
MM

ITY

Technirml Report 11

-J ON

SOmVAKE FOR INTIRAaiNO »EC
mm Mi i8ao coMPtmRS

»(•P»oduc»d b> HM

InlormjNon Spr.nflMd V. SUM

BEST
AVAILABLE COPY

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

 4

THE UNIVERSITY OF MICHIGAN

Technical Report 11

SPECIALKt-D SYSTEM SOFTWARE FOR INTERACTING
DEC POP 7 AND IBM 1800 COMPUTERS

R.F. Brender
D.R. Frantt
J.L. Foy, Jr.
T.W. Schunior

CONCOMP: Research in Conversational Use of Computers
F.H. .'estervelt, Project Director

ORA Project 07419

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DBPENSC

WASHINGTON. D.C.

CONTRACT NO. DA-49-083 - OSA-S0S0
ARPA ORDER NO. 71o

adainistered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

December 1968

ABSTRACT

A collection of programs written for interacting DEC PDP-7

and IBM 1800 is desoibed. These programs provide:

1. device support for interaction between 1800 and PDP-7,

2. a serial-by-character logical file system on the 1800

disk (2310) for use by both computers,

3. a file manipulation utility package,

4. a file-oriented text editor running on PDP-7 used for

preparing both PDP-7 and 1800 programs,

5. modifications to the assemblers of each computer to

read from the logical file system, and

6. a keyboard-oriented debugging package for the 1800.

A (temporary) single-character, full-duplex interface between

1800 and PDP-7 is also described.

iii

TABLE OH CONTENTS

ABSTRACT ,

LIST OF FIGURES

ill

ij

LIST OF TABLES

1. INTRODUCTION

PDP-7 SYSTEM COMPONENTS

2.1 LOCG Editor

2.1.1
2.1.2
2.1.3
2.1.4
2.1.S
2.1.6
2.1.7
2.1.8

Concatenating Commands
Control Characters in Text Mode....
Exception-handling
Switch Options
Summary of Editing Commands
Appendix A
Appendix B
Appendix C

Rules for Value of ".••
Special Characters....
Internal Organization.

:.2 ML-I

2.2.1 Disk Version
2.2.2 Counted Continue Command
2.2.3 System Information .,

2.3
2.4
2.S

Asseabler
An 1 ntcrrupt- Compatible DDT
Core Image Program and System Loaders

2.5.1 Usage
2.5.2 Commands
2.5.3 Format

Disk Loader
Bootstrap

2.5
2.5

3
4
5

3. 1800 LOGICAL FILE SYSTEM

3. 1
3.2
3.3

DEBUG
1800.

Disk File System: User's Guide
Disk File Utility Program: User's Guide..
PDP-7 Interrupt Service: "PDP7"

5(
S

S^
60

A KEYBOARD DEBUGGING PACKAGE FOR IBM

TABLE OF CONTENTS (cont'd)

Pace

4.1 Introduction 71
4.2 Arguments 72
4.3 Registers and Commands 73
4.4 Sample Session 77

5. DISK ASSEMBLER FOR IBM 1800 79

5.1 Reading Source Lines from Disk Using
IBM 1800 TSX Assembler 79

5.2 Literal Constants 79
5.3 The Format of Literal Constants 80
5.4 How to use CDISK, FDISK, and the

Modified Assembler 81

6. 1800-PDP-7 INTERFACE 89

6.1 The "Minor" 1800-PDP-7 Interface 89

BIBLIOGRAPHY 9 3

vii

LIST OF FIGURES

Figure Page

1 Normal Assembly Operation 84

2 Modified Assembly Operation 85

3 Operation of LITS within CDISK 86

4 Example of Literal Usage: Source Listing.... 87

5 Example of Literal Usage: Assembly
Listing 88

IX

I

< •

Table

1

2

3

LIST OF TABLES

Page

"P0P7" Commands and Services 68

"PDP7" Error Codes 70

DEBUG Registers and Commands 74

xi

SPECIALIZED SYSTEM SOFTWARE FOR INTERACTING
DEC POP-7 AND IBM 1800 COMPUTERS

R.F. Brender
D.R. Frantz
J.L. Foy, Jr.
T.W. Schunior

1. INTRODUCTION

Ihis is the second of three related reports describing

work performed by members of the Logic of Computers Group, a

research unit of the Department of Computer and Communication

Sciences at The University of Michigan.

The Logic of Computers Group computer facility consists

of two,small, general-purpose computers and related peripheral

equipment. It is intended to provide a vehicle for heuristic

investigation of problems involving large-scale simulations of

generalized adaptive systems, including a large class of bio-

logically oriented models.

This report documents those portions of the system soft-

ware lhat are largely or completely finished, and that ire not

likely to undergo further substantial development. It is in-

tended to:

1. serve as a progress and research report describing

the capabilities of the current software,

2. serve as a user's manual, and

3. provide enough system information to allow later users

to modify or maintain the system.

-1-

-2-

While these are system types of programs, their develop-

ment has been necessary to allow for further work. The LOCOSS

system for the PDP-7 and the 1800 file system are basic and

flexible tools. Descriptions of several other systems components

are included for completeness. The particular hardware configu-

ration is summarized at the end of this section.

In general, the TSX system provided by IBM is the basic

software nucleus for the 1800. LOCOSS is the basic software

nucleus on the PDP-7.

LOCOSS is the Logic of Computers Operating System for the

PDP-Seven. It was developed to provide a suitable run-time

environment in which to run application programs. It provides

buffered, overlapped, and essentially device-independent input/

output. A keyboard Command Interpreter provides a number of

real-time control services and simple debugging aids. Multi-

programming capabilities are an essential part of the system

organization and allow flexible organization of application

programs.

LOCOSS, in our estimation, provides unusually flexible

capabilities and r^rvices on a machine of this size, and re-

quires less than 2K (decimal) of core.

The availability of bulk storage on the 1800 disk via

the "minor" 1800-PDP7 interface (in use since April 1968)

made it feasible to provide system programs and, perhaps more im-

portantly, user source files, "on-line."

3-

To implement this, a disk file system was developed for

the 1800. This system provides variable-length, serial-by-

character data files to both 1800 and PDP-7 users. Both symbolic

and binary data are kept on-line in this manner. A keyboard

utility routine on the 1800 provides simple means to load,

dump, list, or copy from or to all 1800 I/O devices and the disk

files. Even the approximately tripled listing rate possible

with the 1050 printer (15 characters per second, hardware tabs)

has been very useful. The pace of program development accelerated

greatly as it became possible to be more and more disk-dependent.

It was necessary to provide a new text editor because modifica-

tion of the available one proved impossible. In addition to

taking advantage of the device-independent I/O of LOCOSS, the

editor provides a couple of string search and replacement com-

mands that are quite useful.

The PDP-7 Assembler was adapted to accept disk file input,

although it still punches object code on tape. DDT was made

available on-line, and may be loaded and called from LOCOSS.

A very powerful macro language, ML-1, was adapted to the disk

I/O and made a part of the system. Thus program creation, edit-

ing, assembly, debugging, and execution all take place on-line

under control of LOCOSS with a minimum of superfluous hard

copy generation.

To facilitate debugging of programs for the 1800, a simple

keyboard debugging program was devised. The 1800 assembler was

modified to read source files from the disk. This made it possible

.

to use ML-I to process 1800 source code. A symbolic Jiteral

preprocessor was built into the disk load phase preceding assembly,

adding an important capability to this basic assembler.

»•'hile the current interface is sufficiently fast for these

human-oriented tasks, it will not suffice for the kind of inter-

active processing desired for the problem-oriented system.

Therefore, the authors designed a high-speed, general-purpose

interface (described in a separate report*). It offers flex-

ibility and control substantially beyond current interfacing

practice as we know it. The general ideas employed in it should

be very useful in other multiple computer systems (as opposed

to multiple CPU systems with common memory). Implementation

of this interface should be completed by the end of 1968; more

complete reports on it will be issued later.

Brender, R. F., and Foy, J. L. Jr., Flexible High-Speed Inter-
face between IBM 1800 and DEC PDP-7 Computers. Technical
Report 12, Concomp Project, University of Michigan, Ann Arbor,
October 1968.

5-

PDP-7 System Summary

CPU

8K of 1.7S ysec core

18 bits/word

hardware interrupt

Teleprinter (33KSR)

10 char per second

Paper Tape Reader

8- channe 1

300 char per second

Paper Tape Punch

8- channel

63 char per second

Uataphone (201A)

synchronous

2000 bits per second

connected to switched network

CRT Display (Modified 338)

A display consisting of a DEC 338, less the PDP-8

portion of the 338, is interfaced to the PDP-7. This

is locally known as a 337 and is the prototype for

the DEC 339. The display operates asynchronously from

instruction files in the PDP-7 memory. It provides

point, increment, short vector, vector, and character

plotting modes, and is capable of branches and sub-

routining as well as conditional branches depending

on the state of user-control led switches.

-6-

laOQ Fystea Summary

CPU (1801C2)

16K of 2Msec core

16 bits/word • parity and storage protection

priority interrupt system (12 levels)

3 index registers

1- and 2-word instruction formats

4 data channels

Keyboard-Printer (1816)

15 char/sec

Card Read-Punch (1442)

Read 300 cards per minute

Punch 60 cards per minute

Disk (2310A1)

1 drive

movable head

interchangeable cartridges (2315)

512,000 words per cartridge

-«—r •***..****

2. PDP-7 SYSTEM COMPONENTS

2.1 LOCG Editor

This section describes a symbolic text editor written

for the Logic of Computers Group PDP-7. This implementation

assumed 8K core and EAE. It takes maximum advantage of a modi-

fied 338 display and the full-duplex teletype on the LOCG PDP-7,

but may be run completely from a standard teletype and PDP-7.

It is d.signed to run under the LOCOSS monitor.*

The LOCG editor is designed to provide simple and efficient

means to edit symbolic text. Text is organized into lines, which

are delimited by carriage returns, and pages, which consist of

a number of lines delimited by an end-of-page character. The

normal mode of operation is to read into core memory a page of

text, to make additions, deletions, insertions, or other changes,

and then to write the page out onto an appropriate device (for

example, paper tape). A command interpreter accepts user com-

mands and carries out the desired action by invoking appropriate

routines.

Every line has an implicit number associated with it which

is its position in the page. Any line may be referred to by

its line number, and a contiguous block of lines may be referred

to by its beginning and ending line numHers. Two special char-

acters may also be used to refer to lines: "/" always has the

• Frantz, D.R., Brender, R.F., and Foy, J.L. Jr., LOCOSS:
A Multiprogramming Monitor for the DEC PDP-7, Technical
Report 10, Concomp Project, University of Michigan, Ann
Arbor, October 1968.

-8-

value of the last "ine of a page; "." has the value of the

current line. The current line is defined to be the line most

recently referred to in any command. Lines nay also be identi-

fied relative to these values, for example "/-I" refers to the

next to the last line.

All input and output is accomplished with respect to four

logical input-output "ports": command source, command sink,

text source, and text sink. Any of several devices may be

optionally assigned to each of these ports. Thus the text

source, for example, may be the tape reader, disk, or dataphone

Assignment is controlled by the user with an appropriate com-

mand.

The command source is almost always assigned to the key-

board of the POP-7 teletype. All commands are taken from there

The command sink is the device on which the editor responds to

the user. This is normally assigned to the display. The text

to be edited is read from the text source, and the corrected

text is written on the text sink.

All functional descriptions of command actions are given

in terms of the port used rather than any particular device.

In this implementatbn, the teletype is also called the "master

device." Certain error conditions will have the effect of re-

establishing the master device as the command source allowing

the user to recover control.

