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SUMMARY

Two finite elements for plate bending in
polar co-ordinatesarederived. One element is in the
form of a circular sector and the other is in the form
of an annular sector. The former element has nine
degrees of freedom, while the latter has tweive, the
degrees of freedom in each case being a displacement
and iwo slopes at each element corner.

The method is checked with several numer-
iczl examples. The static deflections of an 2nnular
plate and a complete circular plate, bcth loaded by
single concentrated forces, are analyzed and the re-
sults compared with exact solutions. Calculations of
the free vibrations of complete circular plates are
also carried out and compared with exact solutions.
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e

Symbol Definition
a, b Plate dimensions, Fig. 5 and 8
a, === 2y, Polynomial coefficients, eq. 13
Al Column vector of polynomial coefficienis, eq. 15
D Plate flexural rigidity = Eh3/ 12 (l—vz)
E Young's modulus
h Plate thickness
HOI’ H02’ Hll’ H12 Interpolation functions, eq. 4
[k], [Kll Stiffness matrices, Tables I and IV
[Kz] Stiffness matrix, eq. 20
[m], [Ml] Mass matrices, Tables il and V
[Mz] Mass matrix, eq. 21
P Concentrated load, Fig. 5 and 8
q Distributed loading on plate, eq. 1
r Radial co-ordinate
Lg» Tys Tg Element dimensions, Fig. 1 and 4
t Time
T Kinetic energy, eq. 2
(-] Transformation matrix, Table III
\'% Poten:ial energy, eq. 1
w Transverse displacement of plate
Wi Wy dw/dr, ow/30, respectively
%Xl s ;ng Displacement vectors, eq. 10 and 12
B Element included angle, Fig. 1 and 4
] Azimuthal co-ordinate

(vi)
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Symbol Definition
v Poisson's ratio
p Plate material density
@, @ Trigonometric interpolation functions, eq. 6
1r %2 g0 ,
w Fr¢juency
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FINITE PLATE BENDING ELEMENTS IN POLAR CO-ORDINATES

1.0 INTRODUCTION

The finite element method of structural analysis is new firmly established as
a powerful technique for handling difficult problems in solid mechanics. Finite elements
have been developed in many shapes and for varied applications, the most numerous
being the rectangular and triangular plate elements for both bending and plane stress
configurations. A good review of the state of the art can be found in the text by
Zienkiewicz (Ref. 1), but even this book is becoming outdated by the rapidly advancing
field.

The simplest element shapes for plate problems are obviously a triangle 2nd
rectangle with three and four nodes, respectively. Rectangular elements are somewhat
limited in their boundary shape applicability, whereas triangular elements may be used
to represent almost any shape of boundary. However, for problems with curved bound-
aries, this use of triangular elements means that the curved boundary is being approxi-
mated by a series of straight line segments. Further, with some of the more sophisti-
cated elements being developed today, the error introduced by this approximation may
well be the limiting factor in some solutions.

Hence, there appears to be a need for elements with curved boundaries. A
start in this direction has been made by Ergatoudis etal. in Reference 2, wherein quad-
rilateral plane stress elements with various curved sides are developed. It would be
useful to have this approach extended to bending applications as well. In particular,
there is a large class of groblems involving circular arc boundaries that are difficult.
to handle by ordinary analytical means. Problems commonly encountered in jet engines,
such as the vibrations of turbine discs and turning vanes, are but two examples.

In the present work, a method for handling such problems is considered. Two
plate bending finite elements are developed in poiar co-ordinates, which may be joined
together in various combinations with rectangular elements to fit a large number of
boundary shapes. The first element has three nodal corners and is in the shape of a
segment of a circle. The second element has four nodal corners and is in the shape of
a segment of an annulus. The transverse displacement and two slopes 2are used as the
degrees of freedom at each element nodal corner. Displacement functions are derived
for each element, and the stiffness and mass matrices are obtained by substituting these
displacements into the strain and kinetic energy integrals from plate theory.

These elements are fully compatible with the well-known twelve degree of
freedom nonconforming rectangular plate elements (Ref. 1). That is, either of the
polar co-ordinate elements developed herein may be joined to one of these rectangular
elements by equating the displacement and edgewise slope degrees of freedom at the
ends of a common boundary. The transverse displacement will then be continuous
across such a junction, but the normal slope will, in general, not be continuous there.
This is consistent with the fact that these rectangular elements are nct conforming.
Hence, these polar co-ordinate elements, when combined with the rectangular elements,

provide a powerful method for handling a variety of plate bending problems encountered
in practical applications.




