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SUMMARY

Two finite elements for plate bending in
polar co-ordinates are derived. One element is in the
form of a circular sector and the other is in the form
of an annular sector. The former element hao nine
degrees of freedom, while the latter has twelve, the
degrees of freedom in each case being a displacement
and two slopes at each element corner.

The method is checked with several numer -
ical examples. The static deflections of an annular
plate and a complete circular plate, bcth loaded by
single concentrated forces, are analyzed and ti)e re-
sults compared with exact solutions. Calculations of
the free vibrations of complete circular plates are
also carried out and compared with exact solutions.
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FINITE PLATE BENDING ELEMENTS IN POLAR CO-ORDINATES

-. 0 INTRODUCTION

The finite element method of structural analysis is now firmly established as
a powerful technique for handling difficult problems in solid mechanics. Finite elements
have been developed in many shapes and for varied applications, the most numerous
being the rectangular and triangular plate elements for both bending and plane stress
configurations. A good review of the state of the art can be found in the text by
Zienkiewicz (Ref. 1), but even this book is becoming outdated by the rapidly advancing
field.

The simplest element shapes for plate problems are obviously a triangle and
rectangle with three and four nodes, respectively. Rectangular elements are somewhat
limited in their boundary shape applicability, whereas triangular elements may be used
to represent almost any shape of boundary. However, for problems with curved bound-
aries, this use of triangular elements means that the curved boundary is being approxi-
mated by a series of straight line segments. Further, with some of the more sophisti-
cated elements being developed today, the error introduced by this approximation may
well be the limiting factor in some solutions.

Hence, there appears to be a need for elements with curved boundaries. A
start in this direction has been made by Ergatoudis et al. in Reference 2, wherein quad-
rilateral plane stress elements with various curved sides are developed. It 'would be
useful to have this approach extended to bending applications as well. In particular,

there is a large class of problems involving circular arc boundaries that are difficult
to handle by ordinary analytical means. Problems commonly encountered in jet engines,
such as the vibrations of turbine discs and turning vanes, are but two examples.

In the present work, a method for handling such problems is considered. Two
plate bending finite elements are developed in polar co-ordinates, which may be joined
together in various combinations with rectangular elements to fit a large number of
boundary shapes. The first element has three nodal corners and is in the shape of a
segment of a circle. The second element has four nodal corners and is in the shape of
a segment of an annulus. The transverse displacement and two slopes are used as the
degrees of freedom at each element nodal corner. Displacement functions are derived
for each element, and the stiffness and mass matrices are obtained by substituting these
displacements into the strain and kinetic energy integrals from plate theory.

These elements are fully compatible with the well-known twelve degree of
freedom nonconforming rectangular plate elements (Ref. 1). That is, either of the
polar co-ordinate elements developed herein may be joined to one of these rectangular
elements by equating the displacement and edgewise slope degrees of freedom at the
ends of a common boundary. The transverse displacement will then be continuous
across such a junction, but the normal slope will, in general, not be continuous there.
This is consistent with the fact that these rectangular elements are nct conforming.
Hence, these polar co-ordinate elements, when combined with the rectangular elements,
provide a powerful method for handling a variety of plate bending problems encountered
:n practical applications.

FLi



In the present work, numerical calculations are carried out only %ith combi-
nations of the polar co-ordinate t..ements. The examples are chosen primarily as tests
of the elements. The static deflection of an annular plate and a complete circular plate,
both loaded by single concent:ated forces, are analyzed, and the results compared uith
exact solutions. Finally, calculations of the free vibrations of complete circular plates
with clamped, simply supported, and free boundaries are carried out.

2.0 THEORETICAL FORMULATION

The stiffness, mass, and load matrices for the finite element method are
most easily obtained from calculations of potential and kinetc energies. Once the dis-
placement functions for a particular finite el,,ment have been established, they may be
substituted directly into the potential and kinetic energy integrals.

For classical bending of isotropic plates, the potential energy for an element
in polar co-ordinates is given by (page 346, Ref. 3)

r 2 r 2Ar2 (DPr/a 2L 1. 222 2wa

A_ a2_ aw~ law-, 1

V 2 2O )
(1)

+ 2 (1-) la r0 r2- wq rdrd 0

where q is the external loading on the plate element, and D and v are the customary
flexural rigidity and Poisson's ratio, respectively.

