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ABSTRACT 

> Viscous hypersonic flow at high Reynolds numbers R (R = Pr^ry-r/^') 

over a blunt-nosed body Is considered on the basis of Navier-Stokes 
equations. An asymptotic solution of the Navier-Stokes equations is 
obtained for the case where substantial viscous effects are present in 
the entire inner layer.of e3'2 rthlckness (E Is the shock density 
ratio). This means that the thickness of the boundary and the Inner 
invlscid layers are of the sameoordcr of magnitude. By substituting 
the nondlmenslona] coordinates and functions of thr viscous I'low 
region in the Navier-Stokes equations and taking the similarity 

parameter A = 1./R.K->
' constant. Into account, a system of cquatlons 

Is derived.  A distinct!vr fentupi1 or t.hc boutidar'y value problem 
considered ht'vti  Is that It. contains a now similarity iwametci' A.  11. 
is demonstr'atod that the asymptotic solution when' NU-nds to y,v\'0 
coincides with that of J-Viy and RlcJdeJ . The numoHcal i-esults oJ" 
computations on an M-^0 com()ut'T lor- various  at three dllTervnt 
temperature ijarameters ga>(gcn = 1 corr'osponds to adlabatlc wall), 
presented In tabular form, show that at A = l thr  heat J'lux Is l7-?5^ 
higher than Jn the case of an ordinary boundary layer. The value 
^  ~ 1 corresponds, for example, to flight conditions at M-?0, 

4.4 
Re =s 10 , and e = 0.1.  Orlg. art. has:  15 formulas. 
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CALCÜÜtflON OF HEAT TRANSER ON FRONTAL SURFACE 
OF BLUF BODY IN HYPERSONIC FLOW 
Yu.N. Yermak, V.Ya., Neyland 

(HOB cow) 

The present paper considers hypersonic flow of a viscous gas 
past the nose of a bluff body at hl^i Reynolds numbers /?(/?» 
-  powoyo/p, where the subscript 0 is attached to the values of 
quantities in the oncoming flow). A rather large number of works, 
among which we may cite [1-3]» has been devoted to this problem. 
The purpose of the Investigations usually consists In determining 
heat flow at the critical point of the body. These studies have 
been made within the framework of boundary-layer theory in the 
first [1, 2] or second [3] approximation. Wien we remember that 
at hypersonic flow velocity, the ratio of the gas densities in 
front of and behind the compression chock e « pt/pi is small, the 
solution of the problem can be approached by the so-called New- 
tonian theory, within whose framework we seek an asymptotic solu- 
tion to the Navier-Stokes equations (see, for example, [33) as 
Afa ■♦ », c ■♦ 0 and /?-►«">. In first approximation in this theory, 
an inviscid shock layer with a thickness of the order of er is 
formed between the body and the shock wave. The flow in it is de- 
scribed around the critical point by the Euler equations, In which 
the term taking account of the longitudinal pressure gradient van- 
ishes. To obtain these equations, it is necessary to introduce di- 
mensionless coordinates with consideration of shock-layer thick- 
ness and the longitudinal dimension of the minimum Influence re- 
gion near the compression shock: 

* = re'/«,     U «= rttj ( 1) 

where r is the radius of curvature of the body's contour and x, y 
are orthogonal curvilinear coordinates bound to the surface of the 
body In the direction of the normal to it. The expansions for the 
flow function in the neighborhood of the critical point can be 
presented In the form 

u .=. u»e,/i(5(Jf)* + ...l,     «"-u»e[»(y)+...J 

p »> POK-' Ipiy) +...).  /» *= I»»"»31/'(.'/) +•••!.  '"= 'A«»8 U(j) + • • •) 

Then we obtain In first approximation from the Navler-Stoker. 
equation» 

„ 1 _ 
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Here we have dropped the prime on the dlmensionless quanti- 
ties. Considering the boundary conditions at the compression 
shock, we can obtain 

» -• f-sC if — yi + i^ö— i. f = f — i        (ijj 

since on the wave u = -v = 1  for y = yi.  Near the body's surface 
t; ♦ 0, M * 0. 