-2 -

In the present work, numerical calculations are carried out only with combi-
nations of the polar co-ordinate .iements. The examples are chesen primarily as tests
of the elements. The static deflection of an annular plate and a complete circular plate,
both loaded by single concent-ated forces, are analyzed, and the results compared with
exact solutions. Finally, calculations of the free vibrations of complete circular plates
with clamped, simply supported, and free boundaries are carried out.

2.0 THEORETICAL FORMULATION

The stiffness, mass, and load matrices for ‘he finite element method are
most easily obtaired from calculations of potential and kinet ¢ erergies. Once the dis-
placement functicns for a particular finite el ment have been established, they may be
substituted directly into the potential and kinetic energy integrals.

For classical bending of isotropic plates, the potential energy for an element
in polar co-ordinates is given by (page 346, Ref. 3)

v DBy 1aw 1) gy, e (1aw, 1 o'
T J9 r; 2 ar2 r ar 2 362 ar2 r or 2 602
(127 S
1 9"w 1 ow
+ 2(1 v)\;arao -r—z o)]—\\q‘rdrde

where q is the external loading on the plate element, and D and v are the customary
flexural rigidity and Poisson's ratio, respectively.

The kinetic energy for an element in polar co-ordinates is simply
2
1 P T2 faw
T—-Ej;) frl ph(—az r dr d6 73

where p is the material density and h the plate thickness. Making the usual assump-
tion of sinusoidal dependence on time yields

2 B .r
2 .
T=%f;} frlzphw r dr a¢ 3)

where w is the {requency of oscillation.

The displacement functicr.s for the two finite elements developed herein are
presented in Sections 2.1 and 2. 2.

2.1 Circular Sector Finite Element

The first finite element configuration to be considered is shown in Figure 1.
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E- The element is a sector of a circular plate of radius Ty with an in< luded angle 5. The
& corners are numbered 1 to 3, as cshown.
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It has becomne common practice in developing piate bending finite elements to
use at least the displacement and two slopes as generalized co-ordinates at each corner
of the element. This alious the displacement of the 2lement to vary cubically alung any
edge. Hence, for the present configuration, this suggests the use of at least the follow-
ing nine generalized co-ordinates: w
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Now a displacement function for this element must be selected. One simple
approach to developing a suitable displacement function for this finite element configu-
ration appears to be through the use of irterpolation formulas. The merit of this ap-
oroach for developing rectanguiar finite elements has been clearly demonstrated in

Kheference 4. 1he interpolation formvuias used herein are some of the Herm.ite polyno-
mials, and are

_ 1 3 2.3
HOI(x, a) = -—33 (2x -3ax"+*a")
- 1 2,3
HOZ(X’ a) = 33 (3ax"-2x")
4)
1 3 2 2
Hn(x; a) = 3—2 (x -2ax"+a"x)
1 .3
H]z(x; ay = 3_*2 (x -—axz)

Note that the bracketed superscript 1 that usually accomneznies each H'i(‘\) has been

omitted for simplicity. Plots of these functions are shown in Figure 2. 1t may be ob-
served that the HO‘ and H0‘> functions have unit value at x = 0 and x = a, respec-

tively; zero valueat ¥ = a and x = 9, respectively; and zero slope atboth x = 0
and x = a. On the other hand, the H” and Hl 2 functions are zero at both x = 0 and

x = a, but have unit slope at x = 0 and x = a, respectively. Appropriate combina-
tions of thesec tunctions 2rse then used with each generalized co-ordinate; for inswance,

fcr a rectangular plate (Ref. 4) the functions that accompany 2 typicai corner displace-
ment are

wl Hm(x; a) Hm(y; b)

and with a typical slope are

N A B N N N A T P NN Y

w1 Hn(x: a) }{01(\': b)
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For this circular sector element the displacement may be assumed in




the form

w(r, 6) = Wi1o Hu(r; ro) HOI(O; B) + W13 Hn(r; rO) }102(0; B) + Wy HOl(r; ro)

...... (5)

It may be seen that this form provides the proper dependence on the generalized co-
ordinates; for example, the first term provides an acceptable dependence on W19 in

that H,,(0sr) = 0, d Hn/dr(o', ry) = 1and Hy,(0; 8) = 1. However, upon closer

inspection, it is seen that the first two terms of expression (5) contain linear terms in
r, which represent an infinite bending moment at ¢ = 0. This therefore precludes the
use of expression (5).

