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STRUCTURAL ANALYSIS 

MODAL DENSITIES OF SANDWICH PANELS: THEORY AND EXPERIMENT 

Larry L. Erickson 
Ames Research Center, NASA 

Moffett Field, California 94035 

formulas are presented that can be used to estimate the average nodal 
densities of sandwich beams and flat or cylindrically curved sandwich j 
panels. Numerical results, presented in terms of general parameters, j 
indicate the relative importance of transverse shear flexibility, 
orthotrrpic shear moduli of the core, face-bending stiffness, rotary j 
inertia, and panel curvature ovtr a wide frequency range. Model den- 
sities determined experimentally from resonance tftsts of flat rectan- 
gular sandwich panels having orthotropic cores are close to t«.- »wdal 
densities estimated by theory except at frequencies near that of the 
fundamental mode. In this low-frequency range, the theoretical 
estimates are not valid. 

INTRODUCTION 

There has been an effort during the past 
few yean to develop a new approach to multimodal 
vibratiun problems that avoids the problem of 
expanding the response in terms of the mode 
shapes [1,2]. In this approach, sometimes 
referred to as "statistical energy analysis," 
average response levels in various frequency 
bands »re estimate 1 without knowledge of the 
mode shapes and resonance frequencies. Instead, 
what is required is a knowledge of the type 
(e-C-> flexural) cjid number of structural vibra- 
tion modes occurring in a given frequency inter- 
val. This quantity, the number of modes per unit 
frequency, is called the "modal density" of the 
structure. 

Because the modal density of a structure is 
relatively independent of the boundary condi- 
tions, statistical energy analysis shows promise 
of becoming a use'il tool for estimating average 
response levels of multimodal structural vibra- 
tions. For example, one of the more useful 
response quantities is acceleration spectral 
density, which ir directly proportional to »dal 
density. 

Equations have been derived for the modal 
densities of several structural elements and can 
be found in Refs. [3] and [A],    A portion of the 
results in Ref. [4] pertains to flat and doubly 
curved sandwich panels, and it is shown that the 
transverse shear flexibility of such panels can 
have a significant, effect on the modal density 
of the panel. However, the results of Ref. [4] 
apply only to sandwich panels with Isotropie 

cores, whose faces behave &s membranes (i.e., 
the face-bending stiffne s Is negHcted), Since 
lightweight sandwich panels often have cow* 
with orthotropic shear moduli (e.g., honeycomb), 
there is a practical need for being able to 
account for the effoct of these moduli on the 
modal density. In addition, it is known from 
sandwich panel 'juckling theory that for small 
wavelengths of deformation the fbce-bending 
stiffness can become important [5]. 

In the present investigation, modal density 
estimates are obtained analytically for sandwich 
beams and for flat or cylindrically curved sand- 
wich panels. The effects of the transverse 
shear flexibility of the core, including ortho- 
tropic shear moduli parallel to the faces, face- 
bending stiffness, and rotary inertia, are 
examined. Numerical results are presented in 
graphical form. 

In addition, experimental results obtained 
from resonance tests of flat rectangular sand- 
wich panels with orthotropic honeycomb cores are 
presented. In these tests, up to 80 consecutive 
vibration modes per panel were excited and iden- 
tified. The experimentally determined modal 
densities are compared with the modal densities 
predicted by theory. 

SYMBOLS 

a        axial length of panel, in. 

b        circumferential width of panel, in. 
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Of «ass density of face, lb-sec2/in." 

1 n7 
i k 

V1^ 

°Qeff 

Bf 

E' 

M 

N 

It 

ref£ 

*f 

transverse shear stiffnesses of 

panel, lb/in., GCxhc " " i + h7 

SM1 * nff 
/"W , lb/in. 
Young's modulus far isotropic faces 
cf sandwich panel, lb/in.2 

extensional stiffness, lb/in., 2tjEf 

orthotropic shear modi'I of sandwich 
core in   x and y   directions, 
respectively, lb/in.2 

thickness of sandwich core, in. 

MM density Mannt of inertia per 
unit width about the middle surface 
of the panel, lb-sec2/in. 

nass density per unit area of panel, 
lb-see2/5n.' 

cumulative number of »odes occurring 
below a specified frequency 

constant radius of curvature of 
panel, in. 

orthotropic shear-flexibility 

parameters; 2y-2- , ^y-2- 
b   0QS     blh 

°Qeff 

thickness of sandwich face sheets, in. 

s 

rotary inertia parameter, —*■ TT 
b " 

frequency, rad/sec 

fundamental frequency of an infinitely 
long, siaply supported flat panel as 
predicted by classical plate theory, 

rad/sec, ^- /"U7M 

Subscripts 

c    core of sandwich panei 

eff   effective value or quantity 

f    face of sandwich panel 

THEORY AND ASSUMPTIONS 

Panel 

The coordinate system and geometry of the 
curved sandwich panel are shown in Pig. 1. The 

Pig. 1.- Panel geometry and coordinate system. 

panel is of length a, circumferential width b, 
and has constant radius of curvature R. The 
two face sheets are cf the same Isotropie, homo- 
geneous material and have equal uniform thick- 
nesses tf. The core may possess orthotropic 
shear moduli (GCx,Gc ) and is of uniform 
thickness hc. 

The modal density estimates obtained herein 
are based on two frequency equations that relate 
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the panel natural frequencies  (u red/sec) to 
various physical characteristics of the panel 
and to the number of half-wavas    m and re    t*i&t 
font in the   x and y   directior.s, respectively. 
The first of these equations, derived from the 
theory of Ref.  [6]  (see appendix), is 

felW-^jV))-[»<-»fe)j 

and 

- x 

0  CD 

where p2 « [m/(a/b)]2 ♦ n2. In this equation, 
the physical and geometric properties of the 
panel are described by the following 
dimensionless quantities: 

(a) the length-width ratio a/b, 
(b) the curvature parameter C, which is 

proportional to 1/R, 
(c) the rotary inertia parameter x» which 

is proportional to the mass density 
moment of inertia of the panel, 

(d) the shear flexibility parameters 
rx and r„, which are proportional to 
l/GCx ana 1/Gr , respectively. 

The reference frequency u  is the fundamental 
frequency of a flat, simply supported panel with 
an infinite length (a/b • «•) as predicted by 
classical plate theory (shear and rotary inertia 
neglected) and v   is Poisson's ratio of the 
faces. 

In Eq. (1), the bending stiffness of the 
faces about their middle surfaces has been 
neglected. The second frequency equation 
accounts for the face-bending stiffness but does 
not incorporate the effects of rotary inertia or 
curvature. This equation, obtained from Ret. [7], 
is 

where 

. i / «tAi    t 
3 \i ♦ (tf/hcy 

(3) 

■n .7f] •"'. 

I* M' ii72 
y (■ 

i 
♦ yn' 

>-m<M-% 
w 

The quantity T is due to the face-bendiug 
stiffness and ; is due to the orthotropic 
shear flexibilities of the core, characterized 
by the ratio y  ■ Gc/Gc . It should be noted 
that Eqs. (1) and (2) are idontical when the 
effects of rotary inertia, curvature, and face- 
bending stiffness are  simultaneously neglected 
(X - C - T - 0). 

The basic assumptions made in the theories 
upon which Eqs. (1) and (2) are based are: 

(a) linear, elastic behavior of core and 
faces, 

(b) the transverse deflection of the panel 
is comprised of deformations due to 
both transverse shearing forces and 
bending moments, 

(c) the bending stiffness of the core is 
negligible compared to the overall 
bending stiffness of the panel. This 
allows the panel's flexural deformations 
to be described by an Isotropie bending 
stiffness D, 

(d) transverse shear strains in the faces 
and all normal strains in the z 
direction are neglected, 

(e) the cores are homogeneous. Thus, for 
cellular-type cores such as honeycomb, 
the wavelengths of vibration must be at 
least several times the cell size. 

Although the natural frequencies predicted 
by Eqs. (1) and (2) are valid only for simply 
supported panels, the equations for modal den- 
sity are applicable to panels having other bound- 
ary conditions, because once tht frequency range 
of the lowest several modes is exceeded the 
boundary conditions generally hav^ a negligible 
effect on the number of modes existing in a given 
frequency interval. This has been observed 
experimentally for flat panels and cylindrical 
shells that were essentially rigid in shear.8"10 
pir mathematical arguments, see Refs. [11] and 
112]. 

Modal Density Formulation 

For a given panel configuration (a/b, C, x. 

rese 
T, and a  fixed), Eq. (1) or (2) 

represents a set of constant frequency curves in 
the [a/(a/b)] - n plane. A typical curve is 



illustrated in Fig. 2. Each combination of 
■ and n represents the only node that occurs in 

AREA OCCUFKD BY ONE 

•CONSTANT 

n io- 

Fig. 2.- Modes bounded by a constant 
frequency curve. 

an area l[l/(a/b)] in the first quadrant of the 
[■/(a/b)] • n plane. The total area occupied 
by the N «odes bounded vy the curve 
«i ■ constant is approximately N[l/(a/b)]. 
This area is also given approximately by 

(l/2)f'2 p2(u,e)de, where 0 is duilned in 
'»1 

Fig. 2 and p2 « [m/(aA>)]z ♦ n2 is determined 
in term« of u and 8 from Eq. (1) or (2). The 
limits of integration are such that, p2 is real 
and positive. The approximate number of modes 
existing below the specified frequency 
i> ■ constant is then expected to be 
asymptotically equal to [11] 

la f62 p2(u,9)de 

The average number of modes AN existing 
in a frequency band tu,  about the center fre- 
quency u, defines the average modal density, 
which is 

AN.dN,. 
Au 3Ü 1 I 

i .rr2 aP
2(»,,e) de 

de2 de ii «2 »oil 
♦ Pi(u.e2) jj--Pa(»».ei) 3J-J (S) 

For the panel configurations considered herein, 
the last two terms in Eq. (S) are zero. For 
comparison with 'he frequency-independent flat- 
plate modal density predicted by classical plate 
theory, i.e., dN/dW«0) - (*/4)(a/b) [12], the 
estimates of sandwich panel modal density pre- 
sented here are expressed in the form 

de (6) 

independent of the panel length and width. 
These lateral dimensions appear only on the 
left-hand side of the equation, and since the 
term (a/b)(l/u0) is proportional to the product 
(ab) the modal density is directly proportional 
to the surface area of the panel. Although 
Eqs. (1) and (2) were derived on the basis of a 
rectangular planform, the modal densities 
obtained from them can apparently be applied to 
panels with other shapes, having a surface area 
S, by replacing thn rectangular area (ab) with 
the area S [12]. 

ANALYSIS 

To calculate the modal density from Eq. (6) 
requires that 3p2/8(ii)/u0) be expressed analyt- 
ically as a function of u and 8. Unfortunately, 
p2 appears as a cubic and a quartic term in 
Eqs. (1) and (2), respectively, and is not 
readily obtained analytically. However, for the 
isotropic core (rx ■ r„ ■ r), Eqs. (1) and (2) 
can be solved exactly for 8p2/3(u/u0). This 
is done in the following sections. It is then 
shown, by neglecting the face-bending stiffness, 
that the isotropic results can be applied to 
panels with moderately orthotropic cores by 
use of "effective" shear flexibility and curva- 
ture parameters. Finally, an approximate solu- 
tion is obtained for a flat panel, which gives 
the combined effect of orthotropic shear moduli 
and face-bending stiffness. 

Flat Panel Nith Isotropic Core 

Combined Effect of Shear Flexibility and 
RotaryTnertia - This case is obtained from 
Eq. (1) by setting C » 0 and rs « ry « r, which 
results in 

2p2 - (r ♦ 

(7) 

for the bending set of modes. Since p7 is 
independent of 9 (i.e., w ■ constant is a 
circle in the [m/(a/b)] - n plane), the limits 
of integration in Eq. (6) are 6j • 0 and 
62 * «/2. Performing the integration yields the 
following estimate for the modal density of a 
flat sandwich panel with an isotropic core: 

dN 

"<te) 
(•#41 

i* JM'(-ä' 
AFfFi 

(8) 

From the results that follow, it can be noted 
that the right-hand side of Eq. (6) is 



The variation in nodal density with 
r(w/iD0), as giver, by Eq. (8), is shown in Fig. 3 

Fig. 3.- Effect of shear flexibility and rotary 
inertia on the modal density of a flat sand- 
s.'ch panel; Isotropie core, face-bending 
stiffness neglected. 

for y ■ 0 (i.e., rotary irertia neglected) and 
X/r ■ 3.279. For r » 0 (infinite shear stiff- 
ness), the frequency-independent, classical 
plate value for modal density is obtained. When 
shear flexibility is not neglected (r > 0), the 
modal density increases with increasing fre- 
quency and with increasing shear flaxibilit). 
The value %/T  ■ 0.279 corresponds to the 
extreme case of a solid panel, whereas 
x/r <  0.1 is more typical of sandwich panel con- 
struction. Since the two curves in Fig. 3 
differ at vost by about 6 percent, it is con- 
cluded that for the small values of x/r 
usually encountered in sandwich panels the 
effect of rotary inertia on the modal density is 
negligible in comparison to the effect of shear 
flexibility. 

The curves given by Eq. 
to the curve 

n a 
djj       ,f 

(8) are asymptotic 

0) 

and for r(iu/<D0) >_ 3 this straight line approxi- 
mates the solid curve of Fig. 3 to within 1 per- 
cent. However, Eq. (9) implies that the modal 
density (AN/Au) becomes independent of the face 
material properties at large values of r(u/u0). 
This physically unrealistic result arises 
because Eq. (8) does not account for the bending 
stiffness of the panel faces. 

Combined Effect of Shear Flexibility and 
Face-Bending Stiffness - In view of the results 
of the previous section, it is assumed here that 
rotary inertia can be neglected. Eq. (2) can 
then be used to determine the effect of face- 
bending stiffness on the modal density, "or an 
Isotropie core, Eq. (2) can be written as 

•    2 rz—i (10) 
rp' 

which is independent of 8. Use of bq. (6) 
yields 

1  dN 

H*H 3 (<»/K>0) 

3p' 

/l ♦ rp2 

/l*T(l*rp2) fl a! ) 

(11) 

for the estimate of modal density. The varia- 
tion in modal density with r(u/u0) is obtained 
from Eqs. (10) and (11) by treating th* face-to- 
core-thickness ratio tf/hc as a parameter and 
the quantity rp2 as a variable. This varia- 
tion is shown in Fig. 4 for various values of 

Fig. 4.- Effect of shear flexibility and face- 
bending stiffness on the modal density of a 
flat sandwich panel; Isotropie core, rotary 
inertia neglected. 

tf/h.- Neglecting the face-bending stiffness 
(tf/hc » 0 curve) leads to an overestimate of 
the modal density by an amount that increases 
with increasing frequency and with increasing 
ratios of face-to-core thickness. However, for 
many sandwich configurations, tf/hc is on the 
order of 0.1 or less and often the quantity 
r/u0 is so small that a frequency of several 
thousand Hertz is required to produce a value of 
r(u/u0) on the order of 1.0. Thus, there are 
many practical situations where the face-bending 
stiffness can be neglected when computing the 
modal density. 

For those cases where the face-bending 
stiffness should be taken into account, the 
following simple equation is useful: 
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(12) 

For   r(w/w0) >_ 3 md tf/h. < 0.2, this result 
predicts values of the nodal density within 
about 1 percent of the values given by the exact 
solution.     (Eq.   (12) is obtained from Eqs.   (10) 
and (11) by taking   rp2 » 1.) 

Sandwich Beast 

The bending set of tndes for a bean can be 
obtained from the equation» describing the bend- 
ing »odes of the panel by setting the   m/(a/b) 
terms equal to tero.    The modal density is then 
simply obtained from   dN/d(u/w0) « dn/d(u/»i,j). 

Rot 
Combined Effect of Shear Flexibility and 

Inertia - This case is obtained by setting 
TTInEq.   (7).    Differentiating with 

Rotary 
I7Ta7ET 
respect to u/w0 yields 

dN 

dr2- 

HM 
2*1 ■M 
A(-M 

(13) 

The variation in modal density with 
frequency, given by Eq. (13), is shown in Fig. S 
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Fig. 5.- Effect of shear flexibility and rotary 
inertia on the modal density of a sandwich 
beam; face-bending stiffness neglected. 

for various values of the shear flexibility 
parameter, r, and for two values of x/r. As 
for panels, realistic values of \/r   give essen- 
tially the same results as x ■ 0 (rotary 
inertia neglected). The r ■ x ■ 0 curve corre- 
sponds to classical beam theory, which predicts 
that modal density decreases with increasing 
frequency. When shear flexibility is accounted 
for (r > 0), Eq. (13) predicts that the beam 
modal density is nearly constant over a wide 
frequency range. However, this result is valid 
only for conditions where the face-bending 
stiffness is unimportant. 

Combined Effect of Shear Flexibility and 
Face-Bending Stiffness - If rotary inertia is 
neglected, Eq. (10) can be used to determine the 
effect of the face-bending stiffness on the 
modal density of a beam by letting m/(a/t>) • 0. 
The result is 

uo   / 

T 
1 ♦ rn2 

(14) 

dN 
TUT  d(w/u0) 

W     —dn~ 

 A  ♦ rn2  

2n /l*T(l+m
2) jl 2^ 1 

\      2(l + rn2)[l*x(l+rn2)]J 

(IS) 

The variation in modal density with 
frequency as given by Eqs. (14) and (15) is 
shown in Fig. 6 for several values of r and 

• r 

Fig, 6.- Effect of shear flexibility and face- 
bending stiffness on the modal density of a 
sandwich beam; rotary inertia neglected. 

with a face-to-core-thickness ratio of 0.05. 
Comparison of the curves in Fig. 6 with the 
corresponding curves in Fig, 5 reveals that 
neglecting the face-bending stiffness again leads 
to an overestimate of the modal density by an 
amount that increases with increasing frequency. 
The face-bending stiffness is also seen to have a 
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smaller effect on bean» with stiff cores (small 
r) than on beams with more flexible cores 
(larger r). 

Figs. 5 and 6 both indicate a large rise in 
modal density as ID/U0 approaches zero. How- 
ever, it must be remembered that the equations 
presented for modal density are estimates that 
have been obtained by representing the number of 
modes by a continuous function of frequency. 
This representation is not really meaningful at 
frequencies near that of the fundamental mode 
(u/u0 " 1) as there are usually too few »odes 
involved. Thus, the large rise in modal density 
as u/u0 ■» 0 is physically unrealistic. A 
similar situation occurs in the modal density 
estimates for curved panels, 

Curved Sandwich Panel With Isotropie Core 

If the parameter C is retained in Eq. (1), 
the effects of panel curvature can be determined. 
For an isotropic core (r « rx ■ rv), the bending 
set of modes is described by 

2P
2 

■(r+x)feF"rc2 cosl4(e) 

(16) 

The modal density is then given by 

1       dW   a 2 
it a  ,[ u |      it 
if dra 
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where 

a ■ 1 -  [C/(ai/u_)32 cos^fe) 

with 

6i « cos    ' 

if 

and 

(17) 

l/M 

rJ   CrC)2 ffirA' 

uo /r~ 

\'H'£i -ARTf < 1 

are both satisfied; otherwise 6i ■ 0. 

When x * r ■ 0 (rotary inertia and shear 
flexibility neglected) Eq. (17) can be expressed 
in terms of the complete elliptic integral of 
ths first kind [11]. For nonzero values of 
X and r, Eq. (17) car. be expressed as a hyper- 
elliptic integral. Although some hyperelliptic 
integrals can be reduced to the sum of elliptic 
integrals, no such attempt was made here; 
instead, the results presented here were 
obtained by numerically integrating Eq. (17). 
These results are presented in Fig. 7 where the 

Fig. 7.- Modal densities of cylindrically curved 
sandwich panels; isotropic core, face-bending 
stiffness neglected. 

variation in modal density with (w/w0)/C is 
shown for various values of the product rC. 
The numerical results shown in Fig. 7 are all 
for x " 0 (rotary inertia neglected). However, 
in view of the relatively insignificant effect 
of rotary inertia on the modal densities of the 
beam and flat panel, it is likely that the 
curves in Fig. 7 would be only slightly altered 
by realistic values of x/r. 

Since Eq. (17) does not account for the 
face-bending stiffness, it undoubtedly over- 
estimates the oodal density at the larger values 
of r(u/w0). (The curves in Fig. 7 correspond 
to 0 <_ r(ui/u0) < 10.) To gain an idea of the 
error involved for various combinations of 
r(u/u0) and tf/hc, Fig. 4 should be examined. 

Except for r ■ 0, Fig. 7 obscures the fact 
that when u/u0 exceeds C the curved panel 
modal density becomes asymptotic to that of the 
corresponding flat panel (C ■> 0). This behavior 
can be seen more clearly by replotting Fig. 7 in 
terms of u/u  for a fixed value of r and for 
various values of C > 0 or by comparing 
Eqs. (8) and (17). 



The peaks in modal density «bout u/ut ■ C 
(the so-called ring frequency) are due to a con- 
centration of Modes occurring near this fre- 
quency and is aost pronounced for r ■ 0. 
However, the sharp spike is due to the singular- 
ity in Eq. (17) at u/»0 ■ C (when x • 0) and 
it physically unrealistic. A truer estimate for 
the peaks in aodal density about the ring fre- 
quency can be obtained by directly calculating 
the number of curved panel modes, ANQ, occurring 
there from the frequency equation: 

1 ♦ r 

(Eq. (18) is obtained from Eq. (16).) 

(18) 

which imply that 

(1 - [C/U/u«,)]2 cos^B)}» 1 fjl «. 

Under these conditions, 

(21) 

Substituting into Eq. (6) and noting that &i «0 
and 62 ■ "/2 yields 

1  dN  „,■* 

TF^Ej 
uoJ (22) 

;  f 

For r ■ 0, the results of such calculations 
for the interval 0.9S C < w/u0 < 1.05 C are 
presented in Table 1 for various degreos of 
curvature (a/b was taken equal to 4/t). The 
number of modes ANp that the corresponding 
flat panel has in the same frequency interval is 
also shown for comparison. For 300 <_ C <. 1000, 
the actual peak in curved panel nodal density is 
about 1-1/2 times that of the flat panel value 
(indicated in Pig. 7 by the dashed curve). For 
75 < C < 500, a somewhat smaller increase is 
evident. For C less than about 50, the effect 
of curvature is so small that the panel essen- 
tially behaves as if it were flat. 

Effect of Orthotropic Core Shear Moduli 

If the effects of rotary inertia and face- 
bending stiffness are neglected, the equation 
governing p2 for a curved sandwich panel having 
an orthotropic core is obtained from Eq. (1) by 
setting x ■ 0. This yields 

["VV]Hfe)'-c!~H('*v!)} 
♦ r. Wr« P' ♦ 

C2 cos' ■a][.-4*fl P2 COS2 I (19) 

which is valid only for the conditions stated 
just prior to Eq. (21). Comparison of this 
result with Eq. (9) suggests that the isotropic 
results can perhaps be applied to panels with 
orthotropic cores by replacing r with an 
effective shear-ie\exibility parameter 
reff ■ Ty/'/y.    However, it is also likely that 
C will have to be replaced with an effective 
curvature parameter since Eq. (22) is not valid 
where the effects of curvature are most 
pronounced (u/u0 <. C). 

This idea was examined by solving Eq. (19) 
for u/u0 in terms of m and n. 

[(a)* • -] 
(23) 

where ; is the same as in Eq. (4). For 
specified values of a/b, ry, y,  and C, the 
number of modes N existing below any frequency 
u/ii)0 can be calculated and a plot of 
N vs. u/uo is readily constructed. The possi- 
bility of duplicating this plot (and hence the 
modal density) by calculating N from the iso- 
tropic frequency equation (Eq. (18)) with r 
replaced by some reff and with C replaced by 
some Ceff was then considered, i.e., from 

Except when y  • 1 (isotropic core), 
Eq. (19) is cubic in p2 and no attempt is made 
to solve it in this form. However, a clue to the 
effect of Y can be obtained by considering the 
conditions 

•J— »1       for   Y * 1 

s2 » 1       for   Y * 1 
(20) 

fer 
i ♦ 

w • -r   J-M. 
■-.HäM ' Dar H" 

(24) 

Values for Y from 0.4 to 2.5 (representa- 
tive of honeycomb cores) were considered for 
l<i/b< 2.55, r /ft   up to 0.125, and C up 
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to 400.    In each case, the plots of   N vs. w/u 
obtained from Eq    (23) were duplicated, within 
about S percent or less, by Eq.   (24) if   reff 
and Ce££   were taken as 

ref f " "*■ ' 
*    b2/SP% 

Celf " 
(Y) 0.1S 

(25) 

Typical results are shown in Figs.  8(a) and 
8(b).    Fig.  8(a) shows exact plots of   N vs. u/uo 
for   C » 0 and 100 with    r    - 0.00707, Y - 1/2, 
and   a/b • 2.5S.    The corresponding plots 
obtained from Eq.   (24) with    reff and Ceff 
defined by Eqs.   (25) are shown in Fig.  8(b). 
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400 
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The for* of Eq.  (24) is «xactly the sacs a» 
Eq.  (18).   Thus, when the effects of rotary 
inertia and face-bending stiffness are small, 
the modal density estimates obtained for panels 
with Isotropie cores appear to be applicable to 
panels with orthotropic cores such as honeycomb 
by simply replacing   r and C   with the quanti- 
ties   reff and Ceff, respectively, defined by 
Eqs. (25).   Note that the "effective" shear 
stiffness is the geometric mean of the two 
orthotropic stiffnesses. 

Another check on the validity of this 
empirical approach is that for a flat panel, 
Eqs.  (24) and (25) predict that the variation in 
N   with   u/up   is unaffected by a 90° core rota- 
tion.    This is verified by using Eq.   (23)  (the 
exact equation) to show that, for 0.4 <_y <. 2.5, 
plots of   N vs. u/u0   are indeed unaffected by 
such a rotation.   A typical example is shown in 
Figs. 9(a) and 9(b).    Fig. 9(a) is for a flat 
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(a) Exact; Eq.  (23). 
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(b) Empirical; Eq.   (24). 

Fig. 8.- Comparison of cumulative number of 
modes for sandwich panels having orthotropic 
cores ts predicted by exact and empirical 
frequency equations; rotary inertia and face- 
bending stiffness neglected, a/b ■ 2.55, 
Y - O.S. 

(b) Y - 2.0 

Fig. 9.- Comparison of cumulative number of 
modes for two flat sandwich panels which have 
orthotropic cores differing in orientation by 
90°; rotary inertia and face-bending stiffness 
neglected, a/b ■ 1.27, Ty//r 0.01. 
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panel (C ■ 0) with ry ■ 0.00707, Y ■ 1/2, and 
a/b • 1.27. Fig. 9(b) corresponds to the sane 
flat panel but with the core rotated 90" 
(ry • 0.01414, Y ■ t). The resulting curves of 
N vs. u/u0 arc virtually identical. 

In the case of a flat panel, an approximate 
solution giving the combined effect of ortho- 
tropic core shear moduli and face-bending stiff- 
ness on the modiU density can be obtained by 
neglecting certain terms in Eq. (2). For 
Irefftu/uo512 ** *» the conditions given by 
Eqs. (20) are satisfied and by order of magni- 
tude considerations Eq. (2) then simplifies to 

ryTp" ♦ [1 ♦ (Y - l)cos2(e)]p* - ry te)' 
« 0 

(26) 

Solving for p2 and substituting into Eq. (6) 
leads to the following approximate equation for 
the modal density: 

dN 
JMä 

h-sK*«?   <»> 
where 

8  ■ 

[--h«d2]t-h«t)1 
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and K(k) is the complete elliptic integral of 
the first kind. 

The only terms in Eq. (27) that involve the 
orthotropic shear moduli are B and rejf. Both 
terms, and therefore the modal density given by 
Eq. (27), are unaffected by a 90* rotation of 
the core. This is shown in Fig. 10 by the 

to- 

Fig. 10.- Combined effect of orthotropic core 
shear moduli and face-bending stiffness on 
the modal density of a flat ssndwich pan«!; 
rotary inertia neglected. 

dashed curves labeled   y » 1/2 or 2, y • 1/4 
or 4, and y ■ 1/J or 1.    The solid curve is for 
an Isotropie core (Y • 1) and is obtained from 
the exact solution (Eq.  (11)).    All the curves 

r-y« 
   MACT /   /-"*•• * 
 APPROXIMATE 

^-l/S,! 

S*' jp 

                .1 ..       _!_ < 

shown in Fig.  10 are for t face-to-core-thickness 
ratio of   tf/hc ■ 1/10. 

Note that Eq.   (27) depends on both /DQ Dq 
and Y • DQ /DQ .    Only when the face-bending   y 

stiffness is negligible can the effect of an 
orthotropic core on the nodal density of a flat 
panel be described solely in terms of the effec- 
tive shear stiffness: 

DQeff"   /%S 

For Y " 1 (isotropic core), Eq. (27) 
reduces to Eq. (12). This suggests that for the 
moderately small range of Y usually encountered 
in honeycomb cores (0.4 < Y < 2.5), Eq. (27) 
should be fairly accurate if tf/hc <. 0.2 and 
reff(u/uo) — 3 are both satisfied. 

EXPERIMENT 

Very little experimental data are available 
in the literature on the mode shapes and natural 
frequencies of vibrating sandwich panels, espe- 
cially for frequencies substantially above that 
of the fundamental mode. Although about 35 modes 
were excited in each of the two panels tested in 
Ref. [7], the panel configurations and frequency 
range were such that the maximum value obtained 
for r .-(u.'/u0) was about C.25. At this small 
value of ref£(ti)/u0), the shear flexibility of 
the core has a relatively small effect, theoreti- 
cally, on ÜIÖ iuo>lii dcr.sit}' (sc: Pi;. 5). Thus, 
it was necessary to conduct some experiments that 
would cover a higher range in reff(u>/u>0) for 
obtaining results that could be compared with 
theory. 

Apparatus 

Sani'wich Panels - The specimens tested 
consisted of four flat, rectangular sandwich 
panels of aluminum honeycomb cores bonded to 
stainless-steel face sheets with a structural 
adhesive. The effective length and width of 
each panel (measured between the boundaries of 
the panel support fixture) was a * 28.5 in. and 
b » 24.0 in., respectively. Table 2 lists the 
pertinent core and face properties along with 
the resulting panel parameters. The weight of 
the bonding material was lumped with the weight 
of the faces to produce an effective face density 
called (pf)eff Values of the core shear moduli 
were calculated from the theoretical equations of 
Ref. [13]. 

Support and Excitation System - The panel 
mounting fixture consisted of two aluminum frames 
bolted to the outer 3 inches of the panel perim- 
eter to provide a partially cltmped edge condi- 
tion. To prevent crushing of the ' ., the 
outer 3 inches of the honeycomb cells was filled 
with a liquid aluminum potting material. The 
panel was excited from below by a small (25-lb 
force) permanent magnet shaker. The shaker was 
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coupled to the panel surface by means of a 
snail vacuum attachment to avoid the fastening 
of attachment points to the panel. This arrange- 
ment proved to be quite satisfactory for trans- 
mitting motion to the panel and it allowed the 
excitation point to be easily changed. 

Test Procedure 

For each panel, between 70 and 80 consecu- 
tive modes of vibration were excited by varying 
the frequency and location of the applied exci- 
tation. The mode shape at each resonance was 
visualized by the formation of Chladni figures 

produced by the collection of sand particles 
along node lines. A few of these sand patterns 
are shown in Fig. 11. 

Test Results 

Frequencies are given in Table 3 for the 
four test panels, corresponding to the laximuB 
resonance response for the modes listed. The 
diode number m in the x direction (n in the 
y direction) indicates a - 1 (n - 1} Lines of 
zero daflection between the panel boundaries 
x » 0 (y ■ 0) and x • a (y ■ b). 

(a) Mode (3,3) - 1260 Hz. (c) Mode (5,6) - 2630 Hz. 

(b) Mode (4,4) - 1780 Hz. (d) Mode (8,6) - 3240 Hz. 

Fig. 11.- Some Chladni figures on panel number 4 showing modes (m,n). 
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COMPARISON OF THEORY AND EXPERIMENT 

The experimental values of 
1  AN and 

their variation with ref£(iu/ui„) are shown in 
Figs. 12(a) and 12(b) for panels 1 and 2, 
respectively, and in Figs. 12(c) and 12(d) for 
panels 3 and 4, respectively. The horizontal 
lines indicate the intervals of re£«(u/un) used 
to eocapute the corresponding data points. The 
solid curve in each figure is the theoretical 
estimate for nodal density given by Eq. (8) with 
r replaced by r •*. For all four panels, the 
quantity x/reff " 

Bucn »•*• than * so> theo- 
retically, the effect of rotary inertia is neg- 
ligible. For the range of r

eff(
u/ulo) tnd 

tf/hc covered by the ixperiwentr, the theoret- 
ical effect of the face-bending stiffness is 
also negligible. 

(a) Panel 1. (b) Panel 2. 

-    EQUATION M)^/ 

(d) Panel 4. 

Fi«r. I*.-  Comparison of theoretical and 
experimental nodal densities. 

A comparison of the results presented in 
Figs. 12 indicates that the theory gives a 
fairly good estimate of the average modal density 
except at the smaller values of reff(u/ui0). The 
values of reff(u/u0) at which the comparison 
becomes p^cr correspond.to the frequency range 
in the vicinity of the fundamental mode where 
relatively tew modes occur. As mentioned 
earlier, the continuous frequency representation 
of a discrete number of modes is unrealistic in 
this frequency range. 

Panels 3 and 4 are nominally identical, the 
major difference being about a 20-percent 

variation in y.    However, comparison of 
Figs. 12(c) and 12(d) shows that the experimental 
results obtained from panel 3 fall very close to 
the theoretical curve at nearly every point 
while the results from pan-  ' are more scat- 
tered. This is due to a "    mg" of more than 
the average number of modes . a predicted by 
theory) in one frequency interval while an adja- 
cent frequency interval has fewer than the aver- 
age number of modes. (This clumping effect is 
also seen in Figs. 9(a) and 9(b), for example, 
at 170 < u/u0 < 180.) Depending on the size of 
frequency interval chosen, this clumping may or 
may not produce noticeable variations in modal 
density fron the average. The theory gives only 
the average modal density and does not predict 
variations from this average. 

It should also be noted that the test 
panels were fastened in a semiclaoped configura- 
tion, while the theory was based on simple sup- 
port boundary conditions  The fairly good 
agreement between the experimental and theoreti- 
cal results lends support to the implicit assump- 
tion that the modal density of sandwich panels, 
like single-layered panels, is relatively 
independent of the boundary conditions. 

CONCLUSIONS 

Theoretical estimates are obtained for the 
modal densities of sandwich beams and flat or 
cylindrically curved sandwich panels. The rela- 
tive importance of transverse shear flexibility 
and orthotropic shear moduli of the core, bending 
stiffness of the faces, rotary inertia, and 
panel curvature as they affect modal density is 
judged. Experimental values of modal density 
were obtained from resonance tests of flat rec- 
tangular panels with orthotropic cores. From 
the result-, of the investigation, the following 
conclusions are noted: 

1. Failure to account for the transverse 
shear flexibility of the core can lead to a 
significant underestimation of the mo.Jal density. 

2. The effect of rotary irertia is 
generally negligible compared to th* effect of 
transverse shear flexibility. 

3. For many practical sandwich configura- 
tions and frequency ranges, the effect of the 
face-bending stiffness can be neglected. 

4. For flat rectangular paneU with ortho- 
tropic cores, a 90* rotation of the core material 
with respect to the faces has no effect on the 
average modal density. 

5. Where face-bending effects are small, 
the results obtained fcr flat and cylindrically 
curved sandwich panels with Isotropie cores can 
be applied to panels with orthotropic cores such 
as honeycomb by introducing an effective shear 
modulus and an effective curvature parameter. 
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The effective shea; modulus is simply the 
geometric mean of the two face parallel she&r 
modvli. 

6. The agreement bttween ipodal densities 
predicted by theory and modal densities deter- 
mined »ram experiment was generally good except 
at frequencies near that of the fundamental 
mode, where the theory is not applicable. 

APPEND!X 

Derivation cf Equation (1) 

The differencial equations governing the 
panel vibrations are obtained from the small 
deflection theory of Rei. [6] by adding trans- 
verse and rotary inertia verms: 

!3*+ !Sz..E* 
»X 3>- 

7 l^J 

_iiw    i3*   Si + _L f. 

u a^w 
at7 

3 Qx ♦ !—.£    Qx] 
2     ly^ ax' 

+ JLfl r) 3'Qy 
3x3y D at? 

a3w 
3x23y 

a3w 
" aT3" D 

1 
l ay 

,3*    DQJ     / 

ax7; 
i - 

2 

JLluJ ÜSi*i-äL|»-.-SL]-o 
Dqx I ?■   I   axay  B it

2 by     \)   J 

(Al) 

In Eqs. (Al), x and y specify the coordi- 
nates of a point in the middle surface of the 
panel (Fig. 1) and t denotes time. The oper- 
ator l'h    is defined by Th'^\i\  « 7l,(7-',w) - w, 
where v* - (a\'3xu) + aoVax^y*) ♦ oVa/1). 

The motion described by these equations is 
that u  straight line perpendicular to the unde- 
formed middle surface (z « 0) remains straight 
and of constant length after deformation but not 
necessarily perpendicular t.o the deformed middle 
surface. This inclination in the x (or y) 
direction from a right angle is the average shear 
angle QX/0QX (sr Qy/Oq ) produced by the 
resultant transverse shear force Q* (or Qy) 
per unit width. 

For simply supported edges parallel to the 
x axis at which the support is applied over the 
entire thickness, the boundary conditions are 
[14) 

Qx • My • —— •  0 
* DQx 

(A2) 

where the moment My (acting about the x axis) 
is given by 

y by2     \   iy        (ix2     %   Uli 

The boundary conditions along the edges parallel 
to the y axis are obtained by interchanging 
y and x. 

Expressions for the lateral deflection and 
shear angles that satisfy the boundary conditions 
are 

w(x,y,t) - A' sin 2H s in"f .iwt 

7T- (x,y,t) • B' cos ■U sin 22Z. eiwt >  (A4) 

l(Xiy,t).^in!I«CM-Iei»t 

where m and n are integers designating the 
number of sinusoidal half-waves in the x and y 
directions, respectively, and u is the panel 
frequency (rad/sec). 

The differential Eqs. (Al) are also 
satisfied by the above forms for w, Qx/Dq , 
and Qy/DQy provided 

[$2 [Jsf 

•fer a/b 

wr     -M*l 
hfcl J  -m 

■['"r["' 

Wsfl -MlftK M£ 

(AS) 

Expanding the determinant yields Eq.  (1). 
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TABLE 1 
Coaparison of Curved and Flat Panel Modal Densities at the 

Ring Frequency r ■ x ■ 0 

Number of Modes in 

Curvature 
Parameter 

Frequency Interval 
0.95C < u/u0 < 1.05C 

Frequency Internal 4Nc 

Flat Panel Curved Panel SJp" 
C ANp ANC 

50 47.5 -» 52.S S 5 1.0 
75 71.25 * 78.75 6 8 1.33 

100 95 ■» 105 10 13 1.30 

200 190 * 210 21 27 1.29 

300 285 * 315 29 43 1.48 

400 3«0 + 420 39 55 1.41 

500 475 ■* 525 49 76 1.55 

750 "M2.5 * 787.5 76 US 1.51 

1000 950 - 1050 101 155 1.53 
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TABLE 2 
Description of Test Panels 

[All superscripts are powers of ten] 

Length of panel: a 
Width of panel: b « 

Materials 

Panels 1 and 2: 

Panels 3 and 4: 

• 28.S in. 
24.0 in. 

Faces of 302 stainless steel sheet 
Cores of 1/8-5052 - 0.002 aluminum honeycomb 

Faces of 321 stainless steel sheet 
Cores of 0X-3/16-5052 ■ 0.0007V overexpanded aluminum honeycomb 

Core Properties Face Properties Panel Parameters 

Panel 
lb-sec2 

Gcx. 

lo/in.2 lb/in.2 
hC 
in. 

(Pf)eff. 
lb-sec2 

Bf. 

lb/in.2 
V 

lf> 
in. 

a 
5" 

tf 
&7 

U0' 

rad 
sec 

reff reff 
-1 

in." in.- 

1 
2 
3 
4 

I.«-8 

1.2'"^ 
0.316"5 

0.316"5 

131,000 
S3.0CO 
21.7C0 
23,900 

53,000 
131,000 
23,900 
21,700 

0.502 
G.502 
0.503 
0.503 

80.3"5 

81.4"5 

80.3-5 

81.I"5 

26+6 

26+6 

28+6 

28*6 

0.245 
0.245 
0.245 
0.245 

0.0154 
0.0154 
0.0203 
0.0203 

1.19 
1.19 
1.19 
1.19 

0.0307 
0.0307 
0.0404 
0.0404 

738 
734 
843 
840 

0.0221 
0.0221 
0.114 
0.114 

0.0449 2.47 
0.0450 0.405 
0.00993 0.908 
0,00993 1.10 

TABLE 3 
Experimental Resonance Frequencies, Hz 

[Panels 1 and 2; heavy line encloses modes for which T
e{(('J-\fu>0)  < 1.1) 

S. n 
■ \ 

1 2 3 4 5 6 7 8    9   10   11 

Panel 1 1 294 713 1130 1890 2470 3070 3720 4360 5020 5660 6330 
2 
3 

613 
1018 

950 
1360 

1425 
1750 

1960 
2280 

2590 
2780 

3230 
3390 

3850 
3950 

4-160 5140 5770 
461C 5280 S910 

4 
5 

1600 
2162 

1840 
2460 

2200 
2815 

2620 
3130 

3180 
3630 

3790 
4130 

4310 
4750 

4920 '520 
5300 S!W0 

6 
7 

2980 
3716 

3170 
3870 

3440 
4010 

3750 
4370 

4200 
4780 

4720 
5230 

5220 
5750 

5740 
6220 

8 4470 4660 4930 5090 5460 5890 
9 
10 

5260 5430 5630 5820 | 416Ö 
6070 

Panel 2 1 300 726 1180 2260 3060 3960 4900 5940 
2 530 991 1560 2350 3170 3990 4970 
3 940 1300 1780 2450 3270 4120 5080 
4 1340 16S0 2120 2700 3530 4360 5150 
5 1870 2020 2520 3080 3790 4570 5370 
6 
7 

2290 
2750 

2510 
2930 

2890 
3360 

3440 
3840 

4090 
4470 

4820 
5150 

5630 
5980 

0 3220 3420 3800 4250 4800 5540 
9 3710 3960 4240 4610 5220 5870 
10 4200 4421 4680 5170 5630 
11 4610 4910 5070 5640 6070 
12 5130 5360 5590 1 6080 
13 5700 S800 6100 
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TABLE 3 
Experimental Resonance Frequencies, Hz - Concluded 

[Panels 3 and 4; heavy line encloses nodes for which   re£j(u>/w0) < 3.0] 

\n 

-\ 
1 2 3 4 5 6 7 8 9   10 

Panel 3 1 280 674 940 1360 1760 2140 2520 2910 3290 3640 
2 443 760 1070 1430 1810 2200 2630 3020 3360 
3 810 990 1300 1570 1930 2310 2700 3080 3430 
4 
S 

1010 
1330 

1230 
1530 

1500 
1750 

1770 
1980 

2110 
2310 

2440 
2580 

2800 
2930 

3140 
3280 

3500 

6 1760 1830 2020 2220 2500 2780 3130 3440 
7 2000 2140 2290 2490 2700 3000 3350 
8 2360 2440 2560 2750 2960 3210 3540 
9 2650 2710 2890 3060 3230 354Ö 
10 2950 305C 3200 3300 3500 
11 
12 

3300 3390 3460 
3590 

Panel 4 1 288 638 951 1380 1780 2140 2540 2910 3310 3678 
2 437 754 1060 1430 1820 2200 2620 3060 3380 
3 
4 

784 
981 

990 
1220 

1260 
1480 

1580 
1780 

1940 
2100 

2300 
2450 

2700 
2800 

3100 
3130 

3460 
3S90 

5 1310 1540 1720 2010 2310 2630 2940 3310 
6 
7 

1780 
2030 

1820 
2130 

2000 
2290 

2230 
2490 

2530 
2720 

2810 
3010 

3140 
3360 

3480 

8 2340 2430 2580 2760 2970 3240 3530 
9 2630 270O 2870 3030 3260 3500 
10 2930 3050 3210 3340 354Ö 57» 
11 3270 3390 3460 3620 
12 1550" 

DISCUSSION 

Voice: Ho«? were the panels excited? 

Mr. Erlckson: In each case, the panel is 
excited by a relatively small permanent mag- 

net, 25 lbs force shaker. It was attached by 
means of a vacuum cup so that the point of 
excitation could be readily moved without adding 
any mass to the panel. 
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TURBINE ENGINE DYNAMIC COMPATIBILITY 

WITH HELICOPTER AIRFRAMES 

Kenneth C. Mard and Paul W.   on Hardenberg 
©   Sikorsky Aircraft Division of United Aircraft Corporation 

Stratford, Connecticut, U.S.A. 1968 
All     Rights      Reserved 

i 

During the development of the U. S. Marines CH53A transport heli- 
copter, Sikorsky Aircraft was funded to conduct an intensive investi- 
gation into the dynamic characteristics of the CH53A/T64-6 engine 
installation.   The purpose was to gain assurance that the turbine 
engine and helicopter airframe dynamic characteristics were com- 
patible and that unanticipated dynamic problems would not occur 
during service life. 

The program was unique because:  (a) it was an extensive dynamic 
compatibility study implemented during a helicopter design phase 
and went far beyond current design and substantiation specifications; 
(b) it paves the way for future specification requirements for heli- 
copter/turbine installations; and (c) it gave greater technical 
capability to the airframe manufacturer to meet his responsibilities 
for the engine/airframe installation design and substantiation. 

This program, conducted with the cooperation of General Electric's 
Small Aircraft Engine Division, included an analysis of engine and 
airframe induced vibration characteristics, ground shake tests 
with and without the engine operating, and flight test verification 
of the installation.   Data gathered on natural modes, forced response 
and the procedures developed in evaluating the effects of interface 
impedance provided a high degree of confidence that future changes 
to the airframe or engine would not result in unanticipated problems. 

INTRODUCTION 

The reciprocating engine stands at a high 
level of development today.   It took the talents 
of two generations of engineers to mitigate the 
effects of torque pulsations caused by each 
cylinder firing and the inertia forces from the 
unbalanced reciprocating elements.   The intro- 
duction of gas turbines to the helicopter indus- 
try was welcomed not only because of the 
greatly improved power to weight ratio, but 
also because the smooth process of continuous 
combustion and simple rotating elements 
promised freedom from engine vibration which 
is fatigue-inducing and annoying. 

Flight tests on two T-58 General Electric 

Reproduced with permission. 

gas turbine installations, the Sikorsky HSS-1F 
helicopter and the S-62 helicopter, confirmed 
that die vibration and dynamic forces ema- 
nating from the turbines did not require the 
added complication of isolation to protect the 
airframe.   On the basis of this experience the 
Navy's SH-3A anti-submarine helicopter was 
designed and produced without further con- 
sideration of the interface between the air- 
frame and engine. 

For nearly three years the development 
and production of this aircraft proceeded with- 
out serious engine installation problems. 
Then, rather suddenly, an almost exponential 
increase in the number of engine installation 
discrepancies were reported, the majority of 
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which were fatigue cracks in the nonrotating 
engine structure. Fig. 1 shows the removal 
rate as a function of accumulated flight time. 

ACCUMULATED MOW TIM« 

FIG. 1   SH3A/T58 ENGINE REMOVAL RATE 
VS. ACCUMULATED FLIGHT TIME 

The impact of the sharp increase was a drain 
on the spare part reserve and a reduction of 
aircraft availability to a seriously low level 
with an unpredictable amount of unscheduled 
maintenance. 

The most frequently reported discrepancy 
was cracking of die flange of the power turbine 
bearing hov ging.   This housing provided the 
structural path which supported the rear of the 
engine on the airframe.   It also housed the 
bearing which supported the free turbine wheel 
and drive shaft.   Vibration measurements 
taken on this part revealed a high amplitude 
resonance excited by imbalance of the free 
turbine and drive shaft as shown in Fig. 2. 
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FIG 2   SH3A/TSR ENGINE TURIINE REARING 
HOUSING VIIRATION VS. TURRINE SPEED 

The significant fact here is that there was no 
requirement from the engine manufacturer nor 
any motive for the airframe manufacturer to 
examine this area prior to the sharp rise in 
fatigue cracking of this component.   In fact, 
measurements made at locations recommended 
by the engine manufacturer were within speci- 
fied limits. 

The resonance was successfully detuned 
by the addition of a 13 lb weight adjacent tu the 
bearing housing, but the disturbing question 
still remained as to why this resonance revealed 
itself so far along the life cycle of the aircraft. 
Further investigation, coupled with a detailed 
dynamic analysis developed by the engine 
manufacturer, pinpointed the cause to be a 
change in impedance at the interface between 
the aircraft and engine.   This subtle change, 
merely the change in material in a bushing 
which exhibited poor life characteristics, had 
an unusually strong effect on this resonance. 

Subsequent to the initial development of 
the SH-3A, a commercial derivative called the 
S-61L was introduced.   Although the dynamic 
system on this model was the same as the 
SH-3A, the fuselage was stretched to adapt it 
to its commercial role.   The front frame of 
the engine is mounted directly to the airframe 
and, even though the mount was unchanged 
from the SH-3A, the airframe dynamic charac- 
teristics were sufficiently different to cause 
another serious structural integrity problem 
with the engine.   Main rotor excitation of the 
helicopter at 17 cps was transmitted throu^n 
the airframe in sufficient magnitude to excite 
the first bending mode of the engine.   Vibra- 
tory amplitudes of mis mode were enough to 
cause a high  stress problem in the power 
turbine bearing housing structure.   This did 
not occur in the SM-3A because the front frame 
of the engine was mounted near a node in the 
airframe.   The solution to the problem was to 
change the interface impedance between the 
front frame of the engine and airframe so as 
to alter the resonant frequency of the first 
bending mode.   This problem was not recog- 
nized initially because of insufficient knowledge 
of the structural dynamic characteristics of 
the engine installation. 

Neither of these problems were anticipated 
by the engine or airframe manufacturer.   This 
experience made it imperative that in future 
installations the definition and control of com- 
patible interface characteristics be given high 
priority. 

The award to Sikorsky Aircraft by the 
U. S. Marines for development of the CH53A 
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transport helicopter presented a new challenge 
in achieving a reliable turbine engine instal- 
lation in a helicopter airframe.   It was recog- 
nized by the Bureau of Naval Weapons, the 
engine manufacturer (General Electric), and 
Sikorsky (the weapons system contractor) that 
a gap existed in the definition of, and the 
responsibility for, the engine/airframe inter- 
face impedance characteristics.   The weapons 
system contractor, by definition is responsible 
for the total performance and effectiveness of 
the system ir the field.   Since the engine sub- 
system dynamic characteristics were not 
available, technical cognizance of the engine 
installation had been delegated to the engine 
manufacturer by BuWeps, causing a disconti- 
nuity in total system responsibility. 

In recognition of this, BuWeps funded 
Sikorsky to conduct an intensive investigation 
into the dynamic characteristics of the CH53A/ 
T64-6 engine installation.   This program of 
beefing up the technical capability of the 
weapons system contractor gave added as- 
surance that the initial installation on the 
CH53A would be free of structural dynamic 
problems and that future developments would 
receive positive and competent guidance.   The 
strong technical support and cooperative atti- 
tude of General Electric's Small Aircraft 
Engine Division, Lynn, Mass., is largely 
responsible for the success of this program 
and is gratefully acknowledged. 

There is only one variable that can be used 
to achieve this objective.  This is the Interface 
impedance between the engine and airframe or 
other hardware used to adapt the engine.  A 
mathematical model must be used to assess 
the interplay between this variable and the 
baseline configuration used by the engine 
manufacturer during his development and 
qualification phase.   This constituted Phase I 
of the program. 

A dynamic analysis of a turbine engine is 
complicated by the high frequency modes that 
must be considered and the uncertainty of 
important parameters.   The mathematical 
model must be correlated with shake tests and 
forced response tests of the engine installation. 
The second phase of the Engine Dynamics 
Program included shake tests of the installation 
using external excitation to determine response 
of natural modes and frequencies, and a second 
test was conducted with the engine running 
under power using calibrated unbalance of its 
own rotating elements to determine forced 
response characteristics.   The final phase 
included flight tests to verify the conclusions 
of the analytical and ground test phases.   Fig. 
3 summarizes the principle elements of the 
program. 

PHAM  I      ANAITM 

CH53A/T64-6 ENGINE DYNAMICS PROGRAM 

Development costs of an engine usually 
exceed, by several times, the development 
cost of the helicopter that receives it.   In 
addition, the concept and design of the engine 
precedes the application so that in any use the 
engine must be adapted with little or no change. 

The basic philosophy behind the CH53A/ 
T64-6 Engine Dynamics Program was to 
extrapolate from the experience already 
developed by the engine manufacturer rather 
than to establish the integrity of the instal- 
lation on an absolute basis.   The engine had 
already completed its 150 hour qualification 
run and was starting to be used in other appli- 
cations when this Engine Dynamics Program 
was proposed.   Initial development problems 
had been resolved and it was rational to believe 
that the fewest new problems would arise if 
changes in the engine dynamic response 
characteristics between the other installations 
and the CH53A were minimized. 
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DESCRIPTION OF THE CH53A/T64-6 ENGINE 
INSTALLATION 

Fig. 4    CH53A helicopter with T64-6 engines 

The CH53A transport helicopter, shown in 
Pig. 4 was designed to carry a payload of 
8000 lbs, a radius of 100 nautical miles at 
speeds in excess of 150 knots.   It is powered 
by two T64-6 General Electric turbine engines, 
each producing up to 2850 shaft horsepower. 
Fig. 5, a schematic of die engine installation, 
shows that it is attached to die airframe at 
two points.  The rear mount under the gas 
turbine is only capable of vertical and lateral 
reactions.  The forward mount under die nose 
gear box provides vertical, lateral, longi- 
tudinal and torsional restraint.  The power 
output shaft is at the front of the engine, con- 
centric with the compressor air Intake, and is 

routed through a torque tube to the nose gear 
box and men to the main transmission of the 
helicopter.   Restraint by the output drive 
shaft from the nose gear box to the main 
transmission is minimized by flexible 
couplings. 

Fig. 5 also shows the schematic of the 
Internal configuration of the engine.   A 
unique feature is the concentric shaft of the 
power turbine and gas generator.   The tail 
pipe and nose gear box as well as the mount 
characteristics, constitute the impedance 
variable under the airframe manufacturer's 
control. 
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CHS3A/T64-4 ENGINE INSTALLATION 

The engine mount characteristics were 
selected early in the design phase of the CH53A 
and before the start of the Engine Dynamics 
Program.   The design requirements, however, 
were established with the objective of dis- 
associating the airframe from the engine.   A 
natural frequency of 10 cps was selected for 
the translational and pitching modes.   This 
effectively decoupled airframe excitation from 
the first bending mode of the engine by a 
frequency ratio of two to one.   It was necessary 
to compromise die transmissibility to the 
torsional or roll mode because of the require- 
ment to react the engine output torque with a 
minimum of deflection.   This was accomplished 
with the cooperation of die Lord. Mfg. Co. 
who fabricated a unique forward mount in- 
corporating high vertical and lateral flexibility 
while retaining stiffnes3 in the roll and longi- 
tudinal direction.   Fig. 6 shows the results of 
analysis and rest of this installation.   As 
shown, resulting natural frequencies were 
sufficiently removed from the principal air- 
frame excitation to preclude any significant 
response. 

ENGINE DYNAMIC ANALYSIS 

An essential ingredient to understanding 
the fundamental characteristics which make 
up the dynamic response of a complex 
structure such as an engine is a definitive 
analysis.   The General Electric Co. had 
made significant progress with their develop- 
ment of the VAST (System Vibration and Static 
Analysis) analysis Ref. (1).   This analysis is 
based upon the Prohl method Ref. (2).   This 
method analyzes a beam or span by dividing it 
into a series of discreet stations where the 
lumped mass of the station is considered to 
act.   Spans are selected on the basis of being 
a uniform beam with boundary conditions such 
as a bearing or a major change in structural 
properties.   The structural characteristics 
are determined for the station between the 
discreet masses.   Equations relating the 
inertia and elastic forces are written for each 
station in the span.   By algebraic elimination 
the boundary condition at the end of the span 
can be expressed in terms of the boundary 
conditions at the beginning of the span. 
Boundary conditions at either end of the span 
can include the equilibrium requirement of 
another span which joins it. at that point. 
Relative motion between the coordinate 
systems of each span are accounted for by a 
set of compatibility equations.   Natural 
frequencies are determined by finding a 
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frequency which satisfies the boundary con- 
ditions at the free ends of die engine.   Forced 
responses are determined by calculating a 
response amplitude that will put the exciting 
forces in equilibrium.   A limitation of this 
analysis is mat it did not include damping. 
Altogether 20 ap*.is, which included 225 
stations, were used to describe the instal- 
lation.   This detail was necessary because the 
exciting frequencies went up to 300 cps. 

Ten transverse natural frequencies of the 
system in the vertical plane were located in 
the range from 0 to 330 cps, two of which were 
riftid body modes.   These modes are shown 
relative to the gas generator, power turbine 
avid gear box output shaft rotating frequencies 
in Fig. 7. 

Fig. 8 illustrates the mode shapes that were 
calculated and shows the relative motion that 
can exist between the rotors and external 
shell (stator) bending response.   A similar 
analysis was conducted to determine the 
orsional modes involved. 

Fig. 7 shows mat the two ranges of ex- 
iting frequencies that are of most concern in 

exciting the natural modes are the power 
turbine rotating frequency, which is 227 cps, 
and the gas generator rotating frequency which 
varies, depending on the power required, 
between 217 and 300 cps.   It is observed that 
several modes are coincident with the gas 
generator frequencies and may be excited such 
as the third engine bending mode.   From this 
it may be predicted that gas generator frequen- 
cy should be the principle response seen in 
operation. 
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Forced response shapes for specific un- 
balances of the rotating components were 
calculated also to give better insight into the 
response characteristics of the engine.   Fig, 
shows two calculated response shapes to an 
unbalance of 60 gram Inches located at the 
power turbine rotor. 
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The forced response shape at 122 cps was 
chosen as a near resonant, low power turbine 
speed condition used occasionally for engine 
warm-up.   As expected, the response shape is 
primarily the second engine bending mode 
shape and the amplitudes are elevated because 
no damping is considered in the analysis.   The 
interesting aspect of this condition is that the 
amplitude of the power turbine is considerably 
greater than the amplitude of the engine shell. 
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Therefore, low vibration measurements at the 
power turbine frame and compressor frame 
locations would not necessarily indicate 
freedom from problems.   As a result, strain 
gage measurements of the power turbine 
rotating system should be carefully reviewed 
during low speed transient conditions.   The 
second response shape is at 227 cps, the 
normal operating speed of the power turbine. 
It shows only a modest amplitude of the power 
turbine and shaft and little engine stator 
response, considering the amount of unbalance. 
Similar calculations were made with un- 
balances at several planes of the gas generator 
and excitation at the air frame interface. 

The results of this study stressed the 
value of forced response analysis as a means 
of exposing potential problem areas not easily 
uncovered in testing.   Study of these data pro- 
vided guidance for the planning and conduct of 
the subsequent shake test program. 

GROUND VIBRATION TESTS 

It was shown in Fig. 6 that natural 
frequencies were sufficiently removed from 
the principle airframe exciting frequency to 
minimize rigid mode response.   In suc- 
cessfully developing an installation with rela- 
tively low rigid body natural frequencies, the 
objective of eliminating any influence that the 
airframe might have on the engine dynamic 
response was also achieved since the first 
flexural engine mode was well above these 
frequencies.   The engine rigid body response 
was measured with the aircraft in simulated 
flight by suspending the aircraft from the 
main rotor head and exciting it at the main 
rotor blade passage frequency with a shaker 
force of representative magnitudes.   See 
Fig. 10. 

Two test installations were utilized in the 
conduct of the higher fiequency portion of the 
ground test program.   These wtre the Sikorsky 
turbine test bed, Fig. 11, and the tie-down 
test aircraft, shown in Fig. 12.   On both 
installations, tests were conducted on engine 
installations complete with nose gear boxes, 
tail pipes, suspension systems, and other 
interfacing hardware provided by the airframe 
manufacturer.   Although the airframe 
structure was substantially different between 
these installations, this was not considered a 
significant factor because the low impedance 
of the isolator between the engine and airframe 
minimized coupling influences in the higher 
frequency portion of the test program.   Fig. 

13 shows a close-up pnoto of the shake test 
set no. 

It was realized that shake test data ob- 
tained as a result of a single source of excita- 
tion could not yield data that would provide 
correctable results with the dynamic analysts 
that was conducted in Phase I.   See Ret. (3). 
Damping masks natural frequencies and mode 
shapes of complex structure and care must be 
taken in identifying high forced response to a 
natural mode of vibration.   The analysis, 
however, did provide excellent guidance in 
identifying these modes.   The engine structure 
is composed of several loosely coupled beam 
structures, the power turbine rotor, the gas 
generator rotor, and the engine stator, 
connected by bearings.   The easily interpreted 
results of the analysis made it possible to 
examine their relative responses and draw 
conclusions as to their contribution at other 
frequencies.   A forced response vs. frequency 
plot showed that the internal modes could not 
be identified since they did not show up as a 
significant response to the external excitation. 

Response shapes of the external shell 
were measured and considered lo be close 
approximations of the calculated shell modes. 
Fig. 8 shows a correlation of the measured 
and calculated 3hell modes.   The natural 
frequencies were predicted reasonably well, 
but more Important, the correlation with the 
shell mode shapes gave some assurance that 
the response of the internal components was 
reasonable, a'so. 

"Hot" shake tests were the final phase of 
the ground test program.   These tests were 
conducted with the engine operating normally 
under power and with excitations from the 
source they were most expected; unbalance in 
the compressor section, the gas generator 
turbine, the power turbine, and the output 
drive shaft.   There were two purposes for this 
test; the first was to determine the sensitivity 
of the engine to self-excitation, particularly 
when operating in close proximity to known 
resonances; the second was to determine if 
there were other effects not covered by the 
analysis. 

Clipping blades a small amount caused 
internal imbalances in the compressor or 
turbine section, ranging from 17 gram inches 
in the power turbine to 27 gram inches at the 
first stage of the compressor.   See Fig. 14. 
The imbalances were thought to be significantly 
greater than the inherent unbalance in a new 
.ngine. 
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Flg. 10    CH53A/T64-6 low frequency engine vibration test 

Fig. 11    Sikoraky CH53A teat-bed installation 
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Fig. 12    Sikorsky CH53A tie-dcwn aircraft installation 

► 

Fig. 13    Sikorsky CH53A teat-bed installation "cold" -ihakc teat set-up 
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Nominal subassembly imbalance limits 
are reported to be kept within 1.0 to 1.5 gram 
incnes.   Abusive tests conducted by the engine 
manufacturer exposed the engine to imbalances 
in the order of 60 gram inches and appears to 
be very conservative.   Data obtained from 
engines run with mown added, imbalances were 
used to produce the results shown in Fig. 15. 
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RESPONSE TO UNBALANCE 

This curve relates the vibration measured on 
the power turbine frame at a specific operating 
condition to effective gas generator unbalance; 
that is, imbalance necessary to be added to the 
compressor at the forward end and at the com- 
pressor turbine to achieve a similar vibration 
level.  The measured vibration levels taken 
from production engines Indicate that effective 
inherent Imbalance as high as 25 gram Inches 
exist with an average of 10 to 15 gram Inches. 

This is in order of magnitude greater than 
component balance tolerances used by the 
engine manufacturer and is probably caused by 
thermal effects, assembly stack up, bearing 
clearances, etc.   This finding makes the re- 
sults of the engine manufacturer's abusive ^st 
less conservative. 

Calculating the structural properties of a 
thin wall structure is difficult.   Analytically, 
the tail pipe was treated as a cone shaped 
beam in bending, but it was not possible to 
determine its radial degrees of freedom in 
sufficient detail to understand the higher 
frequency modes.   It was not surprising, then, 
to discover a mode which seems to predominate 
in tail pipe response at a rrequency where no 
other mode was calculated.   Fig. 16 shows die 
response of the power turbine frame with and 
without the tail pipe Installed. 
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Note that the response level in the 240 to 280 
cps range was significantly affected by the tail 
pipe which constitutes less than 2% of the 
weight of the installation.   Observe also that 
this effect is probably responsible for the poor 
correlation of the first gas generator mode 
frequency with that predicted by the analysis. 

Another important result of the "hot" 
shake test was to confirm that gas generator 
imbalance would be the principal source of 
engine vibration at operating conditions.   Fig. 
17 shows engine response to gas generator, 
power turbine, and output drive shaft im- 
balance.   As shown, the principal response of 
the engine was to gas generator imbalance and 
maximum response would be measured at the 
power turbine frame location.   The results 
further confirm that engine response in the 
120 cps range is relatively insensitive to 
power turbine imbalance and increasingly 
sensitive to output drive shaft imbalance above 
the operating speed range.   This latter result 
illustrates the importance of keeping the 
second engine bending mode frequency well 
above the output drive shaft operating speed 
range. 

expose any significant potential problem.   It 
was realized that the torque tuue/nose gear 
box interface was important since it controlled 
the second engine bending mode and thereby 
the response to output drive shaft unbalance. 
It was known that gas generator imbalance 
would be significant and that deterioration in 
its balance such as that caused by Ingestion of 
foreign objects could prove serious.   It was 
also determined that die most sensitive place 
to observe this deterioration was at the power 
turbine frame.   In addition, tail pipe structural 
characteristics, a part under the control of 
the airframe manufacturer, could have a 
dramatic effect on the response of the rest of 
the engine.   Much was learned also of the 
relationship between the external shell and the 
internal rotors which could not be visually 
observed. 

