives a

way of checking when they might be the correct ones. Third, notice that (13)

is an initial value problem for the state variables, while (15) is a terminal

value problem for the adjoint variables. Since we must have a simultaneous

solution to both problems we have what is called in the literature a "two-

point boundary value problem." Such problems have been found difficult to

solve in general Fortunately, in our case we shall be able to provide

solutions.

3. THE CONTINUOUS WHEAT TRADING MDDEL

In order to obtain insight into how mathematical control theory can be

used in accounting, let us consider the following example. A firm engages

in buying and selling wheat. The firm's assets are of only these two types,

cash and wheat, whose balance at time t are represented by c(t) and

V(t), respectively, where c(t) is measured in dollars and w(t) in bushels

of vheat. The pricc of wheat from tiar 0 to Lime T is assumed to be known in
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advance with certainty and is given by a function p(t). We shall let I

P = p(T) be the terminal price of wheat. We assume that the initial a6sets

c(O). = C0  and wkO) - W0  are kncwn constants.

The firm's objective is to buy and sell wheat during the time 0 to T

so as to maximize the total value of assets at time T, the end of the pianning

period. Hence it always values its current wheat inventory with the terminal

price P, in m.king the trading decisions. Thus the total value of the firm's

assets at time t, denoted by x(t), is given by

(16) x(t) = c(t) + Pw(t)

We denote the rate of buying oi ,.l1ing wheat by m(t), expressed in bushels

of wheat purchased if positive (or sold, if negative) per unit of time. We

assume that m(t) is constrained by

(17) M s :(t) M for 0 t.,

where M < G and M > 0 are given constants. As long as tnis constraint is

satisfied, the firm is permitted to be either long or short in either cash or

wheat, or both. A long position is indicated by a positive stock of an asset

and a short position by a negative stock.

There are three factors that change the cash balance. One is the f
interest recoived on cash (or paid on loan) baiince at a given constant rate

: per nnit period, which is to be accrued continuously and to be received

kor paid) in cash. Iliat is, the interest on cash or loan balance is corn-

pounded continuously at rate R. The second factor is the inventory holding

cost h(w) that mist he paid on an inventory of size w(t0 at time t. The
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function h is defined for both positive and negative w and is assumed to

be an increasing function of Iwi . Thus, we interpret the inventory holding

cost to be the cost of being short in wheat when w(t) < 0. The third factor

is the cost (or revenue) p(t)m(t) of purchases (or sales) of wheat at time

t. Thus the differential equation that expresses the manner in which cash

changes is

(18) (t) = Rc(t) - h(w) - p(t)m(t).

Contrary to the cash balance, there is only one factor that changes

the stock of wheat, namely the purchase or sale of wheat, m(t) at time t.

Thus the differential equaLion tor w is

(19) ()=M(t).

To simplify the notation, .a shall drop (t) from all expressions with

the understanding that all lower case letters (except e) represent functions

of time unless other independent variables are specified (e.g., h(w)), and

that all upper case letters represei., constants.

To put this problem into standard form we differentiate (16) obtaining

(20) k= + PO

= Rc - hkw) - pm + Pm

The latter expression was obtained by using (18) and (19)

Then the firm's objective is expressed by

(21) Max x'"') = c(T) + Pw(T)

,ubject to e!fferential equationn (18), (19), and (20) and constraint (17).

Tbe ystem of conditions (11)-(21) is called the primal system. The

variables c, w, and x are state variable3, and m is the control variable.
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We want to choose a sequence of values for the control variable over time so

as to maximize the terminal value of the firm's assets.

Following the outline of the previous section we introduce adjoint

variables for each constraining equation. Specifically, we choose variable

*(t) for (18), 0(t) for (19), and the constant function -1 for (20). [If we

had chosen an rbitrary function for (20) it is easy to show that it must be

equal to -1 everywhere; we omit the proof of this.] Then the Hamiltonian

function is

(22) -4 = (Rc - h(w) - pm) + Om - (Rc - h(w) - pm + Pm)

= (4 - 1) (Re - h(w)) - [P + p(*-l) Ojm

We shall call the coefficient of m, namely,

(23) s = P + p(j-l) -

the switching function.

The maximum principle, previously discussed, provides as a necessary con-

dition for an optimal policy that the control variable m should be chosen so

:s to maximize - . Since m occurs linearly in it follows that the

optimal policy is bang-bang and is of the following form:

M if s>0
(24) m undetermined if s = 0

|M if s < 0

The case where s = 0 is called singular control. For most problems this

occurs infrequently and can usually be ignored. We will give examples later.