Since there is no way to avoid linear terms in r and still retain the slope
degrees of freedom at r = 0, different interpolation functions must be found for the 0
dependence. 1t is logical to use the trigonometric functions sin 6 and cos 0 in these
interpolation functions, since r sin 6 and r cos 0 are harmonic functions. Hence, the
following trigonometric functions are found to be satisfactory

<p1(0) cos 8 - cotf sin @

(6)

<p2(0) sin 4/sin 8

Typical plots of these two functions are shown in Figure 3 for a few values of the in-
cluded angle 8. It may be seen that ¢4 has unit value at 6 = 0 and is zero at § =3,

while Py is zero at 6 = 0 and has unit value at 6 = B. Unfortunately, the slopes are,

in general, non-zero at either 6 = 0 or 0 = B. These functions have the additional
disadvantage that their distributions between 6 = 0 and 8 are not independent of .

However, it is very difficult to find any better functions that are still compatible with
the linear term in r. Consequently, the functions ¢4 and ¢, are used in the present

derivation by assuming that W10 and W3 contribute to the element displacement in
the following way

w(r, 0) = [wr12 gol(o) + W13 (p2(0)] Hn(r; ro) + w1 HOl(r; r0)+ ...... )

it may be noted that the form of equation (7) does represent well-behaved bending mo-
mentsat r = 0,

One further aspect of the displacement expression (7) should be noted here.
Differentiating expression (7) with respect to ¢ and setting 6 = 0, yields the circum-
ferential slope along the element edge 1 - 2. It may be seen that this slope depends on
W 1q0 Since, in general, 8<p2/80 is non-zero at 06 = 0. This means that the normal

slope along the element edge 1 - 2 is not independent of the displacements along the
element edge 1 - 3. Similarly, it may be seen that the normal slope along the edge
1 - 3 is not independent of the edge 1 - 2. This implies that the element will not be of
the conforming type, since the normal slopes will not be continuous along the radii be-
tween adjacent elements. However, it must be emphasized that this does not preclude
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the displacements being continuous between adjacent elements.
Finally, since the element cannot be conforming, it is suffici :nt to use the

nine generalized co-ordinates suggested earlier and to assume the elem:nt displace-
ment in the form

~
w(r, ) = w1 H01(r; ro) + Lwr12 901(9) + W3 402(9)] Hu(r; rO)
t [ Wre Bor(% B ¥ Weg Hoplls B)] Hyplrs 1)

~

+ “we2 HH(O, B) + Wo3 H12(0;B)] Hoz(r; rO)

+ [y Hoy(058) + wy Hop(0 )| Hoplrs £ (®)

Note that w is a cubic function of r throughout the element. Furthermore, along the

edge 1 - 2 (6 = 0), this cubic variation is uniquely defined by Wei90 Wir Wpos and Woe

The analogous result also holds for the edge 1 - 5. Hence, the displacement will be
continuous along the common boundary between adjacent elements, provided their dis~
placements and slopes at r = 0 and r, are set equal on that boundary. It may also be

seen from equation (8) that along the circuiar edge 2 - 3 (r = r,), w is a cubic function

o

and w,,.

of 0 and depends only on Wogr Wor Wga, 3

To find the stiffness matrix for e element, the displacement function given
by equation (8) is now substituted into the strain energy part of equation (1), and the
integration over the element is carried out. Note that for this circular sector finite

element, the integration over r is from ry = 0 to r, = 1, This integration yields

the strain energy in the form

v =347 k] I s 9
=32 1™ [ 1] 1 )
where 3X1$ is the column vector

T
$X1$ = (erz. wr13, wl, Wr2, Woz, W2, Wr3, W03’ w3) (10)

and [}(1] is the 9 x 9 stiffness matrix given in Table I. The mass matrix is found
in a similar manner by substituting equation (8) into equation (3). This yields the kinetic

energy in the form
2 T
) .
= 3"12 [Ml] 3x1$ (B

where [Ml] is the 9 X 9 mass matrix given in Table II. The consistent load matrix for

the element may be obtained by evaluating the wq portion in the integral of equation (1).

AR




2.2 Anaular Sector Finite Element

The next finite eleinent configuration to be considered is shown in Figure 4.
The element is a sector of an annular plate with inside radius i, outside radius r,,

and an included angle 8. The corners are numbered 1 to 4 as shown.

