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Abstract:

The incompressible laminar boundary layer

equations are solved for flow about a sphere
and an ellipsoid using a finite difference

scheme. The effects of voriex stretching
the momentum and vorticity eguations are
studied.
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CHAPTER

INTRODUCTICN

The primary purpose of this study is to develop a rapid and
accurate method for solving the incompressible laminar boundary
layer equations for axisymmetric flow using & digital computer.

In order to obtain some qualitative insight into the trends exhibited

by model calculations, the effects of vortex stretching on the

momentum and vorticity equations are studied.

There are many methods available for obtaining solutions to
the boundary layer equations; a fact easily verified by consulting

a standard reference such as Meksyn {1961}, Rosenhead (1963) or

v A o — St

Schlichting (1960). The majority of these techniques can be

S

classified as follows: (1) momentum integrsl methods, (2) correia-
tion methods, (3) infinite series method and (4) finite difference !
procedures. In general, the first two techniques are approximate
procedures in the sense that the original equations have been
compromised. The infinite series and finite difference methods,
on the other hand, are considered to be theoretically exact in the
limit, that is, for an infinite number of terms and vanishingly
small siep lengths, respectively. Since it is ivpossible to

discuss all of the individual techniques in each category, only a

few representative examples are discussed below. J



The Pt’.ﬂ'ﬂh'zmseﬂ]2 and ThwaitesM methods are welli-known
examples of the integral and correlation techniques. tIn the first
of these, a polynomial expansion for the velocity is assumed and
then the momentum integral aquation is solved. Thwaites' procedure
Is based on an empirical correiation of existing exact and approxi-
mate flow solutions. Using this known data, Thwaites tabulated
various boundary layer shape parameters from which approximate
values for the momentum and displacement thicknesses can be readily
determined.

The method described by Frossling‘2 is typical of the
infinite series type of solution. Here, the body contour and the
potential flow are expressed as power series in x (distance
measured along the body). The stream function is also expanded
in an infinite series in x with coefficients depending on the wal’
distance y. These series are then substituted into the boundary
layer equations, written in terms of the stream function and,
consequently, an Nth order set of ordinary differential equation-
results for the unknown coefficients.

Finally, the Hartree-HomersleyS scheme is considered as an

illustration of the finite difference type. 8riefly, this technique

utilizes a simple transformation of the momentum equation in which
X, y remain essentially as independent variables. The region of
the boundary layer is divided into vertical strips and the trans-

formed momertum equation is solved numerically at each step.
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The method chosen for this paper is based on a finite
difference procedure developed by A. M. 0. Smith and Darwin W.

Clutter]3

which is actually an extension of the Hartree-Womerslay
scheme. The most important reasons for its selection are

(1) it is more accurate for a wider variety of problems than the
approximate integral or correlation techniques, (2) there is

considerably less computational work involved compared to the

infinite series approach when high accuracy is required, (3) it

exhibits a greater degree of numerical stability than other finite

difference methods, and (4) the equations on which this procedure

is based are free of singularities. In the adaptation of Smith's
and Clutter's method, the ''starting'' procedure (see Reference 13
and Page 20 of this study) for the integration of the boundary
layer equations and the process for obtaininc the final solutions
for the shear stress and velocity profiles at each location along
the body were revised.

In the sections that follow, the necessary equations and
the method for their solution are developed. The relevant computer
program presented in Appendix A was executed for a sphere and an

ellipsoid, and the results are discussed in Chapter IV,
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CHAPTER |1

DEVELOPMENT OF EQUATIONS

Boundary Layer Equations

The equations to be solved cover the case of axisymmetric,
steady flow past a blunt-nosed body of revolution. The curvilinear
coordinates of a point P in space are taken as (x, y, 5). The
basic notation and scheme of coordinates is shown in Figure 1I; u,
is the free stream velocity, and U{(x) is the velocity in the
x-direction just outside the boundary layer. Theta (6) is the
angle between a fixed meridian plane and the meridian plare
coniairing P. The surfaces F, = constant and Fz = constant are
taken as surfaces of revolution about the axis 0X, and are such
that, if C is the curve of intersection of the surface of the body
by a meridan plane, then the sections of the surfaces F] = constant
and rz = constant are normals to C and parallel curves to C,
respectively. Consequently, Pl may be taken as the distance x from
the forward stagnation point 0 measured along C, and F2 as the
normal distance y from the surface. Here u, v, and w are the
components of velocity in the directions of increasing x, y, and
8, respectively; and L the body radius, is the distance from PC

to GX, so that s is a function of x alone. The coordinates
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Coordinate System

Figure 1
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(x, y, 8) form a mutually orthogonal system with the following
metric coefficients:

hx=l+Ky,

and

hezr-ro+ycosc,

where K (a function of x) is the 'ongitudinal curvature and r is the
radial distance from P to OXl].
For flows at high Reynolds numbers, around bodies whose

local radius o is large compared to the boundary layer thickness

¢ (that is, 6/r0 << !) and whose surface contains no large variations

2 2

in longitudinal curvature {e.g., sharp corners where d ro/dx
Q
becomes infinite) so that dK/dx ~ 1, the product K& is small”.

Hence, the above metric coefficients can now be approximated by:

h, =1, (m

and

where the domain of y is restricted to the boundary Iayerh’ IO'
Since the motion is independent of 8 and w = 0, the boundary laver

\ 4, &, 10, 12
equations are:

Lo R e ok 1 bR
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NI vy, EEE (Momentum) (2)
ox Ay dx 2 ’
dy
and
alur ) alvr)
e i vk 0 (Continuity). (3)
The boundary conditions are, with the subscript w denoting wall
conditions:
y =0 : u, = 0
v =0 (4)

y == u— U,

Equations (2) and (3) can be combined into a single equation

through the introduction of the stream function wlo Let
B—l——:é-—. .—Bi
YT 3y (wro) ay
o
and
dr
z-l a A =~aw-w—..__°_
v F—'g_ (Vro) X ro dx
The resulting equation is:
3y éig- __i U ——-+ _ii (5)
Jy oxdy Bx = v 3 i 3

with the boundary conditions:

: aw = ! a
0 : (W w 0, Vw 0,
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and :
3

Y"’“’lgi-'u(x). (6) ?

Y

3

A more convenient representation of Equation (5) is obiained :
through the use of a transformation first introduced by Falkner é
and Skan“. In their transformation, a dimen:zionless height n and ?
§

a dimensionless stream function f are introduced: :
nesx) ve ¥= (Uux)® fix, n). (7) 1

3

If the relaticns (7) are substituted into Equation (5), and if ;
of/on is represented by f', etc., then the following ejuation %
results: %
(K2 2 - H+] i) 12 - 1 af. - il .a_f_ i

f =5+ RJFE1 + M(f 1) +x|f e f = |- (8) :

The term R = i is a measure of loczl increases in body radius, %
M = 3-%%-!5 a pressure gradient parametzr, and f' = %. The boundary :
i

conditions for Equation (8) are: ‘
- M ! = =

n=20: fw 0, fw 0 :

nd (9
rn —+ o 3 f! — 1. z

For cocmputational purposes, It is necessary to obtain the i

third derivative of f evaluated at the wall. From Equation (8)

and the application of the conditions (9), it can be shown that




fil = oM. (10)

Considering Equation (8), when R = 0 and M is constant, the
bracketed expression containing the partial derivatives with respect
to x vanishes and the following ordinary non-linear differential

equation is obtalnedh:
f1rw -(-—-—H;])ff“ T

This relationship provides a family of ''similar' solutions.
A final transformation is applied to Equation (8) for the
purpose of numerical calculations. The quantity ¢ is introduced,

such theat:

f'¢+n’

fl =g +1, ()
and

' = ¢'', etc.