Either text or commands may be entered from the command

source. A command such as Insert will, for example, cause the

editor to interpret the following lines as text for insertion

into the page. Thus the editor may be considered to be in one

of two "nodes": expecting a cummand or expecting text to

satisfy a previous conmand. When the editor is in command

mode, it signals its readiness to accept a command by issuing

an "*" character to the command sink. When text is expected, no

prompting character is given. The user may leave text mode by

typing an EOT character. EOT is the normal means for terminat-

ing additions, insertions, changes, etc.

The general organization of the command structure is

similar to that used in the DEC Symbolic Editor. However, the

generalized input/output capabilities, more flexible command

structure, and the addition of several powerful commands add

immensely to the utility of this editor. See the DEC Editor

write-up for extensive examples.

The command syntax is as follows:

(where { } indicates an option

[] indicates alternatives)

<ARG>{.<ARG>)<CMD>{SPACE<ARG>}

SPACE

or

CR

For example, "8PAG" or ".♦2,/L" or "A" are valid commands

10-

An <ARG> has the following syntax:

<ARG>

<VALUE>

<0P>

<NUMBER>

<DIGIT>

- <VALUE> | <ARG> <0P> <VALUE>

- • | / |<NUMBER>

• ♦ I ■

■ <DIGIT> | <NUMBER> <0IGIT>

- 0|1|2|3|4|5|6|7|8|9

A <CHD> consists of one, two, or three letters. A sequence

of commands may be placed on one line separated by spaces. Any

error in processing any command will terminate the entire line.

Many commands nay optionally apply to all of the current

page, a single line of the current page, or to a given sequence

or block of lines of the current page. Other commands may be

used in only one or two of these three cases. If one of these

commands is given without any arguments, then the whole page

is assumed as the domain of the command. If a single argument

precedes the command, then only that line is the domain of the

command. If two arguments are given, then the block of lines

is the domain of the command. For example, "L" will cause the

entire page to be listed on the command sink, "3L" will cause

the third line only to be listed on the command sink, and

"1,6L" will cause the first six lines of the page to be listed.

The commands whose arguments are interpreted in this way are

described in Appendix A. Appendix B describes the commands for

which interpretation of the arguments is different. Appendix C

describes those commands that require a third argument.

-11

2.1.1 Concatenating Commands

Because commands can be terminated by a SPACE, more than

one command can be placed on a line. These are read and per-

formed in order. For example

•2CPY SPACE 1SKP SPACE 3 CPY SPACE EOF CR

would cause the entire sequence of commands to be performed

before prompting for the next command input. An error on any

command, however, will terminate the entire line and prompt for

a new command.

2.1.2 Control Characters in Text Mode

Any of the following characters will cause the editor to

terminate a line and return to command mode when encountered

during adding text to the buffer: EOT(204), EOP(214), EOF(023

or 223). Normally only EOT is used from the keyboard for this

purpose.

EOT will return the editor to command mode and terminate

the current line, i_f any, with a C_R. Hence the following se-

quence of commands is equivalent.

*A

THIS IS ADDED TEXT CR

EOT CR

and

-12-

THIS IS ADDED TEXT EOT CR

A blank line will not be formed by line three of the first

example.

In view of the section on concatenating commands, the above

can also be performed by:

•A SPACE THIS IS ADDED TEXT EOT CR

One additional control character will be recognized in

text mode. This is WRU (Control E). It is intended primarily

for preparing tapes on an off-line teletype, but will function

exactly the same on-line. WRU means delete this entire line up

to this character and replace it with the following text. If

CR follows, then it is also deleted. Otherwise the next char-

acter begins a normal line. When a tape containing WRUs is

read by the editor, via "R", the indicated lines will be auto-

matically deleted.

2.1.3 Exception-handling

A number of events will cause termination or modification

of the currently executing command. The simplest of these are

the command errors, i.e., mistakes by the user in giving a

command to the editor. The editor responds with a question mark

to the command sink, a bell to the master sink (teletype), clears

the command line, and asks for a new command. For example.

-13-

arguments out of range, illegal command characters, or an in-

correct number of arguments will get this response. In general,

nothing will have been changed as a result of the error.

End-of-physical-record indications may be encountered

when reading the text source. The effect is to terminate the

current (possibly partial) line in normal fashion, give an error

comment, terminate the read, and return to command mode. Further

stacked commands will not be processed.

When the core buffer is nearly full, the editor will

terminate any command seeking to add to the buffer, e.g.,

R, I, A, S, with the comment CORE ALMOST FULL, and return to

command mode. The buffer may still be added to until it is

physically full. After that, any command adding to the buffer

is treated as a command error. About 100 (decimal) characters

may be added to the buffer after the initial warning is given

Note that this warning allows one line to be added, then

terminates the command. The message CORE FULL indicates that

nothing was added to the buffer.

2.1.4 Switch Options

Switch 0 may be used to halt output operations after they

are already in progress. Putting switch 0 up internally forces

a command error condition and returns the editor to command

mode. Because of buffered I/O, output may not stop immediately

In this case, the user should wait for the prompting character,

put switch 0 down, and resume.

-14.

As a more extreme measure, the user can do a hardware STOP

and start over; before restarting, he should raise switch 2.

This will prevent the editor from killing the buffer when

initializing.

2.1.5 Summary of Editing Commands

Group 1^.

This group of commands includes most of the text manipula-

tion commands. They all interpret the arguments given (if

any) as specifying the domain of the command.

Command Acronym A rguments

A Append 0

B Back-up 0

c Change 1.2

D

I

IB

L

W

NK

WKR

Delete

Insert

I_nsert Before

List

Write

Write and Kill

Write, Kill,
and ReacT

1.2

1

0.1.2

0,1.2

Effect

Insert text from command
source at the end of the
page .

List previous line. Equiv-
alent to ".-IL".

Delete the given line(s)
and replace with the follow-
ing text from the command
source.

Delete the given line(s).

Insert the text that fol-
lows after the given line.

Insert the text that fol-
lows before the given
line.

List given lines on command
sink.

Write the given lines on the
text sink. If no arguments
are given, then an end-of-
page character automatical-
ly follows the last line.

Write entire buffer followed
by end-of-page, then kill
buffer.

WK followed by reading next
text page from text source.

-15-

Group 2_

For these commands the argument, if present, is interpreted

as a function of the command.

Command Acronym Arguments

CDS Clear Display 0 Clear

CPY Co£Z 0 Copy
sourc
if co

CPY Co El 1 Copy
pages
text
buffe

E Evaluate 1 Print
argum
sink.
" ." 0

EOP End-of-Page 0 Write
acter

EOF

K

N

PAG

PAG

End-of-File

Kill

Next

Next

Page Copy

Page Copy

0

0

Effect

the display.

one page from text
e to text sink. Error
re buffer not empty.

the given number of
from text source to

sink. Error if core
r not empty.

the value of the
ent on the command

Commonly used with
r '7".
an end-of-page char-
on the text sink.

Write an end-of-file char-
acter on the text sink.
Should be used preceding
physical end of paper tape.

Empty entire buffer.

List next line. Equivalent
to ".+11".

List next given number of
lines. Equivalent to
".+1,.+<ARG>L".

List the current core buf-
fer on master device in
page form, i.e., with suf-
ficient extra blank lines
to occupy physically 11
inches on teleprinter.
Error if buffer empty.

List the given number of
pages from the text source
on master device in page
form. Error if current
buffer not empty.

16-

Group £ (continued)

Command Acronym

Read

R

RCL

SKP

SKP

Read

Reader Clear

Ski£

Ski£

Arguments Effect

0 Read one page from text
source and add to end of
buffer.

1 Read given number of lines
from text source and add to
end of buffer. Will be
terminated by an end-of-
page or end-of-file char-
acter efen if count is not
satisfied.

0 Stop high-speed reader and
clear reader buffer.

0 Skip one page of text from
text source. Current buf-
fer not affected.

1 Skip given number of pages
from text source.

Group jJ.

The reamining commands need some elaboration. Most require

a "third" argument which follows the command. This argument is

always separated from the command by exactly one space.

Command Acronym Argument

DOC Document 1

This command is designed to assist in adding documentation-

comments—to already existing assembly language code. The argu-

ment specifies an initial line in the buffer. That line is

printed on the command sink, then the user indicates what ac-

tion is to be taken. A carriage return indicates to leave the

line as is and go on to the next line. Any text before the

carriage return will be appended to the end of the line. Then

17.

the next line will be listed, and so on. This mode may be

terminated by EOT as usual.

WRU may be used in this mode to replace an entire line.

For example, after the line is listed, enter: WRU NEW TEXT LINE

CH. Be careful in using the WRU in this manner. Note that:

WRU CR

NEW TEXT LINE CR

will have the same effect as WRU NEW TEXT LINE CR, i.e., the

editor will expect a replacement line to follow after the WRU CR

pair.

WRU CR CR will replace the deleted line with a blank line.

Also note that WRU EOT CR or WRU CR EOT CR will result in a null

replacement line (i.e., the line being deleted and termination

of the DOC command).

Command Acronym Arguments

M Move 1,2*1

Move the lines given by the first arguments and insert

them after the last argument. 8,10M 15 would insert line« 8

to 10 inclusive after 15. The syntax of the third argument

is the same as for the first two. The editor responds by list-

ing two lines beginning at the third argument.

Command Acronym Arguments

F Find 0,1,2+1

18-

The third argument has the form -delimiter- -string-

<delimiter>. The delimiter- can be any character except a

carriage return. The <string> is any sequence of characters

except carriage return or the delimiter. For example, /A

STRING '/ would indicate a text string of ten characters.

With no initial arguments, the core buffer is scanned

for the first occurrence of the given string. When found, the

containing line is listed en the command sink. The value of

"." is set to that line. If the scan fails, the value of

"." is unchaiged. With one initial argum.nt, the scan begins

at the given line and proceeds to the end of the buffer. With

two initial arguments, the indicated block is scanned. (Note

that a pattern cannot extend across two lines.)

Command Acronym Arguments

CF Continue Find 0

This command allows the user to search for successive

occurrences of a string. When issued after a Find command,

the scan is resumed after the last line successfully matched

and loo\s for the same string as previously given in the Find.

Any commands except the S command may be interposed between

an F and CF or between two CF commands without destroying

the memory of the desired string.

The CF command will search to the end of the page if

no successful match occurs. If a match occurs, action is the

same as for the F command.

—

-19-

Command Acronym Arguments

S Substitute 0,1,2*1

The third argument has the form <delimiter> <string>

<deliiniter> <string> <delimiter>. With no arguments, the en-

tire buffer is searched for an occurrence of the first string.

Where found it is replaced by the second string. Only the

first occurrence in a line is replaced. The line numbers of

all modified lines are listed on the command sink. With one

argument, only the given line is scanned. With two initial

arguments, the given block is scanned. The dot has the value

of the last line modified. If no line is changed, the value

of dot is unaffected.

Command Acronym Arguments

DIO Define UO 0*1

This command allows the user to assign a device to an

editor port. The argument has this syntax: (Note that these

commands must end with a CR.)

<ARG,>

<DEV.SUBCMD>

<PORT>

<DEV1CE>

■ <DEV.SUBCOM> CR

■ <P0RT> « <DEVICE>

« CSC|CSK|TSC|TSK

- TTYITAPIDSKIDPH

TTY refers to the keyboard when used on a source and to the

teleprinter when used as a sink. TAP refers to the tape reader

20-

when used as a source and the ta; ■ punch when used as a sink.

For example, to assign the display to the command sink, enter

"DIO CSK - DSP."