A primary objective in the derivation of this element is to make it consistent
and compatible with the circular sector element of the previous Section. This will allow
the two kinds of eiements to be put together for the solution of problems involving por-
tions of circular plates that include the centre of curvature. Therefore, it will be suf-
ficient to use the displacement and two slopes at each corner as the generalized co-
ordinates for the element. This will allow the displacement to be cubic in r along
edges 1 - 2 and 3 - 4, and cubic in 6 along the curved edges 1 - 4 and 2 - 3. Hence,
the displacement will be continvous between elements witk 2 common boundary, provided
the corner displacements are made equal at the ends of that boundarv, but the slope nor-
mal to that boundary will, in general, not be continuous across it. The displacement
vector for the annular sector finite element then becomes the twelve-term column vector

T
3}(2% = (er’ Wops Wis Wigs veves Woay ooy Wiy, oo ) {12)
where the subscripts 1 to 4 denote the corners of the element as shown in Figure 4.

The displacement function for this element is assumed in the form

1+ar+a9+a4r6+ar2+392+ar26+ar02

3
9 3 + a.r

w(r, 6) = a 5 6 7 8 9

3 3 3
+ amo + a;,r 9 + a12r9 (13)

It may be observed that this function is similar in form to that used for the well-known
twelve degree of freedom rectangular plate bending element (Ref. 1). In this case, the
r and @ co-ordinates just replace the x and y cartesian co-ordinates, respectively,
used for the rectangular element.

The twelve corner displacements used in equation (12) may now be evaluated
from equation (13). Carrying this out leads to the matrix relation

3x2£ = [7] 2A$ (14)

where zAi is the column vector of polynomial coefficients

T
}A( = (apr 290 Bgy veeee L a,) (15)
and [T] is the 12 x 12 transformation matrix given in Table Il. In principle, this
transformation matrix may be inverted, and the polynomial coefficients a, may be de-
termined as functions of the corner displacements of equation (12). The a, may then
be substituted into equation (13), yielding the displacement function in terms of the
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corner displacements. However, carrying out this prccess and substituting the result-
ing displacement function into the energy integrals involves an amount of work that is
impractical.

An alternative approach, which requires much less effort, is to substitute
equation (13) directly into the energy integrals. Carrying out the integrations over the
element yields the strain energy in the form

v=-1 ?A%T [k] {a] (16}

and the kinetic energy in the form
w2 T -
T = % HalT [m] |al )

where [k] and [m] are the 12 x 12 stiffness and mass matrices given in Tables IV
and V, respectively, and JA| is given in equation (15). Eliminating JA| from equa-
tions (16) and (17) by means of equation (14) yields

U= i%, 2T [, 3X2% (18)
and

T= % EARNUSREN (19
where

[x,] = [T—l]T [x] [T’] (20)
and

[M,] = [T‘l]T [m] ['r‘l] (21)

are the required 12 x 12 stiffness and mass matrices, respectively, for the element in
terms of the corner displacements. The calculations involved in equations (20) and (21)
are carried out on the computer to any desired accuracy. The consistent load matrix
for the element is found frcm the wq integral (see eq. (1)), first in terms of the
polynomial coefficient vector }A} and then transformed for the correr displacement

-1
vector )Xog by premultiplying by [T “] .

3.0 NUMERICAL APPLICATIONS
b

The two finite elements developed in the previous Section are now used to
solve several numerical examples. These examples serve to indicate how well the
elements work in various types of applications. The problems considered are the




static, nonsymmetric deflections of an axnular plate and a complete circular plate, both
loaded by point loads and the free vibrations of complete circular plates with simply
supported, clamped and free boundaries.

3.1 Point Load on Annular Plate

The first problem considered is that of the static, nonsymmetric deflection
of the annular plate shown in Figure 5. The plate is clamped along the inner edge (r = b)
and loaded by a concentrated force at the outer boundary (r = a). This annular plate
configuration is chesen because it may be modelled with only the annular sector finite
elements, and hence provides a check of those elements alone. The concentrated load
is known to provide one of the severest tests of the finite element method. The problem
is alsc a convenient one to use here because it has an exact series solution. This series
solution, which is given on pages 290 - 292 of Reference 3, was programed, and the
exact displacement was calculated for comparison with the finite element solutions.

The finite element calculations were carried out for the particular case dis-
cussed in Reference 3: a = 1.5, b = 1.0, and v = 0.3. Symmetry about the dia-
meter containing the load was used, so that only one-half of the plate had to be modelled.
The four successive refinements of finite element assemblages shown in Figure 6 were
used in the calculations. The finite element results for the displacement under the load
are given ip Table VI, along with the number of degrees of freedom used in each calcu-
lation. The exact solution is also presented in the Table. The radial and circumferen-
tial displacement: distributions obtained from the 4 X 24 grid of finite elements are plot-
ted in Figure 7 along with the exact ones.

