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5/2
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CALCULATION OF HEAT TRANSFER ON FRONTAL SURFACE
OF BLUFF BODY IN HYPERSONIC FLOW

Yu.N. Yermak, V.Ya., Neyland

(Moscow)

The present paper considers hypersonic flow of a viscous gas
past the nose of a bluff body at high Reynolds numbers R (R =
= pougie/r, where the subscript 0 is attached to the values of
quantities in the oncoming flow). A rather large number of works,
among which we may cite [1-3], has been devoted to this problem.
The purpose of the investigations usually consists in determining
heat flow at the critical point of the body. These studies have
been made within the framework of boundary-layer theory in the
first [1, 2] or second [3] approximation. When we remember that
at hypersonic flow velocity, the ratio of the gas densities in
front of and behind the compression chock € = py/p1 1s small, the
solution of the problem can be approached by the so-called New-
tonian theory, within whose framework we seek an asymptotic solu-
tion to the Navier-Stokes equations (sce, for example, [3]) as
Mg + o, ¢ + 0 and R + ». In first approximation in this theory,
an inviscid shock layer with a thickness of the order of €r 1is
formed between the body and the shock wave. The flow in 1t 1s de-
scribed around the critical point by the Euler equations, in which
the term taking account of the longitudinal pressure gradient van-
ishes. To obtain these equations, it is necessary to introduce di-
mensionless coordinates with consideration of shock-layer thick-
ness and the longitudinal dimension of the minimum influence re-
glon near the compression shock:

z = re'hi, y = rejj ( 1)

where r is the radius of curvature of the body's contour and z, y
are orthogonal curvilinear coordinates bound to the surface of the
body in the direction of the normal to it. The expansions for the
flow function in the nelghborhood of the critical point can be
presented in the form

u = ueeh[a(f)z+...) v=uee[v(y)+...)

_ (2)
p=poe=tfp(f) +..}  pe=pallply) ..} h=tfulli(H)+..]

Then we obtain in first approximation from the Navier-Stokes
equatlons
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dudp =, v 4 o’ =0 (3)

Here we have dropped the prime on the dimensionless quanti-
ties. Considering the boundary conditions at the compression
shock, we can obtain

s=V—v, ym=p+ti—v—4, Pp=g=1 (4)

since on the wave u = -v = 1 for y = y». Near the body's surface
v+ 0, u~—+0.

The inertial terms in the ?omentum equation in a layer with
a2 thickness of the order of re3/? acquire the same order of magni-
tude az the dropped term with the longitudinal pressure gradient.

Hence to obtain the uniform exact solution in this region as well,

it 1s necessary to introduce new dimensionless coordinates and
flow functions:

zwe re'hT, y == real, s =ueelU(V)E+..} v=ueet[V(¥Y)+..] (5)

Such a layer was examined in [4] in solving the problem of
hypersonic flow of an inviscid gas past a flat plate set trans-
verse to the oncoming flow. After substitutior of (5) in the
Navier-Stokes equations, we obtain, in first approximation,

2U 4+ V' =0, U4 VU =2 (6)
Integrating (6), we obtain
U= (Y+72C)/C, Ve=C@2—1n) (7)

Use of the familiar principle of splicing the external and
internal asymptotlic expansions enables us to determine the con-
stants: € = 1 and y.=1+4+0(%). Thus we obtaln the velocity gradient
at the body's surface as uo/2e/r. This value is also obtained in
the conventional Newtonian theory. It is used as the boundary con-
dition for the boundary layer, whose equations are obtained by
asymptotic expansjion of the Navier-Stokes equations in a region
with a thickness of order R-% immediately adjacent to the body's
surface.

Thus, 1n the conventlonal scheme for flindling the asymptolic
solution of Lhe Navier-itoke:s cquations, the 11mit Lransitlon & -+
+ 0, My » », R » = 15 accomplished 1n such a way that the entire
shock layer wlll decompose into two inviscld reglons and a bound-
ary layer. This 1limlt transition describes flow conditions well
for Mach number My and ¢ moderate and R large.

The present work examines another type of limit transition,
Mg + », € > 0, R +®, in which viscous effects remain essential
throughout an inner layer with thickness €¥/2p, This means that
the thickness of the boundary layer and the internal inviscid
layer are of the same order of magnitude.

Let us introduce the parameter i =/fu /. In the 1limit transi-

tion under examination, the parameter A=1/ien remains finite as
Mo + ®, € + 0 and Ry + ». It characterizes the ratio of the thick-
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nesses of the boundary and inner inviscid layers. As estimates
thow, the thickness of the compresslion shock remains negligibly
small, i.e., passage across the compression shock 1s described,
as before, by the Hugoniot solution. The asymptotlc expansions
and the solutions retain their previous form (1)-(3) in a layer
whose thickness is of the order of enr.