At present the allowable assignments are the following:

Command Source

Command Sink

Text Source

Text Sink

CSC ■ TTY or TAP

CSK - DSP or TTY

TSC « DSK or TTY or TAP or DPH

TSK » DSK or TTY or TAP or DSK or DPH

The underlin ' device is the device initially assigned

when the editor is loaded. (Note that when the display is the

command sink the teletype should be full duplex.)

Command Acronym

OPI 0£en Hiput File

OPO 0£en Output File

CLI Close Hiput File

CLO C^ose Output File

CRE Create a File

DES Destroy a File

CLR Clear and Reset

Arguments

0*1

0*1

0

0

0*1

0*1

0

This group of commands is concerned with manipulating

the 1800 disk file system. Several of the commands require

a following argument which is a decimal logical file number.

Error or failure conditions are reported by the comment "DISK

NAK •" where • is the error code. Consult Section 3.3,

PDP-7 Interrupt Service: "PDP7," for details.

APPENDIX A

RULES FOR VALUE OF

APPENDIX A

RULES FOR VALUE OF

Operation

Successful Search (£ of S)

Unsuccessful Search

insertion

Deletion

list or Write

Move

Resultin£ \alue of Dot

(Last) line found.

Unchanged.

Last line inserted.

Line preceding first deleted line

Last line listed or written.

First line of inserted block.

•

23-

APPENDIX B

SPECIAL CHARACTERS

APPENDIX B

SPECIAL CHARACTERS

The following characters are interpreted by the Editor

in special ways. None of these characters may be entered into

the buffer.

Name Octal Code

EOF 223.023

EOP 214

EOT 204

WRU 205

LF 212

NULL 000

RUBOUT 377

Function

End-of-record mark.

End-of-page. Separate parts of text.

End-of-text. Terminates text entry.

Line delete. Deletes line currently being

entered.

Ignored.

Ignored.

Ignored.

-27-

APPENDIX C

INTERNAL ORGANIZATION

APPENDIX C

INTERNAL ORGANIZATION

LOGIC EDITOR: SYSTEMS INFORMATION

The basic data structure used in the editor is a simple

linked list of variab le-length blocks. Each block represents

one line of text and is terminated by a carriage return (octal

215). The position of that line on the list is the number used

when referring to a particular line. The first word of a line

block is a pointer to the first word of the next line block.

The last line block has a pointer of zero. Each line is stored

two characters per word (8 bits per character) right-justified

in a computer word with the left (high-order) character logical-

ly the predecessor of the right character. Note that the

terminating carriage return may occur in either character posi-

tion.

^ 1
A a
L i

N E

CR 9

>
^ r

A NT

0 T

H E

R CR

FIRST

If more, to next
line else, 0.

31-

32-

Several variables provide all the needed information to ac-

cess and modify this structure. FIRST is a pointer to the first

line in the buffer. THISN is the number of the current line

in the buffer and corresponds with the dot "." used in referring

to lines. LASTN is the number of lines in the buffer (and hence

the number of the last line) and corresponds with the slash "/" •

Free storage is acquired sequentially upward in core. The

next available location is BUFNXT. The limits of the buffer are

given by BUFBEG and BUFEND. The variable BUFALF gives the point

at which the BUFFER ALMOST FULL message is given. Lines are

deleted simply by removing them from the link sequence. No at-

tempt is made to recover or keep track of the storage thus re-

leased. Core is recovered only by the Kill command which resets

all pointers to correspond to an empty buffer with free storage

beginning at BUFBEG.

All commands are one, two, or three characters possibly

preceded by zero, one, or two parameters. The command proces-

sor collects the parameters and commands and then searches for

the name in the command dispatch table. This table is a four-

entry table whose first entry is the command code in six-bit

trimmed ASCII left-justified with up to three characters in the

word. The remaining entries are the routines to be called to

process the command if given with zero, one, or two arguments re-

spectively. The decision of which routine to call is made by

the command interpreter.

If arguments are given, they are stored in locations ARG1

and ARG2. If ARG2 or both ARG1 and ARG2 are missing then they

mmmmmmmmmmH*

-33-

have the value minus one. The interpreter also checks that

(where appropriate) arguments are within legal ranges, i.e.,

correyond to lines within the buffer.

Where a given combination of arguments is illegal, the

command table has a call to the routine CER (command error)

which informs the user that he has goofed.

Commands which involve an argument following the command

name perform their own analysis of the argument, including

checking that it is separated from the command by a space and

not a carriage return.

The variable CERSAV controls whether the command processor

will prompt the user for a new command. Basically it contains

the character that terminated the last command. If that was a

CR, then a prompt is given and a new input line is sought

from the user. Otherwise more input is available and no prompt

is given, (Prompting is controlled by the editor rather than by

the system, because the prompt must be given on the command

sink rather than always on the teleprinter.) Routines with

third arguments are responsible for maintaining the correct con-

tents of this variable.

The heart of the editor is a rather involved pair of

routines called INS (insert a line) and PACK (accumulate a line

in packed form). These are governed by several parameters which

must be established before the routines are called:

34-

SC - the routine to call which will return the next char-

acter to enter the line. This may be an external

device-support routine or an internal character-mani-

pulation routine.

ARG1 - The new line will be inserted after this line.

TERM - The address of a routine which will detect when the

insertion process is to terminate. The occurrence

of one of a number of special characters or of a given

number of carriage returns are two conditions currently

used. When the condition is detected, the variable

TFLAG is set non-zero. This word is tested at various

points to determine the course of action.

The PACK routine is called by INS and will return only wfen it

has accumulated a full line and/or has detected a termination

condition. The new line is linked into the rest of the structure

only after the return to INS, thus minimizing the possibility

that hardware or user faults will destroy the integrity of the

current buffer load. The PACK routine also protects the integrity

of the buffer by converting all terminating characters to a car-

riage return which is what is actually stored in the buffer. This

is the reason a text line may be terminated by EOT from the key-

board, for example. An exception to this is the case where the

terminating character is the first character of a line, in which

case no line is entered into the buffer.

Before returning a complete line to the INS routine, PACK

tests whether the value of BUFALF has been exceeded. If so,

it prints the message BUFFER ALMOST FULL, sets the termination

flag, and returns to INS. On e-ich pair of characters entered.

35-

I'ACK checks to see if BUFLNÜ has been exceeded. If so, it

types the message BUFFER FULL, stops accumulating the line, sets

the termination flag, and returns to INS as though no line had

been received at all. A message is also printed when an end-of-

file terminates the input, and the counters used in counted reads

are also reset so that no more input will be sought by higher-

level calling routines.

The WRU conventions arc also implemented in this routine.

When a KRU is encountered, the PACK routine returns to its own

start and begins to accumulate a new line all over again as though

it were just called.

All input/output is handled through the four locations: CSC

(command source), CSK (command sink), TSC (text source), and TSK

(text sink). The routines to use are stored in these locations,

and all parts of the editor use the appropriate port. Special

properties of the devices are handled by the device supoort

routines called via these ports.

36-

2.2 ML-I

2.2.1 Disk Version

A version of Macro Language I by P.J. Brown of the University

of Cambridge is now available on the 1800 disk. Modifications

have been made to allow it to read and/or write from disk files

in addition to paper tape input-output. All input and output

is assumed to be in ASCII; that is, translation to and from Titan

Flexowriter code has been deleted. Several additional commands

have been added to allow user-control of the needed disk files.

ML-I is loaded in normal fashion by LOCOSS.* ML-I overlays

all of LOCOSS and runs as a separate and independent system. When

finished, the user types QT (quit), and ML-I will automatically

rdoad LOCOSS.

The following commands have been deleted from the disk ver-

sion of ML-I: IA, IF, OA, OF, and FP. (The last, while recognized,

is now equivalent to FL.)

The following commands have been added. The symbol "#"

is used to represent a decimal disk-file number.

1. IR - Input Reader. Input is from the tape reader

in ASCII.

2. ID# - Input Disk. The specified disk file is opened

and used as the input source.

* Frantz, D.R., Brender, R.F., and Foy, J.L. Jr., LOCOSS:
A Multiprogramming Monitor for the DEC PDP-7, Technical
Report 10, Concomp Project, University of Michigan, Ann
Arbor, October 1968.

37-

3. IDC - Input Disk at Current file. After a disk file

is opened and partially read, the input may be

switched to the tape reader without affecting

the disk. Input may be restored to the "cur-

rent" file by IDC, which simply causes the next

input to be sought from the disk.

4. ICL - Input Close. Close the current disk input file.

5. OP - Output Punch. Output is to the tape punch in

ASCII.

6. ODH - Output Disk. The designated disk file is opened

for output.

7. ODC - Output Disk at Current file. As with IDC, out-

put may be switched away (or off via ON, Out-

put None) and back without affecting the disk.

8. OCL - Output Close. Close the current disk output

file. It is important to do this lest a part

of the output be lost!

9. QT - Quit. Quit and reload LOCOSS.

The remaining commands, in pnrticular S, T, ON, and CK, have

their previous effects.

Errors in using the disk routines are reported by the com-

ment "NK#" where # is the error code in decimal. An end-of-

file is treated as a normal stop code and a translation error

(between ASCII and EBCDIC) is reported, but the process con-

tinues. Other errors during reading or writing disk files are

considered cause to abort a process.

-38.

2.2.2 Counted Continue Command

The two commands "CN" and "CT" have been augmented to

provide for an optional count to follow the command. The ef-

fect of this count is to allow a given number of text pages to

be processed before ML-I requests a new command. The syntax is

"CT" or "CN" optionally followed by a decimal count followed by

a carriage return. If the count is absent, a count of 1 will be

assumed. The carriage return is necessary in either case. An

invalid command or count will invoke a complaint, efter which a

new command will be sought.

The "T" (title) option applies only to the first page pro-

cessed. Additional pages are treated like the CN command ex-

cept that the first line is not typed out. The stop message at

the end of each page is still given, though in shortened form.

Most errors will revoke the count and allow the user to

take corrective action,if possible.

2.2.3 Systems Information

This section describes the procedure by which the disk

version may be generated. Because ML-I is a system which over-

laps and is independent of LOCOSS, the facilities of LOCOSS

are not available for generating ML-I. The following steps

should be followed carefully.

ML-I as received from P.J. Brown consists of eleven tapes

identified as Part 1, Tapes 1 through 5, and Part 2, Tapes 1

through 6, all dated May 1967. These may be assembled using

Brown's directions to produce the standard version of ML-I.

39-

The disk version consists of nine tapes identified as Part

1, Tapes 1 through 3, and the same Part 2 tapes as above. The

modifications are all in Part 1.

The instructions to the user are as follows: Assemble the

tapes together with the DEC assembler. Suppress punching of

DDT symbols since the tape is unwieldy with them, and both the

symbols and ML-I do not fit in core with DDT anyway. Load the

tape into core with the LOAD$ command of DDT. Take the address

of first free core typed out by DDT and add at least 14R to it.

Use this value to replace the two occurrences of STSTAK which

may be located by the WORD$ command with 12000 as parameter.

Larger values of STSTAK may be used if core space is needed to

enter patches with DDT.

Next enter the high core version of the loader (with self-

contained disk routines) into the PDP-7 via hardware read-in

beginning at 17600. What is now in core is a complete version

of ML-I together with a section for punching itself out after

the manner of the standard ML-I.

ML-I will write itself out either to paper tape or direct-

ly onto the 1800 disk. The code for doing this is located at

about 13000 and is not located in the regions that are written
o

out. The transfer to these routines is modified before writing

so that no attempt can be made to execute this code from the

version of ML-I that is written. In short, the FP command be-

comes identical to the FL command.