The kinetic energy for an element in polar co-ordinates is simply
T=1 f0 r 2  Iew\2

T ph - r dr d& (2)2 A0 fr 1  t

where p is the material density and h the plate thickness. Making the usual assump-
tion of sinusoidal dependence on time yields

2 j3 r 2

T=- r2 ph w2 r dr aj (3)

where w is the frequency of oscillation.

The displacement tfucticrs for the two finite elements developed herein are
presented in Sections 2. 1 and 2. 2.

2. 1 Circular Sector Finite Element

The first finite element configuration to be cons!.iered is shown in Figure 1.
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The elemnent is a sector of a circular plate of radius r uith an in, :uded angle . The
corners are numbered I to 3, as shown. 0

tic It has become common practice in developing piate bending finite elements to
use at least the displacement and tio slopes as generalized co-ordinates at each corner
of the element. This ahous the displacement of the element to vary cubically alhtng any
edge. Hence, for the present configuration, this suggests the use of at least the follou -
ing nine generalized co-ordinates: -, Wrl, "! "±2' w0?, w2 , Wr3, w and w

r121l'91 ?1 r" 0 3
[%he'-e % r = a/ r, and %% 07/aG. The single number subscripts denote the corners

F of the element shown in Figure 1. ind wrij is the slope aw/3r at corner 1 in the direc-

tionofcornerj, for j 2 or 3.

FNou a displacement function for this element must be selectedI One simple
rapproach to deveirlpin- a suitable displacement function for this finite element configu-

ration appears to be through the use of irterpolation formulas. The merit of this ap-
?roach for developing rectanguiar finite elements has been clearly demonstrated in
Rzference 4. 1 he interpolation formrias used herein are some of the Herrrite polyno-
mials, and are

=1 (23 3. )

H0 1(x; a) - (2x3 -3axa 3
1 9

H0 2(x; a) = -- (3ax2-2x )
a (4)

H11(x; a) = +(x 3 -2ax -a x)

1 3,tl(x; a) = -- (x -aCx)
a

Note that the bracketed superscript 1 that usually accom.nies each it, .(x) has been
omitted for simplicity. Plots of these functions are shown in Figure 2. It may be ob-
served that the H ai.d H02 functions have unit value at x = 0 and x = a, respec-

f tively; zero value at x = a and x = 0, respectively; and zero slope at both x = 0
and x = a. On the other hand, the lii and H12 functions are zero at both x = 0 and

x = a, but have unit slope at x = 0 and x = a, respectively. Appropriate crmbina-
tions of these tunctions Pee then used with each generalized co-ordinate; for insiance,

Vfcr a rectangular plate (Ref. 4) the functions that accompany a typicai corner dispLaue-
ment are

ILw ! H01(x; a) HoI(y; b)

and with a typical slope are

Wx If (X: a) C0 1 (y: b)

For this circular sector element the displacement may be assumed in
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the form

w(r, 0) = Wrl2 H 11 (r; r 0) H0 1 (0; /3) + Wr1 3 H1 1(r; r 0 ) if02(0; /3) + w1 H0 1(r; r 0 )

+ .(5)

It may be seen that this form provides the proper dependence on the generalized co-
ordinates; for example, the first term provides an acceptable dependence on Wrl2 in

that H1 1 (0; r 0 ) = 0, d Hll/dr(0; r 0 ) = 1 and H 01(0; /3) = 1. However, upon closer

inspection, it is seen that the first two terms of expression (5) contain linear terms in
r, which represent an infinite bending moment at r = 0. This therefore precludes the
use of expression (5).