Although the maximum principle gives only necessary conditions, the

policy given in (24) is unique. Hence there is only one extremal policy which

therefore must be the optimal policy. Hence, for the problem at hand the

necessary conditions are also sufficient.

We now derive the differential equations for the adjoint functions.

Differentiating with respect to c we obtain

A
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or

$+ R# R

Multiplying through this equation by the integrating factor, e Rt integrating

froii t to T, and using the fact that *(T) =0, we obtain

(25) *(t = 1- eR(T-t)

As an interpretation of th'.s function we note that the expression

is the future (time T) value of a dollar gained now (time t)..

To obtain the differential equation for 0 we differentiate 5'with

respect to w;

(26) 0=I' )h'(w) = hwe

Integrating from t to T and using 0(T) =0 yields

(271 0(t) ith(w)eR(tdt

The interpretation of 0(t) is that it is the total cost per unit of wheat

of storing from t to T a small increment of wheat.

Let us now substitute these results back into the Hamiltonian function

and give a new interpretation to We have

(28) -[Rc - h(w)IeR(t + [P - peRTt - Olin

We see that * has two terms, one not inv~olving the control variable. The

first term does not involve the control variable and represents the future
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(time T) value of the interest Rc received on the cash account less the

storage charges -h(w) on the wheat account at time t. The second term

involves the switching function

(29) s = P - peR(T-t) -0

which can now be interpreted. It is the future (time T) price of wheat, P,

less the future value peR (T -t ) of paying now (time t) for wheat at price p,

and less the total storage cost 0 from time t to T of the additional

wheat bought now. The optimal policy given in (24) can now be stated as:

buy (sell) the maximum amount a-t time t if it will yield a net profit (loss)

at time T where the net profit or loss is to be evaluated taking into

account all possible repercussions of the purchase or the sale decision. If

this optimal policy is followed then the second term in (28) gives the total

addition to future profits resulting from the optimal purchase (or sale) of

wheat now.

We can now give a brief interpretation of -7+ that includes all of the

foregoing. The function -*kis the future (time T) value of the resent

(time t) cash flow and consists of two parts: the first part is the cash flow

due to previous (before time C) decisions, and the second part is the cash

flow due to present (time t) decisions.
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4. INVENTORY HOLDING COSTS

It may be interesting to see how the function 0(t), the future value

of inventory holding cost, behaves under some specified forms of the function

h(w). First, let us corsider the case where

(30) h(w) = Sw2

Since the optimal policy given in (24) is bang-bang, namely either to bu- at

the maximum rate or to sell at the maximum rate,

(31) ? = m = M

for any t between two adjacent switching points, where M is a constant

or M depending upon the sign of the switching function. Remembering this,

we substitute (30) into (27) and integrate (27) by parts, obtaining,

~T wR(T-T)d
(32) 0(t) = 2S weT dT

t
~T

W M R(T-')= 2S (2 )eR

t

_2S R(T-t) 2SM R(T- t) 1
(we -w(T)) + - (e T  -)R2

for any t in the interval t* t T, where t* is the last switching

point. By solving for w(t) in a stepwise manner, we can then search for

all switching points.

To show another example, let h(w) be defined as follows:

(33) h(w) = Siwi

Then

(34) h'(w) = S sgn w
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where sgn w is 1 if w > 0, is 0 if w = 0, and is -1 if w < 0. Then,

for any t in t** t t s T where t** is the last time when the sign of

w is changed, the function 0(t) is derived as

(35) 0(t) h'(w) T e (T-T)d = h'(w)(- 1 R(T-T)

t

= h!w) (e R(T-t) . Ssgn w (eR(T-t) 1)

R R

Given the function 0(t), the switching function becomes:

(36) s = peR(Tt) - S sgn w (eR(T-t)
R

This may be written as

(37) s = e R(T-t) R(S sgn w + e)e-R(T-t) S sgn w p

(3) eR +Pe- R

eR(T-t) (u-p)

where the function u is defined as

(38) u S sgn w + p]e-R(T-t) _S sgn w
R R

Since the sign of s, which is of our interest, is equal to the sign of u - p

for R # 0 and finite T and t, we may draw a chart for u for given values of

R, S, T, P, and sgn w, and compare it with p to obtain sgn (u-p).