Although it was not expected that an engine 
structural reliability problem would be un- 
covered during the design and development 
phase of the CH53A, it required favorable 
comparison of flight test results with oper- 
ational limits established through qualification 
and abusive testing by the engine manufacturer 
to make this assurance. 
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CHARACTERISTIC VIMATION SIGNATURE 

SUMMARY OF ANALYSIS AND GROUND TEST 
RESULTS 

After an intensive exposure to the 
structural dynamics of the T64-6 turbine 
engine installed in the CH53A helicopter both 
in analysis and shake test, it was possible to 
anticipate its response characteristics and to 
develop a high degree of confidence that con- 
current qualification and abusive testing by the 
engine manufacturers and subsequent flight 
testing by me airframe manufacturer would 

OPERATIONAL VIBRATORY RESPONSE 
LIMITS 

The validity of operational vibratory 
response limits set by an engine manufacturer 
depends largely on their applicability to a 
specific installation.   Abusive tests, that is, 
tests conducted by the engine manufacturer by 
exposing their engine to unbalance or external 
excitation substantially in excess of that 
normally expected, are used to develop an 
envelope within which vibration is considered 
acceptable.   (See Ref. (4) for a discussion on 
the development of abusive test philosophy by 
the engine manufacturer.) This assumes, 
however, that airframe interface impedance 
does not alter the relative response between 
the required point of measurement and some 
other part of the engine where a critical stress 
may occur.   The knowledge gained by both the 
airframe and engine manufacturers in this 
program helped to preclude this possibility. 
While the resonance of die power turbine bear- 
ing housing was not discovered in die SH3A/ 
T58 installation, mere was little possibility of 
that happening with the CH53A/T64 installation. 
Abusive tests were either carefully designed to 
account for the airframe impedance or al- 
lowance was made for any differences through 
use of the analytical and test data.   As a result, 
the engine manufacturer was able to specify 
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Vibration limits as a function of frequency, 
Fig. 18, with reasonable assurance that a high 
degree of structural integrity would be achieved 
if these limits were not exce led. 
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FUGHT TEST RESULTS 

Flight tests were conducted to obtain both 
low frequency rigid body response and higher 
frequency response in a production aircraft. 
In addition, high temperature strain gages 
were added to obtain stress information on 
specific Internal parts.  Typical data, shown 
in Fig. 19 shows that the installation is well 
within the recommended limits of the engine 
manufacturer. 
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fIG 19    CHS3A/T644 ENGINE INSTALLATION 
PRODUCTION ENGINE MEASUREMENTS 

Test data taken on a number or" production air- 
craft confirm that there is only a nominal 
variation in response.   A more important 
factor is the number of engine removals per 
flight hour.   Fig. 20 shows this removal rate 
for all causes as a function of fliftht hours 
compared to the T58/Scl history.   The T64-6 
installation reflects a higher degree of engine 
reliability from the outset, and has not 
experienced a major structural integrity 
problem. 
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FIG 20   CH53A/T64-6 AND SH3A/TJ8 ENGINE REMOVAL 
RATES VS ACCUMULATED FLIGHT TIMES 

CONCLUSIONS 

The CH53A/T64-6 Engine Dynamics 
Program developed a strong working relation- 
ship between the airframe and engine manu- 
facturers.   In addition, this program was 
unique in that it was the first extensive dy- 
namic compatibility study implemented during 
a helicopter design phase and went far beyond 
current engine installation design and sub- 
stantiation specifications.   In doing so it paves 
the way for future specification requirements 
for helicopter/turbine engine installations. 

Much credit goes to the Navy for realizing 
the need for this program.   It is recommended 
that a similar program be an intimate part of 
the development of any advanced VTOL system 
so that the prime contractor can exercise the 
proper technical control and judgment in 
achieving a compatible turbine engine instal- 
lation. 

t : 28 



REFERENCES 

(1) J. K. Sevcik, "System Vibration and 
Static Analysis (VAST Prog am)," 
A. S.M. E. Paper Number 6J-AHGT-57, 
March 3-7, 1963 

(2) M. A. Prohl, "A General Method for 
Calculating Critical Speeds of Flexible 
Rotors," Journal of Applied Mechanics, 
Trans. A. S.M. E., Sept. 1945 

(3) C. C. Kennedy and C. D. P. Pancu, "U»e 
of Vectors in Vibration Measurement and 
Analysis," Journal of die Aeronautical 
Sciences, Volume 14, Number 11, pp. 

' 603-625, Nov. 1947 

(4) G. Sonder, "Abusive Testing of Turbo- 
shaft Engines, " A. H. S., Proc. of 21st 
Annual Nat. Forum, pp. 240-243, May 
12-14, 1965 

DISCUSSION 

Voice: What do you mean by the removal 
rates ? 

Mr. Mard:  This is the number of engine 
removals per hour of flight time. This is for 
all causes, not Just failures of structural in- 
tegrity. We felt that the high amplitude re- 
sponse of an engine would cause other problems 
and deterioration of other components so this 
removal rate was for all causes. 

Dr. Mains (Washington University, St. 
Louis):  You have had an opportunity here to 
compare your calculations with two different 
kinds of tests. What was the correlation In 
results between your predictions and your 
measurements ? 

Mr. Mard:  The correlation was primarily 
with frequency.  The force response using the 
unbalanced engine during the hot shake test 
will produce responses from a number of modes. 
When we were operating very close to a reso- 
nance, we were able, from past experience 
from analysis of cold shake tests to identify 
the mode with which we were dealing. The 
cold shake tests were the ones ir. which we 
were able to get the best correlation, because 
we could take detailed measurements along 
the engines and parts internally and identify 
cur analytical modes with those we found re- 
sponding from our cold shake test. The hot 
shake tests were more difficult to perform in 
that it was more difficult to make measure- 
ments. We could not get anybody to go near 
the engine to put a hand probe on, for instance. 
For this reason It was a little more difficult 
to get correlation, but we do feel that there 
was not very much change between what we 
have seen in the cold shake and in the hot. 

Dr. Mains:  You answered my next ques- 
tion by your answer now in that my next ques- 
tion was going to be how did you handle the 
combination of modes in the calculation when 
you do not know the phase. But obviously that 

was the reason why your predictions in your 
measurements of amplitudes for example under 
forced response would not necessarily agree. 

Mr. Mard:  That is right. And there are 
other modes present, too, that confuse things, 
like this radial mode of the tail pipe which was 
not accounted for in our analysis. 

Mr. Mustaln (McDonr-cl Douglas): We had 
a problem on the DC-9 and we went through 
quite an extensive program.  The frequencies 
you mentioned are above 31 hertz, around 100 
and 200, in this area. You worked out fine. In 
our case we had a problem in the same range. 
But we had hoped to Isolate it with a vibration 
isolator.  They really did not do us any good at 
all. We wee using Isolators at various fre- 
quencies around 15 hertz and in that range. If 
they had worked ideally they would have probably 
solved our problem. We had to go to vibration 
absorbers to solve our problem. My question 
is: what type of isolator did you use? What 
frequencies did you have? Did you have any 
problems at all in that area?  Did the isolators 
work better for you than they did for us? 

Mr. Mard: Well, the kind of isolators we 
had were developed by a combined effort between 
Lord Manufacturing Co. and Sikorsky. They were 
low frequency for all but one mode. The natural 
frequencies range in the order of 7 to 10 hertz. 
The principal exciting frequency I might add is 
around 18 hertz from the airplane and we had to 
avoid this frequency. The torsional mode - the 
one reacting the torque of the engine - was 
placed higher so as to preclude large static 
deflections. This was in the order of 23-24 
hertz. We did not encounter any problems with 
this isolator. I think you have to give more 
specific Information about your problem to 
determine whether or not an isolator would buy 
you anything or hurt you. Here we did not have 
a problem which we were trying to solve except 
that we knew the engine was developed in an 
environment which was similar to that which we 
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achieve with these isolators. Now if we had 
made a rigid attachment to the air frame, and 
we probably could have done so, we would have 
destroyed this transfer of development infor- 
mation. We were anxious not to do this - we 
were anxious to depend or extrapolate as much 
as we could from the engine manufacturers 
source of knowledge. This is the reason why 
we Isolated. We did not have a problem to 
avoid. We tried to utilize his development 
skills. 

Dr. Dreher (Air Force Flight Dynamics 
Laboratory):  It was not clear to me how your 
natural frequencies varied, or differed from 
taking the engine by itself as compared to the 
engine when installed in the air frame. Was 
there a sizeable difference in the natural 
frequencies? 

Mr. Mard:  Oh yee, there was a consid- 
erable difference. Because the nose gear box 
that was a sizeable mass. Initially, we did quite 
a bit of work on the impedance between this 
nose gear box and the torque tube which was 
supplied by tne engine manufacturer. This 
produced a rather flexible plate. 

Dreher: What was the frequency of Dr. 
that? 

Mr. Mard: This was close to the output 
shaft frequency - 100 hertz. We were able to 
place it Just above the output shaft speed and 
avoid a problem here. This was the first one 
we were confronted with when we adapted this 
engine to our Installation. There were quite a 
few tests run by the engine manufacturer with 
our installation. There were quite a few tests 
run by the engine manufacturer with our assis- 
tance in developing a compatible impedance be- 
tween these elements.  This is really the point. 
The engine manufacturer has a wealth of ex- 
perience but it is on dynamic conditions. The 
mathematical model of the engine installation 
is quite different than we see. By having a good 
mathematical mudel we can examine his knowl- 
edge - what he has learned - and transfer it 
to the models that we have created. 

Dr. Dreher: Do you feel that the difference 
in vibration of natural frequencies was primarily 

caused by this shaft that connected to the rotor, 
and one might not find as great a difference in a 
normal Jet engine aircraft where there is no 
direct link to the airframe itself? 

Mr. Mard:  I think the difference lies 
in how much mass you hang on either end of the 
engine - the tailpipe had a very dramatic effect. 
I think this has to be looked at quite individually 
and each case would be unique, I'm sure. 

Dr. Dreher:  My thought here was Just how 
much can the engine manufacturer do ahead of 
time - that is, when he originally develops the 
engine. It seems reasonable that he should 
compute the natural frequencies of the armature 
and so on, that is, the bending modes and the 
radial modes, and that he could obviate a lot of 
built-in vibration in his engine if he thought 
about the dynamics before he built the engine. 

Mr. Mard: WeU, first he did not have 
this capability initially. It was through working 
with him that he did develop an analysis which 
would help with the installation problem such as 
the one we had. But you have to remember that 
when you start hanging the kind of hardware that 
we are talking about on the engine it becomes a 
specific installation - and there are specific 
frequencies which you are trying to avoid. 

Dr. Dreher: I guess we have some fre- 
quencies In which the engine can be at fault all 
by itself, cut there are some peculiar instal- 
lation problems. 

Mr. Mard:  They are highly coupled. 
I guess what I am trying to say Is that the in- 
fluence of these other elements which you hang 
on the engine can change the response of the 
engine radically. 

Dr. Dreher:  You indicate now that there is 
no firm military specification that defines the 
effort that should, be accomplished. 

Mr. Mard: No. There has been very 
little communication in the past between engine 
manufacturers and airframe manufacturers. 

Dr. Dreher: Seems like this might be a 
good subject for a panel discussion next year. 
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This paper describes the development of an automated struc- 
tural design procedure for sizing the members of three- 
dimensional  rigid-Joint frames subject to resonant frequency 
requirements.    The procedure seeks a minimum cost structure 
for which the lowest natural frequency Is specified.    The de- 
velopment Includes a mathematical  formulation of the problem, 
the organization of an Iterative design procedure, and the 
presentation of an example problem. 

DESIGN REQUIREMENTS 

This Investigation In the field of auto- 
mated structural synthesis Is directed toward 
structures that are designed on the basis of 
stiffness rattier than strength criteria.    The 
stiffness requirement In this Instance Is ex- 
pressed In terms of the undamped natural  fre- 
quencies of vibration of the structural model. 
The particular problem considered here Is the 
minimum cost design of three-dimensional  rigid- 
Joint frames subject to the requlremant that 
the  lowest resonant frequency of the structure 
be above a specified level.   A procedure Is de- 
veloped for the sizing of the rairbers of the 
structure while changes In geometry which might 
also Improve the dynamic performance are not 
considered. 

Such a design requirement occurs In the 
case of auto-track microwave antenna structures; 
The operation of this type of Instrument re- 
quires accurate positioning of the reflector 
while tracking a target.    This accuracy require- 
ment Is met by an automatic control system, but 
the response of the system Is limited by the 
lowest natural  frequency of vibration of the 
structure.   Thus It Is necessary to have a cer- 

tain level of structural stiffness such that 
the free vibrations of the antenna are not am- 
plified by the feed-back control system.    It 
Is, of course, desirable to satisfy this re- 
quirement with a minimum cost structure. 

Often the manufacturers of such equipment 
will  receive an Invitation to bid on the de- 
velopment of an antenna system for which the 
tracking rates and accuracy are specified. 
Consideration of the automatic control problem 
yields a lower bound on the natural frequency 
of vibration of the antenna, but the company 
seldom has the time (or money) to develop ac- 
curate costs for an appropriate structure. 
The system described here provides a quick re- 
action design capability which Is suited to 
this problem. 

A similar situation occurs In the design 
of vibration test fixtures.   The fixture serves 
as a structural   link between the shake.- arid 
the specimen.    Since both the specimen and 
fixture respond as a coupled system to the 
moving boundary Imposed by the shaker,  It Is 
desirable, although not always essential, for 
the natural  frequencies of the fixture to be 
considerably above the upper level of the 
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forcing frequency.    If the connection between 
the fixture and specimen allows a single degree 
of freedom at the connection, control may be 
based upon this motion and stiffness require- 
ments for the fixture may be circumvented.    How- 
ever, If this connection Is not dominated by a 
single notion or the connection takes place at 
several   locations on the flexible specimen, the 
moving boundary problem, as seen by the speci- 
men,  Is complex unless the fixture Is "stiff." 
In such a situation, providing the fixture Is 
a space frame, the design system may u.i utilized 
to provide adequate stiffness. 

FUNDAMENTALS OF STRUCTURAL SYNTHESIS 

In  1900, F.H. CllleyCl] demonstrated that 
for a hyperstatlc truss under a single loading 
system, the minimum weight structure will be a 
statically determinant substructure In which the 
truss members are selected to achieve allowable 
stress.    It may be demonstrated that, for a sin- 
gle material statically determinant truss sub- 
ject to a single loading system and measuring 
the stiffness as the reciprocal of the strain 
energy, the welght-to-stlftnoss ratio Is mini- 
mized by a member area distribution which re- 
sults in uniform stress. 

For a hyperstatlc structure under multiple 
loading, the above conclusions do not neces- 
sarily apply.    As a result, research In struc- 
tural design has proceeded along two lines, the 
fully-stressed method, and the method of steep- 
est descent. 

For multiple loadings, ClI ley [I] used the 
fully stressed design concept In which each mem- 
ber reaches Its allowable stress under at least 
one of the alternate load systems.   This con- 
cept ray be extended to Include stiffness cri- 
teria under multiple loads by assigning a uni- 
form-design stress level to each alternative 
loading.    Then, each member Is sized so that 
Its mexlmum stress Is equal to the design stress 
level for at least one loading. 

Since the member forces In a hyperstatlc 
structure are e function of the member proper- 
ties, several  iterations of analysis and re- 
design may be required to achieve a suitable 
design.    During these Iterations the stress 
levels are adjusted to satisfy the required 
»tltfness criteria.   L.C. Schmidt [2], In 1958, 
explored the fully-stressed concept and con- 
cluded that, for an Indetormlnant structure, 
there will be a number of fully-stressed de- 
signs.   He decided that the optimum structure 
will be the least weight structure of all the 
fully-stressed designs. 

L.A. Schmidt [3,4] (I960) has formulated 
the synthesis of an optimum minimum-weight struc- 
ture under alternate loads based upon the meth- 
od of steepest descents.   This approach Is 
quite general and doss lead to optimum designs 
but Is mathematically complex.   His studies. 

based upon three-bar trusses, have shown that 
considerable computational effort Is required. 
The minimum weight structures Identified by 
Schmidt [3,4] are not all  fully-stressed de- 
signs.    Later R. Razanl  [5] (1956) compared ful- 
ly-stressed and steepest descent methods.    If 
the fully-stressed design does not minimize 
weight, a procedure Is outlined for determining 
the minimum weight design. 

In 1964, J.W. Young and H.N. Christian- 
sen [6] applied the fully stressed method to the 
design of three-dimensional  trusses which were 
subject to lower bounds on resonant frequency. 
In particular, their routine was applied to the 
design of a satellite dispenser structure.    Very 
good designs (on the basis of minimum weight) 
were obtained for rather large hyperstatlc 
trusses.    In 1966, C.H.  Lu [7] studied the adap- 
tation of this procedure to rigid joint frames. 
The work presented here Is an extension of Lu's 
efforts where the merit function Invelves costs 
Instead of weight. 

PROBLEM FORMULATION 

The basic design premise is that the ampll- 
tuoe of the strain energy should be minimized 
for a given cost.    The cost Is concurrently ad- 
Justed to produce the desired resonant frequen- 
cy characteristics.    It Is assumed that this 
premise will result In a minimization of the 
ratio of cost to natural  frequency.    The design 
procedure, while accepting hyperstatlc config- 
urations, proceeds as though the structure is 
determinant.    For this reason only "good" de- 
signs and not optimum designs may be expected. 
Because the member properties, the mode shapes 
at resonance, the Inertia!   loads, the design 
stress levels, and the cost are Initially un- 
known, the procedure must Iterate on all of 
these parameters as It converges toward an ac- 
ceptable design. 

The structural  cost Is approximated by 

Cost »  £   <B|mtB2mlm) 
m»l 

(1) 

where B|m ere arbitrarily specified and lm is a 
characteristic section property (i.e. other sec- 
tion properties are related by known functions 
to I,,,) of the m™ member.    This function was 
chosen for mathematical, simplification and to 
allow a linearized approximation of more complex 
relationships.    If "large" changes In the design 
are Indicated, the constants B|ffl are reevaluated 
and the design process is repeated. 

The strain energy of the structure Is rep- 
resented by 

U » UA + 1% + Ur (2) 

where UA, UQ, and Lb; represent the strain ener- 
gy associated with axial elongation, bending, 
and torsion respectively.    Strain energy due to 

i 

i 
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shear deformation Is neglected.    Restricting 
the design to thin-Mall  tubular members (again 
for simplification) these energies are express- 
ed In terms of the member forces and moments 
as follows. 

N 

strain energy.    Performing the Indicated differ- 
entiation, according to Eg.s 3 for the »train 
energy terms, these requirements yield the fol- 
lowing set of coupled slmult?->eous equations. 

7 Lt rr~ m»l    mm 
\   m m      I 

- (F L'} 
Ll      A 

i   -Ü      L        3        2 2  ^f   T   <M^i i  + M,11M,„,  + M*    ) 

ur 1*? 4 K Hr* I    ff) m 

2 
M, Iml-m 

where for ttie m' ,th 

(3) 

member F|m Is the axial  force, 
tn  local Mjkm 's +n« bending moment about the J 

axis at the k     end of the beam (see figure I), 
M|m fs *•• torque, and !■„,, Affl, lm, Em, (^ are 
the length, cross-sectional  area, moment of in 
ertla of the cross-sectl'n, modulus of elastic 
Ity, and shear modulus respectively.    These 
formulas preclude distributed loadings along 
the element. 

"22(1)      F2m 
V^MN 

Mlny^ 

F2m M2lm 

Fig.  I  - Member Force Comp«-rants 

To minimize the strain energy subject to 
the constraint of a constant cost, ttie Lagrange 
Multiplier method is utilized.    This allows the 
unconstrained minimization of a new function 

U-A{f   <B,m + B2mlm) -Cost) (<) 

where \  Is the Lagrange Multiplier, as yei un- 
known. Therefore, It Is required that 

11 « 0; for I ■ 1,2,...N 
3I| 

and 

«- 

(5) 

In order to obtain a constrained minimum for the 

61, r _, - .  irr a« Jim * MJlmMJ2m * £.} 

cH    v.   m m     I / 

for I  -  I.2....N 

and 

(Blm + Vm» " °°st 

(6) 

The even-numbered groups of terms In the 
first set of the above equations Involve rates 
of change In member forces with respect to 
changes In section properties.    For a statical- 
ly determinant structure these derivatives are 
zero.    While this lj not true for hyperstatlc 
structures.  It Is consistent with the concepts 
of the fully stressed method to neglect these 
terms.    Thus, assuming these derivatives to be 
zero, the governing equations reduce to 

+ MJIIMJ2l 

for 1 »  l.2,...N 

and 

I.   (Blm + »W - Cost ^ 0 
(7) 

The evaluation of the rate of change of 
cross-sectional area wltti respect to a change 
In the moment of  Inertia of the cross-section 
requires a decision as to the manne'   In which 
the section is allowed to change (I.e.  In diam- 
eter and/or wall  thickness).    It Is convenient 
to assume a constant diameter and to allow only 
variations In wail  thickness.    Then, using the 
following approximate forr..u!as for a thin- 
wall ed tube, 

A| « 2»r(tj 
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3. 
»r,t, 

(8) 

where rt   Is the nominal  radius and t|   Is the 
wall  thlcKness  for the  I'" membar, one easily 
obtains 

JAI      „ 2 (9) 

With this substitution, the governing equations 
may oe solved for l|, with the result 

+ Mj|,MJ2|  + Mj2I) + j5~J ^ 

II 

(10) 

It should be observed that with the excep- 
tion of A . +he formula for moment of Inertia, 
l|, depends onlyupon ttie properties and member 
forces of the I"1 member.    It Is also noted 
that variations  in  A sen/e to scale all moment 
of  Inertia calculations In the same manner. 
Thus  A may be adjusted to yield the desired 
natural  frequencies. 

An approximate Initial  value for \ , useful 
In Improving the rate of convergence, may be ob- 
tained In several ways.    For example, each equa- 
tion may be solved for A with the Initial  value 
given for I;  used In place of the predicted 
vnlue.    These N values for \ may be averaged 
simply, or weighted by member volume or member 
cost.    The resulting value Is deemed appropriate 
to the calculated natural  frequency and, thus, 
must be adjusted to produce the required fre- 
quency.    Sine« 11   Is a reciprocal  square root 
function of  \ and the nature«  frequency Is 
Itself a square root function of stiffness, the 
appropriate correction for A ,s 9'ven by 

k+l ■ft)' 
(tl) 

where k Is the Iteration cycle number, and Wk 

and W0 arc-  .he calculated and required natural 
frequencies respectively. 

STATIC AND DYNAMIC MATHEMATICAL MODELS 

The design procedure uses two mathematical 
models of the structure:    I) a static model, 
which Is used to predict stiffness and member 
vorces; end 2) a dynamic model, whicn Is used to 
predict resonant frequencies and mode shapes. 
The models are developed for three-dimensional 
rigid Joint frames subject to the usual   I Imita- 
tions of small displacements, elastic behavior, 
and the absence of damping. 

The static model   Includes, where possible, 
every member and Joint In the structure to be 

modeled.    Specification of the model   Includes a 
list of the Joint coordinates and restraints, 
and for each member the section properties, and 
shear and elastic modulus.    Tne model nvty also 
Include the flexibilities of non-frame elements 
which may be needed for an accurate model, but 
which are not allowed to change during the de- 
sign process.    The governing equations—wI dely 
available [8]—for the static model  are 

H B ■ (') 
h M 
Jolnf 

(12) 

sv, and 
In which [Kl is the stiffness matrix, 
are the Joint displacements and rotations* 
{P} are the corresponding applied Joint 
forces and moments. Solving 'or the joint dis- 
placements and rotations gives 

W ■ M ■' w (S3) 

-I In which [K] "' Is the flexibility matrix for 
the static model. Member forces and moments, 
{F } |, are given by 

{'} I -   [s] , tu] (14) 

th where [s] | Is the stress matrix for the I 
member, and ju\ i Is a subset of {u\ con- 
sisting of the Joint displacements and rota- 
tions at each end of the member. 

The dynamic model   consists of a definition 
of the dynamic displacements—or degrees of 
freedom—to be used for predicting mode shapes 
and frequencies.    The displacements of the dy- 
namic model,    fq} , are linearly related to the 
Joint displacements In the form 

{<,}   -    [C]   {U} (15) 

The corresDonding relationship between the 
forces and moments of the dynamic model,   ■[<?} , 
and the applied Joint loads of the static 
model   Is 

M - [cV{Q) <!6) 

s,    [cj   specifies the transformation be- 
an the d 

Thus, 
tween the^dynamlc and static models.    This 
transformation, which Is specified as part of 
the input data,  is a resuli of the manner In 
which the mass Is mo(*9led.    in general,  ,.ot al! 
of the Joints In the static model will be as- 
signed mass nor will  all  the dynamic displace- 
ments be located at Joints. 

The relationship between the displacements 
and forces of the dynamic model   Is 

(17) w ■ W l«) 
In which   [A]    Is the flexibility matrix for 
the dynamic model.    This matrix is obtained 
from the flexibility matrix of the STatlc model 
by the expression 

[A]   ■    [C][K]-'[C]T 

which may be achieved by combining Eqs. 15 and 
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16, with the aid of Eq.   13 and comparing the 
result to Eq.   17. 

During vibration,  the effective forces act- 
ing on the structure are given by D'Alembert's 
Principle, namely, 

to)  ■-[«]{•<!} (19) 

in whi 
the an 
yields 

ch    [MJ 
alysf. 

Is the mass matrix, specified by 
Substitution of Eq.   19 Into Eq.   17 

(<} - - [A] [M] r«o (20) 

which governs the motion of the dynamic modo I. 
This equation can be  reduced, by standard tech- 
niques, to an eigenvalue problem, the solution 
of which provides the resonant frequencies, o>; 
and corresponding mode shapes {♦}J- 

DESIGN PROCEDURE 

A block diagram illustrating the major 
steps  In the procedure Is shown  In Fig. 2.    It 
begins, at block I, with an input description of 
the models and design  requirements.    This con- 
sists of:    a) Joint coordinates and restraints; 
b) member properties  including,  for each member, 
an initial estimate of the moment of  inertia, 
minimum allowable moment of  Inertia, nominal 
radius, shoar modulus and elastic modulus, and 
an  Indication of whether or not the moment of 
Inertia is allowed to change during the design 
process; c! mass matrix and supplementary flex- 
ibilities not modeled by frame members; d) the 
transformation between the static and dynamic 
model; and e) the design requirements consist- 
ing of the design frequency and frequency toler- 
ante, the allowable tolerance for the conver- 
gence of the member moments of inertia, and the 
maximum number of design cycles permitted. 

The initial step in the analysis, block 2 
of Fig. 2,  is the formulation of the stiffness 
matrix for the static model, followed by the 
calculation, Eq.  18, of the flexibility matrix 
of the dynamic model.    The dynamic model   Is 
than used, Eq. 20, to obtain frequencies and 
mode shapes.    Finally, member forces and mo- 
ments,  for each mode shape, are determined tecs» 
the expression 

which is obtained by combining Eqs.   13,  14,  16, 
and 19 and assuming simple harmonic motion. 

The next operation, block 3 of Fig. 2,  Is 
to predict Improved member areas and moments of 
Inertia.    With the Lagrange Multiplier updated, 
Eq.  II, the moments of  Inertia are calculated 
according to Eq.  10.    These calculations are re- 
peated for each mode shape with the maximum 
value being selected for the next Iteration. 
Member cross-sect lone I  areas are then computed 
from 

21/rf <22) 

The final step In the design cycle, block 
4 of Fig. 2,  is the test to determine If the 
design requirements are satisfied.    If the res- 
onant frequencies and member moments of Inertia 
satisfy the inequalities 

f      uo 
+ a. 

and (23) 

,      *        <l')new      ,  4A 

I old 

the procedure is Judged to have converged ano 
the design process is stopped.    In these ex- 
pressions Af ano A|   are the allowable   toler- 
ances on the resonant frequencies and member 
moments of  inertia.    If the above inequalities 
are not satisfied the design cycle Is repeated 
using the newly predicted member sections.    The 
iteration is continued until  the design require- 
ments are met, the number of Iterations equals 
the prescribed maximum, or until all  members 
have realized their minimum moment of Inertia. 

"START 
Define Initial 
static and dynam- 
ic models and de- 
slgn requirements BOui remen 

Calculate reson- 
ant frequencies, 
mode shapes and 
member forces 
(Eqs. 20 and 21) 

mt I PREDICT  
Modify Lagrange 
Multiplier and de- 
termine new mem- 
ber areas and mo- 
ments of Inertia 
(Eqs.   10,  II, and 
22) 

TEST 
Are design re- 
qul rements satis- 
fled?    (Eq. "3) 

Yes 

C 
Fig. 2 - Block Diagram of Design Procedure 

EXAMPLE PROBLEM 

The example problem 's a hypothetical 40 
foot "x-y" auto-track antenna structure.    The 
basic components (see Fig. 3) are the steel 
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framework, counterweights, and reflector and 
fMd system. 

The parabolic reflector and feed system are 
assumed fixed In design and are modeled as   . ~ix 
degree of freedom rigid body with a weight of 
4000 pounds and a radius of gyration of  10 and 
6 feet about the vertical and horizontal axes 
respectively.    The 10,000 pound counterweights 
provide static balance about the x and y axes 
and are modeled here as three degree of freedom 
point masses.    The larger members as shown In 
Fig. 3 are 16 Inches In diameter.   The mass of 
the fratmworK Is neglected.   The required low- 
est natural  frequency Is 2 c.p.s.    Figs. 4, 5, 
6 and 7 Illustrate the rapid convergence char- 
acter of the system.    Cn Figs. 4, 5 and 7 the 
results shown are for the cost function, 

t"-° Cost ■ 5_ (1.0 ♦ I,) (24) 

while on Flg. 6 the results for the function 

Cost (1.0 * «■1*1 ) (25) 

are shown In addition.    This latter function 
being proportional to weights yields a "minimum 
weight" design.    For the first cost function 
above it may be Interesting to note that for 
the first Iteration, the des'gn was governed 
by the lowest frequersy modr (bending x axis) 
for 10 of the 28 mr.noers,    The next lowest mode 
(bending y axis) governed the design of the 
other 18 members.    By the ninth iterat'on each 
mode (which had remained In the same order) gov- 
erned the design of  14 members.    The third mode 
Is a torsion moda but remains non-crltlcal.    By 
the ninth Iterat'on the ratlc of the largest 
moment of Inertia to the smallest Is 250 and 
only the very small members are changing by  lOJt. 
Running time for this problem I« approximately 
50 seconds per Iteration on an IBM 360 Modal 50 
Digital Computer.    Core storage required for 
data for this problem was about 2000 locations. 

CONCLUDING REMARKS 

Experience to data Indicates rapid conver- 
gence and good design behavior for the proce- 
dure.    Symmetry Is maintained during the rede- 
sign process to four significant figures using 

•16 In. ti!«n»ter 

RIGIDE'       LOCATION 

POINT MASS LOCATION 

X AXIS 

SIDE VIEW END VIEW 

FIG.   3    XI  AUTO-TRACK ANTENNA CONFIGURATIC 
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single precision and a .. bit storage word. 
The asymmetry Is no greater after 20 cycles 
than after the first - Indicating good stabil- 
ity.    Computer running times are relatively 
modest.    It would seen reasonable to apply the 
procedure to problems where the static and dy- 
namic models had as many as 400 and 40 degrees 
of freedom respectively.    The two major limita- 
tions - tubular members and  linear cost func- 
tions - which restrict the scope of application 
of the present program wl II  be removed in fut- 
ure work. 
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DISCUSSION 

Robert B. McCaUey (General Electric Co.): 
Would you elaborate briefly on this straiu energy 
concept used to predict the changes that you want 
In the structure? 

Dr. Christiansen:  Yes. We add up the strain 
energy during the bending deformations, torslonal 
and axial deformations - sheer deformations are 
neglected. We then look at the variation of the 
strain energy with respect to changes in moment 
of Inertia or primary variables of the cross sec- 
tional properties, we do not need to include all. 
Of course, If you have a relationship between 
moment of inertia and cross-sectional area you 
simply look at the variation with respect to mo- 
ment of inertia and then the drift of moment of 
inertia with respect to cross-sectional area 
when you are looking at the axial deformation. 
We had this strain energy function which was 
constrained to constant cost - so we have a set 
of equations which are the derivatives of the 
strain energy with respect to changes in mo- 
ments of inertia, and a derivative with respect 
to the Lagrange multiplier. Assume that the 
structure is determinate, and based upon that 
assumption, although these are not determinate 

structures - the equations uncouple, and except 
for the Lagrange multiplier which is approx- 
imated in the iteration procedure, proceeds 
fvom that point.  The design procedure, of 
course, converges still in one or two iterations 
with the determinate structure - but highly in- 
determinate structures show about the same 
behavior. We get - because of these approx- 
imations - only what we hope to be good de- 
signs, not truly optimum designs. 

Mr. McCailey:  Is this the strain energy In 
the whole structure or Just in a specific mode 
that vou may want to get away from? 

Dr. Christ'ansen: We repeat this procedure 
for each mode, and we look at the worst case 
for each individual member. In the initial cycles 
particular members may be dependent upon 3 
or 4 modes but finally the lowest mode will be 
controlling after a large number of cycles. If 
you don't do this - if you look Just at what you 
think is the lowest mode you get the structure 
Jumping, and you get bouncing back and forth. 
So you have to look at several modeo - in this 
case it was only necessary to look at 2 modes. 
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DYNAMIC RESPONSE OF PLASTIC AND METAL 

SPIDER BEAMS FOR l/9th SCALE SATURN MODEL 

L. V. Kulasa 
KPA Computer Techniques, Inc. 
Pittsburgh, Pennsylvania 

and 

W. M. Laird 
University of New York 

Fredonia, New York 

Plastic and metal spider beans for a l/9th scale Saturn model 
were vibration tested in a simulated free-free condition, to 
determine the vibration characteristics and to demonstrate the 
advantages of using plastics for dynamic model testing.    Fre- 
quencies were measured by using accelerometers bonded to the 
beam and to the electrodynamic shaker which provided the vibra- 
tory excitation.    Mode shapes were visually observed with a 
stroboscope and were recorded using a Fas tax camera operating 
at approximately 2,000 frames per second.    A motion picture, 
illustrating the test apparatus and recorded mode shapes, is 
available from the University of Pittsburgh - Mechanical 
Engineering Department. 

INTRODUCTION 

Dynamically scaled rodela have long 
been used ."or wind tunnel, towing-tank and 
structural tests to predict the full-scale, 
or "prototype" phenomena [1, 2, 3, 4, 5]. 
It is generally recognizad that to be 
dynamically similar, such models should be 
scaled with respect to geometry, material 
properties and loading parameters.    The 
art which is concerned with the quantitative 
theory of dynamic scaling is commonly re- 
ferred to as "Dimensional Analysis" [1, 2, 
3, •»].    In the application of dimensional 
analysis to the field of experimental 
engineering, exact dynamic scaling is 
usually impossible because of the unavaila- 
bility of suitable materials and ';he prac- 
tical complications of exact geometric 
scaling.    This requires the us« of "dis- 
torted" models, i.e., proper scaling does 
not exist for the model.    However, dis- 
torted models may be used successfully by 
applying suitable "prediction factors" to 
the test results.    Correction factors, or 
"prediction factors," may be estimated 
theoretically, but are usually determined 
from the experience gained as prototypes 
are constructed and tested. 

The advent of large n'iclear and aero- 
space structures has complicated model 
testing techniques in that reasonably sized 
metal models require excessive geometric 
scale ratios.    For example, a 10:1 model 
of the C-5 Saturn launch vehicle would be 
to feet high, a large heavy structure.    If 
higher geometric scale ratios are used to 
reduce the weight and size of the model, 
inaccuracies are introduced in measuring 
prediction factors for the dynamic response. 
Therefor«, plastic models provide the advan- 
tage of a lightweight, reasonable scale 
model test. 

Metal models can be used in the study 
of a prototype system, however, plastic 
models can be used in many cases and demon- 
strate several relative advantages. 

The purpose of the test described 
herein was to evaluate the feasibility 
of using a plastic model to predict the 
dynamic response of a metal model.    To 
do this the theoretical correlation factor 
was calculated and compared with the ex- 
perimentally measured correlation factor. 
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This report describes the r«tulta obtained 
from tatting two l/9th seals Saturn modal 
spidsr baaaa.   A mstil spidsr baa« atd tha 
plastic spider baaa wars used for vibra- 
tion taata to datamlna tha principal 
frequenclee and soda ahapaa of both baaaa 
in a aiaulatad fraa-fraa condition. 

PIASTICS AMD DYNAMICALLY SIMILAR MODELS 

A diaanaional analysis of structural 
aodals davalopa aa ona of tha govarnlng 
dlnansionlaaa ratios: 

YT (1) 

where 

■ * dimensionless ratio; 

E » aodulus of alasticitity, lb/in.2; 

Y ■ «aivfct density of material, 
lb/in.; 

* •  representative langth, in. 

For a nodal to ba dynamically similar 
(undiatorted), thia and othar diaanaionlaaa 
ratios Must ba equal to thoao for tha proto- 
type.   Equation (1) la a mtaaure of the 
alaatic forces compamd to the inertia 
forces.    Since the value of E/Y ia dependent 
only on the material involved, undlstorted 
dynamic similarity can be achieved only by 
proper selection of geometric scale ratios 
and tha relative E/Y value for the given 
material.    Table 1 Is a tabulation of 
typical values of E/Y for a variety of 
materials.    Inspection of Table 1 indicates 
that even with a model seals ratio as high 
as 10:1, a dynamically similar model having 
a value of E/Y equal to that of tha proto- 
type could be achieved by constructing the 
model from a suitable plaatic. 

Questions then arise concerning the 
behavior of the mechanical properties of 
plastics.    Creep, aging and othar non-linear 
effects may invalidate the advantages of 
achieving dynamic similarity with some 
plastics.    However, it has beer established 
that many plaatic materials exhibit 

TABLE 1 

Typical Values of E/Y For Various Materials [6, 7, B] 

Material 
Modulus of 
Elasticity, 
10* lb/in.2 

Material 
Density 

Y, lb/in.3 

E       ,.-6 =• X 10 

Aluminum 10.0 0.098 102.04 

Lead 2.4 0.'4l0 5.85 

Iridium 75.0 O.B10 92.59 

Gold ll.i» 0.699 16.31 

Tin 4.0 0.264 15.15 

Steel 30.0 0.283 106.01 

Mood 1.1 0.013 84.62 

Brass 15.0 0.308 48.70 

Homopolymer 0.410 0.051 8.04 

Acetal, Copolymsr 0.375 0.051 7.35 

Acetal, iDplex A 0.220 0,041 5.37 

Acrylic, Implex B 0.270 0.039 6.92 

Chlorinated Polyethers 0.150 0.051 2.94 

Pelycarboo«*« 0.320 0.043 7.44 

Polypropylene 0.160 0.034 4.71 

Poly-Styrene 0.100 to 0.500 0.040 2.50 to 12.50 

Tssite 11* 0.200 to 1.500 0.043 4.65 to 11.63 

*   Material used for the plaatic aplder beam. 
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reasonably linear characteristics. 
Figur« 1 and 2 «how typical static and 
dynamic charactariatics obtained by teata 
on tensile and cantilever baam apecimens 
of cellulose acatate butyrata (trada nace 
Tanita II).    These teata were conducted 

because the properties of »any materials 
can v«iy free sample to sample and there- 
for*, for 'oplicttion, specific values for 
material properties should be determined 
by teating coupons from the material used 
for the aodel. 

*   2 1 
.20 .40 .60 

STRAIN,   IN./IN. 

.80 1.00 

Figure 1.    Typical stress-strain curve at room temperature 
for cellulose acetate butyrate 

V) 
a 

to 
b   4 

3 
8   2 

j-eo'F 

/-I58»F 

50 100 150 

FREQUENCY,   CPS 

200 250 300 

Figure 2.    Dvnamic modulus of elasticity vs. frequency 
for cellulose acatate butyrata 

41 



S»nk*y [9] also reports on th* us« of 
plastic models.    Ha found excellunt corre- 
lation between the vibration response of a 
plastic modal compared to th« response of 
• st««l prototype. 

THEORETICAL CORRELATION FOR NATURAL 
FREQUENCIES 

To properly essest tha performance of 
th« plastic model, tha theoretical correla- 
tion factor relating tha plastic nodal 
natural frequencies to those of the metal 
model was calculated and compared Kith 
that obtained by experiment.    In this 
investigation the plaatie model and the 
■etal model were geometrically identical. 
Being of different materials, tha plaatie 
modal is therefore considered a "dis- 
torted" model [1, 2, 3]. 

For a plastic model and metal, model 
which ars geometrically similar although 
not identical, the theory of models 
a/isumes that 

M 

■ P 
rV TETrT (2) 

where 

M « natural frequency, red/sec.; 

I ■ representative length, in.; 

E ■ modulus of alaaticity, lb/in.2; 

T ■ weight density of material, 
lb/in.»; 

a ■ subscript referring to metal 
model; 

p ■ subscript referring to plastic 
model. 

The materinl propertiea for 6061-T6 
aluminum alloy {metal model) and cellulose 
acetate butyratn (plastic model) were: 

E   « 2.9 x 10s lb/in.2 

P 
E   « 10.7 x 10' lb/in.2 

T   ■  .0*3 lb/in.1 

P 
T    ■  .098 lb/in.1 

Sins« the metal model and plastic 
modal are geometrically identical. 

r"1 
p 

Therefore, Eq. (2) reduced to 

£"VTE7T£ 

or the theoretical correlation factor is: 

(3) 

JL i 0.248 CO 

EXPERIMENTAL PROCEDURE 

The metal model, made available by th« 
NASA Langley Research Center, was a built- 
up spider beam assembly approximately 28 
inches in diamat«r constructed of 6061-T6 
aluminum alloy.    Figures 3 and 4 illustrate 
a drawing and photograph of the physical 
spider beam.    The plastic model was con- 
structed of cellulose acetate butyrate 
(T«nite II) and consisted of glued sections 
which duplicated the geometrical system of 
the metal model. 

Figure 5 ie an illustration of the test 
apparatus used for testing.    The plastic 
model and metal modal ware each forced into 
oscillation by an electrodynamic shaker.    A 
connecting arm was used to transmit the ex- 
citation to tha spider beam from tha shaker. 
The spider beam was attached to a wire sus- 
pended from a height sufficient to allow the 
b«am to maintain a free-free simulation. 
Response amplitudes were obtained with a 
Columbia Research Laboratory Accelerometer 
model 606-3 bonded to a radial am of the 
spider beam with back-to-back adhesive 
tape.    Input amplitudes were measured by a 
similar accelerometsr mounted on the arma- 
ture of the electrodynamic shaker.    This 
provided data from which the magnification 
factor (output amplitude/input amplitude) as 
a function of the driving frequency was 
calculated. 

Node ahapas were determined by visual 
observation using a stroboscope and recorded 
by high-speed motion pictures using a Fastax 
high-speed camera operating at approximately 
2,000 frames per second. 

EXPERIMENTAL RESULTS 

Figures 6 and 7 are frequency spectra 
obtained for the plastic model and metal 
modal.   The peaks of the curves in th«s« 
figures represent the natural frequencies 
for the first several model« of vibration. 

Table 2 lists the natural frequenciea 
of the plastic mod«l and th« metal modal 
and tha experimentally calculated correla- 
tion factor which can be compared with the 
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Figure 3. Spider baaa \r*.sbly 

Figur« u. Photograph of «pider baa* 
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Figur« 6.    Vibra* ..an raaponat of calluloa« aoatata butyrat« apidar baa» 
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Figure 7.    Vibration response of aluminum spider beans 

TABLE 2 

Natural Frequencies 

(Theoretical Correlation Factor u /«   = 0.2<»8) p   m 

Mode 
Metal Model 

V 1* 
Plastic Model 

u, cpa 

Experimental 
Correlation 

Factor (u /u ) p    n 

Correlation Factor 
Percent Error 

1 405 96 .237 0.6 

2 555 127 .229 8.2 

3 725 175 .2U1 2.9 

l» 8S0 217 .255 2.8 

5 950 25U .267 7.7 

6 1,250 331 .265 6.9 

7 1,625 "»35 .263 8.1 

8 1,850 ■»80 .259 4.4 
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theoretical correlation factor of Eq. CO, 
w /u    < 0.2H8. p   m 

Figures 8 and 9 are illustrations of 
th« first and second modes of vibration of 
both the plastic metal and metal model. 
The mode shapes  for all observed modes of 
vibration were similar for both the 
plastic and metal spider beams.    In the 
first mode of vibration, radial members 

oscillate symmetrically with respect to 
two perpendicular diametral members as 
shown in Figure 8,    The second mode of 
vibration can best be described as the 
shape resembling an "umbrella". 

The higher modes of vibration were 
observed for both models and were similar 
in all distinquishable cases.    There are 
high-speed motion pictures of the first 
and second mode shapes. 

DEFLECTED   SHAPE 
NORMAL   SHAPE 

Figure 8.    First mode of vibration, mode- shape 

DEFLECTED   SHAPE 
NORMAL   SHAPE 

Figure 9.    Second mode of vibration, node shape 
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CONCLUSION REFERENCES 

It appears that scaled plastic models 
can be used to provide a good representation 
of the vibration characteristics of a metal 
model (prototype). In adf lion to large 
aerospace structures such an the spider 
beam, reports of plastic model tests of a 
nuclear reactor vessel and analysis and 
vibration tests of a plastic model of a 
radial drill press, References 10 and 11, 
show good results. 

Examination of Table 2 shows that the 
error for predicted frequencies of the metal 
model, based on the plastic model test, 
range from 2.8 to 8.2 percent for the first 
eight modes of vibration. The predicted 
frequencies were obtlined using the plas- 
tic model results and the theoretical 
correlation factor of u /u = 0.218. 

p m 

The mode shapes for the first and 
second modes of vibration were shown in 
Figures 8 ant! 9 respectively. These and 
the higher modes of vibration were observed 
visually. The advantage of the plastic 
model is evident from observing the move- 
ment of the plastic and metal spider beams 
that result from a vibratory excitation. 
The plastic, being more flexible, results 
in a greater amplitude for a given input 
force thus allowing for a clearly defined 
mode shape. The use of transparent plas- 
tic models is also highly desirable for the 
present application because the motion of 
the members is not obscured by intervening 
members of the structure. This is particu- 
larly valuable in determining the mode 
shapes. Another advantage of using plastics 
is that it is possible to achieve complete 
dynamic similarity at the scale ratio of 
10:1. 
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DISCUSSION 

Mr. Perelman (Esso Production Re- 
search Co.):  Did you do any experimental 
work to determine stresses in models such 
as these: 

Dr. Laird:  No. We made no attempt 
to obtain stresses. We were trying to pre- 
dict natural frequencies and take moving 
pictures. 

Mr. Perelman: We have had some ex- 
perience with large scale structures of this 
type and our results have been very unsatis- 
factory with respect to stress work. 

Dr. Laird:  I would hesitate to venture a 
comment on trying to analyze these things 
dimensionally and their dynamic similitude 
as far af.   ti-esses are concerned. I think 
there will be creep and similar effects. 
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CHARTS FOR ESTIMATING THE EFFECT OF SHfcAR DEFORMATION AND ROTARY INERTIA 

ON THE NATURAL FREQUENCIES OF UNIFORM BEAMS* 

F. F. Rudder, Jr. 
Aerospace Sciences Research Laboratory,  Lockheed-Georgia Company 

Marietta, Georgia 

The effect of shear deformation and rotary inertia on the natural frequencies of a 
uniform beam are presented in the form of design charts.  These charts represent the 
eigenvalues obtained using Timoshenko beam theory for several sets of boundary 
conditions of Interest to engineers.   In particular, the charts illustrate the manner 
in which the Timoshenko theory asymptotically approaches elementary beam theory. 

INTRODUCTION 

The dynamics engineer Is often required to estimate 
the vibration characteristics of beams or beam-like 
structures.  The frequencies and mode shapes of 
Bemoulll-Euler beams have been well documented In 
the !:rerature 0,23.  These beams are basically char- 
acterised as "slender"; however, it is not always 
obvious that a beam-like structure can be considered 
"slender" especially from a dynamics standpoint.  This 
paper considers the effect of shear deformation and 
rotary inertia on the natural frequencies of becms 
according Jo Timoshenko's theory C3J .   In particular, 
the effect on the fundamental and first harmonic 
fnaquencies for simply-supported, cantilever, and 
clamped-clamped uniform beams Is presented in the 
form of design charts.  The range of parameters con- 
sidered is broad enough to Include situations 
encountered In aircraft and ship design. 

NOMENCLATURE 

The theoretical development and solutions to the 
equations of motion have been discussed by many 
authors [4,5,6].  However, these papers have either 
considered a very limited range of parameters or 
specialized problems.  The purpose here Is simply to 
discuss the results obtained without recourse to lengthy 
theoretical developments. 

For specified boundary conditions the dynamic 
characteristics of an elementary or Bernoulli-Euier 
beam are contained in tr"r single frequency parameter 

a2 = - El 

•p in 

whereas Timoshenko1* theory introduces two additional 
parameters to include shear deformation and rotary 
inertia.  The shear reformation parameter is 

•Paper not presented at Symposium. 

«AGL4 

ond the rotary ir.irtla parameter is 

01-1 
A? 

(2) 

(3) 

where     m is the mass per unit length 

E,G are Young's modulus and the shear modulus 
of the material, respectively 

I is the second area moment of the beam 
cross-section 

L is the length of the beam 

K is the cross-section shape factor (Refer nee 
7 gives en especially good account of this 
number) 

A is the cross-section area 

ai is the undamped circular frequency 
(rod ./sec.) 

For the elementary or "slender" beam, values of 
the frequency parameter, £, for the fundamental ond 
first four harmonic frequencies and the boundary condi- 
tions under consideration are presented in Table 1. 

For the Timoshenko beam, the values of the 
frequency parameter, £, which satisfy the equations of 
motion and the appropriate boundary conditions are 
functions of the pararmtters a and ß.  The difficulty of 
presenting a generalized parameter study is that a and 
pore not independent and are related according to 

*« (4) 
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TABLE 1 
Valum of    for on Elementary Beorii for tho 

First Five Modes of Vibration 

Simply Supported 
End« 

Clamped Free 
Ends 

Clamped-Clamped 
Ends 

9.8646 3.1586 22.3681 

39.4584 22.0540 61.7008 

88.5928 61.7008 120.6371 

158.3361 ."•0.6376 199.8051 

247.5573 199.8051 298.4511 

However, In the theoretical development another 
parameter 

£-l/(«0) (5) 

appear« which allow» one to separate the parameters a 
and ß.  The relation expressed by Eqt ation (5) is pre- 
sented graphically in Figure 1, vherf the range of 
values for a and ß have been limited to numbers 
encountered in practice. 

Values of the frequency parameter, C, for the 
Timoshenko beam theory form a surface in the three- 
dimensional space defined by points (a, £, £).  The 
values of the frequency parameter, (, for the elemen- 
tary beam appear as a plane (i.e., c* constant) In this 
space. The surface, £{«,£), for values of £cc,~e- 
sponding to the fundamental frequency of a exit J*ver 
Timoshenko beam Is illustrated In figure 2.  The plane 
C" 3.5186 corresponds to the elementary solution (see 
Table 1). The dashed lines in the foreground illustrate 
the asymptotic natum of the Timoshenko theory to the 
elementary theory.  Basically, the effect of shear 
deformation and rotary inertia on the natural frequency 
of o beam is to cause a frequency decrease relative to 
the elementary solution for the corresponding mode. 
The magnitude of this decrease depends upon the value 
of a and £ or alternately a and ß.   If a is small «id ß 
is Icrge, rotary inertia effects predominate as illustrated 
by the spike tn the upper left of Figure 2.  If a is large 
(i.e., If there is significant shear flexibility), the 
value of £ Is Independent of £ as exhibited by the 
portion of the surface on the right-hand side of Figure 
2.. The percentage decrease from the elementary solu- 
tion for various points on the surface of Figure 2 is so 
indicated in the figure. 

DESIGN CHARTS 

Results presented in the form illustrated In Figure 2 
are not suitable for design use.  Figures 3 through 8 
have been constructed so that the frequency parameter, 

(«» Z) i can be determined approximately once a and 
ore known.  These charts are plots of c{*, £) vs. 7/ 

with curves of a • constant.  One mutf use the param- 
eters of the beam to compute a and 8 using Equation« 2 
end 3.  (The parameter * can be calculated using the 
results of Reference 7).  Then, from Equation 5 or 
Figure I, the parameter J is computed. Depending 

IK 

f 

upon the boundary conditions of the problem, the 
appropriate design chart is entered using the values of 
a and 4 and the corresponding frequency parameter, £ , 
is determine approximately.   It should be noted that if 
a < 0.02 and £ > 5000.0 the values of C given in Table 
1 are to be consider«! accurate (I.e., elementary beam 
theory applies to the problem at hand) at least for the 
first two modes of vibration. 

CONCLUSIONS 

The design charts presented in Figures 3 through b 
allow rough estimates of the effect of shear deformation 
and rotary inertia on the fundamental and first harmonic 
frequency of simply supported, cantilevered, and 
clampad-clamped beams.  The range of parameters 
considered in these charts covers all situations 
encountered in practice. 
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Fig. 1    Plot of £"vs a in the range of practical interest 

Fig. 2    The solution surface £(<■,?) for a cantilever 
Timoshenko beam (fundamental mode) 
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Fig. 3    Simply supported Timoahenko beam: 
fundamental frequency 
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Fig. 4    Simply supported Timoahenko beam: 
first harmonic frequency 

52 



?-)/W) 

Fig. 5    Cantilever Timoshenko beam: 
fundamental frequency 
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Fig. 6    Cantilever Timoshenko beam: 
first harmonic frequency 
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Fig, 7    Ciamped-clamped Timoshenko beam: 
fundamental frequency 
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Following is a summary of the technical approach and the results of an 
bcoustlc response analysis performed on a large complex payload. The 
purpose of the analysis was to evaluate the feasibility of calculating 
the acoustic respor*e of complex structures to at least 200 Hz includ- 
ing considerations of the structural properties of the payload. The 
technical approach used to obtain the modal representation of the pay- 
load and the payload configuration is presented. Because of the re- 
quired frequency response of the complex structure, the final model 
used in the response analysis represents over 3,000 degrees of freedom. 
The method for applying the acoustic pressures is discussed as well as 
the results of the analysis. 

CONFIGURATION 

The analysis was performed on a payload 
planned for the Saturn IB (S-1B) vehicle as a 
part of the Apollo Applications Program (AAP). 
An over-all view of the payload installed within 
the S-1B structure is shown in Figure 1. The 
payload consisted of three major elements; the 
rack structure, the Apollo Telescope Mount (ATM) 
and the Lunar Module (LM). The rack structure 
supported miscellaneous equipment, the ATM, and 
the LM, and in turn was supported by the S-1B 
Structural Payload Adapter (SLA) at four points. 
The payload weighed approximately 30,000 pounds, 
was 30 feet long and 23 feet in diameter. The 
SLA was an eight-degree conicl frustum (16* in- 
cluded angle at the apex) mada of aluminum honey- 
comb. The SLA was attached to an Instrumenta- 
tion Unit (IU) that mated to the upper stage of 
the S-1B. The analysis included the payload 
plus the SLA. No other portion of the S-1B was 
considered. 

INTRODUCTION 

The determination of random response vibra- 
tion levels of a complex structure forced by 
acoustlca was required. The structure to be 
evaluated waj a payload planned for flight by 

the Apollo Applications Program (AAP). The 
boost vehicle for this payload was the Saturn 
IB. 

Historically, definition of random vibra- 
tion levels for the frequency range above 30 to 
50 Hz is based on previously measured data ac- 
quired on similar configurations during flight. 
Various "scaling lavs" are applied to these 
empirical data to account for small differences 
in configuration and mass. However, these 
scaling techniques do not include considera- 
tions of basic structural properties or local 
dynamic response characteristics. When no 
measured data are available for the configura- 
tion of Interest, these scaling techniques be- 
come order-of-magnitude estimates. 

The majority of equipment trusses und local 
support structure have their fundamental reso- 
nances above 30 Hz, with many occurring up to 
;00 Hz. Consequently, design loads must con- 
sider the frequency range to at least 200 Hz. 

A response analysis for the AAP payload was 
performed by classical methods, which inherent- 
ly Include considerations of structural proper- 
ties.[1] The structure was modeled using the 
direct stiffness approach in generating the 
stiffness matrices, The mass was lumped at 
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Figure 1. Payload Configuration 

proper collocation points. The acoustics were 
represented es pressure spectral densities end 
applied on the external surface of the payload 
support structure. Response calculations wer« 
in terns of acceleration apectral densities. 

The techniques useo art discussed in the 
following paragraphs r.nd demonstrate the feasi- 
bility of response calculations in fhe critical 
frequency range of liitcre»t. Comparisons with 
one flight-** jsured data point are made; calcu- 
lated valuea compare favorably. 

BASIS OF ANALYSIS 

The analysis waa bajed on a set of equa- 
tions written In matrix notation that defines 
the response of sny structure to fluctuating 
pressure. For any arbitrary system, the equa- 
tions of motion can be expressed oy: 

This equation is obtained by the above substi- 
tution and by premultip'.ylng by *' . This can 
be further manipulated to yield: 

j>-n* + 2KuflJ |q(n)( - I*!' Kf; 

tt was desired to express the forcing function 
as the product of the pressure snd the area 
over which it acts. By computing the area in 
the system coordlnste exes for all collocation 
points, an area matrix and a pressure were sub- 
stituted for the force matrix to obtain: 

[> - n» ♦ 2ift«oJ jq(n)| -W{-*-} F,   (5) 

Solving for q and transforming back to dis- 
crete coordinates yields: 

PO«) ♦ iciW ♦ HIM - |F.|        (i) {6} . [#, [u* , grS: 2jd W"H-} po   <6> 

substituting the second time derivative 6' ■ 026 
yields 

where M la the mass matrix, C is the damping 
matrix, K la the stlffnecs matrix, and F is the 
force matrix. By substitution of the model 
coordinate transformation, 

<6) - (•] (q) (?.) 

the above equation can be expressed as: 

" W j'ol <3> 

The system trensfer function wes obtained 
by taking the absolute value of the above equa- 
tion. By expressing the fluctusting pressure 
in the form of a spectrsl density, the response 
spectrsl density was formulated as follows: 

56 



8n«> iH(Sl) 
"input (P.) (8) 

! 

Where S.   ff}) has units of psi^VHz, |H(n)|°n 
input '   ' 

has units of (in./sec;;/psl)£ and S (fl) has 

units of (in./secp);?/Hz. These are th<j input 
pressure spectral density, the transfer func- 
tion squared, and ehe response power spectral 
density at degree-of-freedom "n" and frequency 
"a." 

These equations were the basis for the 
acoustic response analysis. Two simplifying 
assumptions were made when applying these equa- 
tions. The first was to assume that the fluc- 
tuating pressures act in a correlated manner 
over the individual elements of areas for a 
single quadrant. The second was to assume that 
the pressures act in an uncorrelated manner be- 
tween the four quadrants (payload attachment 
points) . 

The iili'st assumption was justified by the 
following rationale. Consider an element of 
area of the SLA exposed to the fluctuating 
pressures. By making the element geometrically 
small compared to the half wavelength of the 
highest frequency of interest, lower frequen- 
cies will appear well correlated. This is par- 
ticularly true for panel fatigue analysis. 

The second assumption was reasoned as fol- 
lows. The diameter of the SLA at the attach- 
ment points of the- payload was approximately 
23 feet. Therefore, the circumferential dis- 
tance between two adjacent attachments was ap- 
proximately 18 feet. This spatial distance 
was considered sufficient to assume uncorre- 
lated pressures. Consequently, forces (product 
of pressure." and areas) were considered corre- 
lated for cne quadrant, but uncorrelated be- 
tween quadrants. 

TECHNIQUE FOR ESTABLISHING MODEL 

The approach used to obtain representative 
mode shapes and frequencies of the SLA and pay- 
load does not represent new technology.  How- 
ever, it may be somewhat unique. 

It was considered necessary to model the 
structure to a fine degree of detail In order 
to obtain accuracy in the high frequency range. 
This detailed representation of the payload 
required the use of axial members, beams, 
plates, and torsional elements to define the 
structural properties. This representation 
resulted in a iradel containing over 3,000 de- 
grees of freedom; however, the maximum size 
that could be used in available eigenvalue rou- 
tines was 200 degrees of freedom. The problem 
was to establish a final model with character- 
istics of the detailed 3,000 degrees of free- 
dom and accomplish this using the existing 200- 
degree-of-freedom eigenvalue routines. 

To obtain the 'iesireil model the payload was. 
divided into segments, eigenvalue solution* 
were performed on the segments then the indi- 
vidual results combined into one node', usiig 
modal stiffness coupling techniques.!?,3,4,5, 
6,7] The segments were the SLA, the rack 
structure, the ATM, and the LM. 

The SLA shell structure was Idealized bv 
rectangular plates for both In-plane and oui- 
of-plane stresses using the direct stiffness 
approach as shown in flat pattern in Figure 2, 
In addition, eight beams were used to repre- 
sent a ring circumferentlally from collocation 
point 25 to 32. The SLA structure vas detailed 
as 288 degrees of freedom; six degrees ai  free- 
dom at 48 collocation points. The resulting 
stiffness matrix was restrained at collocation 
points 41 through 48 by deleting the associated 
rows and columns from the stiffness matrix, 
thereby representing a cantllevered condition 
for the SLA. The rotational degrees of free- 
dom were then remo"*d from the influence coef- 
ficient <nat. ix by deleting appropriate rows 
and coluim..1, .' aving three displacement degrees 
of freedom at each collocation point. The re- 
sulting matrix was 120 degrees of freedom rep- 
resenting 40 collocation points. 

The total weight of the SLA was 3970 pounds. 
This mass was apportioned at each collocation 
point to obtain a lumped mass representation. 
An eigenvalue solution was performed on this 
payload element to obtain cantllevered mode 
shapes and frequencies of the SLA. The result- 
ing eigenvalues started at 14 Hz. 

The support rack was idealized using axial 
and torsional elements, straight and curved 
benras, rectangular and triangular plates. The 
rack was detailed as 1932 degrees of freedom. 
Collocation points representative of equipment 
locations were selected and the remaining ones 
were reduced as was done on the SLA. Three de- 
grees of freedom was retained for each mass 
collocation point. The final reduced matrix 
was 90 d°gree3 of freedom. The total weight of 
the rack and equipment was 13,163 pounds. The 
eigenvalue solution for the free rack condition 
had a total of 84 elastic modes beginning at 
16.8 Hz. 

The ATM structure was idealized by rectan- 
gular plates, axl<1 members, and straight and 
curved beams. The structure was detailed aj 
160 degrees of freedom. The influence coeffi- 
cient matrix was subsequently reduced to 87 de- 
grees of freedom. The total weight of the ATM 
Including equipment was 48S0 pounds. Again, a 
lumped mass representation vas used. The re- 
sulting free-condition eigenvalues started at 
7.8 Hz. 

The LM structure was represented as a ri(,ld 
member due to lack of stiffness definition. 
However, the six rigid body modes were included, 
The total weight of the LM was 10,500 pounds. 
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Rack Attachment Point« 

Figure 2. SLA Structural Model (Points 41 through 48 restrained) 

For each payload clement (rack, ATM, LH, 
«ind S1A) the structural members connecting flu. 
elements were used is the discrete coupling 
mechanism. As mentioned previously, only the 
lower nodes of the free elements were used in 
obtslning the final model. 

Table 1 contains the coupled frequencies 
of the final model and identifies the major un- 
coupled contributing mode for each frequency. 
The final model contains 124 modes with fre- 
quencies ranging from 6.4 Hz to 624 Hz. How- 
ever, only 122 modes were considered usable in 
the acoustic response analysis covering the 
frequency range to 204 Hz. 

MrtJOK UNCOUPLED 
MOOE   CONTHIbUTlNG MODE 

Table 1. Identification of the Coupled Modes 

1 fcODE  3 LM A/S 
2 MODE 2 LM A/S 
3 MODE  7 TELESCOPE 
» MODE  7 TELESCOPE 
5 MOOE 2 RACK 
6 MODE  5 LM A/S 
7 MODE J RACK 
8 MODE 50 SLA 
9 MODE 2 SLA 

10 MODE 1 SLA 
11 MODE £  SLA 
12 MODE » SLA 
13 MOUE  5 TELESCOPE 
1» MODE 6 TELESCOPE 
15 f.00E 5 SLA 
16 MOOE b SLA 
17 MODE » RACK 
16 MODE » HkC\ 
19 MODE 12 RACK 

MRO* 
MfeB 

CONTRIH 
COUPLED 

Frtf:OU£NCr 
UNCOUPLED 
FREQUENCY 

•"»••»■"■» •>■*«•«■>■>«. m~m~**mmm^ ~~m~mm~~m 
121 .6»i» 6.103 0. 
120 .5609 7.196 u. 