Table VI shows that the displacement under the load does not converge mono-
tonically with refinement in finite element size. This is not surprising because the
finite elements aire not of the conforming type. However, the displacements shown in
Table VI are still. quite accurate and appear to be converging towards the exact value
as the element size becomes quite small. It should be noted that even though the dis-
placement under the load predicted by the 1 X 6 grid of elements was quite close io the
exact value, the circumferential displacement distribution away from the load was very
inaccurate. This is shown in Table VII, where numerical results are given for the dis-
placement of the free edge at various circumferential locations. These results serve
to illustrate the type of convergence obtained away from the point load. At 6 = 180°,
this convergence appears to be quite slow, but it may be noted that the displacement
there is six orders of magnitude smaller than under the load (0 = 0). In summary, it
appears that the annular sector finite elements work very well for the type of problem
considered here.

3.2 Point Load on Circular Plate

The next problem considered is that of the static, nonsymmetric deflection of
the complete circular plate shown in Figure 8. The plate is clamped around the outer
boundary (r = a) and is loaded by a single concentrated force P at r = b. The exact
solution for this problem is given by equation (197) on Page 293 of Referer.ce 3.

The modelling of this plate requires the use of both the annular and circular
sector finite elements developed herein. Symmetry about the diameter containing the
load is again used, so that only one-half of the plate is solved. The numerical calcula-
tions are carried nut for a = 1.0, b = 0.5, and v = 0.3, using the three finite




element assemblages shown in Figure 9.

The numerical results for the displacement under the load are presented in
Table VIiI, along with the numbers of degrees of freedom used in each calculation. The
displacements predicted for a few other positiong on the plate are given in Table IX.
Radizal and circumferential displacement distributions obtained from the 6 x 8 grid cal-
culations are shown in Figure 10. All these results exhibit a high accuracy, but unfor-
tunately the convergence is somewhat disappointing. For example, the 2x 4 and 4 X 6
grid predictions for the displacement under the load are only in error by about one per-
cent, and appear to be converging in that the 4 x 6 grid answer ie more accurate than
the 2 X 4 one. However, the € X 8 grid prediction is in error by about two percent, and
the sign of this error is different from that of the former ones. Since the results in the
previous Section, using the annular sector finite elements by themselves, appeared to
be well-behaved, it is suspected that the erratic convergence behaviour observed here
is probably caused by the circular sector finite elements. As pointed out in Section 2.1,
the trigonometric interpolation functions used in developing these elements changed
shape as the included angle 8 was changed. However, in the limit of very small in-
cluded angle, these functions approach a constant straight line shape. Hence, it is ex-
pected that this erratic convergence behaviour would disappear if the finite element as-
semblages were increasingly refined. In summary then, even though the convergence
is somewhat erratic, the numerical accuracy is still quite satisfactory for most appli-
cations.

3.3 Vibration of Circular Plates

The free vibrations of complete circular plates with clamped, simply sup-
ported, and free outer edges are now analyzed with the present finite elements. These
final applications serve to check out the consistent mass matrices for the elements.
The calculations are carried out for a plate radius of unity and Poisson's ratio equal to
0. 33, using the three finite slemsnt sssemblages shown in Figure 11. As indicated in
the Figure, the 3 x 12 grid soitition was separated into two sub-problems by using
symmetry about a diameter. This was done in order to keep the eigenvalue problems
to a manageable size.

The non-dimensional frequency predictions for the first few vibration modes
are presented ir Tables X, XI, and XII for the three problems. The exact solutions
are taken from Reference 5. It may be seen that, in some cases, two different eigen-
values were obtained for apparently the same vibration mode. Upon close inspection
of the predicted mode shapes it was found that the predicted frequencies depended on
whether or not the radial nodal lines fell between or along the finite element junctions.
For example, in the 2 % 8 grid predictions of Modes Seven, for the clamped and simply
supported plates, and Mode Five for the free plate, the nodal lines were along the ele-
ment junctions for the low eigenvalues and mid-way between them for the high ones.
The same trend was found to hold for the other non-repeated eigenvalues. This peculiar
effect may again be associated “with the circular sector finite elements and their special
interpolation functions. It may be noted that the differences between the non-repeating
eigenvalues appear to decrease as the modelling is refined, until the final predictions
are quite close to the exact values. Again, very little can be said about the particular
convergence of these calculatiors because the elements are not of the conforming type.
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4.0 CONCLUDING REMARKS

A finite element metnod for plate bending elements in polar co-ordinates has
been presentad. Two elements were developed - one in the form of a circular plate
sector and the other in the form ¢ an annular plate sector. The application of these
elements to several static and dyramic numerical examples indicated the accuracy to
be expected with the method.