Let us consider the case where

R = .01 (1% per month compounded continuously)

S = .20 (dollars per unit per month)

T = 12 (month)

p(T)= 10 (dollars)
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+ 0o

Then, if we let u , u o and u be the function u in whic sgn w +1, 0,

and -1, respectively, they may be written as follows:

U+ = 3 0e-R(T-t) _ 20

o 0e-R(T-t)

U =

u = 10eR(Tlt) + 20

In Figure 1, three curves are prepared for these functions.- It can be

easily seen from (38) that for a larger inventory holding cost S, the spreads

+ 0 0
between u and u as well as u and u become wider for any t except t = T,

and that for a larger interest rate R, the same sptads become smaller and

all three curves become more convex starting from lower points at t-=0.

The curves in Figure I show the switching criterion in the following

manner. Let us suppose that the sign of inventory balance does not change

+
throughout the entire period of o : t : T. Then u or u in Figure I is

+
used to compare with p. If p is below u (u or u depending upon sgn w) for

any time interval tI S t t2 , this means that sgn (u-p) (hence sgn s) is

positive. Thus, by (24), m is set eqt' to M during this period, wiere M

is the maximum parchase rate. On the other hand, if n lies abov- u for

any time interval, m is iet equal to M during this period, where M is the

maximum sales rate. If p coincides with u for any time interval, the total

1/ -x
-!For 0 r x .12, e can be approximated by

X 1 - .95x

with errors less than .0013 in the absolute values. The curves in Figure 1
are drawn based on this approximation.
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value of the firm's assets at time T is unaffected whether the firm buys or

sells wheat or do nothing during this period, although the amount of the

inventory balance at time T is certainly affected.

Figure 2 shows souie examples of p together with indicated decisions

on m.

Now let us consider situations where the sign of w changes during the

period of 0 S L , T. Consider the case (c) in Figure 2 where p = 7.5 for

0 : t : 6. Suppose that the maximum purchase and sales rates (M and M) are

set equal to 1 and -1, respectively, and that the firm has only 2 units of

wheat at t = 0. Then at t = 2, the inventory balance becomes 0, hence we

0 + 0
must compare p with u rather than u . Since p lies below u , we must buy

(rather than sell) wheat. However, as soon as we start buying wheat, w

becomes poestive; hence p must be compared with u+ which lies below p,

indicating "sell". On the other hand, we cannot keep selling, since as soon

as w becomes negative, p must be compared with u which indicates "buy".

Thus, once it is reached, w = 0 is an equilibrium point for any price between

+
u + p : u at any time t. If the initial inventory is 0 and p lies entirely

+
between u and u , there will be no purchases or sales of wheat during the

entire period. This situation is shown in Figure 3 by an example.

The analysis as elaborated in the above, may be difficult to obtain if

the inventory holding cost is expressed as a more complicated function of w,

sincz the switching function s may become a function of w, rather than just

the sign of w. However, such a problem can be solved at least numerically by

means of using an analogue computer or by means of transforming the problem into

a discrete problem as elaborated in our paper [3] and the solution obtained by

means of a digital computer.

TA
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5. TRANSACTION AND SPOILAGE COSTS

In this section we work out a couple of minor variations in the mndel.

First we assume that thei is a constant proportion of the wheat that spoils.

The rate of spoil3gj is given by a positive cronstant A. Second we assume

that a tidnsaction of size m incurs a unit t* nsaction cost f(m), where

f is a monotone increasing function for al valies of m with f(O) = 0.

Later on we shall assume that f is unbounded above and bel-,, and 3how that

we may drop the bounds (17) whet this is true. Further, we shall assume

throughout this section, w 0 for all t in the range considered.

We start by retaining equations (16) and (17). The rate of change of

cash is

(39) Rc - h(w) - [p + f(m)]m

the change from (18) being only in the addition of the transaction cost f(w)m.

Note that the transaction cost f(m)m 0 0. Similarly, the rate of change of

wheat is given by

(40) i = - Aw.

the only change from (19) is in the spoil-ge term, -Aw.

Substituting these into x, we have

(41) + a = Rc - h(w) - PAw p - f(m) - Pn

From these and the same adjoint functions as btfore we have

(42) - kl l - )[Rc - h(w)] + (0 - P)Aw + [P - 0 -

-he differentia1 equation for i is exactiv the same as before, and hence

is given by (25). From this we obtain an expression for - that It ,

3(th(w)]eR T - +(43) -h [Rce ~wJ + (0.')Aw + [P-0-eR(-t(p+f(m))]m
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which hau similar interprearioam as before. Namely, the first term in (43)

is the current change in cash due to past decisions; the second term .s the

current loss due to spoilage; the last term involves the switching function

(41~ R (T- t)(44) a= P RT + I," m))

which is just like (29) with transaction costa added in. Thus the deocsicn

a to vhether or not to buy now takes into account the transaction cost. The

optimal policy is again bang-bang and is described in (24), provided N and M

are not too large in absolute value. We return to this point later.