1 .9903 7.592 7,508 
2 .9997 7.92» 7.923 » .6039 9.699 9.306 

12» .«»791 10.825 0. 
3 .3890 11.359 9.015 

11V .«»066 l».<*13 0. 
5 .9922 15.061 1».986 
6 .7292 16.«68 15.515 
8 .7209 17.57» 17.»61 
9 .7235 17.856 17.522 
7 .2932 18.251 16.611 

10 .5277 18.956 19.11*2 
11 .5396 22.086 19*501 
!2 .8051 22.9i6 23.030 
13 .353» 2».057 2».097 
13 .3»07 27.00» 2».097 
1» .5376 29.256 28.818 
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Table 1,  (Continued) 

► 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4B 
49 
bü 
bl 
b2 
53 
54 
55 
b6 
b7 
bb 
by 
bü 
t>\ 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
61 
82 
83 
84 
85 

MODE 
MOOE 
MODE 
MOOE 
MOOE 
MOOE 

MOOE 10 SLA 
MOOE  9 SLA 

6 StA 
9 SLA 

9 SLA 
9 „uA 
2 TELESCOPE 

9 RACK 
MOOE 11 SLA 
MODE 8 RACK 
MOOE 11 SLA 
MOOE 8 RACK 
MOOE 9 TELESCOPE 
MOOE 11 SLA 
MOOE It RACK 
MODE 10 TELESCOPE 
MOOE 15 RACK 
MODE lb RACK 
MOOE 11 TELESCOPE 
MOOE 11 RACK 
MOOE 14 SLA 
MODE 12 TELESCOPE 
MOOE 13 SLA 
MOOE 13 TELESCOPE 
MOOE 14 TELESCOPE 
MOOE 16 SLA 
MODE 15 SLA 
MOOE 16 TELtSCOPE 

14 TELESCOPE 
14 TELESCOPE 

MOOi 17 SLA 
MODE 16 TELE&COPi. 
MODE 17 SLA 
MODE 25 RACK 
MObE 16 TELESCOPE 
MOOE 16 TELESCOPE 
MODE 20 SLA 
MOOE 20 SLA 
MUUE 24 HACK 
MODE 24 RACK 
MODE 21 SLA 
MOOE 49 SLA 
MOuE 25 SLA 
MOOE 19 TELESCOPE 
MOOE 19 TELESCOPE 
MOOE ZZ  SLA 
MOOE 24 SLA 
MOOE 25 SLA 
MOOE 28 SLA 
MODE 31 SLA 
MOOE 30 SLA 
MOOE 29 RACK 
MODE 20 TELESCOPE 
MODE 32 SLA 
MOUE 25 SLA 
MODE 19 TELESCOPE 
MODE 29 HACK 
MOOE 33 SLA 
MOOE 34 SLA 
MODE 35 SLA 
MOOE 35 SLA 
MOOE 36 SLA 
MOOE 37 SLA 
MOOE 37 SLA 
MOOE 33 RACK 
MOOE 33 RACK 

MODE 
MOOE 

16 
17 
19 
17 
20 
20 
21 
23 
24 
27 
25 
27 
30 
29 
28 
32 
31 
35 
33 
34 
36 
37 
40 
39 
41 
43 
44 
46 
45 
45 
<*9 
46 
49 
48 
bi 
51 
53 
53 
54 
54 
56 
57 
63 
58 
58 
59 
60 
61 
64 
65 
66 
67 
68 
69 
62 
70 
67 
72 
71 
73 
74 
75 
78 
78 
80 
79 

.5277 

.3060 

.9853 

.8660 
• 6446 
.2.205 
.8666 
.5092 
.2511 
.2706 
.3651 
.3526 
.9447 
.2966 
.1575 
.8192 
.3755 
.2817 
.7197 
.3232 
.4597 
.6452 
.8695 
.7709 
.7262 
.9077 
.5650 
.2196 
.4292 
.3102 
.2528 
.2920 
.3163 
.5522 
.3467 
.1833 
.4306 
.3594 
.3517 
.4005 
.9109 
.9187 
.1614 
.3038 
.4328 
.5834 
.7697 
.5545 
.9935 
.5607 
.5560 
.3480 
.7875 
.9294 
.1777 
.7708 
.1927 
.4703 
.5106 
.8302 
.7845 
.9337 
.5168 
.3995 
.2772 
.4183 

31.709 
31.770 
33.791 
34.547 
34.829 
34.893 
36.420 
41.006 
43.671 
45.013 
45.346 
46.812 
47.342 
49.556 
50.434 
50.845 
51.429 
53.891 
54.381 
57.448 
58.514 
59.700 
63.709 
63.828 
64.813 
66.381 
66,684 
67.445 
67.685 
69,643 
70.746 
71.546 
72.650 
72.650 
73.631 
74.783 
77.413 
77.498 
80.328 
61.961 
62.572 
83.185 
64.809 
85.444 
86.913 
87.114 
86.197 
86.660 
91.404 
92.844 
92.986 
93.815 
96.80? 
97.661 
99.815 
100.901 
102.250 
104.176 
104.532 
106.202 
108.605 
110.033 
112.759 
113.782 
115.636 
118.937 

29.834 
32.623 
33.790 
32.623 
34.651 
34.651 
36.044 
41.256 
42.523 
45.226 
43.277 
45.226 
47.536 
47.324 
46.168 
50.737 
49.027 
57.059 
54.220 
54.694 
58.729 
59.441 
63.731 
63,607 
64.665 
66.410 
67.106 
69.512 
68.168 
68.168 
72.262 
69.512 
72.262 
72.156 
73.916 
73.918 
77.452 
77.45? 
79.677 
79.077 
62.517 
63.168 
89.665 
65.909 
85.909 
66.644 
87.745 
68.295 
91.400 
92.728 
93.479 
95.866 
96.740 
97.727 
89.085 
100.445 
95.686 
103.563 
103.H03 
105.690 
107.504 
109.699 
112.660 
112.C60 
118.258 
116.068 
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Table 1. (Concluded) 
86 MODE 33 RACK 80 .4501 120.899 118.258 
»7 MODE 41 SLA 63 .5577 122.916 122.806 
88 MODE 32 RACK 81 .2060 123.608 118.979 
89 MODE HO SLA 84 .6434 123.969 123.609 
90 MODE 32 RACK 82 .3166 127,(UH 120.996 
91 MODE 36 SLA 87 .5692 129.226 129.463 
92 MODE 40 SLA 88 .6990 129.600 129.780 
93 MODE 3* RACK 86 .5569 131.118 127.396 
94 MODE 34 RACK 85 .2505 131.939 1^0.501 
95 MODE 17 KACK 91 .4961 13? 391 135.558 
96 MODE 36 RACK 92 ,«»130 136.918 137.100 
97 MODE 37 RACK 91 .3255 138.998 135.558 
98 MODE 44 SLA 93 .5993 139.529 139.231 
99 MODE 22 IELESCOPE 94 .5363 141.074 140.476 

100 MODE 24 TELESCOPE 96 .7218 142.516 142.479 
101 MODE 23 TELESCOPE 95 .3371 145.346 141.115 
102 MODE 41 RACK 98 .2714 1<*6.96S 146.409 
103 MODE 41 RACK 96 .5060 148.600 148,, 469 
10* MODE 42 RACK 100 .5265 152.214 152.118 
1U5 MOOE 26 RACK 99 .4672 152.274 146.923 
106 MODE 42 RACK 101 .6499 159.004 157.635 
107 MODE 41 HACK 102 .653«« 160.602 159,378 
108 MODE 45 SLA 105 ,9902 166.461 166.405 
109 MODE 39 RACK 104 .4950 166.768 164.649 
110 MOOE 43 RACK 106 .8158 170.594 169.750 
111 MOOE 46 SLA 107 .4726 174.463 173.014 
112 MODE 44 RACK 108 .4684 176,301 175.979 
113 MODE 44 RACK 109 .6762 178.653 176.851 
11«* MODE 50 SLA 112 .«»554 160.333 182.069 
115 MODE 2b TELESCOPE 110 .5298 161.163 160.744 
116 MODE 26 TEH-SCOPE 111 .4854 162.756 181.408 
117 MODE 47 RACK 113 .5234 184.115 183.659 
118 MODE 27 TELESCOPE 114 .7637 165.353 184.616 
119 MODE 50 RACK 115 .9357 167.448 187.211 
120 MODE 50 RACK 117 .3605 190.369 192.862 
121 MODE 50 SLA 118 .3639 193.461 195.450 
122 MODE 50 SLA 118 .5512 204.341 195.450 
123 MOOE 36 RACK 89 .1323 530,593 132.230 
12*» MODE 39 RACK 103 .1906 C'4.130 162.613 

Application of Acoustics 

The maximum acoustic environment at the 
payload attachment location occurred during the 
vehicle lift-off event. Therefore, the lift- 
off cnvlro <ment was used in the response anal- 
ysis. The Mgnitude and energy distribution 
defining th. acoustic environment used is shown 
in Figure 3. The pressure spectral density of 
this environment is shown in Figure 4. 

Because the acoustic levels are nearly 
equal along the SLA length during lift-ott, the 
pressure spectral density was considered con- 
stant for each area a',  appli »tion. The force 
spectral density was established by productlng 
the pressure spectral density with the propor- 
tioned area foe each collocation point.  It 
was assumed that the prent«ure spectral density 
acted perpendicular to the SLA surface. 

As discussed previously, the applied forces 
were assumed correlated in each quadrtnt but 
uncor-elated between quadrants. The technique 
emplo, .- »vs to apply the forces at all collo- 
cation ,-ioini.s lying within one quadrant (Figure 
5> lid compute the vibration response for all 
equipment locations. This same computation was 
performed on each of the remaining three quad- 
rants. The total uncorrelated response was 
then determined by root-tjum-squarlng the four 
individual quadrant responses. 

The response in terms of acceleration spec- 
tral densities was determined in each of three 
axes at all equipment locations and at the SLA 
areas close to the payluod attachment points. 
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Figure 5. SLA Mass and Force Collocation Points (one quadrant) 

Summary of Results 

The following items cf the analysis by nec- 
essity were based on engineering Judgment and 
could hive an appreciable effect on results: 

a. Modal damping of one percent; 

b. Forces associated with one attachment 
point assumed to act in one direction 
(normal to the SLA); 

c. Forces associated with the four attach- 
ment points assumed to be uncorrelated; 

d. SLA model restrained at the bottom, 
free at the top. 

The opinion was that one percent modal 

damping would produce reasonable results be- 
cause ground vibration survey tests of other 
payloads have produced similar damping. 

The assumption that forces at the four at- 
tachment points are uncorrelated Is considered 
reasonable due to the spatial separation of the 
points. 

Items b and d combined to produce the most 
questionable phase of the analysis. It was 
noted that toward the top of the SLA the re- 
M(-n*e was excessive. In retrospect, this is 
considered due to the top of th<i SLA being 
free. However, the large distance (21 feet) 
from the top of the SLA to the payload attach- 
ment points nay result in little effect on pay- 
load response. 

Because the payload analyzed has not yet 
flown, one cannot evaluate the accuracy of the 
analytical technique. However, the S-1B has 
flown with other heavy payloads and measure- 
ments were made on the shell supporting the 
piyload (SLA) . A comparison of the measured 
and calculated values is shown in Figure 6. 

Of primary interest is the similar spectrum 
shape of the calculated response with the meas- 
ured one. This indicate? that structural prop- 
erties of the SLA were closely simulated. No 
data point (measurement) exists for other in- 
ternal equipment locations. It is interesting 
that the calculated magnitudes were nearly 
equal to the measured ones, indicting that the 
assumed damping an-' yuessure correlation values 
are realistic. 

FUTURE DEVELOPMENT 

The analytical approach used In the analy- 
sis discussed is wirkten in general terms and, 
therefore, does not apply to one program or 
configuration only. The methods can be applied 
to the class of vehicles generating significant 
acoustic levels such as the Saturn. Test data 
are sorely needed to validate the existing ara- 
lytical techniques discussed. More detailed 
knowledge of the forcing function and its inter- 
action with various structure geometries is 
needed. 
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Figure 6. Comparison of Analytical and Teat Data 

Specifically, the method discussed should 
be modified to include pressure correlation co- 
efficients and structural Joint acceptance pa- 
rameters. This modification should be made in 
conjunction with a test progrsm to establish 
pressure correlation coefficients for various 
phases of flight. Analytical predictions 
should be made and compared with test results 
under controlled conditions to determine the 
limitations of existing methodology. 
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DISCUSSION 

Mr. Mallgren (McDonnell Douglas):  Did 
you attempt to correlate the shell measurement 
with some of the empirical techniques such as 
Barrett or Mahaffey-Smith or Franklin? 

Mr. Smltn: No, we did not. As you know if 
you use the Mahaffey-Smith or Franklin or any of 
the other classical approaches, what you really 
get is based primarily on the mass law. This 
does not give the kind of detailed frequency re- 
sponse for which we were looking. That check 
has not been made however. 

Mr. Pakstys (General Dynamics/Electric 
Boat): Iaiftume that for the math modeling to 
represent the shell structure, you were using 
a plate finite element of some sort. Could you 
give the details - what kind of an element it 
was? 

Mr. Smith.  Yss, we had planned on using 
a triangular t fement and at the time we did not 
have a triangular element in use. So we approx- 
imated this with a rectangular element. Now 
because the cone is very, very shallow in angle - 
it Is an 9 degree conical section - we did not 

have exact conditions on the plate edges but 
they were fairly close. We represented both 
the in-plane and the out- of-plane stress con- 
ditions with rectangular plates. 

Mr. Pakstys:  Is there any name for this 
particular finite element that you used? 

Mr. Smith: No. The technique is a finite 
element direct stiffness approach. I have ref- 
erences on it in the paper. 

Mr. Kapur (Aerospace Corp.): What kind 
of pressure cross correlation were you using 
within a given quadrant? 

Mr. Smith:  No, had I had the capability 
for cross correlation then I could have rep- 
resented the entire shell structure and com- 
puted the response in one fell swoop. As it was 
we approximated the correlation by assuming 
that it was well correlated in one quadrant and 
we applied all the forces simultaneously for that 
one quadrant and computed the response on the 
first quadrant and did likewise on the remaining 
three and then root-sum-squared the results, so 
we did not have a cross pressure correlation. 

t 

i    I 
64 



ESTIMATION OF PROBABILITY OP STRUCTURAL DAMAQE FROM COMBINED BLAST 

AND FINITE-DURATION ACOUSTIC LOADING* 

Eric E. Ungar and Yoram Kadman 

BoTt Beranek and Newman Inc. 

Cambridge, Massachusetts 

Results ar-! summarized that permit one to estimate the 
probability that the response of a structure to random 
acoustic excitation will exceed a specified level during 
a time interval of given duration. Characteristics of 
responses to explosion pressure-pulses are described in 
simplified terms. Means are presented for obtaining 
engineering estimates of the probability that the response 
of a structure to a pressure pulst-, which occurs at a 
given time during the action of the acoustic excitation, 
will exceed a prescribed value. 

INTRODUCTION 

In addition to experiencing rocket-noioe 
excitation, structures that are located 
near rocket testing or launching facili- 
ties may occasionally be exposed to blast 
loads due to explosions.  The analyst or 
designer of such structures needs to 
evaluate the probability of structural 
damage due to the combined acoustic and 
blast-pressure excitation associated 
with a given test or launch.  It is the 
purpose of this paper to present an ap- 
proach for obtaining engineering esti- 
mates of this damage probability. 

The structural deformations and stresses 
associated with the response of a struc- 
ture to a given explosion blast may be 
estimated relatively simpl'.y.  If these 
deformations and/or stresses are large 
enough to lead to damage even in the ab- 
sence of simultaneous acoustic excita- 
tion, then the probability of failure 
due to combined acoustic and blast load- 
ing obviously is unity.  If, en the 
other hand, blast effects are relatively 
insignificant, then one may calculate 
the failure probability on the basis of 
only the structural response to acoustic 
excitation. However, the situations of 
greatest practical interest generally 
tend to lie between these two extremes 
and to be more difficult to analyze. 

This paper first summarizes some results 
that permit one to estlnate the proba- 

bility that a structural response (e.g., 
a stress or displacement) to acoustic 
excitation of finite duration will ex- 
ceed some "safe" value. The paper then 
discusses the characteristics of re- 
sponses to preosure pulses, and there- 
after presents an approach for esti- 
mating the probability of failure due to 
combined acoustic and pulse loading. 
Illustrative calculations appear in the 
final section. 

PROBABILITY OF FAILURE DUE TO RANDOM 
EXCITATION OF FINITE DURATION 

Dominance of Linear Behavior of Funda- 
mental Mode 

The stresses and deformations associated 
with the fundamental flexural modes 
of plate-like and beam-like structures 
exposed to acoustic pressures generally 
predominate over those associated with 
the higher modes. Specif led iy» funda- 
mental-mode predominance occur* if the 
acoustic pressure (at frequencies above 
the structural fundamental) increases 
less rapidly than with the first pewer 
of frequency [1] (i.e., If the sound- 
pressurc-spnetrum level increases at 
less than 6dB per octave, or if the 
sound pressure level in proportional 
frequency bands increases at less than 
12dB per octave). Thus, in most practi- 
cal cases, only the response of the 
fundamental mode need be considered. 

+Thi» paper wn not presented in full at 
the Symposium. 65 
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The mathematically linear behavior of 
structures is generally of greatest 
practical Interest.  If structural damage 
is defined as exceedance of a yield 
stress, then the stress-strain charac- 
teristics of the undamaged structure are 
liiear by definition; although other 
soarces of nonlinearity may exist (e.g., 
support friction), these are usually 
i.iaignif leant.  Even where the damage 
process itself is associated with ex- 
treme nonlinearities (such as fracture 
or post-buckling deformation), linear 
analysis usually yields a good first 
approximation to the actual motions 
before damage. The general applica- 
bility of linear results is fortunete 
since only linear problems have been 
solved extensively in general terms. 
Linear structural behavior will be pos- 
tulated henceforth in this paper. 

Modeling of Mode as Simple Oscillator 

It is well known that the response of a 
mode may be described in terms of that 
of a corresponding single-degree-of- 
freedom system [2J. For structures that 
behave linearly, the corresponding 
single-degree-of-freedom oscillator is 
also linear. Therefore, one may derive 
much of the structural response infor- 
mation of interest here by drawing upon 
the extensive existing literature per- 
taining to the responses of simple 
linear oscillators (which generally are 
represented by the familiar mass-spring- 
dashpot combinations). 

Thus, in order to evaluate the probabil- 
ity that the (stress or displacement) 
response of a given structure to a pre- 
scribed random acoustic excitation 
(acting during a time interval T) will 
exceed some specified safe value b, one 
may study the equivalent problem for a 
linear oscillator. This equivalent 
problem consists of determining the 
probability that the oscillator, which 
represents the fundamental structural 
mode, will exp-.rience an excursion that 
exceeds a specified "threshold" value b 
(in response to a random force acting 
over a time interval T). 

Probability of Threshold Exceedance 

Problems like those described in the for 
foregoing paragraph have been studied 
extensively, and although no exact so- 
lutions have been found, much useful 
data is available from analytic approxi- 
mations [33, digital simulations [4,51 
and analog simulations [6,7]. 

Where the excitation (and therefore also 

the response) is a Gaussian random pro- 
cess, one may approximate the probability 
P that the absolute value of the dis- 
placement of a linear oscillator will 
exceed a threshold value b within a 
time interval T by the simple expression 
[4,5]. 

P(b,T) ■ 1 - A exp[-ofnT].    (1) 

Here fn represents the natural frequency 
of the oscillator; A and a are functions 
of the threshold level b, of the condi- 
tions of motion at the beginning of the 
time interval T, and of the damping of 
the oscillator, as discussed subsequent- 
ly.  The approximation given in Eq. (?.) 
holds only for time intervals T > T0, 
where T. denotes the time interval re- 
quired for the response autocorrelation 
function to decay to a small value.* 
For most practical purposes one may take 

l/2ircfn, (2) 

where ? denotes the damping ratio of the 
oscillator (i.e., the ratio of the oscil- 
lator's viscous damping coefficient to 
itn critical damping coefficient). 

Figure 1, which has been extracted 

{■0.04 
(0-12.5) 

ZERO 
START 

{•0.08- 
(Q -6.25)j 

STATION/ 
{•0.01 
(0-50) 

VRY START 

i J 4 

0.8 

b/<r 

Fig. 1 Dependence of the parameter A 
on threshold/rms ratio. 

• Note that P(b,T) approaches unity as T increases. This result agrees with what one 
expects intuitively: the longer the exposure interval, the more likely one is to 
obtain an excursion that exceeds a given threshold value. 
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from Ref. k,  indicates how the parameter 
A varies with the ratio b/o, where a 
represents the loot-mean-square dis- 
placement . The parameter A depends on 
the threshold value b,  on the motion 
conditions at the beginning of the time 
interval of concern, and only slightly 
on the damping of the oscillator. The 
upper curves, labeled "zero start", per- 
tain to an oscillator that is at rest and 
at equilibrium (zero displacement and 
velocity) at the beginning of the time 
interval of interest. The lower curve, 
labeled "stationary start", pertains to 
the situation where stationary random 
oscillation conditions exist before the 
time interval. The two upper curves cor- 
respond to two different damping ratios 
C and indicate that r,  has only a minor 
effect on the vali'e of A; hence, only 
one lower curve is given. 

As is evident from Fig. 1, A approaches 
unity for large b/o. Also, for a given 
value of b/a, one obtains a larger value 
3f A for zero-start than for stationary- 
start conditions; threshold cxcecdance 
*ith3n the time interval T thus is more 
Likely with stationary than with zero 
itarts - as one would expect intuitively 
ilnce a finite time is required for the 
response to build up from the zero to 
'he stationary level. 

Values of the parameter a that corres- 
pond to given values of the ratio b/o 
nay be obtained from Fig. ?, which also 
has been extracted from Ref. 1. Values 
of a for damping ratios other than 
uhose to which Fig. 2 pertains may be 
obtained by interpolation or extrapo- 
lation. 

2* 
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Fig. 2 Dependence of the parameter a 
on threshold/rms value. 

PROBABILITY CF FAILURE DUE TO PULSE 
LOADING SUPERPOSED ON RANDOM EXCITATION 

Pulse Response 

Pressure-vs-time curves corresponding to 
explosions typically rise very sharply 
and decay slowly. [8,9] The contribution 
of the fundamental mode again dominates 
the response of most common structural 
elements to such pressure pulses [8], 
whose decay process may be approximated 
by an exponential function. If one 
models the fundamental mode of a given 
structure as a simple oscillator with 
mass M and stiffness k, one may readily 
determine that the displacement response 
x(t) of that mode to an exponentially 
decaying force spike F exp(-ßt) obeys 

x(t) [»•*■]■ fit* ß 
-cos ut + £• sin ut. (3) 

where w"/k/M denotes the circular natu- 
ral frequency of the oscillator and 
Xs"F/k represents its static deflection 
under a force of magnitude F.  In the 
derivation of Eq. (3), the oscillator 
was assumed to be at rest and at equili- 
brium at time t-0 and damping was neg- 
lected. Although the response of a damped 
system may be derived readily, damping 
is not considered here explicitly, in 
order not to complicate the present 
discussion - and since most practical 
structures are lightly enough damped so 
that Eq. (3) provides a reasonable 
approximation. 

It is instructive to examine the behavior 
of Eq. (3), particularly for extreme 
values of the decay exponent 8.  If the 
oscillator executes many cycles of vibra- 
tion before the pressure spike decays 
considerably - i.e., if BA)<<1, - then 
the right-hand side of Eq. (3) may be 
approximated by 1-cos ut, at least for 
the first few cycles.  On the other 
hand, for a very rapidly decaying pulse 
i.e., for ß/u>>l-the right-hand side is 
very nearly equal to (ß/w) sin u>t. Thus, 
for very large and for very small values 
of 6A>, the right-hand side of Eq. (3) 
may be approximated by a sinusoid. 

Failure Due to Combined Loading 

If the maximum respon 
fron Eq. (3) exceeds 
limit, then failure a 
pressure pulse will c 
absence of additional 
This case is trivial 
discussed further; th 
paper deals with the 
pressure pulse by its 
to cause failure. 

se one obtains 
the prescribed 
s a result of the 
ccur even in the 
acoustic loading, 

and will not be 
e remainder of this 
case where the 
elf is Insufficient 

67 



r 

In order to obtain a simple method for 
estimating; the probability or damage 
due to the superposition of pressiure- 
pulse on random vibration effect», it is 
convenient to replace the sinusoids that 
approximate; the right-hand side of Eq. 
(3) t>y the square waves sketched in 
Pig. 3- The motion of a lightly damped 

cos ut 

t) SLOWLY  DECAYING PULSE <0<<u> 

0*1 
/ui)SI N ut 

b> RAPIDLY   0ECAYIN6   PULSE (0»ui) 

Pig. 3 Square-Wave Approximations to 
Sinusoids Representing Pulse 
Responses 

structure after application of a slowly 
decaying pulse (B<<W) „hen may be taken 
to be at the maximum value x for half 
of the time and at zero for naif of the 
time. 

The probability that the response due 
to combined loading will exceed the 
threshold value b during the time that 
the pulse response is at x is the 
same as the probability that the 
positive portion of the acoustic re- 
sponse will exceed the reduced threshold 
value bm«b-xm. This probability may be 
calculated directly from Eq. (1); how- 
ever, one must account for the fact that 
Eq. (1) represents the probability that 
the absolute value of the response 
exceed"R~b"T Since for a zero-mean ran- 
dom process, +x is as likely to exceed 
+b as -x is to exceed -b, one must di- 
vide the expression of Eq. (l  by 2 
In order to determine the probability of 
positive exceedances only.  (During the 
time that the pulse response is t.t 
+xm, failure may also occur if the 
acoustic response takes on a negative 
vaJne whose magnitude exceeds b + x . 
Hovaver, the probability of a large 
excursion of this sort is mue^ s&.aller 
than that of a smaller excursion and 
may be neglected wthin the degree of 
the present approximation.) 

The probability of failure due to com- 
bined loading during tne time that the 
pulse response is at 0 is given directly 
by Eq. (1).  If one notes that failure 
may occur either wher. the pulse response 
is at x_ (which occurs with a probabil- 
ity of 1/2), or when the pulse response 
is at 0 (which also occurs with a proba- 
bility of 1/2), one finds that the 
probability of failure due to combined 
acoustic and slowly decaying pulse load- 
ing (ß<<üj) may be written as 

Pcs "  *P(VT) + "* P(b-T>>     W 
wnere 

o - x. x„ « 2F/k. (5) 

By similar reasoning one may obtain the 
probability of failure due to combined 
acoustic loading of finite duration T 
and a rapidly decaying pulse (ß>>w) as 

Per "  *p(br> T) , 

where 

br ■ b - xr , 

(6) 

(w/B). (?/k).  (7) 

Failure due to Blast after Acouatlc 
Loading 

In the course of a rocket launch (or 
test), a structure near the launch site 
is exposed initially only to rocket 
noise (for some time interval Tj).  If 
the launch (or test) is terminated by an 
explosion, then the structure will be 
subject to a prespure pulse in addition 
to continuation of the rocket noise* • 
(for some time interval T2). The proba- 
bility of failure during the first time 
interval may be calculated from Eq. (1), 
and that for failure during the second 
interval from Eqs. CO or (7).  However, 
failure during the second inteival can 
occur only if the structure survives the 
first; hsnee, the probability Pt of 
failure during the total exposure time 
T,+ T2is given by (8) 

Pt(b,Ti+T2)-P(b,Tl)+[l-P(b,Tl)]Pc(b,T2), 

where Pc represents a probability cal- 
culated either from Eq. (H) or from Eq. 
(7), whichever is appropriate for the 

* Since shock waves associated with ex- 
plosions travel faster than sound, one 
may perceive the noise from rockets at a 
position far from the launch pad for 
some time after the explosion pressure 
pulse from a vehicle destruct has arrived 
at that position. 
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specific case under consideration. 

ILLUSTRATIVE ANALYSIS AND CALCULATION 

Problem Formulation 

Consider a 5x1 ft pane of 3/1 in. thick 
laminated glass, made up of five 
equally thick laminations. This pane is 
to be used In a structure from which the 
launching of large rockets may be ob- 
served. Prom calculations or experimen- 
tal measurements one finds that the 
glass pane has a fundamental resonance 
frequency* of lOKz and damping at that 
frequency (including edge support con- 
tributions) which corresponds to c-0.01. 
The maximum allowable stress in the 
glass is 6000 psl.  (This relatively low 
value applies for glass that may have 
surface scratches obtained by exposure 
to sand storms.) 

The octave-band sound pressure levels 
expected at the site of the observation 
structure during testing of a certain 
rocket are 

Octave-band center 
frequency 1 8 16 31.5 63 

SPL (dB re 2x10"* 
y bar) 

136 136 135 131 121 

Assume that this acoustic excitation 
persists for 20 sec, that then a blast 
occurs with a peak over-pressure of 0.2 
psi arid a decay constant 0*2.0 sec-1, 
and that the acoustic excitation con- 
tinues to be sensed at the observation 
site for 2.5 sec. after arrival of the 
blast pulse. What is the probability 
of damage to the pane? 

Modal Properties 

If one assumes the pane to be a simply 
supported plate, then the fundamental 
mode shape is given by [2,10] 

$(y,z) - sin(iry/a) • sin(flz/c) (9) 

where a and c denote the pane edge 
lengths, and where y and z are coordi- 
nates along axes oarallel to the pane 
edges. For a pressure distribution 
p(t) that is uniform over the surface of 
the pane, the modal force ?(t) is found 
to obey [2,10] 

F(t) - <f
a

<f
cp(t)«(y,z)dy.dz-^a4 p(t), (10) 

and the modal mass M is given by 

M-iV V  **(y,z) dy dz .H|o (11) 

where u represents the mass per unit area 
of the pane.  (The modal ma*s here is 
seen to be equal to one quarter of th« 
total mass of the pane.) The mod»l 
stiffness k may be calculated from 

MwJ 

where w represants the fundamental 
natural frequency. 

(12) 

The modal displacement x here corresponds 
to the displacement of the plate center. 
With such a displacement there is as- 
sociated a maximum stress s, which 
obeys [11] 

s * u2Ehx/ 2a (13) 

where E represents the Young's modulus 
and h the thickness of the plate, and 
where a is the length of the shorter 
plate edge. 

Modal Response to Noise 

of a The root-mean-square displacement a 
classical single-degree-of-freedom 
syste.n excited by Gaussian noise whose 
spectrum is flat in the vicinity of the 
resonance of the system is given by [12] 

2k-o *w<- (1» 

Here Wf represents the spectral density 
of the excitation force, and is related 
to the root-mean-square value Frnn of 
that force in a frequency band of '.'idth 
Af as 

rms /Af. (15) 

Probability of Failure due to Acoustic 
Excitation 

The sound pressure level in the band 
encompassing the 10Hz iatural frequency 
is 136dB, which corresponds to a roct- 
mean-square pressure Prm8 ■ 2.6psf. 
From Eq. (10), the corresponding rms 
modal force in the octave band centered 
on 8Hz is found to be FrmS ■ 21 lb. 
From Eq. (15) and by noting that for 
octave bands the center frequency is 
equal to /? times the bandwidth, one 
obtains Wffn • 780 lb

2 . For a glass 
density of 170 lb/ft', the surface 
weight of the pane is 10.6 lb/ft2. Eq. 
(11) then yields M-53 lb., and Eq. (12) 
gives k- 510 lb/In. From Eq. (11) one 

■This frequency corresponds to the case where the adhesive 
between the laminations transfers no 3hear stress. 
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then finde o- 0.46 in. 

If one takes the Young's modulus E ■ 
10 "psi for glass and a plate thickness 
h • 0.15 I for one lamination); then one 
may ealcMiate from Eq. (13) ;he maximum 
allowable displacement b that corre- 
sponds to the specified allowable stress 
of 6000 psi. One obtains b"1.85 in., 
and therefore b/o - 4.0. 

From Eq. (2), one may calculate Tc«1.6sec. 
Since all time intervals of concern here 
exceed 1.6 sec, Eq. (1) and relations 
derived from it apply to the present 
problem.  From Pig. 1, one finds that 
for »ere r rt (i.e., for the pane un- 
deflecteC ml at rest before the sound 
acts on it)  A->1.00.  From Fig. 2 one 
obtains 

o/2-exp[-b*/2o2] - 0.23, from 

which o» 1.55 x 10"*. Substitution in 
Eq,. (1) then yields Pfb.Tj )»0.03; that 
ia, the probability that the 6000 psi 
"safe" stress will be exceeded during a 
20 sec. exposure of the pane to the 
previously specified sound pressures is 
3S. 

Probability of Failure due to Combined 
Blast and Acoustic Loading 

Since dl" 2wfn »63 aec"
1, one finds that 

$/w0.032<<l, and that Eqs. (4) and (5) 
apply. For the 0.2 psi peak pressure, 
Eq. (10) gives the modal force as 
F-230 lb. From Eq. (5), one then finds 
that the maximum displacement xm due to 
the shock is xm-0.85 In., and that the 
reJuced threshold displacement value 
b -1.0 in. then b /o-2.2. For this 
value, and assuming stationary start 
;onditions, since the structure has been 
in motion for many cycles before +hi 
blest occurs, Figs. 1 and 2 yield A-0.88 
and a".021. Then, for the 2.5 sec 
interval following the arrival of the 
pressure pulse, one finds f?om Eq. (4) 
that th<» failure probability is 

cs !»P(1.0in, 2.5 sec) 

+«iP(1.85in, 2.5sec) 

- %{l-0.88 exp[-.021(10)(2.5)]} + 

Ml-1.00 exp[-1.55xlC~(i0)(?.5)3> 

- %(.480)+»i(.004) » 0.12 . 

Finally, from Eq. (8) one finds that the 
probability of failure for the entire 
22.5 sec time interval is 

Pt- 0.03 + (0.97X0.12) « 0.15 • 
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DISCUSSION 

Mr. Swanson (MTS Systems Corp): I have 
worked for a while on the earthquake simulation 
problem which is very similar to the one you 
described. It has the characteristic of the in- 
tensity going from zero up to some peak value 
and dropping off again over a finite length of 
time.  Do you assume that you art dealing with 
a Gaussian disturbance, or is this generalized 
to some sort of other general distribution of 
events ? 

Dr. Ungar:  Tie analysis indeed is Gaus- 
sian än3"thesystems we deal with are linear. 
The only solutions tVl are known are for Gaus- 
sian and linear syclems. 

Mr. Swanson:  I guess you are familiar with 
the work of Freudenthal and his colleagues at 
Columbia who have investigated the upper and 
lower bounds of non-stationary random process- 
es.    They have a good paper on that. 

Dr. Un«ar:  There is a great deal of work 
on non-stationary random processes. The 
earthquake problem of course is an interesting 
one and the real problem with practical appli- 
cations has to do with the lack of information 

on the statistics of the earthquake process 
itself. 

Mr. Swanson:  That is true except that 
there is a growing literature of continuous re- 
cordings of earthquake motions, and from this 
PSD analyses an RMS analyses can be obtained. 

Dr. Ungar:   Unfortunately, I think the large 
events about which we are mostly concerned are 
rare and one can not use a usual type of anal- 
ysis or approximation because there is no in- 
formation about details of distributions. 

Dr. Bouche (Endevco Corp):  The shock 
wave portion of the excitation reminds me of 
the effect of conic booms on structures. In 
the shock analysis here, can you, or do you 
take into account the shock excitation of the 
structure insofar as it excites resonances in 
the structure ? 

Dr. Ungar:  Indeed we do take these ex- 
citations into account I glossed over the answer 
rather quickly. These wiggly curves that I have 
drawn here are supposed to represent the re- 
sponse of a structure to the shock which is super- 
posed on the random response. 
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THE HESTONfrii OF MECHANICAL SYSTEMS 

TO BANDS 0? RANDOM EXCITATION* 

L. J. Pulgrano and M. Ablowitzf 
Grumman Aircraft Sngineering Corporation 

Bethpage, New York 

The mean spuare response of a single-degree-of-freedom system has 
been determined for both band-limited white noise excitation and 
a band of excitation having a constant dh/octave change in liivel. 
Solutions are given for those input-output combinations that are 
of greatest  interest,  such as force or acceleration excitations 
and acceleration or displacement responses.    The results include 
exact analytical expressions for all cases, and both approximate 
expressions and graphical presentations for use in making quick 
calculations in most practical cases. 

LIST OF SYMBOLS 

a 

b 

C 

f(t) 

F(t) 

H((fl) 

"0,1,2.3 

Ib(0) 

K 

I 

In 

M 

ii 

N 

S(u)) 

SR 

S, 
i 

t 

u 

2^K 
exponent controlling rate of 
change of spectrum ( see equation 
12) 

viscous damping coefficient 

normalized exciting force » $M 

exciting force (see Figure l) 

transfer function (output/input) 

see equations (7) to (10) 

function defined by equation (22a) 

spring constant 

2 U-2C2) 

logarithm to the base e 

mass 

number of octaves oetween two 
frequencies 

db/octave variation in spectrum 

spectral density (one-sided, 
radians/tlae units) 

response spectral density 

input spectral density 

time 

absolute input displacement (see 
Figure l) 

absolute response displacement 
(see Figure 1) 

♦Paper not presented at Symposium. 
tCurrently at Massachusetts Institute 
of Technology. 
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zl,2,3 

tu 

n 
n 

c 
< > 

relative displacement = x-u 
(ßje Figur«; l) 

general response variable assoc- 
iated with transfer function 

"1,2,3 

circular frequency (radians/time) 

natural frequency JK/H 

normalized frequency » UU/JJ_ 

critical damping ratio ;» c/2Mu 
n 

average value of bracketed quantity 

INTRODUCTION 

The calculation of the mean square re- 
sponse of a randomly-excited vibrating system 
usually involves the evaluation of a relative- 
ly complicated Integral. Results are widely 
available for the case of a single-de gres- 
of-freedom system excited by white noise 
(e.g., see Reference 1), and tne white nolpe 
results can often be used with good approx- 
imation for lightly damped system having 
resonances within the bar.i ::f excitation. 
However, if the system is heavily damped, or 
if the excitation is largely nonrssonant, or 
if the spectral density is changing rapidly 
in the vicinity of resonance, the use of a 
white noise approximation may les.d to serious 
error. It is necessary for these cases to 
have solutions for the response to bands 
of excitation, if accurate results are to 
be obtained in a relatively short; time. 



Some results are available for band 
limited white noise excitation [1], but 
these are restricted to tue case of dis- 
placement response to force or acceleration 
excitation-    In this report these results 
are extended to other commonly used input- 
output parameters, such as acceleration 
response to force or acceleration excitation. 
In addition, thn response to bands of ex- 
citation having spectra that change at a 
constant db/octave rate are investigated. 
Such spectra usually are encountered in 
vibration design and test specifications. 
By superimposing results for various bands 
of excitation, the response to any spectrum 
can be quite closely approximated. 

All the results presented are for 
single-degree-of-freedom systems.    However, 
such results have application to a wider 
range of problems, since normal mode tech- 
niques [2] can bo used to reduce multi-modal 
system« to a aeries of single-degree-of- 
freedom systems, provided damping coupli ." 
is negligible and the responses o-f ■*".» modes 
can be assumed uncorrelated. 

BASIC EQUATIONS 

TRANSFER FUWOTIOKS 

Figure 1 shows a slngle-degree-of-freedom 
system which may be excited by either base 
motion or *i> applied force.    The general 
equation c T motion   for the system is 

MX + Cy + Ky - F(t) (3) 

where the meaning of the symbols is evident 
from Figure 1.    In terms of the relative 
coordinate y = x-u, equation (3) can be 
written 

J! ♦ 2C<Dny +u)„y = f(t)  - ü(t) (k) 

where 2 
K/M 

C     =   c/2Mun 

f(t)  - F(t)/M 

Tünimtion (k) can now be used to find 
any desired transrei function for the 
single-degree-of-freedom system.    For ex- 
ample,  cone Her the displacement response 
x(t) for an applied force excitation.    Then 

The basic in- at-output relationship 
for s. randomly-'xcited linear system is 

8^,) -SjMlHU,)!5 
(1) 

where 

Sp(iu) « response spectral density 

S-(<u) » input spectral density 

H(u>) - trawfer function relating 
response to input for sin- 
usoidal excitation 

The mean square response <zS is obtained 
by integration 

<z2> 

c 

I 
«l 

■»2 

/ 

3_(w) da> 

SjUOlHU,)! cki) (2) 

The .negral must be evaluated for the 
specific case at hand. The plan here Is to 
select the most common form« for Sjd») and 
H(ii>), to perform the required integration«, 
and then to present the results In the form 
of plot« or tabulations for easy usage. 

and (h)  becomes 

x + 2&j)nx + iu*x - f(t) (5) 

F( 
- 
t) 

M 
J 

»1 j L 
1 t 

y » r-u 

Figure 1 Analytical Model 
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The transfer function is determined by assum- 
ing a harmonic excitation; thu*, using phasor 
notation, the exciting force is 

kit 
f(t) - fQe 

x(t) - xQe 
i<i)t 

Then (51 becomes 

U2 + 2i&i>ncu + «,2)xn -f 

and the transfer function is givon by 

«x,fW 
l/u,2 

(l-cr) + 2icn 
(6) 

where n ■ ou/ui , a non-dimensional frequency 
parameter that will be used throughout the 
discussion.    It is important to bear in 
mind that f in (6) ia a normalized force 
f = F/M, and not the applied force F. 

In a similar manner, the transfer 
functions relating other parameters can be 
determined.    The analyses have been carried 
out for the combinations of greatest In- 
terest, and the results are shown in Table I. 
The transfer functions are all seen to be 
quite similar, the only differences being in 
the numerators.    The last column of the 
Table shows the squares of the magnitudes 
of the transfer functions (which are re- 
quired in equation (2) for the mean square 
response) in terms of a basic function, H§, 
where 

EXCITATION SPECTRAL DENSITIES 

Excitation spectral densities, Sj, are 
typically smoothed Into spectra that appear 
an a series Ctt straight line» on log-log 
plots.    The slopes ia regions of varying 
spectral density are generally given In 
terms of decibels par octave.    Mathematically, 
the straight line log-log plots are governed 
by an equation of the form 

log S - log So + b log fi (11) 

which means that the variables are related 
by 

s(n) - %ac 
(12) 

Thus, S0 represents the spectral density 
at Q i 1 (i.e., at «j « wn) and b controls 
the rate at which the spectrum varies. The 
case of b « 0 corresponds to vhite noise 
excitation of 8(o) - S0. 

The exponent b must now be related to 
the «ib/octave variation in level if it is 
to be useful. If two frequencies 0% and Qj, 
are n octaves apart, then 

a, 

or 
log (a/c^) 

"   log 2 

3.32 log^a/c^) 

(13) 

(i-n2)2 + 4c2n2 
(7) the decibel difference between the spectral 

densities at the two frequencies is 

Only three transfer functions are needed to 
describe the five input-output combinations 
in the Table. It will be convenient to give 
a specific designation to each of the three 
functions, a- follows: 

db - 10 

From (12) 

s(nJ 
^süi^ (15) 

4 * (i/%)Ho 

H
2

, * (1 + 4C2n2)h2 

i'"X 

(Ö) 

(9) 

(10) 

These relations are also shown in the last 
column of the Table, so that the appropriate 
transfer function for any of the input-out- 
put combinations can be readily determined. 

Thuj 

S(Oj) n2b 

db ■ 10b lo, VöT> 

(16) 

(17) 

The db/octave variation, It, is obtained from 
(IT) and (14): 

db 
n 3.01b i 3b (18) 
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Table I 

Transfer Punct.'ona For Single-Degree-of-Freedom Systems 

f(t) - F(t)/k 

x 

y ■ x-u 

lb» 
J?+2Ci)ny-tu)^y * t-'i 

Input output Kn) iÄßilL 

ü y 

1/2 
«•n 

^          -         H2 

■»n i-n2+2icn 

ti X i+2icn 
i-n2+2icn 

(lVfiX  ■ ^ 

u X 
1+21CO 

i-n2+2icn (i^X  "  Hs 

f X 
142 

n 
**<        -         H2 

n i-n2+2iCn 

f X 
n2 

"X   -  4 i-n2+2iC« 

Hot«:    n » n/<s 

H2    . 1 
0      (i-n2)2+W 

A. useful relation between the spectral 
densitius at two frequencies is evident from 
(12). For the two frequencies Oß and Ch. 

8(03) w 
8<ni) - s^

0 

Dividing one equation by the other and re- 
arranging results in 

s(a>) - s(o1)(^)D (19) 

The spectral density S0 is in radians/ 
time units and is a one-sided spectral 
density.    Design requirements are generally 
in cycles/time units.    To convert from a 
cycles/time opectral densitv to a radians/ 
time spectral density divide by 2n. 

76 



MEAN SQUARE RESPONSE 

The mean square response, as given by 
(2), can now be expressed In terms of a 
spectral density of the form of (12) and the 
three transfer functions of (8), (9) »nd 
(10). Consider first the function H?i 

The coefficient in  this case is approximately 
the white noise result for small damping, 
the actual white noise result being 

™nSo 
2   W» *   ~TQ~ 

<ZA„ -   ^ (x + Uj2) (ai») 

I 

•f SjU ) H^du, 

■/ 

Son 2 

(I) n 
(») 

where dO ■ dtu/u and tbe subscript on z in- 
dicates the transfer function being used. 
Equation (20) can be rewritten as follows: 

T6 

«l > " 5fr 3 [1,^) - lb (0,)]    (21) 

where 

vo> ■ £/*V* (22) 

«/ TF 2-2 » <22a) 

V (i-n2)2 + 4c2n2 

Ib (n) will turn out to be an important 
function, in terms of which the mean square 
responses for all the transfer functions 
under consideration can be expressed. It 
actually 1? a generalization of the function 
used by Crandall and Mark [1] for the special 
case of b » 0 and |ll(0)|2 ■ H^ . The con- 
stants In front of the integral in Ib(fi) 
were chosen to make the coefficient in (21) 
equal to the white noise response of the 
system  (See Reference 1, bearing in mind 
that their SKID) is a two-sided spectral 
density, which has a value of half the S(ui) 
used herei'.i.) 

For the second transfer function, Hg, 
there results 

<*2> "    Jso aix + Ha) H0 mn <m 

0, 
TW) S, 

msr riv^'^V' ]      <«> 

Finally, the response for the third 
transfer function Is 

2 
3
2> - f   6yft\8.B« 

nut S 

Sr[WV-W9i>]  <25> 
The coefficient is this case does not 

represent the white noise response, be- 
cause the white noise response is infinite. 

RECURSION RELATION FOR Ib(ft) 

The results of (a), (23), and (25) 
give the m>wn square response in terms of 
the functions ID(fl); the problem now is to 
evaluate Lo(0). There are a large number 
of values o* b in the range of interest., 
making it unwieldy to evaluate lud plot the 
Ib functions over the entire range. For- 
tunately, there exists a simple recursion 
relation between the functions. 

From (22a) Ib is defined as 

v»-¥/ 
(i-o2)2 + k&? 

dn (22*) 

"*he denominator of the integrand can be ex- 
panded to obtain 

den - 1^-2 (1-2C2) f)2 + 1 

4   2 
- o -je cr + i 

where l  - 2 (1-2C2) 

(26) 

(aSa) 

(27) 

Division of the nuasrator of the Integrand 
by the denominator yields 

TJ—"§ ■ 
a- w: + l 

Then L becomes 

f-k + ^t"2-nt"lt 
n * 2  

o - in + i 

*e.. b-3 *b-4 

(28) 

(29) 
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for b f 3. When b » 3 the result is to obtain 

I -^lnn + tl, -I       (30) 

Equations (29) and (30) «re the desired 
recursion relations. They enable all Ib 
functions to be obtained li terms of only 
four, such as I0> Ii, Ig ard 1-.    The de- 
tails have been worked out for the range 
of b values from -6 to 9, using the above 
four lb's as the basic functions. The 
iv suits are shown in Table II. 

EVALUATION OF BASIC lb FUNCTIONS 

It remains now to evaluate the basic 
functions I0 to I,, since once they are 
known all others Ban bo readily determined. 
The evaluation involves an integration which 
Is effected using a partial fraction ex- 
pansion. The details will only be showi. 
for I0 to Illustrate the technique; the 
other Ib's are determined in a similar 
manner, but only the results will be given. 

From equation (22a) I0 is given by 

oaf— 
V(i-n; V + *cV 

dn (3D 

(32) 

The denominator of the Integrand can be 
factored Into two quadratics to obtain. 

J
0 ■ ¥ / 1 r « 0 nJ (1 + an ♦ n2)(i-an + o2) 

where a - 2^|l-C By using a partial 
fraction expansion the Integrand can be 
written In a more convenient form: 

The Integrand i.ow consists of terms that can 
be found in integral tables. Upon integ- 
ration there results 

i^^^l,^] 

+ L u fijajfcflf 
m    l-a n+o2 

(3») 

The arctangent terms can be combined using 
the trigonometric Identity 

tan_1x + tan_1y - tan"1 (j^)   (35) 

The expressions for 1^ to I3 can be 
jbtained in a similar wanner. The results 
ire 

h ' m ten"1 {T^-&] (37) 

L.itin^ft) . £-i„ (iaOi^) (38) 2 IT     
V1-0T   *    1-sO + £? VJ ' 

. SUzScfl tan'1 (—St--) + 
3 TO       

vl-2C2-iT2/ 

iln[(l-fi2)8^2n2] (39) 

For completeness these results are also 
included in Table II. 

Tt is worth noting that the result for 
I0 is :he same as that given by Crandall and 
Mark (Reference 1, equation 2.51} for band- 
limited white noise. 

INTERPRETATION OF RESULTS 

With the function lb completely de- 
termined, It remains to interpret the 
results, to consider the general trends and 
to develop working curves that can be used 
to facilitate numerical calculations. 

The results of a previous section showed 
that the mean square response to a band of 
excitation Is directly related to the 
difference in the Ih function evaluated at 
the limits of ehe band (see equations 21, 
23, and 25). It should be stressed that 
it is the difference in the function lb at 
two frequencies that determines the response, 
and not.the value at any one frequency. 

The general shape of Ib is shown in 
Figure 2 as a function of 0 for several 
values of b and one value of J. The band- 
limited noise function, I0, is seen to 
increase from zero to one as fl increases 
from zero. The largest contribution to the 
response occurs in the vicinity of resonance, 
where the slope dlb/dO is a maxima. For 
white noise excitation, the response within 
the resonant bandwidth accounts for approx- 
imately half of the total response. The 
total response to white noise for the trans- 
fer function Hi reduces, as it should, to 
Junt the coefficient term in (21) since 
lol") " Io(0) -1. 
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Table II 

Expreeaiona For Ib For The Range 
From b » -6 To +9 

-^^'W* «*>**<*)** 

:-l    " 

kr    an i      ' 3 

- £ (^ + +) + «A) V«2 

- — (—p " *1«0)   + (1-1)1,-il, 

• ? * + 'V*2 
£lnn + «l-*3 

I        .   I tan"1 (SB. )  ♦ L. ln(i2£>l£) 
1-08       ™       lW 

i-2c -n 

I.    =  V tan-1(2C£L) . L. in(Ü2üa£) 

I3      -   V ln(d-n2)2 + ^2n2) + 2(^ tan^ —St_) 
* l-2cV 

i4   - ^n + «i2-io 

5 n   2       u3 11 

I,      =   &{£ + „,., 

■   ;* («- + in) + (*-i)i£-«o 

ir   - Jt <£ + io!) + (A) w 

i8   . St {£ + j$ + {A,Vllg 

^[Q- + ^+(A)nl+^£)V(A)i0 

General Recursion Relation: 

UC  nb-3 
h ' T ~ + "b-2" xb-4 for b * 3 Note: i = 2(1-2C ) 
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Q-5 

Figure 2 Variation of 1^ With n 

The response for negative values of b or 
for b > k does not converge to a finite value 
as the excitation bandwidth becomes large. 
Thus, an infinite bandwidth approximation, 
analogeoua to the white noise approximation 
for b » 0, cannot be used in these cases. 
For positive values of b the region above 
resonance is seen to contribute more to the 
total response than the region below re- 
sonance; for negative values of b the 
opposite is true. This is an expected re- 
sult, since the region that contributes most 
to the response is that in which the ex- 
citation spectral density is highest. 

It is of interest to know what effect 
a sloping spectrum will have on the resonant 
response of a system whose resonant band- 
width lies within the band of excitation. 
For purposes of this comparison the resonant 
bandwidth is taken as the effective random 
bandwidth, which is simply TT/2 times the 
half power bandwidth, or Tt£. Figure 3 shows 
plots of normalized resonant response as a 
function of b for various damping values. 
The minimum resonant response occurs for 
b « 2, the value that makes the response 
spectral density most nearly symmetric 
about 0-1. For light damping (( < .05) 
the resonant .response remains within 7$ 
of the white noise result for all values 
of b between +6 (i.e., up to 2k db/octave 

slope). However, for heavy damping signif- 
icant differences in response occur for 
even moderate values of b. For example, 
a difference of about 23$ exists for 
t - -U and C - -15- 

From theBe curves it would appear that 
in many cases a white noise approximation 
can provide quick and reasonably accurate 
results even for cases in which the ex- 
citation is steeply sloped. However, it 
must be emphasized that then« curves repre- 
sent only the resonant response. In cases 
where the excitation is steeply sloped the 
spectral density may reach values that are 
far higher than the resonant value, and the 
nonresonant response may then become much 
more significant, or even dominant. 

Figures k to 8 show plots of the func- 
tions I0 to j., vs. 0 for a family of J's. 
These Figures are intended as "vorking 
curves" which can be used to facilitate 
calculation of the basic Ib functions. 
Figure 8, which gives 1^, actually was not 
needed since 1^ is not outs  of the basic 
functions; however, since it represents a 
commonly-encountered 12 3b/octave slope, 
it was Included for convenience. 
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1}    Resotiant response   is acs-wied to he 
the response within an effectJVP 
andvJdth n£ wide eente,,ed  on the 

resonant  frequency' < 

?)    dt)/octave   * ;■;: 
3)    B'_ic.o;i oil the  transfer  function il0 

Figure 3    Variation .«n Resonant Response with db/Octare Change in Excitation 
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1.0 

.6 

.2 

Figure 7 I, vs 0 

1.0 

i.6 a.o 

Figure 8 I,   vs Q 
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The curves are plotted over a range of 
fj's between .5 and 2, but accurate rep.üinfe of 
the difference between two Ib values well 
above or well below resonance is not possible. 
Thus, if a nonresonant band of excitation 
appears important it will be necessary to 
evaluate the basic equations (36) to (39) 
directly, or to use an approximation of the 
type discussed in the next section. 

APPROXIMATE SOLUTIONS FOR NONRESONAHT 
EXCITATION 

Outside the resonant range the influence 
of damping becomes quite small and can be 
neglected with good approximation. Tne 
function lb can then be written 

ü 
K2£ 

«an 

**/ U-n2)2 
an (to) 

provided kQZ 02 « (1-n2)2. Thus, for f, « 
.15 the approximation will be useful in the 
range below fl « .6 or above fl » 1.6. For 
smaller damping the useful range will be 
larger. The integrand in (kO)  can be ex- 
pended into a series in n2: 

n 
d-nV 

nb (1 + 2n2 + 3n* + U n6 + ..)(ki) 

for n < 1, or 

,2x2 (nf) 
nb(i+?2+\ + \+ •••)   (te) 

n     n 

for 0 > 1. These expressions can be sub- 
stituted into (ItO), which can then be readily 
integrated to obtain 

Ml Ml 
T S *£ (Dd ♦ SCI ♦ aa^i 
T>  n v b+1   b+3 

£15 
b+5 

for 0 < 1, and 

!„. „b-1  p-b-3   b-5 
T ~ St (Q + <2 + 20— + 
h      TT v b-1   b-3   b-5 

•) C*3) 

• ) (Uk) 

for Q > 1, as long as none of the denomin- 
ators equal zero. If a denominator equals 
zero that term in the series becomes a log 
term; thus, if b + h.» 0 the corresponding 
term becomes 

M+l „a+M 
2 
b + M 

M+l 
In 0 (*5) 

in equation (1*3) or C+U). 

In using either the high frequency or 
low frequency nonresonant approximation, it 
is important to remember that the entire band 
of excitation running from 0 = .2 to 3 can- 
not be determined by using the high frequency 
approximation to determine 1^ (3) and low 
frequency approximation for Ib (.2), and 
then taking the difference. It is necessary 
instead, to use the low frequency approx- 
imation to evaluate the range from .2 to say 
.6 and the high frequency approximation for 
1.6 to 3. The plotted results can then be 
used to determine the response in the reson- 
ant range. (This restriction is due to the 
fact that the constants of integration are 
not included in the evaluation of the in- 
definite integrals leading to the approx- 
imations for Ib). 

The primary use of the approximate 
solutions will not be for the case cited, 
however, since in such a case it probably 
would be easier to use the exact relations 
given in Table II, or it would be sufficiently 
accurate to use only the plotted results. 
The approximations will be most useful for 
excitation spectra having discontinuities 
(which requires that they be divided into 
segments before analysis) or for cases in 
which the excitation is primarily nonresonant. 

ILLUSTRATIVE EXAMPLE 

A base-excited spring-mass system is 
subjected to en acceleration input with 
maximum spectral density of 1.0 g^/cps and 
a spectrum shape as shown in Figure 9- The 
system has a 'J 5 cps natural frequency and a 
damping ratio of Q  » .05- The problem is to 
find tne mean square acceleration response. 

Bogin by dividing the excitation into 
regions vithin which the spectral density is 
a straight line on a log-log plot. The 
total rneai' square response will then oe the 
sum of the contributions of the individual 
regions. Three regions are required for this 
problem. They are designated I, II, and III 
in Figure 9- The slopes of the three regions 
are 12; 0, and -12 db/octave corresponding 
to b values of k,  0, and -k  (from equation 
18). From Table I the appropriate transfer 
function is seen to be fU. The mean square 
response can be expressed, with the use of 
(23), as 
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Figure 9 Excitation Spectral Density for Illustrative Example 
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Since k£    = .01 and the term multiplied by 
kQ2  is of the order of the first term in 
brackets in the range of interest ^ee 
the general behavior shown in Figure ?), 
the following approximation is v»lid: 

5   1.11 
i\ *'K   %)        •   Iu(l-ll) - lk (.1*5) 

n 

The normalized frequencieE -»re 

na = soAj « .if.V5 

c^ - 50A5 = 1.11 

n„ = 100/1*5 »2.22 

nd - 250As - 5-56 

2.22 
da + kf *J *   I„(2.2£) - I„ (1.11) 

1.11 

P   5-55 
[I4 * ^ I J    A I t(5.5e)- I (a.88) 

2.22   "H      ** 

From equation (19) the spectral densities 
at 0 = 1 are 

oi °oir 50; 
&* .656 s oil 

SoIII - SoII <jfe>"* * 2^-5 B0I1 
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•W^MPtäf^1 l*jgjm***fr= =* 

The mean square response becomes 

<«*> i ^2Sij-656[Ilf (1,U).I^(.W5)] 

+ I0(2.22) -I0(I.II; 

+ 2U.5[I^(5.56)-I4(2.22)]j 

From Figure 8: 

IU(1.U) - -78 

I^(-W*5) -0 

From Figure h 

I0 (2.22) - 1.00 

Io (1.11) - .90 

The series approximation of equation (^3) 
can be used for region lilt 

-2.5 x 10 -6 

j  ^(2.22) - M-0?} Ra-22?'5 + StSJ^Sil' 

, 3(2.22)'9"| 

- -3.20 x 10 

(I.v can e^eo be found by using the re- 
cursion relations of Table II, but the serie3 
approximation is much simpler when applicable). 

The mean square response is 

<&, m üüjL°S [.656(.78-0) + (1.00-.90) 

+ 2U.5 (-.025 + 3-20) IQ"**] 

.619 
Hu S n oil 

The contribution from region III is seen to 
be negligible. This could have been in- 
ferred at toe outset, but the calculations 
were carried through in order to demonstrate 
the approach- It is of interest to compare 
this result with that obtained by using a 

white noite approximation. The white noise 
result is given by (2k)  as 

<X%N 2£* u ♦ «*8> 

.661* *
ünSoII 
K 

Thus, the error in uclng a white noise approx- 
imation in this case is only 7-3#. 

The problem is completed by converting 
the excitation spectral density into approp- 
riate units and substituting into the above 
result: 

oil     cps  2n rad/sec 

<x2> - .619 ^2S 

(386H in/sec*) 2x2 

6.5U x 107 (in/sec2)2 = U39 g2 

The rms acceleration is 

«rms ' 20-9 « 

CONCISIONS 

A method has been developed for eval- 
uating the response of linear single-degree- 
of-freedom systems to bands of random ex- 
citation. Any Integral db/octave variation 
in level jiay exist within the excitation 
band, and no restrictions are made on the 
amount of damping in the vibrating system. 
Exact analytical expressions are given for 
computing the response directly for slopes 
ranging from -2k to +36 db/octave. The 
basic functions required for computations 
are presented graphically for the ranqe of 
greatest interest, and approximate ex res- 
slons are given to facilitate the calculations 
in many practical cases. 
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. 

PREDICTION OF STRESS AND FATIGUE LIFE OF 

ACOUSTICALLY-EXCITED AIRCRAFT STRUCTURES* 

Noe Areas 

Grumman Aircraft Engineering Corporation 

Bethpage, New York 

Recently, a technique for predicting the R.M.S. stress or 
aircraft structure excited by high intensity noise was 
proposed by Clarkson (3). The agreement he obtained in 
comparing predicted and measured stresses appears quite 
promising, particularly in view of the relatively simple 
form of his results. In this paper, 
extended in several areas: 

CXarkscn's work is 

1. Modal functions which provide improved 
boundary conditions are used. 

2. Further data is included in the comparison 
of theory and experiment. 

3. Statistical confidence limits are obtained 
for t'.ie predicted stresses. 

h.    Fatigue life predictions are made and the 
results are compared with experimental 
data. 

INTRODUCTICN 

In recent years, the need has existed 
for a method to predict stress levels and 
fatigue life of aircraft structure excited 
by high intensity noise. The most widely 
used technique has been a series of design 
nomographs developed by Douglas under con- 
tract to the Air Force (l). Although 
these curves were, and still are, quite 
useful, they have been found to be relatively 
conservative »nd limited in the types of 
fltructure considered. General analytical 
solutions are also available (2), but these 
are too complex to be used in the early 
design stage of an aircraft. 

Recently, Clarkson (3) proposed a 
simplified technique which could be used in 
the initial design phase, and which could be 
applied to various type« of construction 
(rudders, stabilizers, fuselage panels, and 
ethers). The method proposed has been shown 
by comparison with experiment to provide 
estimates of overall R.M.S- stresses which 
lie generally within a factor of two of the 
actual values. This appears to be relative- 
ly good agreement In view of the simplif- 
ications made. 

In this study, modifications are made 
to Clarkson's technique In order te improve 
the boundary conditions that are uued in 
the analysis. The resulting frequency and 
stress predictions derived from this mod- 
ified method are compared to Clarkson1s 
version, and to a similar technique pro- 
posed by Ballentine (U). In addition, 
predictions made by using this revised 
technique are compared to actual stress 
data that has been accumulated from meas- 
urements made at Grumman and data presented 
in (3) and (U). 

Predictions of the time to failure of 
some structure are also compared with actual 
test data; however, the limited amount of 
data available restricts the conclusions 
that can be made regarding the accuracy of 
these results. 

+Pape? not presented at Symposium. 
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CIABKSON METHOD 

The method of stress prediction proposed 
in (3) assumes that the critical stresu excited 
in the aircraft structure is due primarily to 
response in » single mode of vibration. The 
assumption is also made that this mode is 
excited by a uniform perfectly correlated 
random pressure field. Under these assump- 
tions the R.M.S. stress can be written as 

S. [* tas = | *T  *n G
P

(
V] 

k 
(i) 

where 

S_._ is the' root mean square stress 

C is the critical damping ratio 

fp is the fundamental resonant 
frequency of vibration 

Op(fn) i8 tne spectral density of 
the pressure at the fundamental 
resonant frequency 

S0 is the stress at the location 
of interest per unit static 
pressure 

The value of the damping ratio for built-up 
aluminum structure is generally in the range 
of .01 to .02; darkson uses a value of .017- 
The spectral density of the pressure can be 
obtained from the octave band level. The 
required expression >: 

0p(fR) - (.0002)' [io-u] (2) 

where 

A - SpL - 10 Log (fg-^) 

Spr i* the octave band .e\el in dB 
or'the octave that conta'.ns the 
fundamental resonance. 

f_-fj_ is the bandwidth of *he octave 

Op(i'p) £s the spectral density in 

Sqs. (1) and (2) can be used to predict 
the stress response or one-sided surfaces 
such as ;*lat plates or the panels of an a4r- 
craft fufielage due to incident accaetic 
energy. For structure constructed of two 
itklns separated by ribs with significant 
«xcltatlon on o.ie skin only, (eg. horizontal 
stabiliser or elevator) a lower stress re- 
sults. This occurs because the ribs and 
unexplted skin dialn energy from the excited 
structure. A value of about one third of 
that obtained by the above equations is re- 
commendsd by Clarkaon (3)- If a structure 

ha» two ekins and is excited on both sides 
(e.g. a rudder) the stress will be higher 
than the value predicted for one sided ex- 
citation. An increase of 3 dB seems 
appropriate, bas^d on Clarkaon (3) and other 
exper'nental data (5). Thu» the resulting 
stress will be about 1.4/3 of that obtained 
from Eq. (l), 

The type of construction consideied in 
(3) consists of aluminum skin-stringer panels 
whose ends are attacheJ to frames. Two cases 
are analyzed: the first assumes that both 
the stringers and frames are infinitely stiff, 
and for this caee the panels behave as flat 
plates with clamped boundaries; the second 
assumes the frames are infinitely stiff, but 
the stringers are flexible and undergo bend- 
ing. The value of So and fp required for 
Eq. (1) will depend on which of these cases 
is considered. 

To obtain fp for the fully fixed con- 
dition, ehe fundamental resonant frequency 
of a rectangular plate with clamped boundaries 
is ised. The value of S0 is obtained by con- 
sidering the stress that would result due to 
static deflection arising from a uniform 
constant pressure field acting on the plate. 
The procedure for obtaining S0 and fp when 
stringer bending occurs is to assume a fund- 
amental mode shape and then use energy 
equations to obtain expressions for the de- 
sired parameters. 

MODIFIED METHOD 

In using Ref. (3) a problem arises when 
the stiffness of the stringer is allowed to 
increase. In that case the stress parameter 
predicted by the equations based on the fully 
fixed case will differ from that predicted 
by the expressions that allow boundary de- 
flection. By assuming a more complex mode 
shape, this situation can be corrected. 

The mode shape used in this analysis is 
made up of the sum of two expressions. The 
firsx term accounts for panel deformation. 
It is taken as the product of the mode nhapes 
of a clamped-clumped beam in the x and y 
directions and Is given by 

W. « [coshex-cosex-M(sinh0x-sin8x)] 

[ccshliy-cosT^-M(sinh'ny-sin'ny)] (3) 

where T), 0, and M are constants dependent on 
the mode of vltration being considered. This 
mode shape differs from that of Clarkaon, 
who used the static deflection shape of a 
plate under uniform pressure. The second 
term account- for the additional deflection 
due to stringer flexibility. It consists of 
the static deformation shape of a clamped - 
clamped beam under a uniform load and is 
expressed by 
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»*-(9*-«(9s*(9 w 
D - Bt3/l2(l-v2) 

u)_ ■ 2rcf« 

(U) 

(12) 

where 

a 1B the been length. 

The entire expression consists of the sum of 
both terms or 

W = kt^ + W (5) 

where k is a constant dependent on the rel- 
ative stiffness of the plate and supporting 
stringer- The coordinate system used is 
shown in Pig. 1. 

An energy approach as outlined in 
Ref. (3) can be used to obtain an expression 
for the fundamental resonant frequency. By 
equating the expression for the maximum 
kinetic energy to the maximum strain energy 
one obtains 

(cx + c2)/(c3 + ck) (6) 

where 

Cx  - W^a^Sg ♦ £3) ♦ ^| (bD + EI) 

c2 - 301.9^- + 33.18 *
b- 

C - .0016 a(pB+ptb) + .996 JC2 abpt 

Q,. = .066 ptkba 

and 

p is the mass density of the plate 

E is the elastic modulus 

I is the cross-sectional moment of 
inertia of the stringer 

v is Poisson's ratio 

The constant k must now be evaluated. The 
correct value far k is that which minimizes 
the resonant frequency. Differentiating 
the frequency expression with respeot to 
k and setting the result equal tc zero 
results ir. the following quadratic equation. 

mK2 + nK+p (13) 

where 

a - ptDa(33-l g2 ♦ -0432 £3 + ^2) (Ik) 

(T). 
n . Da(pB+ptb)(1.585(f3 ♦ £3) + $■) 

(8) -1.393 ^ (bD + II)          (15) 

P - J2 (.0528(^3-.0531ptKT)        (16) 

(9) and 

(1ft) 

PB is the mass per unit length of the 
stringer. 

The stringers are 
located at 
x » 0 0«yi a  x » b 

Oiyia 

Fig. 1 Coordinate System 
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Solution of this equation gives the appro- 
priate value of k for any particular problem. 

The energy approach can also be used 
to obtain expressions for the stress param- 
eter S0- This is done by equating the vork 
done by the static pressure to the maximum 
strain energy of the structure. The re- 
sulting equations are 

Edge  x » 0, y - a/2, z » t/2 

■^ (39-88 j. - & 

Center x » b/2, y « a/2, z 
0, 

S_ 
*2 '     "b" 

t/2 

■»i <*•**&♦ ** 

End   x - b/2, y ■ 0, z ■ t/2 

Et °1 
a Go 

(39.88k + 1.122) 

where 

0, - 
ab 
6ÖD + 

jU^kab 

(17) 

Ö (18) 

(19) 

(20) 

2.19(105)^ (H&k  + •«*$   >   (22) 

where a, b, and t are expressed In inch 
units. The corresponding stress parameter 
expressions are 

Center 

2 2 
Sx - --5177 (|) (1 + .33 (|) )/B   (23) 

Edge 

3X - -8519 (£) /B 

where 

B = 
4 2 

1.^2 + l.U2(|) + .8737(|) 

(24) 

(25) 

Comparisons between predictions from 
Eqs. (22) through (25) and curves presented 
in Ref. (3) are shown In Figs. I,  6, and J. 
Also shown are predicted results obtained 
from equations derived by Ballentlne (4). 
His expressions were obtained by using 

W = (1-co.äS) (1-cos2^ ) (26) 

02 - 249-2 k
2 (i ♦ 5. ) ♦ 4 (b+f) 

3  .3' 

kb 
+150.95 JJ: ♦ 16-59 *? (21) 

It is of interest to compare the re- 
sults of the modified approach with those of 
Ref. (3). Eqs. (6) through (21) were solved 
for a range of parameters using a digital 
computer program. Fig. 2 presents compar- 
isons of frequency predictions usir.g the 
two methods. The results are seen to be 
In close agreement. 