Equation (B) becomes:

0w (B R )toem) o o mio? 200 4 x [0 +0) B - 0 gg]

(12)
with the boundary conditions:
n=0:¢ =0, ¢' = -1
and ) " (13

n—w: ¢' — 0.
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Equation (12) has several noteworthy advantages over other
possible representations: one is the fact that the starting process
is very simple. At x = 0, all x-dependence is removed, leaving
only an ordinary diffsrertial equation to solve. A second advantage
of Equation (12) is that almost all of the variation in boundary
layer thickness has beer eliminated. The thicknress in the transfcrmed
system seldom varies by more than 50 percent over a range of x,
whereas the actual physical boundary layer thickness might vary by
@ factor of 10 or higher. Finally, it is very important to note
thac these equations are entirely free of mathematical ‘pathologies.'
They are well behaved a3t x = 0, and solutions of Equation (12)

exhibit an asymptotic convergence nature for large nz’ ]3.

Displacement Thickness and Skin Friction

The displacement thickness 6' is given bylz:

& = r (1-%) dy.

0

In nondimensional form, this becomes:
)
* ! Ux
6] -‘;~‘i " fa (1-f') dn.
/
o]

After utilizing Equations (9) and (11}, the nondimensional

displacement thickness becomes:

{
i

PRIPR PPV

[




H

&5 = lim (n-f) = - ¢_. (%)

]
R
The local skin friction coefficient Cf is defined as the
ratio of the local shear stress T at the wall to the local dynamic

pressure outside the boundary layer. The relation is:

du 3 3
d w v "oe v T
Ce = D I 2 (G fu=2G0 e (15)

where

du U3 ¥ " U3 ¥
o4y P - £ =l 2 ¢’Il.
dy) W VX w X w
*
The parameters 6] and f: are very useful in studying the
growth of the boundary layer and the variation in skin friction
along a body's surface. fGraphs and some additional discussion of

these quantities for a spherical and an ellipsoidal body are

presented in Chapter !V,

Vorticity Relationships

The coordinate system illustrated in Figure 1, the assump-
tions made on Pages 4 and 6, and the metric coefficients
Equation (1) are used here to develop the vorticity equation. It
is assumed that v is negligibly small, and the magnitude of the
gradients in the y-direction is much greater than the x-wise

gradients. Also, since w = 0 and the O-wise gradients are zero

A 19 B AN TR A YWY AL SN T W VAR a4 A Tt 50

ey




for axisymmetric flow, then it is a relatively simple task to show
that the only significant vorticlty component is the & componznt
[

W, . The relation for w,, consistent with the approximations made
2} g PP

above, is:
_ du
W, = 3y (16)

The momentum Equation (2) is differentiated with respect to

y and rearranged to give:

2 .
3 [3u 3 (au _ufdu g_v_) 3 [
u;—x- W)+ V-a-y—(ﬁv)- -g-—y-' 3% + ay + N ayz(ay)- ('7)

Now, the indicated differentiations in the continuity Equation (3)

are carried out, yielcing the expression

dr
du _3dv _ ¢ "0
ey T (18)

Finally, tquations (16) and (18) are substituted into Equation (17)

to obtain the vorticity transport equation:

2
w w w.u dr 3w
u -;9-+ 3-9-- ;EL-E;E + v i . (13)
y 3y

The terms on the left-hand side of this relation are the familiar
convection terms. The last term.s recognized as the rate of change
due to molecular diffusion of vorticity. The first quantity on

the right-hand side of Equation (19) is a veriex stretching effect.
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{f thic term is rewritten as:

Wgu @ l2nr°)

Inr dx

then it clearly represents a change in vorticity due to the extension
or contraction of vortex-lines resulting from the variation in body
circumference with x. There is an intensification of vorticity due
to the extension of vortex-lines when d(Zﬂro)/dx is positive‘.
Consequently, the vortex stretching term is a source of vorticity
for bodies whose radius increases downstream.

In order to study the terms of Equation (19), it is again
convenient to introduce the stream function y for u and v and the
transformation defined by Equation {7). The nondimensionalized

terms of the vorticity transport equation become

ow
u SX— 3FH
—_—— - | x =+ 3 (3M-1) f} f* (u-convection),
UZ U 3 ax
s )
a“e
Yoy af :
—9 . [; — + 1 (1+M+2R) ﬁ] f'''  (v-convection),
u2 u )i 9x
x \ux
r dx
o

U™ fu

x VX

.ir___ijq-- - Rf'f {stretching),

AR st A S T

erear e b g AR i
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and
2
' dwg
3 iv
.- f (diffusion).
) ¥
.u__(!_
X \ vx (z0)

Each term of Equation (19) can now be computed from the solutions

obtained for Equation (12).
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CHAPTER |11

METHOD OF SOLUT!CH

Basic Scheme

The method of solution that is used in this work is based
on a method developed by Smith and Clutter‘3. They replaced the
x-wise partial derivatives in Equation (12) by finite difference
approximations as originally suggested by Hartree and Womersley
(1937). The equation is converted to an ordinary differential
equation. |If the flow in the x~direction is divided into n
stations, then the ordinary differential equation has to be solved
n times in succession, since M and R as well as ¢, ¢', and ¢'' vary
with x. The numerical methods used are a form of the ordinary

finite difference treatment since discrete variable approximations

are made in both the x and n directions.

Solution in the x-Direction

Two finite difference representations of Equation (12) are
possible. The first is called the 'point"” form. Here, the
differential equation is written to apply at a point; that is, the
x-derivatives at a point are replaced by their finite difference
equivalents. The second treatment is to deal in terms of mean
values of the variable ¢ over a finite region; this is referred to

as the "mean'' form.
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Aftar extensi : calculations, usling both the ‘'point' and

Ymean’' forms, Smith and Clutter fourd that tne ''point'' forms were

generally more accurate and exhibited a greater degree of stability.

tn particuiar, the “poirt’’ form with three and four points proved
to be the most accurate of a]ll3.

The basiz scheme of the finite dJifference representation is
illustratad in Figqure 2. The variables M and R are known as

functions of x. The lines x_, x X .q» €tc., partition the

n-1"
X, n space intc a number of regions. Since Equation (12) is
parabolic in form, it must be solved in the directioun of increasing
x. it is assumed that the solution ¢ (n) and its derivatives ¢'
and ¢"' (1) are known at all stations up to 2nd ir 'nding x .

The problem is to obtain the solution at X To accomplish this,
the "paint'' method is applied to Equation (12) at X .

‘he two, three, and four-point 'point'’ forms that replace
th: x-wise partial derivatives in Eguation (12) are easily obtained
by diffcrentiating the Lagrangian interpolating polynomials of two,
three, and four points, resnpectively. In the actual ccmputer
prugram, these formulas are written tc handie unequal step lengths.
For the sake of simplicity only, the four-pcint formula for equal
step length is presented here.