The Inertlal terms In the momentum equation in a layer with 
a thickness of the order of re3'2 acquire the same order of magni- 
tude as the dropped term with the longitudinal pressure gradient. 
Hence to obtain the uniform exact solution in this region as well, 
it is necessary to Introduce new dlmensionless coordinates and 
flow functions: 

* — reV«.  y^re.tY,      a = u,t\U(Y)x +..\,      u - ii.e»[F(y)+...]  (5) 

Such a layer was examined In [^] in solving the problem of 
hypersonic flow of an inviscid gas past a flat plate set trans- 
verse to the oncoming flow. After substitution of (5) in the 
Navler-Stokes equations, we obtain, in first approximation, 

ZU+V' — O. IP+VU'^2 (6) 

Integrating (6),  we obtain 

U,=* IY+120)1 C, V*=C(2-U*) (7) 

Use of the familiar principle of splicing the external and 
internal asymptotic expansions enables us to determine the con- 
stants:   C = 1 and ^ =• i + 0(eV.). Thus we obtain the velocity gradient 
at the body's surface as unSn/r.  This  value is also obtained in 
the conventional Newtonian theory.  It is used as the boundary con- 
dition for the boundary layer, whose equations are obtained by 
asymptotic expansion of the Navler-Stokes equations  in a region 
with a thickness of order ff~^ immediately adjacent to the body's 
surface. 

Thus,   in  the   convontl onal  schcmn   for  rinding th<-  anymptol, I c 
solution  of Lho Navlor-.Stokfni  equation:!,   the  11 mil. t, nan:; 11. Ion  K  •»■ 
-»• 0,  Wo  •* «S   R   *• "'  Is  accomplished  In such  a way   that  the entire 
shock  layer will decompose Into two inviscid region;;  and a bound- 
ary  layer.  This  limit  transition describes  flow conditions  well 
for Mach number Wo  and r moderate  and /? large. 

The present work examines  another type of limit  transition, 
Afo  •> <»,   e -► 0,  /? ->■ o»,   in which viscous  effects  remain essential 
throughout  an inner layer with thickness  e3/2r.  This means that 
the thickness  of the boundary layer and the internal Inviscid 
layer are of the same order of magnitude. 

Let  us Introduce the parameter .'* 1 =*/fjn/!«»•    ^n the  limit transi- 
tion under examination,  the parameter A = I/K.F'/,    remains finite as 
Mo ■*• "S  e ■♦■ 0 and R\  ■*■ <*>.   It  characterizes the ratio of the  thick- 
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nesses of the boundary and inner inviscid layers. As estimates 
8how, the thickness of the compression shock remains negligibly 
small, i.e., passage across the compression shock is described, 
as before, by the Hugoniot solution. The asymptotic expansions 
and the solutions retain their previous form (1)-(3) in a layer 
whose thickness is of the order of Er. 

The dimensionless coordinates and functions in the viscous 
flow rer;ion have the form ( 5). Substituting them into the Navier­
Stoke;, equations and considering the condition R•"-''•- eonJt, we obtain, 
in first approximation, the following equations, which have been 
expanded in x: 

2pU + (pV)' ~ o, pVr'- ~[(J.L I a)c1', p(U' + VU') - 2A(~U')' ( 8) 

Tho boundary conditions for System (8) are known only at the 
wall, u = V = n, and the missin~ ones nrc obtained by splicin~ 
with Solution(~). Introducing the stream function and Dorodni­
tsyn's v~riablcc., we transform the system to 

y 

t. ( N n· : '2/f" . ! . 21 r- u·l~ '"' o. 1J = ~ ptiY) ( 9 ) 
I) 

Here differentiation is with respect tb the Dorodnitsyn vari­
able. The boundary conditions at the wall have the usual form 

/(0) = /'(0) .,., 0; 1.'(0) = J,' ... ( 10) 

'l'hc missin~ boundary condition for the momentum equation, 
which is obtained by splicing the solutions of System (9) with 
(4), takes the form 

(11) 

Th(' c xtt?rnal boundary condition for the cnerp;y equnt ion has 
remained .qs before: 

( 12) 