-40-

ML-I writes itself in PDP-9 absolute binary tape format

as described in the PDP-9 literature. This is the standard

format for all LOCOSS system binary object files. No loader is

provided on the written output, and none is needed on the disk.

Start ML-I at 22 . Type the command FO. If the output is

to be written on the disk, then open the appropriate disk file

with the OD# command. (Note that while the 00* command opens a

file with translation on, the self-punching routines will close

and reopen that file without translation. The file will be

closed when finished.) Next enter the command PP. That's all

there is to it. It should go without a hitch.

Note that the writing takes place with interrupts off, and

hence the message FREE STORAGE...will be suspended at about the

third or fourth character until the operation finishes. Disk

errors cause a halt. Take action as appropriate.

QT will invoke LOCOSS, and attempted loading of the just-

created file will quickly test if the operation succeeded.

The input-output options are controlled by four words as

follows :

IDISK - number of currently open input disk file. Zero

indicates no file is open. IDISK is set by ID#

and ICL commands, and also by end-of-file condi-

tion on disk read.

ODISK - number of currently open output disk file. Zero

indicates no file is open. ODISK is set by 0D#

and OCL commands.

41

DRSW - Disk-Reader Switch. Zero indicates input comes

from the reader, while nonzero indicates input

from the disk, DRSW is set by ID#, IR, and IDC.

DPSW - Disk-Punch Switch. Zero indicates output is to

punch, and nonzero indicates to disk. DRSW is

set by OD#, OP, and ODC commands.

The convention on character disk files is that carriage

returns are retained while linefeeds are suppressed. ML-I on

the other hand suppresses carriage return and recognizes and

generates line feeds. Hence the device support routines DSKGT

(input) and DSKPT (output) convert from one of these conventions

to the other.

ML-I uses the disk routines from high core that are part

of the loading routine. The top of ML-I free storage is thus

determined by the bottom limit of those routines. The current

value is 17577.

2 3 Assembler

This describes the use of an interim assembler for the

PDP-7. Source files may be read by this assembler from 1800

logical files or paper tape in any order. Output is always to

the paper tape punch in standrad F.F. Format.

The assembler may be loaded from the disk via LOCOSS which

remains in core and intact. However, only the disk routines are

used by the assembler. Instructions to the user are as follows:

After DAS is loaded, set the address switches to 4400 (octal)

and enter in AC switches 10-17 the logical file to be read. Zero

•42-

indicates the tape reader, and nonzero specifics a disk file

number. (Note that the old switch 10 and 11 options are de-

leted.) Assembly proceeds in two phases: reading of source in-

formation, and completion and symbol table type-out. At the

halt at the end of a paper tape (AC = 777777, MQ = 0) or a disk

file (AC = MQ = 707070), phase one may be continued by entering

the desired file number in the AC switches, then pressing start.

DAS halts when finished.

When reading from the disk, PAUSE and START pseudo-ops will

not stop the source input. However, the other effects of these

commands with respect to loading are carried out. Source read-

ing stops at the physical end-of-file with 707070 (octal) in

both AC and MQ. Disk error halts will have the disk error code

in the AC and 0 in the MQ.

Disk and paper tape source may be interlaced in an as-

sembly.

Display and LOCOSS symbol definitions are available in disk

files in source format and may be included in the assembler

tables by reading as the first source tape(s). These symbols

will not appear in the symbol table. It is recommended that

switches 0 and 2 be raised when reading these files to prevent

these symbol definitions from being punched. Switches 0 and 3

may be used to select the correct title for the output tape.

When this assembler is loaded from paper tape, it assumes

that all input will be from paper tape, and AC switches 10-17

are ignored except for symbol table options. When loaded in

■BHMHHMBJnUKKI mMMommmmamm

43-

this manner, operation is the same as the DEC version except:

1. Switch 10, 11, and 14 options are deleted,

2. Use 4400 (octal) rather than 22 (octal),

3. The halt between phases 2 and 3 has been deleted.

A symbol table print-out can be forced most any tine by

starting at 4401 (octal).

Important: It is necessary to load this assembler fresh

each time a new assembly is started.

2.4 An Interrupt-Compatible DDT

This section describes the use of a modified DDT with

programs using the "program interrupt" hardware of the PDP-7.

DEC Debugging Tape (DDT) and user programs are loaded in

the normal manner. The restart entry remains at 16000o and a

forces interrupts off. DDT may be used exactly like the original

DDT without knowledge of these modifications.

The modifications to DDT are concerned with facilitating

control of the "program interrupt" as control moves between DDT

and user programs and back. The following commands (which re-

main in effect until the next is given) are provided:

STI0F$ - leaves program interrupt off when exiting to

user program. (This is the default condition.)

STION$ - turns program interrupt on when exiting to user

program.

STIOC$ - turns program interrupt on when exiting to user

program if it was on at the last breakpoint entry

•44-

The latter is particularly useful when continuing a program

with "!". Note that a counted continue will have the desired

effect.

commands are always executed with interrupts off.

The value of SAVIOS may be determined by examining register

SAVIO$.

Interrupts may be jasily "lost" since DDT runs with in-

terrupts off and senses device flags directly. This is parti-

cularly true of the teleprinter flag since the printer is immediate-

ly used by DDT. DDT may be instructed to monitor the printer flag

by the coamand TTY$. This feature is revoked by NOTTY$. The

teleprinter flag may be examined via TTYF$. Zero means down and

one up. Thia feature is implemented as follows:

After turning interrupts off on a breakpoint entry, DDT

loops approximately 140 milliseconds to determine if a character

is being printed. The teleprinter flag is tested at the end of

this loop and the state saved. When continuing with "!" or "'",

DDT prints a null character just before transferring to the

user program if the teleprinter flag was up on entry. This will

result in a teleprinter flag coming up after reaching the user

program. This flag may be prevented by storing a zero in loca-

tion TTYF$ Conversely, this flag may be forced on by putting

one in TTYF$.

A symbol table consisting of the basic commands and EAE

symbols, except lOTs, is loaded automatically. Two additional

tables are not loaded: lOTs and a restricted displr./ set. The

I

45

IOTS may be loaded by TABLE$ and bypassed by LOAD$. Similarly

for the display symbols. Thus either or both may be loaded if

desired. This gives greater flexibility in keeping the symbol

table smal1.

Print-out of EAE, OPR, IOT, and LAW instructions has been

modified. If an exact equivalent symbol is not found, then the

generic type and octal remainder are printed.

2.5 Core Image Program and System Loaders

The CORE IMAGE PROGRAM (CIP) produces and summarizes core-

image- formatted information on the disk or on tape, under control

from the keyboard. The program runs as a complete package and

is available in three versions. The low-core version occupies

locations 22-2200 (octal), overlaying only LOCOSS so that all

of user core may be dumped. The mid-core version occupies

10000-12200 and the high-core version occupies locations 15600-

17777, so that most pre-LOCOSS programs may be "imaged." By

judicious bouncing around it is thus possible to put all of

core, except the loader area (17600-17777), into core image

format for loading from the disk.

All three versions are available on core image tapes in the

program library, and the low-core version is also available to

be loaded from file six (6) on the disk.

\

■46-

2.5.1 Usage

Once the program to be imaged in in core, the user must

load the appropriate version of the CIP from tape or from the

disk. The CIP is self-starting, but, if necessary, may be re-

started at either 22,10000, or 15600, appropriately. After

identifying itself, the CIP immediately issues a disk "CLEAk"

command so that all outstanding input and output files will be

closed. An error on this disk call will produce the printed

message CAN'T CLEAR DISK and the error number, in octal. If

this occurs, the 1800 is probably dead, so that further opera-

tion will entail resuscitating it or curtailing one's activi-

ties to paper tape.

When the CIP is ready for input, it will type a question

mark (?) and will accept a command line. The user has avail-

able the same input line-editing features as in LOCOSS. A

summary of commands is given below. Only the first two let-

ters of each command need be given. For those accepting

numeric parameters (octal or decimal), all alphabetic and

special characters after the first two characters and until the

first digit are ignored. A number is terminated by any non-

digit (including space). An unrecognizable command or one

Jacking sufficient parameters will be greeted with WHAT? and

ignored. In general, file numbers are decimal and core ad-

dresses are octal. Whenever the user addresses file zero, by

convention he refers to the tape reader or punch.

■

-47-

A disk error during the execution of any command will re-

sult in printing DISK ERROR and the error number in (octal).

A disk CLEAR command will be issued and the CIP will start over

When the user is finished with the CIP he may reload LOCOSS by

giving the command END.

2.5.2 Commands

CREATE N, Create file N, where N is a decimal number.

OPEN FILE N. Open file N for output where N is a deci-

mal number. This must be the first command issued in

creating a core image file. If N is zero, the hard-

ware read-in mode absolute tape loader will be punched

on tape and all further output commands will refer

to the punch and not the disk. The tape so produced

will be self-loading.

TEXT. Write the text (between the first blank following

the command and the carriage return) onto the output

device for documentation purposes. The loader will

type this information if the program is loaded from

the disk, and the information will be read by the

DUMP command but it will be ignored by the tape

loader. TEXT commands may be given at any time be-

fore the file is closed by CLOSE, and each one writes

a line into the file.

BLOCK N M. Write the block of core locations from N to

M (both octal), inclusive, onto the output device.

M must be greate- than or equal to N . BLOCK should

be repeated for as many contiguous blocks of core as

are to be written.

-48-

START N. Write a block onto the output device which will

cause execution to begin with location N (octal)

when the loader reaches this block in the loading

process. This produces the same effect as the ad-

dress N in the location field of the "START" state-

ment in the PDP-7 assembler.

PAUSE. Write a block onto the output device which will

cause the tape loader to halt after the program has

been loaded, or the disk loader to return to the

caller.*

CLOSE. Close the output file, give the count of characters

and disk sectors written (in decimal), and restart

the core image program.

DUMP N. File N (decimal) is opened and its contents as

a core image load are summarized as text, binary blocks,

and start or pause blocks. File zero by convention

is the tape reader and, if specified, the tape should

be positioned after the tape loader. The program

will not recognize the end of the tape, so that it

will be necessary to restart it after the dump is

completed. Indication is given if a checksum error

is detected. Information dumped by the program is

preceded by a right angle-bracket (>), while text

from the file is printed with no prefix character.

The number of characters and sectors read is also

given (in decimal).

PUNCH N. Punch file N (decimal) on paper tape preceded

by the hardware read-in mode loader. The tape so

punched can be read into core by setting the address

* See Section 2.4 General Service Routines, in LOCOSS: ^
Multiprogramming Monitor for the DEC PDP-7.

49-

switches to 17720 and pressing READ-IN.

END. Finish the core image program and reload the LOCOSS

file.

2.5.3 Format

The core image format is that of the PDP-9 absolute binary

loader as stated in MACRO-9 Assembler: Programmer's Reference

Manual, DEC-9A-AM9A-D and recapitulated faithfully below.

The information stored on the disk is the direct image,

character by character, of the paper tape version of the program

All words are in paper tape reader binary format. See pages 76

to 77 of the PDP-7 User's Manual for the details.

Information is on the tape in blocks of contiguous binary

locations, and each block is preceded by a three-word header:

1. Bit 0: =0 means binary block header.

Bits 1-17: = Starting address of block.

2. Twos complement of number of words in block.

3. Checksum: twos complement of the sum of all the words

in the block including words one and two of the header.

The following n (=word count) words of the block are

loaded into the block starting address and successively higher

locations in core.

A start block consists of two words:

■

50-

Bit 0 : =1 means start block.