The four-poirt fo.mlas for (@Q) and (29:) including the

ax/ n ax /n

error terms are:
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lﬂ"s Kn-z Xp=i

Figure 2 Coordinate and Notation System
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) . oy 1800 ¥ 300 " Wy L tand et 2n
x/n 64x 1A ax& 4 ‘
and
Tig! = 18¢' . + 90! _ - 20! Loa X b
%) . n n-1 Tn-2 n-3 ., (ax)” 8 ¢'(%)
(ax n 6hx * axh ’ (22)

where x__, < &(x) jhxn3. The error terms irdicate that these
relationships are of third-order accuracy and become exact for
third-degree polynomial variations.

If Equations (21) and (22), without the error terms, are

substituted into Equation (12), the following equation for the

four-point approximation results:

(Hn +1 2 Xn It
¢ =" 7zt Rn (¢n+n) L (¢n + 2¢n) * EE;: (¢n+l) 'I]¢n

T By ¥ 9Lt 20 5) - o (100, - 180,y v 90, - 2¢n-3ﬂ-
(23)

Consequently, Equation (12) has been transformed into an ordinary
non-linear differential equation at X,

It is important to observe that the ratic x/Ax, rather than
the step length Ax, is a primary parameter. In fact, Smith and
Clutter found that this ratio should not exceed 25 for a stable

solution using single-precisicn arithmetic on a digital computer.
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Solution of the Ordinary Differential Equation

The crdinary differential Equation (23) is solved with a
predictor-corrector {or extrapoiation-interpolation) technique.
The formulas used in this method are developed 1n Collatz' bookz.
The four=-point predictor relationships written in Lagrangian

form, including the local error terms, are:

h2 h3
e Oy P RO] g O g 1886 - 236, 4 T28, - '7"’"1'13]
t = &' + hd'! + hz 23441 - 26[‘ i + 1 9¢IH - 38 i + 0(h6)
i+1 = 93 * heT * 3gp 3239 Oyiy v 155%7pm 3597, '
(25)
and
¢Iil+l = ¢'i| + %.‘.[55¢|i|| - 59¢‘i|.'] + 37@1{12 - 9¢|i113J+ o(hS). (26)

The corresponding corrector type equations are:

P

@, i [E N . iy 1ns 7

i+l ¢i + h¢; M

(27)
[ = '+ hel + h2 35 " + ]7|¢u| - 36 e 4 7 it - 0h6)
i+1 = @0 T RO 3g5 | 359 i SR IMEAI RN R

(28)

and

" 1 h 1 e _ 1o 1t - 5
el T 75[9¢i+l * 19T - e, e -ZJ 0(h?). (29)
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In tnese formulas, h !s the step length in the n-direction ard i
Is the step count. The procedure is to make a prediction by means
of Equations (24), (28}, and (26). Using these values in Equation
(23}, ?Li is computed; then, Equations (27), (28), and (29) are
employed tc obtain improved results. As a consequence of the fact
that the above relationships provide a high degree of accuracy,
this single improvemert is sufficient for each n step.

The solution is started at the first point by a Maclaurin
expansion which is used as a predictor. The series for ¢ has the
form:

h2 h3

¢p =9, t e+ =0, * T o' (30}

and similariy fo ' and ¢''. The 1 f ¢ ' and 3" a

Y r ¢p n ¢p values o ¢p' ¢p ¢p re
substituted into Equation (23) to find the extrapolated quantity
AN

vp . These extrapolated values are used to compute improved values

by Obrechkoff's corrector type formula (Hildeorand, 1956):

- 4.E( LS 1) _hz (n_ n)+h3 ("""¢“')"°(h7} (3‘)
b=, *3 ¢p ¢, 1o ¢p ¢ 50 ¢p W )

w

with corresponding relastions for @é and ¢2. An improved value for
¢''" is now computed from Equation (23). The improved quantities
¢c' ¢é and ¢g are now substituted for the predicted results @p,

¢; and ¢; Into equations of the type (3!) to produce further

improved values. This iterative process is repeated several times

until the convergence of ¢%' is effected. This method of integration

e

2,
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Is now extended to the next two points by using two- and three-
point formulas of the same family as the four-point relations
presented above. Finally, the four-point formulas can be utilized.
A constant r-step length h is used except for the first four
points where its values is h/4. The same n-step sizes are used
throughout the entire x-range since most of the variation in

boundary layer thickness has been removed (cf. Page 10).

Integration Procedure

In general, a non-linear boundary value problem with two-
point boundary ¢anditions, one point being an asymptotic condition
atn = = can pe rather difficult to solve. However, in this case,
a simple method consists ~f solving it as an initial value problem
using an arbitrary value of tne unknown condition ¢: at the initial
po.t. It is then necessary to search among the single infinity of
possible values of the unknown condition for the particular value
which allows the boundary conditions to be satisfied asymptotically
at the second point,

The essence of the present method is to seek in a systematic
manner the value of ¢: such that Equation (23) is satisfied in

conjunction with

¢$=0, ¢ =<1 atns=20,
and

o) < atnan,

e e -

O .
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where € is a prescribed small quantity. The detailed process,

itlustrated In Figure 3, is as follows:

1))

2)

3)

b)

5)

Choose an initial estimate for ¢: and a value

for n.

Solve Equation (23) by "marching' outward away

from the wall using the technique ocutlined in the

preceding section.

Continue until

(a) ¢' > =€, or

(b) n = 0.

I1f 3(b) occurs before 3(a), then the initial estimate

for ¢: was too low. Therefore, ¢: Is increased by

an appropriate amount 3, and the process is started

over again at step 2. This case is indicated by

curve (a) In Figure 3.

if 3(a) occurs, then there are three possibilities:

(a) o'/ < € and n = n_. When this occurs, an
acceptable solution for ¢x has been found.
This situation is represented by curve (b) in
Figure 3.

{(b) ¢' > ¢ (high trial). This indicates that the
initial estimate of ¢: was high. It is reduced
by a small amount 3, and the process is repeated

again from step 2. See curve (c) in Figure 3.
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(¢) ¢' < €. Continue '"marching until either 5(a)
or 5(b) occurs or ¢' becomes less than -¢. If
¢' < - {low trial), then the initial value for
¢: was low and a new estimate is found by adding
a smail increment 33 and then the procedure is
started over again at step 2 {curve (d) in Figure
3).

When a high and a low trial are found, a new value
for ¢3 ls obtained from the arithmetic mean of
these trials. This averaging will lead to conver-
gence because ¢! varies almost linearly with ¢;

for a wide variety of flow probtlems investigated by
Smith and Clutter.

After step 6 has been executed, the estimates for
¢; are continually improved by taking the mean

of the best high and low pairs.

When three values of ¢: are obtained that satisfy

the condition that [¢'| < € and n = then the

LI
final solution is found by forming a simple three-
point interpolation.

Proceed to the next x-station and use the final value

of L from step 8 of the previous station as the

initial guess for ¢:.

B, 2 N Al A Wik0 G, S
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it should be mentioned that thls method |s not completely
devoid of difficulties. As the integration proceeds downstrean
in the x-dlirection, a great sensitivity to initial estimates of
¢u develops. f{n fact, it becomes virtually impossible to find any
solution where ¢' is kept within the range + €. This problem is
most probably a result of the following causes: (1) the value of
n, and the associated asymptotic boundary condition; (2) the value
of €; (3) the accumulative error due to the product of the four-
point-interpolation errors with the ratio x/Ax; (4) round-off error;
(5) a coupling effect of all or some of these factors.