The major difference between the two 
methods lies In the prediction of the stress 
parameter 8. The stress parameter for the 
modified version will approach the fully 
fixed value as the stringer stiffness in- 
creases. The results of Ref. (3; ,*.o not 
show -„til« effect. Figs. 3 and *•■ present 
plots of the variation in stress parameter 
with increasing stringer etiffr'ss. 

Under conditions where the assumption 
that all the boundaries remain fully fixed 
is Justifiable, Eqs- (6.) through (21) can 
be simplified by letting KI approach Infinity. 
The expression for the fundamental resonant 
frequency for the fully fixed case then 
becomes 

to represent the fundamental mode shape of a 
clamped-clamped plate. All three expressions 
yield similar results for the resonant fre- 
quency; however, significant differences 
occnr in the prediction of the stress param- 
eter. These differences are due to the 
different mode shapes used in the three 
analyses. The mode shape used herein ap^jears 
to provide the best approximation of the 
three; for large aspect ratios it reduces to 
the correct shape for one dimensional bend- 
ing. 

COMPARISON WITH TEST RESULTS 

Once the fundamental resc.iant frequency 
and stress parameter have be»n determined, 
Eq. (1) along with the required multiplying 
factor can be used to predict the R.M.S. 
stress for a known excitation. Such cal- 
culations have been performed for a large 
number of structural configurations for 
which test data is available. Three sets 
of test data were used: 

1) Grumman data obtained from fatigue 
tests and field measurements 

2) Data for various ali-craft structures 
presented by Clarkson (3) 

3) Laboratory c\ata on simple stiffened 
panels reported by Ballentlne (4). 
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Fig.  2   Fundamental Resonant Frequency vs. Thickness for a 14" by 2" Aluminum Panel for Three 

Stringer Moments of Inertia 

1500 

1400 ■ 

1300 ■ 

ä 1000 

n 

I     900 

800 

700 

600 

Flexible boundary 

Uilng Eq.  17 

Uilng method of Ref. (3) 

1 1 1 1 1— 

.1U .18 .22 06 .86 

Fig. 3 Edge Stress Parameter vs. the Stringer Moment of Inertia for a 14" by 2" Aluminum Panel 

ol .OUO" Thickness 

91 



1100 

1000 ■ 

Uiing S5.  »8 

— — — Uiing method oi Kef. (3) 

.02 .06 .10 

I In 

1 1 r— 

lit .18 
It 

.22 .26 .30 

Fig.  k    Center Stress Parameter vs. the Stringer Moment of Inertia for a .lit" by 2" Aluminum Panel 
of .01*0" Thickness 

fR(|
2)lO-5 

.entine 

Eq.  22 

1 2 3 It 

Aspect Ratio a/b 

Fig.  5    Fundamental Resonant Frequency of a Fully Fixed Aluminum Plate vs. the Aspect Ratio 
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Fig. 7 Center Stress Parameter of a Fully Fixeä Aluminum Plate vs. the Aspect Ratio 
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Fig. 6 shows a plot of the predicted vs. 
measured stress for all these collections. 
The prediction method reported herein was 
used to obtain the calculated values. A 
band showing a factor of two variation is 
aloo shown in the plot. Most of the data 
?.s seen to fall within this range. 

In order to obtain further insight 
into the accuracy of the prediction method, 
a statistical analysis or the results was 
carried out for the data shown in Fig. 8. 
The isean and standard deviation of the ratios 
of Measured to predicted stresses were de- 
termined for all three collections, and the 
results are presented in Table 1. In 
addition, probability distribution functions, 

based on an aseumed normal density, have 
been plotted and are shown in Fig. 9. To 
use the results of this statistical analysis, 
a multiplier is selected baeed on the con- 
fidence desired  The predicted results are 
then multiplied oy this factor. 

In looking at Fig. 9 it is apparent 
that the Orumman data showed thi poorest 
agreement of the three. Thl3 iB probably 
due to the fact tnat this collection in- 
cludes specimens with flexible boundary 
conditions; but, the others do not. It is 
also apparent that the Ballentlne data 
showed the best agreement. This is prob- 
ably due to severaJ factors: 
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■ ■       i      i    i    i 

3000 5O00 10000 

Measured K-M-S. Stress Lb/in.' 

Fig. 8   Measured vs. Predicted Stress for ail Three Collections of Data 
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'.ÜABLE 1 

Meun and Standard Deviation of the «tetio of the Measured to Predicted 8tresB 

Source of 
Measured 

Data 

Sample 
Size 

Mean Standard 
Deviation 

Boundary 
Conditiona 

Type Of 
Structure 

Grumman 38 1073 .886 Fully Fixed and 
Stringer Deflec- 
tion 

Collection o.f Rudder, 
Fuselage, Vertical 
Fin,  Elevator, and 
Bonded-doubler 
Panels. 

Clarkson 
(3) 

59 • 96? • 530 Fully Fixed Collection of Rudder, 
Fuselage, Elevator, 
and Stabilizer Panels. 

Ballentine 
CO 

28 ■ 923 .296 Fully Fixed Single Skin 
Rib-Stringer Panels. 

100 

A 

co a 

m d 
fa v 

0) 

—————  Grumman Meas. 

—— - ——   Clarkson Meas. 

— — BaJlentine Meas. 

Fig- 9    Probability Distributions of the Ratio of M-.-sured to Predicted Stress 



1. Ballentine's test panels shoved primarily 
Single mode response, whereas much of 
the Grumman data shoved mult1-mode 
response. 

2. The spectrum level was carefully con- 
trolled in Ballentine's tests, whereas 
the spectrum level had to be calculated 
from octave bend measurements for 
other data. 

3- Bullentine tested single skin rlc- 
strlnger panels; the other data con- 
sists of tests conducted on a greater 
variety of more complex structure. 

FATICSUE LIFE PREDICTION 

Life predictions vere determined for 
four-test specimens which had experienced 
fatigue failures due to acoustic loading. 
Stresses and frequencies calculated by 
using the equations presented in this 
study, and S-K curves available in (.h) 
were used to determine the fatigue life. 
The calculated and actual values are shown 
in Table 2. Examination of the results 

shows that the prediction of fatigue life 
is by no means accurate. At this point, 
the best one can hope for is that evidence 
of future problems can be detected in the 
ewly design phase. This would have been 
true in the four cases given in Table 2. 

CONCLUSIONS 

A technique which oan provide reason- 
able estimate;? of stress and time to 
failure of aircraft structure excited by 
high Intensity noise is presented. A com- 
parison between predictions made on actual 
structure and test data has been used to 
obtain statistical information on the pre- 
diction method. This information provides 
the designer with some much needed data 
for designing safety factors into the 
aircraft structure without being ofUvmely 
conservative. 

TtiP accuracy obtained in the stress 
predictions is ; zther turprising in view 
of the simplifi.catio.is involved in the 
theory. However, to go beyond a simple 
analysis of this form and include some of 

TABLE 2 

Comparison of Predicted Fatigue Life 
With Actual ValueB 

Type 
Of 
Specimen 

Predicted 
Resonant 
Freq. 

KB 

♦Meas. 
Resonant 
Freq. 

Hz 

Predicted 
R.M.S. 
Stress, 

Lb/ln.^ 

Meas. 
R.M.S. 
Stress 

Lb/in.2 

Predicted 
Life 
-95* 

Conf. Level 
Hrs. 

Predicted 
Life 
Mean 

Curve 
Hrs. 

Actual 
Time To 
Failure 

Hrs. 

Rudder 265 37'J 6110 5000 1.2 5.4 8 

Rudder 353 350 3970 3200 6.3 28A 8 

Horizontal 
St*blli*er 

399 500 30to 2900 21 91*. 5 12 

Vertical 
Fin 

221* - 1*170 - 8.7 39.2 1*0 

*Where multi-modal response occurred, a mean resonant frequency v.as estimated 
and used for the measured value. 
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the effects that were neglected (multi- 
mode response, non-uniform pressure field) 
would lead to more involved calculations. 
The results might also be of small benefit 
for design purposes. 

good collection of life and stress data on 
identical panels tested in a similar noise 
environment would be helpful in establish- 
ing an ultimate goal that could be achieved 
by analytical procedures. 

A great deal of additional informativ 
on specimens that have undergone failure 
is required to check out the accuracy of 
fatigue life predictions. In addition, a 
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VIBRATION ANALYSIS OF CO..?LEX STRUCTURAL SYSTEMS BY 

MODAL SUBSTITUTION 
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An Improved analytical method for the vibration analytic of complex struc- 
tural systems Is presented. The structure Is divided Into several subsys- 
tems, each of which is represented by its normal modes of vibration. The 
vibration modes of the complete system are obtained by either partial, or 
full modal coupling of the subsystem modes.  The salient feature of the 
present method Is that the resulting eigenvalue problem Is kept relatively 
small by introducing the subsystem modes into the analysis in sequential 
groups, rather than simultaneously as is usi'al in conventional vibration 
analyses. The system modes thus obtained are convergent to the modes ob- 
tained through conventional solution of the complete eigenvalue problem. 
A modal error contribution algorithm is developed to optimize the sequence 
of introduction of the subsystem modes into the analysis. A simple ex- 
ample Is presented which shows the rapid convergence of the method. 

INTRODUCTION 

Dynamic load and stability analyses of com- 
plex, flexible structures require the applica- 
tion of extensive mathematical models, incorpo- 
rating a large number of discrete structural 
degrees of freedom. Present practice, eapEclal- 
ly in the aerospace industry, is to solve for 
the vibration modes of the structure first, and 
then to utilize a 'nodal," rather than a dis- 
crete-element mathematical simulation in tha 
load and stability analyses. The displacements 
and loads then may be obtained by transforma- 
tions from the modal coordinates to the discrete 
coordinates. The econooy of this approach for 
undamped structures that can be represented by 
second-order linear differential equations is 
very inviting. The stiongly coupled discrete 
systen:, whose lnertlal and stiffness properties 
are described In the form of large matrices, Is 
replaced by an uncoupled system, with diagonal 
mass and stiffness matrices. The simplicity of 
the approach is retained for damped systems when 
the damping ma'rlx in modal coordinates remains 
diagonal. 

The computation of the vibration modes ot 
an undamped structural system with n degrees of 
freedom requires the solution of a real eigen- 
value problem of the order n. In the case of 
son* complex structures, such as aircraft with 

external stores, or coupled space booster-pay- 
load systems, several hundred degrees of freedom 
may be necessary for adequate description of the 
structure. The direct solution of eigenvalue 
problems of this size presents considerable com- 
putational difficulty. 

The current trend in computing the normal 
vibration mode.« of complex structures Involves 
"modal coupling" of the vibration modes ot  con- 
veniently defined subsystems. The subsystem 
modes are computed by utilising the discrete- 
element analytical model available for nach sub- 
system. The system model is then synthesized 
from the modal representations of several sub- 
systems, rather than from a large number of dis 
crete elements. Wien all available subsystem 
modes are utilized (full modal coupling), the 
number of degrees of freedom Is not redjcel in 
comparison with the discrete-element model. 
However, highly accurate system modes can be 
computed by utilizing only a relatively small 
number of modes from each subsystem, resulting 
in a reduced eigenvalue problem. This method 
(partial nodal coupling) was first presented by 
Hunn [1, 2] for the frae vibration analysis of 
aircraft. The method of partial modal coupling 
waa defined in a systematic matrix presentation 
by Gladwell (3), and was extended to multiply 
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connected continuous  systems by Hurty   [4,   5]. 
Hutty   (61   is also credited by  the development of 
an error algorithm that can determine  the dif- 
ference between  the eigenvalue of a mode obtained 
by partial roodil coupling and  the eigenvalue 
that  Mould be obtained by  full modal  coupling. 

A problem th.it  is  inherent  to  the  partial 
roodil  coupling method  liej  In  the  selection of 
subsystem modes  for  inclusion  in the system 
analysis.    When only a few of  the available 
modes are used,   the resulting eigenvalue  problem 
is small; however,  the accuracy of the results 
may suffer.    Using too many subsystem modes can 
result  in  the  loss of computational economy  that 
it one of the inviting features of the method. 
Generally,  semi-empirical  criteria,  such as se- 
lection of subsystem modes below a specified 
natural  frequency are employed in the attempt to 
clique  the  formulation of  tt.e  system equations. 

The method of vibration analysis presented 
here  is an extension of the partial modal coupl- 
ing concept.    In a manner analogous to partial 
nodal coupling,  the homogeneous equations of mo- 
tion arc  formulated by using some of the avail- 
able subsystem modes.    The resulting eigenvalue 
problem It solved for the approximate system 
modes.    Some of these system modes, defined as 
the "object modes," are retained in the succeed- 
ing step* of the analysis.    The approximate sys- 
tem modes not included In the group of object 
modes  (the "deleted modes") are temporarily dis- 
carded.    The eigenvalue error of the object modes 
is then deflnei aa the difference between their 
computed eigenvalues and the eigenvalues of the 
corresponding system modes which could be ob- 
tained by full modal coupling.    The objective is 
to "improve" the object modes until their eigen- 
value errors decrease below a predetermined al- 
lowable error. 

Following the initial step described above, 
a new group of thus far unused subsystem modes 
(the  "replacement modes") is introduced Into the 
system eigenvalue problem, replacing the deleted 
■odes.    The selection of the replacement modes 
la baaed on a modal eigenvalue error contribu- 
tion algorithm.    This algorithm determines  the 
approximate contribution of each unused subsys- 
tem mode to the eigenvalue error of each object 
mode Just computed.    Since tho eigenvalue error 
la caused by the absence of the unused subsystem 
modes,  the logicil candidates for Inclusion in 
the group of replacement modes are the modes with 
the largest eigenvalue error contribution. 

The new eigenvalue problem, defined by the 
object modes and the replacement modes  is now 
solved.    The computation cycle described above 
continues until the object modes are  improved to 
a desired level of accuracy.    At this point, a 
new group of object mode« may be selected, or 
the analysis may be terminated.    It must be noted 
that all of the available subsystem modes may be 
used up as replacement modes before t itisfactory 
improvement of the object modes  Is achieved.    In 
thl* case, groups of the previously deleted sys- 

tem modes may be  relntroduced  into  the analysis. 
The  process described    above  is  convsrgent,  and 
when the  improved object modes are continually 
replaced by new object mode groups,   it will re- 
sult  in all of  the system modes   that could have 
been obta'.ned by full modal coupling.    Whil« the 
method  thus may be used  to solve  the  full modal 
coupling equacLons  through successive small 
eigenvalue solutions, no economy of solution is 
claimed for  its  application  in this manner. 
Its main applicability  lies  in the are'! of 
partial irodal  coupling,  when only some of  the 
system modes are desired.    It will obtain these 
modes  in t> rapidly convergent process,   to any 
desired degree of accuracy. 

ANALYTICAL DEVELOPMENT 

The system equations of motion for  full 
modal coupling can be written in matrix nota- 
tion: 

tl]'[m][Tl{q-} +   [T]'[k][T]jS|   -   )j| (1) 

wnere   [m]  and   [k]  denote  the dlsccete-element 
mass and stiffness matrices, respectively.    The 
vector of discrete-coordinate displacements   |x| 
is related  to  the modal coordinates   jqj   through 
the modal  coupling transformation matrix   [T]. 
The transformation can be partitioned as: 

W-[Tc|Tn] 

In general, the sub-matr "N 

(2) 

contains all 

of the subsystem norm."! mode shape vectors, one 
subsystem mode  In each  column.    The columns of 
the sub-matrix   [T 1   contain the connection trans- 

formations, which are a set of independent vec- 
tors forcing compatible displacements of the sub- 
systems.    A detailed derivation of  the connec- 
tion transformations and  the modal coupling 
transformation matrix Is presented in Ref.   (7]. 

The stiffness and mass matrices  formed by 
the  triple matrix product in Equ.  (1) can be 
partitioned  In accord with Equ.   (2): 

r 

and 

iTl'fmllT]  -  [M]  - 

[li'lkHT]   -   [K] 

M '  M 
cc i en 

M  I M 
nc I nn 

K  i K 
cc !_ en 

K  . K 
nc  an 

(3) 

(«) 

and for energy-normalized subsystem modes, 

K  - [-w8..] (the diagonal of the 
nn        natural frequencies 

squared), and 

M  - f*!-.] 'the identity matrix) 

(5) 
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When the subsystem modes are de fired as 
fixed-constraint normal modes [7], 

Pen] * ft"] ■ 10] 

A special  cate of modal  coupling   is   inertlal 
coupling,  where  ["K.   "j   is diagonal or  zero and 

!"K   1   and fK   "1 
I   enj L ncJ 

(6) 

are zero. 

The equations of motion for partial modal 
coupling are  similar  to Equ.   (1).    The  subraatrlx 
Pr   |  is  further partitioned  into  "retained" and 

"unused" subsystem normal  modes   (indices  nr and 
nu,  respectively): 

[Tn]-[TnriTnu] 

The  partial modfcl  coupling  transformation ma- 
trix  pi 1  will only  include  the  partition   JT   "1 , 

and  the submatrix   ft "j.     Pr 1   must be   included 

in its entirety,  since  it contains  the  compati- 
bility equations  for all of  the  subsystems.    The 
modaily coupled system mass  and stiffness ma- 
trices are  formed exactly as  those for  full modal 
coupling  (with  the subscript o denoting partial 
modal coupling): 

[\]"['rc!Tnj-W[Tc!Tnr]"N',mlN 

nd ( 

[Ko]"[TcjTnr]'(kl[Tc!Tnr]"[To]   !k)fo] 

and (8) 

In vibration analyses by partial modal coupl- 
ing,   the system equations of motion analogous  to 
(1),  but with  the mass and stiffness matrices 
shown  in  (8),  are  solved for  the mode shapes 
[VI ,  and the  frequencies  |fi | •    The matrix   Pp 1 

is  the matrix of eigenvectors  for  the  character- 
istic value   (eigenvalue)  problem associated with 
fhe equations of motion, and  the diagonal matrix 
^ß2]    (or  the diagonal matrix    PfT2| ,  depend- 

ing on the method of solution)  is  the matrix of 
the eigenvalues.    The elements of ftp "|   may be 

regarded as  participation factors  for  the vec- 
tors   in  |"T 1   in each of  the  system mode  shapes. 

The mode shapes  in the discrete  coordinates may 
be obtained by the  transformation: 

N • MM (9) 

Equations (7,8,9) are also used in the 
initial cycle of modal substitution analysis. 
The analysis, however, is not terminated after 
the modes [""Tare obtained. Instead, [*X "j is 

now partitioned into the object modes (subscript 
oO(), and the deleted modes (subscript oß): 

N-P oO \>«1 (10) 

During subsequent cycles of  the analysis,   the 
number of object modes In\ will  remain constant. 

The  number of deleted modes  (N.l,  and  the number 

of  degrees of  freedom  in  the modaily coupled Sys- 
tem moiiei   (N ■ K    + H.I   may vary  from cycle  to 

cycle,  c.t   they may &cay constant. 

Following  the partitioning of [x 1 ,   the mode«) 

|X   1   are  replaced by a new group of subsystem 

des   Pr    ,1 ,  selected  from the  unused  subsystem I   nrl] 
des   iT    j .    the remaining,  still unused columns 

are tenoted as   Pr    ,1 .    The new modal 

mod 

of  \T 
I 5' 

coupling tra-s.cormai.ion matrix is assembled for 
the  text computational  cycle' 

[Ti [Xoa| Tnrl] (H) 

The modaily coupled  system mass and stiffness 
matrices   [Mi)   and   (Kj.1  are  formed  in a manner 
analogous  to Equations   (8).     Since  the vectors 
in fx   "1  are orthogonal  with  respect  to  the dis- 

crete-coord irate mass  and stiffness matrices, 
[Mil  and   [Kj  will  take  the following  form: 

I"*'   -[XoajTnrl]'
[m][XoaiTnrl] 

arid 

[K,) fx      ! T    ."l'lklfx      ' T    j] |_ oQ j    nrlj       'I   oa j   nrll 

M       ! 
^ 1 

MOnl 

Mnai[ 
NI 

*s 

(12) 

~n2 

00! 1 Kc*l 

KnQl 1    nrl^ 

where  it h.?s been assumed  that  the modes Px   | 

are energy-normalized. For fixpd-constraint sub- 
system modes the partition f^n , and it» trans- 

pose [K^ri  become null matrices,  thur,  in all 

subsequent steps of modal  substitution  the coupl- 
ing remains  purely Inertlal.    The  symbol  ß     de- 

notes  the natural  frequencies of  the system modes 
jX   1,  and u        denotes  the uatural  frequencies 

of  the  subsystem modes  |"T    ."I .    The solution of 

the eigenvalue problem resulting from  the  system 
equations of motion written for  the mats matrix 
[Mi]  and stiffness matrix  [Kj.] will result in the 
"modal" mode shapes   |<Pi), which may be  trans- 
formed  into the discrete-coordinate mode shapes 
[Xi)  through the  transformation matrix  [Tx). 
[Xjl  is then partitioned into the retained modes 
(XXQ)  and  the deleted modes   [Xj£].    The next 
cycle of modal  substitution  is  initiated by  the 
introduction of  the subsystem modes Pi"      1 from 

L nr2J 
the unused modes   IT     "I   into  the modal  coupling 

transformation matrix   (T2).    This process contin- 
ues until  the eigenvalue error of the object 
modes ("x.JI   becomes  less  than the  predetermined 

allowable eigenvalue error.    The replacement 
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node*  Introduced  j^nt 
formatlon matrix  II 

o the modal coupling  trans- 
it ,|  do not necessarily have  to 

belong  to  the  set of unused mod»s   IT     .    ,.] . 

Insteau,   some of  the  previously deleted system 
modes pCI   may be re -Introduced as  replacement 

modes.     Indeed,  when all of  the unused  subsystem 
modes   JT   1  have been  Introduced  Into  the  analy- 

sis,   the substitution cycles must continue wit'. 
reintroductlon of  the modes Txl .    The  stiffness 

and raass matrices resulting  from the reintroduc- 
tlon of  the modes | X  J   are  similar  to  those  shown 

in Equ.   (12).    The  lower right-hand partitions, 
however, may contain off-diagonal  elements,  as 
only those vectors of DO computed in the same 

substitution cycle are orthorgonal  through the 
ma?a and stiffness matrices.    The dec I. Ion as   to 
which modes Co Introduce  into the next cycle as 
replacement modes can be automatized through a 
modal selection algorithm,    This  algorithm is a 
logical extension of  the computation of  the ap- 
proximate eigenvalue error for the object modes. 

EK'CA ANALYSIS AND MODAL SELECTION ALGORITHM 

The homogeneous equations of motion for full 
modal coupling can be partitioned in the follow- 
ing form, when written for a single system mode: 

■• "lu" 9 r 
SI2 

j 

\. I u . »» 
j 

M. iu 

ui I 

9 

(13) 

J 

In Equ.  (13), [^"J and ["M.1 denote the stiff- 

ness and mass matrices respectively, for partial 
modal coupling In modal substitution cycle 1. 
The remaining partitions correspond to the unused 
modes, and their coupling terms with the retained 
modes.  0s is the exact eigenvalue  That can be ob- 

tained from solving the complete system equations, 
and  k> 1. and l<t I are partitions of the exact 

energy•normalized eigenvector,  for system mode j. 

An equation analogous to (13) can be written 
for partial model coupling in modal substitution 
cycle 1: 

where ß?.  Is an approximate system eigenvalue 

for mode J, and <9.|.  Is an approximate system 

eigenvector, corresponding to  fo >.  in the exact 

system mode.    0?. and IV,>. ere solutions of the 

partial system eigenvalue problem resulting from 
the equation of motion In cycle 1. 

The eigenvalue   error 6fl? for the mode J is 
no* defined: -■ 

In order  to compute  o'^ for   the modes  result- 

ing  fr-.i partial  modal  coupling,   the vector  1$ \ 

is expressed as a  function of   fa> \   ,  making use 

of  the  lower  partitions of  Equ.   (13)J 

(16) 

The upper partitions oi (13), then can be arranged 
in the form: 

MWi"^[N + NjJWj     (17) 

where  the  incremental   mass  natrlx  [N  ]     is de- 
fined as: '  yj 

Wi-^N-N][N-^N]" 
[°S M - N] 

Equation  (16)  is now premultiplied by  the 
transpose of i^A.»  an<i rearranged: 

•.VJJ[M - % N]{WJ - WJ} 

(19) 

Equation (14) Indicates that the left side 
of (19) is identically zero. The error vector 

W' is now defined: 

WJ ■ Ni - N' (20) 

and noting that  \V,\.     Is an energy-normalized 

mode  shape vector,   the eigenvalue error  is ex- 
pressed from Equ.   (19): 

6J J l   •  L'Üj ["l]j   fr}7 
(21). 

Equation (21) is an exact expression for the 
eigenvalue error.  It assumes that the error vec- 
tor WJ Is known. For further derivation of 

the approximate error expression, the following 
initial assumptions are made; 

S"J « 0» 

Itohiw. 
(22a) 

(22b) 

»1 'I'"! (15) 
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and,   as   logical  extensions of   (22b): 

and 

L'iJj MJ   {f^ <^ l 

(22c) 

(22d) 

Equation (17) is also replaced by an approxi- 
mate expression.  Since the unused modes are 
either approximately or complete.y orthogonal 
through the discrete-coordinate nass and stiff- 
ness matrices, 

[N"Jr[N-^N][V^][M- ^4 
(23) 

where the notation i» is used to denote the 
u 

natural frequencies of the unused modes. Equa 
tlon (23) is the exact expression for [N.l, in 

the initial modal substitution cycle, when all 
of the unused modes are subsystem normal modes. 

Using the assumptions of Equations (22), and 
replacing fN 1 by fi? V in Equ. (21), the ap- 

proximate relative error measure is obtained: 

and the relative eigenvalue error is 

IF- 

K] 
(24) 

J (25) 

Equation   (24)   Is  further simplified when  the sub- 
system normal modes are  fixed-constraint modes, 
in which case   |K.  1 and   fk  .1  are  zero. 

I iuJ L ulJ 

In order to determine  the contribution of the 
individual unused modes  to  the  relative error, 
e.   is decomposed  into components e      associated 

J Jk 
with each of  the unused modes: 

k«u km ,       QE v 

LT 

(26); 

uJk   [U1 {^J (26) 

The  following notation  is  introduced  in Equ. 

u ■ number of unused modes 

[0]  - [[[»1   - £ Ik]] [tjj 

JT I    • mode  shape  of  the  k-th  unused 
'     / mode 

[T "j ■ matrix of mode  shapes   included 
-I     In  the partial  modal  coupling 

" natural  frequency of  the k-th uk unused moc'e 

For small values of  the eigenvalue error,  e 

is nearly equal   to  the approximate error  S     (25). 

Thus,  e       is  an approximation of the eigenvalue 
J k 

error   in   the   J-th  system mode,   due   to omission 
of  the k-th unused mode.     [E]   is now defined as 
the matrix of  the  coefficients e      for  the object. 

modes.    The   Introduction sequence of  the unused 
modes may be optimized  then in the  following 
manner:     let jw} be a weighting vector of N    ele- 

ments  proportional  to  the relative  Importance of 
the N    object modes.    The   introduction preference 

vector  {p}  is  defined as: 

W- w'W (27) 

Each element in |p| corresponds to one unused 
mode awaiting introduction into the problem In 
the next modal coupling cycle. The magnitude of 
the elements in iPI is a measure of significance 
of the corresponding mode for lmprovldlng the ob- 
ject modes. Thus, if the number of replacement 

modes is N  the K modes with the largest cor- 
P     ß   l I 

responding elements in \Pf  are selected for 
introduction. 

NUMERICAL EXAMPLE 

Application of the method is illustrated for 
a simply connected 11-degree of freedom system, 
subdivided into three subsystems (Figure 1). 
The eigenvalue solution was limited to five de- 
grees of freedom, and the lowest three system 
modes were selected as object modes. The value 
of k/m ■ 100/sec2 was assumed for the discrete 
parameters shown in Figure 1. The nine subsystem 
modes have the eigenvalues shown in Table 1. In 
addition, to the nine subsystem modes there are 
two connection vectors corresponding to displace- 
ment between Subsystems 1 and 2 (X15 and X21), 
and displacement between Subsystems 2 and 3 (x2/ 
and X31). 

Table 1. 

Subsystem Normal Mode Eig envalues 

Mode Subsystem 1 Subsystem 2 Subsystem 3 

1 3.675 71.IJ 20.83 

2 65,57 128.9 100.00 

3 1U.7 -- 179.2 

4 185.7 ... -- 

The  initial modal coupling analysis was  per- 
formed by solving a  5-dogre•> of  freedom eigen- 
value  problem.    The  5 degress of  freedom Included 
the two connection vectors and the first two 
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Table 2. 

Eigenvalues   Tjr  rhe Object Modes 

Mode Exact 

Modal Substitution 

Cycle I Cvle 1 Cycle 2 Cycle 3 

1 

2 

3 

0.8399 

7.238 

17.85 

0.8414 

7.438 

18.38 

0.<<39J 

7.242 

18.02 

0.8399 

7.239 

17.99 

0.8399 

7.238 

17.85 

The percent of error  in  thf object mode  fre- 
quencies  is  plotted vs.   the modal  substitution 
cycle number  in Figure 2. 

4m 

3k 

4m 

3m 

2k 

3m 

3m 

2k 

5m 

3k 

2k 

2m 

2m 

1.5m 

1.5m 

l15, 

22 

"23 

*24*1 

"31 

"32 

"33 

"34 

(a)  System (b)  Subsystems 

Fig.   1    Simply Connected  11-Degree of 
Freedom System 

modes uf Subsystem 1 and the firs- mode of Sub- 
system 3.    Subsequently,   three additional modal 
substitution cycles were performed,  in whi-h all 
of the subsystem modes were Introduced.    The 
exact system eigenvalues for the object modes, 
and the eigenvalues obtained by modal substitu- 
tion are shown in Table 2 for each computation 
cycle. 

Cycle zero indicates 
initial incomplete 
modal coupling 

0 12 3 
Modal Substitution Cycle 

Fig.  2    Frequency Error History 
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CONCLUSIONS 

The modal substitution method has been shown 
to be applicable to the vibration analysis of 
complex systems. No advantage of :he method Is 
claimed for analysis of systems that can be rep- 
resented by relatively simple mathematical 
models. Frequently, however, mathematical mod- 
els using several hundred degreiu of freedom are 
required. While the equations of motion for dy- 
namic response analysis of such systems may be 
limited to a relatively small number of degrees 
of freedom describing overall system motion In 
modal coordinates, the mode shapes must repre- 
sent the accurate Joral deforiual ions.  It is In 
problems of this nature chat partial modal coupl- 
ing, and modal aubstitution in particular, pre- 
sents an optimum method for vibration analysis. 

Use of the modal substitution method to 
analyze a system with several hundred degrees of 
freedom may typically result In 50 object modes 
with four- or five-digit accuracy in three or 
four cycles, solving a 100 x 100 or smaller eigen- 
value problem each time. From the view point of 
a dynamic analysis employing 50 system modes, the 
results obtained are equivalent to full modal 
coupling, while using only a small fraction of 
the fully coupled solution time. 

An interesting aspect of modal substitution 
is that very small eigenvalue solutions In the 
modal substitution cycles may bt used to solve 
very large eigenvalue problems. Ultimately, 
when limited to successive 2x2 eigenvalue so- 
lutions, the method becomes analogous to Jacobi's 
method for eigenvalue solutions of symmetric ma- 
trices. Thus, while not discussed In the pres- 
ent paper, proof of convergence of the modal sub- 
stitution method can be reduced to proof of the 
Jacob1 method [8]. 

2. Hunn, B. A., "A Methtd of Calculating the 
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pp. 41-59. 

4. Hurty, W. C, "Vibrations of Structural Sys- 
tems by Component Mode Synthesis", Prog. 
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August, 1960, pp. 51-69. 

5. Hurty, W. C, Dynamic Analysis of Structural 
Systems by Component Mode Synthesis. Techni- 
cal Report 32-350. Jet Propulsion Laboratory, 
Pasadena, Calif., Jan. 15, 1964. 

6. Hurty, W. C, A Criterion For Selecting 
Realistic Natural Modes of a Structure, "ech- 
nical Memorandum 33-364. Jet Propulsion 
Laboratory, Pasadena, Calif., Nov., 1967. 

7. Bajan, R., and Feng, C. C, "Free Vibration 
Analysis by the Modal Substitution Method", 
AAS Symposium. Space Projections from the 
Rocky Mountain Region, Denver, Colorado, 
July 1968. 

8. Kogbetliantz, E. G., "Solution of Linear 
Equations by Diagonalizatlon of Coefficient 
Matrices", Quarterly of Applied Mathematics, 
Vol. 13, No. 2, 1955, pp. 123-132. 

Modal substitution, until the present time, 
has been tried only on an experimental basis for 
relatively small systems (less than 100 degrees 
of freedom). Convergence to four or five digits 
in the object mcde eigenvalues has been achieved 
consistently within two to five cycles, independ- 
ently of problem size. 

The method may be regarded as a general method 
for solving large eigenvalue problems. It Is not 
fundamentally dependent on the use of subsystem 
normal modes, but rather, other displacement func- 
tions, such as columns of the flexibility influ- 
ence matrix, etc. may be used. The natural fu- 
ture extension of the development presented here 
is in the exploration of more general applications 
of the principle of sequential iterative substi- 
tution of assumed modes. 
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THE APPLICATION OF THE KENNEDY-PANCU METHOD 

.0 EXPERIMENTAL VTBRATIGN STUDIES 

OF COMPLEX SHELL STRUCTURES 

John D. Ray,f Charles W. Bert, and Davis M. Egle 
School of Aerospace and Mechanical Engineering 

University of Oklahoma 
Norman, Oklahoma 

The theoretical basis for the Kennedy-Psncu (K-P) technique is out- 
lined briefly. This vibration data analysis technique, which uses 
both amplitude and phase data, is .rajch morv reliable than the usual 
amplitude method in separating nearly equal natural frequencies and 
extraneous modes from the pure resonant mode. Application of the K-P 
technique to two different kinds of shell structures is described. 
This is believed to be the first reported use 01" the technique for 
shell structures. 

The first example is a cylindrical shell with a small number of longi- 
tudinal stiffeners. The physical quantity used here for the K-P plot 
was the output of an electromagnetic velocity pickup. The second ex- 
ample is a truncated conical shell of sandwich construction, with 
glass-fiber reinforced plastic facings and an aluminum hexagonal honey- 
comb core. In this examp'e, the quantity used in the K-P plot was the 
output of a metallic foil strain gage. Here the use of the K-P techni- 
que resulted in the discovery of a vibrational mode unidentified in 
previous research on free-free truncated conical shells. 

INTRODUCTION 

The Kennedy-Pancu (K-P) vibration data 
analysis technique was introduced in 1947 (Ref. 
[1]} in connection with ground vibration tests 
on aircraft. Subsequently, Bishop and his as- 
sociates (Ref. [2-6]) studied this technique 
(along with several others) in detail both ana- 
lytically and experimentally. The application 
of the technique ha£ been limited to beam-type 
structures and aircratc ground and in-flight 
vibration testing. Although the technique is 
well suited for shell-type structures because 
of their numerous nearly equal frequencies, to 
the authors' knowledge, there have been no suc- 
cessful applications to shell vibration. 

The Kennedy-Pancu method requires the 
measurement of both the amplitude and phase of 
the response of the structure relative to the 
excitation. These measumiients are taken at 
several c)os 'v incremented frequencies, be- 
cause of the ra, id change in pha«=e with respect 

to frequency, this measurement is difficult to 
make with sufficient accuracy. In the present 
work, this was overcame by using highly accur- 
ate digital phase and frequency meters. In 
addition, the phase was used as the controlled 
parameter (instead of frequency) to allow rapid 
data collection and a more uniform distribution 
of points in the K-P plot. 

The main limitation in using the technique 
in vibration testing is the accuracy •> which 
the phase, amplitude, and frequency nu be mea- 
sured. Even with accurate digital inscnmenta- 
tion, the accuracy is limited because of noise 
and distortion in the response and excitation 
signals. For amplitude and frequency measure- 
ir^nt, these effects may be minimized by filter- 
ing the signals. However, because the phase 
shift in an electronic filter is usually pre- 
sent cer a much wider range of frequencies 
than the ami^itu'.? attenuation, the use of fil- 
ters in phase-ir.easuring circuits has more dis- 
advantages than advantages and is generally not 

*Tbe work reported here was sponsored in part by the U. S. Amy Aviation Materiel Laboratories, Fort 
Eustis, Virginia, monitored by Mr. J. P. Waller, and in part by the National Science Foundation 
under research grant GK-1490. 
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Presently associated with Memphis Stat? University, Memphis, Tennessee. 
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a satisfactory solution to the noise problem. 
This limits use of the method to cases in which 
the signal-to-noise ratio is high relative to 
that which would yield acceptable results for 
peak-amplitude measurement. 

Harmonic distortion in the j.ignals is an- 
other source of error which may be minimized by 
filtering in amplitude and frequency measure- 
ments but not in phase measurements. However, 
because the phase meter used in this research 
utilized only the zero crossing points for 
phase information, a reasonable amount of har- 
monic distortion could be tolerated. Nonethe- 
less, this type of distortion was minimized in 
the present tests by maintaining a constant re- 
sponse by varying the excitation level. Hold- 
ing the output constant established the same 
peak response or the shell throughout the fre- 
quency nmge and thus minimized the effect of 
nonlinearities, whether they be geometric 
(large deflections) or material (nonlinear 
stress-strain and nonlinear damping). 

REVIEW OF THE KENNEDY-PANCU METHOD 

In applying their technique to a multi- 
degree- of -freedom system (as applicable to this 
case), Kennedy and Pancu made the assumption 
that each mode acts independently of the others, 
i.e. each mode responds to the applied force 
like a single-degree-of-freedom system. Also 
they assumed that the system is linear and tjiat 
superposition of modes holds. In other words, 
they assumed the existence of normal modes, 
which is a widely accepted assumption in multi- 
degree- of -freedom vibrational analysis. 

The response of a single-degree-of-freedom 
linear system, with Kimball-Lowell-type mater- 
ial damping and excited by a simple harmonic 
force of amplitude F and frequency u, can be 
expressed as follows: 

If a complex-plane plot is made of the 
complex receptance, a, given by: 

X - [(k - niu2)2 ♦ b2J 

tan ♦ - b/(k - mu2) 

-1/2 
(1) 

(2) 

where 

X - Xo/F 

X - x/sin (ut - ♦) 

x - displacement 

} ■ phase relation between the displace- 
ment and forcing function 

b • material damping factor* 

k • spring rate 

m » mass 

Xe !♦ 13) 

with the mass, damping factor, and spring rate 
fixed and the frequency varied, the result is 
as shown in Fig. 1. 

<£CO 

>%M 

Fig. 1 - Kennedy-Pancu plot for single- 
degree-of- freedom system 

The complex receptance traces out almost a 
complete circle on the complex plane. Kennedy 
and Pancu noted the following three observa- 
tions about the graph: 

(1) At resonance (w2 ■ k/m), the displace- 
ment vector lies on the imaginary axis 
and hence, is 9f: deg. out of phase 
with the applied force, 

(2) The change in arc length(s) along the 
curve per unit change in frequency 
(ds/du) is a maximum at resonance, and 

(3) The diameter of the circle is inverse- 
ly proportional to the damping factor. 

The procedure for obtaining the damping 
factor from the Argand plot can be simplified 
by eliminating the necessity of making absolute 
calibrations of the excitation and response 
transducers. Thir. is accomplished by expres- 
sing the damping coefficient in terms of fre- 
quency as follows: 

5 - (ux - ,1/u W 

•The material damping factor is not to be confused with the vxsccus damping coefficient, which is 
equal to b/u>. 
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where 6 » b/k is a dimensionless damping factor, 
an-l a, and u, are the frequencies at the half- 
pcwer points on the response curve. Further 
assuring that the response curve is symmetrical 
about the resonant frequency, a, then Eq. (4) 
becomes: 

$ - 2 [1 (o>l/-Jn) ] (5) 

The half-power-point frequency can be deter- 
mined readily from the Argand plots by drawing 
a line parallel to the real axis through the 
center of the circle; the point of intersec- 
tion of this line with the circle is the half- 
power-point frequency, w,. Application of 
these values to Eq. (5) gives the value of the 
uncoupled damping coefficient for the system. 

For a multiple-degvee-of-freedom system, 
the complex receptance will consist of a num- 
ber of terms, each of which, has the form of Eq. 
(3). A typical Kennedy-Pancu plot for a two- 
degree-of-freedom system is shown in i-"ig. 2. 

A^>«) 

ÄW) 

EQUAL   FREQUENCY 
IDCKHCNTi 

frequencies. The vector O'C represents the 
resonant cauponent of the receptance and 00' Is 
the off-resonant component. The damping factor 
may be calculated with Eqs. (4) or (5), 

APPLICATION TO A STRINGER STIFFENED CYLINDRICAL 
SHELL 

Specimen. The Kennedy-Pancu technique was 
used h> assist in analysing the vibraticn data 
on a thin cylindrical shell stiffened with two 
unequally spaced longitudinal stiffcners. The 
shell and stiffener geometry are indicated in 
Fig. 3. The shell is supported on both ends by 

SMELL. AND STKINSC* 
MATEKIAL' a«C lOtO STUL 

LENATH   II T« 

SEE Of »II. A 

DETAIL A 

Fig. 3 - Geometry of stringer stiffened 
shell. All dimensions in inches except 
as noted 

Fig. 2 - Kennedy-Pancu plot for two- 
degree-of-freedom system 

It is evi^jnt that there are two natural fre- 
quencies oecause of the presence of two circu- 
lar arcs and because the change in arc length 
per unit change in frequency has two maxima. 
The characteristics of this plot are strongly 
dependent on the closeness of the two frequen- 
cies and the location of the excitation force 
and the response pickup. Several Kennedy-Pancu 
plots for systems with two and three degrees of 
freedom may be found in Refs. [1-6]. 

In analyzing the Keunedy-Pancu plot, the 
resonant frequencies are determined by the maxi- 
mum of the change in arc length per unit fre- 
quency change. Circles are then fitted to the 
points in the neighborhood of these resonant 

internal discs with a knife edge contacting the 
shell. The radius of the knife edge support 
was adjusted to permit longitudinal motion of 
the shell but restrict motion normal to the 
shell surface. This simulates the ideal freely 
supported end condition (i.e. simply supported 
without axial constraint). 

Instrumentation. A schematic diagram of 
"is shown in Fig. 4. Both 
csponse pickup were small 

the Instrumentation 
the exciter and the it 
electromagnets with a permanent magnet for bias. 
When the device is subjected to a simple har- 
monic current, the force exerted on the steel 
shell is of the same fijquency as the current 
but the waveform contains same second and third 
harmonic distortion. When the devic? is placed 
close to a vibrating steel surface, the voltage 
produced is proportional to surface velocity 
for small displacements. Thus, in this appli- 
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Fig. 4 - Instrumentation for stringer 
stiffened shell vibration experiments 

cation, the Keroiedy-Pancu plots are graphs of 
the complex impedance instead of receptance. 
The only detail which this affects is that, at 
resonance, the phase of the impedance vector 
relative to the force is either 0 or 180 deg. 
instead of 90 or 270 deg. Other than this, 
there is no difference in the application of 
this technique. 

Experimental Procedure. In determining 
the natural frequenciesf "Sie test procedure in- 
volved choosing the exciter or pickup locations 
and locating several resonances by the peak 
amplitude method. A Keimedy-Pancu plot was 
then constructed for a range of frequencies 
including those that were detectable by peak 
amplitude. The natural frequencies were de- 
termined from the K-P plot as described earlier 
in this paper. At this stage, the exciter and/ 
or the pickup location is changed slightly, and 
a new K-P plot is drawn. If this process is 
repeated several times, moving the exciter and 
the pickup each time, the chances of missing a 
vibration mode are greatly reduced. It should 
be noted that moving the exciter location is an 
essential part of the procedure. 

The amplitude, phase and frequency data 
were collected by varying the phase in 10-deg. 
increments (or S-deg. increments in regions of 
high frequency change per unit phase change). 
This was found to be much easier and faster to 
do than changing the frequency in equal incre- 
ments. In regions near a resonance, the phase 
changes quite rapidly with frequency, thus re- 

quiring precise control on the frequency. Ac- 
tually, in this application, the period, rather 
than the frequency, was measured. This was 
desirable because of the increased accuracy in 
the period for the frequency range and the type 
of instrument used. 

Results. A plot of the natural frequencies 
of the stiffened cylinder for the lowest axial 
mode (m - 1) and several circumferential modes 
is shown in Fig.5. The Kennedy-Pancu technique 

THEORY: 
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Fig. 5 - Frequency versus circumferential 
wave number for the stringer stiffened 
shell 

is especially suited to this type of structure 
because the frequency density is up to twice as 
high as that of an axisymnetric shell structure. 
The reason for this, as was noted in Ref. [7], 
is that the frequencies associated with the 
symr/ietiic and antisymmetric circumferential 
modes are usually different for the nonaxisym- 
metric structure, whereas they are equal for 
the axisymmetric shell. The theoretical fre- 
quencies shown in Fig. 5 were calculated with 
the analysis of Ref. [7], It is noted that the 
theory does not predict an antisymmetric fre- 
quency for n » S and there are two antisymme- 
tric frequencies for n ■ 11. The higher of 
these two frequencies is denoted by the point A 
in the figure. 
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With the exception of the symnctric mode 
frequency at n - 10, the agreement between the 
theoretical and experimental results is very 
good. The one discrepancy is possibly due to 
misidentification of the n value, since these 
modes are very irregular and difficult to iden- 
tify. Although one would expect the lowest 
natural frequency to be associated with a mode 
that is easily excited, considerable difficulty 
was encountered in this application. The sym- 
metric mode at 384 cps was undatectable in sev- 
eral peak-ampl?tude surveys with different lo- 
cations of exciter and/or pickup. After this 
mode had been detected, it became immediately 
obvious that, regardless of which vibration 
data analysis technique is employed, reposi- 
tioning of the exciter and pickup (or using 
multiple oxciters and pickups) should be a part 
of a thorough vibration analysis. 

A Kennedy-Pancu plot of the complex impe- 
dance for an exciter located at e » 180 deg. 
(see Fig. 3) arid the pickup located at 9 » 100 
deg., with both the exciter and pickup axial 
locations midway bett een the ends of the shell, 
is shown in Fig. 6, The frequency range of 

APPLICATION TO SANDWICH CONICAL SHELL 

Specimen. The shell investigated was of 
truncated conical configuration (see Fig, 7). 
It was constructed of 50S2 alsjninun hexagonal- 
cell honeycomb core bonded by a film adhesive 
to E-glass, 181-style glass-cloth facings im- 
pregnated with 828-Z epoxy resin. Detailed 
material prq«rty data for the constituent 
materials are given in Ref. [8], 

21.41 
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Fig. 6 - Typical Kennedy-Pancu plot 
showing four natural frequencies of the 
stringer stiffened shell 

this plot covers four of the lowest five natur- 
al frequencies, the lowest frequency being 
omitted. The data were taken at equal phase 
increments for most of the points shown. The 
resonant frequencies, which were determined by 
the maximum change in arc length per unit 
change in frequency, are denoted by the four 
arrows in the figure. Although it appears that 
there may be anotJ.ar resonance between 482 and 
484 cps, ds/du steadily decreases from 480.0 to 
484 cps. Other K-P plots for different exci- 
ter and pickup locations substantiated this. 

o.o? 

Fig. 7 - Geometry of sandwich shell. 
All dimensions in inches except as noted 

To achieve free end conditions as clo:.:eJy 
as possible, the shell was suspended vert?caxly 
from a steel frame by six soft springs equally 
spaced around the shell circumference. Sus- 
pension resonant frequency was below 1 cps. 

Instrumentation. An electrodynamic exci- 
ter (MB, Model C11J was attached to the shell 
by a force link specially designed to reduce 
shell/exciter coupling. The excitation force 
was applied bctvsen the shell and the frame. 

The shell response instrumentation con- 
sisted of 600 metallic-foil, electrical-resis- 
tance strair. garps (Budd, Model C6-141B) ori- 
ented ciramferrintially and axially at various 
grid locations on t'ie outer facing of the 
shell. The electronic circuitry used to moni- 
tor and measure the dynamic strain .signals is 
shown schematically in Fig. 8. 

Each strain-gage system was calibrated 
separately by applying a known sinusoids! sig- 
nal. Frequencies covered ranges frcn 3-500 
cps, while the instrumentation components had 
flat responses to 20,000 cps and more. 
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Fig. 8 - Schematic diagram of strain- 
gage instrumentation for sandwich-shell 
vibration experiments 

An accelerometer (Endevco, Model FA-72) 
was attached to the armature of the vibration 
exciter to provide a measure of the input force 
atw»liea to the shell. The output of the ac- 
.-«lerometer was amplified (Endevco, Model 2016) 
and then fed into a readout system, as indicated 
on Fig. 8. The voltmeter gave an indication 
of the output level and the oscilloscope was 
used to monitor the signal to assure that there 
was no distortion. 

The outputs of the strain-gage system and 
the accelerometer were applied to each side of 
the digital phase meter (AD-YU Digital Phase 
Meter, Model S24A and EA1 Digital Voltmeter, 
Model S002A) that indicated the relative phase 
between the input and strain distribution. 

The system indicated on Fig. 8 is for the 
output amplitude and phase of a single strain 
gage. Only one gage could be monitored at a 
time since only one data acquisition system was 
available. A telephone switchboard was used to 
change gage locations. The switchboard was 
found to give the best signal-to-noise ratio at 
the lowest cost; other faster switching ar- 
rangements were tried but each increased the 
noise level. The strain-gage signals were on 
the order of 100 microvolts, which made the 
noise level of prime importance. 

A scroboscope (General Radio Model 1531- 
AB) was used sometimes to help define the modal 
shape of the shell under excitation. 

A second oscilloscope was used to display 
a Lissajous pattern as an indication of the 
phase between the input and strain. This was 
used as a check on the phase-angle quadrant 
obtained from the phase meter. 

A band-pass filter (SKL Model 302) was 
used sometimes to help eliminate the noise in 
the strain-gage signals. The filter was used 
sparingly, since it introduced a phase shift 
that was dependent on frequency. When the 
phase data were of prime importance, the filter 
was not used. 

Experimental Procedure. The procedure 
used to acquire the resonant-frequency and 
modal-strain-distribution data at each reson- 
ance was to first locate the resonant frequen- 
cy using the Kennedy-Pancu technique and then 
define the modal shape at this frequency. 

The resonant frequency was located by 
monitoring a series of gages while the system 
was excited throughout the frequency range of 
interest. In this first survey, the peak ampli- 
tude method was used to locate the approximate 
range of the resonant frequency. The phase 
between the input and gage was not needed in 
this survey. The gages for the final Kennedy- 
Pancu measurements were selected by exciting 
the shell and noting the anti-nodal points. 
Inherently certain portions of the shell were 
excited at most of the resonant frequencies. 
In the survey, the input acceleration, strain 
outputs, and frequencies were monitored. Fre- 
quency intervals were taken at 5 cps across the 
entire bard, with 1 cps near resonance. Clor-er 
intervals were taken to completely define the 
resonant point. Once the resonant frequencies 
were located, data were taken at these frequen- 
cies to make the Kennedy' Pancu plot. 

The K-P data were taken by varying the 
excitation frequency and monitoring the phase 
angle between the input acceleration and the 
strain-gage signal. The gage selected for 
these data was the one that gave the largest 
output in the preliminary peak-amplitude survey. 
The excitation frequency was varied from a 
point below resonance that indicated near zero 
phase to a point above resonance that indicated 
the phase was returning to zero. Since the 
phase meter would not function below a threshold 
input voltage (0.35 volts), data were taken only 
in the general vicinity of resonances. These 
data were sufficient to define the uncoupled 
resonances by means of the characteristic cir- 
cular arcs on the K-P plots. To minimize the 
nonlinear effects of the shell, the strain level 
applied to the shell was varied. The excitation 
frequency was changed until approximately 10-deg 
variation in phase was noted. The input force 
was varied until the gages exhibited a predeter- 
mined output; then the input acceleration, out- 
put gage signal, phase relation, and frequency- 
were recorded.* This same procedure was re- 
peated until the output signal became too small. 

The Kennedy-Pancu plot was drawn from these 
data, and the uncoupled resonant frequencies 
determined. The excitation frequency of the 

•At times the phase meter would not give an accurate reading in relation to the phase-angle quadrant. 
The Lissajous pattern was used as a check to make sure that the quadrant was correct. 
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shell was set at the uncoupled resonant fre- 
quency and the excitation level was not changed 
from the previous data. Each strain-gage out- 
put and the corresponding phase relation were 
read. From these data the modal sv.rain distri- 
bution was determined. Once the data were ac- 
quired, the shell nodal points were investiga- 
ted and checked by locating the points by feel 
and also be  sight using a stroboscope. 

The same procedure was repeated for each 
resonant frequency throughout the frequency 
range. Resonant frequencies were investigated 
from 5 cps to 400 cps. The lower limit was 
below the first resonant frequency and was the 
lowest frequency of the exciter and the upper 
limit was reached when the strain signal-to- 
noise ratio was too low t obtain reliable data. 

Results. The experimentally measured 
values of resonant frequencies and associated 
strain distributions and damping are presented 
in this section. 

Resonant frequencies for various meridion- 
al modes are shown in Fig. 9 as a function of 
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Fig. 9 - Resonant frequency versus cir- 
cumferential wave number for sandwich 
shell 

circumferential mode number. On this figure 
the two curves that were derived fror, an inex- 
tensional analysis [8] are shown along with the 
experimental resonant frequency points. Fach 
resonant point »as obtained from a Kennedy- 
Pancu plot. Fig. 10 shows two typical plots 
that were used to separate the resonant fre- 
quencies. As can be seen from the plots, the 

Fig. 10 - Typical Kennedy-Pancu plots 
showing separation of pure modes for 
the sandwich shell 

separation of the resonant frequencies which 
were very close together was accomplished quite 
adequately by means of the K-P technique. Damp- 
ing factors were determined from these figures 
using the technique outlined previously. 

It can be seen in Fig. 9 that the experi- 
mentally measured resonant-frequency points 
associated with the two lowest unsymmetric modes 
agree quite closely with the frequencies calcu- 
lated by tne inextensional analysis over the 
entire range of circumferential wave numbers 
covered. 

The resonant-frequency u;rves for the 
higher modes indicate the same trend as those 
of the two lowest modes. In the region of low 
circumferential wave numbers, n, the higher 
modes were difficult to detect because the re- 
sonant frequency coincided with the resonant 
frequency of another mode. At these lower re- 
sonant frequencies the response of the mode 
having a higher n would dominate that of the 
lower-n mode. This problem was one of the 
major difficulties encountered in applying the 
Kennedy-Pancu technique in this investigation. 
It was beyond the scope of this investigation 
because of the limitation of equipment, but a 
solution to this problem would be to introduce 
additional excitation systems. By placing the 
exciters near a point that is a node of the 
strOiig mode, the system would exhibit a larger 
response in the weak mode. 

Shown in Fig. 11 are typical plots of 
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8"0Y STATIONS 

Fig. 11 - Meridional distributions of 
circumferential strain on the sandwich 
shell for the two lowest modes for three 
typical circumferential wave numbers (n) 

circumferential strs \n associated with the two 
lowest meridional modes. Also included in Fig. 
11 are the analytical results derived from the 
inextensional analysis presented in Ref. [8], 
Tn general, there is very good agreement be- 
tween the analytical and experimental strain 
distributions for these modes. It can be seen 
that increasing the circumferential wave number 
shifts the location of the node, as was observed 
by Mixson [9]. 

The circumferential modal shapes were sym- 
metrical about the exciter location. Moving 
the exciter to a new circumferential location 
on the shell resulted in the same modal shape 
but with the nodal lines shifted circumferen- 
tially. 

Since the agreement between the experimen- 
tal data and the values derived by the inexten- 
sional analysis are in close agreenent, it is 
assumed that the lowest experimental unsymme- 
trical modes are the inextensional modes. 
Hereafter, these two lowest experimental modes 
will be referred to as the inextensional modes. 
The other modes which have higher resonant 
frequencies w?l] be referred to as general 
modes, since the/ exhibit both extensional and 
inextensional deformation. 

It can be noted on Fig. 9 that the reson- 
ant frequency for the m ■ 1 general mode is 

close to inextensional mode B at the low cir- 
cumferential wave numbers, but as the wave num- 
ber increases the curves separate and the m ■ 1 
mode converges to the m ■ 2 general mode. Also 
it can be noted on this figure that all of the 
general modes tani to converge at the higher 
frequencies. This convergence is characteris- 
tic of the dynamics of both cylindrical and 
conical shells. 

The resonant frequency data and the asso- 
ciated strain distributions indicated that seme 
coupling between modes occurred. These coupled 
modes were a combination of two circumferential 
modes having the same meridional mode when the 
resonant frequencies were close. Similar phen- 
omena have been reported by Koval [10] for 
cylindrical shells and by Watkins and Clary [11] 
and Mixson [9] for conical shells. Pronounced 
coupling phenomena were observed at resonant 
frequencies of 33 cps, 64 cps, and 94 cps. In 
all of these cases, the strain distributions 
were typically the same except for the differ- 
ence in circumferential wave numbers and the 
nodal patterns were symmetrical about the «xcj- 
ter, but not -venly spaced. The coupling ob- 
served was probably caused by the presence of 
four equally spaced, 3-inch-wide, longitud:jwl 
lap jounts on the inside and outside facing 
(i.e. a total of eight lap joints; one ever/ 
45 deg.). However, it is interesting to nove 
that the only modes which coupled were inexten- 
sional modes (A and B). There was no observed 
coupling of the general modes (m ■ 1, 2, 3) 
with each other or with the inextensional modss. 
This may have been because for the particular 
shell construction and geometry, the inexten- 
sional modes were the only ones sufficiently 
close together (in frequency as well as in 
circumferential wave number) to couple. 
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Hig. 12 - Logarithmic decrement versus 
circumferential wave number for the 
four lowest modes of the sandwich shell 

Fig. 12 shows a plot of the damping loga- 
rithmic decremen*. as a function of circumferen- 

114 



^„^J^l ■ i~'«»-tiUi.i ~!Lrr.i!izxm.!Hk 

tial wave number. The values for this figure 
were obtained from the Kennedy-Pancu plots and 
converted to logarithmic decrements. As point- 
ed out previously, the damping coefficient of 
the systtc can be obtained from the Kennedy- 
Pancu plots. The damping coefficient is con- 
verted to logarithmic decrement by multiplying 
the coefficient by 2*. 

CONCLUDING REMARKS 

When used in conjunction with instrumen- 
tation having sufficient accuracy, the Kennedy- 
Pancu vibration data analysis technique has 
been proven to be a powerful tool for experi- 
mental investigations of shell-type structures. 
It has been useful both in separating natural 
frequencies which are very close together and 
in separating pure modal shapes. 
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DISCUSSION 

Mr. Forlifer (NASA, Goddard):  Are you 
familiar with the work of Clyde Stahle, formerly 
of Martin Baltimore, in the late 50's and early 
60's in mechanizing this technique as far as 
giving experimental data directly in terms of 
real and imaginary components and applying 
this to modal surveys on everything but shell 
structures, I guess. 

Mr. Bert:  No, I'm not - I would be quite 
appreciative of getting that reference. 

Mr. Forlifer:  He reported it at a Shock 
and Vibration Symposium in the early 60's. 
(Shock and Vibration Bull. No. 34, Part 4, pp. 
30-42, June 1961.  Ed.) 

Mr. Bert:  I might add that we did look into 
the possibilities of mechanizing this but we did 
have trouble.   For example, in trying one ap- 
proach we made was to try to fit a circle. With 
a given number of points one can fit a circle - 
then if some more points are added - the circle 
that fits is different. We never did get it to 
converge very satisfactorily - so that approach 
was not successful.  I do not like to say that it 
can not succeed because next week some one 
will make it work Hke a charm.  Other people 
have tried this method and it hae not worked 
for shell structures.  I believe the reason is in 
connection with the accuracy of the measure- 
ments.  It does require highly accurate phase 
and frequency measurements. 
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NORMAL MODE STRUCTURAL ANALYSIS 

CALCULATIONS VERSUS RESULTS * 

Culver J. Floyd 
Raytheon Company 

Submarine Signal Division 
Portsmouth, Rhode Island 

Acceleration data from the MIL-S-901C medium weight machine has 
been used as inputs to a computer-aided normal mode analysis for 
new sonar cabinet chassis design.   The same data has been used as 
inputs to a more conventional hand calculation method.   Cabinets and 
chassis analyzed by these two methods have now been tested.   This 
paper compares the results of the two calculation methodr. 

INTRODUCTION 

For several years we have been concerned 
with the advantages, if any, which a computer- 
aided analysis would have over a hand analysis 
method.   In the design of the AN/BQS-13 sonar 
system we had the opportunity to compare both 
systems on a fairly large scale.   Either com- 
puter-aided analysis or hand analysis can pro- 
duce equipment capable of passing MJL-S-901C 
shock tests.   The computer-aided analysis 
seems to be faster.   Either method is very de- 
pendent on the analyst's assumptions or the 
best math model of the structure. 

SOURCE OF TEST DATA 

During 1965, the AN/BQS-6B sonar system 
was shock and vibration tested to MIL-S-901C 
and MIL-STD-167.   Figure 1 shows this system. 
Collection of data from testing the eighteen 
units gave a good picture of the accelei  tion of 
different weight and oize units which have 
different internal structures. [ 1 ] 

The contract called for a special deck 
simulation fixture to be used since the loca- 
tions of the cabinets aboard ship were known. 
This fixture was required to have a 25-30 Hz 
resonant frequency.   As in the conventional 
MIL-S-901C tests, the hammer height for the 
six blows was determined by the weight on the 
anvil.   An accelerometer was located inside 

the bottom of each cabinet.   A typical waveform 
is shown in Figure 2.   A 30 Hz-50g sine wave 
has been superimposed for comparison.   Sum- 
mation of this data from the eighteen units 
showed that 50g wa<? the average acceleration 
with the spread from 40 to 60g. 

SHOCK DESIGN NUMBER COMPARISON 

In the course of developing the 50g-30 Hz 
number, comparison was made with design 
shock factors in other military publications. 

Table 1 tabulates this comparison. 
Although MIL-E-16400E, Figure 3 is specified 
for equipments over 4500 pounds, the number 
shown was selected for comparison.  NavShips 
900-185 gives a range for equipment rigidly 
mounted on the shock table. 

NavShips 250-660-30 gives a shock factor 
l ange dependent o.-. material yielding.   Most 
electronic equipment will tolerate some yield- 
ing so long as function is not impaired and 
mechanical features operate smoothly. 

NavShips 250-423-31 also presents a 
range of numbers depending on foundation 
frequency and permitted yielding. For example, 
a dynamic conversion number of 24 could be 
used on a structure which could function with 
large yielding.   Forty-nine wouid be required 
for a non-yielding structure. 

♦Paper .iot presented at Symposium. 
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The vibration requirements of MIL-STD- 
167 are shown for reference.   The levels for 
exploratory vibration were established as a 
means oi determining resonant frequency and 
modes of chassis along three orthogonal axes. 

HAND ANALYSIS 

Conventional hand calculations used these 
design numbers as inputs.   Two limits were 
imposed on the static designs.   First, the 
resonant frequency of any spring mass system 
or subsystem must be higher than 47 Hz to 
eliminate large transmisslbilitles from the 
basic SO Hz forcing frequency and from the 33 
Hz test frequency of MIL-STD-187. 

Tin spring maus system was usually a 
shelf or a drawer.   The subsystem occasionally 
appeared as a smaller chassis. 

Second, the static stress of cabinet parts 
was multiplied by 50.   This stress was required 
to be smaller than the yield stress for the 
material used.   For stress purposes, all sub- 
systems were calculated as if their resonant 
frequency was 47 Hz and their damping was 0.1 
of critical.   A shock design number of 85 was 
then used for stress calculation for these 
chassis.   This calculated stress also was re- 
quired to be smaller than the yield stress of the 
material used. 

The eleven cross hatched cabinets in 
Figure S were stress analyzed in this manner. 
The Interior design covered a wide range from 
PC boards to power supplies. 

COMPUTER-AIDED ANALYSIS 

The same waveform was also used to pro- 
duce the design shock spectrum in Figure 2. 
The upper curve Is for zero damping.   The 
lower curve is for 0.05 damping.   Experience 
and test data have shown that 0.15 or 0.20 
damping is probably more realistic in a com- 
posite assembly. 

This shock spectrum was used as Inputs 
to a normal mode program. [2,3]   The results 
were plotted in normal mode diagrams similar 
to Figur« 4.  Calculated joint accelerations 
were used to calculate member stresses both 
at the cabinet level and at the chassis level. 

Tan cabinets were dynamically analyzed 
using this method (Reference, Figure 3).   The 
size and weight of these c .blnets again cover a 
wide range.   The interior construction varied 
from printed circuit boards to analog gear 
trains and high power amplifiers and switching 
devices. 

EXPLORATORY TEST PROGRAM 

An exploratory teat program for the sub- 
assembly levels was established to confirm 
structural design early in the project. 

Each chassis, drawer, or rubassembly 
was mounted on the vibration table in a normal 
manner and vibrated at. 020 inch DA along aach 
of three orthogonal axes through the frequency 
range of 5-100 Hz.   The subassembly was 
deemed adequate if no resonances appeared 
below 47 Hz. 

Exploratory shock was also a part, of the 
program.   The subassembly normally mounted 
to the test fixture was subjected to one 50g drop 
along each of three orthogonal axes.   High- 
speed movies were taken to record behavior. 
A single accelerometer on the table recorded 
the shock input. 

A special fixture was made and attached to 
a Barry Vari Shock Machine modifying the 1/2 
sine 11 Ms pulse to approximately the waveform 
which we had measured on the MIL-S-901C 
medium weight machine.   Figure 5 shows this 
spring bed type fixture with an 18-inch square 
cathode ray tube mounted. 

The fixture consists of an upper and lower 
plate separated by spring cartridges.   The 
number of cartridges used was determined by 
the weight of the test specimen.   A test fre- 
quency of 30 Hz was desired but the explora- 
tory nature of the test was not affected if the 
actual frequency was between 25 and 35 Hz. 

Large low frequency rocking modes were 
encountered but could usually be brought under 
control by redistributing the spring cartridge 
and shifting the test specimen CG.   Some 
asvemblies tested on this device ran less than 
a pound, while the largest was a power supply 
weighing 90 pounds not including the mounting. 
Some assemblies were only tested to 50g as 
measured by the accelerometer above the springs. 
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Others such as the picture tube shown in 
Figure 5 were shocked several times to 85g 
or more. 

EXPLORATORY TEST RESULTS 

The second failure type occurred because 
the tested part knowingly was not like the one 
analyzed.   Schedules and procurement times 
prevented getting the ideal.   Usually the part 
ended up looking lüce the Ideal before the test 
was *wer. 