Bits 1-17: ■ all ones if no starting address, i.e.,

halt after loading.

= otherwise, the starting address for the

program.

Dummy word for reader buffering.

The text in the files or on tape is stored as ASCII with

the high-order bit zero so that it is not read as binary by

the tape reader or by the disk read routines.

2.5.4 Disk Loader

The disk loader will load "Core Image" files from the IBM

1800 disk. As such, it contains a copy of two of the standard

disk communication routines, and has provisions for handling disk

errors and other possible loading terminations. The disk loader

is in file three (3) in "bootstrap" form(see below) and is loaded

from the disk fresh when the LOCOSS bootstrap procedure is fol-

lowed and when the LOCOSS subroutine LOAD is called either from

a program or in the CLI response to the LOD command. The load-

ing procedure does not destroy the loader so that it may be

used again without itself being reloaded from the disk.

Locations 17772 to 17777 are a local "transfer vector" or

"communications area" for the loader. Some of these locations

contain parameters for the loader and instructions for the

loading sequence, so that setting these locations constitutes

the calling sequence for the loader.

51-

17772 - Disk error location. Any loading error detected by

the disk routines will cause control to be transferred

to this location. Typically this will contain a jump

to a user routine or a halt instruction.

17773 - Pause location. If the file being loaded ends with a

"Pause" block, control will be transferred to this lo-

cation.

17774 - Number of the file to be loaded. Only bits 10-17 of

the word are considered (i.e., a LAW instruction may

be used).

17775 - Address of the entry point for DSKERR.

17776 - Address of the entry point for DISK. Both of these

routines have the same calling sequences as their

counterparts in the resident part of LOCOSS, and may

be used as described in the LOCOSS manual when they

are in core and LOCOSS is not.

17777 - Jump to the start of the loading process. Thus the

normal method of starting the loader is to set loca-

tions 17772-17774 and to JMP to 17777.

The format of a core image file is given following the

description of the Core Image Program.

2.5.5 Bootstrap*

The disk loader itself is stored on the disk in file

three (3) in a format which is designed to require only a

minimal program for bringing it into the PDP-7. Because the

bootstrap load also does not follow the normal procedure for

* This section is intended for system maintenance purposes,
not properly being a user-available function. It is in-
cluded here for completeness sake in the loader descrip-
tion .

.1

52-

obtaining information from the disk, great care must be exer-

cised in using it since it is very easy to hang-up the IBM

1800 otherwise.

To initiate a bootstrap load, the PDP-7 presents the

1800 with the bootstrap op code and the file number to be

loaded. The 1800 then returns the first character of the file,

with the acknowledment bits set. The 1800 service routine

remains in its interrupt state, feeding the characters from

the file to the PDP-7 as fast as the PDP-7 will take them.

Note that the normal request-acknowledgment procedure is fol-

lowed only for the first character of the file. The rest of

the characters in the file are piped indiscriminately to the

PDP-7 without its having to ask for them, until the end of the

file is reached, at which time the 1800 interrupt service

routine exits from interrupt status. Thus, if the PDP-7 is

not prepared to handle the whole file and, for example, it

stops reading, the 1800 will simply wait for the 7 to finish

and not return to its own processing. During this time the

1800 will not recognize anything written at it, so that it is

impossible to terminate the bootstrap in any other way than

that intended.

The only way in which the bootstrap load will not be

started is for the bootstrap file number request to be in er-

ror. The only files from which bootstraps are allowed are

numbers 1-10 (decimal). A bootstrap does not affect the "open"

status of any file serviced by the 1800 service routine.

-53-

The bootstrap procedure is obviously meant only for de-

bugged system programs. (The preceding specification of pro-

gram type is hopefully redundant.)

The format of a bootstrap file is as follows:

1. The first character of the bootstrap file 3 is the

number of the core image file for LOCOSS, so that

when the disk loader has been bootstrapped in, it

may start loading LOCOSS. In other bootstrap files,

the first character may be used as desired.

2. The remaining characters in the file are combined,

three at a time, to form eighteen-bit PDP-7 words.

The high-order two bits of every character (except

the third last) are zeroes. The low-order six bits

of the first character, then, are the high-order bits

of the word, etc.

3. The first word thus formed is treated as an address

which is the base of an area into which the remain-

ing words will be loaded. The second word will be

stored in the location addressed by the base. The

next word will be stored in base + 1, etc.

4. The third last character in the file has the second

high-order bit (i.e., bit "100") set. This bit be-

ing set indicates that the character starts the last

word in the file. This word is not stored at the end

of the block but is executed. Thus, it is normally a

no-op, halt, or jump instruction.

Currently the only files in bootstrap format are three (the

disk loader) and five (the RIM and FF loaders).

1800 LOGICAL FILE SYSTEM

3.1 Disk File System: User's Guide

The disk file system for the IBM 1800 is a collection of

subroutines, designed for use under TSX Version 3, by which a

user can create and maintain a set of logical files on the 2310

disk. Each file behaves as a serial character source and/or

sink of indefinite length. Files are identified by number; the

maximum allowed number of logically distinct files is somewhat

arbitrary (depending mainly on the amount of disk storage avail-

able), but is currently fixed at 150. Accordingly, logical file

numbers 1 to 150 are used as file labels. The file routines are

re-entrant, and hence may be called from both mainline and inter-

rupt levels.

The file system routines perform all disk-storage alloca-

tion automatically, maintaining each file as a linked list of

disk sectors. (A disk sector is the minimum addressable unit

of data on the 2310; each contains 320 16-bit words.) The ad-

dresses of the first and last sectors of each file are kept in

a separate table, called the Directory, also stored on the

disk.

Initially, a file has no storage assigned to it and has no

Directory entry; it is logically nonexistent. When it is

"created," it is assigned one sector of storage from the top of

a free-storage list and an appropriate entry is made in the

Directory. If the file overflows that sector, it is linked to

i

-54-

55

the next sector on the free-storage list; additional sectors

continue to be assigned in this way as long as necessary.

When a file is "destroyed," its Directory entry is zeroed

and its sectors are returned to the top of the free-storage

list. Thus, the first file to require a new sector following

a destroy operation will be linked to the first sector of the

destroyed file's storage.

As far as the user is concerned, the unit of data for the

file system is the eight-bit byte. The PUTC routine must be

called once for each byte to be placed into a file; the GETC

routine returns one byte on each call. Since two words of each

sector are required for link pointers, 318 words—636 bytes—are

available to store data. The 636th consecutive call to the PUTC

routine for a given file will cause a new sector to be linked

to that file. The next call to PUTC will store a character in

the newly linked sector's first data byte.

(GETW and PUTW, routines to fetch and store 16-bit words

rather than 8-bit characters, will be made available in a future

version of the file system as the need arises.)

It is not possible to write a partial sector on the 2310

disk (without loss of data), nor is it possible to begin read-

ing at other than the beginning of a sector. In addition, every

disk operation requires two control words adjacent to the actual

data area in core storage. Consequently, a 322-word buffer

area is required for reading or writing a file, and also for

creating or destroying files (to permit updating the Directory,

^__w

56-

in the latter cases). The user must provide this buffer area

within his own program, and pass its address to tht file routines

as explained bexow.

Before a file can be read or written, it must be "opened."

A file is "opened in " if it is to be read; this causes the first

sector to be read into the user-supplied buffer area. If a file

is to be written, it must be "opened out"; this causes the ap-

propriate link pointers to be placed in the user's buffer. Both

of these operations are performed by the routine OPEN.

In order to allow a single user to have an arbitrary number

of files open at one time, and to facilitate re-entrant coding

in the file routines themselves, all the information needed to

access a file is contained in a five-word File Control Block

(FCB), which will be established in a user-supplied area by the

OPEN routine. By convention, Index Register 1 must always point

to the first word of the file control block whenever a call is

made to the file routines; violation of this rule may produce

disastrous results.

When a file is opened, a bit is set in the FCB to indicate

that condition; the GETC and PUTC routines always check this

bit. Thus an attempt to read or write an unopened file will

result in an error return.

In addition to being opened before use, files must also be

closed after being used. For an output file, a call to CLOSE

forces the writing of the Ifft (partial) sector to the disk and

also resets the "open" bit in the FCB. For input files, CLOSE

57-

merely resets this same bit, thus the closing of input files

is presently unimportant. However, a new version of the file

routines (to be released soon) will incorporate interlocks to

prevent the same file being opened more than once simultaneously,

and correct operation of this interlock will require that all

files be properly closed after use.

Once a file control block has been established by the OPEN

routine, it should not be altered by the ijer. It contains such

information as the address of the disk-buffer area for the file,

the currently accessed sector address, a character pointer whose

value is adjusted by the GETC and PUTC routines, some status in-

formation, and the logical file number. A user may open simul-

taneously as many files as desired, as long as all have separate

disk-buffer areas and FCBs. Any given file, however, should

not be opened both "in" and "out" at the same time, nor should

it be opened multiply with separate FCBs at one time. (Neither

of these latter two conditions is checked by the current version

of the file routines, but both will cause error returns in the

new version.)

In order to function correctly, the file routines require

access to certain items of information (such as the total size

of the disk file area) which are not available at assembly time

and which cannot be obtained from the TSX :ore load builder.

Consequently, there is a special initializing routine named

WAKUP which reads some of the needed items from the disk and com-

putes others, and which must be called (once) before any other

calls are made to file system routines.

-58

CALLING SEQUENCES

Abbreviations: A = A-Register or Accumulator

Q = Q-Register

XRn = Index Register n

Error Returns: if k separate error returns are possible on

a given call, the normal return is to CALL+k+1,

while "error 1" returns to CALL+1, "error 2"

to CALL+2, ..., "error k" to CALL+k.

All routines save and restore all registers except as

otherwise noted.

1. To create a file:

A ■ logical file number, right-adjusted

Q ■ address of a 322-word disk buffer region

XR1 = address of a 5-word block for FCB

CALL CREAT

Error Return - Illegal file number

Error Return - No more room on disk

Error Return - File already exists

Normal Return

2. To destroy a file:

A ■ logical file number, right-adjusted

Q ■ address of 322-word disk buffer

XR1 ■ address of 5-word block for FCB

CALL OESTR

Error Return - Nonexistent file or file open

Normal Return

-59-

3. To open a file:

A_ 15 = logical file number

A. = 0 for output file, 1 for input file

Q = address of 322-word disk buffer

XR1 = address of 5-word block for FCB

CALL OPEN

Error Return - Nonexistent file

Normal Return

4. To close a file:

XR1 = address of FCB

CALL CLOSE

Error Return - File not open or bad FCB

Normal Return

5. To put a character into a file:

XR1 = address of FCB

A = character to be inserted (right-adjusted)

CALL PUTC

Error Return - File not open

Error Return - No more room on disk

Normal Return

.

-60-

6. To get a character from a file:

XR1 ■ address of FCB

CALL GETC

Error Return - File not open, etc.

Error Return - End of file

Normal Return - Character in A, right-adjusted

7. To initialize the file system routines:

CALL WAKUP

Normal Return - (Destroys A, XR1, XR2.)

3.2 Disk Fie Utility Program: User's Guide

The file utility program for vhe IBM 1800 is a keyboard-

oriented command interpreter which allows the user to access

the disk file system in a simple way and to perform a number of

very useful, relatively deivce-independent, input-output opera-

tions. Two commands allow the user to create and destroy disk

files; a third command allows a copying connection to be estab-

lished between any pair of I/O devices on the system. (The

structure of the disk file system is outlined in Section 3.1,

which should be consulted for further information on the CREATE

and DESTROY functions, and on the COPY function when one port

is a disk file.)