These elements may he combined with rectangular eleinents for the analysis
of a variety of plate bending proble=is heretofore considered unsolvable.
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TABLE 1

STIFFNESS MATRIX [Kl]/l) FOR CIRCULAR SECTOR FINITE ELEMENT

ky
ke | Ky
s
},
Ky | ky | Ky o,
e
K k k k %,
5 6 7 8 o
K
kg | Kpo1 k| k2| ¥i3
kig | %5 | ¥16 | Frz 1 Kis | Fio
ke | ks | kg | koo | ka1 | Fa2 | Ke
0 | ks | Fn Koy | Kyy | Kpg jKp2 ki3

1% 14 16 22 24 25 17 18 19

where

2, 1% g _ v A ) T
B esc B - 3 cot 8; k2 = [ 3 BcotB] csc B3 Ry = T [cscB - cotﬂ]. k4 = " 23
0

P
]

k= -— (S*Mﬁz)ﬂcotﬁ*GBcscﬂ-lzz k = L |(6 + B2 g BcscB+66cotB-12]:
5 2 3 CR ® |
_ 9B _13(3tam, . 1, 1. o1 [ 2 al.
k7 - 4!' . ks = 140 B + 3 + SB' kg - 2[ 3 B + sﬂ (CSCB L3 2COt—B) 18 .
0 B r,b
. _ _6 _3l. I o, o 352]. _ 1 |6-43v _2 _ 33 ;2i
ko = T 32 ["(c“”’ * 2csch) 3]' kjp = 72 [2 v-3h g kTt [ 30 Z ~ 140 ]
rOB Ty 0 B
o2 fap .3 3wl . 2 . .
kg = 25 [703 r - g]. Ky = =3 {[18 + (3+0) 8 ]BcoLB + 188¢cscf - 36%.
r r.f8
0 0
R 2 0% VR 7 I I To & 1) K N 1 (1
kis = 3 %[‘8 * WV”’]M“B ' 18cot 36*' kg = 7 K77t 58 3 - 70 P
r B 2r 0
0 0
.- 1_[ﬁ32 L9 21-11»] _ l_[mﬂ L9 3(- )]. . 76y, 1 ]

S 3 |5 3 o J ; 7 - : 2 -3 T 58°
s 7Lzl . T 10 " T T 20 80 2 58
 afmoe 2 o 13w, .oafa s 20wl a3 .23, 3w
ko1 7 7= |2807 7 " o ] kgg ~ 2[ 3 " 7407 58 ] o3 * 2[3 - it 30"]'

0 B L B o
b {8 3952 3w o3 J2ak, 6, 23-v
koy ~ 2[2 140’ ] ] ka5 T T3 [70" 3 " 51]
ro H ro 8
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TARLE It

MASS MATRIX [Ml]/ph roz FOR CIRCULAR SECTOR FINITE ELEMENT

ky

k| &

ks | Ky | Ky &};’"’Q’
kg | ks [k | kg | % %,

o | ks | ko | g | Ky | By | K
Fr0 | Ko | Ky | ey | kgg | ko | Ky ki3

kis | Kag | Kig | Ko | kg | ks | Ky Kig | kg

where
2 2

k= ;2.7 (ﬁc.czp - cotﬁ): k, = ;locscﬁ (l - 3cotﬁ); k, = ;—g (cscB - cotﬂ); ky =
2

2
r

kg = :%o {sﬂcscﬂ + ﬂ(swz)cotp - 12]; ke = - % [Gﬂcotﬁ + (Gwz)BcscB _ 12]:

2
roB 13 Ty B r

E e e———- B eeee———— = - 0
k, 140° X3 = —5ggo— ¢ kg =

6082

[2B(cscﬁ + 2cotB) -6 + Bz];

2
r 2 1ir B 3
= B _ al. = 38, = o 0 = 27,
k1o 3022 [B (°°“9 + 2°‘°5) 3 Ky <5 kg = - —ggep ki3 = 735 ¢

r r

k, = - ﬁ [GBcscB . (64132)BcotB - 12]; kg = + 60‘;3 [Gﬁcolﬁ . (G*Bz)ﬂcscﬂ - 12];

2 2
T s LD T N S N
klc 280 * 17 980 °* 18 ~ 735 ° 19 ~ 245° 20 - 3920 °* 21 11760 °
or. p 3 2
Ky = - mol: ko= - B g o185 o
2 1360 23 490 24 1470 25 245
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TABLE