After a considerable number of trial calculations, it was
found that this difficulty can be effectively overcome by lowering
n, and increasing € by small increments. However, these changes in
either n_ or £ should be kept as small as possible in order to

minim{ze the attendant error in the final value of ¢:.
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CHAPTER 1V

RESULTYS AND CONCLUSIONS

Discussion of Results

A computer program was written to solve the equation of
motion (12) with the associated boundary conditions (13). The
program was executed for the cases of a sphere and an ellipsoid
with an eccentricity of 1/2 (semf-major axis @ = 2 and semi-minor
axis b = 1.73205) in a meridian plane. The nondimensional displace-
ment thickness &) and f' [see Equation (16)] for both bodies of
revolution are illustrated in Figures 4 through 7. In Table I, a
comparison between the present method and that due to Smith and
Clutter is given for the sphere.

in these graphs. the curves denoted by R = 0 represent the
special case when ro is constant. The increase in boundary layer
displacement thickness is a consequence of the fact that the
vorticity generated on the body's surface Is transported chiefly
due to the action of viscous diffusion, while the effect of convec~
tion towards the wall Is negligible. Whereas, in flows where fo
varies, there ars the opposing actions of convection toward the wall
and viscous diffusion away from It. Consequently, the boundary
layer grows more rapidly and the skin friction (shear stress at the
wall) is smaller in magnitude for the case when o is constant

compared to the case when o varies.
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TABLE 1

COMPARISON OF VALUES OF f; ON

A SPHERE AS

CALCULATED BY THt PRESENT METHOD AND THE
METHOD DUE TO SMITH AND CLUTTER

31

fr! £
8° Present Method Smith and Clutter
0 1.31348 1.31189
30 1.26038 1.25888
60 1.07652 1.09011
90 0.63127 0.6562
100 0.34365 0.3580
1042 0
105.92 0

aExtrapolated values.
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In Figures 8 through 15, the cimensionless terms (20) of
the vorticity Equation (13} have been plotted for several longitu-
dinal locations on the sphere and ellipsoid. Here, the effects of
each term can be observed and the most important of these is
described below,

In the region near the forward stagnation point, the vorticity
produced due to stretching is aimost exactly equal! in magnitude to
the u-convection of vorticity as indicated in Figures 8 and 12.

This is a result of the fact that near the stagnation point u and

wy can be written as:

u = cxf'(n),

and
__au;_c "
we ?Y. s-xf,
where ¢ is a constant]z. In addition, since fo = x,
uwe dro . wwe
r_dx x
o
and, therefore,
2f§ al- s -¢2x i
s ax  ~ 3 J
and
3“"6 ~ -czx

1 £t
u-g;‘—- e,

Rt b b e ..-,m.«-gmw,'_:ﬁ,gq_u_; apsn ootk }
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Here, the diffusion of the vorticity produced in *-~ lower boundary
layer is effectively opposed by the action of - :ctien normal to

the surface.

Further downstream, the counteracting effect of diffusion

becomes very evident (Figures 10 and l4). Since
1 fat 1 3
E'(§7 w o poax'®
from Equations (2) and (15), it is easily seen that
o(52), =12 (32)

So, from Squation (32), the integrated diffusion term is proportional
to the pressure gradient. Now, since dp/3x is negative due to the
acceleration of the external stream, it is apparent that diffusion

is becoming predominant and the vorticity nroduction in the lower

boundary layer (streiching) is transported away entirely by diffu-

sion to higher levels.

e e S —————
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Conclusions

The principal results and conclusions obtained from this

study are summarized by the fcllowing statements:

1) A computer program was successfully developed to
solve the incompressible laminar boundary layer
equations for the case of steady flow at hign
Reynolds number about blunt-nosed bodies of
revolution where there are no large variations in
longitudinal curvature. The method appears to
provide sufficient numericz! accuracy for most

engineering applications except near flow separstion

where the accuracy falls to about two decimal places
(cf. Table 1). Lastly, the program is capable of
providing solutions rapidly, since the tatal
execution time was under three minutes for either
the sphere or the ellipsoid.

2) The local tendency of large vorticity production in
the lower boundary layer creates larger curvature of
the vorticity distribution in the middle boundary
layer. The-+efore, thare is more rapid diffusion
which increases the boundary ver growth and

counteracts the trend towards large values of
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vorticity at the wall. Hence, ue is increased

by only a small percentage, even tnough the local
stretching effect can be very large.

Vortex stretching tends to produce a greater increase
in vorticity in a region close to the surface.
Consequently, skin friction is increased, creating
more rapid growth of the boundary layer which, in turn,

tends to inhibit the increase in skin friction.

|
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APPENDIX A

COMPUTER PROGRAM FOR SCLVING THE BOUNDARY LAYER EQUATIONS

The following computer program was written in the Fortran IV
G language for the IBM 360/67 digital computer of the Computation
Center at The Pennsylvania State University. A detailed discussion

of the method used can be found in Chapter [|11.
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COMPUTER PROGRAM FOR SOLVING THE RUOUNCARY LAYER EQUATIUNS

REAL X

DIMENSION X1{505)14X2{505)14X3(505),X4(505),%X5(3),500L1¢3),50L2(3),50
1L3(3)PREVNIZ5,505)+PREYV]1(25,505)4LW(3N0D}PI{100),PPI(100),PDI(]100
2),PTIHILI00) o XY2(300),EPSL1{25) ,EPS2(25)+ST(400)UVI25)4TA(3),TRIA},V
IELISDS,FSLMISDS)

INTEGER WH(450)

DATA X1/5¥04/74X2/5%0,/4X3/5%0,/,X&/5%0,./

PIA(AJR,CeNyFyFeGeM) = A8{B~]1,)=Cs(D~E)+Fx(GeNH}

PPIA(ALR,CaDyEWF} = =1,+A%(BeC)=D%(E~F)

PDIA(ALR,C,00) = A+Re((C+D)

RFTAL{A R CyDyEyFyGoyXesYel) = A+BSC+0%E+F(188.9G-123,2X+72,%Y-17.%
12}

BETAZ(ABsCyDyE4FeGoeX) = A+BSC+D*( 323 ,3E~264,2F+159,%(5-38,%X)
HBETAZ(A,R.C,DyEWF) = A+BR(55,2( =59 ,%N+37 ,%E-9.*F)

ZETAL (AR, CoDyEsFeGyXoYyl) = AsBICHDPE+FR(1T7.%G+120,8X=2]1 ,5Y+4,%])
ZETA2(A R CoDsBeFsGyX) ® A+BEC4D*( 38, ¥E+1T1 #F-36,%G+7,%X)
IRTAB(ALRLyDsEWF) = A+B2(9,2(+19.3)=5,%E€¢F)

READ SONKPHIDPW,ETAINF M P, A1,S1,LIM,STUPID

READ SO1,(EPSI(M2)yMI35L,L]IM)

READ 801, (FPS2(NZ)NZ=1,L1IM)

REAN 502, 10K ,CK1,CK2,MESS,LOGM, LOGN,LOGO

READ SOS, (UVIJL)eJL=Y oL M)

READ 506, (TA(LAT)4LAT=143)}4(TR(LART),LBT=1,3)

X211} = =1,

X3(l) = PHIDPW

FINANS = X3(1)

XYZ(1) = 1a0an,

FSLN(1) = 0O,

LSD = 0O

LC =0

Hl = H/4,

ETAl = H]

HIHALF = ,5%H]

H1S50 = HiHALFsH]

H1501 = .2%*H150

HICUB = H1®H1S01l/12,

D = M/24,

HSQ = ,5%HaH

HCUR = HSO*H/360.