Since there is no way to avoid linear terms in r and still retain the slope
degrees of freedom at r = 0, different interpolation functions must be found for the 0
dependence. It is logical to use the trigonometric functions sin 0 and cos 0 in these
interpolation functions, since r sin 0 and r cos 0 are harmonic functions. Hence, the
following trigonometric functions are fcund to be satisfactory

1(0) = cos 0 - cot/3 sin 0

2 (0) = sin 0/sin /3

Typical plots of these two functions are shown in Figure 3 for a few values of the in-
cluded angle /3. It may be seen that (1 has unit value at 0 = 0 and is zero at 0 =/3,

while p2 is zero at 0 = 0 and has unit value at 0 = /3. Unfortunately, the slopes are,

in general, non-zero at either 0 = 0 or 0 = /3. These functions have the additional
disadvantage that their distributions between 0 = 0 and /3 are not independent of /3.
However, 't is very difficult to find any better functions that are still compatible with
the linear term in r. Consequently, the functions p1 and p2 are used in the present

derivation by assuming that wrl 2 and Wrl3 contribute to the element displacement in

the following way

w(r, 0) = [wr12 Vl(0) + Wrl3 2(0)1 H1 1 (r; r 0 ) + w, H0 1(r; r 0 ) ....... (7)

it may be noted that the form of equation (7) does represent well-behaved bending mo-
ments at r = 0.

One further aspect of the displacement expression (7) should be noted here.
Differentiating expression (7) with respect to 0 and setting 0 = 0, yields the circum-
ferential slope along the element edge 1 - 2. It may be seen that this slope depends on
Wr13, since, in general, 8v 2/80 is non-zero at 0 = 0. This means that the normal

slope along the element edge 1 - 2 is not independent of the displacements along the
element edge 1 - 3. Similarly, it may be seen that the normal slope along the edge
1 - 3 is not independent of the edge 1 - 2. This implies that the element will not be of
the conforming type, since the normal slopes will not be continuous along the radii be-
tween adjacent elements. However, it must be emphasized that this does not preclude
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the displacements being continuous between adjacent elements.

Finally, since the element cannot be conforming, it is suffici -nt to use the
nine generalized co-ordinates suggested earlier and to assume the elemnt displace-
ment in the form

w(r, 0) = w1 H0 1(r; r 0 ) + [wrl2 J1 (0) + Wrl3 'p2 (O)] Hll(r; r0 )

+ [wr2 H01(0; 3) 1 Wr3 H02(0; 0)] H12 (r; r0 )

+ [w 02 H11 (0, fl) + w03 H1 2 (0; fl)] H0 2 (r; r0 )

+ [w2 H0 1(0; /3) + w3 H0 2 (0; fi)] H0 2(r; r 0 ) (8)

Note that w is a cubic function of r throughout the element. Furthermore, along the
edge 1 - 2 (0 = 0), this cubic variation is uniquely defined by Wr12, wit Wr2 , and w2.

The analogous result also holds for the edge 1 - 3. Hence, the displacement will be
continuous along the common boundary between adjacent elements, provided their dis-
placements and slopes at r = 0 and r 0 are set equal on that boundary. It may also be

seen from equation (8) that along the circular edge 2 - 3 (r = r 0 ), w is a cubic function

of 0 and depends only on w02 , w2 , w03 , and w3 .

To find the stiffness matrix for e element, the displacement function given
by equation (8) is now substituted into the strain energy part of equation (1), and the
integration over the element is carried out. Note that for this circular sector finite
element, the integration over r is from r 1 = 0 to r 2 = r 0. This integration yields

the strain energy in the form

2 = 1 T [Kl] JX1  (9)

where X is the column vector

x : (wr 1 2 ' Wrl'l wit Wr2l w02 ' v2, wr3 ' w03, w3) (10)

and [K1] is the 9 x 9 stiffness matrix given in Table I. The mass matrix is found
in a similar manner by substituting equation (8) into equation (3). This yields the kinetic
energy in the form

2 Xd [Mill

where [M 1 ] is the 9 x 9 mass matrix given in Table II. The consistent load matrix for

the element may be obtained by evaluating the wq portion in the integral of equation (1).
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2.2 Anaular Sector Finite Element

The next finite element configuration to be considered is shown in Figure 4.
The element is a sector of an annular plate with inside radius rl, outside radius r2,

ard an included angle P. The corners are numbered 1 to 4 as shown.