The derivation of the adioint function 0 is a lictle more complicated.

It's differential equation is

(45) -A = - h'(w)eR(Tt) - PA

-At
Multiplying by the integrating facto, e , integrating from t to "r, and

using the boundary condition 0(T) = 0 yields

(46) (t) = eAtRT h(w)e-A+R) TdT + P(l - eA(Tt))
t

The fiist term is just like (27), except that the interest rate R has been

augmented by the spoilage rate A. (In this model, we are, in effect, being

charged for storing the spoiled wheat; that is an indirect storage cost that

appears here as an increase in interest rate.) The rcond term of (46)

measures the actual net weight of wheat taking into account the spoilage

that uilll occur between time t and T if we have a bushel of wheat now.

Let us now return to the switching function (44) and the fcrm of the

optimal policy. Assume that f(m) is unbounded above and below and is mono-

tone ircreasing (it need not be continuoub), and also f(O) 0. Suppose
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that we do not have bounds (i7) on m. In Figure 4 we plot the situation

for two different prices p* with p*eR(T -t) < P - 0 and p** with

pA*eR(Tt) > P - In the first case, it clearly pays to buy wheat and

p**eR(T-t)

))eR (T 't)

p~e R(T-t)

I I
m** 01m*

Figure 4

the optimal strategy is buy m* bushels of wheat where m* solves the

equation

(47) (p + f(m))eR(Tt) = P - 0

In the second case, the optimal strategy is to sell m** units where m** is

the solution of (in this ca3e the negative of) (47). The fact that there are

solutions of (47) in each case follow from the assumption that f(m) is un-

bounded above and below.

In the case in which (17) holds as well it is necessary to compare the

value m* with M and choose whichever is smaller to determine the optimal
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purchase; and aio compare m** with M and choose whichever is larger

(least negative) to determine the optimal sale.

6. CONCLUSIONS

We have demonstrated in the above hcrw mathematical control theory may be

profitably applied to the overall operations of a firm via the accounting and

budgeting system, although the exaniple we used is an extremely simple one in

order to obtain the theoretical insight in the clearest manner. It is cer-

tainly true that as we increase the number of variables (or accounts in the

accounting sense) the problem becomes harder and harder to solve. It is also

clear that for practi I applications, we must formulate the problem in a

discrete manner in order that it may be solved on a computer. However, we

are leaving these problems to our follow-up paper [3] as we mentioned at the

beginning. In the present paper, we are primarily interested in the

theoretical clarification of the problem.

As e result of applying the mathematical control theory, not only can

we develop a schedule for optimal control in terms of the values of control

variables but also we can prepare optimal projec'ed financial statements

(or budgets) similar to the one discussed in the paper by Ijiri, Levy, and

Lyon [2]. Then any departure of the actual from the planned activities may

be analyzed in terms of errors in the model and suboptimal performances.

There is one additional factor derived from the model that is of

significant interest from the accounting stanpvnnrL. That is the accoul.ting

meaning of the adjoint variables. There have been several attempts in

accounting valuation theory to use the discounted future cash-flow as a basis
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of asset valuation. As we have seen above, the adjoint variables offer much

richer basis of valuation, since it takes inLo account not only interest but

,leo the effect of an incremental unit of an asset upon the objective of the

firtv taking into account the entire interaction of the firm's activities. We

are, of course, not advocating the use of the adjoint variables as a sub-

stitute for all valuation basis; however, they do provide useful informs-

tion for the planning purposes of the management, in an analogous way as the

dual evaluation in linear programming does.

For instance, in the case discussed in Section 2, the adjoint variable

that is attached to the variable c for cash provides a criterion whether

a further investment in this firm is more profitable than, say, an investment

in a bond which will yield at a certain rate. A similar comparison may be

made by the use of the adjoint variable for wheat. Furthermore, the switching

function s may be used as a criterion for expanding the upper and lower bound

for wheat transactions since the terminal asset value is increased by Is8

if the bound is extcnded by one unit.

We are far from having exploited this fruitful area of applications.

This paper is only the beginning of many interesting and useful concepts and

techniques that may be derived from the applications of the mathematical control

t' -y in accounting and budgeting.
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