The original plan called for 185 chassis, 
drawers, or shelves to be done in this manner. 
However, as the project developed the number 
dropped to 148 due to similarities. 

Three types of Inadequate designs plagued 
us during these tests: 

1. Wiring and cable were poorly clamped. 

2. Cold solder joints and wires kept 
appearing. 

3. Hardware not large enough and not 
locked in place kept loosening. 

Although modes were essentially as pre- 
dicted, analytical frequencies invariably turned 
out to be higher.   Although some had been pre- 
dicted as low as 50 Hz during the exploratory 
tents, no chassis was less than 60 Hz. 

Occasionally second or third modes would 
be visible with these inputs.   Behavior under 
this exploratory vibration test was visually 
examined and later found to be indicative of 
performance under shock.   The higher the 
resonant frequency, the less motion in shock. 
The modes observed in the high speed motion 
pictures were comparable. 

The structural results were very satisfying 
and indicated that it is possible to design ade- 
quately for shock tests.   This assumption has 
now been borne out in cabinet level tests. 

The third failure type was wiring asso- 
ciated.  With perhaps only two exception», 
every cabinet sooner or later developed broken 
wires to a greater or lesser degscee.   Usually 
this was at a connector or terminal post. 
Proper lacing or clamping always corrected the 
problem. 

Captive screws which typically hold 
chassis In place gave constant trouble. 
Although the screw was utron? enough for shock 
tests, the strong arm of the test mechanic 
often twisted these screws off as he loosened 
or tightened them during the inspection pro- 
cesses. 

Figure 7 shows one of these cabinets 
mounted on the SO degree inclined fixture. 
This cabinet was analyzed by computer 
methods. [ 2, a] This unit consists of 28 ampli- 
fiers mounted on water panels and weighing 
1320 pounds.   Figur? 4 is the predicted mode 
shape for this cabinet.   The worst predicted 
acceleration was for the cenur wai?r panel in 
a vertical down direction.   The high speed 
movies taken of this test dramatically show two 
IT three of the lower bending modes. 

The input waveform to this cabinet is shown 
in figure 6.  Note again the basic 30 Hz fre- 
quencies with the higher frequencies super- 
imposed. 

CONCLUSION 

CABINET LEVEL TESTS AND RESULTS 

The cabinets shown in Figure 3 have now 
13en tested to ML-STD-167 and to MIL-3- 
901C.   Problems were encountered at the 
cabinet level during these tests sine« no ex- 
ploratory testing was done at the cabinet level. 
These problemd were of three types. 

In the first type, failure occurred in a 
detailed part because some change had taken 
place between the time of the structural 
analysis and the hardware assembly. 

1. tt is possible to design electronic 
equipment which has a reasonable chance of 
passing MIL-STD-187 and MIL-S-901C tests 
the first time. 

2. The design number used from the 
various military manuals gave a good agree- 
ment for the weight of equipment we supply. 

3. The computer aids the analyst in 
determining Interaction of chassis and cabinet. 
The computer does not necessarily eliminate 
hand calculation at the detail level.  Good 
Judgement of the analyst Is essential for the 

119 



assumptions required with both computer and 
hand calculation methods. 

4.   Exploratory vihraüon and ehock test- 
ing of the tjrpe described here Is adequate to 
give complete confidence that the parts and 

assemblies will pass the vigorous requirements 
of MIL-STD-167 and MIL-S-901C. 

5.   The first six normal modes provide 
adequate acceleration anu load data to satisfy 
these particular tests. 
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Fig. 4 - Typical Cabinet Mode Shape 
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Pig. 7 - Typical Cabinet Mounted on an Inclined Fixture 
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Table 1 
Comparison of Shock Design Numbers, 500- Pound Cabinet 

1 
Type of Test/ Vertictl Horl zoital 
Requirement Athwartshlps Fore & Aft 

MIL-B-164uJj£ 
Figure 3 42 42 42 

Waväupfi 
«w-185 

SOtolOOg 
55-70 Hz 

50-10Cg 
55-70 Hz 

50-100g 
55-70 Hz 

NavSnipe 
250-660-30 

25-80g 
Deperdent on 

Allowable Yielding 
25-80 10-32 

NavShips 
25C-42S-31 

24-49 at 30 Hz 
58-92 at 60 Hz 

24-49 at 30 Hz 
46-92 at 60 Hz 

10-20 at 30 Hz 
18-36 at 60 Hz 

AN/BQS-6B Tests 
(1965) 50-30 Hz 20-30 Hz 

&OL-STD-167 

Three Orthogonal Axes 
5-15 Viz- .060 DA 

16-2F Hz - . 040 DA 
26-33 Hz - . 020 DA 

Exploratory 
Vibration 

Three Orthogonal Axes 
50g-30 Hz 

Exploratory 
Shook 

Three Orthogonal Axes 
5-100 Hz-.020 DA 

Note: 100 Hz - . 020 DA- 10g 

AN/BQS-13 Tests 
(1968) 55-30 Hz 25-30 Hz 25-30 Hz 
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COMPARISONS OF CONSISTENT MASS MATRIX SCHEMES 

R. ;i. Mains 

Department of C^vil and Environmental Engineering 
Washington University 
St. Louis, Missouri 

It has become popular to use one or another "consistent" mass matrix 
scheme in dynamic analysis vith finite elements. Such schemes have the 
claimed advantage of transferring to the computer soi.•* of the calculations 
previously done by hand, aid of producing greater accuracy in the calcula- 
tion of natural frequencies and mode shapes. These schemes have a distinct 
disadvantage in calculations because they produce non-diagonal maps 
matrices which require either:  (1) two eigenvalue problems to be solved, 
one for the mass alone and one fcr the mass together with the stiffness; 
(2) the eigenvalues of the unsymmetric product of KM must be solved. In 
either case computation time and complexity are at least doubled. 

In ordei' ~,o develop some Judgement on whether the extra effort is 
worth-while or not, the author has compared the masses, frequencies, and 
mode shapes for 7 different versions of mass with the same stiffness for 
a cantilever beam. There seems to be little to gain from the consistent 
mass schemes. 

I SUMMARY AND CONCLUSIONS 

A cantilever beam divided into 20 seg- 
ments and represented by kO  coordinates has 
been solved for its natural fre tuendes and 
normal mode shapes for seven different cases 
of mass or coordinate combinations. The re- 
sulting frequencies have been studied and 
compared, with the following conclusions: 

1. The rotational coordinates must be 
included in the solution, or the fre- 
quencies of the modes will be signifi- 
cantly reduced, and calculated responses 
to shock will be increased. (See Table 3.) 

2. Within the range of frequencies for 
which the mode shapes bear some 
semblance of reality, the exact form 
or magnitude of the rotational mass 
inertia does not seem to be critical. 
(See Table 6.) 

3. The two "consistent" mass schemes 
produce frequencies which stay close 
together through 13 of Uo modes, but 
the mode shapes are close only 
through mode 6 (and mode 3 is excepted 
here).  (Tables 3 and 6.) 

I». There is little reason to conclude, on 
the basis of the lowest 6 mode fre- 
quencies and mode shapes, that the 
consistent mass matrices produce any 
better result than the author's 
diagonal mass matrix with pro-rated 
masses and eyeballed radii of gyration. 

5. There is little reaeon, within the 
lowest 6 modes, for concluding that 
the extra complication of the con- 
sistent mass schemes in computing 
masses and requiring two eigenvalue 
solutions provides anything worth the 
cost and effort. 

6. The number of modes to be considered 
valid in a solution should be related 
to the number of coordinate stations, 
and not to the tot»! number of co- 
ordinates, e.g. 1/3 of 20 si  6 
rather than 1/3 of i»0 « 13. 

II INTRODUCTION 

For some time there has been a growing 
interest in "finite element" technique* for 
the solution of practical problems. This has 
been demonstrated by a number of technical 
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papers, of vhlch reference 1 is an example; bv 
recent books, such as reference 2; and by short 
courses and summer Institutes of which refer- 
ence 3 is an example. The finite element idea 
is not new, since the technique was used in the 
sarly vor* with photoelasticity, flow nets and 
field theory. The availability of high-speed 
computers has led to the develo-anent of more 
complex finite elements in the attempt to re- 
fine solutions and achieve answers which agree 
more closely with either theoretical or mea- 
sured values. 

in structural •iynaraics, the refinement of 
finite elements has led to a more complicated 
representation of the masses,'^'t(5) sometimes 
called "consistent" mass because it is pre- 
sumably more in conformance with reality. The 
work reported in this paper was undertaken in 
order to develop aome data from which one could 
form some Judgement as to what to do in various 
cases. 

Ill SCOPE OP PROBLEM 

In order to form a basis for comparison, a 
simple cantilever beam of constant cross-section 
was chosen, a« thown in Fig. 1. The calculation 

2. Non-diagonal mass matrix, according 
to Archer/*' 

3. Non-diagonal mass matrix, according 
to McCalley.(5; 

U. Diagonal mass matrix, as no. 1, but 
with modified rotational imrtia. 

B, With translation only 

5. Same as 1 with rotational inertias 
removed. 

6. Same as 2 with rotatiof.il inertias 
removed. 

7. Same as 3 with rotational inertias 
removed. 

The comparison of the results of these different 
solutions of the name problem should be useful 
in determining what should be explored next. 

XV COMPUTATIONS 

The element stiffness matrix, including 
the effect of shear deformation, was computed 

.17   .18  '19 ß- 

AL. tube 6" O.D. x 1/2" wall x 10 ft. 

20 stations along length 

y and ¥ coordinates 

«-. 1 

CANTILE' cP BEAM SYSTTM 

of normal mod« frequencies (eigenvalues) and 
normal mode shapes (eigenvectors) for this beam 
waa then undertaken, with the beam divided into 
20 equal finite elements along its length. The 
stiffness matrix for the solutions was devel- 
oped in the usual way/6' with allowance made 
for shear deformation and with both transi- 
tion«! and rotational coordinates. The mass 
matrices were different for each of seven cases, 
as fol-ovs: 

A. With both translation and rotation 

1. Diagonal mass matrix, according to 
the author's usual way. 

•Superscripts refer to itesis in the list of 
ref«recces. 

with the results showu in Table 1, in the 
coordinate system shown in Fig. 1. It is of 
Interest tc note the negative sign on the carry- 
over elements, 2-'i  and k-S,  resulting from the 
large contribution of ihear flexibility. The 
system stiffness matrix was assembled by suc- 
cessive additions of this element stiffness 
matrix to the appropriate locations in the 
system matrix. 

The mass matrix according to the author'a 
usual vay, was computed as a diagonal matrix., 
with translations! masses pro-rated between 
coordinate points, and the rotational mass in- 
ertia taken as the (radius of gyrat-ion) z. 
(trannlational mass). This matrix for the element 
is shown in Table 2(a). 
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1 

Fig. 2 

CONSISTENT MASS ACCORDING TO ARCHER 

-«_ (U) The mass matrix according to Archer » ' 
vaa computed according to hia eq.(l2), which is 
shown on Fig. 2. The numerical results are 
given in Table 2(b). It should be noted that 
the translational masses, 1-1 and 1-3, add to 
the 1-1 mass of Table 2(a), as they should do. 
The rotational mass inertias, 2-2 and 2-1«, add 
to less than 5 percent of the 2-2 inertia in 
Table 2(a). 

The mass matrices according to McCalley 
vere computed according to Figures 3(a) and 3(b) 
which are taken from his Figures 6 and 7. The 
numerical values are given in Tables 2(d), (e) 
and (f). As with Archer's version of mass, the 
translational masses, 1-1 and 1-3, add to the 
1-1 mass of Table 2(a) as they should. The rr- 
tatlonal mass inertias, 2-2 and 2-1* add to 75 
percent of the 2-2 inertia in Table 2(a) and 
lUO percent of the 2-2 inertia in Table 2(e). 
This is interesting to observe, but its signi- 
cance may be low. 

The author's mass matrix was altered by 
changinc the rotational mass inertia in an 
effort to make the higher frequencies come 
closer to those obtained with McCalley'a masses, 
as an example. These altered values are the 
ones shown in Table 2(c). 

The system mass matrices for the calcula- 
tions with both translational and rotational 
coordinates were assembled by successive addi- 
tions of the element mass matrices to the ap- 
propriate locations in the system mass ui,,..,. 
The aystem mass matrices for the calculations 

vith translational coordinates only were then 
obtained by eliminating the rows and columns 
corresponding to the rotational coordinates. 

The system stiffness matrix for transla- 
tional coordinates only can be obtained in at 
least three ways. First, the system stiffness 
with both translation and rotation can be in- 
verted, the rotational coordinate rows and 
columns eliminated, and the reduced matrix again 
inverted to get the translational system stiff- 
ness. This was done on an IBM 360/50 at double 
precisiuu, but it did not work properly. The 
system stiffness (at 1*0 x 1*0) inverted without 
error signal and the inverse was symmetric to 
14 digits. The product of the inverse and the 
original gave unity down the diagonal, and the 
largest off diagonal element was 10"12\ The 
elimination of rows and columns checked properly 
and produced a 20 x 20 matrix, but the reduced 
matrix failed on inversion because of a zero 
determinant part way through the process. This 
was no greav surprise, since it has happened 
many times before when a system matrix is used 
ir its natural state. 

The second technique consists Of arranging 
the matrix to be reduced as follows: 

Ml "12 

K21  K22 

(1) 

such that the coordinates to be retained are 
contained in Kllt while the coordinates tu be 
eliminated are contained in K22- Then the 
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reduced stiffness, «n is 

* 1 
Ku = Ku - Kj2 K22 Kjt (2) 

This scheme has worked well before, arid it 
would probably have worked well in this case. 
However, the 360 time allocation was spent, and 
the third alternative was necessary. 

The third technique (and the one used 
herein) consists of generating the deflection 
influence coefficient matrix for the system 
with shear flexibility included and rotational 
coordinates eliminated. The inversion of this 
matrix then produces the reduced eyBtem stiff- 
ness matrix. The deflection influence coef- 
ficient matrix was generated on an IBM 7072 
computer, and the plots of the resilts were 
good. The inversion failed, however, again 
because of a zero determinant. The matrix was 
then condiditoned by pre- and post-multiplying 
by the inverse square root of its diagonal 
(as a diagonal matrix) to produce a matrix with 
unit diagonals and the off-diagonal terms less 
than unity. This matrix inverted successfully 
with a product check showing the largest off- 
diagonal term at 10*1*. The inverse was then 
restored by the same pre- and post-multiplicj.- 
tion to produce the reduced system stiffness 
matrix. When this matrix was multiplied 
against the original deflection influence coef- 
ficient matrix, the largest off-diagonal term 
was k  x 10'**. A higher precision computation 
might have been better, but the 7072 cannot do 
this. Since an accuracy of k  parts in 10,000 
is not really poor compared to the accuracy of 
physical input data, the remainder of the 
computations were made with this reduced sys- 
tem stiffness matrix. 

The eigenvalues and eigenvectors for the 
various solutions were calculated with a pro- 
gram which used the Given 's method of tri- 
diagonalization, with an upper- and lower-bound 
trapping of eigenvalues. Eigenvectors are 
found for the trl-diagonalized matrix, and 
then restored to the full matrix. The arithme- 
tic is as follows: 

Given  -MXu2 + KX = 0 

in which 

M ■ mass matrix (diagonal) 

K ■ stiffness matrix 

X = displacement vector 

u2- matrix of eigenvalues (diagonal) 

let X = M "* Y 

(3) 

and premultiply by -4 to get 

(M "* KM "*) Y ■ Yw2 

(U) 

(5) 

This equation is the one for which (M "* K M **) 
is tri-diagonalized to solve for Y and u2, and 
then rotated back to the original system coor- 
dinates. When this process has been completed, 
the solution requires that 

YTY 

from which 

XT MX 

and 

XT KX = u2 

(6) 

(7) 

C8) 

When the mass matrix is not diagonal, as 
with Archer's and McCalley's versions, the 
eigenvalue program proceeds as follows: 

The mass matrix is first diagonallzed by 
solving the eigenvalue problem 

MU = IUX2 (9) 

This solution produces U vectors such that 

UTU = I (10) 

and    UTMU ■ X2 (11) 

How eq. (3) is rearranged to give: 

KX = M x w2 (12) 

Let       X = UX_lV (13) 

and prenraltiply by U to give 

UTKUX_1V = UTMUX_1V u)2 (HO 

then 

[UTKU]X-*V = X V w2 

Premultiplication by X"1 then gives 

[r'DTKUl'!]* - V u2 (15) 

This is the eigenvalue problem again, for which 

vTV = i (16) 

As a consequence of eq. (16) and (15) 

vrx-JuTKUX_iV = u2 (17) 

and eq. (13) reduces this to 

,..2 XT KX 

Equations (16) with (13) and (11) give 

XT MX  » VTV ■ I 

so long as X - UX_1V 

(18) 

(J9) 

(13) 
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The remainder of the computations consisted of 
listings of frequencies and their ratios, and 
mode shapes and their ratios, for the purpose 
of making comparisons and forming Judgements. 

A search was made for a theoretical solu- 
tion against which to compare the results. 
Timoshenko's solution '^' for the simple beam 
vith shear and rotational inertia is acknowl- 
edged to be the first such paper, and numerical 
values for the frequencies can be found or 
calculated. The same was not true for the can- 
tilever beam with shear and rotational inertia, 
because the frequency equation does not reduce 
to anything tractable. A numerical solution is 
no doubt possible, but that would be another 
study in itself. Consequently, the theoretical 
frequencies for a cantilever bean without shear 
and rotational inertia were calculated, and 
they appear in the tabulations of results as 
the theoretical frequencies. 

V RESULTS ADD DISCUSSION 

The object of the calculations was to be 
able tc compare the various frequencies with 
each other, and also the various mode shapes. 
The frequency comparison can be done in one 
table of reasonable size, but the comparison 
of U sets of mode shapes at 1*0 x U0 each and 
3 cfc 20 x 20 each would need a sizeable publi- 
cation all by itself. The full mode shape sets 
are available, and can be supplied to anyone 
needing to examine them in detail. Only select- 
ed sample sets are included in this paper in the 
interest of conserving space. 

Table 3 lists the normal mode frequencies 
for each of the seven c-ises solved. These 
frequencies were also piottl (semi-logarithmi- 
cally), and the plots showed that the theoreti- 
cal frequencies and the ones found with 
McCalley's mass were smooth curves. For the 
cases with both linear and rotational coordi- 
oates, the frequencies found with the other 
masses showed a Jump in the curve at the 19*h 
to 21st mode. This J-Jnp Is quite noticeable In 
the tabulated data, as Is the smoothness of the 
frequencies from McCalley's mass. The fre- 
quency plots for the nolutions with only 
translational coordinates were all smooth, and 
this Is easily seen in the tabulated data. One 
could argue that the Jumps in the frequencies 
are a result of ttos rotational mass inertias 
not being included properly, but the author 
contends that after about node 6, the solutions 
have no physical meaning in any case. This 
point is further argued below. 

In order to have a basis for comparison, 
the frequencies calculated with McCalley's mass 
were divided into the other frequencies, with 
the results listed in Table k.    An examination 
of both Tables 3 and k  can produce any of sev- 
eral mode numbers as the limit of agreement, 
according to the tolerance allowed. A more 
significant observation, however, is that mode 5 
from the linear-only solutions is lower in fre- 

quency than mode h  of the linear-plus-rotation 
solutions. Similarly, mode 9 is less than 6, 
mode 12 is less than mode 7, and mode 20 is less 
than mode 9. Whichever kind of solution 1B taken 
as correct, the linear-only solutloni; have pro- 
duced a significantly lower set of frequencies 
than the linear-plus-rotation solutions did. 
This would affect shock response calculations 
since they contain a factor of 1/freqaency. 

It is interesting to note that if one sums 
the frequencies for each case through modes 
5 and 6, the result is: 

THEOR 

Pa"-' 

AHCH 

MCCY 

RMOD 

RMMLIN 

ARCHLIN 

MCCYLIN 

sum through 5 sum through 6 

191»1* 3367 
-1 T-1 1 28U5 

1^69 2970 

1TW 2926 

1725 2867 

1080 1664 

lll»2 1777 

1136 1762 

On this basis, there is little reason to argue 
for or against any particular method, except 
that the linear-only cases all seem far out of 
line with the others. 

With regard to the mode shapes, a theoreti- 
cal solution was not feasible within the scope 
of this investigation, so the mode shapes found 
with McCalley's mass were used for a base. 
Table 5(a) lists the linear coordinates for the 
first 8 modes with McCalley's mass, and Table 
5(b) lists the rotational coordinates for the 
same 8 modes. It is the author's contention 
that at least three coordinates are needed in 
each loop of a mode to define it properly. Ex- 
amination of Table 5 shows that mode 6 clearly 
satisfies this requirement, while modes 7 and 8 
do not (and the higher modes were progressively 
worBe, of course). 

In order to form some basis for comparison 
of modes the following scheme was used; 

AV0.M0DE *ATI0.[g §|gSgg],[NO.0r COORD.] 

(20) 

When this calculation was made, the resulting 
numbers conveyed the same impression of rela- 
tive quality that a ttudy of the detailed mode 
ratios produced. The mode detai]3 are avail- 
able and can be supplied if needed for study, 
but in the interest of conciseness, only the 
average mode ratios are given herein. 

Table 6 lists these average mode ratios 
as defined by eq. (20) for the first 12 modes 
The column heading code translates as: 
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LRMM=linear coordinates, RMM mass, 1*0x140 

LARC=linear coordinates, ARCH mass, 1*0x1.0 

LRMD»linear coordinates, RMMOD ma38, 1*0x1*0 

MCC «linear coordinates, MCCY mass, 1*0x1*0 

RMML=linear coordinates, RMLIN mass, 20x20 

ARCL=3inear coordinates, ABCHLIN mass, 20x20 

MCCL=linear coordinates, MCCYLIN mass, 20x20 

RRMM=rotational coordinates, RMM mass, l»0xU0 

RARC=rotational coordinates, ARCH masB, 1*0x1*0 

RRMD=rotational coordinates, RMM0D mass, 1*0x1*0 

MCCR*rotational coordinates, MCCY mass, 1*0x1*0 

The first three columns show good agreement 
(number near 1.0) for modes 1,2,1»,5, with mode 
3 off for each. Columns 1* and 5 show their best 
agreement in modes 1 and 2, with poor agreement 
elsewhere. The last three columns show the best 
agreement of all for modes 1 through 6 except 
mode 5. It is of interest to note the signs of 
ehe average mode ratios. A negative sign means 
that the mode happened (by chance) to come out 
of the eigenvector routine with signs opposite 
to the reference mode. This is a normal fact 
of life since all normal modes are subject to 
an arbitrary multiplier of ± 1. 

If the conclusion hfd been reached, on the 
basis of frequency comparisons, that the first 
6 modes were valid for the 1*0x1*0 cases, for any 
of the mass schemes, how would the comparisons 
of Table 6 modify that conclusion? If it is re- 
called that usually a dynamic analysis is car- 
ried to a stress answer,  and that the stresses 
depend directly upon the relative deformations 
of the ends of the element, cne must conclude 
that the details of the mode shape are critical. 
Indeed, seemingly minor variations in the mode 
shapes make important differences in the stress- 
es calculated therefrom. Direct supportirg evi- 
dence for this statement is not yet available 
in terms of the set of solutions herein report- 
ed. The statement is therefore made on the bas- 
is of opinion, with the full intent to support 
it later by translating these mode shapes into 
stresses and making similar comparisons. 

In order that checks or comparisons can be 
made by the reader, the deflection influence 
coefficient matrix for linear coordinates only 
is given in Table 7. 
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TABLE  I.    NUMERICAL VALUES OF STIFFNESS FOP. ELEMENTS 

1 2 3 4 
1 0.28861E 07 0.86S83E 07 -0.2886IE 07 0.86583E 07 Y, 
2 0.86583E 07 0.91850E 08 -0.86583E 07 -0.39900E 08 #, 
3 -0.28861E 07 -0.86583E 07 0.28861E 07 -O.86503E 07 V, 
4 0.B6583E 07 -0.39900E 08 -0.86583E 07 0.91850E 08«, 

TABLE 2.    NUMERICAL VALUES OF MASS FOR ELEMENTS 

(A)    ACCORDING TO AUTHOR'S USUAL PRACTICE 

1 2 3 4 
1 0.637(^-02 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 
2 O.OOOOOE 00 0.24319E-01 O.OOOOOE 00 O.OOOOOE 00 
3 O.OOOOOE 00 O.OOOOOE 00 0.63788E-02 O.OOOOOE 00 
4 O.OCGOOE 00 O.OOOOOE 00 O.OOOOOE 00 0.24319E-0I 

(3)    ACCORDING TO ARCHER 

1 •> 3 4 
1 0.47385E-02 0.40095E-02 0.16403E-02 -0.23693E-C2 
2 0.40095E-02 0.43740E-02 0.23693E-0* »0.32805E-02 
3 0.16403F-02 0.23693E-02 0.47385E-02 -0.40095E-02 
4 -0.?it«3f-02 -0.32805E-02 -0.40095E-02 0.43740E-02 

(C)    AUTHOR'S PRACTICE MODIFIED TO PRODUCE McCALLEY FREQUENCIES 

I 2 3 4 
1 0.637BBE-02 O.OOCOOE 00 o. ooooo: 00 O.OOOOOE 00 
2 O.OOOCoF 00 D.5.3176E-01 0.0000"? 00 O.OOOOOE 00 
3 O.OOOOOE 00 O.OOOOOE 00 0.6378««: 02 O.OOCOOE 00 
4 O.OOOOOE 00 O.OOCOOE 00 0.000006 00 0.13176E-01 

(Table II continues) 
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(Table II continued) 

(0)    McCALLEY TRANSLATIONAL MASS 

1 
0.43095E-02 
0.32764E-02 
0.20693E-02 

-0.31024E-02 

0.32764E-02 
0.3836TE-02 
0.31024E-02 

-0.3817BE-02 

0.20693E-02 
0.31024E-02 
0.43095E-02 

-0.32764E-02 

-0.31024E-02 y, 
■0.38178E-02 0, 
-0.32764E-02 \ 
0.38367E-02 «, 

(E) McCALLEY ROTATIONAL MASS 

1 2 3 4 
1 0.28008E-04 -0.44871E-03 -0.28008E-04 -0.44B71E-03 
2 -0.44871E-03 0.13268E-01 0.44871E-03 0.51621E-02 
3 -0.28008E-04 0.44871E-03 0.28008E-04 0.44871E-03 
* -0.44871E-03 0.51621E-02 0.44871E-03 0.13268E-01 

(F) SUM OF (D) AND (E) 

1 2 3 4 
1 0.43375E-02 0.28277E-02 0.20M3E-02 -0.35511E-02 
2 0.28277E-02 0.17105E-01 0.355116-02 0.13442E-02 
3 0.20413E-02 0.35511E-02 0.43375E-02 -0.28277E-02 
4 -0.35511E-02 0.13442E-02 -0.28277E-02 0.17105E-01 
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TABLE 3.    LIST OF NATURAL FREQUENCIES 

TMFOi F*2P 

t 0.1*7112  02 

2 0.10*002 0) 

1 0.2*4022 03 

» e.i7*i»t o) 

i o.*i2i*i ei 

« 0.1*2272 0« 

T O.llftTIE  04 

I 0.2*4*12  0« 

* o.uvaOE o« 

10 0.42441E   04 

11 0.11*5.6  04 

ii t.ttim 04 

IS 0.734**2 04 

14   .   0.MT142   04 

II 0.4***12   04 

14 0.112442   0* 

IT 0.12*041   0» 

I* 0.I440SE   0« 

I« 0.1409*1   Of 

20 0.17**4*   0'. 

21 0.147*1* OS 

22 0.217402 m 

21 0.21*04* 01 

24 0.2*4732 OS 

21 0.2*2302 01 

2* 0.301*22 01 

2T 0.1102*2 01 

20 t.HWII 01 

2* 0.1*2022 01 

»»>•«   Fitr. 

0.1**762 02 

0.101122 05 

0.2711*2 01 

0.114*42 01 

O.tOlOlE 01 

0.11114« 04 

0.14*062 04 

0.1*41*2 04 

0.220102 04 

0.21*102 04 

0.2*0**2 04 

0.£23702 04 

e.H42<2 0<i 

0.1*2012 04 

0.40*102 «4 

0.42(1TE 04 

0.44*2*2 04 

0.4*0172 04 

0.4T011E 04 

0.47*712 04 

0.734'tlE 04 

O.Tl'JTM 04 

0.7**192 04 

0.7*1722 04 

0.S1**4£ 04 

0.««421E 04 

0.M1412 04 

0.114*12 04 

0.147112 04 

»*cn FKEU 

0.1**202 02 

0.102122 01 

0.2711*2 03 

0.121012 03 

O.S31**E 03 

0.120142 04 

0.1*0372 04 

0.203772 0* 

0.2413*2 04 

0.24*012 04 

0.341132 04 

0.3*17*2 04 

0.419*02 04 

0.4*3**2 04 

0.111132 04 

0.117**2 04 

0.400722 04 

0.£17202 04 

0.6*472* . i 

0.**1412 A4 

0.201**2 0! 

0.212422 01 

0.217202 01 

0.223*02 01 

0.231*32 01 

0.240102 01 

0.2506« OS 

0.2*07*2 01 

0.271C!2  OS 

MCCY 2*20 

0.167002 02 

0.1021SE 03 

0.277172 OS 

0.522426 03 

0.-2*4*6 03 

0.11*032 04 

0.1S761E 04 

C.20077E 04 

0.24617E 04 

0.211S1E 04 

0.I4416E 04 

0..IIM6E 04 

0.424762 04 

O.mOSE 04 

0.52113t 04 

0.11143E 04 

0.64*612 04 

f.704262 94 

0.711122 04 

0.7*1122 04 

O.tlUOE 04 

0.172*16 04 

0.101022 0» 

0.44*726 04 

0.11)02. f OS 

0.10649E OS 

0.US432 OS 

0.12014E OS 

0.12«6S2 OS 

RNNOO FREQ 

0.16673E 02 

0.102UE 03 

0.27643E 03 

O.S17*4E 33 

0.*UTOE 03 

0.U426E 04 

0.14168E 04 

0.1*62*E 04 

0.223002 04 

0.2S90IE 04 

0.243*16 04 

0.326S7E 04 

0.316422 04 

0.3«44*E 04 

0.40M7E 04 

0.421**E 04 

0.447312 04 

0.441006 04 

0.470*16 04 

0.4767BE 04 

0.1003SE OS 

O.nift.Vf OS 

0.103722 01 

0.106S7E OS 

0 110066 OS 

C.114042  c: 

o.iiassE os 

0.122ISE  OS 

0.12743E   OS 

«»LIN FREO 

0.1*1272 02 

0.13714E 02 

0.14423E 03 

0.321*32 03 

0.41AUE 03 

0.1*412« 03 

0.TO71TE 03 

0.223172 01 

0.134UE 03 

0.101746 04 

0.113322 04 

0.12713« 04 

0.13A12E 04 

0.13727E 04 

0.113132 04 

0.14*a»E 04 

0.1S130E 04 

0.116766 04 

0.11*246 04 

0,1*0746  04 

«CHUN F» 

0.16247E 02 

O.I7440E 02 

0.20736E 03 

0.14343E 03 

0.48731E 03 

0.63471E 03 

0.7*4*12 03 

0.13ai6E 03 

0.10112E 04 

0.12S64E 04 

0.142216 04 

0.I141BE 04 

0.176436 04 

0.19374E 04 

0.2I074E 04 

0.226*7E 04 

0.24142E 04 

0.213S2E 04 

0.26234E 04 

0.267306  04 

MCCYLIN 2* 

0.162606 02 

0.aT34SE 02 

0.206126 03 

0.34173F 03 

0.4S137E 03 

0.62612E 03 

0.77:296 03 

0.11621t: 03 

0.106116 04 

0.12078E 04 

0.13137E 04 

0.14986E 04 

0.16410E 04 

0.17786E 04 

0.190636 04 

0.20261E 04 

0.212O0E 04 

0.22114E 04 

0.22T01E 04 

0.23034E  04 

30 0.404242 01 0.1*01*2 04 0.2*1232 01 0.11*042 OS 0.131*12 05 

11 0.417112 01 0.101142 01 0.2412*2 01 0.14214E 01 0.11*142 es 

32 0.4***72 01 0.104112 0» 0.3110» OS 0.1417*2 01 0.14010E OS 

13 4.44*772 01 0.106*72 01 0.31036E 01 0.14 744E 01 0.1441*2 OS 

14 (.127*12 OS 0.101112 01 0.3140SE 01 9.14*936 01 0.14717E 01 

31 0.11179E 01 j.111442 01 0.32**62 01 0.111*12 05 0.11097E 01 

14 0.1427IE 01 0.113332 01 0.133*72 01 r  144IE 01 0.111*12 OS 

17 0.626172 01 0.114*22 01 0.339262 01 0.151776 01 0.11377t 01 

la 0.461371 01 0.11141? 01 0.J4S43E 01 0.15*" E 01 0.11741E 01 

Ji 0,6*7122 01 0.11*712 OS 0.34*02E 01 0.>J**i/2 01 0.111121 01 

40 0.733*02 

7 

01 0.117102 

1 

01 0.14*102 

10 

01 0.165)16 

11 

01 0.11*0*2 

12 

01 

10 14 

138 



1ADLE 4.    LIST OF RATIOS OF FREQUENCIES 

THEOR/KCCV 

0.100326 0) 

0.102396 0 1 

0.103936 01 

0.U0296 01 

0.115236 01 

0.1203*6 01 

0.126076 01 

0.IU77F 01 

0.11739F 01 

0.1*3626 01 

0.130316 01 

0.13993E 01 

o.mait oi 

0.1B120E 01 

0.186606 0 1 

0.19170E 01 

0.I9?*1E 01 

0.20*326 01 

0.71*076 01 

0.27767E 01 

0.732096 01 

0.2*9236 01 

0.26309t 01 

0.2737T6 01 

0.281716 01 

0.28724E 01 

0.29U7E 01 

0.79*096 01 

0.2969«   01 

MM /KCCV 

0.99836E 00 

0.99580E 00 

0.9920« 00 

0.9B5HE 00 

0.97602E 00 

0.938576 00 

0.939*16 00 

0.91727E 00 

0.89287E 00 

0.867206 00 

0.8*326E 00 

0.83263E 00 

0.B13986 00 

0.«07756 00 

0.7678*6 00 

0.726756 00 

0.6B803E 00 

0.63369E 30 

0.625806 00 

O.6068T6 00 

0.66S3« 00 

0.B607BE 00 

0.8*925E 00 

0.83*316 00 

0.817276 00 

0.T9T79E 00 

0.777091 00 

0.736276 00 

0.73*836   00 

ARCK/MCCr 

0.10132E 01 

0.100566 01 

0.10087E 01 

0.10I28E 01 

0.10167E 01 

0.10179E 01 

0.10i7S6 01 

0.101*96 0) 

0.10098E 01 

0.1001TE 01 

0.99006E 00 

0.9817*1 00 

0.988326 00 

0.980836 00 

0.96*906 00 

0.9*6**6 90 

0.92617E 00 

0.90*786 00 

0.88*036 00 

0.867516 00 

0.26620E 01 

0.2*13« 01 

0.23999E 01 

0.23590E 01 

0.2313« 01 

0.22630E 01 

0.220976 01 

0.215616 01 

0.21066E   01 

MCCr/«CCY 

0.100006 01 

0.10000E 01 

O.IOOOOE 01 

O.lOOOOf 01 

0.10000E   01 

o.iooooe oi 

0.10000E oi 

O.IOOOOE 01 

O.IOOOOE 01 

0.100006 01 

0.1000CE 01 

O.IOOOOE 01 

O.IOOOOE 01 

0.10000! 11 

O.IOOOOE 01 

C.ll/OOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE SI 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

omo/KCv 

0.99838E 00 

0.99T66E 00 

0.993896 00 

0.9C123E 00 

0.98212!: 00 

0.968066 00 

0.9*9696 00 

0.92773E 00 

0.9029« 00 

0.8T660E 00 

0.351666 00 

0.83981E 00 

0.8*0296 00 

0.81276E 00 

o.mssE oo 

0.721316 00 

0.6896« 00 

0.65*396 00 

0.62620E 00 

0.60696E 00 

0.1178« 01 

0.11651c 01 

0.11661E 01 

0.11233E 01 

0.10983E 01 

0.10713E 01 

0.1043« 01 

0.101S8E 01 

0.990326   00 

KW.N/MCCV 

0.93*926 00 

0.958896 00 

0.95H*7E 00 

0.933*76 00 

0.9***16 00 

0.93705E 00 

G.916876 00 

0.89930E 00 

0.87982E 00 

0.83892E 00 

0.837UE OC 

0.'*96E 00 

0./9293E 00 

0.77I79E 00 

0.7571« 00 

0.73*676 00 

0.72006E 00 

0.70MTE 00 

0.701*76 00 

0.6978«   00 

»ACl/KCCY 

0.99920E   00 

l.kOOUE  01 

0.10021,6  01 

O.IOOSOE ei 

0.100ME 01 

0.1012« 01 

0.101766 01 

0.10239E 01 

0.103136 01 

0.10*026 01 

.103056 01 

0.106226 Oi 

0.107316 01 

0.10893E 01 

0.110*36 01 

0.11193E 01 

0.113*06 01 

0.1146« 01 

0.I1SS66 01 

0.1I40SE   01 

NCCL/MCCV 

O.IOOOOE 01 

0.10000': 01 

O.IOOO'/E 01 

O.IOOWI 01 

0.10C006 01 

0.101006 01 

O.ICOOOC 01 

0.1UOO0E 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.lOCfOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

30 0.30086E 01 

31 0.30780E 01 

32 0.320126 01 

33 0.33688E 01 

3* 0.132036 01 

33 0.3687« 01 

36 0.1838SE 01 

37 0.«022« 01 

38 0.4190« 01 

39 O.**0386 0 1 

*0 0.**389E 01 

13 

O.T20BO6 00 

0.7II90E 00 

0.71**36 00 

0.72*7« 00 

0.721216 00 

0.7 3**06 00 

0.7 3 3966 00 

O.T37IIE 00 

0.73*656 00 

0.T372TE 00 

0.7083TC 00 

16 

0.206736 01 

0.25*936 01 

0.206516 01 

0.21067E 01 

0.21279E 01 

0.21331E 01 

0.216096 01 

0.217B0E 01 

0.217!>E 01 

0.21 1586 01 

0.33UOE 01 

17 

O.IOOOOE 01 

O.IOOOOE 01 

0.100002 Oi 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

O.IOOOOE 01 

18 

0.9699« 00 

0.95920E 00 

0.96378E 00 

0.97896E 00 

0.96626E 00 

0.99**76 00 

0.99*826 00 

O.IOOOOE 01 

0.9973*6 00 

0.1001*6 01 

0.96211E 00 

19 22 ?1 

13? 



TABLE 5. SAMPLE MODAL MATRIX (LOWEST 8 MODES) 

(A) LINEAR COORDINATES 

1 1 9 * s 6 7 8 

t o.itmc- 01 0.122126 00 0.3*3216 00 0.6-.97BE 00 -0.988216 00 -3.I3226E 01 0.16*62E 01 -0.19860E 01 
I 0.665666- ■01 0.40096E 00 0.10110E 01 O.ITO;« 01 -0.23260E 01 -0.27906E 01 0.3O807E 01 -0.32209E 01 > 0.1*S7*E GO 0.786376 00 0.1782*6 01 0.262576 01 0.S02M6 01 -0.2891.SE 01 0.23092E 01 •U.U123E 01 
6 o.mne 09 0.12J01E 01 0.2*6266 01 0.2999TE 01 -0.232526 01 -0.1223*6 01 -0,*1*S7E 00 0.1881*E 01 
1 o.nwt 00 0.168*76 01 0.269*86 01 0.263116 01 -0.9S326E 00 0.I1788E 01 -0.26227E 01 0.27132E 01 
6 0.5***06 00 0.210736 01 0.29766t 01 0.1S751E 01 0.1001*6 01 0.26969t 01 •0.22638E 01 0.10968E 00 
T 0.T2019E 00 0.2»S95E 01 0.267076 01 0.10T91E 00 0.2**2*6 01 0.23016E 01 0.288*9E 00 -0.265266 01 
t O.tlMK 00 0.2T092E 01 0,200656 Cl -0.13628F 01 0.2702*6 01 0.283636 00 0.237S9E 01 -0.2U77E 01 
9 0.112*91= 01 0.2B113E 01 0.107336 01 -0.2*2116 01 0.16670E 01 -0.19392E 01 0.2*013E 01 0.10SHE 01 

10 o.mrn 01 l.'»«096E 01 0.67369E-02 -0.2T6T2E 01 -0.16787E 00 0.2810*6 01 -0.70608E -01 0.29096E 1)1 
11 g.niiii 0» r :, *1*9E 01 -0.103S1E 01 -0.23071E 01 -0.19293E 01 -0.17)866 01 -0.2*72BE 01 0.U389E n 
It 0.1827'E 01 '.LÜ072E 01 -0.1B931E 01 -C.11816« 01 -0.27B23E 01 0.S7606E 00 -0.2S017E 11 -0.2050*6 01 
11 0.70,-06: 01 D.181*06 01 -0.2*3236 01 C7283E 00 -0.212606 01 0.2*7*« 01 -0.11145E 00 -0.2680SE 01 
1* 0.21397E 01 0.1229TE 01 -0.23612E 01 C.16201E 01 -0.7SS16E 00 0.26583E 31 0.23768E 01 0.38553E -01 
IS 0.26031» 01 0.51*1 IE 00 -0.2261SE 01 0.2**836 01 0.I0S11E 01 0.101316 01 0.26302E 01 Ö.27275E 01 
1» 0.2B703E 01 -0.28849E 00 -0.1S022E 01 0.2*8*66 01 0.21S16E 01 -0.12836E 01 0.*U80E oo 0.20578E 01 
IT 9.3139*6 01 -O.U5SaE 01 -0.*1169E 00 0.166196 01 0.26165E 01 -0.2S696E 01 -0.20973E 01 -0.10811E 31 
It o.3*096E 01 -0.2O1T0E 01 0.9180*6 00 0.1*8826 00 0.15)7*56 01 -O.IB102E 01 -0.23T08E 01 -0.26S03E 01 
1* 0.UI01! 01 -0.29769E 01 0.236S9E 01 -0.1760?« 01 -0.119996 01 0.633Y6E i'.O 0.12099E 00 -0.*0170E 00 
10 o.393ioe 01 -0.W9S2E 01 0.382906 01 -0.3T317E b! -0.168.66 01 0.36,. 316 PI 0.1S7SSE 01 0.3S370E 01 

(B) ROTATIONAL COORDINATES 

I 2 3 * s 6 7 B 

1 0.S361SE-02 0.302S3E-01 0.71365E-01 o.uoaiE oo -0.13987E 00 -0.1550*6   00 0.158*66 00 -J.153526 00 
2 O.I072T*-01 O.3225*E-0l 0.10732E  CO 0.13786E  00 -0.130136 00 -0.87130E-01 0.20778C-01 0.5836*6 -01 
3 O.lS*9Tr-01 0.6608*6-01 0.11O32E 00 0.90638E-01 -0.»20581; -02 0.119616   00 -0.2*2676 00 0.33693E 00 
* 4.19873E 01 CT2020E-01 0.8*S90E-01 -0.»02966-02 0.15*374 00 0.28608E  00 -0.327S6E 00 0.265216 00 
1 O.238S6E-0I 0.70»**E-01 0.38S86E-01 •O.U031E 00 0.2S628E 00 0.270536  00 -0.12339E 00 -J.106796 00 
6 0.2T6JU-01 0.623S7E-C1 -0.190306-01 -0.19223E 00 0.2*5526 00 0.781206-01 0.1876*E 00 -0.33280E 00 
7 0.306636-01 3.^83726-01 -0.77*666-01 -0.22296E 00 0.1230*6 00 -0.16385E  0} 0.31376E oo -0.138126 00 
8 0.333036-01 0.«96916-01 -0.126626  00 -0.19172E  00 -0.SS26SE -01 -0.28887E 00 3.13697E 00 0.231185 00 
9 0.35987F-01 0.7S620E-02 -0.1S813E  00 -0.106586  00 -3.206006 00 -0.210B2E   00 -J.172066 00 0.31337E 00 

10 0.381086-01 -0.I6678E-01 -0.166*86  00 0.817226-02 -0.2383*6 00 0.1522*6-01 -0.31668E 03 U.5',086 -02 
11 0.399006-01 -0.616676-01 -0.1*976E  00 0.U928E 00 -0.187996 00 0.231226   00 -0.IS798E 00 -0.308926 00 
12 0.»11756-01 -0.660916-01 -0.109806   00 0.19*206  00 -3.2B898E-01 3.286*26  CO 3.152356 00 -0.237T3E 00 
13 0.»25566-01 -0.887366  01 -0.518806-?1 P.210616   00 0.1*2636 00 0.1*2776   OJ 0.317666 00 0.110 70E 00 
1* 0.*3*68E-01 -0.108666  00 0.162*46-01 0.142616   00 0.2*3906 oo -0.982T3E-01 0.1807*6 00 i>.338196 00 
IS O.»*l»P6-01 -0.12S06E   00 O.IS607E-01 0.62619E-01 0.22*626 00 -0.26601E   00 -0.12*816 00 1.128686 00 
16 0.»»6016-0t -0.117336  00 P.l«T57E  00 -0.63*226-01 0.899UE -01 -0.2 385*6   00 -0.30091E 00 -J.21Q67E 00 
17 0.»»S89F-0l -0.1*6026 00 0.I9S37E 00 -0.18368E 00 -3.1016*6 00 -0.23*6*6-01 -0.167186 00 -0.278006 00 
U 0.*SO*06-0> -0.1S086E 00 0.22SS«E 00 -0.2V1196 00 -U.27771E 00 0.2*3776  00 0.173806 oc 0.7713**6 -01 
19 0.«30976-01 -O.IS2t*E 00 0.2 38906   00 -0.31*2/6   00 -3.37*67E 00 0.*2C29E 00 0.*3I07E 00 3.*6769E 00 
20 0.»51056-01 -0.153166   00 0.2M21E 00 -0.3223*6  00 -0.11*526 00 0.*6C026   00 0.520*96 00 0.577B1E 00 

TABLE 6. AVERAGE RATIO [MODAL MATRIX/COMPARISON MATRIX] EACH MODE 

IBM/PCC 11BC/MCC 

0.998666 00 0.99661E   00 

(     -0.99*186 00 0.100*76   01 

1       0.120*96 01 0.8*1836   00 

>       0.101126 01 0.9876*6   00 

1     -0.978*66 eo -0.103906   01 

1     -0.925TSE oo -0.101266   01 

r   -0,1091*6 01 0.117*56   01 

1       0.6879*6 00 -0.1218*6 01 

1       0.6038*6 00 0.78929E   00 

II )     -0.IBS16E 00 -0.89972E   00 

1 0.T10BIE CO 0.96BT2E  00 

1 ■       0.93832» oo -0.69**BE   00 

61 62 

IBMO/MCC ÜMML/MCCL MCL/NCCl 

0.99B9BE   00 0.9*811'   OJ -0.999796   00 

0.99661E   00 -0.96693E   0' -0.99890E   00 

-0.112516   01 -0.1   77»i  01 -0.10021E   01 

-0.10077E   01 0   '      876   00 0.99i056   00 

0.99**9E   00 -U.     3716  00 0.9B731E  CO 

0.93*266   00 -0.3*6976   00 -0.97001J   90 

-0.11*586  01 •0.B0201E 00 -0.9B123E 0. 

0.761986   00 0.711826  00 0.973306   00 

-0.3635*6   00 0.11992"  01 -0.105116   01 

0.8673*6  00 -0.13*576  01 0.995816  00 

-0.7262SE  CO 0.761B6E  00 -0.9S266E 00 

0.91273E   00 0.208916   01 -0.1011BE   01 

63 6* 63 

140 

RRMM/NCCR 

0.998936   00 

-0.996636  00 

0.982656   00 

0.98718E   CO 

suRC/Hce» 

0.130086 01 

0.100156 01 

0.101176 01 

0.10625E  01 

-0.8**016  CO -0.933106   00 

-0.9B016E 00 -0.10121E  01 

-0.7I796E   00 0.9**666  00 

0.56B*!SE   00 -0.71! 166  00 

0.8751'E   On 0.96B37E   00 

-0.175916   01 -0.139166   01 

-0.2*3086  00 -0.2203*E 00 

0.*9->22E 00 -0.9S1B*E  00 

66 67 

RRMO/NCCR 

0.99920E  00 

0.9981*6  03 

-0.98836E   00 

-0.10110E 01 

0.82779E 00 

0.9851»'. 00 

-0.750936 00 

0.510026 00 

-0.85926E   00 

0.176WE  01     10 

0.3S293E  00     1 

0.31677E  00     1 



TABLE 7.    DEFLECTION  INFLUENCE COEFFICIENT MATRIX-LINEAR ONLY 

1 2 1 * s » T * 
1          U.11916E-05 0.1*6*96-05 0.171816-05 O.«011«6-05 0.«2***6-05 0.455796-05 0.*8)116-0S *.510*16-0) 
2          0.1*»*9F-05 0.7*7616-05 0.856926-05 0.96*226-05 0.107556-0* 0.11**36-0* 0.129*16-0« 0.1*0)*t-0* 
}          0.1738IE-05 0.85*926-05 0.119*76-0* 0.1**066-0« 0.168*56-0« 0.211246-3« 0.2)7**6-0« 0.2»2*)6-0* 
*          0.*01l*F-05 0.9**226-05 0.16*066-0* 0.23*9*6-0* 0.260*66-0« O.)2«*06-0« 0.)*8U6-0« 0.»118*6-0* 
5          0.*28*»E-03 0.10755E-0* 0.168656-0« 0.260*86-0* 0.37*186-0« 0.**C*9f-0* 0.51*606-0* 0.56)116-0* 
6          0.*3579F-91 0.118*86-0* 0.2112*6-0* 0.12**06-0* 0.«»««96-04 3.57*0*6-0* 0.472*16-9* 0.77076E-0« 
T          0.*»3llf-0« 0.129*16-0* 0.2378*6-0« 0.1*8126-0* 0.»1*436-0* 0.672«lE-0« 0.8)5*86-0* 0.9*9)76-0« 
8          0.51S41F-05 0.1*03*6-0* 0.262*16-0* O.*ll8«.E-0* O.S83Ur-0* 0.770786-0« 0.9*9)76-0* 0.1173»6-0) 
9          0.S1776F-05 0.151276-0* 0.287026-0* 0.*S5S6E-0* 0.65l«26-0« 0.8691*6-0* 0.1101)6-0) 0.1)*6)6-0) 

10          0.56508F-05 0.16220E-0* 0.111*16-0* 0.«99286-0« 0.7197)6-0* 0.9*7516-0« 0.12)716-0) 0.152)26-0) 
11          0.392*lE-05 0.17311E-0* 0.13*206-0* 0.5*1006-0* 0.7880*»--0* 0.106596-01 0.1)7106-0) 0.1**816-0) 
12          0.61971E-05 0.18*066-0* 0.160806-0« 0.58*726-0« 0.85*136-0* 0.11**26-0) 0.1S0*96-0) 0.187296-0) 
11          0.6*7066-05 0.19*996-0* 0.365196-0* 0.«30«16-0« 0.92***6-0« 0.12*2*6-03 0.1*»t02-0) 0.20*766-0) 
1*           1.»7*186-05 0.205926-0* 0^*09986-0* 0.67«156-0« 0.992986-0« 0.1.3*106-0) 0.177276-0) 0.2?2276-0) 
1»          0.T01T16-05 0.21*856-0* 0.*l*576-0* 0.717676-0« 0.10*116-03 0.1*59*6-0) o.iw**e-0) 0.2)97*6-0) 
U          0.729016-01 0.227786-0* 0.*S9166-0* 0.7*1596-0« 0.1129*6-0) 0.155776-0) O.2O*03fc-0! 0.257Ü*f-0) 
17          0.73613F-0«' 0.238716-0* 0.*6176E-0* 0.805316-0« 0.119796-0) 0.1*5*16-0) 0.2l7**E-0) tf.27*7)8-03 
18          0.7B168C-05 0.2*9**6-0* 0.508356-0* 0.6«9C36-0* 0.126*26-0! 0.175*56-0) 0.2)06)6-0) 0.292226-0) 
19          0.811006-09 0.^*0576-0* 0.5129*6-0« 0.B9375E-0* 0.13)«56-0) 0.185266-0) 0.2**226-9) 0.109/16-Oi 
2->          O.A18]lE-<j5 0.271506-0« 0.5STS16-0« 0.9!**7E-0* 0.1*0286-01 0.195126-0) 0.257*06-03 J.)2ri*E-01 

9 10 11 12 11 1* 15 1* 

1          0.51776E-05 0.5*5086-05 0.592*16-05 0.»19736-05 O.K*TO*6-05 0.67*386-09 0.701716-05 0.7290)6-03 
2          0.15127F-0* 0.162206-0« 0.171I»6-0* 0.11*066-0« 0.19*996-0* 0.205926-0* 0.21*656-0* 0.2277*6-0* 
1          0.287C2F-0* 0.111*16-0* 0.116206-0* 0.3»060E-0« 0.185196-0* O.*09966-O« 0.*3*576-0* 0.*591*E-0* 
*          0.«55'.t»E-0* 0.*99286-0* 0.»«3006-0* 0.58*726-0* 0.610*16-0* 0.67*156-0* 0.717876-0* 0.7*1596-0* 
5          0.65l<r2E-O* 0.719736-0* 0.7880*6-0* 0.65*356-0« 0.92***6-0« 0.992986-0« 0.10*1)6-0) 0.1129*6-0) 
6          0.»69'l*F-0* 0.967516-0* 0.10*596-03 O.ll*«2E-01 0.12*2*6-0) 0.1)6106-0) 0.1*59*6-0? 0.153776-0) 
7          0.110116-01 0.123716-03 0.117106-01 0.1S0«96-03 0.16188E-01 C.177276-0) 0.190**6-0) 0.20*036-0) 
8          0.11*816-01 0.152326-03 0.1*9616-01 0.167296-03 0.20*786-0) 0.222276-0) 0.2)97*6-0) 0.2372*6-0) 
9          0.159886-01 0.182016-03 0.20*156-03 0.22*286-0) 0.2*8*16-0) 0.270556-0) 0.292*66-0) O.)l«*16-0) 

10         0.1820!6-O3 0.2122*6-01 0.219566-01 0.2**916-0) 0.29*216-0) 0. »21556-01 0.3**886-0J 0.)T*206-0) 
11          0.20*156-01 0.219*66-01 0.275566-01 008*16-0! 0.1*1*96-0) 0.17*756-0) 0.»07816-03 0.««0886-0) 
12          0.226286-01 0.266916-03 0.101*36-01 0.)5089E-0) 0.1902*6-03 0.«29586-0) 0.*»6*36-0) 0.306286-0) 
13          0.2*8*16-01 0.29*236-01 0.JM69E-0J 0.)902*6-0) 0.«)93)6-0) 0.«85516-0) 0.5)1*96-0) 0.377676-0) 
1*          0.270556-01 0.321556-01 0.17*756-0! 0.«29586-0! 0.«65516-01 0.5«l996-0) 0.5955*6-0) 0.6*9106-0! 
15          0.292686-01 0.3*8866-03 0.407816-01 0.«*6936-03 C.5>l*96-0! 0.5955*6-0) 0.*S99«E-0) 0.721*26-0) 
16          0.11*816-01 0.376206-03 0.**0866-01 0.508266-01 0.577676-03 0.6*9106-0) 0.721*26-0) 0.79*296-0) 
17          0.1169*5-01 0.«01536-01 0.*739*6-01 0.5*7*16-03 O.*2*056-0) 0.702*56-0) 0.782901-0) 0.8**2*6-0) 
18          0.159086-01 0.*10656-01 0.507006-01 0.58*976-0! 0.6702)6-0) 0.73*216-0) 0.6**)86-01 0.91*196-0) 
19          0.181216-01 0.*5818E-03 0.5*00*6-01 0.»2*326-01 0.716*06-0) 0.809776-03 0.9058*6-0! 0.100*16-02 
20          0.*01!*E-0) O.*85506-01 0.571136-01 0.4*5676-01 0.762586-0) 0.86)126-03 0.9«7)*E-0) 0.107*16-02 

17 IB 19 20 
C.736156-05 0.78)886-05 0.111006-OS 0.8)83)6-0) 
0.21671E-0* 0.2*9**6-0* 0.2*0576-0* 0.271506-0* 
0.*8)76F-0* 0.508)56-0* 0.3)29*6-0» 0.537536-0* 
0.80511E-0* 0.8*90)6-0* 0.892756-0* 0.9)4*76-0* 
0.11<*79E-01 0.12**26-0) 0.1))*56-0) 0.1*0266-0) 
0.163616-01 0.175*56-0) 0.1832*6-03 0.195126-0) 
0.217**6-01 0.2)08)6-0) 0.2**226-03 0.257*06-0) 
0.27*716-01 0.292226-0) 0.109716-01 0.)27196-0) 
0.11*9*6-01 0.159066-03 Ü.181216-03 O.*0))*6-0) 
0.*0151E-01 0.O0836-0) 0.*)6166-0) 0.415506-01 
0.*719*E-01 0.307006-03 0.3*00*6-03 0.371136-03 
0.3*7*16-0) 0.58*976-03 0.»24)26-01 0.6*5*76-0) 
0.62*05E-0! 0,    70236-03 0.71**06-0) 0.7*25*6-0) 
0.70265E-01 0.75*21E-03 0.809776-0) 0.8*5)26-0) 
0.782906-0! 0.6**186-03 0.9056*6-03 0.9*7)66-0) 
0.86*2*6-01 0.91*196-0! 0.100*16-02 0.107«IE-02 
0.9*6116-01 0.102516-02 0.110*16-02 0.11830E-02 
0.1^2516-02 0.111*56-02 0.120516-02 0.1291*E-02 
0.110*16-02 0.120516-02 0.130**6-12 0.1*0516-02 

20 0.118106-02 0.1291*6-02 0.1*0516-02 0.151736-02 
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DISCUSSION 

Voice:  You mentioned that there is no ac- 
curate solution for the Timoahenko beam. 
Actually, R.A. Anderson in 1956 in the Journal 
of Applied Mechanics publirhed a solution for 
a cantilever beam, simply supported and fixed 
at two ends. The so* ition is absolutely ac- 
curate in the sense that he has gone to com- 
plete energy formulation and by the variational 
approach he obtained the boundary conditions. 
When you take into consideration the shear and 
rotary Inertia effects you have to be very care- 
ful about the boundary conditions. What Ander- 
son did was to divide the displacement into two 
parts, one was the shear displacement and the 
other was the bending displacement. From 
them in the case of the cantilever beam at the 
fixed end, the slope due to the shear displace- 
ment is not aero, the bending slope is zero. So 
this will give you a different kind of solution. 
Recently, in 1066 Kapur published a paper 
where he obtained a consistent mass matrix 
dividing a displacement into two different 
parts, the shear displacement and the bending 
displacement. The results corroborate the 
work of Anderson exactly. It would f*s very 
interesting if you could look into the solutions 
obtained by Anderson and Kapur to get a more 
accurate comparison, because that is much 
more accurate than what Timoahenko did 
almost 20 years ago. 

Dr. Mains:   My lack of search through the 
literature suffic'   ;tly is showing. I thought I 
had it with Timoshenko's paper but apparently 
not. I will checl: it and see how the comparison 
does come out. 

Mr. Bert (University of Oklahoma):  I 
would like to mention that the paper by R.A. 
Anderson is dated about 1953 and it was exact 
in the sense that it was a series solution. How- 
ever, the problem was actually solved in closed 
form by T.C. Huang - I believe about 1963 or 64. 
There have been about 20 or 30 papers on the 
T TOOshenko beam equations since Timoshenko's 
wu'k, so it is one of the manifestations of the 
information explosion, I believe. 

Dr. Mains:   Are they in such form that 
you can translate them into numerical answers? 

Mr. Bert:  Yes. Huang's work is in very 
nice form and it is just a question of very sim- 
ple triuiscendental equation which depends on 
the particular boundary conditions. But the 
problem that you have was for the cantilever 
boundary conditions so it is in rather simple 
form to get numerical results. He actually 
gives some tabulations of it, there are soiie 
typographical errors in the paper so you had 
best work it through carefully following his 
method because it is exact and in closed form. 
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MEASUREMENT OF A STRUCTURE'S MODAL 

EFFECTIVE MASS 

G. J. 0'Hara*and G. M. Remmerst 

An Important parameter In the shock design and analysis of response 
of shipboard equipment is Modal Effective Mass.  This paper describes 
the experimental determination oi the modal effective masses of sym- 
metric double cantilever beams when they are suspended by a long 
cable to simulate a free-free condition.  Several special techniques and 
instrumentation modifications were employed to Improve the measure- 
ments obtained so that a statistical best fit approach could be applied 
to find the first three modal effective masses.  The partial differential 
beam equation Including shear and rotary inertia was solved for approx- 
imate mode shapes by the Second Method of Ritz where advantage was 
taken of the experimentally determined fixed base natural frequencies. 
They were used to estimate the values of the first mode's effective 
mass for comparison with the measured value.  The results obtained 
and reported show consistent agreement well within reasonably ex- 
pected bounds of experimental and mathematical resolution. 

\ 

INTRODUCTION 

Mechanical shock induced by underwater 
explosion during combat operations is a vital 
consideration in design of naval equipment. 
The Navy's Dynamic Design Analysis Method 
(DDAM) [1] based upon normal mode theory, is 
one of the techniques employed for this prob- 
lem. The DDAM inputs are specified in terms 
of type of ship, location aboard, direction of 
shock, equipment classification, and the equip- 
ment's fixed base natural frequencies and 
modal effective masses. The shock design 
value data has been developed from 1 ealistic 
shock measurements of ship shock trials and 
other special experiments and tests. Since 
fixed base frequencies (FBNF) and modal effec- 
tive mass values directly affect the shock de- 
sign value prescriptions, efforts have been 
made to obtain these by measurement. 

A paper [2] presented to the 38th Shock and 
Vibration Symposium described the successful 
measurement of fixed-base natural frequencies 
of structures attached to a single non-rigid 
base.  This present paper concerns itself with 

the experimental determination of the modal 
effective mass of these same model equipments 
when they are suspended by long cable to ap- 
proximate a free-free condition. 

DESCRIPTION OF MODAL 
EFFECTIVE MASS 

Consider a structure s which Is attached 
to a vehicle v at one base point as is shown in 
Fig. 1(a).  For simplicity and for the purposes 
of this paper assume that both undamped struc- 
tures have only unidirectional motions. We 
may now ask and answer the question:   "Can 
the structure s be rt-r'aced by a set of inde- 
pendent linear single degree of freedom oscil- 
lators, as shown In Fig. 1(b), such that by ob- 
servations at the base point, and/or any point 
on V, we cannot tell whether S or the oscilla- 
tors are present?" The answer Is, "Yes." 

Normal mode theory [3] eliows that each 
such oscillator must have a fixed base fre- 
quency corresponding to a fixed base natural 
frequency of s.  In addition, each of the oscil- 
lator masses must have a value of 

♦Naval Research Laboratory, Washington, D.C. 
tNow at Naval Ship Research and Development Center, Carderock, Maryland. 
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Fig. 1 - (a) Vehicle (V) with structural 
(S) attached, (b) vehicle with effective 
mats model of S attached 
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Then M   Is the modal effective mass in the ath 
mode of the structure s where the mk'a are the 
component masses of s, and the xkl la the cor- 
responding ath mode shape value. 

The net result of this is that the forces 
transmitted through the base and the motion of 
the base are identical in both cases, if the set 
of oscillators is complete. It is of interest to 
note that the sum of the modal effective masses 
of S equals the mass of s. 

MATHEMATICAL BACKGROUND 

Consider the structure s to be in the free- 
free condition as shown in Fig. 2(a). Then by 
virtue of the modal mass concept It can be con- 
sidered to be of the type of Fig. 2(b), when 
forced and measured at its usual base. In Fig. 
2(a) Mn is the nth modal effective mass, um is 
the «th fixed base natural frequency of s, and 
M, is the local unsprung mass at the base plus 
the mass acting hi ultra high frequency modes 
which may not be totally accounted for in the 
model. 

In this pape- the ratio of force to acceler- 
ation (F/A) at the base point will be used as It 
stands to avi id confusion with terms like "ap- 
parent mass,' "dynamic mass," and sometimes 
"effective m.ss."  It should be easily seen, 
however, that this ratio (F/A) is very closeiy 
allied with the ordinary concept of mechanical 

(")(R) (jM...(^ 

at)   Jwj   Juij 

BASE 
BASE' 

"7 
(b) 

F, A 

Fig. 2 - Effective mass model 
of S with unsprung mass 

impedance when driving and measuring at only 
one point. 

Mathematical analysis of Fig. 2(b) reveals 
three forms of the same equation for the F/A 
ratio at the base. 

F/A = Mt 

F/A - M„ 

and 

F/A = M, 

•['-3 

n 

(2a) 

(2b) 

(2c) 

In these equations, Mt is the total mass of 
s, M0 the "base" or local mass, Ma the modal 
effective mass, ur]" the free-free resonant 
frequencies, &>.]" the fixed-base or antireso- 
nant frequencies, a is the driving frequency, 
and Ma the modal effective mass which is to be 
soujht. Therefore Eq. (2c), which is the par- 
tial fraction expansion of Eq. (2b), is the equa- 
tion we shall deal with. 

To explore the possibility of finding t .e 
first few modal masses for simple structures 
the same symmetric double cantilever beams 
from the fixed-base natural frequency experi- 
ment [2] were used. They were suspended ty a 
long cable to simulate the free-free condition 
and their F/A ratios were measured. 

As always it is desirable to have an idea 
as to the magnitudes of the expected values to 
compare with the experimental results. There- 
fore the modal effective mass of the first mode 
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of each beam was calculated using the Second 
Method of Ritz, where advantage was taken of 
the previous experimental determination of the 
fixed base frequencies.  The equation for vibra- 
tion of prismatic bars Including shear and ro- 
tary inertia is 

2!v ♦ Jü ¥x. £ (u J..\  3V   ¥ J>±_ &. 0 
3x4      EI  3x2      E\      K'G/9x23t2      K'EG 3t4 

(3) 
where 

m = mass per unit run, 

E = modulus of elasticity, 

G a shear modulun, 

I = moment of inertia of area, 

P = mass per unit volume, 

K' = shear distortion factor, 

y = deflection, 

x 1 distance along beam, and 

t = time. 

For this study 

E = 29.6« 10« psi, 

K' = 5/6, 

E/K'G = 3.2, 

G =  11.1* 10s psi, 

E/Ü = 8/3. 

Assuming y ■= y(x) sin wt yields 

d4y      ma1 u2p \ E  1 d2y      p*u* 
—i y + —-   i + —r-   —It * —.— y = 0, dx4       EI 1    [       K'Gjdx2      K'EG 

(4) 

where a is the frequency of vibration which has 
already been determined [2].  To proceed let 

y, = *t t C0, (5) 

where tf>b is the first mode shape of a cantilever 
deflecting by bending, 4>t the mode shape of a 
shear beam, and c a constant for each beam to 
be found to give the best fit in the sense of Ritz. 
This approximation for y. Is substituted for y 
in the original differential equation; it was 

multiplied by 4>b and then Integrated from o to 
I, with the result being set equal to zero. This 
produced the folio ving equation for C: 

c = 

*b *b *  -ji   *b 
Jo I 

u2p 

* ~E~ 

r    E i 
1  + -7- K'G 

p2o>4      , 
dx 

r 4>, \ - 
mo)2 

1 + 
K'G 

lv p'<*r 

• **> + K7EG*,*b dx(6) 

In the actual calculation i was taken to be 
an effective length, that of the overhanging beam 
length, plus one third of the clamping distance. 