The COPY operation is completely character-oriented; all

I/O devices appear as single-character sources and/or sinks.

Logical lines are delimited by carriage-return characters ("new-

'

-öl-

line" in EBCDIC parlance), and fields within a line are deter-

mined by tabs, whare applicable. Thus whenever data are read

from an essentially line-oriented device such as the card reader,

a format specification must be supplied to indicate where the

tabstops are. Then the device-support routines for the card

reader lor card punch, etc.) convert between the tab-cr character

stream and the card-image line, as required. The advantages of

this approach are greater economy of disk storage space for

card-image data, faster operation of the IBM 1053 printer (be-

cause of the use of tabs), higher information density in data-

phone records, and compatibility with the PDP-7 system.

The file utility program is designed to run under the TSX

operating system for the IbOO; the current version is set up

as a "nonprocess" job. It calls approximately fifty subroutines.

The following is a description of commands recognized by

the file utility. Each command may be abbreviated to the two

underlined letters. Optional parameters are indicated in

brackets ([]); parameters of which exactly one must be chosen

are shown in braces ({ }).

CREATE xxx

where xxx = any valid file number (1 - 150.«)

Action: Logical file xxx is created and allotted one sector of

disk storage.

DESTROY xxx

where xxx = same as above

Action: Logical file xxx is destroyed and all of its storage

re 1 eased.

62-

COPY
XXX

] devl
fyyy
^dev2 CO

where xxx = number of source file

devl = name of source device

yyy ■ number of sink file

dev2 * name of sink device

z = format parameter

xxx, yyy may be any valid (and existing) file number.

devl, dev2 may be any of the following (and may be abbreviated

by a single character):

TYPEWRITER

CARD

PÜP-7

(keyboard if source, printer if sink)

(reader if source, punch if sink)

(source or sink)

z may be any of the following

ASM - 1800 Assembler tab stops (col. 27, 32, 35, 45,

starting in col. 21)

PDP-7 - PDP-7 format tab stops (col.10, 25, 40, 55, 70,

starting in col. 1)

FORTRAN - FORTRAN tab stops (col. 7, starting in col. 1)

DUMP - "dump" format; full 80-column card, no tab stops

BINARY - 1800 binary format, one 8-bit byte per column,

80 columns per card

(In the first four formats, all characters are punched or read

in EBCDIC.)

63-

Action: Characters are copied from the source file or de-

vice to the sink file or device until an end-of-

file condition exists at the source.

bnd-of-file conditions are logical end-of-file return from the

file system's GETC routine, or detection of an EOB character

(card-code 0-6-9, EBCDIC 26., , ASCII 203.) by the card reader

or PDP-7 port. A copy operation may be aborted at any time by

turning data switch 0 on.

Default Parameters: devl = CARD, dev2 = TYPEWRITER,

z = ASM

U_ST i fxxx)
i S devl '

V. -y

xxx, devl same as for COPY

Action: Characters from the source file or device are

printed on the 1053 printer in 1800 assembler

format. (This command is actually identical to

COPY, and is included mainly for historical and

aesthetic reasons.)

DEBUG

Action: Control is transferred to the 1800 debugging

routine, which is described in Section 4. This

feature has been included mainly for its utility

in debugging this and other system programs,

particularly where disk patching is required.

BLAST

Action: Clear the pending "read" on Digital Input, t' ere-

by disabling all PDP-7 interrupt service.

-64-

PDP7

TAB

Action
r.

Reinitialize PDP-7 interrupt service

!j
Action: Spaces the 1053 printer across the page, pausing

for approximately one second at each 1800 as-

sembler ("A") or PDP-7 ("P") tab stop to allow

the operator to s>et the typewriter tab stops cor-

rectly. (The default parameter is "A".)

EXIT

Action: Return to TSX supervisor, which will begin reading

cards looking for // JOB.

Two additional commands, FIX (to reset file system inter-

locks in event of user-program malfunction or system snark) and

£NIFF (to compute and print storage-use statistics and other

information about existing files) will be available in the near

future.

3.3 PDP-7 Interrupt Service: "PDP7"

The PDP-7 interrupt service subroutine, "PDP7," is a com-

mand-dispatching program which runs on the 1800, enabl'ng the

latter to perform certain services for the PDP-7, upon its re-

quest. Each command issued by the PDP-7 causes an interrupt at

the 1800 which transfers control to the "PDP7" program; the

service function is then performed "at the interrupt level" (in

IBM terminology), after which the 1800 resumes execution of the

interrupted program.

-65-

The PDP7-1800 interface currently in use allows single

words to be transferred in parallel in either direct ion—12-bit

words .when sending from the 1800, 16-bit words when sending

from the PDP-7. By convention, the basic unit of data is the

8-bit byte in the low-order portion of the word. The additional

8 bits are set by the PDP-7 to indicate which function is de-

sired, while the additional 4 bits available to the 1800 are

used as an acknowledgment code.

The 1800 prepares to receive commands from the PDP-7 by

establishing a one-word "read" on Digital Input.* When it has

finished performing a function for the PDD-7, the 1800 reestab-

lished this "read." Thus, whenever the PDP-7 presents a word

to the 1800, it complet s the pending I/O operation and causes

an interrupt.

The interrupt service subroutine performs most of its

functions by calling other subroutines, including the disk file

system. Sufficient buffer space is included in "PDP7" to

maintain two disk files open at once; by convention, one is an

input file and the other output. Thus, the PDP-7 may simultaneous

ly read and write disk files. Since file creation and/or destruc-

tion also requires buffer space (see disk file system descrip-

tion), a small buffer management routine saves one of the file

buffers on the disk when necessary, thereby allowing files to be

created and destroyed without regard for the state of files

See IBM 1800 Functional Characteristics. IBM Form A26-5918.

-66-

currently being read or written. Legal commands to "PDPy,"

and their corresponding functions, are listed in Table 1. The

1800 indicates positive acknowledgmeriv (command accepted and

function performed) by inserting 1010- into the high-order bits

of its response word; negative acknowledgment is indicated by

11002 in those bits, with an error code (see Table 2) in the

data byte. In the present system, every word sent by the PDP-7

is a command, and every command is acknowledged by the 1800.

(Most of the commands recognized by "PDP7" involve the disk file

system (see Section 3.1), whose description should be consulted

for further clarification of these functions.)

An exception here is the Send Pile command, which is in-

tended for use in loading PPP-7 system programs from the 1800

disk. Receipt of this command causes the 1800 to transmit the

entire contents of the designated file to the PDP-7 without inter-

vening acknowledgments; the 1800 merely sends each character im-

mediately after the PDP-7 accepts the previous one. If the PDP-7

does not read the entire file as expected, the 1800 is left in

a permanent wait loop at an "interrupt level" which can be

terminated only be operator intervention. Hence the Send File

command is rejected if it does not reference a system file.

The "1800 copy port" is a pair of reserved words, IN and

OUT, in 1800 memory through which other programs can communicate

with the PDP-7 interrupt service subroutine, "PDP7." The low-

order byte of each of these words is used for data, the high-

order byte for control. An 1800 user program sends data to "PDP7"

-67-

(i.e., the interrupt service subroutine, not the PDP-7 computer)

by storing the data byte in OUT with the control byte (the

high-order byte) nonzero. "PDP7" interprets a nonzero control

byte to mean "data present"; the first subsequent "read" command

from the PDP-7 will cause the data byte to be transmitted to

the PDP-7. "PDP7" then zeroes OUT to signal the user program

that the next data byte may be sent. All further 'read" com-

mands from the PDP-7 are rejected until the control byte becomes

nonzero again, indicating that the user program has stored another

datp byte in OUT.

The same convention applies to transmission in the other

direction. The user program indicates readiness to accept

another data byte by zeroing IN; the first subsequent "write"

command received from the PDP-7 causes the data byte to be

stored in IN with the control byte nonzero. Until the control

byte is made zero again by the user program, write" commands

froni the PDP-7 are rejected.

Since the file utility program (see Section 3.2) can

reference the 1800 copy port, it is possible to copy binary or

character data from any device on the 1800 to or from the PDP-7

or any of its devices, including in particular the display and

the datjphone.

-J

Table 1. "PDP7" Commands and Services

Command Code Furrt ion

(Decimal) (Octal) (Hex)

Echo

Open Out
(translated)

Write data byte back
to PDP-7 (used for
checking).

Open an output file
(number specified by
data); ASCII-EBCDIC
translation on.

Open In
(translated) 3

Put 4

Get s

Close Out 6

Close In 7

Clear 10

Create 11

Destroy 11
>

13

Open Out 13 IS
(binary)

Open In
(binary)

Echo A

Echo B

14 16

lb 2C 10

17 :i

•68-

11

Open an input file,
as above.

Place character In
current output file.

Fetch character from
current input file.

Close current output
file.

Close current input
file.

Close all current files.

Create file n (data
byte*n)

Destroy file n (data
byte-n)

Open output file n
(data bytcn) ; ASCII-
EBCDIC translation off.

Open input file n (dat«
byte>n); ASCII-EBCDIC
translation off.

Translate EBCDIC to
ASCII

Translate ASCI I to
EBCDIC

Table 1. continued

Command Code Function

(Dec aal) (Octal) (Hex)

Send File

Read

Write

Read Binary

write Binary

13

19

20

21

22

22

23

24

25

26

12 Write entire file
n (data byte>n)
to PDP-7.

13 Read character from
1800 copy port (EBCDIC-
ASCII translation on).

14 Writ«» character to
1800 copy port (ASCII-
EBCDIC translation on)

15 Read byte from 1800
copy port (EBCDIC-
ASCII translation off).

16 Write byte to 1800
copy port (ASCII-
EBCDIC translation
off).

-69

Table 2. "PDP7" Error Codes

Code

(Decimal) (Octal) (Hex)

1

2

4

s

6

7

10

11

12

13

14

IS

16

Meaning

Invalid command.

"Open" request rejected (no such
file, etc.)

"Open" request rejected (file already
in use)

"Put" error (file not open)

File overflow (no more room on dsk—
during "Put" attemptJ

"Get" error (file not open)

"Close" error (file not open)

"Create" error (illegal number'

"Create" error (no more disk room)

"Destroy" error (no such file exists)

EBCDIC-ASCII translation not possible

ASCII-EBCDIC traimiation not possible

Copy port busy-try again

Invalid number (i.e., not a system
file) in Send File command.

PDP-7 Command format:

1800 Response format:

7 8

-70-

Command
Byte

Data
Byte

0 7 8 IS

ACK or
NACK

Data 1
Byte j

IS

4. DEBUG: A KEYBOARD DEBUGGING PACKAGE FOR IBM 1800

4.1 Int roduct ion

DEBUG is a program checkout aid for the IBM 1800, written

in June 1968, as a temporary measure, but still in use. It al-

lows examination and modification of registers and core locations,

storage-protection and -unprotection of core locations, transfer

of program control, copying of core from and to the disk storage,

and comparison of core locations with their previously saved con-

tents. A trace facility was also included, but works unreliably

due to bothersome aspects of the interaction with the opeating

system; no further mention is made here of the trace feature.

Programmer and machine communicate through the typewriter-

keyboard. The user program must execute a CALL DEBUG statement

to establish linkages. DEBUG types out an entry message, and

the user may begin typing commands. After this, DEBUG may be

reached by various me^.is from the user program; on entry, it

explains to the user why his program stopped executing:

DEBUG typeout Reason for Entry

CAL: User program called DEBUG

CI: User pressed Console Interrupt button

STOR PROT: User program committed Storage Protection
error.