A primary objective in the derivation of this element is to make it consistent
and compatible with the circular sector element of the previous Section. This will allow
the two kinds of elements to be put together for the solution of problems involving por-
tions of circular plates that include the centre of curvature. Therefore, It will be suf-
ficient to use the displacement and two slopes at each corner as the generalized co-
ordinates for the element. This will allow the displacement to be cubic in r along
edges 1 - 2 and 3 - 4, and cubic in 0 along the curved edges 1 - 4 and 2 - 3. Hence,
the displacement will be continuous between elements with -1 common boundary, provided
the corner displacements are made equal at the ends of that boundary, but the slope nor-
mal to that boundary will, in general, not be continuous across it. The displacement
vector for the annular sector finite element then becomes the twelve-term column vector

X2  = (wrl, w91 , w1, wr 2 , .... I wr 3, ... , wr 4 , ... ) (12)

where the subscripts 1 to 4 denote the corners of the element as shown in Figure 4.

The displacement function for this element is assumed in the form

w(r, 0) = a1 + a2r + a30 + a4rO + a5r2 + a62 + a7r20 + a8r2 + a9 r 3

+ al003 + a1 1r30 + a1 2 r03 (13)

It may be observed that this function is similar in form to that used for the well-known
twelve degree of freedom rectangular plate bending element (Ref. 1). In this case, the
r and 0 co-ordinates just replace the x and y cartesian co-ordinates, respectively,
used for the rectangular element.

The twelve corner displacements used in equation (12) may now be evaluated
from equation (13). Carrying this out leads to the matrix relation

I X2 [T]JAI (14)

where JAI is the column vector of polynomial coefficients

IAT = (al, a2 , a3 . . . . . . , a1 2 ) (15)

and [T] is the 12 x 12 transformation matrix given in Table II. In principle, this
transformation matrix may be inverted, and the polynomial coefficients ai may be de-

termined as functions of the corner displacements of equation (12). The ai may then

be substituted into equation (13), yielding the displacement function in terms of the
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corner displacements. However, carrying out this process and substituting the result-
ig displacement function into the energy integrals involves an amount of work that is
impractical.

An alternative approach, which requires much less effort, is to substitute
equation (13) directly into the energy integrals. Carrying out tbe integrations over the
element yields the strain energy in the form

and the kinetic energy in the form

2T ~AT i i (17)
• 2

where [k] and [m] are the 12 x 12 stiffness and mass matrices given in Tables IV
and V, respectively, and )AI is given in equation (15). Eliminating JAI from equa-
tions (16) and (17) by means of equation (14) yields

2 I'2 2 (18)

and 
1 K2 ] X

T =c X 2  (19)

3 where

[K2 ] = [T-1]T [k] [T-1] (20)

and

[M2 ] = [T1]T [in] IT' (21)

are the required 12 x 12 stiffness and mass matrices, respectively, for the element in
terms of the corner displacements. The calculations involved in equations (20) and (21)
are carried out on the computer to any desired accuracy. The consistent load matrix
for the element is found frcm the wq integral (see eq. (1)), first in terms of the
polynomial coefficient vector )Aj and then transformed for the corner displacement

vector )X2I by premultiplying by [T-]T.

3.0 NUMERICAL APPLICATIONS

The two finite elements developed in the previous Section are now used to
solve several numerical examples. These examples serve to indicate how well the
elements work in various types of applications. The problems considered are the

elmet



static, nonsymmetric deflections of an annular plate and a complete circular plate, both
loaded by point loads and the free vibrations of complete circular plates with simply
supported, clamped and free boundaries.

3. 1 Point Load on Annular Plate

The first problem considered is that of the static, nonsymmetric deflection
of the annular plate shown in Figure 5. The plate is clamped along the inner edge (r = b)
and loaded by a concentrated force at the outer boundary (r = a). This annular plate
configuration is chosen because it may be modelled with only the annular sector finite
elements, and hence provides a check of those elements alone. The concentrated load
is known to provide one of the severest tests of the finite element method. The problem
is also a convenient one to use here because it has an exact series solution. This series
solution, which is given on pages 290 - 292 of Reference 3, was programed, and the
exact displacement was calculated for comparison with the finite element solutions.