The equation for y, was also substituted 
Into Eq. (1) to find the modal effective iu*ss for 
the first mode. This yielded: 

M.  = m 

fr- <h& 
t2c[r^i[rHtcfi^dx' 

f ^dx+2C f  ^^.ds + C2 r *■ 
•'n •'n •'n 

dx 

(7) 

Thus a calculated approximate modal ef- 
fective mass for the first mode of each beam 
was available for comparison with experimental 
values. 

TEST STRUCTURES AND 
APPARATUS 

Twelve double -can! lie ver beams were built 
so that each in turn would represent a different 
system with several modes of vibration.  The 
dimensions of these steel test specimens were 
such that each beam weighed approximately 200 
lb while the fundamental frequencies varied be- 
tween 32 and 921 Hz. Thus the frequency range 
usually considered in shock design was covered 
while each beam represented a lightweight 
structure S.  The beam lengths varied from 
28-1/4 to 92 in. while the thickness varied from 
6 to 2 In.  All beams were 4 In. wide.  Each 
beam was machined from rectangular bar stock 
and had bolt holes drilled In the center of the 
length and 4-In. width.  Dimensions and weights 
of the beams, which are numbered 1 through 12, 
are given in Table 1. 
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TABLE 1 
Nominal Beam and Clamping 

Block Specifications 

Weight 
-    '    r ■ ' 
Total     Wldth Height 

Beam No. (lb) Length 
[Jin.) 

(In.) (l.i.) 

1 209.75 92 2 
2 207.5 77.5 2.375 
3 206.5 66.25 2.75 
4 207.5 61 3 
5 209 56.75 3.25 
A 202 49.5 3.625 
7 199 44.25 4 
8 198 39 4.5 
V 197 37 4.75 

10 196 35 5 
11 195.5 31.5 5.5 
12 190.5 28.25 6 

Upper 29.75 9.5 3 
clamping 
block 

Lower 29.75 9.5 4 3 
clamping 
block 

A pair of clamping blocks was attached to 
each beam's center.  These clamping blocks 
had been attached to these beams when their 
fixed-base natural frequencies had been deter- 
mined by another means in earlier experi- 
ments [2].  Furthermore they provided a con- 
venient attachment point for the driver, force 
gage, and accelerometer.  The arrangement of 
the six 1/2 In. diameter bolts, beam, clamping 
blocks, and the suspension line Is shown In 
Flg. 3. 

SHAKES a 
IMPEDANCE 
MEAD 

my 
^•ri  iuBili 

-ACCELEROMETER 

SUSPENSION LINE (20') 

CLAMPING SLOCK 

/ 

CLAMPING BLOCKS 
^ ACCELEROMETER 

Fig. 3 - Arrangement of beam specimen, 
suspension, shaker, impedance head, and 
external accelerometer 

Sinusoidal force was applied to one clamp- 
ing block with a Wllcoxon Model F-4 electro- 
dynamic shaker.  This exciting force from the 
shaker was transmitted to the specimen through 
a Wllcoxon Model 820 mobility head.  The force 
was measured by the head's force transducer. 
The acceleration was measured on the opposite 
clampir.g block with a Wllcoxon Model 720 ac- 
celerometer. 

The accelerometer contained In the mobil- 
ity head was not used for these experiments be- 
cause of limitations Imposed by the local stiff- 
ness of the surface being driven as well as the 
stiffness of the Impedance head [4]. With 200- 
lb steel specimen the useful range goes up to 
the neighborhood of about 400 Hz.   By measur- 
ing the beam center's acceleration with the 
accelerometer on the clamping block opposite 
the driven one, local stiffness effects at the 
driving point were reduced and the useful data 
range was extended to about Ik Hz. 

General requirements of the electronic 
apparatus were to generate sinusoidal current 
to drive the shaker over the required range 
(10 to 1000 Hz), detect wide variations In ac- 
celeration signal levels, filter each signal 
through a narrow band-pass, and compute the 
ratio of the force to acceleration.  It was desir- 
able that all these functions be performed syn- 
chronously while under the control of a single 
local oscillator.  Commercially available dual 
channel wave analyzing and recording systems 
that meet these requirements are made specifi- 
cally for mobility/impedance measurements of 
this type. 

In these experiments an early model Ad-Yu 
Type 1010 mechanical mobility plotting system 
was used.  Several modifications were made 
prior to these tests, and one during these tests. 
The most noteworthy prior modification was the 
addition of a frequency synthesizer for use as 
an optional local oscillator.  It not c.ly allowed 
the driving frequency to be controlled better 
than 0.1 Hz, but Its stable characteristics al- 
lowed a more accurate mixer balance adjust- 
ment, provided a more stable driving frequency, 
and more accurate tracking by the filtere.  Tne 
original devices which produced a dc-voltage 
proportional to the logarithm of each signal 
magnitude were replaced with devices of NIIL 
design.  A summing circuit was added so the 
ratio of force signal magnitude to acceleration 
signal magnitude could be plotted on the phase 
recorder.  Thus with a digital voltmeter In 
parallel with the ratio magnitude plotter, the 
recording system as used for the first six 
beams was capable of either continuous sweep 
or Intermittent digital operation.  The circuit 
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block diagram is shown in Fig. 4.   Earlier 
modal effective mass measurements with this 
system were published in Ref. [5]. 

Midway in the series of tests this system 
was modified so as to convert it to intermittent 
digital operation only.  The accuracy of the FA 
ratio was improved by substituting decade at- 
tenuators (calibrated in steps of 0.1 db) in place 
of the log potentiometers.  These attenuators 
were adjusted by hand until the output of each 
crystal filter was the same reference value. In 
this manner the summer, the ratio plotter, the 
digital voltmeter, and the detector and servo 
of the recorders were eliminated.  The ratios 
were found from the db values of the settings of 
the attenuators when both outputs were the 
same.  This modified circuit Is shown In Fig. 5. 

PROCEDURE 

/liter aligning the beam and clamping 
blocks to form a symmetric double cantilever 
conl'guratlon, the 1/2-ln. diameter bolts were 

torqued to 40 lb-ft except for the middle bolt In 
each row of three.  They were torqued to only 
35 lb-ft because parts of their heads were cut 
away to make room for the mobility head.  A 
3/8-18 stud attached the external acceleromt- 
ter Inside the array of bolt heads to the far 
clamping block while another 3/8-16 stud simi- 
larly attached the head and driver to the near 
clamping block. 

Electronic components were adjusted dur- 
ing preliminary observations on the frequency 
spectrum.  Figure 6 shows traces of automatic 
i lots obtained by sweeping first Beam 1 and 
then a 200-lb calibration block.  The frequen- 
cies of the peaks of the FA ratio (Indicating the 
FBNF) were carefully determined.  Fifty suitable 
data frequencies were then chosen on the posi- 
tive (F «tnd A In phase) portions of the ratio 
plots.  These data frequencies were chosen so 
that the weli behaved portions of the F/A plot 
preceding each FBNF was represented.   More 
data points were allocated to the lower fre- 
quencies. 

FORCE 
6A6C 

•I     '    pf'E- 

MECHANICAL CONNECTION 
TO POT WIPER AND PEN 

LOG POT 
OF FORCE 
RECORDER 

RATIO 
PLOTTER 

B OCa LOG 

DIGITAL 
OCVM 

CARRIER 
MIXFR 

OCa LOG    E| (FILTERED! 

CRYSTAL 
FILTER 

(20.3 KHz) 

DETECTOR 
a 

SERVO 
OF RECORDER 

DCa LOG    Zz (F1TERED) 
y 

ACC. PRE- 
AMP 

LOG POT 
0? ACC. 

RECORDER 

CARRIER 
MIXER 

CRYSTAL 
I LTER 

(20.'5 kHz) 

DETECTOR 
a 

SERVO 

OF PECOROER 

MECHANICAL CONNECTION 
TO POT WIPIIR AND PEN 

TO SHAKER POWER 
AMPUF.ER 

AUDIO 
MIXER AND 

CRYSTAL 
OSC (20.3k H») OSCILLATOR 

(SWEEP) 
20.3-30.3kHz 

TA OSCILLATOR 
DIGITAL 

20.3-303 kHz 

Fig. 4 - Block diagram of recording system 
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FORCE 
GAGE 

PRE- 
AMI>. 

DECADE CARRIER CRYSTAL 
FILTER 

(20.9 KHi) 

AC VOLT 
ATTENUATOR MIXER METER 

4 
J 
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PRE- 
AMP. 

DECADE 
ATT6NUA.OR 

CARRIER 
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CRYSTAL 
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OSCILLATOR 
DIGITAL 
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Fig. 5 - Block diagram of modified recording system 

too» 
-Mim-ATE 

/wenn-!        / 

100 too 
LOS FRCQUENO. Hi 

Fig. 6 - Sample of automatically obtained 
data, used to decide where accurate points 
to be measured 

After recording the ratio values of the test 
specimen In terms of the db settings of »he at- 
tenuators (force signal level In db minus the 
acceleration signal level In db) the shaker, 
mobility head, and external accelerometer were 
again affixed to a suspended solid steel cylinder. 
The F/A ratios in db for the same frequencies 
were recorded for the 200-lb weight while main- 
taining the same gains In the system. In this 
manner the db values representing the beam 

could be compared with those db values of the 
calibration weight and a direct value of each 
beam's F/A* g in db relative to 200 lb was re- 
corded for computation.  A digital computer 
program used these data points to find a least 
squares "best" fit of modal masses for the 50 
points of F/A and the FBNF.  The program 
printed out the utatic weight of the specimens 
as measured by the F/A data; also It computed 
the residual or unsprung weight, that of the 
clamping blocks bolts, and the higher modes 
whose frequencies were not determined. 

RESULTS 

Table 2 presents the averaged results of 
this experiment. Note that the experimentally 
determined modal effective weights agree well 
with the approximate calculations except In the 
case of Beam 12 which Is the shortest stiff est 
beam with a fundamental fixed base frequency 
of 921.4 Kz. 

Figure 7 Is a plot of the ratio of the meas- 
ured to the calculated first mode weight for 
each of the three separate runs used.  Each run 
Is denoted by an X.  The encircled points con- 
nected by straight lines (for clarity) show the 
average values which were used In Table 2. 
There are two auxiliary scales on the graph. 
That on the abscissa associates the frequency 
with the fundamental fixed base frequency of 
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TABLE 2 
Measured Values of Modal Effective Weights for Twelve Different Beam Specimens 

with Scale Weights and Calculated First Mode Weights for Comparison 

Frequency 
of First 

Mode (Hz) 

Effective Weight in Weight in Static Weight 
Value of Beam First Mode Residual 
Ritz "C" No. Second Third Weight Experi- 

Scale Measured Calculated Mode Mode mental 

3.2.1 _ 1 128.1 126.1 39.0 13.7 100.5 281.3 273.1 
55.3 0.018462 2 127.0 126.4 39.6 19.4 90.0 276.0 271.6 
84.9 0.044616 3 124.9 125.6 38.4 17.2 92.6 273.1 270.7 

108.1 0.080d50 4 126.9 127.0 43.9 21.1 104.6 298.6 271.3 
135.5 0.092104 5 130.1 128.2 36.0 — 113.4 279.5 272.5 
197.4 0.217933 6 137.2 127.5 69.6 - 85.9 292.7 265.8 
197.4 0.217933 6 127.3 127.5 48.9 — 99.4 275.6 265.8 
264.2 0.343874 7 128.4 127.4 48.0 — 100.7 277.1 263.0 
388.2 0.344381 e 137.7 126.5 — — 140.4 278.1 262.1 
446.0 0.441701 9 121.5 128.3 — — 153.1 274.6 261.3 
529.9 0.443482 10 134.0 127.5 — — 153.0 287.0 260.1 
692.0 0.513305 11 130.2 126.8 — — 168.9 299.1 259.6 
921.4 0.883812 12 94.9 128.1 — — 202.2 297.1 254.6 

1.2 
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Fig. 7 • First mode result« 
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each beam, and the other on the ordlnate ex- 
presses the ratio In db to show the scatter In 
those terms for those familta? with electronic 
measurement. Note that Beam G was measured 
twice. Beams 1 to 8 were measured and then 
certain modifications were made to the elec- 
tronics in an attempt to Improve resolution. 
Beams 6 through 12 were then measured with 
the modifications included. 

Figure 8 plots the ratio of experimentally 
determined weight to platform balance weight. 
The experimentally determined weight is the 
sum of the modal weights and the residual 
weight as given in Table 2. Scales and plotting 
are otherwise the same as in Fig. 7. 

The comparison between the averaged 
measured and approximately calculated values 
of the first mode effective macs is better than 
anticipated for the present state of the art of 
mechanical Impedance measurements [4]. 
These values are within ±10 percent (except for 
Beam 12) or ±0.6 db where db Is 20 log10 F/A. 

Great care was taken to make these meas- 
urements as accurate as possible with the 
equipment used. Several factors served to 
limit this accuracy:  (1) the electronic system 
accuracy of about ±0.8 db, which was the rea- 
son for using the average of three runs, and (2) 
because of the frequency range limitations only 

the first two cr three normal modes were used 
In the least squares solutions. 

Consider again Eq. (2c), and rewrite as 

F/A 
j u m u 

••i i ■  —;     ••> l  

for Beams 5 through 7 as an example. Now the 
third term of this equation has a denominator 
which is always positive and less than one since 
<» < «, for all o > 3.  This helps to account for 
the differences in the summed experimental 
weight. A similar argument can be advanced 
for Beama 8 through 12. 

CONCLUDING REMARKS 

The accuracy of these modal effective mass 
measurements makes them entirely suitable for 
use on simple structures. The approach used 
herein Is limited by the requirement that the 
structure undei' test be free.  However, this is 
a natural first step toward development of a 
technique for measuring the modal masses 
while the structure remains attached, in place, 
rn the vehicle. 

1.2 r— 
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Fig. 8 - Ratio of experimentally measured static weight to scale weight for all 
beams.   A db scale is included to show that the scatter is small in U  ms of db. 

150 



These are among the most useful and accu- 
rate mechanical Impedance measurements that 
the authors have made to date.  Greater accu- 
racy and resolution are possible but at a high 

cost — for It would require special develops u\l 
in three areas:  (1) eler j\ >.lcs, (2) transducer«, 
and (3) calibration techniques. 
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SIMPLIFYING A LUMPED PARAMETER MODEL 

Martin T. Solfer and Arien W. Ball 
Dynamic Science, a Division of Marshall Industries 

Monrovia, California 

This work constitutes an extension of work previously presented by the 
authors.   A method for simplifying a lumped parameter model by reducing 
the number of mass points Is derived.  Two degrees of freedom per mass 
point are allowed for, and the basis for the reduction procedure is that 
the work done on the reduced system is equal to the wort done on the 
original system by the Inertia forces during a free vibration.   The 
procedure is appliud to the ln-p)ane deformation of a truss, and a dy- 
namic equivalence between the induced and original systems is es- 
tablished. 

INTRODUCTION 

A procedure for reducing the number of 
mass points In a lumped parameter system was 
presented recently by the authors [1 ]. 
Although the procedure was successfully 
applied to several problems, a drawback was 
that It restricted each mass point of a given 
system to a single degree of freedom.   This 
work is an extension of the work contained In 
the previous paper in that It allows two degrees 
of freedom par mass point. 

The lumped parameter method of analysis, 
a method commonly employed for studying the 
dynamics of complex elastic structures, 
usually yields reliable results for the first 
"n" modes of the real structure if at least "7. n" 
mass points are introduced.   Reduction of the 
real structure to the lumped parameter model 
depends on such considerations as:  the 
physical appearance of the structure, the 
number of modes desired, the effects of rotary 
inertia, shear, and the lumping of appendage 
masses with main masses (see references [2 ] 
through [4]), 

In a number of problems, altho-   ' the 
first "n" modes of the real struc -J«S are de- 
sired, it is necessary, In view of the consider- 
ations mentioned above, to Introduce a number 
of mass points far in excess of the " 2 n" 
required.   Solution of this system, will, in 
most cases, only slightly Improve the accuracy 
of the results for the first "n" modal character- 
istics , and it would therefore, be more de- 
sirable to deal with a system consisting of 
less mass points.   An example is the dynamics 
of a truss type structure.   For the formulation 

it is advantageous to locate a mass point at 
each truss joint.   However, depending on the 
size of the truss, the number of modes desired, 
and the possible Interaction of the truss with 
an adjoining structure, locating a mass point 
at each truss joint may make *e dynamic 
problem too cumbersome to handle efficiently. 
Consequently, a technique is desired which 
will simplify a given lumped parameter model 
by reducing the number of mass points. 

As In the previous paper, the basis of 
the reduction procedure is that the work done 
on the reduced system Is equal to the work 
done on the original system by the Inertia 
forces during a free vibration.   The procedure 
is applied to the In-plane deformation of a 
truss, and a dynamic equivalence Is established 
between the original and reduced lumped para- 
meter models.   Dynamic equivalence Is defined 
here as demonstrating a "closeness" in natural 
frequencies and summed effective (modal) 
weights between the reduced and original 
systems.   Consideration of effective weight 
Is of importance for problems In which a base 
acceleration is the input since it is the 1 g 
base reaction, reference [2]. 

REDUCTION PROCEDURE 

Consider an t-ndamped, linear, elastic 
system consisting of "n" discrete mass points 
connected by springs.   Each mass point Is 
allowed two degrees of freedom; corresponding 
to displacements In the x and y directions. 
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Let 8.; 1 * ' * n, <*->note the displacement 
of the 1 th meat p—-' In the x-dlrection, and 
8j»' (n + 1) * 1 * 2 n. the displacement of the 
(1-n) th mass point In the y-dlrectlon.  Simi- 
larly, let P.; 1 * J * n, denote the force 
acting on the i th mass polr.t In the x-dlrectlon, 
and P.; (n + 1]I * J * 2 n, the force acting on 
the (J -n) th mass point In the y-dlrectlon. 

For such a system, the displacements and 
forces are related through the Influence coeffi- 
cient matrix, a,,, by the equations 

2n 
«j-    E  e 

J-l 
P. ; 1-1, 2 2n       (1) lJrJ 

For a free vibration, the iorcea, P., acting 
on the system, are Inertia farces.  That is 

-m. x. ; 1 * i * n 

.1 -m0-n)y0-:•)'* (n+l) *J*2n 
(2) 

where x, ; 1 < J tf n, denotes the x-component 
flf aocefcratlon of the j th mass point, and 
y0-n) : ^n+1^ *' * ^n^' ** y-component 
of acceleration of the (J -n) th mass point. 

Using equation (2), equation (1) may be 
rewritten In the form 

8i""{,?ia«Vi 
2n 

+   E        a,, m», 
J-tn+1)  1J    J 

(3) 

n)'y,0-n)} 

The work, Wu, done on the system of "n" 
mass point« during a free vibration Is given 
by 

2n 
E P. 

i-i  l 
(4) 

Replacing J by 1 in equation (2), and making 
use of equation (3), equation (4) may be 
written In the expanded form 

W, k    2 i {£ j?! "4 °j % *'i k'j 
n     2n 

+ i^(n*l)J-im(1-n)m,ai,St,y(1-n) 

2n        2n 
\4+l)J.ftJ+l)tnÖ-nJraÜ-n)VU.n)Vü-n)} 

(S) 

Interchanging 1 and j In the thfrd summation, 
and noting that «„ • a.j, equation (5) becomes 

1 r n      n 
Wv » •§■ j E     E   m. m. a,, x. x, 

*    < '-1-1 J-l   *   J    1J   l   • 

»>       2« .. .. 
+2l-l j-^+l)miraÖ-n)aiJXiyÖ-«) 

(6) 
Equation (6) may be further simplified by re- 
placing J by (J + n) in the second and third sum- 
mations, and 1 by (1 + n) In the third summation. 
The resulting expression is 

W*"2i?i JJ1{
a«ml,njVx'j 

+ 2alÜ+n)ralVlyj 

+ a(i+rfÜ + n)mlmjy\yj}   m 

Consider next dividing the "n" mass points 
into "r" groups.  Each group may or may not 
contain the same number of mass points.  The 
subdivision process Is assumed to be arbitrary. 
For each group, replace the mass points of the 
original system entering the g:oup by a single 
nass point located at the center of mass of the 
group, and equal to th» sum of the masses 
entering the group.   For example, for the 1 th 
group, Introduce the mass M., defined as 

4 
M, »      E      m, 11»1, I,..., r 

1    j-lfc+1)   ' 
(8) 

where (4 - k) denotes the number of mass points 
of the original system entering the group.  The 
"r" Mj's defined by equation (6) are the mass 
points of the reduced system.  A method for 
connecting these mass points Is required such 
that the reduced system is dynamically equiva- 
lent (as previously defined) to the original sys- 
tem. 

_    Considering the reduced system, the work, 
Wj. done on the system durtag a free vibration 
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la given by 

-     1    r     r     r- 
w. -*■ y  y J« 'kl^j^Pii".")^) 

+ 2il(J + r)MiMjXlYj 

+ *(i+r)0 + r)MlMjW       (9) 

where a,, denotes the as yet unknown Influence 
coefficients for the reduced system. X, and Y, 
denote respectively, x and y acceleration com- 
ponents of the 1 th mass point, M.. 

The criterion to be used for determining 
a,i is that the work done on any mass point, 
M , of the reduced system during a free vi- 
bration is equal to the work done on all the 
mass points of the original system which make 
up the mass M .   This implies that the total 
work done on each system Is the same (the 
converse would not necessarily be true). 
Assume that there are "a" mass points In the 
first of the "r" groups, " (b~a)" in the second, 
.... " (i -k)" in the p th, ..., and finally, 
"(n-m)" in the r th.  The work, w , done on 
the "(l -k)" mass points which make the p th 
group is obtained from equation (7) as 

p    2i-(k+l) j-lL «        1J   ^,J 

which may also be written in the form 

.      I        ,  a b 
w  «*     E 2 Y«,+     E      Y,i+... p    zl-(k+l) lj-l  lJ   J-(a+l) 1J 

I 
+     E 

J-Oe+D 

n 

Y„ + 

1 ao) 

where, 

1) "  alJ ™1 mJ Xl *' 

\i" al(j + r.)mlmJ*l*j 

Hj " *a+n)0 + n) ml mJ ^1 ^J (ll) 

The work, w , done on the p ih mass point, 
M , of the reduced system Is obtained from 
equation (9) as 

+ 2*p<j+r)MpMjVj 

**(p+r)(J + r)MpMjVj}      »» 

Assume that the accelerations of the mass 
points of the reduced system are such that the 
Inertia forces of the reduced syster* a» related 
to the inertia forces of the original system 
through the relations 

M. M..X 1 Mk Xi V 
"l"l??Xü 

EEOL. 
l J ^ 

n. n, 2J 2J X,. 

'l *"kÄi Mt 

1   J 
liO + n) 

n, n. ci E \tt 

Y. Y.   m L-l—  

(l+n)(i+n) *   k   l  k   EEa,.. 
1  j    u 

a 3) 

where the sums on 1 and ] are extended over 
the number of mass points of the original 
system which make up M, and My, and nt and 
n. denote the number of original mars points 
associated with each of these sums. 

Substituting equation (13) Into (10), and 
expanding, ylolds 

\   &       E  t, 
i-txyn-i^ M M x x 

aU-k)        Mp Ml xpxl 
w

P-r 

aU-k) p    I   p   1 

aU-k) MpMlVlJ 

1 b 
E E 

♦1LÜ 
L       (b-a)(i-k)        MplltSXl 
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2     E E       alft+l0 

(b-a)U-k) 
MpMjXpYj 

+... 

E      a„ 
1,1-VV V,ig 

u-w1     p p 

of the Xj's and Yj'i yields the following 
rerults: 

äpj  ;  1 <j < r 

t I b 
1P2-   fc-JTl-Ui. 8* «,.!♦!,•« 

♦ 'l.lill^V.Lil 
2        E 

1 
E        a, 

(i-W P T>   P 

+u£flüüaZ^lM2v2 
(I-«2 p p 

+.., 

4 n 
[E S       aH 

(i-k)(n«m) P   r"p"r 

n 
E       a, 

(4-k)fri-m) P   r P r 

E 
+ ÜÄ 

n 
E      *, 

U-k)(n-m) MpMrVrJj 

04) 

A schematic of the a,, matrix Is as follows: 
«U 

^lO + r) 

*(l+r)0 + r) (15) 

whwe 1 < 1, J *r, and In accordance with 
Maxwell's reciprocal relation "5^ + r»" a#1+ r\< • 

To obtain the elements of each of the sub- 
matrloes associated with the p th mass point, 
expand th» tight hand side of equation (12), and 
equae th« result to the right hand side of 
equation £14).  Noting the linear Independence 

ä     -—^—s-      E o. 
Pp    U-W2 l.J-fc+D    J 

pr 
x 4 n 

6i-mfu-lc)1.0t+1) j.(m+i) "« 

(16a) 

! 4 a 
Vl + rJ-ali^,.^!)   jtx^O+n) 

! i b 
*p(2 + r)-<b-.)Vld  l4+1)J-g+1)

alO + 

L     1 f 

ni 

4 n 

(16b) 

«p(2r) * (n-mfu-W i.^Dj.^D^O+n) 

*(p+r)a*r) "aTi^kT j.^+DjSl VnKn+j) 
4 a 

i 1 b 

*(p+ r) (2 + r) "fc-aJU-W j.2 +1} j.^+ „«(n+l) (n+J) 
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UM of the reduction procedure la demon- 
strated next In the example. 

a(p+D(p+r)-^T lf)4+1)
a(nM)(n+J) 

(16c) 

By varying the subscript p (1 * p < r) In 
equations (16a) through (16c), and appropriately 
adjusting the summation limits for the subscript 
1, each element of each submatrlx Is obtained. 

Hence, equations (16a) through (16c), In 
conjunction with equation (8), completely 
specifies the reduced system In terms of the 
physical properties of the original system. 

It should be noted that If each mas i point 
Is restricted to a single degree of freedom, 
corresponding, for example, to motion In the 
x-dlrectlon, then equations (16b) and (16c) 
would no longer be applicable; only equation 
(16a) would apply.   If equation (16i>) is 
compared with equation (11) of reference [1 ], 
It Is seen that they are Identical; as would be 
expected. 

To demonstrate the validity of the use 
of the reduction procedure presented, It Is 
necessary to demonstrate that a dynamic 
equivalence Is established between the original 
and reduced systems.  That Is, It In necessary 
to show, In a given problem, that for the first 
"k" modes of Interest, the natural {frequencies, 
i".   ;  1-1,2, ...,k, anc jummed effective 

k 
weight,    £   u"., of the reduced system are 

1-1   l 

"close" to the natural frequencies, 
1-1,2, ..., k, and summed effective 

weight, 
k 

., of the original system.  The 
1-1 l 

k th mode effective weight Is defined as 

•»k 
[?-t»»W] 

(17) 

where g denotes the gravitational acceleration, 
and $j' the k th mode shape associated with 
the 1 th mass point, m-. 

EXAMPLE 

The truss shown In Figure la has a span 
to height ratio of ten, and was proportioned 
such that each of Us elements would be equally 
stressed to 20,000 psl when a 30,000 lb. 
vertical load Is placed at each Joint.   Using 
a material density p - 0.283 lb/in , and a 
wb!«»ht distribution obtained by assigning to 
each uiass point (truss Joint) one half the sum 
cf the weights of the truss members entering 
each Joint, a diagonal weight matrix U 
obtained.   Allowing for In-plane (x, y) deforma- 
tion of the truss, a stiffness matrix is generated 
and Inverted; yielding the Influence coefficient 
matrix, ay. 

Using the DTMB Program 2262, reference 
[5], with the weight matrix and the influence 
coefficient matrix,the natural frequencies, f., 
and summed effective weights for both x and y 

wer» cVai.ied for 
1 '* 1 

the system's thirty-six r.odes.   These results 
are presented for the first eighteen modes in 
Tables 1,2, and 3. 

Replacing the mas.i points lying on the 
same truss vertical (set- Figure la) by a single 
mass point, and using equation (8), the 
reduced system shown In Figure lb is obtained. 
Using equations (16a) through (16c) and the 
Influence coefficient matrix, a..' the Influence 
coefficient matrix for the reduced system, V, 
is obtained. 

motions, £ ü* and £ uy, 

Ml' 

With the reduced system's weight and 
influence coefficient matrices as Input to the 
DTMB program, the parameters of interest 

ft ?£> were obtained.  For the £TT. 
1    l 

purpose of comparison, these results are also 
presented In Tables 1 through 3 for the system's 
eighteen modes. 

Examination of Table 1 shows that using 
the reduced system reproduces the original 
system's natural frequencies to within 9.OX 
accuracy for the first eight modes. The higher 
modes demonstrate a marked loss In accuracy. 
From Table 2 It Is seen that for all modes con- 
sidered, with the exception of the second and 
third modes, the x-dlrectlon modal weight is 
reproduced to within 9.6% accuracy.  The 
second and third modes demonstrate a 15.6% 
error.  From Table 3 It is seen that the y-di- 
rectlon modal weights are reproduced for all 
modes to within 2.9% accuracy. 
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CONCLUSION 

The two-dimensional reduction procedure 
developed In this paper gives a dynamic 
equivalence of sufficient accuracy for stovng*» 
shook analysis for the example problem 
consldarad.  Thus for a typical truss structure, 
a halving of mass points can be accomplished. 

The application of thlo method is most 
useful for truss and riant frame structures 
composing portions of larger structures.  For 
a truss type structure it is relatively easy 
to obtain the flexibility matrix of all the 
Joints by inversion of the Joint stiffness 
matrix.  However, if the truss Is merely a 
portion of a more complex, and less well 
defined structuie, then usually far too many 
mass points have been used in the truss 
defir'tlon. Thus, the mass point reduction 
procedure allows the entire structure to be 
dyiu mlcally analysed with the same level of 
accuracy, and more nearly equal mass sizes. 
Slnoe the effort required in dynamic analysis 
la approximately proportional to the square of 
the total degrees of freedom, it Is usually 
worthwhile to simplify the lumped parameter 
model to the fullest extent possible. 

This method is uieful to obtain greater 
dynamic accuracy when restricted to a limited 
number of mass points.  Similar to other 
methods for accomplishing this result, many 
problems must be examined in order to properly 
define the applicability of the technique. 
When a sufficient number of problems have 
been examined, then generalised guidelines 
and rules may be formulated. 
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Table 1 .    Frequency Comparison 

Mod« (1) ft (cycWt/tac.) 

- 
Tj (cycl«s/i«c.) * Error* 

3.ra 3.90 0.5 

s.ts 6.89 0.4 

10.73 11.24 4.'J 

IS.St 15.64 O.S 

16.03 17.47 9.0 

19.20 19.29 0.4 

21. OS 25.54 6.1 

25.51 26.16 2.5 

31.4 J 36.24 23.2 

29.7! 36.41 22.5 

35.17 41.46 17.9 

25.13 62.96 75.4 

41.42 90.72 119.0 

42.43 109.45 155.6 

42.62 114.15 167.9 

46.15 142.92 196.6 

54.54 189.49 247.4 

56.14 191.72 340.5 

Tabla 2 .   Effective w.lght Comparison (x-dtroctlci) 

Mod» 0) EuNlbr..) 
1   l 

£ü." (Ib..) 
1    ' 

»Error* 

1 0 0 0 

2 3,972 4,591 15.6 
3 3,972 4,592 15.6 

4 }'.. 844 28,313 9.6 

5 i5.844 28,319 9.6 

6 67,174 69,355 3.3 

7 67.174 (9,399 3.3 

1 68.99) 71,200 3.2 

t 70,296 71,200 1 .1 

10 70.296 7.,258 1.4 

11 70,296 71.258 1.4 

12 70,555 73,234 3.8 

13 70,555 73,234 3.8 

14 70,5(0 73,474 4.1 

IS 70,5(0 73,474 4.1 

11 70,5(0 71,549 4.2 

17 70,683 73,356 4.1 

18 70,(11 71,(75° 4.2 

*to nearest tajnth of a percent 
bTot«I truss weight - 73,675 Ibfl. 

Tabltl .   Efbc.lv« W.ioM Comiwrtion (r-dlractlon) 

Mod« (1) SM'OI».) 
1    ' 

Du/Ob..) 
1 ^ 

«Error* 

1 (2,008 (2,228 0.4 

: 62,009 (2,228 0.4 

3 ((,577 67,551 1.5 

4 66,577 67,552 1.5 

5 (•,137 (9,9(8                     0.9 

6 (1,337 (9.9(9 0.9 

7 70,930 71,428 0.9 

8 70,810 71,419 0.9 

9 70,810 71,011 1.7              1 

10 70,947 72,012 1.5 

11 71,110                   71,171 2.6 

12 71.110 73,171 2.6 

11 71,415 73,509 2.9 

14 71.415 73,50« 2.9 

IS 71,047 72,520 3.6 

1« 71,047 71,520 0.6 

17 71,047 73,((7 0.« 

18 71,142 71,(75° t>.7 
i 

•to nearest tenth of a parcont 

"total try« weight - 73,175 lb«. 
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DISCUSSION 

Dr. Mains (Washington University):  You 
were speaking of getting the reduced system 
flexibility matrix from the system s'.iffness 
matrix.  This implies that you are gjing to do 
some inverting.  Do you have any difficulty 
with this? 

Mr. Hell:  None on the scale of the Prob- 
lems we have tried to date. 

Dr. Mains:  How big have you gone? 

Mr. Bell:  This was a 36 by 36 for the 
paper, and we have done up close to an 80 by 
80. 

Dr. Mains:  In the work that I reported a 
little earlier I had a 40 by 40. I inverted it, 
multiplied the inverse against the original, 
and the off diagonal elements were 10-" or 
lower. And yet when you plot it up. what would 
bf the deflection influence coefficient matrix, 
i', was much too ragged to use so I ha«i to gen- 
erate the deflection influence coefficient ma- 
trix from scratch in order to b^ve something 

useable in the reduced system.  This happens 
often.  These things do not invert, cross out and 
reinvert nicely. 

Mr. Bell: Right - this is a function of the 
particular program being used and also the 
computer.  The computer we were using was 
the CDC 6600 which lias a 60 bit word length. 

Dr. Mains:  I was using the 360-50 at 
double precision which is pretty close to the 
same, so that we have a comparable base 
there.  But I have had trouble also on the CDC 
in the same way. 

Mr. Bell: We have had some problems with 
inversion and this is often Just a peculiarity of 
the physical system with which you are working. 

Voice:  Have you compared these stresses 
from 1 model to the other?  and these calculations? 

Mr. Bell:   No, we have not.  To obtain the 
stress*es you put the mochl loads generated 
back on the original structure not back onto the 
modil. 
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Mr. Kggur (Aerospace Corp.):  I noticed 
that your frequencies were quite a bit off, es- 
pecially after the 10th mode. Doesn't it affect 
your response calculations - the stresses and 
displacements? Won't they be quite different? 

Mr. Bell:  For a vibration problem that 
would be true. We developed this method pri- 
marily for shock analysis, where only the modes 
of the higher modal effective weights are in- 
cluded in the analysis. Under the Dynamic 
Design Analysis Method 'DDAM) the require- 
ment is that either half the modes be taken, or 
80% of the summed effective modal weights. 
A lot of these large frequency errors are as- 
sociated wim modes that are essentially 
insignificant. 

Mr. McCaUey (General Electric Co.): 1 
might mention that it is possible to take these 
systems and eliminate some of the coordinates 
and if you do a specific trick you can keep any 

specific frequencies you want. Without going 
into the details, the secret is to make the am- 
plitudes of the coordinates you eliminate a 
linear combination of the mode shapes in the 
reduced system,   ^y this means, you can keep 
any of the first n frequencies you want - there 
is one complication that you won't like - you'll 
get a non-diagonal mass matrix. 

Mr. Pakstys (General Dynamics/Electric 
Boat):  I would like to comment on this business 
of differences in frequency. In the DDAM 
method, depending on the frequency range, the 
inputs might be dependent on the frequency. If 
the frequencies are way off, the inputs would 
be affected. 

Mr. Bell:  This is true.  The high frequencies 
are associated with high shock input levels.  But 
since the effective weight is generally quite 
small the total loads introduced are small. 
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STEADY STATE BEHAVIOR OF TWO DEGREE OF FREEDOM NONLINEAR SYSTEMS 

J. A. Padovan, J. R. Currerl 
Polytechnic Institute of 3rooklyn 

Brooklyn, New York 

and 

M. B. Electronics 
New Haven, Connecticut 

The Ritz averaging method is used in obtaining approximate solutions 
to the response of a two degree of freedom nonlinear system. The 
general equations are derived for linear damping with cubic non- 
linearities in both springs.  Frequency response curves are plctted 
for various values of a hardening spring characteristic in either 
of the two springs. The response is shown for both masses. Similar 
to the single degree of freedom system, the two degree system has 
either 1, 2 or 3 solutions, not all of which are stable. A study of 
the nonlinear response curves make it easy to postulate the nature 
of the spring nonllnearltles that would result in mere simultaneous 
solutions. _^_^^_ 

I 

INTRODUCTION 

The environmental vibration test of 
structures frequently results in response 
curves that are, to say the least, confusing. 
We apply to the structure a sinusoidal input 
and measure responses on various points of the 
structure that are periodic, but not harmonic. 
Obviously, in these cases something has gone 
nonlinear. The proper Interpretation of 
response magnitudes that are obtained from 
tests requires a knowledge of what happens 
when nonllnearltles are Introduced Into the 
system. 

This paper is intended to shed a little 
more light on the response characteristics of 
two degree of freedom systems with nonlinear 
springs. 

Previous investigators have reported on 
various aspects of the more than one degree 
of freedom vibration problem. Several papers 
(1) were concerned with the normal mode 
vibrations of nonlinear systems.  Several 
others (2), (3), (4) dealt with the steady 
state behavior of nonlinear dynamic vibration 
absorbers.  In particular, Roberson and 
Arnold made a study of the effects of making 
a dynamic absorber spring nonlinear.  Carter 
and Liu investigated the Improved dynamic 
absorber action by making both springs non- 
linear. An exact result by geometrical 
methods for strongly nonlinear two degree of 

freedom systems was discussed in Reference 5. 

This paper extends the previous 
investigations by considering the problem 
generally as a two degree of freedom system, 
not necessarily as a dynamic absorber. The 
nonlinearlty is Introduced separately in each 
of the springs to study the overall character- 
istics on the response of each of the masses in 
the system. A wide range of system parameters 
is Introduced to follow the changing response 
patterns. The purpose of the paper Is basic- 
ally to develop an understanding of what 
happens when nonllnearltles appear in either 
spring of the system.  Both hardening and 
sofetning cubic nonllnearltles are considered 
for each spring, although o.ily hardening 
characteristics are plotted. Mass ratios and 
linear frequency ratios are altered to examine 
a wide range of possible responses. The 
results are discussed to show tne differences 
that are introduced by the nonlinear spring 
characteristics. 

The Ritz avenging method using one term 
approximations is used in solving for the 
responses of the two degree of freedom non- 
linear system. Mo absolute measure of the 
solution accuracy Is afforded by the Rltz pro- 
cedure.  Only 1" the limit as the nonlinear 
spring approaches the linear spring coefficient 
does the approximate response expression 
converge to the exact linear response. 
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Thus, for snail nonlinearltles the 
approximate solution is fairly accurate. The 
present paper does not limit the Investiga- 
tion to small nonlinearltles. 

Interesting results are shown by the 
approximate «olutlon. Similar to the single 
degree or freedom system, the two degree 
system has either ', 2 or 3 simultaneous 
solutions. For certain values of the param- 
eters used, however, the two degree system 
with cubic nonllnearlty could have as many as 
5 slnultaues-s solution«, not all of which are 
ttable. A study of the shape the nonlinear 
response curves makes It easy to postulate 
the nature of the spring nonllnearlty that 
would result In even more simultaneous 
solutions. 

Another Interesting result Is that the 
second mode resonance Is primarily affected In 
a hardening spring characteristic. The term 
resonance in the nonlinear system Is used here 
to describe the growth without bound of the 
system response with increased frequency. This 
occurs vhethar the nonlinearltles are intro- 
duced Into either the upper or the Uwer spring. 
On the other hand, It is the first mode 
charactiirlstlc that Is primarily affected by 
a softening spring characteristic. Again, 
this occurs whether the softening spring 
feature is introduced into the upaer or the 

'spring. 

RITZ PROCEDURE FOR MULTI-DEGREE OF FREEDOM 
SYSTEMS 

For an n degree of freedom system, the 
XI, X2,---Xk---Xn as functions of time maybe 
supplied. What is sought is the behavior of 
the '»yttrm under the action of a periodic 
disturbing force. For a differential 
equ/itlon of the type 

^ [*.,**, >*«]s0   (X> 
Th.fi solution would give the seslred co- 
ordinates aa functions of time. In the 
tbaence of a procedure yielding an exact 
solution, an approximate solution can be 
obtained by the following procedure. 

1. Replace each of the co-ordinates of 
type X)-(c) by a corresponding function of 
the form 

N 

*J$ "- Z A^ **(*) (2) 

*•'     k'U, —« 
The coefficients kl constitute a set of nN 
unknown constants. The functions 01 (t) are 
selected functions of time which approximate 
the system's motions. 

2. Substitute equations 2 into the 
differential expressions of equation 1 so 
that a set of functions of time 

^1^)^^—,Xnt)]llO (3) 
k -- i,», n 

will be obtained, nan oÜ which will in general 
be equal to zero. 

tn 

(4) 

Perform all of the integrations of 

•'o k 3 I,«., Y\ 
X  s 1,1., N 

Equations 4 constitute a set of nN algebraic 
equations in nN unknowns of the type <^ 

4. '"olve the algebraic equations of 
equation 4 for the coefficients A^ and 
Insert them Into the series of equation 2 to 
obtain the approximate solution sought. 

GENERAL SYSTEM EQUATION!: 

A schematic diagram for the system under 
consideration is shown in Figure 1. For the 
initial steady atate solution of t>e system 

r,(x/) =*,*,-* B/x?    (5) 

Ft(x,)=-<VVV>S3    (6) 

where 

*3 = *,,-*, (7) 

From Newton's second law applied to masses M. 
»ind M, gives the following differential 
equations of motion for the system 

(9) 

The Ri':i averaging method when applied to   * 
equations 8 and 9 gives '.he following 

**i\ * a.*f- *t*3 -\\-XV-M$ 

V/j+^-H^ (U) 

//// < L. 

Figure  1 



As Initial approximating functions for the 
steady state response of the nonl.'vear system 
shown In Figure 1 the following relations will 
be used 

Xt  = An-A^uit + fl^c^-^i  (12 

X = AM,A*^vi*>t+ flxvc*«_i->4  (13) 
If the damping Is omitted then the 

cosine terms in equations 1.? and 13 can be 
ne^'.ected for simplicity. The resulting 
approximating equations would then be 

X, = A„ ^U\ tut      <w> 

V  = Al( -4^*\.t*>-t (15) 
To apply the Rltz averaging procedure,  the 

following relations must be satisfied 
rrxrr 

|M,W Ä|(-»*n © - M, u> A,v**~ 6 <v*e       (16) 

1    I«. I  i| ii.      / 

- P0^w*ö - rt.y. -**^ * \ d© = O 

/ 
'-M.^*,,**«.«^« -M,««> Au<«n.« (17) 

- Cvu> \_, tA + C ito^lC4**. 4) UrvO t •<, A,^*l♦ 

/(: 

- CIWA„ ttfX»AU« + Cvui rt|tA*^.1©. 

_ (Ax «  >4*Jvs. ©  I   d ©   = O 

/f 

(19) 

-CiwA,,e*-»*©+-c,>d A,-**^««**© 

- f\y***♦[«,'© »o (i? 

Performing the Integrations gives the 
four equations 

- W,«X+"' At>+<(A,C ">$ * A,X 

-cv.*> A», 
it 

(21) 

* ° (22) 

- Wvt«i A^+Cv'oA^-C^u»/»,, ♦ ■CVCAW*,;/ 

+ ^Ov(Avr*„)
V(Au-A,v) 

V-^»u(A,.-A,03 = O    <23) 
Special cases involving equations 20 

through 23 will be solved. 

Case '. For this case the terms C., C. 
and B, will be assumed zero. One term 
approximations given by equations 14 and IS 
will be considered. This gives rise to the 
following equations 

-M,W\ + •:,*„+} »A? ♦«,>„-\,)-r0«o 

-M^A,,, + •(«.(Ax,-*,,)«©    (25) 
Solving equations 24 and 25 simultaneously 

will yield relations for the unknown amplitudes 
A,, and A,,. A relation for A., in terms of 
A,, and the system properties can be obtained 
by adding equations 24 and 25. 

*l,* 
^-Mt« 

rA'. (26) 
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Now substituting equation 26 into equation 24 
give» 

Combining litce terns in equation 27 yield» 

(28) 

The solution of equation 27 for A., as a 
function of w '«as obtained with the aid of a 
computer. The results of the solution are 
glvan In the curves^ P?UP», 2-,3 ,«* > «n«| 6. 

Case 2 C., C_ and B, will be assumed M.ro 
for this case. Again for the same reasons as 
before the cosine terms will be neglected. 
Undei the latter conditions equations 20, 21, 
22 and 23 reduce to the following algebraic 
aquations 

-M,^,,*«1^..*^»,. (*.•-*».)*        (29) 

x j  (30) 

As In Case 1, a relation for A,, in tervnf 
of A,, and the system paramsteis ein be 
obtained by adding •«,»'*»Ions 29 and 3o. 

(31) 

To simplify the future clgebral: manip- 
ulations the following relation« are 
Introduced ,   _  v 

<P,  - —r—:  '") 

*v * 
•*■» 

!Mvto 
(33) 

Substituting relations 3,' through 33 into 
aquation 2Q yields 

AM[-*,u>%o<,-r«x(t -<>,>] •»••*t4>% 

To obtain equation 33 In Its final form, 
the higher order tertr* can be expanded and the 
Ilka terms combined to give 

3 eu<-*0* 0 - -$F 
-c 

(35) 

Equation 35*is also solved by a computer 
program. The results are shown la Che curves. 

RESULTS 

Figure 2 shows the response X, for Case 1 
as the frequency Increases.  Both masses are 
equ«.l.  For Case 1, the upper spring F,(X.) 
is non linear while F_(X. ) is linear. Notice 
that the nonlineartty of the response appears 
essentially in the second mode and not in the 
first mode. Also, with F,(X.) linear an1 
F.(X,) non linear, the same effect appears - 
that is the non linear response appears In 
the second mode. This Is shown In the set of 
curves In Figure 1. 

Figures 4 and 5 compares the responses 
at X. «rid X. for the same conditions depicted 
in Figure 2.  Of the three roots of a non- 
linear response, the middle one is not stable. 
This means that mass M„ undergoes essentially 
only one resonance. Tne response for.X. 
(from Figure 5) shows that beyond a frequency 
of 1, the lower root is essentially the only 
solution. This Is because the upper root 
(mathematically stable) is so close to the 
unstable root that It becomes unstable.  Of 
course this plot is for the particular values 
of forcir.g function (F "1). Nevertheless, 
X shows an expected response for the same 
value 

An examination of Figures 6, 7, 8 and 9 
shows how the conclusions are modified by a 
reduction of the mass ratio of M_ from unity 
to 0.1. 

'1 
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Figure 4 

Figure 5 
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Figure 8 

Figure 9 
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DISCUSSION 

Mr. Matthews (Naval Missile Center): Mr. Bianka (NASA, Iaagley):  Have you 
Have your students attempted any experimental given any thought as to the effect of the position 
work in this area? of the driving force, on the first mass rather 

than the second mass, considering that It will 
Mr. Currerl: I have also a graduate thesis        be a point of different impedance in the second 

student involved in that very problem. One is mode than in the first mode? Will that have any 
trying to construct such a system. This Is effect on the results ? 
rather difficult. The other is trying to solve 
the problem by analog. Mr. Currerl:  Need I add that I have a 

graduate student on that? 

\ 
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THE FLUTTER OR GALLOPING OF CERTAIN STRUCTURES 

IN A FLUID STREAM 

Raymond C.   Binder 
Uni - r-ity of Southern California 

uos Angele«,  California 

This paper presents a first-order analysis for one case that has not 
been presented in the literature.    A two-degree-of-freedom system 
(torsion and translation) in a fluid stream is first analyzed for the 
general e»se.    The basic equations of motion are set up and the 
characteristic equation found.    The particular case is taken in 
which the center of gravity coincides with the elastic axis.    There 
are indications that this case is involved in various applications. 
A closed form solution is obtained as a function of pertinent system 
parameters including approach fl lid velocity. 

In a range of velocities the motion of the system is bounded and no 
dangerous torsional or translational displacement amplitude is in- 
volved.   At one particular velocity,  however, the characteristic 
roots are equal,  and the vibration amplitude increases with time; 
this condition might be classed as a critical flutter or gallop.    At 
this critical condition the flutter frequency equals the natural 
translation frequency.    At a higher approach velocity the charac- 
teristic equation gives at least one positive root, which means an 
amplitude build-up, and an unstable condition. 

Under certain weather conditions, an overhead electrical trans- 
mission line may accumulate sleet or ice to form an unsymmetri- 
cal section; such a line may gallop during certain winds.    The 
galloping data reported by several different investigators check 
the main features of the foregoing analysis very closely. 

The closed form  analysis and the independent experimental checks 
of the analysis give an illustration of what might happen in dynam- 
ically similar systems, as aircraft, missiles, and other bodies in 
a fluid stream.    The closed form solution helps to identify the 
cause and to suggest possible cures of the dangerous vibration. J 

INTRODUCTION 

There are various problems in which a 
structure or body in a fluid stream may have 
an undesirable dangerous vibration,  flutter or 
gallop.    In approaching problems of this sort 
it is helpful to have available information 
about certain basic types or cases.    Also, it 
wo ild help to have a rational analysis stress- 
ing physical Insight or the main physical 
mechanism involved.    Frequently n first- 
order analytical approach, with some physi- 
cal insight,  can help considerably in inter- 
pretation and in devising possible cures. 
After a study of the first-order phase, if 
desirable,  t more sophisticated second-order 
«■•s!y*is may be consi lered.    Zimmerman 

[I], [Z] has presented an analysis of certain 
basic types; his approach has real value in 
handling many applications. 

The following presents a first-order 
analysis for one case that has not been de- 
tailed in the literature.    For this case ex- 
perimental data are available to give a check 
on the analysis.    In the following a discussion 
will be given first of the basic equations; 
then the particular case will be detailed and 
the analysis compared with experimental ob- 
servations. 

GENERAL ANALYTICAL RELATIONS 

Figure 1 shows a schematic of the system. 
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RECTILINEAR 
SPRING 

APPROACH 
FLOW 

////}//// 

Fig. 1 - Schematic of System 

The min in the fluid stream can rotate about 
an axia and can move in a vertical direction; 
there is a linear vertical spring and a linear 
torsion spring; one end of each is fastened to 
the elastic axis.   The mass can execute inde- 
pendent freedom of motion in either torsional 
pitch or rectilinear plunge.    Figure 2 illus- 
trates the notation.   The lift force is perpen- 

UFT 

CENTER OP 
SMVirr 

^ssfsy 
Fig. 2 • Notation 

dicular to the approach flow.   The lift force is 
at the aerodynamic center; the aerodynamic 
center is that point about which the pitch mo- 
ment does not change with angle of attack. 
The distance between the aerodynamic center 
and the elastic axis is    a; the distance be- 
tween the elastic axis and the center of gra- 
vity is   b; the rectilinear displacement from 
the equilibrium position is   z; and the angular 
displacement is   or.   Lst    M    represent mats, 
K      the equivalent rectilinear vertical spring 

rate, let K represent the equivalent tor- 

sion spring rate and let P. be the effective 
radius of gyration. The equations of motion 
for the lamped-element system are 

RZMS - Mbz + Kaa = Moment (2) 

where the double riot over a variable repre- 
sents the second time derivative. 

Let    Li    represent lift force,     A    repre- 
sent a reference area,     V    approach veloci- 
ty,     p     fluid density,     q    the approach 

stream dynamic pressure    J-p v       and    C, 
the dimensionless lift coefficient defined as 

'L ="ql (3) 

We assume a linear /elation between lift 
coefficient and angle of attack.    Then the net 
lift force and the net pitch moment become 

/8CL\ 
Momer.t = CrAal-g—"Y"\    • 

Let 

-'La* IcT 

(4) 

(5) 

(6) 

We dafine the uncoupled natural frequencies, 
one rectilinear (or translatipnal) und one 
torsional, by the relations 

»2 = ^L z      M 
2     K« 
*      MR2 

(7) 

Then the differential equations of motion can 
be expressed in the form 

K - b5+<i)2z ~4T-C.   <*= 0 (8) 
Z M        L/J 

8 - — t. tijo-^ic.   a= 0 . (9) 
R2 or      MR2     U* 

Let each displacement be expressed in the 
general form 

De et a = Ee st (10) 

where    t    i« time and    s    is a root.    Let 

s = p + iw (U) 

where    p    is the real part,     i = y-1 ,   and 
in    is the magnitude of the imaginary com- 
ponent.   Setting the determinant of the    D 
and    E    coefficients equal to zero,  gives the 
characteristic equation in the two forms 

MS - Mb» + K z * Force s (1) 

1T2 



4  ,    Z 
S       +   8 

(12) 

R^+u)2)       qACT„(a-b) JLov 

R2-b2 M(R2-b2) 

.i)2u)2R2      (u2qAaCI/v a   z z^ La 

R2-b2 M(R2-t2) 
= 0 (13) 

The characteristic Eq.   (13) has the general 
form 

s4 + s2B   + B2 = 0 (14) 

with four roots. 

PARTICULAR CASE 

A variety of basic types or cases could be 
studied,  depending on the values of    a,    b,    M 
and   R.    Certain types have been detailed to 
tome extent [1).    In applications it is some- 
times very difficult to establish directly and 
clearly the influence of such factors as   a,  b, 
M   and   R. 

•2 + <u2 = 0 z 

s2 + mZ
a - y

2 = 0 

Equation (17A) gives a pair of roots 

a = + iiu 
—      z 

(17A) 

(17B) 

(18) 

which are purely imaginary with no real com- 
ponents.    Figure 3 shows a plot of the positiv« 

1     ** 
ANGULAR 

FREQUENCY 

Fig. 3 - Imaginary components of 
roots versus y. 

For the particular case in which    b = 0 
(center of gravity coincides with the elastic 
axis),  Eq.  (12) gives a relatively simple form 
with roots clearly defined 

There are indications that this particular case 
is involved in various applications. 

In flutter analysis a prime interest is the 
influence of the approach flow velocity    V. 
It is helpful to use a plot of components of the 
roots each as a function of a parameter    y, 
where    y    is defined as 

rqAaCLa 

"V   MR2 (16) 

The parameter    y    is proport onal to the 
velocity   V. 

Equation (15) can be written as two sepa- 
rate relations,  each equal to zero, 

variable imaginary component    «   m func- 
tion of   y.    In Fig.  3 the line through  m = <i> 

represents the constant natural undamped 
vertical frequency over a range of   y  values 
(which are proportional to velocity   V). 

Next consider only values of y equal to 
or less than a>a . Then Eq. (17B) can be re- 

cast ir. the forms 

2-2     ,.,2 
s    = y    - 10 

y2  + tl>2  = • 

•=iiV?" 
»19) 

(19A) 

The roots are purely imaginary with no real 
component».    Equation (19) is the equation of 
a circle.    For only positive, values of   y   and 
ui,  in Fig.  3 the curve ABCD represents one- 
quarter of a circle.    At   u> = 0   the value of 
y   is   m9. 

Imagine next the range in which   y   is 
equal to or greater than   u>   .    Then Eq.  (17B) 
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gives 

(p + I»)2 = y2 - u>2 

y    - U) 

S   =+p iV^T 

(20) 

(20A) 

The root! are purely real, positive and 
negative, with no imaginary components. 
Equation (20) it the equation of an equilateral 
hyperbola.    Referring only to positive values 
of tho variable   y  and the variable   p,    the 
curve DEF in Fig. 4 indicates part of the 
hyperbola. 

ROOT 
P 

VSF- 
Fig. 4 • Real components of roots versus y. 

Consider first solutions of the differential 
equations of motion for different values of  y 
in the range from   y = 0   to   y  less than 
v>a .   This range ia indicated in Fig. 3.   With 
the exception of point   C, the solution can be 
expressed in the form 

z = Aj.ln hj«£ - y2t + *J 

+ A, sin 

a « A.s 

[v -• *3 
in N»2 - y2t + *J 

[v+ h] + A. sin 

(21A) 

(Z1B) 

where  the  A's   are coefficients, and   $.   and 

4>2   »re phase angles.   As an example, at 

y « 0, no flow, (point A in Fig.  3) these equa- 
tions become 

= A. sin IV + *i] v^v + »2i (22A) 

a a A,sinf«'     <}>,]+ A.ein[ui t + $,]   .      (22B) 

At point C   here are two identical roots 
and thus the eolation has the form 

z = A,sin[u>  t + $.] + At sin[ci)  t + <J>  ] (23A) 

or = A3siii[u)zt + <(>,] + A4t sin[i»zt + 4>J  .    (23B) 

Because of the   t   term there is an amplitude 
build-up with time.    This case might be 
called a particular type of flutter; in some 
cases (as for overhead electrical transmis- 
sion lines and other structures such as 
suspension bridges) this condition could be 
called "galloping. "  The term galloping has 
the implication of a relatively low frequency 
(as contrasted with the high frequency,   small 
amplitude, wind induced aoelian vibration). 
The basic differential equations of motion do 
not include frictional damping.    In a practical 
case some damping could restrict the recti- 
linear displacement amplitude to a finite 
limit. 

Next let us examine solutions for the 
differential equations of motion for values of 
y  in the range from   y - «;      to   y   greater 

than  <i> ;   this range is indicated in Fig.  4. 

The solutions tc the differential equations can 
be expressed in the form 

z - A.sin((» t + $.) + D3e J* + D4e 

or = A,sin(iu t + 
2 z 

+ E3e
pt + E, 

■pt 

-pt 

(24A) 

(24B) 

E, and E. are coefficients. 
3 4 where   D,,   D., 3      4 

Since one   p   root is real and positive, there 
is an amplitude build-up and the motion is 
unstable. 

As the approach fluid velocity   V   in- 
creases from zero to some higher value,  an 
important question is the velocity at which 
galloping starts.    Referring to Fig.  3,  gal- 
loping starts at point C, with the y value 

■V---. =lh^- (25) 

Since    q = |p »   .    the corresponding galloping 
velocity   V^ (at point C) is given by the rela- 
tion 
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2MR2(m» - ">   ) '  or        z 
pAaC 

(26) 
La 

The simple closed form solution given by 
Eq.   (26) points cut the factors to consider in 
studies of possible undesirable vibrations. 
To develop a high   V   ,    attention could be 

given to increasing the torsional frequency 
ID    ,    to increasing the radius of gyration   R, 
to reducing the area   A   and to reducing the 
distance   a.    In an analysis there is a question 
as to the possible values of the lift-coefficient 
slope   C.     .    In order to be on the safe side 
and calculate for the lowest   VQ.  one might 
select a high value for   C.     .      For example, 

for a flat plate   C,       is about   2w . 

EXPERIMENTAL OBSERVATIONS 

Probably there are various cases, ss air- 
craft,  missiles,  marine craft,  and other 
structures in a fluid stream,   in which the cen- 
ter of gravity is at or is close to the elastic 
axis.    Lack of complete data in various appli- 
cations prevents a comprehensive check of 
theory and data now.    Some pertinent data, 
however,  are available for overhead electri- 
cal transmission lines.    Thus these data will 
be discussed briefly to provide a check on the 
main features of the foregoing analysis, and to 
illustrate what might happen in dynamically 
similar systems. 

Under certain conditions the symmetrical 
circular section of an overhead transmission 
line may accumulate sleet or ice to provide an 
unsymmetrical section to the wind.    The line 
can vibrate in torsion and it can vibrate verti- 
cally in translation.    In certain winds the line 
may gallop.    Evidence indicates that the cen- 
ter of gravity is very close to the elastic axis. 

Madeyski [3] reported measurenents of a 
particular energized transmission line in 
Burlington,  Ontario,  Canada.    During a 
freezing rain, with wind,  ice 'vas deposited on 
the conductor and the line galloped.    Later, 
measurements were made of the vibration 
characteristics of the line.    The natural fre- 
quency in tcrsicn    ui was measured as 15. 

radians per second,  and the natural transla- 
tional frequency  <»      was measured as 7.8 

radians per second.    Observations showed 
that the lir.ie galloped at the natural frequency 
in translation.    The motion was simple har- 
monic.    The torsional motion had the same 
frequency as the translational; the torsional 
vibration was in phase with the translational 
vibration.    This matching of frequencies 
checks point C in Fig.  3 and Eqs.  (2?A) and 
(23B).    The line galloped in winds varying 
from 20 to 30 feet per second.    A value of 2ir 

was taken for   C.       and the aerodynamic cen- 
ter was taken at the quarter-chord point (aft 
from the leading edge).    From the data listed 
by Madeyski it is difficult to make a precise 
calculation of the radius of gyration   R   due to 
the ice formation.    Making some reasonable 
calculations as to the ice formation,  the use 
of Eq.   (26) indicates a galloping velocity in 
the region from 25 to 32 feet per second; this 
theoretical calculation checks closely with the 
measurements. 

For a series of tests with anouier trans- 
mission line,   MtHeyski [4] fjaire the following 
conclusions:    (a) galloping took place at the 
natural frequency of the conductor in transla- 
tion;   (b) both the torsional and the translation 
motion at any point of a galloping conductor 
are basically simple harmonic; (c) galloping 
is a phenomenon of an extremely critical 
nature; and (d) the fundamental frequency of 
the torsional motion during galloping is the 
same as that of the translation motion. 

A number of investigations,  laboratory, 
wind tunnel and field were conducted under 
the author's direction [5].    Different prototype 
field test lines were erected near Purdue Uni- 
versity,  West Lafayette,  Indiana.    Semi- 
circular wood«*! foils were fe.s':ened along the 
length of each conductor to provide an unsym- 
metrical sectio . normal to a horizontal wind. 
Small acale models of a transmission line, 
with similar unsymmetrical sections along an 
elastic line,  were arranged in a laboratory 
wind tunnel. 

Field prototype tests,  with natural winds, 
showed that the galloping action was very cri- 
tical.    Galloping started only at a certain 
wind velocity.    For example,  one field test 
line galloped only when the normal wind 
reached 12 feet per second.    One field line 
originally did not gallop with the normal pre- 
vailing wind velocities.     Referring to Fig.  3, 
the torsional frequency   <u     was so high that 
the condition at point C was not reached. 
Torsional inertia was added to the Lnes by 
means of cross bars; this lowered the torsional 
natural frequency so that the line galloped with 
normal winds.    This checked the indication 
given in Fig.   3. 

It may be possible that a transmission 
line without ice could have a very high natural 
torsional frequency.    An accumulation of ice 
may add enough torsional inertif. to lower the 
torsions! frequency sufficiently so that the 
line would gallop with prevailing winds. 

At different times,  ovrr twenty cases of 
natural galloping,  first mode, were observed 
with the Purdue prototype field test lines. 
The natural frequency in translation was mea- 
sured during periods of no galloping.    In each 
case of natural galloping the frequency oi 
galloping equaled the natural translational 
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frequency (about 2.1 radians per second tor 
one »et of spans). In some cases the vertical 
double displacement of the line was about 12 
feet. For each case of natural galloping the 
natural torsional ivequency was definitely hi 
er than the natural translational frequency. 

Observations of both field test lines and 
wind tunnel models showed two distinct stages 
in the galloping action:    a small displacement 
irregular vertical random motion at the start; 
and a fully developed large vertical displace- 
ment periodic motion following the irregular 
random start.    The initial start resembles a 
motion due to random excitation from vertical 
fluctuations in the approach stream; in some 
respects this action is similar to an aoelian 
vibration.    Lumley and Panofsky [6] give data 
regarding vertical velocity fluctuations in 
horizontal winds.    Measurements by Hard [7] 
en field lines showed a beat phenomena in the 
aoelian vibrations.    Thus a mode or modes of 
the transmission line can be excited by the 
random vertical fluctuations in the approach 
horizontal flow; the vertical dinplacement ma/ 
be small.    If the unsyvnmetrical conductor is 
displaced Sufficiently in a vertical direction, 
it will start to twist.    Sooner or later a sig- 
nificant twisting of the line develops and the 
galloping Jtarts. 

An ixample of a measured fully developed 
orbit of fiela line galloping is indicated in 
Fig.   5; the doaMe vertical displacement am- 
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F'%.   5 - Orbic of natural gallop 

plitude «'«I about 10 feet.    Various modified 
tioni of thin orbit have been observed.    The 
line twists back and forth as it moves up and 
down.    There is a sharp twist or snap at the 
top *nd bottom of the orbit.    If the conductor 
■tarts and continuen in an orbit of the type 
shown in I »3.   5,  it can build up to a high 
steady state vertical displacement amplitude. 

merit amplitude;    z   is the instantaneous verti- 
cal displacement.    Figure 6 shows a typical 
plot of the meaou.-ed vertical displacement 
ratr".   z/z     versus time.    The. plot was drawn 
for a case in which the double vertical dis- 
placement amplitude w? 3 abou   6 feet.    The 
motion is close to siiwple harmonic.    Figure 7 
showj the corresponding angular displacement 
Of  verous time; the motion is close to  simple 

TIME, SECONDS ■— 

^y 

Fig. Vertica' displacement versus 
tim'•.    Zf.   is displacement amplitude. 

Let represent the vertical dispiace- 

Fig.   7 - Angular displacement versus time. 

harmonic.    Tne phase angle difference between 
rh«" " ertical displacement and the angulai dis- 
j.    . »rnent is small. 

Frequently a field line would start in a 
higher mode and then drop to a lower mode. 
For example,  a line would start to move in a 
fifth or sixth mode,  and then drop to a second 
or first mode.    The lower modes give higher 
vertical displacement amplitudes. 

FLOW ACTION IN GALLOPING 

At time» the suggestion has been made 
that th- vortex shedding behind the structure 
is the one and only cause of galloping.    Care 
should be taken in reaching conclusions re- 
garding the role of vortex shedding.    A dis- 
tinction should be made between turbulent 
flo»v and a stable,  precise periodic vortex 
trail behind a body.    A distinction should be 
made uctweni the flow ii Vuund a fixed body ir» 
a stream and the ilow around a dynamically 
suspended body that >s oapablo of movement. 
For a fixed cylinder in a stream,  the stable 
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precise periodic vortex shedding may take 
place only in a narrow range of relatively low 
Reynolds numbers.    A galloping transmission 
line,  or the other h?nd,  may involve a range 
of relatively high Reynolds numbers. 