The boundary-value problem (9)-(12) dlffers from that con­
sider-ed carlJe-r• tn [1, 2] and others in that the new r.imllarity 
parameter f'> !las appeared; its physical sense ls indicated above. 
The external boundary condition for the momentum equation has also .. 
changed. It ls evident from physical considerations that the 
asymptotic solution (9)-(12) ~ust be identical to the solution ob­
tained tn [1, 2] and other papers as 6 ~ 0. It is not difficult 
to show thnt th1 s lr. indeed the case, since the asymptotic solu­
tlon (9)-(l?.) takes the following form as fl ~ 0: 

(13) 

where rp nnd h nre solutlons to the boundary-value problem 

(.V•r"J' + '2•r•r·" + :! /1' - < !f'l 1 =- o. I (N I IT) '•')' + 2<('11' ... 0 

G' (0) """ <r' (0) "" 0, 1t (0) ._, 1,,. "'' ~ '" <p'(oo) ,., "fl. /i(oo) .., 1 

- 3 - ·~.,»T AVAILABLE COPY 



Equations  (9) were solved on the M-20 electronic computer 
[EC] (3BM) with boundary  conditions  (10),   (11)  and (12).  We pre- 
sent the results of calculations for various A and three values 
of the temperature factor g    (the value &. = 1 corresponds to an 
adlabatlc wall). 

if»-0.1. fm' -0.88. i^-0.41 
A-ir» 0.S7   i<r»0.11    10-» 0.22 0.11 0.43 0.51 
/W=U.82 8.76         6.31 3.11 i.80 1.70 

-fi/V'S- U.3» 8.39         5.40 2.67 1.33 1.23 
^-6.72 3.92         2.79 1.31 0.09 0.64 

^itjyj^G.m 3.90         2.765 1.24 0.62 0.57 

A ~ 0.63 J0.7!> 0.90        1.00 3.86 11.33 
/;-1.S8 1.46 1.41        1.36 0.96 0.80 

^/yi-i.o» 0.08 0.92        0.88 0.447 0.262 
^-0.58 0.S3 0.50        0.48 0.27 0.18 

*i/y^-o.s" 0.45 0.43       0.41 0.209 0.13 

ff.^lO^, *;=0.24. ^=0.13 
A»l(r«0.1«    l(»-»0.24 IO-'O.«     lO-'O.« 10-*0.51 0.10 
/;-63.Ä 5.25 2.09 1.96 1.26 0.92 

f^yS-61.53 4.85 1.80 1.72 1.05 0.76 
ri-34.51 2.80 1.09 1.02 0.63 0.45 

A^VÄ-33.33 2.61 1.01            1 ).93 0.57 0.41 

A» 0.10 0.48 0.88       1.00 2.39 4.48 
/;-0.72 0.51 0.42       0.40 0.32 0.28 

-HPl'Vt-O.SS 0.347 0.256      0.24 0.15 0.11 
^-0.34 0.23 0.17       0.18 0.11 10-*0.89 

~^//S-0.288 0.187 0.138      0.18 0.84.1<r*     0.61.10-* 

*'«=-!, 'C^0- ' 1w =-- 2.200 
A-O.MKT3 0.4'. ir»   0.2010-» 0.4ül0r»    0.13 0.25 
/;» 77.91 33.70            16.24 10.91 6.82 5.10 

~«1//A= 77.40 .T3.2             15,63 10.21 »      6.13 4.40 
A =0.50    0.7 0.814       1.00 1.9^ 10 
/:=3.5- '    3.346 3.153      2.92 2.-10 1.499 • 

~^/Ä=.2.87     2.63 2.44        2.206 1.56 0.69 

It was assumed In all calculations that a * 0.71* and that the 
variation of viscosity y 'v* g", where w = 0.76. 

It  can be seen that  for A =  1,  the heat  flow Is  17-23?  larger 
than the corresponding value  for the ordinary boundary layer.  The 
quantity A ^ 1,   for example,   corresponds to  flight  regimes with 
Af > 20,   e » 0.1 and Reynolds numbers  R of tho order of 10+',. 

Rocolvod ?3 December 1966 
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