HSQ1 = HSC/180.

NO 24 LAM = 1, 1M

ICOUNT = D

CALL IDIDT(K,P,TA,TB,LAM, LOGM, LOGN,LOGO)

IF(LAM=MFESS)Y 23,900,900

Lc =1

LS = 0

IH = 1

It =1

MIN = 1

ix =1
MST =
X&(1)
ST(l)
HH( 1) 0

LWil) 0

Pl = =HLI+H1SO*X3(1)+{H1#®H]1SQ/3, )eX6l(])

PPR]L = —1.+H1®X3(1)+N]1SOQ®X&(])

POPRY = X3(l1)eH1eX4(})

PTPR] = TRIP{PREVO.FREVLLAM  EPSIILAM) ETAL42,P1,PPKR1,POPR],EPS2(L

~EPS1(LAM)
x3(1)

n oy o=

.
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1AMj 4 LC tiv)

PItl) = PIAtHIHALF,PPR1 H1SQ1,PDPRLyX3(1)eHICUB+PTPRI,X4(1]})
PP1(1) = PPIA(HIHALF,POPR]IX3{1),H1ISOL,PTPRI,X&(1))

PDIIL) = PDIA(X3(1) HIMALF,PTPRL,X4IL))

PTI(1} = TRIP(PREVON,PREV],LAM,EPSTI{LAM),,ETAL,2,PT1{1).PPIL1).PDI(]]

1,FPS2ILAM),LC,UV)

!

ICOUNT = 1COUNT+]
[ =2

J = I-1

PI(1) = PIA(HIHALF,PPRLH1SOLPOPRIX3{1)4HICURPTI{J) Xu(1)}}
PPICI} PPIA(HLRALF PIZPRLVX3i1 ) oHISRILPTI(I)eX&(]))

PDICT) POTA(X3(1),HIHALF,PTI(J),X4(1))

PTI{I}) = TRIP(PREVN,PREV],LAM,EPSI(LAM),ETAL,2,PI{1).PPILT),PDI(])

1,FPS2(LAM),LC,UV}

2

IF(ABS(PTItT)=-PTI(J)).LE.CKY) GO TO 2

I = I+1

GO Ta 1

ETA = ETA}

X1(2) = 2I(1)

X2(2) = PPIL{])

X3(2) = PNIL])

X2} = PTI(I])

CALL STAMCH{PREVO,PREV14X11{2)¢X2(2)¢X3{2}+X4(2),ETA,H1EPS1{LAM),L

LAMGXT{5),X2(5)9X3{5), XeS) 9 X6l6) 4 Xb{3)3X1(4)eX1{3)9X2(4)4X213)4EPS
Z2{LAM) 4 X4 {1),CK24LE UV X313]1,X3(4),FSLN)

6020

930

932

NM = &

ETA = H

ITILT = ¢

ETA = ETA+H

KK NM-1]

KX NM-2

KY NM-3

KZ NM=&

Y1 BETAL(XL (KK ) yHy X2(KK)} ¢ HSO s X3IKK) ¢ HCUB,; X4 {KK) g XD {KX)y X {XKY) X
1(K2))

Y2 = BFTA2(X2({KK) yHyX3(KK)gHSOLl s XG4 {KK ]y X&(KX)gXe{KY) XSIKZ})

Y3 = BETASZIX3I(KK) HD g XL {KK) ¢ X&(KX)yXo{KY) e XG(KLZ))

Y4 = TRIP(PREVOPREVILAMGEPSTILAM)ETANM Y1 ,Y2,Y3,EPS2(LAM),{C,yU
1v)

XL(NM) = ZETALIXI(KK)qHMeX2{XKK)yHSQOyXI{KK ) HCUBR,rb )X (KX )y Xo(XX)yK%
1(KY))

X2(NM) = JETA2(X2(KK)yHyX3{KK)HSQ1,Yo, XA(KK)yXa{KX) Xe(KY))
X3I(NM) = ZETAI(XS(KK) gHD Yo  XG(KK] ¢ Xa{KX)yXG(KY))

Xe({NM} = TRIP(PREVOPREVLI, LAMeEPSL(LAM),ETA NM XL (NM),X2{NM),X3(NM
1)oFPS2(LAM),LC,UV)

IF(ITILT.FQ.1) GO TO 32

TF(X2INM) GT,.=-K) GO TO 31

IF(ETALLT,ETAINF) GO 10 930

IX = IX+}

XYZ(IX) = ARS(X2(NM))

TF(XYZ{IX)L,GELXY2Z(IX-1)]) GO TO 6020

XLW = X3(1)

MIN = MIN+]

X3{1) = X3(1)+,025

GO T0O &

IF{ABS(X2({NM} ) LE.1.) GO TO 932

X3{1) = S*{HIGH+X3(1))

GO 70 777

NM = NMs)

GO TN 3

ey el At S
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£ 31 ITILY = 1

£ 32 IF{X2(KM)}.G1.F) GO TO 4

IF(X2(NM) ,LT,-K} GO TO S
IF(FTA,GE.ETAINF)} GO TN 8
NM = NMa}
G0 T 3
4 IH = 1M+l
HH{IH) = NM
TFIHH{IH) JLF,RH{IH=1})) GO TO &1
HIGH = X3(1)
41 X3(1) = x3¢(1)-S1
GO TO &
5 JIL = IL+l
MIN = MIN+}
LW(IL) = NM
IF{LW(IL)JLF.LW(IL-1)) GO TO 51
XLwW = X3(1)
1 X3(1) = X3{1)+A]
6 IF{X3(1i1) 3ND1,66,66
66 [F{IH.GT,1,AND.,MIN.GT. 1) GO TU 7
GO0 10 11
7T X3(1) = ,5«(HIGH+XLW)
T77 MST = MSTel
STI(MST) = X3(1)
IF(ST(MST)  FQ.ST(MST-11) CALL CHGETA(ETAINF,X3(1),523,825,FINANS,L
1SCSTUPID.ICK)
GO 1Y 11
A8 ILS = LS+1
SOL3(LS)
- SOL1(LS) X1 {NM)
SOL2(LS) X2 {NM}
X5(LS) = X3¢(1)
1IFILS.FO,3) GN 10 10
[F(SOL2(LS).GT.0.) GO TO 9 3
X3(1) = ,S={X5(LS)+HIGH)
GO TO 11
9 X3{1) = 5{XS(LS)I+XLW)
GN 10 11
10 IF(SOL211)-50L2(2)) 9865,9864,9865
9864 IF(SUL211)~-SOL2(3)) 9865,9B66,9845
: 9866 IFISOL2(2)~S0L2(3)) 9865,9868,9865
3 9R68 FINANS = XS(1)
Gn 10 200
9865 FINANS = NECIT(X5,50L2)
200 PRINT 2000
PRINT 2100, (SOLTILLS)«SOL2ILLS) «SULIILLS) o XS{LLS) LLS=1,3)
PRINT 22ND0,FINANS,LAM,ETAINF,LSD
X3(1) = FINANS
PREVOILAM,]) = 0,
PREVI(LAM,1) = =1,
APl = ~H]1+H1SQ*X3(1)}+(H1%=H1IS0Q/3,)8Xa(l)
1 APPR] = <=1,+HI*X3(1)+HL50%X4&(])
3 APDPRY = X3(1)1+H18X4(])
APTPR]1 = TRIP(PREVO,PREV] LAM,FPSI(LAM) ETAL,2,AP1,APPR],APDPRI],EP
1S2(Lam),LC,1iv)
- Pl(1) = PIA(HIMALF, APPR]I HISOL,APNPREX3(1),H{CUR,APTPR],X411))
PPI(1) PPTA(HIHMALF,APOPR] ¢X3(1},HISQO1,APTPRL,X&(17})
PNICLY) POTAIX3(Ll)HIHALF,APTPRL,X&(1))
. PTI(1) TRIP(PREVO,PREVI,LAM,EPSLILAM),ETAL,2,P1{)),PPI(1),POIL{Y)