The prospect of the vorte.t shedding as the 
sol? e.tciter raises questions as to the pre- 
cise matching of   he vortex shedding with the 
particu'ar characteristics of the mechanical 
elements in a system.    This matching n-iay re- 
quire a cei-tain unobtainable precision of the 
vortex shedding. 

Studies with smoke on field lines and 
models in the laboratory wind tunnel show 
that tl.e fully de-.vioped rocking motion of the 
conductor itself sheds the vortex.    The vortex 
shedding itself is not the sole cause of the 
system galloping.    The dynamics of the sys- 
tem (as shown by the equations of motion) 
determines the galloping; the galloping,  in 
turn,  causes an alternate shedding in the 
downstream flow. 

A study of the work per cycle may help 
explain the flutter or galloping action.    Let 
W   represent the total work per cycle done by 
the flow on the mass in the stream.    The in- 
crement of work   dW   for the time interval 
dt   can be expressed in the form 

dW      . dz 
"dT " Ldf (27) 

Let the variable vertical velocity z ("dz/'dt) 
and tha variable lift   L   be represented by the 
simple harmonic relations 

z = 7,_ cos U)t 

L = L0 cos [out + 8] 

(28! 

(29) 

where   z,   is vertical velocity amplitude,   L. 
is lift amplitude,    a>   is angular frequency and 
8   16 the phase angle between lift and velocity. 
The total work per cycle   W   can be expressed 
in the form 

_2jr 
<i) 

W = Li   I     COJ cut cos[ii)t+8]dt 

w = Vo£cos0 (30) 

Figure 8 shows plots of the vectors    z,   z   and 
and   L   with different values of the phase 
angl"   8.    If   cos 8 in positive,  there is a .ift 
component in the direction of the velocity and 
the net work   W   is addtd to the system by the 
flow.    This case is illustrated in Fig.   8a and 
could be classed as an unstable build-up pro- 
cess or flutter.    If cos 6 is negative there is a 
lift component in a direction opposite to the 
velocity and net work   W   is removed from »be 
system.    This case is illustrated in Fig.   8b 

i i t 

^L rL A 
0 UNSTABLE b-STABLE CNEUTIUi. 

Fig.  8 - Plots with different phase angles 

and could be classed as a stable process in 
which the vibration is dainped or decreased. 
If cos 8 is zero,  the net work   W   is zero. 
This case is illustrated in Fig.   fie and could 
be classed as a neutral stable case'. 

CONCLUDING REMARKS 

The closed form analysis and the indepen- 
dent experimental checks of the analysis give 
an illustration of what might happen in dynam- 
ically similar .systems,  as aircraft,  missiles, 
and other bodies in a fluid stream.    The closed 
form solution helps to identify the cause and to 
suggest possible cures for the dangerous vi- 
bration. 
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DISCUSSION 

R. J. Fritz (General Electric Co.): Would 
It have been reasonable to use the Hurwltz root- 
«tability method to determine the unstable 
points? 

Mr. Binder:  You could do that.  This Just 
happened to come out without much trouble. If 
you have a more complicated system this would 
be a good way to do it. 

Mr. Fritz:  The lift coefficient which you 
assume to be constant - did you try tu estimate 
the lift coefficient using airfoil theory? 

Mr. Binder:  Yes. In this case it turned out 
pretty close to flat plate analysis of the order 
of two pi. When you have motion you change 
the lift coefficient slop«, but it is of that gen- 
eral order, surprisingly. 

Mr. Galef (TRW):  In your equation 15 it 
seems to me that if you let the omegu z be zero 
the equation reduces to the simple expression 
for torsional divergence, which would not be 
surprising except that we get torsional diver- 
gence with an infinite omega z. 

Mr. Hinder: We got divergence at the nu- 
merical i alue of y equal to omega sub alpha and 
thereon out.  Physically we normally observed 
that even though the velocities get beyond this 
critical velocity, the lines do not change very 
much from this lower value. Often they will 
fracture or there will be damage to the lines 
before they get any higher. We do not have any 
experimental data to indicate what would happen 
at the higher values of y, but it indicates there 
is divergence. All the indications and obser- 
vations are that we get this first double root 
business and if it gets pretty violent the line 
breaks. We have not had any experimental data 
to answer this correctly. 

Mr. Galef:  The term galloping is usually 
reserved for a single degree of freedom in 
stability associated with the negative slope of 
the lift curve,  This would seem to explain some 
of the experimental results as well as the flut- 
ter that you have been talking about. 

Mr. Binder:  No, the word galloping has not 
been restricted to that sense. The implication 
of the word galloping is that there is a relatively 
high amplitude and a relatively low frequency. 
I checked all the experts and that is the general 
conclusion. The galloping process as we have 
defined it here is quite similar to flutter, only 
galloping has the implication of a much larger 
amplitude and a lower frequency. Now these 
cases involve a two degree of freedom system - 
that seems to be essential. 

Mr. Galef:   You always have positive slope 
on your lift curve? 

Mr. Binder:  Yes. 

Mr. Paul (Sikorsky Aircraft):  Are you 
referring to the classical galloping line system 
described many years ago by Den Hartog re- 
lating drag and lift? When the stall area is 
reached it can be shown that the negative damp- 
ing with respect to the plunging motion gives 
an oscillation at the flapping frequency of the 
single degree of freedom system. 

Mr. Binder:   That is another area of activ- 
ity - the so-called stall flutter. 

Mr. Paul:  No, that's not stall flutter. Stall 
flutter ie usually associated with the torsional 
degree of freedom. 

Mr. Binder:  No, the term stall refers to 
conditions beyond the peak of the curve, and this 
is a different story. In the aerodynamic liter- 
ature there is a great deal of study of stall flut- 
ter.  The observation we have made with this 
type of structure is that you can have all of this 
below the stall condition. 

Mr. Paul:  That is the fundamental question: 
is the Den Hartog simple theory incorrect for 
the system which he analysed?  Have you looked 
at that and determined that that system is a 
category all by itself not necessarily related 
to your present analysis. 

Mr. Binder:  Yes. 
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AIRCRAFT LANDING GEAR BRAKE SQUEAL 
AND STRUT CHATTER INVESTIGATION* 

by 

F. A. Biehl 
McDonnell Douglas Corporation 

Long Beach, California 

Aircraft landing gear sque.J and chatter vibration problems were investigated to determine 
tl eir effects on passenger compartment vibrations, landing gear damage and brake wear. 
A digital computer program was used to simulate an aircraft braking stop and has 
demonstrated that the brake torque function is responsible for the excitation of both 
vibraticn modes. Vibration absorbers are suggested as effective attenuation devices. 

INTRODUCTION 

Sources and attenuation jf aircraft main landing gear 
squeal and chatter vibration modes were investigated to 
determine the possible effects of these vibrations on the 
landing gear loads, brake lin'ng deterioration, and passenger 
comfort. The term "squeal mode" refers to the rotational 
oscillation of the brake st; tor assembly and the "chatter 
mode" refers to a lore and aft landing gear motion. For the 
landing gear analyzed in th s paper, the squeal frequency will 
be near 2C0 Hz arid the cl after frequency near 15 Hz. It is 
quite possible that the chatter mode could excite one or 
more aircraft elastic structural modes and result in relatively 
large vibration amplitudes. 

Utilisation of new cerametallic brake lining mixes has 
introduced irregular brake torque characteristics that are 
conducive to squeal and chatter excitation. The mixes affect 
the relationship (if brake friction coefficient to the relative 
brake stator-rotor angular velocity. An effective negative 
damping is impos;d by the brake torque function, crating a 
temporary divergince to some limiting value fo- a given 
aircraft velocity. 

Any solution must consider each mode separately since, 
in some instances, elimination of squeal does not imply the 
elimination or att< nuation of chatter. Reduction or elimina- 
tion of these vibrations can be approached from two 
viewpoints: (Pi r< move the cause, i.e., development of a 
brake mix with f!a: brake torque capability, and (2) 
attenuate the vibraiion responses with special devices. 

The IBM-CSMP (Continuous Systems Modeling Pro- 
gram) simulation language was employed to develop a digital 
computer program (shown in Appendix A) that analytically 
exhibits the squeal and chatter vibration modes. The program 
simulates an aircraft rolling to a braking stop due to the 
induced tire drag lead. The following paragraphs describe the 
data sources and the development and results of the program. 

NOMENCLATURE 

a flexibility coefficient 

BT brake torque 

BTP brake torque peak 

BTS brake torque steady value 

c damping coefficient 

D drag force 

RF restoring force 

RT restoring torque 

F force 

I mass moment of inertia 

k stiff.iess coefficient 

L strut length 

M moment 

m mass 

q generalized coordinate 

R wheel radius 

SR slip ratio 

T toroije 

V aircraft velocity 

♦Paper not presented at Symposium. 
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W aircraft weight 

X, X, X     axle linear displacement, velocity and ac«K*ration 

a friction curve slope 

critical damping ratio 

». ». X »  

f 

stator angular displacement, velocity and accelera- 
tion 

squeal sbsorbe: anbular displacement, velocity and 
acceleration 

angular ^ectionalized wing displacement 

medal amplitude 

<l>t ^ 0      wheel angular displacement, velocity and accelera- 
tion 

CO angulj- frequency 

Subscripts 

h squeal vibration absorber 

B break 

CA chatter vibration absorber 

DS dead space 

FP free play 

i initial 

K kinetic 

n natural frequency 

S static or stator 

T total 

TK tire 

W wheel 

CHATTER PHENOMENON 

Chatter response is discussed in detail in References 1 
and 2. The important highlights are reviewed here to 
illustrate some effects that appear in the computed landing 
gear response histories. 

A block resting on •' moving belt as shown in Figure 1 
provides a simple mechanical model. The block is accelerated 
by the sliding friction force 0»KW) generated between it and 
the belt. When the blxk velocity equals the belt velocity, fhe 
biock and belt will stick together. The block will continue 
forward at the constant belt velocity until the static friction 
force OijjW) is overcome by the combined spring damper 
force. The driving force then returns to sliding friction and 
the block, now governed by simple harmonic motion, returns 
to the initial position and repeats the entire cycle. 
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FIGURE 1.  CHATTER MODEL 

Figure 2 illustrates thr displacements, velocities, and 
accelerations of a block in the "chatter" mode (i.e., MK < MS) 
with the same variables superimposed for a block with a 
constant friction coefficient (i.e., MK 

= fS)- Several distinc- 
tive features are apparent: 

1. The period of vibration increases due to chatter 
(frequency decrease) 

2. Chatter motion tends to change the vibration amplitude 

3. Chatter acceleration response is interrupted by abrupt 
discontinuities. This may explain the somewhat annoy- 
ing motions aircraft passengers frequently experience. 
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FIGURE 2.  COMPUTED RESPONSES - CHATTER MODEL 

The sliding block is employed to illustrate another 
aspect of the gear chatter excitation. For most mechanical 
systems a gradual change from sliding to sticking friction 
coefficients is a more plausible transition than the sudden 
change described previously. If the relative velocity (V - x) is 
less than V (sec left-hand side of Figure 1), then the 
equation of motion for the block is 
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mX + cX t kX 

where 

,iW 

ß = *. - a (V - X) 

Hence, from (1) and (2) 

mX + (c     oW) X + kX   =   (^ - aV) W 

< ') 

(2) 

(3) 

In Equation 2,a is the friction coefficient slope, if aW is 
greater than c, negative damping will be effectively produced 
and the solution will tend to diverge. The motion will attain a 
limit since during some time periods other forces will govern 
the motion when the relative velocity reaches zero or exceeds 
the sloping region. 

STRUT FREE VIBRATION FREQUENCIES 
Free vibration frequencies of the landing gear were 

computed using theoretical stiffness data and measured mass 
and inertia data. The gear model consisted of a zero-mass 
cantilevered beam with a concentrated mass attached to the 
free end. The weight of this concentrated (unsprung) mass 
was defined as the weight of one-third of the strut plus the 
weight of the brake Stators, axle, and rolling assemblies. The 
natural frequency of the strut in the fore and aft direction 
calculated on the basis of perfect elastic resistance to motion 
is accurate when the strut motions are large relative to the 
free-play movement or inherent gear slop. Free play in gear 
fore-and-aft motion is usually small and will significantly 
affect free vibration frequencies only when the amplitude of 
vibration is Slightly larger than the free play. The effect of 
initial vibration amplitude on free vibration frequency in the 
presence of free play is shown in Figure 3. The level portion 
of the diagram indicates that sufficiently large amplitudes 
result in predominantly elastic gear resistance. The specific 
gear plotted (Figure 3) can be seen t( have a natural 
frequency of 18 Hz for pure elastic resistant Subsequent 
analyses allow for the possibility of free play in 'he g;;ar 
design. 
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BRAKE TORQUE FUNCTION 

As stated previously, the brake torque function is 
dependent on the brake lining materials; or, more specifi- 
cally, the brake lining material mixes control the friction 
coefficient between the brake rotor and stator interfaces. 
Figure 4 shows an idealized brake torque curve. Brake torque 
is shown as a smooth function of brake stator and rotor 
relative angular velocity. Measurements of actual hardware 
functions show irregularities in the curve and variations with 
subsequent stops of the same brake assembly. The essential 
feature, however, of an increasing brake torque at slow 
aircraft forward velocities (small values of ^) is indicated and 
is reasonably representative of measured data. In the analysis, 
the initial conditions simulate the gear in a statically 
deflected rearward position (9=0 and ii = /R). Thus, for 
the initial state, the abscissa (Figure 4) can be specified in 
terms of the forward velocity V of the aircraft eg and the 
breakpoint in the plot can be associated with a particular 
aircraft velocity. The analysis is started at Vj > VR, where VR 
is the prescribed velo- ly at the breakpoint. At the start of 
the simulation, while Vj is greater than Vn, a period of 
non-vibratory motion precedes the eventual excitation of 
squeal vibrations that may occur when the aircraft is 
decelerated by the drag forces through the break-velocity 
region. 

200r 

MAKE 
TORQUE '00 

11000 IN 11) 

50 

J:'. 
V VELOCITY WEAK (V,) 

FIGURE 3.   LANDING GEAR FREE VIBRATION FREQUENCY 
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FIGURE 4.   BRAKE TORQUE FUNCTION 

The idealized curve (Figure 4) was used for the 
numerical analysis. A value of 0 equal to 3.8 rad/sec was 
selected *:• the point separating tue two distinct straight line 
portions cf the brake torque curve. 

The bn.ke torque peak value (BTP) and the flat brake 
torque value (BTS) must be selected with some caution to 
achieve compatibility with the drag force generated at the 
tire contact point, Excessive brake torque will tend to 
de' rease the wheel angular velocity too severely while large 
drag forces increase the wheel angular velocity. The analysis 
revealed that when these conditions prevail, the resulting 
responses will be erratic and inconsistent with measured data. 

SLIP RATIO AND DRAG CALCULATIONS 

Drag force is obtained from the product of tire friction 
coefficient and tire normal force. The normal force is equal 
to  the aircraft weight per gear and any vertical dynamic 
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forces are ignored. The friction coefficient is dependent on 
wheel slip ratio and the computed drag force direction is 
determined by the Icrie shown in Figure 5. An aft drag fovce 
(see Q, (4). and (ft) in Rr.re 5) is the most probable 
condition during braking * hi!» . forward drag force would 
seem unlikely. There is, however, no definite evidence that a 
forward drag force is iir possible. If V denotes the sir-raft 
forward velocity and x is the velocity of the wheel center 
relative to the aircraft eg, the velocity V-x is then the axle 
velocity with respect to the ground. Equation 4 indicates that 
for the slip ratio, SR, tire slipping will be measured by the 
difference between the wheel translational velocity and the 
tire tangential velocity, Rij/. 

© 
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© © 

«me DintcTio* 
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FIGURE 7.   GEAR SCHEMATIC 

contributed by all wheels on the gear. Using D'Alembert's 
approach the dynamic equations of equilibrium for the 
rotating wheel, tire and brake rotor assembly are: 

(mw + mTR) X + F   =   D 

"w + ITR) ^ + BT    = R 

(5) 

(6) 
**  AHO V-K ANY VAUtt 

SR 

FIGURE 6.  SLIP RATIO CONnGURATIONS 

R0 
1.0    - 

V-X 
(4) 

The tire-ground friction coefficient (ji) is a function of 
the slip ratio. The specific relationship for this function used 
in the numerical anlysis in this report is shown in Figure 6 
and was obtained from Reference 3. 
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FIGURE 6. TIRE FRICTION COEFFICIENT VS SLIP RATIO 

In Equation 5, F is the fore and aft force applied 
through the brake and, in Equation 6, BT is the torque 
resistance developed by the brake. The angle yin Equation 6 
refers to the angular rotation of the wheel. 

In the left diagram (Figure 7) the reversed effective 
inertia, strut and brake resistance forces are shown applied to 
the brake stator. The dynamic equations for the brake Stator 
and axle assembly are as follows: 

ms X + RK   =   F 

ls Ö +   RT    = BT 

(7) 

(8) 

Replacing the quantity F in Equation S with the left 
side o. Equation 7 the following equation is obtained: 

mT X +   RF (9) 

The angular rotation 6 in the above equations refers to 
the rotation of the stator and essentially results from the 
angular rotation incurred a; the bottom of the strut {at the 
junction of strut and axle) when the strut is deflected fore 
and aft. The strut forces RF and RT resisting translational 
and rotatiotsal displacement of the stator and axle assemblies 
are given by 

EQUATIONS OF MOTION 

The equations of motion are categorized by the com- 
ponent to which they apply. In the right-hand diagram of 
Figure 7, the reversed effective inertia, gror"d drag, and 
brake torque forces are shown applied to the gear rotating 
asaembly.  Each  force is considered  as a sum of  forces 

RF 

RT 
*xx ^x« 

K«x   K»» 'DS I 

c c 
*"XX X» 

c c lv»x ^»0. 

|x 
0 

(10) 

The   relationship   of  Xps   nid   6DS to X and 6, 
respectively, has been showrf~previously"(Figurc 3). The 
quantities Xpj ar,d Srjs »•* introduced to account for free 
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play or slop in gear fore-and-aft motion. The displacements X 
and 9 are composed of two parts; namely an elastic 
contribution (Xpp a"d ^FJD m F'8"re 7) and a contribution 
from free play (Xpp and (Fpp in Figure 7). The elements of 
the first matrix on the right-hand side of Equation 10 
constitute the cc-nbined strut-wing stiffness matrix with 
respect to fore-amVaft elastic deflection. The matrix which 
follows the plus S'gn in Equation 10 constitutes the strut 
structural damping matrix with respect to fore-and-aft 
motion. 

Sticking Logic 

As the wheel angular velocity is reduced with brake 
application, the stator angular velocity increases due to 
squeal excitation and eventually these rates are equal. When 
"sticking" occurs (i.e., ii - 6) Equation 6 is replaced by 

UTS 

">     =   W 

SR,  =  — 

C-i    =   (I   - SRI — 
R 

I 4 J I BTS J + 
'Fr 

(15) 

(16) 

(17) 

(18) 

(19) 

1T 0 + RT R    D (ID 

Conceivably, the two parts remain stuck together until 
the strut develops a sufficient restoring torque (RT) equal to 
the brake torque peak (BTP) minus the stator inertia torque 
'I ;1). Typically during the sticking condition RT < BTP - 

ls9. Sticking appears to be primarily of rotational origin and 
when occurring will cause the squeal mode to vanish because 
nie stator is no longer free to oscillate independent of the 
wheel. The consequence of sticking can be seen in measured 
brake pressure responses and is exhibited in the numerical 
results obtained from the mathemati:al model developed in 
this paper. The brake torque value must also be modified 
during sticking. Under these circumstances, the BT developed 
is dependent on the drag and inertia forces and not on the 
relative angular velocity <t>. The magnitude of BT may vary 
from zero to the brake torque peak (BTP) during sti dng. 
When sticking occurs, the value of the brake torque is 
computeo ."■ om 

In Equation 19, the matrix [a] is the strut flexibility matrix 
and is the inverse of the stiffness matrix given in Equation 
10. 

Airplane Elastic Mode Equations 

An assumed elastic airplane wing torsion mode was 
simulated with the expectation that a considerable increase in 
axle displacement would be realized. The formulation takes 
the form of the excitation of an equivalent simple resonator 
in the modal coordinate. The equations involving one elastic 
mode are: 

mq + cq + kq   ■   (& ' M (t) 

Where: 

m.c.k. 

(20) 

generalized mass, damping, and stiff 
ness 

BT L 0 + RT (12) 

Aircraft Equations 

The aircraft equations used in the analysis are 

V   =   - Ü JL 
w 

V   =   / V dt 

(13) 

(K> 

q 

M(t)     = 

c   =   2 J rh cjn 

k   =   CJ.2 m 

generalized coordinate 

the   modal   amplitude   a!    the   gear 
attachment location 

torsional moment applied to the wing 
at the gear attachment 

(21) 

(22) 

in the program an initial velocity is selected that is slightly 
greater than the break velocity in the brake torqjc curve. 

Initial Conditions 

The mathematical simulation is started with the brake 
applied. To avoid elastic transients due to the step input in 
brake torque, starting values are computed for the several 
variables and employed as initial conditions when integrating 
the equations of mction. The required initial dng torce, drag 
friction, slip ratio, wheel rotating velocity, Rear elastic 
displacement and rotation are expressed by the following 
equations: 

where: 

? 
"n 

o   =   <t>    q 

where: 

structural mode critical damping 
structural mode natural frequency 

(23) 

is the actual wing pitch displacement (wing 
lo.'sional rotation) 
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The torsional moment is given by: 

M   -   RT + L ■ RF 

The elastic forces at the st;«tor become: 

RF 

RT 

1     [kxxkx.j [XDSL 

(24) 

(25) 

The forces and deflections may be visualized from Figure 8. 
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Inclusion of an elastic mode required initial conditions for 
the coordinate associated with the mode. In the analysis, the 
initial values of X and 6 are calculated using the following 
set of equations: 

M, - D, • L + BTS 

* "*-T 
<*-q, 

H BTS 

lFP 

'FP 

fL<\ 

(26) 

(27) 

(28) 

(29) 

The values of q, X and 6 are all taken initially to be of zero 
magnitude. 

ANALYSIS AND COMPUTED RESPONSES 
The computed responses of a simulated aircraft brak- 

ing stop are shown in Figure 9. The brake torque function 
(Figure 4) and the applied tire friction coefficient versus 
slip ratio (Figure 6) used in this analysis are specifically the 
functions shown. Aircraft elastic mode effects are not 
included in the calculated responses. The magnitudes of the 
physical parameters employed in the analysis are -epresenta- 
tive of the Douglas DC-9 aircraft. 
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The aircraft braking simulation was started at an air- 
craft velocity of 4 knots. For the parameters chosen in the 
model, the velocity decreased below the break velocity in 
0.1 seconds. At this instant, the brake torque took on 
values on the negative sloping portion of the brake torque 
curve. At this point a sequence of events, which are numer- 
ically indicated (see Figure 9), occurred in the following 
order: (I) squeal mode appears, (2) irregularities occur in 
the brake torque, (3) chatter vibrations are initialed and 
(4) chatter vibrations decay to a steady amplitude Oue to 
structural damping forces. The functions ij/ and 8 are 
plotted together so that the effect of sticking between the 
rotor and stator can be exhibited. Subsequent events shown 
and numerically marked (Figure 9) are: (5) first appearance 
of sticking and the actual inauguration of the chatter mode, 
(6) increase in sticking in chatter amplitude. (7) increase in 
sticking duration and the disappearance of the squeal mode 
and (8) the beat-like growth and decay of the brake torque 
with each chaiter cycle. This beat-like behavior has been 
observed in recorded brake hydraulic pressures during 
chatter excitations. 

The calculated response also indicates that the gear fore 
and aft displacement, X, is always aft of the neutral position 
and never decreases to an amplitude within the freeplay 
region. Therefore, the total gear stiffness is effective during a 
complete chatter vibration cycle and the expected forced 
vibration frequency would be 18 Hz (Figure 4). The average 
calculated chatter frequency is approximately 16 Hz, the 
discrepancy apparently resulting from the slip-stick phenom- 
enon previously described. 

As the velocity approaches one-third knot or less, the 
developed program tends to produce questionable results. 
An explanation may be found in examining the constraint 
of the tire Usgree-of-freedom in the simulation. At very 
slow velocities tire rotational deformations might be 
expected and conceivably should be included. The addi- 
tional vibration mode, termed wheel chatter, would be 
introduced corresponding to J frequency governed by the 
tire rotational restoring spring and the wheel rim plus brake 
rotor mass. This frequency has not been observed in the 
limited measure data obtained on the DC-9 aircraft. 

The simulation was modified to examine the effect of 
tire dynamics upon response characteristics. The results 
were unsatisfactory because the response was dominated by 
the wheel chatter mode while the gear chatter mode van- 
ished. A redundancy may be implied by the simultaneous 
definition of dreg force through a measured slip ratio func- 
tion and the inclusion of a tire degree-of-freedom. The tire 
deformations might be implicit in the slip ratio function as 
the measurements ire obtained relative to the landing gear 
ixle. Apparently, a ;.<ip r.tio function relative to the tire 
contact point is required. 

METHODS OF ATTENUATION 

The most direct and effective method of providing 
attenuation of both the squeal and chatter modes is to 
employ the proper mixes in the brake lining material. The 
expression "proper mixes" refers to those mixes that influ- 
ence a constant brake torque amplitude at ail relative 
angular velocities, i.e., a flat brake torque function. Brake 
lining suppliers are presently developing various mixes to 
solve this problem. 

The squeal condition, intimate with the brake stator 
rotation, can be attenuated by physically attaching to the 
brake stator a vibration absorber tuned near to the squeal 
frequency. Since fore tnd aft motion of the strut, in 
general, accompanies the rotational motion at the bottom 
of the strut, chatter will usually occur in conjunction with 
brake squeal. However, the analytical studies revealed that 
squea1 removal did not necessarily eliminate chatter. 
Chatter can be effectively attenuated by a vibration 
absorber intimate with the fore and aft motion of the strut, 
Analysis indicates that the chatter absorber weight will be 
excessive. 

VIBRATION ABSORBER EQUATIONS 
The vibration absorber can be characterized by a 

mounting-base-excited simple oscillator. The absorber 
produces a large force reaction at the mounting base when 
the forcing function coincides with the resonant frequency. 
The opposing reaction force on the structure attenuates the 
motion. Two new resonant frequencies are generated, thus 
the selection of absorber mass and critical damping ratio is 
important. The selection of a squeal vibration absorber is 
discussed in Reference 4 along with appropriate design 
charts. Calculated results for several design conditions 
tended to confirm the curves presented in Reference 1. 
Schematics of the absorbers are shown in Figure 10. 

FIGURE 10.   VIBRATION ABSORBER SCHEMATICS 

Squeal vibration absorbor equations are: 

lAP + ^„(P-6)  + kw O - 8) - 0 (30) 

where 

IA = mA RA ; effective absorber relating inertia 

Cpa = 2 ?A'AHA; a'>!ior';^r rotations! damping coefficient 

K 0„ = cJnA, IA ; absorber rotational süffness 

The stator rotational equation of motion musi be modified 
to include the absorber torque reaction (TA): 

1.8 + RT - BT - TA " 0 

TA  -c,,,<p-9)+kw(p-«)! 

(31) 

(32) 
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The  applicable  chatter  vibration  absorber equations 
are: 

mCA Y + cCA(Y-X) + kCA(Y~Xj • 0 (33) 

where: 

rnCA = chatter absorbei mass 

CCA! -        * ?cA mcA wncA •   chatter   absorber 
damping coefficient 

^CA   =   lJnrA mCA • cnat,cr absorber spring stiff- 
ness 

The equation of motion of the stator assembly must be 
modified to include the absorber applied force (F^)- 

mT X+ RF - FA - D - 0 (34) 

A simulation that employs a vibratior absorber necessitates 
initial displacements on the absorbers. For initial displace- 
ment of the absorber take 

p( = 8i    squeal absorber (35a) 

Yj = X,   chatter absoiber (35b) 

The initial velocities are given 

p( = 0   squeal absorber (36a) 

Yj = 0  chatter abso'ber (36b) 

SELECTION OF ABSORBER PARAMETERS 

A squeai vibration absorber was analytically added to 
the simulation employing the equations of the previous 
section. The properties of this absorber were established on 
the basis of the work in Reference 4 utilizing the plot in 
Figure 3 in this reference. The addition of the absorber to 
the stator results essentially in a two-degree-of-freedom 
system. The magnitudes of the absorber's damping level and 
tuning frequency should be carefully selected such that 
both of the modes in the two-degree-of-freedom system are 
suppressed. The cases studied in this paper corroborated the 
results in Reference 4 concerning the proper parameters of 
a vibration absorber to attentuate a squeal mode. For the 
particular gear and brake torque curve used in this investi- 
gation an effective squeal vibration absorber might weigh 5 
to 8 pounds and require 15 percent critical damping. 

A schematic represr ition of a clu'ter vibration 
absorber considered in tins study is shown previously 
(Figure 10). An absorber weighing 100 lb and having 10 
percent critical damping was found to appreciably attenuate 
the chatter vibration. This result does not constitute an 
optimum set of properties and with further study a lesser 
weight chatter absorber may be obtained. 

SUMMARY AND CONCLUSION 
The papsr discusses aircraft landing gear chatter and 

brake squeal vibrations. Transmission of disturbing vibra- 
tions into the aircraft passenger compartment and the possi- 
bility of accumulated landing gear damage and brake wear 
prompted an investigation into these phenomena. A digital 
program was prepared to simulate the DC-9 aircraft main 
landing gear slowing to a braking stop. The mathematical 
mode! represented the fore and aft motion of the gear wit), 
the accompanying rotational motion at the gear axle. Com- 
parison of computed responses and measured data indicated 
a reasonably appropriate simulation. 

The analysis confirmed the supposition that the brake 
toraue function characteristic was the primary contributor 
to chatter and squeal excitation. Specifically, the increasing 
brake torque amplitude in relation to a diminishing relative 
brake rotor-to-stator angular velocity instigated the self- 
excited condition. This function effectively produced a 
negative damping that sustained and/or increased the vibra- 
tion amplitudes. An intermittent, periodic slip-stick action 
that appeared as the chatter motion increased is essential in 
explaining a chatter frequency that is lower tnan the 
measured free vibration gear fore and aft frequency. 

Several vibration attenuation methods are detailed; the 
most effective and direct is to use a mix in the brake lining 
that ensures a flat brr.ke torque function. Vibration ab- 
sorbers can be employed to eliminate squeal and chatter. A 
squeal vibration abcorber could be utilized without a sub- 
stantial weight penally however, a chatter vibration ab- 
sorber would require an excessive weight. 

The excitation of an elastic vibration mode, particu- 
larly a wing torsion mode, would substantially increase the 
chatter motion and amplify the vibrations perceived by the 
passengers. Equations are presented that include a wing 
torsion mode in the equations of motion for the complete 
system. 
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APPENDIX A 

COMPUTER PROGRAM waj ujed (o obtam |hj numeri a, reB1,t| presented in ^j, 

A lilting of \fo digital proyam simulating br»ke squeal report. The program is written in the IBM-CSMP (Contin- 
uous Systems Modeling Progr. ■>) language. and strut chatter if. presented in Figure A-l. This prcram 

INIT 

• CALCULATE   STRUT  RESONANT   FREQUENCIES 

STX =   SXT 
TN s  SN  ♦ HN  ♦   TMS 
T! : $1 • HI   ♦   TIR 
■  s STT/TI »   SXX/TN 
C r 1  SIX •  STT   -  SIT   •  STX   1 /   1 
Rfli st» - SORT i »••: - ».o»e 1   1 
RF1 :  SORT ttrii» 
tn s RF1 /  0.20S2 
nrzi st»  ♦ SORT   1   0»»2   -  «1.0  • C   1 
nrt = SORT iRrni 
rr» s  RF2 / S.2A32 
•> i STT/SI   ♦  SXX/TN 
Cl   ! :   ISXX •  STT  -  SXT   »STXI   / tTN 
SO : : SORT f31»»2 -  ».0»C1I 
rj : :   SORT '.«   BI-SO   1/2.01   /  0. 2032 
ri : : SORT It  »l»SO   1/2.01   / t. 3032 

• 
• 

CALCULATE   STRUT  DAMPING  RA/RIX 

TN» TIJ 
1/2.0 

1/2.0 

• SI I 

Tl : I Rf12 »TN - SXX I / SXT 
T2 : t RF22 «TN - SXX I / SXT 
•Nl S TN ♦ TI» I Tl»»2 I 
•N2 : TN • TI • ( T2«»2 I 
OCl s 2.0 • ONI • CR01 • RF1 
0C2 : 2.0 • 0H2 • CRO« • RF2 
CXS S HT2»»2I»0C1 • <T1*»2I»0C2I / OETR 
OtTR : t T2 • Tl l**2 
CXT : I-T2» CC1 - Tl • 0C2I / OETR 
CTX : CXT 
CTT S     t OCl • 0C2 I / OETR 

CALCULATE FLEXIOILITV NATRIX 

OET : SXXcSTT - STX»SXT 
All s STT / DET 
AI2 s - STX / OET 
A21 : - SXT / OET 
A22 = SXX / OET 

NOSORT 

SORT 

OT   - »TR 
CALL MNT 

CALCULATE INITIAL CONDITIONS TO ELININATE STARTII.6 TRANSIENTS 

•EIT 
OXT 
FUIT 
SRIT 
RSIT 
XIT 
TNXT 
OT : 
X 
TN 
0 

OTS / RST 
OTS / R 
DIT / H 
FUIT / 2.0 
t   1.0 - SRIT 

= All < 
: A2I • 
ITS 
: XIT 
: THIT 
: OIT 

OtT 
OIT 

I < 
Ai? 
A22 

VL1T 
• OTS 
• OTS 

R 
FRX 
FRTH 

RSIIO: RSIT 

CONST SXX : «3300.0»  SXT = -113*000.Ot  STT s «3100000.0*... 
SI : 20.C0t  HI : «T.«t  TIR t Itl.tt... 
SN :  0.032»  HN : 1.032»  THS 5 0.07«»... 
CR01 s O.wS»  CR02 S O.OS»  VLK s «.0« OTS : 100000.Ot ... 
R -  20.0»  H : 50000.0.  CT S 21.«» ST : 2S«00.0» HR : 11.0 

CONST FRX -  O.OS  » FRTH : 0.0002» VLIT I 01.0T20» RTF : UOOOO.O 

FIGURE A-1. CSMF COMPUTER PROGRAM 
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r 

ÜVK4H 

• AIRPLANE  OCCElCRmON  ESUATIONS 

VLIO   S   -0   •   I   3SS.4   /   U    I 
VL   :   INTGRL   I   VLIT        .   VLIO   I 
KV     :   VL   /   JO.26» 

• CLASTIC  RESTORING FORCES 
• 

XDS S   Ot*OSP I -FPX. FPX« X I 
THOS   -   OEADSP   <   -FPTHt   FPTH.   TH   i 
ERT      :  S1T*THDS   ♦   STX»XOS   »   CTT«TH10   ♦   CTX»;10 
ERF      z   SXX*XDS   ♦   SXT»TH0S   ♦   CKXaSUO   •   CXT.TH10 

• INTEGRATING EQUATIONS 

HD : I 0 - tlf I / TH 
X10 I I).'TGRL I IC2. X20 I 
X   5 L.fGRL I XIT. XIO ) 

THIO S INT6PL I 1C1. THJU I 
TH - INTGRL ITHIT. JH1D I 

PSI10 : INTGRL IPSITt PS'?0 ) 
• 
• 0RA6 FORCE CALCULATION 

SR : 1.0 - I R*PSX10 > / ( VL-X10 I 
FU = AFGEN ( FRICT, ABSCSRI I 

AF6CN FRICT : 0.0. 0.0« G.Zf 0.«« 1.0« 0.2» 1U000.C» 0.2 
HOrORT 

IF II VL-X1D > - RtrSIiO i  Si (> i 
5 Nil : -FU 

GO TO 7 
6 NU : FU 
7 D S NU • <t 

SORT 
* 

OTS z  BTP - S? • PSI20 
PHI : PSUO - THIO 

AFGEN  FUNCT = -lOO.Oi 140000.0. O.Oi 160000.0. 1.1. 100000.0» 
1000.Of 100000.0 

* 
• L06IC  TO  PERMIT  LOCKING  OF  WHEEL  «NO  HUB 
• 
PROCCO  PSI20. TH20 8 CAL I R. Ot BT» ERT. PHI. DI 1 

IF I PHI .LC. 0.0 .ANO. ERT .LE. DT ) GO '0 10 
PSI2C : I R»0 - BT I / I MI ♦ TIR I 
TH20 : I BT - ERf I / Sf 
bO TO IS 

10 PSI20 : i   R*D - ERT > I   TI 
TH20  : PSI20 

IS CONTINUE 
CNOPRO 
• 
• BRAKE TORBUE EQUATIONS 
• 
NOSORT 

IF I PHI .GE. 0.0 » 60 TO 100 
BT : SI • TH20 ♦ ERT 
GO TO 200 

.00 CONTINUE 
BT S AFGEN I FU1CT« PHI » 

200 CONTINUE 
OT = OTS 
IF I VL > 1» 2* 2 

1 TINE   z  FINTIN 
2 CONTINUE 

SORT 
«. 
LABEL STRUT   CHATTER 
INCON   1C1   :  0.0.   1(*2   S   0.0 
RANGE     Xt   TH 
TIMER     CELT   :   .00005«   FINTIN   :   3.00.   OUTOCL 
PRINT   S.J.   Oi   VL«   XIO«   BT«   THIO«   VLIO«   PSI10 
HCTKOO     RKSFX 
CNO 
STOP 

0.001«   PROEL 0.001 

FIGURE A-1.  (CONTINUED) 



APPENDIX B 

GEAR STIFFNESS MATRIX CALCULATION 

The |Mr Hiffnett matrix wit obtained from the 'nver- 
stoE of the flexibility matrix repreienting deflections in X 
and • at the axle end of the stmt. The elements of the 
flexibility matrix are derived from the theoretical flexibility 
at the gear attachment location and the theoretical canti- 
levered tear flexibility matrix. 

A diagram of the wing chord section at the 
gear-wing joint it shown in Figure B-l. The force* and 
diaplawTwntt involved in describing the attachment flexi- 
bilities t.e shown in the figure. The forces 0 and M which 
are the gear reactions acting on the wing are replaced by 
the force* Fj and Fj when performing the Redundant 
Force Analysis on the wing box. The forces F| and F2 
produce the displacements X\, X2, Z3, and Z4 shown in 
the figure. Deflections are related tc unit applied toads by 
the flexibility matrix (A]. Thus, it can be written that 

[A] W (Bl) 

in 
where 

[Cl 

[C) 

b-a 
b 

f       0 

z 

I    -1 
c        c, 

(B4) 

(B5) 

Combining Equations Bl, B2 and B3 the gear deflections 
are given as functions of the gear forces by 

:i [F] 1 Mj 
(B6) 

FIGURE 1-1. GEAR ATTACH FLEXIBILITY 

The forces F1 and F2 are related to the forces D and M by 
a matrix [B]  of geometric elements. This relationship is 
given by 

[::] IBl I:I (B2) 

whew 

IBl 

b-a       ^J 
b b 

L  b "b J 

(B3) 

and the distance« a and b are as shown (Figure B-l). The 
deflecttoü and rotation, X' and 6' of the strut at the wing- 
joint <ite expressed in terms of the vector matrix of the wing 
box deflections by the geometric matrix (C] as follows 

IF] [Cl     [A]     [B] (B7) 

The strut displacement X and rotation 8  at the axle are 
given by 

"I'   ""[r]*   ,E'[T] (B8) 

In Equation B8, [El is the strut cantilevered flexibility 
matrix, D is the force at the axle in the X direction, T is 
the axle torque and [H] is the following geometric matrix 

[HI i: :i (B9) 

D and M are related to D and T as 

D 

M i:i [HJ1 

I TJ 
(BIO) 

where the superscript T indicates matrix transpose. The 
complete flexibility relationship is 

['] -     [H][Fl[H1T+[E] 113 (BID 

The stiffness matr:*• (K) Is obtained by inverting the first 
matrix on the right-li*id side of Equation Bl 1; thus 

[Kl   -   flHllF) [H}T + [Ell"' (BI2) 

Therefore, the flexibility- matrix [a] referred to in thr main 
body of this papet is equal to [K]-l. 
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EXPERIMENTAL INVESTIGATION Or .ÖNLINEAR VIBRATIONS 

OF LAMINATED ANISnTOPIC PANELS 

Bryon L. Mayberry* and Charles W. Bert 
School of Aerospace and Mechanical Engineering 

University of Oklahoma 
Norman, Oklahoma 

Steady-state vibrational experiments were performed to determine exper- 
imentally the resonar t frequencies of different clamped rectas^ular 
plates made of various composite-material laminates under large deflec- 
tions. The panels were fabricated from a glass-fiber reinforced plastic 
consisting of glass fabric (E glass with S-920 finish. Style 909) im- 
pregnated with epoxy (Epon 828, curing agent Z). I «nination arrange- 
ments were: (a) Two parallel plies oriented at 0° (parallel to longest 
edge of plate), (b) Two parallel plies at 45°, (c) Fcur-ply 0°/90° 
cross ply, and (d) Four-ply +4S°/-4S° cross ply. 

Base excitation of the rigid clamping fixture was accomplished with an 
electrodynamic shaker. Resonance was determined by the peak amplitude 
response of a small metallic-foil strain gage at the plate center and 
stroboscopic observation of a grid pattern on the plate surface was 
used for mode identification. As the exciting force (and thus the 
plate deflection) was increased, the resonance frequencies associated 
with the various vibrational modes increased. This indicated that the 
nonlinearity was a geometric one of the hardening-spring type, in 
qualitative agreement with various theoretical analyses of large-ampli- 
tude vibration of rectangular plates. 

INTRODUCTION 

Composite materials, especially those con- 
sisting of laminations of fiber-reinforced plas- 
tics, are coming into widespread use in various 
types of vehicle structures. A basic structural 
configuration present in many different kinds 
cf vehicle structures is the rectangular panel. 
Thus, information on the static strength, buck- 
ling and vibrational characteristics of such 
panels constructed of laminated cinposite ma- 
terial is of considerable importance in the de- 
sign of such vehicles. 

Very recent composite-material research 
has been devoted to static strength under multi- 
axial tension [1], static plate buckling under 
uniaxial compression [2], and smalt 1-deflection 
plate vibration [3, 4], However, in many im- 
portant applications, the dynamic excitations 
encountered are large enough to produce deflec- 
tions which are in the large-deflection regime. 
Thus, the purpose of the present experimental 
investigation was to study large-deflection 
vibration of clamped rectangular plates com- 
posed of laminated composite material. 

SPECIMENS AND MATERIALS 

The specimen configuration was a thin 
plate of rectangular planform. The plates were 
clamped on all four edges to active dimensions 
of 9 in. by 6 in. 

Four plates were fabricated of laminated 
anisotropic material, with a different lamina- 
tion arrangement being used for each plate. 
Each layer was made of rectangularly orthotro- 
pic material in the form of glass-fiber rein- 
forced plastic (GFRP). The (3FRP consisted of 
E-glass/S-920 finish» 909 style fabric impreg- 
nated with Epon 828 epoxy resin and curing 
agent Z. 

The material properties of a composite 
material are highly dependent upon the resin 
content.  The specimens had m average resin 
content of 46 percent by weight. The basic 
composite material proper ies obtained from 
two-ply, parallel-laminated specimens were as 
follows: 

Major Young's modulus, E.. * 2.70 x 10 psi 11 

•Presently 2d Lt., USAF, Pilot Training, Webb AFB, Texas. 
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Miner Young's modulus, E22 ■ 2.56 x 10 psi 

MUIOT Poisson's ratio, v12 ■ 0,242 

Minor Poisson's ratio, v,i • 0.230 

Shear modulus,      G - 5.6 x 10" psi* 

Density, p « 0.000197 lb-sec2/in4 

The four lamination arrangements used are 
listed in Table 1. Curing was carried out in 
a large autoclave to assure uniform properties. 

EXPERIMENTAL APPARATUS 

Toe experimental apparatus was designed to 
give the most accurate results for the most 
practical boundary conditions. Thus, the boun- 
dary conditions of all edges clamed, essential- 
ly completely restrained from both planar and 
rotational movements, were selected. These 
boundary conditions are most conaanly encoun- 
tered in aerospace structures, are easiest to 
approximate «gperinentally, and minimize extra- 
neous side effects. 

A specially designed test fixture was used 
to clamp the edges of the plate and to attach 
the plate to the electrodynamic shaker (MB Model 
C-i0). Fig. 1 shows a sketch ox the fixture, 
the base of which was machined from a solid 

rectangular frame with 18 bolts at a 1.5-in. 
spacing. The base, frame, bolts and bolt 
spacing were all designed to be sufficiently 
rigid to assure that the lowest natural frequen- 
cies were well shove the panel fiequercy ranges 
of interest. Pig. 2 is a photograph showing 
the specimen mounted in the fixture. 

Fig. 2 - 
fixture 

Specimen mounted in test 

0.25 - 28 NF Bon« 

Note:   Ml diamion in inch» 

F<JJ. 1 - Test Fixture 

block of aluminum. The bottom of the fixture 
base is bolted to the shaker head and the plate 
is clamped to the top of the base by a heavy 

The purpose of the 1-in.-diameter holes in 
the fixture base (see Fig. 1) was to eliminate 
air spring and damping effects due to pumping 
action. 

INSTRUMENTATION 

Metallic-foil, electrical-resistance 
strain gages located along the center lines of 
each plate were the transducers used to deter- 
mine the natural frequencies. 

The electronic circuitry of the instrumen- 
tation package that was used to monitor, mea- 
sure, and record the dynamic signals from the 
strain gages is shown schematically in Fig. - 
and a photograph is shown in Fig. 4. A voltage 
of 7 volts D.C. was applied to the gage from a 
300-volt D.C. power supply  rough a variable 
10 k-ohm dropping resistor. The resistor also 
acted as a high-impedance source to the A.C. 
signal from the strain gage. The signal was 
applied as input to the A.C. amplifier, which 
had a high impedance to the D.C. portion of the 
signal and thus allowed only the A.C. component 
to be amplified. The voltmeter and oscilloscope 
were used to monitor amplitude and waveform of 
only one strain gage. After amplification by 
the oscillograph amplifier, the signals from 
all of the strain gages were recorded on an 

•Estjaated. 
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oscillograph for a permanent «•*.., 

A stroboscope (General Radio Strobotac, 
Type 1531-AB) was used to observe closely the 
different modal patterns encountered at var- 
ious resonant frequencies, as described in the 
next section. 

After the main test series was completed, 
an additional series was conducted using the 
same plates as before, but with a small hole 
drilled through the center of each plate. A 
finely graduated scale protruding through the 
hole was used to measure tve deflection ampli- 
tude. 

bilk.-I 
twltck 

AVTIOIt 
o*clllo.T*.tt 
Mfllfur IMal T»l 

■•C.I    Oklp two ftr.lk'ti... tr.tM. ar. .kxwm. 

Fig. 3 - Strain-gage electronic 
schematic diagram 

EXPERIMENTAL PROCEDURE 

Two different versions of the peak-ampli- 
tude method were used to determine the reson- 
ant frequencies with very good results. Since 
the resonant frequencies of a clasped plate are 
not neaily so closely spaced as those of a 
shell structure, it was decided that it was 
unnecessary to use the more refined Kennedy- 
Pancu method, which requires both amplitude 
and phase data [5], 

The first version used the peak amplitude 
of wetallic-foil strain gages. Since base 
excitation was used to excite the specimen 
symmetrically, only one strain gage, located 
at the center of the plate, was adequate. 

As the frequency was increased until the 
specimen entered a resonant frequency range, 
the strain-gage signal steadily increased, 
until it reached a peak value, and then de- 
creased as the frequency was increased further. 
After the initial sweep, the procedure was 
repeated and the frequency held at the point 
at which the peak signal amplitude was obtained. 
This frequency at which the peak amp]itude 
response was obtained was recorded as the re- 
sonant frequency for the particular amplitude. 

A. M-B ELECrROIWiAMIC EXCITER TABLE POWER SUPPLY: 
MODEL C-10 

B. M-B EL3C1TODYNAMIC EXCITER TABLE: MODEL C-10 

C. CMC FREQUENCY COUNTER: MODEL 22SB 

D. GENERAL RADIO STROBOSCOPE: MODEL 1531-B 

E. A.C. AMPLIFIERS: MODEL 250 

F. TEKTRONIX OSCILLOSCOPE: MODEL 503 

G. 300 VOLTS D.C. POWER SUPPLY 

H. AVTRON OSCILLOGRAPH AMPLIFIER: MODEL T249 

I. BUDD STRAIN GAGE INDICATOR: MODEL HW-1 

J. JACKSON SIGNAL GENERATOR: MODEL 652 

K. HONEYWELL VISICORDER: MODEL 906A 

Fig. 4 - Photograph of instrumentation 

The major disadvantage of the procedure 
just described is that it is difficult to 
clearly identify the particular type of mode of 
the vibration taking place. This problem of 
uncertainty in identification of modal type led 
to the use of a second version of the peak-am- 
plitude method. 

The second version used stroboscopic light 
synchronized to the excitation frequency to 
slow or stop the motion. To facilitate obser- 
vation of modal patterns, a square grid-line 
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pattern was pain' rad on the specimen. The paint 
was a color of t:igh contrast with respect to 
the color of the plate. Examples of the modal 
patterns obtained in this way are shown in Figs. 
5-7.* The three-dimensional effect of modal 

sheets, material flaws, etc. 

Fig. 5 - Modal Pattern (m - 1, n - 1) 

Fig. 7 - Modal Pattern (m - 5, n - 3) 

Using each version of the peak-amplitude 
method as a check on the other, the experimen- 
tal resonant frequencies can be obtained very 
accurately. 

Fig. 6 - Modal Pattern (m - 3, n - 1) 

shapes taken by various grid lines as well as 
locations of the nodes are shown quite clearly. 
The stroboscopic technique allows the experi- 
menter to detect such localized phenomena as 
buckling (static or dynamic) of very chin 

EXPERIMENTAL RESULTS AND DISCUSSION 

The resonant frequencies, associated with 
various modes and extrapolated to zero ampli- 
tude, are summarized in Table 2. These results 
agree reasonably well with the results of a 
linear free-vibrational analysis taking into 
account layered anisotropic coupling effects 
[4]. Generally, the experimental results were 
higher than the results of the Rayleigh-Ritz 
analysis. This discrepancy may be due to an 
erroneous value of the shear modulus, an erron- 
eous extrapolation to zero amplitude, initial 
buckles or ether plate imperfections, or an 
error in the analysis. 

In contrast, a series of experiments re- 
ported recently by Ashton and Anderson [3] on 
bora»-fiber reinforced plastic plates generally 
resulted in experimental frequencies about 10 
percent lower titan the ones predicted by their 
linear analysis. However, their lower values 
may be attributed to the flexibility of their 
test fixture in comparison to the rigidity of 
the boron plate. In unidirectional form (i.e., 
a single layer), their composite material has 
a Young's modulus slightly higher than that of 
steel. 

When the plates were excited at large ex- 
citation amplitudes, there was a noticeable in- 

*Due to the intolerable noise level associated with very large amplitude vibration of the GFRP plates, 
the photographs shown in Figs. 5-7 were taken on rubber membranes stretcied and clamped in the plate 
test fixture. 
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crease in resonant frequency with increasing 
amplitfide. This hardening-type nonlinear- 
spring effect was due to the development o. 
membrane forces as a result of end restraint 
and geometric nonlinearity, i.e., the non- 
linearity in the strain-displacement relations. 
In other words, at large normal deflection: 
the edge restraints induce membrane forces 
which tend to stiffen the plate. 

The results of theoretical analyses of 
the nonlirear vibrational behavior of plates 
are usually presented in terms of dimensionless 
resonant frequency (frequency divided by the 
linear frequency) versus amplitude ratio (max- 
imum plate deflection amplitude divided by the 
plate thickness). Thus, in the seconi series 
of experiments, resonant frequency was deter- 
mined as a function of plate center deflection 
amplitude, instead of excitation amplitude. 
The results for the lowest mode of each of the 
four plates is shown in Fig. 8. 

linear free-vibrational analysis of an ortho- 
tropic plate presented in Appendix A. 

«MPLITUM MTW , */» 

Fig. 9 - Comparison between theory and 
experiment for the fundamental mode 

40 «0 IM 1*0 
OtnXCTION   UWIITUM- MILt 

As can be seen in Fig. 9, there is very 
good agreement between theory and experiment 
for Plate A, which is simple orthotropic. How- 
ever, there is very poor agreement for Plate C. 
This discrepancy is apparently due to the effect 
of bending/stretching coupling in decreasing 
the plate stiffness; this coupling effect is 
not included in the theoretical analysis. 

No comparison is made between theoretical 
and experimental results for Plates B and 0. 
The reason for this is that they have material- 
symmetry axes which are at an acute angle with 
the plate edges and thus have strong in-plane 
normal/shear coupling and bending/twisting 
coupling, which are not included in the analy- 
sis presented. 

It should be mentioned that the agreement 
achieved between theory and experiment for 
Plate A is considerably better than that ob- 
tained by others for nonlinear vibration of Iso- 
tropie rectangular plates [6, 7], 

Also, it is interesting to note that 
since the ratio of the major and minor Young's 
moduli is nearly unity for the plate material 
used, the effect of orthotropic behavior was 
small in the case of Plate A. 

Fig. 8 - Effects of deflection ampli- 
tude on the fundamental resonant fre- 
quencies 

Fig. 9 compares the same experimental 
results (in dimensionless form) for two of 
the plates with those predicted by the non- 

CONCLUDING REMARKS 

The successful use of stroboscopic light 
for mode identification and a single strain 
gage for accurate Absonant frequency determin- 
ation by the peak-amplitude method was demon- 
strated very clearly. 
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There was very good agreement between the 
frequency versus amplitude relation measured 
aid that predicted by an approximate pertur- 
bation analysis presented in Appendix A for the 
case of a simple aligned-orthocropic plate. 
However, since the analysis did not include any 

nonaligned-orthotropic coupling or laminated 
anisotropic coupling effect:, It overestimated 
the increase in frequency with amplitude for 
the more complicated orientations or lamination 
arrangements. 

TABLE 1 

1 LAMINATION ARRANGEMENTS 

Plate 
Designation 

No. of 0.0105-In. 
Plies 

Lamination Arrangement 9 Orientation of 
Major Material-Synmetry Axis with Respect to 

Piste Axis 

A 2 Parallel ply, 0* 

B 2 Parallel ply, 45* 

C A Cross ply (2 plies at 0° 5 2 at 90°) 

D 4 Angle ply (2 plies at - 45° 8 2 at 45°) 

TABLE 2 

EXPERIMENTAL RESONANT FREQUENCIES AT SMALL AMPLITUDES 

Plate 
Mode Resonant 

Frequency, cps Axial W Lateral inj 

A 1 111 
1 34b 
3 461 

B 1 103 
1 310 
3 427 

C 1 192 
1 493 
3 867 

D 1 166 
1 499        ! 
3 795 
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APPENDIX A 

AN APPROXIMATE PERTURBATION ANALYSIS OF NONLINEAR VIBRATION OF AN 

ORTHOTROPIC RECTANGULAR PLATE 

This analysis is a perturbation analysis analo- 
gous to Evensen's recent analysir of nonlinear 
beam vibration [8]. The point of departure is 
a set of dynamic equations analogous to those 
formulated (but not solved for this configura- 
tion) by Iwinski and Nowinski [9] for a stati- 
cally loaced, rectangularly orthotropic plate. 

Nowinski's equations, with th«. inclusion 
of the inertia term, can be written as follows: 

L4(w)-(12C/h2)L2(w)+(ph/D1jw>tt - 0     (1) 

C - u +kv +(l/2)w2 +(l/2)kw2        (2) 
>* ti »A     iX 

where a subscript cornna denotes differentiation 
with respect to the variable following the comma 
in the subscript, and 

C - E*ke ■ a function of t only 
x y 

D, » flexural rigidity in the x direction 

E,, E, - Young's moduli in the x and y direc- 
1     L     tions 

h - plate thickness 

k - (DJ/DJ)1/2 - (E^)172 

I2 - (2G12/E1)(l-k
2v|2) ♦ v21 

L2(w) - wfxx*kw)yy 

4V     ,XXXX    ,xxyy        ,yyyy 

t « time 

u, v - displacements in the x and y directions 

w - normal deflection 

x, y • rectangular coordinates measured in 
directions parallel and perpendicular 
to the ecges of the plate 

.!., " Poisson's ratio (ratio of contraction in 
y direction to elongation in x direction, 
due to loading in x direction) 

e , c »■ midplane strains in the x and y dir- 
y  ections 

p - density of plate material 

Since C is independent of x and y, Eq. (2) 
may be multiplied by the differential area dxdy 
and integrated to obtain the following expres- 
sion: 

Ä It C dxdy - t u|« dyk /•■»£ dx x-0 ly-0 

CV2) ß /• (w^y) dxdy (3) 

where a and b avc the plate dimensions in the 
x and y directions, respectively. 

For a plate which has planar restraint 
on all four edges, planar displacements u and 
v vanish at the boundaries and Eq. (3) reduces 
to the following: 

2abc ■ it ii fr^y *»* w 
Integrating the right-hand side of Eq. (4) 

by parts gives: 

Jo il w<w,xx+lM,yy> ** (S) 

For a plate which is supported (simply or 
clamped) on all four edges, normal deflection 
w vanishes at the boundaries and Eq. (5) sim- 
plifies as follows: 

2abC - Ä II «C, +kw o'o .xx-.yyJ^      W 

Now the problem has been rechxvd to the 
.xx 

epr" 
integration of Eq. (1) subject to Eq. (6) and 
the boundary conditions. This intermediate 
result may be regarded as a generalization of 
"fah's formulation [10] for the Isotropie case 
to the orthotropic case. 

The method of solution used here is the 
perturbation technique. Initially the follow- 
ing relations are used: 

tut 

w(x,y,t) - w[x,y,t+(2»/u)] - eWj+etc3) 

C(t) - e2 C2 + e^
1*) 

u2(e) - u2[l+s2Q2+0(e")] 

(7) 

(8) 

(9) 

(10) 

where e( ) denotes terms of the order of the 
quantity inside the parentheses, c is the per- 
turbative parameter, and u is the linear natu- 
ral frequency. The application of the pertur- 
bation procedure to Eqs. (1) and (6) and col- 
lecting terms of the various orders yields the 
following results: 

6(c): L4(w1)+(phu
2/D1)wljTt - 0 (U) 
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rb ra 

(12) 
e(«>): 2abC2(x) - -/° /* w^w^kw^) dxdy 

W»3,TT 

dx dxdy » 0 (21) 

e(e'): L^WjWph^/D^w 

(U^/h^L^wp-Cotto^j/D^w^^ (13) 

Eq. (11) is the equatiur- governing the 
linear (small-deflection) motion of an ortho- 
tropic rectangular plate. Thus, the following 
«ie-term solution is assumed: 

WjCx.y.t) * *a00»f/
vi cost (14) 

where * (x) and ♦ (y) are the following clamped- 
claspedrbeam vibration fur.rtions tabulated by 
Young and Felgar [11]: 

♦■ " cosh V * cos V-^t«11* V " S1" "u;x) 

(15) 

♦ ■ cosh ß'y - cos 8' y-an(slnh S'y-sin ß'y) 

(16) 

where m, n denote the longitudinal ard lateral 
modal numbers, respectively. 

Then Eq. (12) becomes: 

2abC2 W  " lm W (17) 

where 
rb ra 

WW» - d H Vn^m,xxVkVn,yy5 ***> 

-l/oVm,xx^(/o*n^ 

*<»«^(/oVn,yy^ OW 
The integrals appearing in parentheses in 

Eq. (18) were tabulated by Felgar [12]; thus, 
Bq. (18) becomes: 

WB'b> " 'Vma)(2-amßma)Cb/a) 

* (anBAb)(2aA8Ab)(,l/b) (19) 

Since Eq. (11) has a nontrivial solution, 
F '-. (13) can have a solution only if its right- 
_nd side satisfies the following orthogonality 

condition: 

£ li /J" tl2C2/h2)L2(w1)-(phu|n2/D1)wlTT] 

w.dt dxdy - 0 (20) 

or 

£ £ ff  ((6/abh*) Vb)Vn <♦»,«♦« 

* k*m*n,yy) «»S*(pftU|n2/D1) ♦£♦£ COS2T] 

Integrating Eq. (21) and rearranging, one ob- 
tains the following result: 

02 - (9/2)(D1/phW2) 1^ (a,b) (22) 

Inserting Eq. (22) into Eq. (10) yields: 

u2 . w2 [i+(9/2)(D1/Pho.2)I^n (a,b)E
2]    (23) 

It is now necessary to relate the pertur- 
bative parameter, e, to the plate deflection 
amplitude, A. at a specific point on the plate. 
Since the plate deflection was iticasured at the 
center of the experimental pl?tes, the center 
is selected as the point at which A ir- defined. 
Thus, 

A - e *m (a/2) ^(b/2) (24) 

Then Eq. (23) can be rewritten as follows: 

„r - «2+(9/2)(D1h/p)[Iran(a,b)/*m(a/2)*n(b/2)]2 

(A/h)2 (75) 

For the case of the fundamental mode (m - 
n ■ 1), for example, [11] gives: 

♦m(a/2) - *n(b/2) - 1588 

o^ - n* - 0.9825 

M - ß' b - 4.7300 m   n 
Thus for the plate dimensions, a » 9 in., b ■ 6 
in., Eq. (25) becomes 

u2 . u2+(S/2)(D1h/p)(26.2)
2(1.588)"4(A/h)2 
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DISCUSSION 

Dr. Aghton (General Dynamics/Fort Worth): 
How did you, - or did you keep the unsymmet- 
rical plate flat when you made it? 

Mr. Bert: It was not absolutely flat.  There 
was a small amount of warping. It was main- 
tained in flatness by being clamped at the edges. 
Other than the possibility of local wrinkling I 
think it would be satisfactory. 

Mr. Ashton:   Let me Just give you the rea- 
son for the question. We have done a little work 
on unsymmetrical plates, in particular both Jim 
Whitney at AF and John Mandel and some one 
else at Case Western Reserve Ui iversity have 

been doing some work along these lines and 
have obtained some solutions. The fact you show 
your theory and experiment converging at low 
amplitude to the same number does not seem 
quite in line with some of the results they have 
found - that is the reason for my question. 

Mr. Bert: This plot was aligned to con- 
verge. In this paper we are not trying to verify 
the linear theory - we are looking at the non- 
linear aspect. So that I essentially faired it in 
to be exact. Now some of ours were high and 
some were low, we had about 10 percent maxi- 
mum variation in our linear theory. That is a 
subject of another investigation. 
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3THXTURAL JÄHAMIC& AHALYBIS 

OF AH AWSOTRWIC MATERIAL * 

S. K. Lee 
General Electric Ccupacy 

Syracuse, Rev York 

1 A theoretical study 1» pre*em,ed on the propagation of 
a plan» wave through an er.i«or.roplc material — a linear 
elastic material which la reinforced with parallel fiber« 
in one direction, other then the Young's modulus along 
the diractlon of the fiter; the property of the reinforced, 
material is aisumed to remain unchanged. Fourier method 
Is used and the frequency equation, analytical expression« 
cf the displacements, «tresses are obtained. The 
numerical results can then be ccaputed. This theoretical 
analysis may be used 'M improve the performance of systems 
Incorporating a reinforcement member.  

1OTR0DUCTI0H 

?ne intensive use of light weight high 
tensile stress fiberglass as a strength 
member in space vehicle, Jet engine, sonar 
equipment, and numeral* other industrial 
application« requires accurate knowledge of 
their dynamic reeponse. In this pape* the 
effect of reinforcement due to fiberglass or 
other strength member is included to derive the 
equations of motion. The boundary condition* 
are obtained by matching the geometrical form 
of the system and the Initial velocities are 
sero. The initial displacements are resulted 
from loading the system statically at t - 0, 
then the static load is taken away and tirs 
body is set into motion. 

The solution of the problem can be 
divided into two parts, the static one and the 
dynamic one. In the former we find the «tresses 
and displacements due to static loading. Then 
we use these static results as the inital 
conditions for the dynamic problem. The 
complete solution is given in infinite series 
form and the numerical results can be computed 
by using high (»peed computers. 

NOMENCLATURE (Continued) 

SOMfflCLATC ML 

rectangular coordinate system 
o- normal stress 

shear stress 
<S oodulues of rigidity 
E Young's mcdul'i» 
AJ Poisson's ratio 
u.. c-, *->J" displacement components 
P density 

T 
-te. 

UM 

0/f 

longitudinal strain 
shear strain 
tin» 
natural frequency 
dimensions along the x and y 
direction respectively 
applied pressure 
chosen constants 
characteristic constants 

ANALYTICAL MDCSL 

The particular model we consider her« is 
a thin rectangular slab symmetrical in both 
loading and material properties with respect 
to the y axis. 

ah 

♦Paper not presented at Symposium. 20J 



ANALYTICAL MODEL (Continued) 

The «lab ia so reinforced «long the y~ 
direction that the overall Young*• modulus ia 
very large, say 

E    = Otf , ita*     t\Ay m ti^4 ~0 (1) 

The thlokneei In the s direction le so 
thin that <J\.=o    , i.e., a plane street 
problem. Note that elmllar problem in plane 
strtin can also he solved. 

The following relationship can he readily 
obtained, [lj 

for the displacement, 

U.= a(*,/. t), u-« v-c>/ y, t) v*r . o (2) 

for the strain - displacement, 

for the strain - stress, 

(3) 

"* 
1 6-^ -SO 

CO 

Fro» Iqs. (3) and (k) we obtain 

0-, = ft.)*, ^ .«*<££ V£) (5) 

»J"«CCX/"t) _,   independent of y (6) 

The equations of notion are 

Coahlnatlon of Kg.«. (5) and (7} gives, 

(7) 

(8) 

V 

We are Interested In solving Eq. (8) with 
a sero Initial velocity. The Initial 
displacement is resulted fron loading the slab 
statically and then taking away the load at 
t - 0. 

The boundary conditions are 

U. (j.,7, -t) = - U ic*, % t) 

Tx^o<At)-C 

The problem ia therefore completely 
defined. 

(9) 

STATIC AKAIX8IS 

He want to find the statically deformed 
shape of the slab, due to a certain ayatea of 
load. Here we chooee to apply along x axia 

Pc , 4«>- C !S X 4 O. 

T'      ^^ 
Since the Independent variable t 

disappears we can obtain other corresponding 
equations by simply crossing out t. 

The equations of motions reduce to two 
equations of equilibrium: 

«rJ = o 

(11) 
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Together with Eg.. (13), the 
boundary condition« are: 

u-ö^y) = -o.(-X,y) 
u.(.t,y) = j 

Let us asaume that 

(32) 

- o 
I x »i^ 

fy Fourier method [?], we assume 

where K„, Cn, Dg, i^', Bn'  are constants 
to be determined. 