The finite element calculations were carried out for the particular case dis-
cussed in Reference 3: a = 1.5, b = 1. 0, and v = 0. 3. Symmetry about the dia-
meter containing the load was used, so that only one-half of the plate had to be modelled.
The four successive refinements of finite element assemblages shown in Figure 6 were
used in the cavulations. The finite element results for the displacement under the load
are given in Table VI, along with the number of degrees of freedom used in each calcu-
lation. The exact solution is also presented in the Table. The radial and circumferen-
tial displacemen: distributions obtained from the 4 x 24 grid of finite elements are plot-
ted in Figure 7 along with the exact ones.

Table VI shows that the displacement under the load does not converge mono-
tonically with refinement in finite element size. This is not surprising because the
finite elements are not of the conforming type. However, the displacements shown in
Table VI are still, quite accurate and appear to be converging towards the exact value
as the element size becomes quite small. It should be noted that even though the dis-
placement under the load predicted by the 1 x 6 grid of elements was quite close to the
exact value, the Circumferential displacement distribution away from the load was very
inaccurate. This is shown in Table VII, where numerical results are given for the dis-
placement of the free edge at various circumferential locations. These results serve
to illustrate the type of convergence obtained away from the point load. At 0 = 180,
this convergence appears to be quite slow, but it may be noted that the displacement
there is six orders of magnitude smaller than under the load (0 = 0). In summary, it
appears that the annular sector finite elements work very well for the type of problem
considered here.

3.2 Point Load on Circular Plate

The next problem considered is that of the static, nonsymmetric deflection of
the complete circular plate shown in Figure 8. The plate is clamped around the outer
boundary (r = a) and is loaded by a single concentrated force P at r = b. The exact
solution for this problem is given by equation (197) on Page 293 of Refererce 3.

The modelling of this plate requires the use of both the annular and circular
sector finite elements developed herein. Symmetry about the diameter containing the
load is again used, so that only one-half of the plate is solved. The numerical calcula-
tions are carried nut for a = 1. 0, b = 0. 5, and v = 0. 3, using the three finite
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element assemblages shown in Figure 9.

The numerical results for the displacement under the load are presented in
Table VIII, along with the numbers of degrees of freedom used in each calculation. The
displacements predicted for a few other positions on the plate are given in Table IX.
Radial and circumferential displacement distributions obtained from the 6 x 8 grid cal-
culations are shown in Figure 10. All these results exhibit a high accuracy, but unfor-
tunately the convergence is somewhat disappointing. For example, the 2 X 4 and 4 X 6
grid predictions for the displacement under the load are only in error by about one per-
cent, and appear to be converging in that the 4 X 6 grid answer is more accurate than
the 2 x 4 one. However, the 6 x 8 grid prediction is in error by about two percent, and
the sign of this error is different from that of the former ones. Since the results in the
previous Section, using the annular sector finite elements by themselves, appeared to
be well-behaved, it is suspected that the erratic convergence behaviour observed here
is probably caused by the circular sector finite elements. As pointed out in Section 2. 1,
the trigonometric interpolation functions used in developing these elements changed
shape as the included angle j3 was changed. However, in the limit of very small in-
cluded angle, these functions approach a constant straight line shape. Hence, it is ex-
pected that this erratic convergence behavviour would disappear if the finite element as-
semblages were increasingly refined. In summary then, even though the convergence
is somewhat erratic, the numerical accuracy is still quite satisfactory for most appli-
cations.

3. 3 Vibration of Circular Plates

The free vibrations of complete circular plates with clamped, simply sup-
ported, and free outer edges are now analyzed with the present finite elements. These
final applications serve to check out the consistent mass matrices for the elements.
The calculations are carried out for a plat e radius of unity and Poisson's ratio equal to
0. 33, using the three finite klem-t assemblages shown in Figure 11. As indicated in
the Figure, the 3 x 12 grid solution was separated into two sub-problems by using
symmetry about a diameter. This was done in order to keep the eigen'slue problems
to a manageable size.