H

TRANSFORMATION MATRIX [T] BETWEEN CORNER DISPLACEMENTS AND
POLYNOMIAL COEFFICIENTS FOR ANNULAR SECTOR FINITE ELEMENT

0 1 0 0 2r1 0 0 0 3r 0 0 0
2 3
0 0 1 r1 0 0 r1 0 0 0 rl 0
1], ol o |22 ] 0] o 0 | r 0 0 0
1 1 1
0 1 0 0 2r2 0 0 0 3r 0 0 0
2 3
0 0 1 r2 0 0 r2 0 0 0 r2 0
1. (0] o [r2 | o 0 0 r 0 9 0
2 2 2
o]l 110 8 |o2r 0 |23r g2 | sr o | 3sr2| g%
2 2 2
-
2 2 3 2
0 0 1 r, 0 28 Iy 2Br2 0 3B r, 38 r,
2 2 2 2 3 3 3
1 r, B Br2 Ty B Brz B ry r, B Brz B r,
2 3
0 1 0 B 2r1 0 28 r1 B 3r 0 3B r12 B
2 2 3 2
0 0 1 ry 0 2B ry 2131‘1 0 3B ry 3 ry
2 2 2 2 3 3 3
1 ry B Br1 T B [3:'l B ry r B Brl B ry
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TABLE IV

STIFFNESS MATRIX [k]/D FOR ANNULAR >LCTOR

FINITE ELEMENT IN TERMS OF POLYNOMIAL COEFHICIENTS

o I
. i
' ;
° ° § : t '
b i .
:
oK o |x, N §
,
o |k 0 kg K, /3 . L
01(‘ 3
Ol (ks X0 | k| M 1, .
:
:
RIS PR L VRN I VY RSTIR IRT

O Dk kg | Py kg | Koz X 0 Kye | Koo
|
LTI ILYR I VRN VPR I PP B PPN B R LT L PN
O kg | 0 kg | Ry | kg | K kg | Rsr 1 Koo | Ky | Koo

T, - T, -
K - u-(;f} K = (x-na(r'—z - r—z): X - En'tn(%} K, - ;s’m(,—z): kg " 20M By -r) ko v (on8 (e -y
1 2

- r’
K - cums(rz’-rl’} Ky - 28 (% -;'2-): Xy - ax-ns"'(Lz - Lz) Ko - B (E - ;':) K, - 4(1‘-431.(5)».

k2

17

kn

B

L fy \!

, -
T,

1 2 2] 2 2 2 3 20 2
13(—; r_!) [l' s(l'ﬂﬂjz kig * (14087 (ry - 1,2 ke = - 2(1-'15'1-(:): g TS, ke ko e 2(10m 8 (l'z - rlz>.
A 2

2, (%2 2 A 2., .2, 1, fe. 2., (72 12f, 01,3\, (%2
irp h(q): Hs'2ﬂ\r2 -ri)[i(l-v)’ 5(1 ﬂ}]. k,,';ﬁ(‘ si)h(r—l' kzo';.‘l {'2 5! m =)

r.

2008 (z . %:’) (gt Ky, - 8 (4 . g,z) (% -,—’z-): Ky " 306 Dy Ky o8 (4 <347 _};5‘)::,('—’);
- 1

} a(% * ') ('zz "'lz)‘ Yo %G : ') & ("z2 - '12)‘ by - SUms (':::I : 'la)‘ Ky < SGUMBr o gy v 300 ST (":J . 'IJ)'

(%n)a (c .a’) (r,’-r,’); iy, - 2eana (r,‘-r,'): K, - 38 (% ;':) Ky, - u-ns’(r:—,- - ;:—,-); Ky - 28 (,';- - L)

)
“t

T, T - -
cu‘»a’h(,—:-} K, - :3’(%-4,-) [x . %n-ns’]; K - 2(1‘17‘)53!15(%): by - 357 (- ) (% -} x, - saemste, -

r r, 2
1 2

3 L] 2| 1), J3ft Y2 f 2 2 . Y 3/ 2 2\
25 [”x‘i“"”](r_z"r_z)' ka z(z ')‘ ("z -h ) ke 7 =408y - Ky (z")‘ RN
1 %2

2(3.,.9) . 2 ! Y AL DY [P 7], c3geanat (eo5?) (2202,
I(inn s (rz -Ty ). kyg ° (1001 8 (r:-r,)_ t“ £ (r2 f )[3 {11y ¢ IOOHJJ. koo 0 N3 (4 .!)(l'2 £ )
‘e LY and® : 3 sl - L B W A W
;(4‘46}(& L ) k" « 2(1etny 8 (rz-r,). kso - 2[;(5 ) 3 (l-ﬁ]’(t2 - ) kSl 2’ (‘ z.’)h(r}
3o 1at) (2 Lawmataze - S W R N A AY PP A Pt .
I 4 (1 . gﬁ)h('—). by szt 2 ’z) (rg - gk kgy = 33702 :1} (rl -'2)' keg = 2(1em s (2 38 )":"l"