OP CODE: User program committed Op Code error

PARITY: Parity check occurred

CAR CHECK: Channel Address Register Check occurred.

-71-

72-

After this explanatory typeout, DEBUG types its entry point

to tell the user where his program stopped. (As usual, the in-

struction previous to the entry point value was the last instruc-

tion executed.)

4.2 Arguments

All data input and output through DEBUG are four-digit hex-

adecimal numbers, either absolute numbers or displacements rel-

ative to a BASE value. There are no symbolic values. Absolute

numbers are prefixed with a period, relative values with an

asterisk.

Examples:

.IQOOeof

MOOOeof

*eof

. eof

eof

absolute lOOO(hex)

BASE plus 1000

BASE plus zero

xero

zero

(eof is the end-of-file key.)

Escape to command mode is accomplished by entering pound-

sign • as the first character of an argument; 'eof is suf-

ficient.

DEBUG signals its readiness for an argument input by typ-

ing a left parenthesis. If the argument entered doesn't begin

With '#•, '*'. or ".", DEBUG types •?• and accepts a new

argument; otherwise it types a right parenthesis.

73-

4.3 Re£isters and Comwands

DEBUG uses a small set of core registers to control its

operations; the effect of various commands is most concisely

described by their effect on these registers; see Table 3, The

sample session (Section 4.4) would make clear the us« of the

registers and commands.

Table 3. DEBUG Rtgisters and Commands

Registers

BASE

LOC

SABUF

LONE.HIE
FILO. FIHI

SNPMO

OAREA. LENG
A8SRL, SECT

Base for relativ«; arguments

Core location currently referenced

Buffer for registers saved on entry; A, ij, XI, X2,
X3, Status

Four sequential locations used to record core
limits. 'ONE and HIE aren't used any longer;
FILO is the low end of core written in a core-
save ('F') operation and read by a compare ('C')
operation; FIHI is the high end. The defaults
(. 1DB0, .SPFP) should be satisfactory for most uses.

The mode (absolute or relative) in which LOC is
typed out

Four sequential locations controlling disk input-
output. OAREA is core address of first word of
data written or read; two preceding words are
saved and restored during the operation. LENG is
the length of core buffer read or written if it is
less than DAREA or if it has a /8000 bit added;
otherwise it is the core address of the high end
of the buffer. ABSRL is the mode bit for the disk
operation;

0 for absolute sector address,
1 for sector address relative to Non-Process

Norking Storage

SECT is the sector address

Commands

(Nhen a command is followed by parenthescs(), it means that it
accepts one argument, denoted here by ARG.)

K)
S()

ARG • BASE

ARG • LOC, set SNPHO - ABS or REL

Type out I LOC absolute

-74-

Table 3. Continued

, Increment LOG by one

< Decrement LOG by one

; Increment LOG by one, return carriage, type out
LOG in mode of SNPMO

M() Mode of ARC - SNPMO. E.g., M(.), or M(*).

L Type out LOG in mode given by SNPMO.

■ () ARC -» I LOG. If I LOG is store-protected, make
the change and type out '!', leaving the location
store-protected

P Address of LOWE - LOG. Allows examination and
change of limits.

A Address of SABUF -» LOG. Allows examination and
change of saved registers.

J() Unsave registers from SABUF. ESI I ARC. ARC must
be non-zero. On return from subroutine, the saved
registers in SABUF are not altered from their pre-
vious values.

R() Unsave registers from SABUF.
If ARC * (>. BSC I ARG.
If ARC > 0. BSC I ENTRY. I.e., return via

DEBUG entry point.

I Store protect I LOG

% Unprotect I LOG

D Address of DAREA ♦ LOG, allowing examination and
change of disk I/O parameters.

K() ARG ♦ SECT. Read disk (absolute or relative sector
address determined by ABSRL), beginning at sector
SECT, storing into I DAREA to I LENG or from I
DAREA to (I DAREA) • LENG. (See explanation of
LENG in the registers above.)

*() ARG -> SECT. Write disk with the same parameters
as in K() above, mutat is mutandis.

-7S-

Table 3 Continued

F()

C()

ARG -► SECT. Dump two blocks of core onto disk.
First block is from I FILO to beginning of DEBUG
core; it goes into relative sector SECT in NPWS.
Second block is from end of DEBUG core to I FIHI;
it goes onto the sectors following the first block.

ARG ♦ SECT. Read the two blocks (written by F()
prsumably) sector by sector, comparing each word
to the corresponding contents of core. Whenever
there is a difference, type out its location and
the number of consecutive words which are different
from their previous values. Except that if an
isolated word has changed, type •■' and the con-
tents of the word.

E()

-76-

— —~

77-

4 , 4 Sample Session

// ASM TEMP
*LIST
0000 30 04142907 BEGIN CALL DEBUG
0002 01 C400000A LD L A
0004 01 8400000B A L B
0006 00 D4000008 STO L 8
0008 0 0000 DC 0
0009 0 70F6 MDX BEGIN
000A 0 0001 A DC 1
000B 0 0004 B DC 4
000C 0 0000 C DC 0
000E 0000 END BEGIN

NO ERRORS IN ABOVE ASSEMBLY
TEMP
DUP FUNCTION COMPLETED
// XEQ TEMP
*CCEND

ERROR, STORE-PROTECTED CORE
ERROR, INVALID OP CODE

CLB, BUILD TEMP

CLB, TEMP LD XQ
CAL: . 1DE2 [Debug was called, .1DE2 is return address.]

B_£.1DE0)_ [Set BASE to the beginning of sample program.]

SX*000Aj_ .0001 , .0004 , .0000 [Look at the data words.]

STOR PROT:*0008 [Catches the store protect error.]

SjL*0007^ .0008 X*ooocl RX*0002)_ [Change the address to *000C,
start over]

OP CODE:*0009 [Now op code check comes up]

SX*0008j_ .0000 = X-1000i RX*0002)_ [Change the zero to a NOP,
start over]

CAL;*0002 [Went all the way back to top]

SX*000C2_ .0005 = X-0000i Rl# [Data look good, set back to zero.

FX1 EiJ. Started to go back to program,

CAL:*0002 then decided to save core on disk]

C() [Perform the compare operation]

-78-

1DEC -0005

E^i [Exit back to TSX]

N04 READY READER

Underlined typeout was typed by DEBUG.
Carriage returns are ad lib; the Carriage Return key doesn't

communicate with the 1800.
Arguments are terminated by an EOF character, but the EOF doesn't

print on the typewriter.

S. DISK ASSEMBLER FOR IBM 1800

5.1 Reading gjurct Lines from Disk Using IBM 1800 TSX Asseabler

The TSX Assembler is a two-pass assembly. On its first

pass, it normally reads card input, creates a symbol table, and

writes a packed-format intermediate disk output. On the second

pass, each line of the intermediate output is read back in, un-

packed back into card format, and processed. (See Figure 1,

Normal Assembler Operation.)

Because of the strict modularity of this assembler, we were

able to modify it so that both passes read from the disk. To

assmble a program, we must first copy it onto the disk in the

format which the assembler reads. If the source program is on

cards, the disk-copy is accomplished by the program CDISK; if

the source is in a character file (see Section 3, 1800 Logical

File System), the copying is done by FDISK (see Figure 2, Modi-

fied Assembly Procedure).

5.2 Literal Constants

The programs FDISK and CDISK include a routine called LITS,

a processor for literal coratants. LITS replaces the characters

of a literal (e.g., '8') with a generated name (e.g.. LT001),

and saves the literal text in an accumulation table. When an

LT0RG line is encotntered, the accumulated literals are written out

as regular program lines, e.g., LT001 DC 8. Thus, the literal

processor reads and writes character lines; the assembler it-

self has no capacity to process literal constants.

-79-

.80.

Figure 5 shows how LITS works within CDISK; its role in

FOISK is analogous.

S.3 The Foraet of Literal Constants

Four main types of literals may be used in the Operand

field of an instruction:

1. Data Type. Generates a DC with literal text operand.

2. EBC Type. Generates an EEC with literal text operand.

3. DHES Type. Generates a DHES with literal text operand

4. Instruction Type. Generates an instruction. Literal

text is replaced into col. 27 onwards, with the BAR

character 'I* indicating a Tab to next field.

These are written as follows:

1. Data Type. «'Text' or more siaiply 'Text* (Equal s»n

siay be omitted.}

2. EBC Type. -fc'Tcxt' where Text should have periods

at each end as required by the

EBC pseudo-op of the asscabler

5. DNES Typs. -D'Text*

4. Instruction Type. -1'OP|Tag|Operand|Comments'

A literal may be used anywhere in the opaand field pre-

ceding the first blank, just as any other symbol. The literal

text is delineated on the right by scanning from the right for

the right-most prime. Therefore, primes should not be used in

comment fields.

I

81

The pseudo-op LTORG causes the literals accuaulated since

the beginning of the prograa (or since the last LTORG) to be

written out. (In a long progra« it is advantageous to use

several LTORGs so that literals «ay be kept within short-in-

struction range.) The END line does not dump literals; an ex-

plicit LTORG Bust be supplied.

Two literals with identical text will generate only one

literal constant (if they are not in different LTORG sections).

Two literals with different text will always generate different

constants even if the assembler may evaluate their text identi-

cally (e.g., '8' and '/8' will generate different constants).

Figures 4 and 5 illustrate the use of literals.

ä. 4 t!ow to Use CDISK. FD1SK, and the Modified Assembler

CÜISK: Place your card deck in the following sequence:

//JOB
//XEQ CDISK FX
...Your assembly deck, terminated with END card...
//ASM name
•LIST
•PUNCH
•SYSTEM SYMBOL TABLE
etc.

•STORE
•STOREMD
//END
//XEQ

Optimal assembly control cards

J Optional DUP control cards

J Post-assembly options

i

82-

FOISK:

The source prograa must be in a disk character-file,

numbered NNN say. The assembly card deck should be as follows

//JOB
//XEQ FDISK FX
bbbNNN
//ASM name
•LIST
•PUNCH
•SYSTEM SYMBOL TABLE
• tc.

•STORE
•STOREMD
//END
//XEQ

Your decimal file number, right-
justified in the first six columns

Optional assembly control cards

special star-in-column-21 card

] Optional DUP control cards

J Post-assembly options

Literal constant listing:

If, and only if Data Stdtch 2 is OFF, literal constants are

listed as they are encountered. Each LTORG causes a blank line

in the listing. Error procedures:

Error Effect Correction procedure

END line missing CDISK:
•IDS RESTART' typeout

FDISK:
'NO END CARD' typeout

CDISK: Insert END canl.
assemble again

FDISK: Abort job^,
insert END in file,
assemble again.

Format error in
literal

'FORMAT ERROR' typeout Abort job,^ fix the
format error, as-
sembler again.

LTORG line mis-
sing

Assembler reports un-
defined symbols

Insert LTORG, as-
semble again.

'Abort job' means 'Press console interrupt with Sense Switch 7 ON.'

83-

Literal format errors:

a. The next character after an ■_ is not J_, 0, L, or I.

b. The right-hand ^ is oaitted; only one ^ in this

operand.

-84-

to

M It
y ^

■H «4
MU.
O

5

u

• «-N
- '< x ■

M «

O • M
S a. <

"3 it
it * ~*
•^ -^ ^ ■
O f« m
X o. <

c
o

■
a
o

^3 ■
U
i/l
i/l
<
■3

-3
0

■
3

-85-

* c
V fi
^ M

■ V 3
i) (j a
«1 0 *>
M h 3
rf a. r»

•
M

«« "5
e ■

•«* •-

t

A-^ fix« 1 1 "*"*

1 r^
** ■

•v o t> 0»
-< ^ -^ v rt
•- ■ .0 c ■
3 >. -3 •H —

SO 10 H _]

u
it

■

•<

a.

c
o

I«

a
O

<

0

e
u
in
I«
<

1/1
a

a.