1,FP52(LaM; Ll UV ’
o

RRGEETAS S RUARL S B datlU B S ia

P AR

FATPp——

PR R A DS TR,

X3 (NM)

" on

noton
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L =2

Ly = -1

PIEL) = PIA(MHIMALF,APPRYI HISQ1,APDPRY¢X3(1},HICUB,PTY{LU)eX&t])])
PPIIL) = PPIA(MINALFLAPUPRL, X3(1),HISOL.PTI{LI) XG(1)])

POTILY = POTA(X3{ 1), HIHALF,PTI{LU)eX&(1 )]

PTI(L)} = TRIP{PREVO,PREVILAMEPSTILAM)ZETAL,2,PH(LL)PPI(L),POI(L)
l.FPS2(tLAM),LC,UV)

IFIABSIPTI(L)=-PTI(LY)I.UELCKY) GO TO 202

L= L+i

GO TO 201

202 FTA = ETal

203

X1(2) = PI(L)

FSLNI{2) = XY (2)+ETA

X2(2)= PPILL)

X3(2) = PNI(L)

X&(2) = PTI(L)

PREVOILAM,2) = PI(L)

PREVI(LAM,2) = PPI(L]}

CALL STAMCH(PREVOJPREVIZX1(2)4%X2(2)eX3(21eX0(2)pETAHLLEPLT(LAM) oL
TAMG X1 (514 X205)4X3U5)sXe(D) s X0(4) Xb{3)eX1(4)1eX1(3)eX2(4),X2(3),EPS
22(LAM) 4 X4(1),CK2,LC,UV,yX3(31,X3(4),FSLN)

LNM = 6

ETA = H

ETA = ETA+H

LKK = LNM-}

LKX = [ NM=?

LKY = LNM-3

LKZ = LNM-&

Y1 = RETALIXLILKK ]} ¢HyX2(LKK) ¢ HSQU X3 (LKK) yHCUB ¢ Xb (LKK) 2 X! KX}y Xe{L
IKY) e X&(LKZ))

Y2 = RETAZ(X2(LKK) yHeX3(LKK)} sHSOL yX@lLKK )y XG{LKX)yX4lLKY ) X4(LKZ))
Y3 = BFTAZ(X3(LKK) HDy XG{LKK) 4 X&{LKX} X&{LKY) :X&(LXZ))

Y& = TRIP(PREVO,PREVILAM,EPSIILAM) ,ETA,LNM,Y],Y2,Y3,EPS2(LAM],LC,
1v)

X1{LNM) = ZETAL{XY(LKK)gHyX2(LKK) ¢HSOyX3(LKK)} s HCUB Y44 A& LKK]) XSG (L
IKX )¢ X4 (LKY))

FSLNILKNM) = X1{LNM)+ETA

X2(LNM) = 2ZFETA2IX2(LKK) HyX3{LKK) HSQl, Y4, X4{LKK) ) X&{LXX] Xa(LKY}))
PRFVO(LAM,LNM) = X1{LNM)

PREV]I{LAM,LNM) = X2{_NM)

X3{(LNMM) =2FTA3(XI(LKK) HDy Yo o X&({LKK} pXG(LKX)yXb(LKY))

X4(ULNM) = TRIP(PREVO,PRBV1,LAMEPSI(LAM),ETA,LNM, X {LNM} X2 (LNM),X
13(LNM)EPS2{LAM),LC,UV)

IF(ETA,GE.ETAINF) GO TO 204

LNM > | NMe}

60 TO 203

204 PRINT 504.X2(LNM) ¢ X3LLNM)

PRIAT 4000ICOUNT UV (LAM)
NESPL = -X1{LNK)
NO 00 IKW = 1,LNM

00 VELIIKW) = X2(IKW)+l,

PRINT %000

PRINT 5001 +(v=LIIKZ),1KZ3],LNM}
PRINT %5002,D1SPL

PRINT 5003

PRINT S006, [ X3(LKW), LXKW=],LNM)
PRINT 500°%

PRINT S006+(FSLNILZZ)L2ZZI=1,LNM)}
PRINT S007

PRINT S008.(X&(LBG),LBG=1,LNM)
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301
5
500
501
N2

503

506
S0
506
2000
2100
2200

4009
5000
5001
5002
5003
5004
5005
5606
5007
5008

101
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CONTINUE

GO TQ 25

PRINT 502,X3(1},LAM

sToe

FORMAT({7FI0.7.134F5.2)

FORNAT(SF12,.H}

SORMAT{11D.2F12.8,110,313}

FORMAT( 10", 'A NEGATIVE TRIAL VALUE FOUR WALL SHEAR = *',Flé.8,' OCCU
1RRED AT LAM = 1,]4)

FORMAT(® ', *AT INFINITY X2 = ',F14.8,' AND X3 = *,Fl4,B)
FO“MAT(6F12.6)

FORMATIOF10.T)

FORMAT( 'O, TX,*SOLLY,16X,'S0L2",15X,'SOL3,12X,'X5")

FORNAT(Y ', 4(F1&,8,5X))

FORMAT{ 'OV L 'FINANS = P, F14,8,5%,'FOR LAM = *,]3,5X,'ETAINF = ',Fl4&
1o7¢5X,TUTAL ND. OF CHANGES IN ETAINF = ', ]4)

FORMAT( 'O, *ICQUNT = ¥,]14,9X,"FUR THETA = ',F12.64"' DEGREES*)
FORMAT(YQ' o *THE VELOCITY O9ROFIILE [5*)

FORMAY(* 'L11F11.7)

FORMAT('Q', *THE NON DIMENSIONAL DISPLACEMENY THICKNESS IS',F12.7)
FORMAT(*0".'THE VELOCITY GRADIENT PRUFILE IS')

FORMAT(® ',11F11,7)

FORMAT( ')’ ,'THE SOLUTIUN PROFILE FOR F IS*)

FORMAT(* ', 11F11.7)

FORMAT({'Q! ,'THE PROFILE FOR F TRIPLE PRIME [5')

FORMAT(' ',11F11.7)

END

SUBROUTINE STAMCHIF ,GoAAyBARLCLoaDDEotHOs YMe [4RIOWRIIZRIZW\RTI10XX10Y
1Y1,80,R0,A1,B1,R, W CyJJetUsX33,X34,F3)

DIMENSIIN F125,505)4G1295,505),PCPI50)PCR(50),PCD(50),STC{501,010¢
150),0Q11(50),Q12050),QTV1(50),U{25),FS(505)

INTEGER »

SIGNIAR,CeNyFFsGyX! = AsBR(+CxE+F2(17,.%G+120.%X)
SIGL(A,RCoN,ELF) = A+R2L+Ds (3R ,%E+171,8F)

SIG2{A,R,CeN) = A+RX{G,5(+]19,%D)

GAMO{ AR CoDNyEqyFaGoXyY! = A+RSECHIORE+FS(17,8G+120,3X~-21,8Y)

GAMY (A R,CoNyE4FyG) = A+BSCH+US (IR, $E+1 71 . *F-36,%0)
GAM2(A,R,CyDsE) = 2+RS13,%(+13,30-5,%E)
DELTO(A 8. C s NeEoFyeGeXeYe2) = A+BSCHDPESLFS (1T, 3G+120 ,8X=2] q0Y ¢4, 7))
DELTI(A,R,CoDeEFeGyX)} = A+BEC+D® (3R . 8E+]1 T ,aF=36,8G+7,%X)
DELT2(8,3,CeDeEsF) = A+R®(9,4C+]19,8D-5.3E+F)

E = F+rQ

HON = HO/26,

HOSQ = HOsHOD

HNSQl = ,5%H0SO

HS02 = HM0OSQ1/180.