. .
142 2. LY (2 FVLY EFTTPOUE Frevwpe if SE SRR e i) (L. 1)
;8 (u.u 3’)"(r‘} ko - 2 I.’" me 0 zna](r: 7 ) x, -6 (: s,«)(r : )

2 a8 e ) R PR+ I I WA P
jusma (z sﬁ)(r: r‘) X, .c(-z i ,;)h(r)

15
g

won ra e
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TABLE VI

DISPLACEMENT UNDER CONCENTRATED LOAD FOR

CLAMPED CIRCULAR PLATE

A ey

FINITE NUMBER OF DISPLACEMENT
ELEMENT DEGREES OF UNDER LOAD P,

GRIDS FREEDOM wD/P

2x4 18 0.0113155

4 X6 63 0.0112715

6 X8 133 0.0109738
EXACT SOLUTION 0. 0111906

TABLE IX

VARIOUS DISPLACEMENTS wD/P x 10° OF

CLAMPED CIRCULAR PLATE

FINITE ~ _
ELEMENT r=0 b < oo o - gég°
GRIDS
2 % 4 v. 5086 3. 6035 2. 3598
4%6 8. 1946 3. 6995 2.3434
6 % 8 8.1068 3. 7350 2. 5624
EXACT 8. 0259 3. 6927 2.3120

SOLUTION
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TABLE X

NON-DIMENSIONAL FREQUENCIES 4/ph/D wR?' FOR
CLAMPED CIRCULAR PLATE, R = 1.0

‘ FINITE ELEMENT GRIDS EXACT
MODES SOLUTIONS
1x4 2% 8 3 x 12
1. 10. 247 10. 223 10. 139 10. 24
N
2. @ 23. 664 20. 736 20. 973 21.25
33. 645
3. @ 32.919 23 011 34.8
4. @ 40. 249 39. 368 39.8
5, @ 50. 917 47. 418 51.0
6. @ 67. 583 60. 987 60. 8
66. 234 62. 335
1. % 111. 209 62. 341 69.7
80. 021
8. @ 107. 07 a1, 253 §4.6
9, @ 115. 15 88. 859 89. 1
I
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NON-DIMENSIONAL FREQUENCIES +/ph/D sz FOR
SIMPLY SUPPORTED CIRCULAR PLATE, R = 1.0

FINITE ELEMENT GRIDS

. EXACT
MODES SOLUTIONS
174 2 %8 3% 12
1. Q 4. 9865 4.9795 4. 9424 4. 97
2. @ 15.373 13. 649 13. 923 13. 91
/I\\ ap ne na oea 25. 294
3. T:D' 30.673 Z4. 814 25. 459 25.7
4. O 39. 655 30. 206 29. 425 29.7
i
5. ! 39. 553 38, 262 39.9
i
:
E
'
[~
6. @ 52. 920 48. 415 48.6
|
R i 49. 475 53. 525
f 111. 209 53. 528 36.9
. 67. 641 -
//_\
9. K@ 3 85. 780 74. 664 74.1
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TABLE XII

FREE CIRCULAR PLATE, R = 1.0
FINITE ELEMENT GRIDS EXACT
MODES SOLUTIONS
1% 4 2 x 8 3 x 12
5. 3349 5. 9071
i @ o 5. 9823 >-oom 5. 24
2. @ 9. 0941 9. 0818 8. 9795 5. 06 -
3. @ 25. 155 13.519 12. 982 12.25
4. @ 20. 916 20. 160 20. 243 20. 5
23. 597
5. % o 23. 016 21.5
34. 184
/
7. 23. 269 36. 014 35.5
8. @ 38. 721 38. 116 38. 4
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FIG.3:

ANGULAR CO-ORDINATE 6

TRIGONOMETRIC INTERPOLATION FUNCTIONS
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FIG 4: ANNULAR SECTOR FINITE ELEMENT
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FIG.5: POINT LOADED ANNULAR PLATE CONFIGURATION
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FiG.10: DISPLACEMENT DISTRIBUTIONS FOR CLAMPED
CIRCULAR PLATE UNDER POINT LOAD
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