The non-dimensional frequency predictions for the first few vibration modes
are prcsented in Tables X, XI, and XII for the three problems. The exact solutions
are taken from Reference 5. It may be seen that, in some cases, two different eigen-
values were obtained for apparently the same vibration mode. Upon close inspection
of the predicted mode shapes it was found that the predicted frequencies depended on
whether or not the radial nodal lines fell between or along the finite element junctions.
For example, in the 2 x 8 grid predictions of Modes Seven, for the clamped and simply
supported plates, and Mode Five for the free plate, the nodal lines were along the ele-
ment junctions for the low eigenvalues and mid-way between them for the high ones.
The same trend was found to hold for the other non-repeated eigenvalues. This peculiar
effect may again be associated with the circular sector finite elements and their special
interpolation functions. It may be noted that the differences between the non-repeating
eigenvalues appear to decrease as the modelling is refined, until the final predictions
are quite close to the exact values. Again, very little can be said about the particular
convergence of these calculatiors because the elements are not of the conforming type.
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4. 0 CONCLUDING REMARKS

A finite element method for plate bending elements in polar co-ordinates has
been presented. Two elements were developed - one in the form of a circular plate
sector and the other in the form c" an amular plate sector. The application of these
elements to several static and dynamic numerical examples indicated the accuracy to
be expected with the method.

These elements may be combined with rectangular elemients for the analysis
of a variety of plate bending proble.as heretofore considered unsolvable.
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TABLE I

STIFFNESS MATRIX [E1]/D FOR CIRCULAR SECTOR FINITE ELEMENT

k-I _

Ikt2  k 

t3  t3  t4  -it,,,

k k It k. k14

ik9 10 k1l k12 k13

k 14 I15 k 16 k 17 I18 k19; I -

k6  k 7  k20 21 2 8

II

k -k k t k 2 1

1  9 k 15 1  2 1 8  k12 92

-j I- It 1 ]- -- 1- - 18 kd

where

2 14-2 3 u2 [esef cot P]; k4

I  = csc2 f 3l2__ cot fl; It2  
= 1_. f cot A]csc f0; k3  

=  r 01 r02'

= _ -- -fl flcofl * flcscl - : = -- -f2 fcscfo + 6f0cotfl- 3

I t P6 k8 = kL  7  1 ; k9 I [ 2  + 6k 8 l 2 -1

k7 = 4r 0 ;10 r op 2 3 C8

[1 ]~ ~ Lk2 ,k2 .06_ - - l]

6 [1 (cot p - 2 csc 0) -3]; It - 2 " - 1 It F- 3 _ _ _ 3312
o ro0 2  r 0  2 4  12 r

Itk13 J r 0I2 o F5 14 r o38(,

-2] 3v 18 cot -36 ; k - 9 ; k1 _L 2 -13 2 '

k15 r r0 3 0 1632 0 "917 r 0 -13cot1j 1J

[r 1 i 2 
9 -

, 

17. 
19 

3(- 
1 

117 36v

kis r .0 12 - 1 cc 7 0= - 5 19 r L720 280- 13 50

- ~ ~ ~ ~ ~ ~ -[\6 6/3 12j 6 1 -3y -4 1c 3 11

S 8 14 2 1 k-3 5 3 2 9 2- 1413(s 3 2 13

0 "r" 0

[24 2 2~ 140 130 3]; r 2 [70 1 3 2 T_ k L4O 12 31 2,.J

0 r 13 0
12
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TABLE II

MASS MATRIX [M,]/ph r0 FOR CIRCULAR SECTOR FINITE ELEMENT

k2 k1k%

k3 k3 k4

k5i k6  k7  k8  "I <

k9  k0 kl k k

k14 k15 k16 k17 k18 k19

k6 k5  k7 k20 k21  "22 k8

-k1 0  -k9  -k11  -k2l k23  k2 4  -k12  k1 3

k15  k14  k16  k22 -k2 4  k2 5  k17  418 kl9

where

r 2 2
k(_ cac%- cotO); k cc) cot (0;k cotO) k,

2

k 5 9-t3cac 19 + 0 (6V2) cotp [6 12] 16=- [ cot p + (6+p2) p cscf-1]
2o80 ) co/ 12]; k 6  280 12]

k rOr 13 r02t r0
T40 = ~ 8 k 13019--22 [20 (cacO + 2 cot j) 588 9 p2~

602

2 r0 2
kl0  " [ (cot + 2cac$) 3]; k z 030,811 560= - 5880 13 735;