3

-86-

Llnelaage
After
Replace-
ment

ASM
Disk

LITS

Figure 3. Operation of LITS within C DISK

87.

• EXAMPLE OF 1800 LITERAL PROCESSING

ABBREVIATED FORMAT
FULL FORMAT
HEX LITERAL
CHARACTER LITERAL
ADDRESS CONSTANT

RETUR NOP
DEMO LD •IOO'

-^200' A
A •/sooo'
M '.A'
LD L •RETUR'
LDX LI BASE-'lOO'
LTORG

BASE EQU •
LTORG DUMPS LITERALS HERE

DC -E'.CHARS.' EBC TYPE LITERAL
• NOTE THAT EBC LITS NEED PERIODS IN IT

LD -D"RHELLO'E' DMES LITERAL
LD -I 'NOPMISWITCH' INSTRUCTION LITS
LD -I'WAIT*
LD L -I'BSCjl IRETUR'
LTORG DON'T FORGET
END DEMO

Figure 4. Example of Literal Usage:
Source Listing

88-

// JOB
// XEQ CD1SK FX
LTOOl OC 100
LT002 DC 200
LT003 OC /8000
LTOOl» OC .A
LTOOS OC RETUR

LT006 EBC
LT007 ONES
LTOOS NOP
LT009 WAIT
LT010 BSC

.CHARS.
'RHELLO'E

I RETUR

SWITCH

// ASM
•LIST

OEMO

0000
0001
0002
0003
000U
0005
0007

0009
OOOA
0008
OOOC
OOOD
OOOE

0
0
0
0
0
01
00

0
0
0
0
1

1000
C007
8007
8007
A007
CUOOOOOD
65000005

006k
00C8
8000
00C1
0000

OOOE 1 OOU

OOOF
0010
0011
0012

0
0
0
01

C007
C009
C009
CU00001C

• EXAMPLE OF 1800 LITERAL PROCESSING

RETUR
DEMO

LTOOl
LT002
LT003
LTOOl»
LT005
BASE

NOP
LO
A
A
M
LD
LDX
LTORG
OC
DC
OC
DC
DC
EQU

LTOOl ABBREVIATED FORMAT
LT002 FULL FORMAT
LT003 HEX LITERAL
LTOOl» CHARACTER LITERAL

L LT005 ADDRESS CONSTANT
LI BASE-LT001

IOC
200
/8000
.A
RETUR

LTORG DUMPS LITERALS HERE

0011» OOOF
0017 000b
001A 0 1000
0018 0 3000
001C 01 (»C800000
001E 0001

NO ERRORS IN
DEMO
DUP FUNCTION COMPLETED
// END

DC
• NOTE THAT

LO
LO
LO
LO L

• LTORG
LT006 EBC
LT00 7 OMES
LTOOS NOP
LT009 WAIT
LT010 BSC I

END
ABOVE ASSEMBLY.

LT006
EBC LITS NEED

LT007
LTOOS
LT009
LT010

EBC TYPE LITERAL
PERIODS IN IT
OMES LITERAL

INSTRUCTION LITS

.CHARS.
•RHELLO'E

RETUR
DEMO

DON'T FORGET

SWITCH

Figure 5. Example of Literal Usage:
Assembly Listing. 1

-89

6. 1800-PDP-7 INTERFACE

6.1 The "Minor" 1800-PDP-7 Interfax

This interface provides full-duplex sin^e-character

transfer capabilities between the IBM 1800 and the PDP-7 under

direct program control. Data transfer rates of approximately

1000 8-bit characters per second make it the fastest 1/0 device

currently (September 1968) on the PDP-7. This section describes

the interface as it currently functions, but does not describe

facilities physically present but non-functional.

(This interface is the patched-up remains of an interface

intended to provide block transfer capabilities but which was

never completed. The current capabilities were completed to

provide some interface until a suitable new design could be pro-

vided and built. Heavy use has been made of even this limited

interface.)

The interface consists of an 1800 digital register output

and digital voltage sense input 1/0 options connected to the

1800 via a data channel, and some additional hardware biilt

specifically for this application. The latter contains two reg-

isters called(for historical reasons), TBUF and COUNT, and

three PDP-7 program-accessible flags used for control purpose-;.

For use of the interface from the 1800, the reader is re-

ferred to the biuiography IBM 1800: Functional Characteristics.

The following notes are offered in addition. Both digital-in

and digital-out use the "external sync" options to synchronize

-90-

with the remainder of the interface. The digital-in must be

initialized before any inpjt can be accepted from the PDP-7.

On digital-out, the operation-complete interrupt will occur

when the li it word has been transferred from 1800 core memory

to the digital-out register. However, the digital-out device

becomes "not busy" only after the external device has accepted

the data from the digital-out register and returned the sync

signal. Thus the 1800 must use the digital-out device status

word (OSW) to determine if an output operation is really com-

plete .

FLAGS

Three flags are provided tothe PDP-7 program for control

purposes. The REQDN718 indicates that a word has been trans-

mitted to the 1800. The INTRQ18 indicates that the 1800 has a

word for the PDP-7. The INTENBL flag enables REQDN718 or

INTRQ18 to make an interrupt request to the PDP-7. If interrupts

are on, then an interrupt will result.

The INTENBL flag is set by the SET command. The flags

are cleared by a CLR command where the flag(s) cleared are spec-

ified by bits in the accumulator. Bit 0 refers to INTENBL,

Bit 1 to INTR18, and Bit 2 to REQDN718.

Two skip instructions are provided to allow testing the

state of the flags. SKIP718 will cause a skip if the REQDN7.8

flag is set. SKIP187 will cause a skip if the INTRQ18 flag

is set.

91-

Note that the PDP-7 Clear All Flags (CAF ■ IOT 3302) will

also clear all three flags, as will pressing START on the

PÜP-7 control panel.

TKANSFLKS FROM PUP-7 TO 1800

The 16-bit TBUF register is loaded from the low-order 16

bits of the PDP-7 accumulator by the LDTBUF command. When this

word has been loaded and the 1800 has a read (with external sync)

pending on the digital-in device, then that word is transferred

from TBUF to 1800 core as specified by the digital-in data chan-

nel. If that transfer satisfies the word count for the channel,

then the 1800 may be interrupted by the operation-complete

state of the data channel. In prictice, the 1800 must always

maintain an outstanding read on the digital-in in order to be

responsive to PDP-7 action.

The transfer of the data from the TBUF to 1800 core causes

the REQDN718 flag to set, indicating that the requested trans-

fer has taken place. The state of this flag may be sensed as

explained above.

TRANSFERS FROM 1800 TO PDP-7

Transfers from the 1800 to the PDP-7 are initiated by the

1800 writing to the digital-out device. The digital-out in-

dicates by an external sync signal that it has data to be trans-

ferred. If the INTRQ7 18 flag is not set, then those data are

transferred into the J^-bit (yes, twelve) COUNT register, and

the INTRQ18 flag set indicating data are present. This flag

92<

■•y cause an interrupt or be sensed. The data are read into

the accuaulator of the PDP-7 i_n ones coaplewent for» by the

RDOATA instruction. The INTRQIS flag may then be cleared, there-

by enabling the next word to be transferred from the 1800 to

the COUNT register.

INSTRUCTION ASSIGNMENTS

The control instructions for this interface have the follow

ing encodings:

LDTBUF • • I0T 2744

RDDATA i . I0T 2751

SKIP718 • • I0T 2702

SKIP187 • • I0T 2722

CLR • i I0T 2701

SET • IOT 2704

BIBLIOGRAPHY

IBM 1800: Functional Characteristics. Form A26-5918.

IBM 1800 Timesharin£ Executive System: Concepts and Techniques,
Form C26-3703.

PÜP-7 User's Handbook. DEC No. F-75, Digital Equpment Corpora-
tion, Maynard. Mass,. 1965.

Brown. P.J.. ML-1 User's Manual, available from DECUS. DEC
User's Society; summari zed in Communications of the ACM,
Vol. 10, No. 10, October 1967. pp. 618-623.

PDP-7 Symbolic Assembler Programming Manual. DEC No. 7-3-S.
Digital Equipment Corporation, Maynard. Mass.. 1965.

Brender. R.F., Use of DDT with "lnterrupts-0n" Programs.
Technical Memorandum. Concomp Project. Universi ty of
Michigan. Ann Arbor. July 1967. 9 pp.

MACRO-9 Assembler; Programmer's Reference Manual. DEC-9A-AM9A-D,
Digital Equipment Corporation. Maynard. Mass.. 1967.

Frantz, D.R., Brender, R.F., and Foy, J.L. Jr., L0C0SS: A
Multiprogramming Monitor for the DEC PDP-7, TechnicaT
Report 10, Concomp Proj ect. Uni versi ty of Michigan. Ann
Arbor. October 1968.

Brender. R.F.. and Foy. J.L. Jr.. Flexible High-Speed Interface
between IBM 1800 and DEC PDP-7 Computers" Technical Report
12, Concomp Project , University of Michigan, Ann Arbor,
October 1968.

Deutsch. L.P.. and Lampson. B.W., "An Online Editor," Com-
munications of the ACM, Vol. 10, No. 12, December 1967,
pp. 793-799.

PDP-7 Symbolic Tape Editor Programming Manual, Digital 7-1-S,
Digital Equipment Corporati on, Maynard, Mass., 1965.

-93-

J

Unclassi fled 94
»"•Mnn ClJi«i(if«tion

DOCUMENT CONTROL DATA R 4 D

• (/M'O'S* TINA «c ' ■ ' ' ■ » rp.^«!« •wrh«r;

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

Unc1 ass i fi ed
I» oaou»

SPECIALIZED SYSTEM SOFTWARt FOR INTERACTING DEC P[)P.7 AND IBM 1800
COMPUTERS

Technical Report II
■ Ati *MO« »1 (Ftf*9 nmm*. mtdrfl* min«/, '•tfn««-»

R.F. Brendcr, U.R. Frantz, J.L. Foy, Jr., and T.W. Schunior

December 1968
■• TOTftl NO O* •■•61«

93-
'k NO O'KI't

DA-49-083 OSA-3050
h • »o • . • -.o Technical Report 11

O '«I • «I »O» ■ NOItl 4n. oM»r numhmrt Ifitl mar »• •• /• »

Qualified requesters may obtain copies of this report from DDC

Advanced Research Projects Agency

• • »• . *

A collection of programs written for interacting DEC POP-? and
IBM 1800 is described. These programs provide:

~~& device support for interaction between 1800 and PDP-"

2s a serial-by-character logical file system on the 1800 disk
(2310) for use by both computers,

S« a file manipulation utility package,

' Jr a file-oriented text editor running on PDP-7 used for prcparinj
both PDP-7 and 1800 programs,

5» modifications to the assemblers of each computer to read from
the logical file system, and

$_,y a keyboard-oriented debugging package for the 1800.

A (temporary) single-character full-duplex interface between 1800 and
PDP-7 is also described.

DD '0- 1473 Unc1 ass i fi ed
Sr> u'i'> < I..'.■.ihi ^ti n

.

Uncl*|ilfisa -95-

• i • aoaoi

DEC PDP-7

IBM 1800

Interactive Computers

File Systems

Keyboard Debugging

Mult i process i ng

Text Editing

■ on • OLf

Unclassi fied
Security Cla*«irics(inn