With Eqs (10) and (11), it can be 
shown that     _ %   „a 

•>M con üiL2 h <i« 

where 

c<*)=I A„ß(as^x-u^nn)   (15) 

-Äjt^^ ><<«/>~^hjj (a6) 

An - - p. I* [i.« as*n-On"^j/ 

/ [<,nVp(h- &*+•**£*)] (17) 

KfNAKIC ANAIXSIS 

We now want to nolve Eq. (8) with Eq.. (9)- 
the boundary conditions. The 
initial conditions may be written as [3] 

u.(x.y,t)     as u(.*,y) 
t=o 

C>'^| = C 00 
-t = o 

^c^y.-t-)|taö=Trcx^) 

-It -o 
(IB) 
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^ O ■ t) = f^ v„t*) ccs c ;Vlt   (19) 

where the constant  X„  , functions Un, Vß, 8,, 
are to be determined. 

Using Iqs. (9) and (18), after «oae 
algebra, we obtain 

u.- f f /w*«^ a*uBg&gl^4cxw-t(Ba) 

'»I Aft,'* 

•te^._Vt-/ci.S|Vh    (22) 

♦plt6WV]-^e.w-      (23) 

where 

and 

i'nr *   7s «r w (26) 

Therefore the problem is analytically 
solved. 



C0HCUJ8I0KS 

1.   The natural frequencies are given by 

Where P's are the roots of 

Kote that for every n we have an infinite 
num>«r of P's. 

2.   The analytical proof of the uniform 
convergence of the series solution id very 
difficult,   future analysis nay be 
extended to include the proof numerically. 

The sane approach can be used to solve 
the plane strain problem.   The geometrical 
shape of the material is not very important, 
for exsnple, a circular plate reinforced 
axlally, a circular cylinder reinforced In 
the longitudinal direction, etc., can be 
readily solved. 
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EXPERIMENTS ON THE LARGE AMPLITUDE PAR/METRIC RESPONSE 

OF RECTANGULAR PLATES UNDER IN-PLANE KANDOM LOADS*t 
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Experiments have been performed to determine the large amplitude lateral 
vibration of a simply supported rectangular plate subjected to a distrib- 
uted in-plane load of the form P - PQ + Pi*(t)  , where $(t) is a 
narrow band random process. Power spectral densities of load and response 
are obtained and the effects of transaction mechanisms are evaluated. 
Typical sample functions are obtained. An analysis Is presented which 
shows that certain frequency shifts occur in the spectrum of the response, 
with the result that the mean frequency of the response ii  not an Integral 
fraction of the load mean frequency, and the spectrum of the response is 
shifted along the frequency axis. The experimental results are compared 
to the theory presented in this paper and with analytical results previ- 
ously obtained by Shyu and Somerset [5]. The agreement between theory and 
experiment la good. 

INTRODUCTION 

In recent yef<rs, there has been a signifi- 
cant amount of interest in the parametric vib- 
ration of systems and structures. In general, 
a parametric vibration of a structure is gov- 
erned by a differential equation of the form: 

'f(t) + ;[1 - p*(t)]f(t) + *{f,f,if,t) - 0   (1) 

where ..f (t) Is the response of the system, 
ij/(f,f,f,t) is some nonlinear function, and 
4(t) ia some function of time, t (See 
Table III for notation.) 

The earliest investigations of the para- 
metric instability of structures[1,2,3]%  were 
concerned with the linear form of Equation (1), 
wherein $(t) was taken to be a periodic 
function with period T   The results of 
those linear investigations showed that a para- 
metric instability could be manifest over a 
countably Infinite number of continuous regions 
of the (C,u,T) parameter space. 

In order to determine the amplitude of the 
response, it Is necessary to include the 

♦This paper not presented at Symposium. 
fThis work supported by NSF Grants UK-919 fc 
tBracketed numbers refer to Bibliography. 

2868. 

nonllnearltiea attendant to the system under 
consideration. In 1956, Bolotiu [4] presented 
solutions to some nonlinear problems concerned 
with columns and plates; in those investigations 
equation (1) was nonlinear, with $(t) - 
cos ut    Iu 1963, Berezovskii and Shuleihko[5] 
calculated some corrections for the instability 
tone boundaries. In 1967, Somerset and Evan- 
Iwanowski [6] presented a solution for the 
large amplitude parametric vibration of plates, 
in which the influence of nonlinear inertia was 
included. Experiments by Bolotln [4] and by 
Somerset and Evan-Iwanowski[7,8] and by Evensen 
and Evan-Iwanowskl[9] and by Somerset[10] have 
shown that the theoretical results apply to the 
parametric vlbrctlon of plate and column 
structures. 

The analyses and experiments show that 
many types of structures may exhibit a para- 
metric Instability. Usually, the instability 
occurs for dynamic loada which are applied in 
such a manner that if the load wer« static and 
sufficiently large, buckling would occur. The 
period of a parametric oscillation la some 
multiple of the load frequency; the frequency 
of the load la not, in general, equal to the 
natural frequency of the structure. 
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If t(t) it a random function of tine, 
th« problem bacon«« sore cosrpllcated. Some 
analytical results have been published 
concerning the stability of linear systems 
(Eq. 1) with $(t) a random function, and some 
analogue computer reault« htve been given[ll, 
12,13,14]. Again, the linear reault« can only 
be uaed to ««tinate the stability of the zero 
aolution. Nonllnearities must be Included if 
the amplitude of the parametric response is to 
be calculated. Although it is common indus- 
trial practice to teat the performance of 
assembled structure«, auch aa rockets and 
associated equipment, under random loada, no 
experiment« concerning the parametric response 
of structural elements under stochastic loads 
has been found in the literature. 

Shyu and Somerset[15] have developed a 
solution for the nonlinear response of a 
rectangular plate subjected to an in-plane load 
of the form 

P0 + P^(t) 

where +(t) is a random function of time. 
The experiments presented in this paper were 
conducted to evaluate the applicability of the 
theory, and to examine directly the parametric 
response of a structure under s random load. 
In this paper, a summary of their analyses is 
presented and their reault« are uaed aa the 
basis for an additional analysis. Physical 
limitations are discussed and the experimental 
result« are compared with the analysis by Shyu 
and Somerset and with the additional analyses. 

ANALYTICAL CONSIDERATIONS 

Outline of the Theory 

The analyels waa concerned with a simply 
supported rectangular plat« sustaining an in- 
plane load of the form P - P0 + Pj$(t) , 
where 4(t) was a random function of time, t . 
A MrmUii|i condition waa imposed on *(t) , 
namely, /f"(t) ■ 1 . Figure 1 deplete t!.t 
problem. 

The in-plane forcea were gJ,v*n by 

Eh 

iü + iy. + is. is. 
3y  3x  3x 3y 

and u(x,y,t)  , v(x,y,t) and w(x,y,t) were 
the x, y, and t  displacements respectively. 

The boundary conditions on the lateral 
displacements along the edges of the plate and 
on the edge moments were those of a simply 
supported plate, namely, 

3x W 

N_ (7 (exx + veyy) 

. a2w{x,0,tl „ »Mx.b.t) . 
3y* 3y* 

w(0,y,t) - w(a,y,t) - w(x,0,t) - w(x,b,t) 

- 0 

The boundary conditions on the in-plane 
displacements were 

u(C,y,t) - u(a,y,t) - 0 

v(x,0,t) - 0 

v(x,b,t) - V(t) 

The load was assumed to be a narrow band 
random process. The method of slowly varying 
phaae and amplitude was applied, for which 

P^(t) - *x(t) cosbt + ß(t)] 

where ♦ jU) and 6(t) were slowly varying, 
and Y was the center frequency of the load. 

A lateral response was aryumed of the form 

w(x,y,t) « A(t) ain(wx/a) sin(ny/b) 

with the assumption that A(t) was also a 
narrow band random process. An A(t) was 
assumed of the form 

A(t) - AjU) coslut + 6(t)] 

where 

F=V (cyy + VExx> 

2(1 + v) Exy 

3x  2 3x' 

where A,(t) and 6(t) were assumed to be 
alowly varying. 

The rma amplitude of the deflection of 
the center of the plate was found to be 

y^rrT 

A _(JL. . „i  + ___(_,. + -y) #i 

cyy 3y + 2 ^3y; 
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where 

■» 

Eh IT", 3.1. 

D n",l , 1 2  *2, v   1. 

Eh3 

12(1 - ^) 

When the response of the plate was assumed tu 
be 

w(x,y,t) - B(t) sln(nx/a) sin(wy/b) 

wlih B(t) a narrow band process given by 

B(t) - Bx(t) sintut + E(t)] 

Spectral Shifts of the Response 

It has been found, experimentally, that a 
spectral shift between response and load occurs 
for constant frequency sinusoidal loads. The 
parametric response occurs at a frequency 
which is one-half that of the load frequency. 
This analysis will show an additional spectral 
shift owing to the fact that the frequency of 
the load is randomly distributed about a 
particular mean frequency. 

The previous analysis as conducted by 
Shyu end Somerset[15] relates the root mean 
square \alue of the center deflection, ^rna > 
of a rectangular, simply supported plate, to 
the root mean square value of the dynamic 
portion of the in-plane random load, T7    • 
The result can be written in the following form: 

i[2(Y
2M -O2)   + C2^l (2) 

! 

the solution for the    rms    amplitude was found 
to be 

/FTtT 

A 3av4 0.82 ii2,v 'l.(£ _ ^ _ ^^-(-»7 + A) ♦ b^> h 

Figure 2 is a sketch of the values of 
Arms vs> pi'pE ■ The presence of the solution 
corresponding to B(t) Implies that the plate 
exhibits a lateral vibration only if the center 
frequency,  Y , lies between YJ and Yj > 
as shown in Figure 3. The analysis predicts 
that the response of the plate will be governed 
by the solid line in Figure 3. 

Physical Limitations of the Analytical Results 

It has been shown by Somerset and Evan- 
Iwanowski[6,7] and Somerset[lO] that transition 
mechanisms exist between the "idling"t 
vibrations and the parametric response of the 
plate. 

For periodic loads it has been possible 
to study the transition phenomena and the 
parametric response separately[7,10]. 
However, if the dynamic part of the load is 
random, it would be expected that the 
transition mechanisms would strongly affect 
the response of the plate. One would expect 
the transition mechanisms to cauae the response 
curve of Figure 2 to be limited by the jump 
phenomena, as sketched in Figure 3. 

tAs defined in the theoretical investigations 
[6], the "idling" vibrations are the forced 
vibrations of period, T , caused by a periodic 
in-plane load of period T . They are present 
whether or not a parametric oscillation Is 
manifest. 

where the in-plane load has the form 

F - PQ + P^U)  , and T[   - 1-25 Px 

because 
/ 

PjV<t> dt / Hm i f 

- PX /FTtT -  PX 

The analysis by Shyu cud Somerset predicts 
the second moments of the response (Ay,,,2). 
Experiments have been conducted to verify those 
results (see Experimental Results and 
Conclusions) but the analysis by Shyu and 
Somerset does not predict directly the power 
spectral density of the response.  In this 
paper an approximate analysis of the power 
spectral densities Is given. 

It has be:n shown[15] tiat a random load 
of a specific ;<MS magnitude and a specific load 
frequency distribution, when Imposed on the 
plate, will give a particular RMS magnitude of 
response. If, now, an Infinite number of 
thought experiments were performed In vhlch a 
different load center frequency were chosen for 
each experiment with a specific load magnitude 
attached to each center frequency, the outcome 
of each experiment could be considered to be 
the magnitude of response of the plate. If it 
is desired to determine the loaJ frequency for 
which the response magnitude is maximum It 
would be necessary to choose the load frequency 
of each experiment infinitesimally close to the 
frequency of the previous experiment, until the 
maximum response is obtained. This method la 
similar to the method of superposition. 

For a system which is nonlinear the 
accuracy of such a representation Is not clear 
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•t the outset, but. It should be appopriste for 
prediction of spectral shifts. 

In the experiment '.he distribution of load 
magnitude vj. load frequency Is that of a bell- 
shaped curve, symmetric with respect to Its 
canter frequency, yQ    (see Experimental 
Reeults and Conclusions). Thus It Is reasonable 
to use a normal dlstlbutlon as a mathematical 
representation of the load distribution. By 
this choice It Is hoped that an analysis can be 
carried out to determine the load frequency for 
which A, rms Is maximum. 

If in Equation 2 a narrow band random 
distribution Is substituted for ^ , It 
should be possible to differentiate Arms with 
respect to y    and determine the value of y 
for which A^ Is maximum. 

Mathematically it is possible to 
approximate the experimentally determined load 
powor spectral density shapes by the normal 
distribution 

J/2c2 

sm 
where o is the standard deviation, 
essentially determining the bandwidth of the 
load function 4(t)    and t   is a variable 
proportional to the frequency y    . If z   is 
replaced by Y-YQ >  *i will be centered at 
the mean frequency Yn which is then, of 
course, the center frequency of the load. 
Therefore 

♦ ,(T) 
•27 a 

,-<Y " Y0 )
2/2a2 

(3) 

In order to fir.d tho maximum of Arms it is 
necessary to differentiate Equation 2 to obtain 

dA„ 
2 A_ *r (£[«*$-«♦ ST?] w 

The condition for A   to be maximum or 
minimal is that dA  /dy - 0 and since Armg 
Is non-rero and finite In the vegion being 
considered the following condition Is Imposed 
on Equation 4: 

Y + C 
2 dY 

- 0 (5) 

Now It is desired to determine if the 
value of Y which aatisfies this equation 
corresponds to maximum i\raa  or minimum Arm0. 
It is therefore necessary to examine the second 
derivative of A  with respect to Y 

2 A_ 
d2A 

rua 
+ 2 

*H 
w 
^j (6a) 

Since   dApjg/dY » 0    at the points being 
considered: 

d2A 
2 C,A 

d2* 
•  1 + c„ -—4 "l"rme dy2 

Differentiating Equation 3 twice 

(6b) 

dY 

(Y " V e-(Y - Y0)2/2a2        (7a) 
/27°3 

(Y - v2 - °2 

/5M O
5 

8-(Y - Y0)2/2o2    (7b) 

From Equation 4 it is seen that P^tma  is 
increasing with increasing y    in the region 
Y < Yo (8ee Equation 7a). Thus as y    is 
Increased from zero the first value of Y , 
Ym , for which dA^^/dY ■ 0 must be a 
maximum or an Inflection point; it cannot be a 
minimum. If YB were a point of Inflection 
the second derivative,  d2Arm8/dY

2  would be 
zero. From Equation 6b it Is seen that only a 
very apecial case,  d2tj/dr2 ■ -I/C2 , will 
make Ym correspond to a point of inflection 
and so Y_ corresponds to a maximum of the 
response. 

From Equation 6b It is seen that a 
necessary condition for d2Armg/dY

2 to be less 
From Equation 7b 
implies that 

than zero is d^Wdy. < 0 
it is seen that d2*,/dY2 < 0 

»9-9      .J>. 
(Y - Y0)< < 0< 
0 * IY - Y0I 
bound on Y_ 

And since this implies that 
the following condition is a 

0 < Y. < Y„ + o 

The value of Y ,  Y_ • corresponding 
to a minimum value of Arm, "where it has been 
shown above that 
d2A /dy2 > 0 

Yn * YlJ, occurs when 

From Equation 6b it is seen that 
d^/df2 » 0 is a sufficient condition for 

to be greater than zero. Thus if 
o2 or rewriting,  |Y - Yn| > 0 , 

then trie regions of possible values of 
(Y - Y0r > 

thi 

Y0 - 0 > Y„ or 
been shown that 
can occur la Y > 'n 

+ o . Since it has 
t the region where Y„ 

Y0 + 0     . 

Yn * yQ 
Y„ < T 

If Equation 7a is substituted into 
Equation S an implicit function of   Y 
defining the two values of   Y    ,     Y 

d*7 
Y   -   - C, 

results, 
Y. . 

rl 
dY 

(Y 0) C2 e~(Y - Y0)
2/2°2 

/27o3 

It Is well to examine qualitatively the 
foil»wing:    Y - 

(8) 

V° 
Y„-0 Y - Y„ < 0 
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Y - Y„ 

It Is seen that if y " YQ *■ substituted 
in Equation 8 then y - 0 recults and there is 
a contradiction. This value of Y does not, 
therefore, satisfy Equation 8. That is,neither 
Ym or yn can equal yQ    . 

Y - Y0 < 0 

In this region 

(Y ' V C_2 e-(Y - Y0>
2/2°2 < 0 

/27o3 

and y is a negative frequency which is, of 
course, in contradiction with the starting 
condition. Thus 

0 « Yn " ° < Ym 

*0 >0 

This condition,  Y * Yn fives the only 
reasonable region for maximum and minimum A„m8 
to exist. Thus it Is seen that the theory 
predicts that the load frequency for which krmB 

is maximum,  Y  , will lie In the region 
0<Y

-
YQ
<0
 and that the load frequency for 

which Arma Is minimum will lie in t'.ie region 
V " Y0 > o • 

As a consequence of the above considera- 
tions it Is seen that the theory predicts that 
the load frequency, y      , corresponding to 
maximum lateral plate response, «111 be 
shifted a relatively smai? amount "to the 
right" of the load center frequency,  yn • 
This prediction Is substantiated in the 
experimental results. 

Upon further examination Equation 8 yields 
additional predictions of the experimental 
results. Rewriting Equation 8: 

(- 
*0 

■) e 
(Y - Y0)

2/2o2 cy^o3 
(9) 

Increasing C2 Is equivalent to 
increasing the magnitude of $j (that is P^). 
If this Is done, one or both factors on the 
left side of Equation 9 must increase. 
Therefore,  Y/(Y 7 YJJ) • J/[l2" (Y()/Y)] <»"« 
increase und/or e^Y ^0'  'Zo  must Increase. 
If Y/(Y " Yo) Increases Yn/y n>tt decrease 

Y must increase. Obviously, also, if or Y mug 
e(Y " >o)S increases,  y must increase. 
Thus an increase in Pj must cause an increase 
in Y > the load frequency corresponding to 
maximum lateral plate response. This 
observation agrees with the experimental 
results. 

It is also possible for Equation 8 tu be 

rewritten so that the effect of tne bandvldth 
of $1 on the value of y for which Arms is 
maximum can be considered. 

e(v - YO>
2
/2°

2
 . (1 . Y()/Y) c ,/£ (10) 

Now if 0 increases and if It Is assumed 
that Y increases also, the left hind factor 
increases since changes in Y - Yn and 0 in 
the exponent of e tend to  cancel out. If the 
left side increases then 1 - YQ/Y must 
increase, ie. Y must increase. This 
conclusion is entirely consistent with the 
original assumption chat Y increases when ° 
Increases and so Increased bandwidth (Increased 
0 ) implies increased load center frequency 
for maximum A rms* This observation also agrees 
with the experimental results. 

APPARATUS 

The apparatus permitted an experimental 
investigation of the parametric response of a 
simply supported rectangular plate subjecced to 
ii.  in-plane load of the form 

F0+ V<«> 

where 
with 

Pv£te' 
PX , th? 

was a narrow band random load, 
1 . The load parameters 

bandwidth, r , and the center 
frequency, y > could be varied independently. 
The load and the displacsment of the center of 
the plate could be measured simultaneously. 

The apparatus is shown in Figure 4a and 
Figure Ab. The specimen plate (1), an 
electrodynamic shaker (2), and other attendant 
apparatus were mounted In a frame (3). The 
dynamic portion of the load was generated by 
the electrodynamlc shaker In conjunction with a 
loading device (4). A sine-noise generator (5) 
and a power amplifier constituted the input to 
the shaker. The vibration of the center of the 
plate was measured by a strain gage arrangement 
on a displacement transducer (6). The load was 
measured by a^ain gage arrangement of a load 
transducer (7). Carrier amplifiers (8) were 
used to me .itor the strain gage circuits; the 
output from each carrier amplifier was 
recorded on an instrument tape recorder (9), 
and each output was monitored by a four-trace 
oscilloscope.  Subsequent analysis of the 
recorded duta was performed using a true rms 
voltmeter (10), an operational amplifier (11), 
and a frequency analyzer (12). A summary of 
the equipment is given in Table I. 

Figures 5a and 5b show the plate and 
associated apparatus. The loading device 
consisted a linear spring, an adjustable head, 
a ball Joint, and a loading truss. The loading 
truss was constrained to move in a vertical 
plane by a wire suspension. The spring was 
secured between the ball joint on the truss and 
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the adjustable bead on the shake?. Owing to 
the vihratory displacement of the shaker head, 
In conjunction with the initial compression of 
the spring, a load of the form P " PQ + pi ^ 
was applied to the plate. 

The boundary conditions were maintained 
along the vertical eiges of the plate.by wire 
suspensions. The horizontal edges of the 
plate were fitted Into V-grooves machined in 
the load truss and in the load cell. 

The plate was fabricated from rigid vinyl 
; '.wtic. The dimensions and properties of the 
«i.v~lmen arc given in Table II. A special 
fixture was fabricated to machine the edges of 
the plate, in order to assure uniform contact 
between the plate and the V-grooves. 

The displacement tranaducsr is shown In 
Figure 5a. The transducer was calibrated 
statically and the calibration was verified 
for dynamic accuracy by comparison with the 
displacement recorded by a capacitlve dis- 
placement transducer. 

LXPERnftOJTAL PROCEDURE 

At the outset of experimentation, the 
plate vas "calibrated" to determine the 
natural frequency of lateral vibration foi 
«ach load. From Figure 6, it may be seen that 
the agreement between theory and experiment was 
quit« good over a range of values of the in- 
plane load. It has been shown that for small 
in-plane static loads, the boundary conditions 
at th« V-grooves cannot be maintained, and the 
theory cannot be applied[10]. 

The experiments were conducted as 
follows. The static portion of the load, PQ , 
was applied by compressing tha linear aprlng 
with th« adjusteble head. A narrow band 
random signal was impressed on the moving coil 
of th« shaker, and the subsequent motion of the 
shaker head was manifest «s a narrow ban.1 

random load applied in the plane of the p.»ate. 
Th« load was measured by the load cell; thi 
signal from the load cell was stored on 
magnetic tape for subsequent analysis. 

The lateral displacement of the c«i»:«r of 
the plate was recorded by the displaces^ 
tranaducer; the signal from the dispalr  ut 
transducer was alao stored on magnetic tape. 

Th« experiments were conducted for various 
values of 
of «xperia 

*0 '  n » 
mts were 

r , and 
:onducted: 

Two classes 

(A) experiments in which y    , T  , and 
Py war« constant, and Pi varied, 

(B) experiments in which r , P„ , and 
Fi war« constant, and Y varied. 

In addition, «bsarvatlons were made on the 
load and displacement sample functions, :o 
verify some of the assumptions made in the 

theory concerning the nature of the response. 

Experiments of type (A) were conducted to 
Investigate the applicability ot the theory. 
Experiments of Type (B) were conducted to * 
demonstrate more clearly tha effects of the 
transition mechanisms. 

After the load parameters P« , Pj , Y 
and r were set, the load and the response 
were recorded on magnetic tape. The tape 
recordings constituted sample functions of the 
rani'.nm processes defined by the load and by the 
response of the plate. The load parameters 
PQ , P, , Y > an<i T defined a point in the 
load parameter space. Each sample function of 
the load had associated with it a sample 
function of the plate response; the functions 
were considered as input-output pairs 
corresponding to a particular point in the load 
parameter space. 

The rms average of aach sample function 
was obtained, and the power spectral density of 
each sample function was obtained. Because the 
load tmd response were stationary, the 
parameters (PQ , Pj Arn») <*«""«> * 
poin«. in a load-reaponse parameter space with 
which v«re associated the power spectral 
densities »iJ1« (F) and *iJkm(F) „here 

1 - P„ . 

- P, 

Y . 

r , 
*fJ'cn(F) Load power spectrel denslcy 

*^lklB(F) Response power spectral density. 

Any sample function was available by 
reproducing the appropriate section of magnetic 
tape. An arbitrary zero time was established 
for each section of tape, and any analysis of a 
particular sample function was initiated at the 
"zero time". The rms value of a sample function 
was obtained by measuring the signal with a true 
rms voltmeter. Because the time constant of 
the voltmeter was not sufficiently large, the 
output from the voltmeter was integrated using 
an electrometer connected as an operational 
amplifier. The resulting rms value was 
therefore an 'average rms". In order to 
substantiate the accuracy of -he "average rms" 
value, comparisons between the voltmeter- 
integration method and measurements using a 
quasi tms meter with sufficiently long time 
constants (3 sec. to 100 sec.) were made. The 
two methods were fcund to agree within k%. 
The voltmeter-lntegiTatlon method was chosen for 
its simplicity, and because it solved some 
other problems as well. 

The power spectral density of a sample 
function was determined by passing the signal 
from the tape through a narrow band filter. 
The output from the filter was analyzed by the 
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Voltmeter-integration technique. By varying 
the center frequency of the filter for 
successive reproductions of the sane sample 
function, the power spectral density was 
obtained. Figure 7 Is a schematic drawing of 
the measurement techniques. 

In the ust of the instrument tape recorder 
were found two advantages: 

1. input-output sample function pairs 
were obtained, 

2. the assumption of quasi-stationarlty 
of the sample functions was realized 
experimentally. 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

The experimental data are presented in 
Figures 8 through 20. Figures 8 and 9, which 
indicate the lateral response in (A^^/h, Pi/Pg) 
space, verify tt.e applicability of tne theory. 
The theory predicts that the rms amplitude of 
the plate response should be identical for load 
bandvldths of 10 Hz. and 3 Hz. The response 
under 10 Hz. bandwidth loads show good 
agreement with the response under 3 Hz. band- 
width loads. The experimentally determined 
response curves also show good agreement with 
the curves predicted by the theory. It is to 
be noted that the experimental curves approach 
the abscissa for slightly higher values of 
P^/Pg than predicted by the theory owing to 
the influence of damping and transition 
mechanisms. 

Each point In the (PQ , t1 , y , T  , A^) 
parameter space had associated with it two 
power spectral densities: one for the load, 
♦£)*»(*) , and one for the r. sponse »^""(F) . 
Some experimentally determined power spectral 
density load-reiiponse pairs are plotted in 
Figures 10 through 17. The ordlnate for each 
set of power spectral density curves Is 
arbitrarily seeled so that, £or any point in 
the load-response parameter space, the maximum 
value of *L3kn(F) or ^"»(F) is unity. A 
great amount of information is available from 
a perusal of the power spectral density curves. 

In Figure 10, the power spectral density 
of two load-response pairs associated with two 
values of Vj Is plotted on the same abscissa. 
The theory predicts ttu - the center frequency 
of the response should be nearly equal to y/2 ; 
the experiments again verify the analysis. 
From a designer's point of view, it is quite 
significant that the ,jwer spectral density of 
the load Is removed from the power spectral 
density of the response. 

In Figures 11 through 17, a dual abscissa 
Is employed, resulting In an artificial 
"overlap" between the load and response power 
spectral densities. FL denotes the abscissa 
for the load power spectral density, whereas 
F„ denotes the abscissa for the response, 

is method of plotting demonstrates a signifi- 

cant experimental generality: tho center 
frequency of the response Is nearly equal to, 
and somewhat greater than,  y/2   Moreover, 
by comparing Figures 11 and 12, 14 and IS, and 
by perusal of Flgurea 13, 16, and 17, it may be 
seen that aa Pj Increases, the center 
frequency of the response also Increases. The 
amount of shift increases as the bandwidth of 
the load Increases. Figure 17 probably provide* 
the best illustration of the shift in center 
frequency of the response with increasing load. 
In that iigure, the shift of the center 
frequency of the response is quite evident. 
The shift in center frequency of the response 
admits an explanation. 

Owing to the fact that the amplitude of 
the lateral response increases as y increases, 
other load parameters being constant, the 
amplitudes corresponding to frequencies at ihe 
"edges" of the load bandwidth are not equal. 
Rather, the amplitude of the response is 
greater near the high frequency "edge" of the 
bandwidth. 

It Is also to be noted that for a given 
range of the variable P-, a greater shift is 

Th: 

associated with a greater bandwidth of the load. 
This result is entirely expected. As the load 
bandwidth is Increased, a greater portion of 
the frequency-response curve is included in the 
"bandwidth", and a greater center frequency 
shift is manifest. 

Figures 10 through 17 also demonstrate 
the degree to which the dynamic portion of the 
load corresponds to an ideal narrow band load. 
In Figures 10, 11, 12, 14, 15, 16, 17, the 
power spectral density of the lead corresponds 
well with the idealized case. Figures 13 and 
lb (top) show some distortion of the load 
power spectral density. It is the opinion of 
the authors that very satisfactory power 
spectral densities were realized during 
experimentation. One always encounters 
physical limitations on the frequency distri- 
bution of the load during any experimentation. 

Figures )8 and 19 show the effects of the 
transition mechanisms quite clearly. In the 
experiments associated with Figures 18 and 19, 
the load parameters PA , Pi and r , were 
fixed, and y was varied. Whersas the theory 
predicted that a response would be manifest 
between yi aud Y7 • the experimental 
results show that the lateral response was 
manifest over a smaller range of frequenclea. 
It Is readily seen that the jump phenomena 
would account for the limitation on the values 
of y over which a response would result. It 
is to be noted that good agreement between 
theory and experiment is realized for values 
of y near 2u . 

Figure 20 substantiates an Important 
theoretical result. Figures 20a end 20b are 
tracings of some load-response sample functions 
obtained from pictures taken with an oscillo- 
scope camera. In the theory, a load was 

211 



] 
j 

i 

| 
assumed s?f the form 

P,*(t) - t,(t) co«[tt + B(t)] 

I 
\       and a response waa acsumed of the form 

A(t) - A^t) coa[wt + 6(t)] 

where 

2 

TABLE I EOUIPMEHT 

Tape Recorder) Sanborn - Model 2000 

Voltmeter; Hewlett-Packard Model 3400A, true 
rnacn square voltmeter 

Frequency Analyser: Bruel and Kjaer Frequency 
Analyzer type 2107 

Random Signal Generator: MS Slu«-Random 
generator, Model N670 

Operational Amplifier: Kelthley Electrometer 
Model 601 

Carrier Amplifier: Textronix type 3C66 

Vibration Meter: MS Vibration meter MrJel 5S0 

and 

6(t) ^+«(t> 

The theory indicates that j(t) la small, the 
implication being that the maxima of the 
response sample functions should occur ;;»ar 
maxima of the load sample functions. Figure 
20b clearly shows that the maxima of the 
response sample function occur near maxima of 
the load sample function. 

TABLE II SPECirtEN PROPERTIES 

Dimei lions 10 « W ' P.05 in. 

todulus of elasticity, E 4.7 * lO*5 psi 

Density 0.048 ib/cu in. 

Poisson's ratio 0.3 

Buckling load(theoretical)...2,12 lb/in. 

Frequency of free lateral 
Vibrations (theoretical 27.5 Hat 

Simply 
Supported 

i  i S 

t' - P0 + Fj *(t) 

Simply Supported 

Simply Supported 

Figure 1 

Plate and Load Configuration 
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Ar-./h 

VPI 

Figure 2 

Sketch of Theoretical Results In (A__/h, ?,/?-,)  Parameter Space 

A /h 

A(t) - Ax(t) coa(wt + 6(t)) 

-Theory 

/ 

'  B(t) - Bj^d) co»(wt + B(t)) 

-Theory 

Lateral response expectad only within this 
portion of abciasa. 

Figure 3 

Influence of Transition Mechanisms on Plate Response 
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IMII  ^„  

Figure 5a 

Specimen and Attendant Apparatus 
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1. Linear Spring 

2. Adjustable Haad 

3. Ball Joint 

4. Loading Truaa 

5. Load Tranaducar 

6. Displacement Tranaducar 

Figure 5b 

Line Drawing - Specimen Arrangement 
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i/2n(H«) 

0.0 P0/PE 

Figure 6 

Plate Calibration 

Frequency 
Analytsr u

 
3
 <o w

 

Operational 

Amplifier 

— ^ta(F) 

gasplc 
Function 

(T«P« 
Mcord) 

h 

True 
RMS 
Matar 

Operational 

««plifier 

— Ar.a 

— px 

Figure 7 

Flow Chart-Analysis of Sample Functiona 
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0.8   " 

Ar«/h 

P0 - 1.2 lb/In, j£-  .566 

—— Theory 
/ 

/ 
o—  —*  P • 10 Hi, Y - 34 Hi (Expert- /   / 

■nt) 'y 
, -* r -    3 Hi, Y - 33 Hi  (EX-   /   / 

0.0 
0.0 .03 .10 .15 .20 .25 .30 

Figure 8 

Load-Response Curve in  (P.P.., A /h) Parameter Space l t     res r 
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0.8 

r»a /h 

•- 

P   -J..35lb/ln,   r*   -   .«3? 

Y    " 30 Hl 

'■   Theory 
• —« r - 10 tu (Experiment) 

— -• r -   3 Ht (Experiment) V ' 

// 

0.6 

0.4 

0.2 

0.0 
0.0 .03 .10 .13 .20 

VPE 

.25 

Figure 9 

Load-Response Curve la {P./P_, A /h) Parameter Space 
■L      SS TXao 

.30 

220 



1.0 

0.8 

VJk-(F) 
0.6 . 

♦a131™*') 

0.4 

0.2 

0.0 

1-1.2 lb/in r 
■ - 3H* 

Responds 

I I ' > I t t i i i i i i i i « i i i V   I I I I I I I I 
12  14  16  IS 20  22  24  26 28  30  32 34  36  38  40 

> 

FL. FR (H.) 

Figure 10 

Power Spectral Density of Load and Response 

(Experimental Results) 
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Figure 11 

Power Spectral ' inslty of Load and Reaponse (Experimental Results) 

1-1.2 lb/In 

J - .38 lb/In 

k - 33 Hi 
/• 

• • 3 HI • / 
»- .4 Load 

•——»Response 

/ • y 

■t    ~h-~-* *— —•— S > 
28 30 32 34 36 38 FL(H») 
14 IS 16 17 18 19 

Figure 12 

°ower S-ectral Dnalcy of Lo*3 »nd ?.u»pui<sc (Zxper.'aeutal Results) 
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1.0 

! 

Ft(Ht) 

Ft(H.) 

Figure 13 

Power Spectral Density of Load and Response 

(Experimental Results) 
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l.o- 

o.i- 

V^w 

VJtac> 

36 FL(H«) 

18 fR(Ht> 

Figure 14 

Power Spectral Density of Load and Response 

(Experiment«1 Results) 
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Figure 15 

Power Spectral Density of Load and Response 

(Experimental Results) 
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0.0 ** 
25 27 2? 31 33 35 37      F,(Hi) 

12.5 13.5 14.5 15.5 

Figure 16 

16.5 17.5 18.5 FR(Ht) 

Power Spectral Density of Load and Response 

(Experimental Results) 
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0.8- 

0.6 

A /h 

0.4 

0.2 

0.0 

P0 - 1.20 lb/in,P0/PB - .566 

Px - .372 lb/ln.P^Pj - .175 

* Experiment 

—— Theory 

-jf. 1 1 1 1 t I I l__i 

/i     10     15     20   21     30  A 33     40   45  / 50 .„* 

Yx »2Ü /Y2 

Figure 18 

Response Curve In (A  /h, y) Parameter Space. 
ruts 
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Figure 19 

Response Curve In (*_./"• v) Parameter Space 
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Figure 20a 

Load-Response Sample Functions for 

39 Hz Slnuac'tial Input. 

t 

Figure 20b 

Load-Response Sample Functions for 

3 Hz bandwidth Random In^ut. 
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TABLE III LIST OF SYMBOLS 

Arms 

B rms 

1 

;2 

f(t) 

P(t) 

PE 

0 

Px(t) 

t 

T 

t 

Y 

Root mean square value-response 

Root mean square value-response 

Constant 

Constant 

Response of System 

Filter center frequency-load power 
spectral density 

Filter center frequenry-response 
power spectre! density 

Plate thickness 

Mass per squire inch of plate 

Total In-plane load 

Classical buckling load 

Static in-plane load 

Amplitude of dynamic in-plane load 

Time 

Period of load parameter 

Frequency variable 

Phase angle of load function 

Load frequency 

Load frequency of maximum of plate 
response 

Load frequency of minimum of plate 
response 

*1 

*2 

r 

«(t) 

f, 

e(t) 

3 

v 

o 

*(t) 

♦ i(t) 

*L*
to<F) 

»iJk»(F) 

•}*■« 

Mean frequency of random load 
power spectral density 

Increasing jump frequency 

Decreasing jump frequency 

Bandwidth of *(t) 

Function of time 

Independent parameter 

Phase angle of response function 

Independent parameter 

Foisson's ratio 

Standard deviation 

Function of time 

Envelope of narrow band process 
defined by 4>(t) 

Value proportional to RMS of load 

Power spectral density-load 

Power spectral density-response 

Normalized power spectral density- 
load 

Normalized power spectral density- 
response 

Nonlinear function 

Frequency parameter 

Natural frequency of lateral 
vibration of the plate-function of 
P„ 
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RESMNSE OF STIFFENED PLATES TO 

MOVING SPRUNG MASS LOADS* 

Ganpjt M. S1nghv1 
Schutte Mochon, Inc. 
Milwaukee, Wisconsin 

and 

Larry J. Feeser 
University of Coloradc 

Boulder, Colorado 

An analytical procedure to predict the behavior of orthogonally stiffened 
plates subjected to a moving sprung mass system 1s developed. The loading 
considered consists of a damped spring borne mass supported by an unsprung 
wheel mass subjected to a pulsating driving force moving with a constant 
velocity in an arbitrary straight path across the plate. The general 
solution 1n the form of a triple Infinite series 1s obtained to represent 
the dynamic deflection of a rectangular stiffened plate simply supported 
on all four sides. Numerical solutions obtaining dynamic deflections and 
dynamic bending moments at the center of the plate and under the load are 
presented for a rectangular stiffened plate and are compared with constant 
forct and crawl load solutions. The results of the study Indicate that 
the Inertia of the moving mass has a significant effect upon the deflations 
and moments in stiffened plates and must be Included to obtain good designs. 

INTRODUCTION 

The dynamic behavior of beams and deck sys- 
tems subjected to moving and pulsating loads has 
been the subject of numerous mathematical and 
experimental studies during the past century. P 
good description of the early work 1s founo 1n 
papers by L1car1, Wilson and Cappelli [1, 2]. 

In recent years, the design of deck systems 
with closely spaced stlffeners has received con- 
siderable attention. Generally, these deck sys- 
tems are made up of stlffeners placed perpendic- 
ular to each other and welded to one side of a 
deck plate. The plate stlffener system with 
rigid connections 1s assumed to act as a mono- 
lithic unit. Because the stiffnesses of the 
system are generally different in \.*o principal 
direction«, the system is occasionally referred 
to as an orthotroplc plate. The behavior of a 
plate with stlffeners placed symmetrically with 
respect to the middle surface of the plate can 
be described by the Huber [3] equation. For 
eccentrically stiffened plates Giencke [4] and 
others [5] have tried to determine the rigidities 
which can be used in Huber's equation. 

In 1964, Feeser and Au [6, 7, 8] derived 
the governing differential aquations of the 
Pflüger [9] type for the dynamic behavior of ec- 
centrically stiffened plates. Analytical solu- 
tions were presented for the free vibration be- 
havior and the dynamic response to moving pure 
force loads.. 

In this paper, a procedure is developed for 
obtaining solutions to the differential equa- 
tions governing the dynamic response of stif- 
fened plates subjected to moving sprung mass 
loads. The loading considered consists of a 
damped spring borne mass supported by an un- 
sprung wheel mass which is subjected to a pul- 
sating driving force moving with a constant 
velocity in an arbitrary straight path across 
the plate. The Huber equation, modified to con- 
sider geometric anisotropy of the plate, and 
D'Alembert's principle were used to formulate 
the governing coupled differential equations of 
motion. 

A general solution Tor the equations is ob- 
tained as functions of space and time coordi- 
nates and certain undetermined coefficients. 
These coefficients result from the assumed sin« 
series expansion for the unknown acceleration 
under the moving load. By means of known rela- 
tionships, a recurrence formula 1s derived from 
which an Infinite system of linear algebraic 
equations Is obtained for an infinite set of un- 
determined coefficients. The general solution 
in the form of triple infinite series, repre- 
sents the dynamic deflection of the stiffened 
plate. 

MATHEMATICAL FORMULATION 

Consider <>  simply supported rectangular 
stiffened platt with torslonally soft stlffeners 
shown In F1g. 1. The differential equation g1v- 

♦Paper not presented at Symposium. 
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FIG. 1 - Rectangular Stiffened Plate 

ing the relationship between the deflection and 
the static loading of a constant thickness 
orthotroplc plate, often referred to as Huber's 
equation Is 

e* x 

exAx 

A„ + — 
(1   -   v   ) 

0y 2J> + 2H 
* ax* 

V4+ Dv Mr ■ «rt*»») (1) 
ax 3y ay 

where w 1s the deflection of the middle surface 
of the plate, D   ^nd D   represent the bending 

stiffnesses 1n the x and y directions respective- 
ly, the coefficient H 1s computed from the tor- 
slonal rigidity and Polsson'r ratio of the plate, 
and q(x,>; Is the loading Intensity at any point, 
expressed as the function of the coordinates x 
and y.   For a plate with eccentric stlffeners, 
H 1s also a function of the eccentricity and the 
torslcnal rigidity of the stlffuners.    Various 
approximations have been suggested by assuming 
different values for H.    One of the most widely 
accepted approximate methods for determining h 
for orthotroplc plates with torsion?ily soft 
stlffeners makes use of the concept of effective 
stif'ness introduced by Giencke [4].    This con- 
cept 1s based on the assumption that the hori- 
zontal strain is zero at the adjusted centroid 
of the cross section 1n each direction.   Th-s ad- 
jus*ed centrolds In the x and y directions are 
located at distances e* and e* respectively, 

below the middle surface of the deck plate.   The 
dlstixes ej and e* are defined as follows: 

X     y 

e* 
y 

iA_ (2) 
+ — 

(1 

1n which h 1s fie thickness of the de:k plate-, 
A and A are cross sectional areas of the x    y 
stlffeners In the x and y direction per unit 
length along the y and x axes, respectively; 
e and e are distances from the 'iladle surface 

of the deck plate to the centrcid of the stlf- 
feners in the A and y directions, respectively, 
and v 1s Polsson's ratio  Writing the equations 
of equilibrium for a typical plate element 
shown in Fig. 2 and making use of the concept 
of effective stiffness, the governing differen- 
tial equation describing the dynamic equilibri- 
um of a stiffened «plate can be obtained as [5] 

A K °-j * ZH* 
3X 

34W 

ax'ay4 
+ 0 3«W + 

y ~T ' 3>* 

0 3^ 

IS 
o A * q(x.y.t) 
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FIG. 2. - Typical Element of Stiffened Plate 

where 

E / Ax (z - e*/ dAx + 

.h/2 

(1 - /), 

E / Ay (I - ej)< dAy ♦ 

/n/t 

(z - ej)2d^ 
-h/2 

m * mass per unit projected area of the 
element of the plate stlffener com- 
bination 

c   ■ coefficient of viscous damping 

Consider a pulsating type of loading as 
shown in Fig. 3 moving with a constant velocity 
in an arbitrary straight path across the pUte. 
Let the vertical displacement of the plate be 
w(x,y,t) for 0 < x -s a, 0 < y < b and 0 ^ t .< 
L/v.   The vertical displacement of the sprung 
mass Ms and the unsprung wheel mass M   are w, (t) 
and wQ(t). respectively.   Positive directions are 
as indicated 1n F1g. 3. 

(1 - v ) 

/h/2 

■h/2 

(z - e*)2dz 

H*   •   D + vB   e* e* + ^ ^ {e* + e*)2 J 

EhJ 

(1 - /) 

Eh 

(1 - v2) 

"l^ltl 

E • Modulus of elasticity 
FIG. 3 - Forcing System 

235 



■ ummvsm&sm 

At any time t the concentrated reaction 
force Q(t) resulting from the combined effects 
of the pulsating. Inertia and gravity force act- 
ing at the point of contact between the plate 
and unsprung mass 1s 

Q(t)   ■   (p0 sin 2»ut ♦ gMu - 

A. d2w, 

dt' dt 
+ gMJ 

subjected to the following Initial and boundary 
conditions: 

Initial displacement and velocity conditions: 

wo!0) - ) ; 
dwo(0) 
~dT~ 0   ; 

dw,(0) 
w1(0) ■ 0 ; jt     - 0    ; 

1n which p   • pulsating force, forcing fre- 
quency, and g « acceleration due to gravity. 

The transverse forcing function o(x,y,t) 
for the concentrated variable force Q(t) applied 
at (c,n) on the plate can be represented as a 
function of the load position coordinates by 
the following double Infinite series: 

m»l     n"l 

sin on£ sin cBn sin 6nx sin e^) 

1A which 

"n    a 

6, _   Ini 

■ T 
Uslnfi d'Alembert's principle the differential 
equations defining the system's dynamic response 
can be written as 

d *w, dw1 dw 

s-dr + csdT- + lVi ■ eiar+kt* 
(3) 

dt' 

4 4 4 2 
\ Mf ♦ 2H* JJL- ♦ 0U Z-4 + m. i-4 ♦ 

ax »x'ay      y 3y at' 

co S " ab" [ Po $1n 2,ut " ^u * ^s 

 L      M 0 1       \ 

m«l     n*l 

sin eflx sin e^l (4) 

w(x,y.O)-0;       *Si*jfcSL . Q. 

Boundary conditions: 

*{0.y.t) - 0 ;      LrfOrf.t) . „ . 
3X- 

«(a.y.t) - 0 }      tÄ(».y.« , o ; 73 3X 

«(x.O.t) - 0 ;       -^("•°.t) . o ; 
ay 

«(x.b.t) - 0 ;      ii(x.«>.t) . o . 
3y' 

General solutions of Eqs. (3) and (4), subjected 
to the Initial and boundary conditions, describe 
the dynamic response of the stiffened plate to 
a moving sprung mass system. The inertl« ef- 
fects due to the moving mass have created par- 
ticular mathematical difficulties In the past 
because the moving forcing function 1n this 
case becomes a function of the dependent vari- 
able 1n the differential equations and there- 
fore requires the solution of a partial dif- 
ferential equation with variable coefficients. 
The solutions to such equations usually are dif- 
ficult to obtain, and so past efforts have 
either searched for approximate solutions or 
have neglected Inert'a effects entirely. 

A, Let —r-   be a continuous function defined 1n 
dtz 

the Interval 0 <. t < L/v and represented by a 
Fourier sine serUs expansion with undeter- 
mined a. coefficients given by 

dV 
dt 

es 

2_ *jsin *i (5) 

J-l 
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1n which *j » *■— .    Integrating Eq. (5) and 

substituting Into Eq. (3) gives 

2 
d w1 dw, 

s dt'        s dt        -    ' 
J-1 

c   cos t* t     k   sin <t>4 t     c.     k„ t 
_5 i  +   _» 

?J 

1nJlI !i hi] (6) 

Wl(t) . c, 2 >j*j(t) 

where 

x.(t)   »   K,   cos t4t - Ki   s1n*,t+7- + 

(7) 

-Yt 

1n which 

Kj    sin K»t •■ K 

^6- 

■j,cos *»] 

K.      ■ 

7;    2TT. Zn2 

7, 2,2 .   2 n2 + 

(1 - wj) 
7!       2V2   2 .   4 n2 

Differentiating Eq. (7) twice yields 

d*w a W] y- 
(t) 

j-1 

where 

fli(t)   ■   K4   sin $.t - K.   cos +4t + .j        „„    ?jW ,j 

K,   cos <i: - K.   sin 
Ji Jo 

*t| 

The general solution of Eq. (6) in terms of the \n wnlch 
a, coefficients can be written as [5] 

2 if 

(2 - Ds> *J KJ, - D« "j, 

(2 - pj) 

"W4 - Ds) 

(8) 

Substituting the acceleration functions, Eqs. 
(5) and (8), Into Eq.  (4) gives 

IT  8*w + 5lT*   a4"    * IT   34w , a2w    - aw 

4 Z- Z.  Lg Rf s1n 2"*t + g ^ 
m»l   n«1 

(2vJ KJ2 
D: "J % 2) 

af^DJ) 

T     -  2*9C ; 

% ■ hi*; • 
29c 

"i 

H-    »    2 ri   2~ 

30 

4rfT 

4» 9„ 

o» o» 

Ru   I   ajs1nVRs   I   aJfiJ(t)]( 

J-i Fi 

sin eR? sin emn sin enx sin e^) (9) 

in which 
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R  ■ -S- 

Rs " £ 

\   •   Ru + Rs • 

Rt - fe. 

" Vb 

The general solution of Eq. (9) 1s obtained by 
the method of separation of variables, 1n terms 
of undetermined a, coefficients, and the solu- 
tion can be written as 

OB 00 

w(x,y,t) ■ Z Z [g Xmn (t)+ 
m«l     n-t 

OS 

Iaj s(t)] emn(x.y)      (10) 

J-1 

In which 

cos x„„t + mn 

{cW°>*V.W>.1nxulit1   . 
x_. mn J Vn 

ty«   "   S(t)"e"CtLS(0)C0SX
mn
t + 

 i— i— s1n Wj ; 

mn 

emi*.y) - sin enx sin V 

■{> mn     | rmn rmn 

\*M ■ X(S5lnSt + BmniC0SPmnit); 

4 

t + 

B_„     cos p„.   t) + 
mn1j mnl,| 

e"^    $_«     sin <-.__ t + 8        cos e     t) nin^j mn^ mn^     *   mn, ' 

pmn5   "   " 
en v cos ß - em v s1n 6    ' 

pmr6   "   " 6n v cos ß + 9
m 

v s1n ß    1 

iw>l vmns       ynn3        ' "     pmn5    ' 

mn, "' 4 pmn6     ;   «•w1J *   *j + pmn5     
: 

'mn.     '     * + Pmn_        '•     Pmn. .   "     *<   + P„ mn 'mn 5 mn2j "   *J * Pn,n6     ' 

Emn3 ' * " pmnE  
; pmn3j " *j " pmn5  

; 

Vm4 " * " pmn6  
; pmn4j " *j " pmnfi "6     ; 

pmn2   "   *™ + pmn6 
;   pmn4   "   

2™ * pmn6 

mn. 

*f \ 

Rf "mn, 

1 - 1.2,3,4 

nin., ^n  mn. 

B mn. 

mr.. 
1j 

2Rm*mn 

}■   1-5,6    ; 

[**   * *   ■*■      I 
Ki     Gn,n     +  *4     &nn j.   mn^      J3   m^j 

mn 
U 

[*    * ** _ 
J3 

S1mn1      J,   mn^ 

2,3,4 ; 
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mn       *   + '<« K<    R„,n     - Rl     C    I  2.3.4; mn,. s   j|    run,,       in ,   j,    ' 

KJ,        "   UJ KJ,    ;    \ ' (Ru + Rs %>  •' 

R_ s     S (p       -  p       )   COS a + 
^nn mnj   [    mn     Pm"' ' >™ rmn       mn, mn. 

cpm„   sin a mn, mn, J 

a *       -  8     C     -  8     n mn, n *o      m  'o 

amn2     '     * 9m no " 9n «o 

mn, ran,   [ran      mn, mn. a "a *    " a mn, mn,. mn. 

C1     •   
Sn,n1   [<P. 

Cpmn    sin n        | mn, mn,J 

2   - p2   v sin a mn     wmn,' imv 

Cp_n    cos n mn.. mn, J 

,2 2 
mn, mn,.   |_    mn      «MJ mn« 

cp_„   sin a__ mn. mn. J 

R ■   S (p     - p       ) cos a      + 
mn11 mn11  L 11 mn1 

c pmn     sin a mn« j mn^j 

* f    2 2 
R»-       *   S„_        (p„„ - p„   ) s1na„Ä   - 
iroii.i mn4 ^   L   mn      mnn m(1i 

Cp_.       COS <»__ mn,, mn, j 

G        " Q_ 8 sin a        + B COS a mn,      inn,,  |_  m",i mn.       mn,„ mn. j 

mn« mn« Tin« 

2 2        2 — 
8 «      (p      + y    - e      ) - CY mn«, VHmn     '        mn.'       ' 

8__       ■     (2y - c) emf% 

The undetermined coefficients, a,, will be found 

by matching the assumed acceleration function 
under the load with the acceleration obtained 
by solving the differential equations.   The 
following relationships exist between the de. 
pendent variables w (t) and w(x.y.t) 

dwo(t)   - dWv.t) 
dr dt' 

(11) 

X ■ C 

y « n 

Differentiating Eq. (10) according to Eq. (11) 
gives 

I 
J-l 

a, sin *,t 

mn, " Tim, [ B™.j ,,, mn«      mn. *s1na™J 111 h s(t) + 9 Ajt)] 
mn4 

, (- I)1 
ra»l   n«l   j»l 

Application of the Fourier-Eulnr inversion 
formula gives the following recurrence relation- 
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ship for the undetermined a,  coefficients 

■ak2r- laW«* 

where 

/IS- 
o m»l n»l 

I «J V (t)] s1n *k* dt (12) 

[ft *J« * IL^n^-^n"^ 

9m s1"Zß) W*>] 0mn<x^ 

» s1n 28 V. W*> «k/»*) + 

2v [ 9n coss 9mn2 ^  + 

9.sinB V^)]  *mn(t)] 
x - i{t) 

y - n(t) 
and 

'S (t) " L'-H (t) - v2(e2 COS28 + 

*2»1n2',enemXmnj
(t)9mnl

{,t,>)* 

^['n C0S6 emn2
(x»y) + 

9m s1nß ^,n3
(x«^] Nm^)] 

«(t) 
I •  n(t) 

In performing the above Integrations this re- 
currence formula defines an Infinite system of 
linear algebraic equations In the Infinite set 
of unknown a, coefficients. This Infinite 
system of equations may be written 1n the 
following form: 

- »L 

"   j-l 

II 
ULI   + kjmn 

rn»l n»l  j-l 

Skmn   <13> 
m«l n»1 

where the U..mn and S.  coefficients are evalu- 
ated from Eq. (12). Simultaneous solution of 
Eq. (13) yields the Infinite set of a, coeffi- 
cients. With the coefficients known Eq. (10) 
describes the behavior of a stiffened plate 
under the moving mass system. 

NUMERICAL RESULTS 

To Illustrate the analytical procedure de- 
veloped 1n this paper a numerical example 1s 
presented. 

A rectangular stiffened plate of dimension 
a » 12 ft. and b ■ S ft., slmnly supported on 
all four edges 1s considered. The thickness of 
the deck plate Is 3/16 Inch. Open stlffeners 
are spaced 6 Inches on centers 1n i;he x and y 
directions. The stlffeners 1n the x and y di- 
rections consist of 3/4 Inch deep by 1/8 Inch 
thick vertical bars respectively i > shown In 
F1g. 4. The system 1s made of aluminum having 
a modulus of elasticity, E 
Polsson's ratio, v « 0.30. 

10 x 10 ps1, and 

The force system, as shown 1n Fig. 3, having 
an unsprung mass ratio, R • 0.25, sprung mass 
ratio, Rs ■ 0.25 and force ratlc, Rf « 0, 1s 
considered to move across the middle of the 
plate parallel to the x direction (B ■ o) with a 
constant velocity of 30 ft./sec. The load 
enters the plate at x « 0 and y ■ b/2. 

Solutions for deflections and moments, neg- 
lecting the effects of flexural plate damping 
(c ■ 0) and spring damping (c ■ 0) were cal- 
culated. A computer program for determining 
the dynamic deflection at the center of the 
stiffened plate, the deflection under the mov- 
ing mass, dynamic bending moments at the center 
of the plate and bending moments under the mov- 
ing mass was developed. The static Influence 
lines for deflection and moments at the center 
of th£ Plate as well as the Influence lines for 
the deflection and moments at the center cf the 
plate due to a moving pure force are also cal- 
culated by the program. The Inertia effects 
c*ue to the moving mass are neglected and the 
spring stiffness Is considered Infinite to ob- 
tain the Influence lines due to the moving pure 
force from the general solution given by Eq.(10). 

Fig. 5 shows tl-* Influence line for deflec- 
tion at the center of the stiffened plate ob- 
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Gained from the general solution given by Eq. 10. 
The maximum values of the Indices m»n»j were 
set at 15. Also Indicated on the plot are the 
static Influence line for deflection at the 
center of the plate due to the moving pure 
force. For the example considered, the maximum 
deflection considering the Inertia of the moving 
mass Is about 36% larger than maximum static de- 
flection and 39% larger than the deflection due 
to the moving force at the center of the plate. 
Figs. 6 tnd 7 show the Influence lines for mo- 
ment due to the moving mass, moving pure force 
and static load. Fig. 8 shows the deflection 
curves for various values of the Indices. It 
also shows an Indication of rate of convergence 
of Infinite series solution. 

Figures 9 and 10 are plots of deflection and 
moments under the moving mass versus the posi- 
tion of the moving mass. 

CONCLUSIONS 

Equations describing the response of stif- 
fened plates to moving sprung mass loads are de- 
rived and solved for the general case. One 
numerical example Is presented to Illustrate the 
results. Obviously, no general conclusions can 
be drawn fron the results of one numerical solu- 
tion since a relatively large group of problems 
with varying parameters must be solved to obtain 
such conclusions. 

The example demonstrates that the Inertia 
of the moving mass can have a significant effect 
upon the deflection and moments. 

Superposition of the solutions for multiple 
moving sprung masses cannot be made from various 
single solutions but rather the governing dif- 
ferential equations must be derived for the mul- 
tiple configuration. Solutions can then be ob- 
tained by procedures similar to those presented 
here. 
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PARAMETRIC RESFONSE SPECTRA FOR IMPERFECT COLUMNS* 

Martin L. Moody 

University of Colorado 

Boulder, Colorado 

Respjnse spectra for the maximum amplitude of mid-span deflection for 
a simply supported column subjected to 20 cycles of harmonically vary- 
axial force are presented. The nonlinear effects of inertia and large 
deflections are included in the investigation, and typical linear 
steady state solutions are shown for comparison. 

INTRODUCTION 

Parametric column response has been a prob- 
lem of considerable interest to the engineering 
profession for many years  This paper is con- 
cerned with the maximum amplitude of lateral 
deflection of imperfect (i.e. not straight) col- 
umns subjected to harmonically varying axial 
force. The response of imperfect columns sub- 
jected to harmonically varying axial force was 
first investigated by Mattier 11] in 1941. He 
determined steady state responses for the case 
of the linear undamped column. Weidenhammer [2j 
later solved for the steady state response of 
imperfect columns including the effects of lin- 
ear damping and nonlinear longitudinal inertia. 
Bolotin [3] has also solved this problem in- 
cluding the nonlinear effects of damping, elas- 
ticity, and inertia. These previous investi- 
gations have been concerned with steady state 
solutions vhich are of limited value, since a 
.-.leady state solution, In which the period of 
response is equal to the period of the forcing 
function, simply does not exist for mo3t values 
of the parameters wnich arc of interest to 
structural engineers. A summary of the pub- 
lished works on parametric vibrations through 
196") has been compiled by Evan-Iwanowski [4]. 
A recent study by Anderson and Moody [5] has 
resulted in the development of response spectra 
for a  linear column with linear damping. Their 
results were obtained by analog computation. 

In this investigation, the effects of non- 
linear longitudinal Inertia and nonlinear elas- 
ticity are Included in the defining differen- 
tial equation, and numerical solutions are ob- 
tains- using a Runge-llutta method. Linear 
solutions and nonlinear «solutions for different 
.alues of the longitudinal inertia parameter 
are investigated, 'nd typical amplitude-time 
response curves are shown. Response spectra 
for the maximum amplitude of lateral vibration 
are presente-l for values of the parameters which 

are considered to be or practical interest, and 
the results are compared with stuady state solu- 
tions. 

BASIC EQUATIONS 

The basic equetion which defines the 
lateral displacements of an axially loaded 
column has been developed previously (3, 6], 
therefore a rigorous developtr-jnt of the de- 
fining differential equation will not be re- 
peated herein. Howevtu, a brief description 
of the source of the nonlinear terms is in 
orier. The system to be analysed Is a slender 
colu-an subjected to a periodic axial force, as 
shown in Fi;j. 1, and supporting an end mass. 

P: P . P sintet) 
o  1 

Fig.   1 -  Imperfect Column 
with Simple Supports 

*Pa>jer not presented at Symposium. 
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Considering • on« mod« solution and neglecting 
th« nonlinear effect« land« to a non-homogene- 
ous Mathlau aquation, thus* 

F + 
(1-PJ) n 

(I-?*) 
aln(T) F - -f    (1) 

a1 

or  P + -=■=  |1 - 23aln(T) 
4c. 

F 
F - — 2 (2) 

Solution« for Eq. 2 are unstable in certain 
regions of the a-6 plane. Boundaries for these 
legion« have been determined by others [3,7] 
and are shown, In part, in Fig. 2 for values 
of the parametera considered to be of interest 
to structural engineer«. There are higher 
unstable regiona, however, thess higher regions 
have been found to be relatively unimportant 
[S] and are v.jt shown. Considering the inertia 
effect of the end mass on the axial force in 
the column reaulta In the following additional 
term for Eq. 2: 

2S2 
FF + (F) (3) 

If the effect of large deflections ii? to be 
considered, then the following term which is an 
approximation may be addad to Eq. 2: 

w 

Bolotin [3] has discussed the development of 
tha above terms in detail. By adding Terms 3 

0.1       0.2 
LOAD PARAMETER - p 

Fig. 2 - Unstable Regions (shaded) 
for Hsthleu Equation 

0.3 

aud 4 to Eq. 2, the following differential 
equation is obtained: 

F + 

A 

(1 - PJ - P* sin (T) F + 

,2 FF + (F)2 F + 2 2 ens 
(5) 

Initial Conditions - The column is assumed 
to be at rest, initially, under the influence of 
an Initial static axial force P . Therefore, 
the "nltial displacement is given by 

F(0) - ~ P* o 
(6) 

and the initial velocity is F(0) ■ o.  Foi 
this investigation, a value of F - 0.2S is used 

for the initial Imperfection, and a value of 
P* « 0.51 is used for the Initial axial force, 
o 

This results in an initial displacement o? 
F(0) ■ 0.51 for all example solutions considered 
herein. The initial imperfection, which is one- 
fourth the radiua of gyration of the column, was 
aelected as a practical upper bound value. 
Similarly, an initial axial force which is 51Z 
e* the fundamental Euler load was selected. 

SOLUTIONS 

Transient solutions are obtained using a 
Runge-Kutta method for a period which is equi- 
valent to 20 cycles of overloading. Typical 
solutions near the primary unstable region are 
available [6] for the nonlinear case presented 
herein. This investigation is extended to in- 
clude solutions near the second and third un- 
ataVe regions. It is found that solutions 
whl .. display a beat are always founu near the 
unstable regions. Examples of such solutions 
near th« second unstable region are shown in 
Fig. 3. These solutions which display a beat 
are found to be typical of both the linear and 
the nonlinear equations. 

During the investigation, it was found that 
the effect ot nonlinear elasticity was negli- 
gible -xcept for excessively large deflections. 
Therefore, only one value of the slenderness 
ratio (S - 120) la used In this investigation. 
All solutions presented include the effect of 
S - 120, however for W » 0 the solutions are 
equivalent to linear solutions. The nonlinear 
elasticity ia not conoidered to be of practical 
importance by the author. 

Large valuns of the weight ratio W, which 
definaa the magnitude of the longitudinal 
inertia, tend to eliminate the lateral vibra- 
tions of th« column.  This decrease in maximum 

*All mathematical symbols are defined under 
NOTATION at the «ad of thl« paper. 
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Fig.   3 - Nonlinear Solutions Near 
Second Unstable Region - 0-0.10, 
P*-0.51, P*-0.098, F -0.25, S-120 o 1 o 

& W-310 

amplitude of vibration as the weight ratio 
increases is shown in Fig. A for two different 
positio-.j in the a-3 plane. One of these 
curves is inside the primary unstable region 
(a - 1.00), and the other is between the firpt 
and second unstable region (a - 0.80).  It is 
possible that the weight ratio W may be quite 
large for practical problems. However, since 
large values of W (in excess of 1000) appear to 
prevent large deflections from developing, an 
intermediate value of W - 310 is used herein 
for the example solutions. The solutions for 
W-0 are found to be equivalent to linear solu- 
tions for the range of deflections presented. 

Response spectra for the absolute maximum 
deflection have been plotted for three different 
values of the load parameter $. These plots are 
shown in Fig. 5, 6, and 7, and include both the 
linear and the nonlinear solutions for compari- 
son. The location of the first three unstable 
regions (line«) are also shown so the spectic 
may be related to the a-i,  plane as shown in 
Fig. 2. Thf. fourth unstable region is near a 
value of a - 0,25. which is reflected in the 
large deflections at this point for the linear 
(W - 0) solutions.  Since these are transient 
solutions, the response values are ploctad into 

2.00r 

1.90 

2 

0.80 

0.70 ■ 

0.60 

0.50 

--static 

200     400     600 
WEIGHT RATIO (W) 

800 

Fig. 4 - Effect of Nonlinear Inertia 
on Deflection - ß • 0.20, Pj - 0.510 
P{ - 0.196, FQ - 0.25, S - 120, W - 310 

the unstablt -egions as fine broken lines.  It 
should also be pointed out that in the stable 
regions the transient solutions for twenty 
cycles of overload are very close to maximum 
deflections which occur after mu&y more cycles 
of loading. In the stable region«, the solu- 
tions are generally found to repeat themselves 
within twenty cycles of loading. 

With the addition of nonlinear inertia, 
the regions of maximum deflection seem to be 
moved toward smaller values of a(i.e. to the 
left in Fig. 5, 6, & 7). It may also be ob- 
served in Fig. 5, 6, and 7 that the odd numbered 
unstable regions seem to be the regions most 
affected by nonlinear inertii. In general, the 
nonlinear inertia causes a decrease in maximum 
lateral deflection, however, rhls is lot always 
true due to the shift of t'ie traxlmura zones to 
the left. 

The steriy state solutions which havo been 
determined by others [1, 2, & 3] assumes that 
the response of the column is identical to the 
frequency of the dynamic overload, »no is only 
valM near the second unstable region.  This 
typ.< of solution does not admit a solution with 
a beat, as shown in Fig. 3.  For purposes of 
comparison, steady state solutions for the 
linear case have been plotted on each of the 
response spectra. 
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TBg-'■fr-.tvti: ■ J^K.-■>■-■ • .iv ::_ 

NOTATION 

F " dlmensionless mid -spi. : displacement 
for fundamental rode (half sine wave) 
or ratio of mid-span deflection to 
radius of gyration of the section 

F • derivative of F with respect to T 

F • second derivative of F with respect to T 

F » initial dlmensionless mid-span deflec- 
tion in unstressed state 

L - length of column 

M " end mass on column 

P - time dependent axial force on column 

F " initial axial static force on column 
o 

P. » maximum magnitude of harmonic overload 
on column 

p* > dlmensionless static axial force on 
column or ratio of P to fundamental 
Euler buckling load 

p* - dlmensionless dynamic overload on 
column or ratio of P. to fundamental 
Euler buckling load 

r ■ radius of gyration of section 

S - slenderness ratio (L/r) 

T - dlmensionless time (Ot) 

t - real time 

W - weight ratio or ratio of static axial 
load to weight of column 

a " frequency parameter or one-half the 
ratio of the loading frequency 0 to 
the fundamental frequency of the loaded 
column u-^1 - F?" 

B " loading parameter or -.  ?*/(l -P*) 

0 ■ frequency of harmonic overload 

Q  - dlmeoslonless loading frequency (0/u) 

u • fundamental frequency of lateral 
vibration for simple column 
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