MOCUB = HO®HNSQ/T720.

PHIP) = AA+HO®RR+HOSQI®CC+HOCUBR®(1RA,*DU-123,.24W}

PHPP]1 = RAR+HOICC+HSQ2%(323,8D0-266,%W)

PHNPL = LT +HOD*(55,30)-59.%W)
STP1 = TRlp‘F'G'l|VN'503'leplopprl'pHUpl'R'JJOU)

PCP(1) = SIGN(AALHO,BR,HDS01,.CC,~OCUBR,STP1,0D)

PCRI{1} = SIGL{RAR,HO,CC,HSQ2,STP1,0D0D)

PCO(L1) = SIG2(CC+HOD,STPL,0OD)

CTCIL1) = TRIP(F, Gl ,YM,EL,3,PCP(])4PCRIT1)PCOLL1)+KeJIWVU)
XK =z 2

L= K=]

PCP(K) = SIGND(AA,HO,BR.,HOSQL.CC,HOCUR,STCIL),DD)
PCRIK) = STIGIUBRHULLL M5Q2,51C(L),DN)
PCNIK) = S16G2(CCHOD,STCIL),00)
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STCIK) = TRIPIF,Gelo YN EoI PEPIK)4PLRIK) PLDIKY Ry JJsl))
TFIABSISTC(K)}=-STCHL }LLELC) G TH 102

K = X4}

GO T0 101

FS{3) = PCPIX)E

£ = E+HO

Q0 2 PCP(X}+HOSBPLR(K)I*HOSOI*PCDIK)ISHOCUB*(18B.#STC (X} ~123,2DD4+72.%
1w)

2} PCR(K ) +HOSPCO(K 1 +HSQ2#( 323 ,3STC (K} =264,%DD+159,*w)

G2 = POOIXK]+m{TD®{S5.2STC(KI~59, 3DD+37 ,%W)

QTL = TRIP(F,4GeloYMyE14480Q1,02,RyJJyt))

Q[0(1) = GAMOIPCP(K ) HI,PCRIK) ,HOSOLPCDI(X},HOCUB,OT1,STC{K},DD)
OI1(1) = GAMI(PCRI{K) HOPCDIK )} ,HSN2,0T1,5TC(K},DD)

Ql2(1) = GAM2(PID(K),HND, Q7] ,STC(KI,DD)

OTE(Y1) 5 TRIPIF,GeloYMyE,6,QI0(11,011(1),012(1)sRaUJ, U}

N = 2

P = N~}

QIO(N) = GAMG(PCP{K ) HO,PCR{K]},HOSOL+PCD(K),HMOCUR,QTI{P}.STC(K),D0D
1}

QILIN) = GAMI(PCRIXK] HDPCO{K)4HSQ2,0T]{P)sSTC(K),DND)

QI2(N) = GAM2(PLDIK) HOL,QTI(P),STC(K),DD)

CTIIN) = TRIP(F GoloYMiE Ly QININ),QILINIZOI2(N)sRyII U}
IFLARS(OTE(N)I-OTI(P)).LEL,C) GO TU 104

N = N+l

GO TO 103

FS(%) = QIO(N)+E

E = EeHD

RO = QIO/N)+HOSOI1(N)+HOSOIsQI2 (N} +HOCUR* (188, %0TT(NI-123,8STLI(K)+
172,3N0=17,%W)

Rl = QIL(N)«HO®Q[2(N)+HSQ2%(323.%QTIIN)~-264,*STC(K}+159,%ND~3B,.3W)
R2 = DIZ2IN)+HOUS{55,%QTTH(N}-S9,%STC(K)+37,3D0-9.%*wW)

RTl = YRIP(F'G'I'YHQEvsqanORlQRZOROJJ'U.‘

R10 = DELYN(QIO(N} 4MO,QTI1IN},HOSQL,QI2(N),HOCURSRT1,,OTI{N),STC(K]),
1ND}

RI1 = DELTI(OI1(NIHO,012(N),nSQ2,RT1,0T1(N]},STCI(K)},00D)

RI2 = DELT2(012(N)HOD,RT1,0FI(N},STC(K]}, DD}

RYI1 = TRIPIF,Gel oYM E+5RIORILRI2(R,IJ V)

FS(S) = RIN+E

XXl = QTI(N]}

YYy = STC(X)

A0 = QIO(N)

BO = PCPRI(K)

Al = QIY(N)

Bl = PCRIK)

X33 = PCDI(K)

X34 = QIZIN)

F{l.3) = RO

)

F(lv’!) = AQ

F(l,5) = RO

G(!,3) = AL

G{l,&) = Al

G(l1,5) = RI1

RETURNM

END

SUBROUTINE CHGETA(X,Y,248,2,]1,U,J)
I = I+)

IF(1.67,J) GO TO 20
X s X~}

Y &

RETURN |
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20

8000

w N

13
131

133

FRINT R0O0QO

RETURN 2

FORMAT(YQ', "FATLURE! )
END

SUBROUTINE IDI0TIX Y, A4BeL M N, JO)
DIMENSTION A{3),R13)}
IF(L=-M) 1,2,2

IF{L=-N) 3,4,4

X = A{}1)

Y = A(l)

GO TO 1

IF{L-J0) 5.6.6

X = A(2Z2)

Y = Bi{2)

G0 YO 1!