The dimensionless coordinates and functions in the viscous
flow region have the form (5). Substituting them into the Navier-
Stokes equations and considering the condition Rie'h == const, we obtain,

in first approximation, the following equations, which have been
expanded in =z:

20U+ (pV) == 0, pVg em Al(p/0)cT,  p(UP+ VU') wa 2A(00")’ (8)

The boundary conditions for System (8) are known only at the
wall, U = V = 0, and the missing ones arc obtalned by splicing
with Solution (4). Introducing the stream function and Dorodni-
tsyn's variables, we transform the system to

Y
e e n e , e o ¥
AN E USRI = U 0, AN ()] -+ 2g _-q(N=p.ll°, ,,.:},,ay) (9)

Here dilfferentiation is with respect to the Dorodnitsyn vari-
able. The boundary conditlons at the wall have the usual form

HOY = f/(0) == 0;  p(0) = gu (10)

The missing boundary condition for the momentum equation,

which is obtained by splicing the solutions of System (9) with
{4), takes the form .

O /N yna == ([ B0)y s =21, O ["(00) = (11)

The external boundary condition for the enerpgy equation has
remained as beflore:

wloo) == 1 "‘"”“.ifl (12)

The boundary-value problem (9)-(12) differs from that con-
siderecd carller in [1, 2] and others in that the new similarity
parameter A has appeared; 1ts physical sense is indicated above.

The extcernal boundary condition for the momentum equatlon has also . .

changed. It 15 evident from physical considerations that the
asymptotic solution (9)-(12) must be identical to the solution ob-
tained in [1, 2] and other papers as A + 0. It 1s not difficult
to show that thls 1s indeed the case, since the asymptotic solu-
tion (9)-(12) takes the followiny form as A -+ O:

1" -0 YA g—nITA (13)
where 9 and h are solutions to the boundary-value problem

(NG™) + 20" 4 2/ p — (g")? = O, 1m/qmu+mwno
Q(O) @7 (0) =20, K(0) wx hu wrgu,  @'(00) ¥R h(e) s 4

. -uifﬁ“&QHJABLEECCM’Y
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Equations (9) were solved on the M-20 electronic computer
(EC] (3BM) with boundary conditions (10), (11) and (12). We pre-
sent the results of calculations for various A and three values
of the temperature factor g, (the value g, = 1 corresponds to an

adiabatic wall).

fo=0.1, 9, =0.88, A, =0.41
A=10" 0.37 1010.44 10%0.22 0.41 0.43  0.51
fo=14.82 876 631 341 1.8 1,70
~9./V B= 14.39 8.39 540 287 133 1.23
: £, =6.72 392 279 131 069 0.8
~h, YV B=6.69 3.90 2,765 1.4 0.62 0.57

e’-o.sa 0.79 0.90 .00 3.86  11.33
Jg=1.58  1.46 1.41 1.36 0.96 0.50

9./V38=1.07 098 0.92 0.8  0.447 0.262
£o=0.58 053 0.5 048 0271 0.8
b JVB=0.51T 0.45 0.43 0.41 0.209 0.13

S =10, Go =0.24, A,=0.13

A=100.16 1070.24 1070.17 1070.19 1020.51  0.10
fog=63.56 5.25 2.09 1.96 1.26 0.92
~ 9ol V B=61.53 4.85 1.80 1.72 1.05 0.76
£, = 34.51 2.80 1.09 1.02 0.63 0.45
~AJVE=33.23 2.61 1.04 0.9 0.57 0.41

4=0.19 048 0.8 1.00 2.39 448

fo=0.72 0.5  0.42  0.40 0.32 0.28
~9o/VB=0.55 0.347 0.258 0.2 0.15 0.11

fo=0.34 0.2 047 0.18 0.14 10710.89
~hy/YBw0.208 0.167 0.438 0.43  0.84.10 0.81.10

e =1, h;::o, . ';= 2.206
Am0.51-402  0.44-107  0.20-107  0.46-107 0.13 0.25
fo==11.94 33.79 16.24 10.91  6.82 5.10

~9,/VB=T11.40 2.2 15.65 10.25  6.13 4.40

A=0.59 0.7 0814 1.00 1.93 40
J,=3.57 3.346 3.158 292 230  1.49

~9,/ V82287 2,63 244  2.206 4.56 0.0

It was assumed in all calculations that ¢ = 0.74 and that the
variation of viscosity u v g9, where w = 0.76.

It can be seen that for A = 1, the heat flow is 17-23% larger
than the corresponding, value for the ordinary boundary layer. The
quantity A v 1, for example, corresponds to flight regimes with
M > 20, € = 0.1 and Reynolds numbers R of the order of 10%*,

Recelved 23 December 1966
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