= 0 3 [6 coc + (6+02)pcot3 - 12]; k = ro [6pcot (6+2)pcsc - 12];
6oP

kI6  k 13rop 3 26_ 3r2 k 2S280 ; k17 =  
98o l8 = 735 : 1 9 

= 245; k20 3920 ; 2 1 = - 11760

Or2 p 32 130 2
1960' 2 490 24~ 1470 25 =245
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TABLE 11I

TRANSFORMATION MATRIX [T] BETWEEN CORNER DISPLACEMENTS AND

POLYNOMIAL COEFFICIENTS FOR ANNULAR SECTOR FINITE ELEMENT

0 1 010 2r 1  0 0 0 3r 1
2  0 0 0

2 3

S0 r1 0 0 r1  0 0 0 r1  0

r 0 0 r 0 0 0 0 0 0

0 1 0 0 2r 2 0 0 0 3r 2 2 0 0 0
2 2

0 1 0 0 2 0 0 0 0 0
0 r2 r22 0 2

1 r2  0 r2  0 0 r 2
3  0 0 0

0 1 0 p 2r 2  0 2or 2  p2 3r22  0 3tr2 2  13

0 0 1 r2 0 2p r r 2  0 3 2 r23 30 2 r 2

1 2  1 Or 2 r2  0 33 3 r

0I r 1 03 r 2 t 1322 r 1r2 032  1 33 1 Or

1 2 222 2 r2 r

0 1 0 1 2r 1  0 213r1  2 3 r1
2  0 313r1 2 3

0 0 r1 0 2 r1 23 r 1  0 3p 2  r1  33 2 rI

1 rt r 1 2 0 2 r.2 0 2 r r1 3 r 1 3 3 rl
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TAI3LE IV

SIItFNEIS, MATRIX Fk]/D FOR AN ULAR l.LCTOR

FI.ITE ELEMENT IN TERMS OF POLY.OMLAL COEFIICIL..%T

T -- T

0f I ' k 4i LI i -_
0 lk, * k°o k It !k24 Ii-

I I
0 It,± k .~ k~l 12 k, ,, L0 "k k k 27 k i 'Z k1o %l

ic..5R~):~.(-v5(-~.-i):~ . r.,n(~ k 1 - kU Its) 40 1iS(r 1 : k -(.5 -

-7 (.~~
2 .

1  c -z(j : k 
9  hi k4 -( i -.... L : k s  2z( . (-r): k lv i2 r)

: "2 3,5 i 
1  - - :2 4 I-.b 5

* 4,52 ~y ~ 232 ~a kI~1(.i ,.,9J It ~~~ zo 2

. .k k k k kl

52 _3
I 

S \ I

kL," *(-.$r-b(A- .2 2(-.] [i .~ (" l .2]r-r.,: k, - -,3-i5 ( k 2,,. (4. - (9 -$): ,2 - -

1(4 2 ~ (~.rt) 
(

S-(0k15 -r) 2 4 3 r 2 S .5j 1(4 4.'5 4.2 r

k, 4- 0(22 c 2 - r : k 2 t I~t9 r 1) S . 2s4h± n.j~Q'. 1 ) S

(;'1 2) Lrk. 1

1 , .,, 2  (. ,,.,,{,., $2; ,, .. , , . ,,(,2 ., ,k 2 (_,
3  

(,2, ,, srr,

"~~ ~ (,4)b ". - -(-l

,S, 3, (n, 42 -. 2(,) : k, . -, 2(, . .1 ,_,,,, -, 2., , . {, - ,, : ,o - '. 1 ) (9G-20 ., '1.,) (,. 32

-, "" 2"" ( 2 ") (-1-',2) -;,2) "4 (Zs'. )"( )
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TABLE VIII