X = A(3)

Y = BR(3)

RFETURN

END

FUNCTION OECIG(X,Y)

DIMENSTION X(3)sY({3)4P131,5(3)¢IXP(3}),1X5(3)

[JfF = 0
IKS = 0

J o= Jdel

P{J)r = Y(1}

IxXP(yy = |
IFIP(J)I-RAPAS) 2,45,5
BPOS =z P(J)

4= 1XP(I)

iJgp = 1

GO YO S

K = K+]

S{K) = ABRS(Y{[))
[xS(x) = 1
IF{SIK)-RNEG) 4,5,5
BNEG = SIK)

KK = IXS(K)

IKS = 1

CONTINUF
IF{1JUP,EQ. 1) GO TO &
NECID = X(KK)

GO TO 111
IF{IKS.FO.1) GO TO 7
DECID = x1)))

G0 TO 111
TFIABS(X{JJ)-X{KK)}=,0000001) 13,13,77
[F{BRPUOS-RANFG) 131,131,133
DECIN = X{JJ)

60 TO 111}

DECID = X(XX)

G0 1O 111
IF(RPOS-BNEG) 8,9,10
R = BNEG/APODS

RAT = AINT(R)
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DECID = (RAT®X(JJ)+X(KK))/(RAT+1,)
60 TO 111
9 NDECIN = .S*(X{JJI+X(KK))
GO T0 111
10 R = BPOS/BNEG
RAT = AINT(R}
NDECID = (RAT®X(KK)+X{JJ)}/(RAT+1.}
111 RETURN
END
FUNCTION TRIP(XsYyJoXMToK,A,B.CeRyN,S)
DIMENSTION X{25,5051,Y(25,505),5(25)
Z 2 =S5t ( XM+ )eR)%[A+TFI*C+XM2{AKR?,%7)
IF(J.6T.3) GO TO 704
GO TO (701.702,703),J
701 TRIP = 2

GO 10 705
702 TRIP = Z+((R+],)5{B=Y{1,K}}-C®(A-X(1,K}))
GO 7O 705
hd 703 FO = StJI*(2.*St4)1-S1J=-2)=-S(I=-11}/0(StI)=SCu=2115(S131-S{J-11)})
F1 = SEJI*(STUI~S{I=-2))/1(S(J=-1)=-S(J=2)}1%(S(J=-1)=-S{I)})
F2 = S{II1*(SI)=StI=-1))1/0(S(J=2)=StU~11)®%(S(J-2)=-SLJI)))
- TRIP = Z+4(B+1. 1% (FOSB+r oY (2,K}+F2%Y{1,K))-C3(FO*®A+F18X(2,X)+F22X{
11K}
GO TO 705

706 Q0 = S{JIe(US{II=S(I=2))*(S(J)-S{JI-11))/70{S{U=-31=-S{J=21)1={5({J-3)-5St
1J=-1))%(S(J=-31-S03}))

U = SEJI)I* (St =STI=3))®(SCJI)=-S{J=11))/7¢(S(J=-21~-SLI-31)1*(S{J-2)-5S(
14-1))8(S(J=2)-S(I)))

Vox S{II0IS(YI=SUJI=3) )1 (SCJ1=S(I=-23))/700S(I-1)=-S{I=-3))2(S(u=-1)=-5¢
10-2))1*(S1J~-11=-50J1))

W 2SI s {S{3)=-S{J=-3)1)s(S5()=S(J=-21)+{S1J)1=5{J=3)1)2(S(.)=S(J=-1))+{
LS{U)-SUJI=-21)18(SC0)=S1I~1) 1/ 0{S(Ji~S(I=3))=(S(J}~S{I=2)1*{S(J)=-50
2-1)))

TRIP = Z+(A+) )8 (vaBaVrY(J-1,K)«lJeY(3=-2,X)+Q8Y{J-3.K})-Cewta+VeEX(
LU=, K)eUsX (1=-2,K)+08X{ )-3.K )}

705 RETURN

END




—— . s e

The input data necessary for the proper execution cf the

above program should censist of the following:

1) The €first data card should contain values for +g,
an initial guess for f:, n,. the n-step size {h},

31 3,e the number of x-steps and the increment
. ~

-€, a
by which n_ is lowered. (See pages 21-25)
2) The next set of data cards consists of M and R, in

that order. These are obtained from the potential

flow and body gecmetry for the particular body under

consideration. (See Appendix B)

3) The next data card consists of the maximum number
of alicwable changes in n_, two tolerances for
determining numerical equality (1x10-7 for single
precision), an approximation for the number of the
particular x-station which is nearest to the point
of separation, and the numbers of the particular
x-steps where the values for +€ and -& are to be
changed.

L) The next set of data cards consists of the numerical

values of x (i.e., arc length) at each x-step.

5) The final data card should give the numerical values

for +€ and -£ at each step where they are to be

changed (cf. statement number three above).
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APPENDIX B

CALCULATION OF M AND R FOR AN ELLIPSOID

Coordinate System and Geometric Relations

A semi-elliptic coordinate system is a very convenient
representation for obtaining the potential flow solution about an

ovary ellipscid. The defining relations are:

X = Kusd,
Y = K(l-uz)* (52-1);‘r cos w, (81)
and
z = k(1-p)? (62-1)% sin w,
where -1 < u < 1 and 1 <6< m7. The surfaces § = constant,

pu = constant are confocal ellipsoids and hyperboloids of rwo
sheets, respectively, with common foci at (+K, 0, 0), and w is
taken to be the azimutha! angle in the meridian plane. The
coordinates y, §, w form an orthogonal system with the following

metric coefficients:

>
52,2 V7
h, = K ‘2‘ , (82)
UGy,

i2.,2 ¥
h6 = K 2" ) (B3)

and
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and
by = KO=D e2nt . (84)

Considering the meridian plane with Z=0 of the ellipsoid 60
with semi-major and minor axes a, b, respectively, the following

geometric relationships hold:

- (az-bz)*
a s

(85)

and
K = ae, (86)

where e is the eaccentricity. The equation of the ellipse in the

meridian plane is given by the familiar equation:

- 1. {87)

<
NN
-<
N N

Y]
o

Now, from the relations (B1) with (BS), (B6), and (B7), it is

easily proven that for this body (Lamb, 1945):

F ™

]
60 - :- (58)
and
X
e . (89)
4
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Caiculation of R
Referring to Chapter 11, the expression for R can be
“ritten as:
dr
X o dX
R=- a0 & - (810}

Now, from well-known formulas of integral calcuius, the differential

of arc dx and the arc length x are given by:

3
2
dx = [: + g;.) :] dX (811)
and

x=akE (e,u), (812)

where E (e,u) is an eiliptic integral of the second kind defined

FAREAL
E (e,p) -I TT du. (813)
-y

H

by:

dr
Since r_ =Y, aig-is readily obtained from (B7) and g;-from (B11).

Finally, the egquation for R becomes:

-3
R = LE (e.u)[(l-uz)(l-ezuz):l . (B14)

i s s 0
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Calcuiation ¢f M
The velocity pctencial ¢ for an ellipsoid moving paralie!l
to the X axis is given (see Lamb, 1945) by:
. 1 .
¢-Au{§5 in%g—-lj (81%)
where A = 3l ! - l—-ln Ide !
© l-e§ 2e 1-e )
From (B15) and (B2), the velocity in the L direction Vu is:
1 3 1-u? ! I
- -~ --ﬁ ~H 6+ - )
VM F:--s% K(??) E5 1n-5—:T l]. (R16)

For the ellipsoid § = constant = 60, the relation for M

takes on the following form:

oV
x ud
n-(——v ) [T"u -P-dx:’ . (817)
u/s §
o o
3V

The quantity s~ on §_ Is obtained from (B16) and is found to be:
au ]

av -3
(Rﬁ)é <A 0-ed [0-%) 01-e22)3] ['z n 725 - ']- (818)
[}

The expression for %% on 60 is mst conveniently established by
differentiating the coordinate relations (Bl) and solving the
resulting set of simultaneous equations algebraically. The resuit

is:

kbt M b i vhan by



3
2
]
5
3
i

55
d 1-3,2 ?
v 1 ol
-« - —f -
?x'): a(‘ 2_2) ) (819)
o e u
o
After making the appropriate substitutions inte (B17), M finally
becomes:
2 2,,, 223]%
M= (1-e) ue (e,u)] (1-p°) (1-e“u%) . (B20)
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