DISPLACEMENT UNDER CONCENTRATED LOAD FOR

CLAMPED CIRCULAR PLATE

FINITE NUMBER OF DISPLACEMENT
ELEMENT DEGREES OF UNDER LOAD P,

GRIDS FREEDOM wD/P

2 x 4 1 18 0.0113155

4 x 6 63 0.0112715

6 x 8 133 0. 0109738

EXACT SOLUTION 0.0111906

TABLE IX

VARIOUS DISPLACEMENTS wD/P x 103 OF

CLAMPED CIRCULAR PLATE

FINITE r =0.5 r =0.5
ELEMENT r 0 0 90* 0 180*

GRIDS
I-

2 x 4 . 5086 3.6035 2.3598

4 x 6 8.1946 3.6995 2.3434

6 x 8 8. 1068 3.7350 2. 5624

EXACTSOLUT 8. 0259 3.6927 2. 3120SOLUTrION
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TABLE X

NON-DIMENSIONAL FREQUENCIES \pb/D wR 2 FOR

CLAMPED CIRCULAR PLATE, R = 1.0

MODES FINITE ELEMENT GRIDS EXACT

1x4 2x8 3x12 SOLUTIONS

. 10. 247 10. 223 10. 139 10.24

2. 23. 664 20. 736 20. 973 21.25

3. 32.919 33.645 34.823.911

4. @ 40.249 39.368 39.8

50.917 47.418 51.0

6. 67. 583 60. 987 60.8

7. 66.234 62.335 69.7
111.209 62.341

i 80. 021

8. 107.07 80.2 84.6. _/] {81.253

9 . 0@ 115.15 88. 859 89.1__ _ _ _ _ _ _ _I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.
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TABLE XI

NON-DIMENSIONAL FREQUENCIES /p-h/D W 2 FOR

SIMPLY SUPPORTED CIRCULAR PLATE, R = 1.0

FINIrFE ELEMENT GRIDS EXACT
MODES 1 y SOLUTIONS

1Y4 2X8 3x12

1?97 9 4.94244.v

2. 15.373 13.649 13. 923 13.91

30. 673 25. 294
3. 30.673 24.814 25. 459 25.7

I

4. ( 39. 655 30. 206 29. 425 29. 7

15. I 39. 553 38. 262 39. 9

6. 52. 920 48. 415 48.6

.49. 475 53. 525
111.209 53.528 56.9

8 78-1 67. 64168. 558 701

9. 85. 780 74. 664 74.1
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TABLE XH

NON-DIMENSIONAL FREQUENCIES \/p75 wR 2 FOR

FREE CIRCULAR PLATE, R = 1.0

FINITE ELEMENT GRIDS EXACT
MODES

1x 4 2x8 3x12 SOLUTIONS

1. 5. 3319 5.9835. 9071 5.24
9. 8543 5. 9405

2. Q 9. 0941 9.0818 8. 9795 9.06-

3. 25. 155 13. 519 12. 982 12.25

4. 20. 916 20. 160 20. 243 20. 5

5. ~~23. 597230615
25.565230615

~34. 184

6. 39. 919 34. 442 33. 1

7. 23. 269 36. 014 35.5

38.721 38.116 38.4
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FIG. I CIRCULAR SECTOR FINITE ELEMENT
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FIG. 2: POLYNOMIAL INTERPOLATION FUNCTIONS
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FIG. 3: TRIGONOMETRIC INTERPOLATION FUNCTIONS
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FIG 4: ANNULAR SECTOR FINITE ELEMENT
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FIG.5: POINT LOADED ANNULAR PLATE CONFIGURATION
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FIG.?: DISPLACEMENT DISTRIBUTIONS FOR CLAMPED-FREE
ANNULAR PLATE UNDER POINT LOAD
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FIG.9: FINITE ELEMENT ASSEMBLAGES FOR
ONE-HALF CIRCULAR PLATE
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FIG.IO: DISPLACEMENT DISTRIBUTIONS FOR CLAMPED
CIRCULAR PLATE UNDER POINT LOAD
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FIG.II: FINITE ELEMENT ASSEMBLAGES FOR
CIRCULAR PLATE VIBRATIONS


