
IA

LAMINAR BOUNDARY LAYERS ON BODIES OF REVOLUTION:

COMPUTER PROGRAMS AND VORTICITY BUDGETS

S* By R. E. Sheridan, Jr.

Technical Memorandum
File No. TM 502.2421-19

July 26, 1968

Contract NOw 65-0123-d
Copy No. I I

K THIS DOCUMENT HAS BEEN APPROVED
FOR PUBLIC RELEASE AND SALE;
ITS DISTRIBUTION IS UNLIMITED

The Pennsylvania State University
Institute for Science and Engineering

ORDNANCE RESEARCH LABORATORY
University Park, Pennsylvania DDC

C-

,. NAVY DEPARTMENT NAVAL ORDNANCE SYSTEMS COMMAND

CLEARINGHOUSE
iom Federa Scri0neftc & TechnicOl
Informaton $Spr;ngfield V& 22151
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CHAPTER I

114TRODUCTION

The primary purpose of this study is to develop a rapid and

accurate method for solving the incompressible laminar boundary

layer equations for axisymmetric flow using a digital cormuter.

In order to obtain some qualitative insight into the trends exhibited

by model calculations, the effects of vortex stretching on the

momentum and vorticity equations are studied.

There are many methods available for obtaining solutions to

the boundary layer equations; a fact easily verified by consulting

a standard reference such as Meksyn (1961), Rosenhead (1963) or

Schlichting (1960). The majority of these techniques can be

classified as follows: (1) momentum integral methods, (2) correla-

tion methods, (3) infinite series method and (4) finite difference

procedures. In general, the first two techniques are approximate

procedures in the sense that the original equations have been

compromised. The infinite series and finite difference methods,

on the other hand, are considered to be theoretically exact in the

limit, that is, for an ;nfinite number of terms and vanishingly

small step lengths, respectively. Since it is ixpossible to

discuss all of the individual techniques in each category, only a

few representative examples are discussed below.
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The Pohlhausen and Thwaites methods are well-known

examples of the integral and correlation techniques. In the first

of these, a polynomial expansion for the velocity is assumed and

then the momentum integral equation is solved. Thwaites' procedure

Is based on an empirical correlation of existing exact and approxi-

mate flow solutions. Using this known data, Thwaites tabulated

various boundary layer shape parameters from which approximate

values for the momentum and displacement thicknesses can be readily

determined.

12The method described by Frossling is typical of the

infinite series type of solution. Here, the body contour and the

potential flow are expressed as power series in x (distance

measured along the body). The stream function is also expanded

in an infinite series in x with coefficients depending on the wal'

distance y. These series are then substituted into the boundary

layer equations, written in terms of the stream function and,

consequently, an Nth order set of ordinary differential equation!°

results for the unknown coefficients.

Finally, the Hartree-Wotnersley5 scheme is considered as an

illustration of the finite difference type. Briefly, this technique

utilizes a simple transformation of the momentum equation in which

x, y remain essentially as independent variables. The region of

the boundary layer is divided into vertical strips and the trans-

formed momertum equation is solved numerically at each step.

'A

-i



The method chosen for this paper is based on a finite

difference procedure developed by A. M. 0. Smith and Darwin W.

Clutter 1 3 which is actually an extension of the Hartree-Womersley I
scheme. The most inportant reasons for its selection are

(1) it is more accurate for a wider variety of problems than the

approximate integral or correlation techniques, (2) there is

considerably less computational work involved compared to the

infinite series approach when high accuracy is required, (3) it

exhibits a greater degree of numerical stability than other finite

difference methods, and (4) the equations on which this procedure

is based are free of singularities. In the adaptation of Smith's

and Clutter's method, the "starting" procedure (see Reference 13

and Page 20 of this study) for the integration of the boundary

layer equations and the process for obtaininc. the final solutions

for the shear stress and velocity profiles at each location along

the body were revised.

In the sections that follow, the necessary equations and

the method for their solution are developed. The relevant computer

program presented in Appendix A was executed for a sphere and an

ellipsoid, and the results are discussed in Chapter IV.



CHAPTER 11

DEVELOPMENT OF EQUATIONS

Boundary Layer Equations

The equations to be solved cover the case of axisymmetric,

steady flow past a blunt-nosed body of revolution. The curvilinear

coordinates of a point P in space are taken as (x, y, 6). The

basic notation and scheme of coordinates is shown in Figure 1; U

is the free stream velocity, ard U(x) is the velocity in the

x-direction just outside the boundary layer. Theta (e) is the

angle between a fixed meridian plane and the meridian plane

sonta;ning P. The surfaces T1 = constant and r2 = constant are

taken as surfaces of revolution about the axis OX, and are such

that, if C is the curve of intersection of the surface of the body

by a meridan plane, then the sections of the surfaces r1 constant

and r2 - constant are normals to C and parallel curves to C,

respectively. Consequently, Fr may be taken as the distance x from

the forward stagnation point 0 measured along C, and F 2 as the

normal distace y from the surface. Here u, v, and w are the

components of velocity in the directions of increasing x, y, and

6, respectively; and r°, the body radius, is the distance from P

to GX, so that r is a function of x alone. The coordinates0
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(x, y, 0) form a mutually orthogonal system with the following

metric coefficients:

h - + Ky,hx

h = 1,Y

and

h= r a r + y cos C,

where K (a function of x) is the longitudinal curvature and r is the
ii

radial distance from P to OX

For flows at high Reynolds numbers, around bodies w'hose

local radius r0 is large compared to the boundary layer thickness

65 (that is, 6/r 0 << I) and whose surface contains no large variations

in longitudinal curvature (e.g., sharp corners where d 2 r /dx2
0

becomes infinite) so that dK/dx - I, the product K6 is smallV.

Hence, the above metric coefficients can now be approximated by:

h = 1,x

h = 1, (1)y

and

h ~rhe = ro

4, 10where the domain of y is restricted to the boundary layer

Since the motion is independent of e and w = 0, the boundary layer

4, 6, 10, 12equations are.
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Lu - v nu dU 2+v u (momentum). (2)

3x Dy dx 7-ay

and

'(uro) •vo
+ ;r 0 (Continuity). (3)

The boundary conditions are, with the subscript w denoting wall

condi tions:

V 0 (4)W
y-• : u -- UWx.•

Equations (2) and (3) can be combined into a single equation

10through the introduction of the stream function I. Let

I (u U •__
0

and

I (oro) - - LUro I
r - x • ) " -x r dx j

The resulting equation is:

dr 2 3U _- ( ,

with the boundary conditions:

y -0 0, =w 0,0 WY



and

y --I-, :O U- W~) (6)

A more convenient representation of Equation (5) is obtained

through the use of a transformation first introduced by Falkner

4
and Skan In their transformation, a dimen,_-ionless height ri and

a dimensionless stream function f are introduced:

n- y, ip = (Uvx) f(x, TO. (7)

If the relations (7) are substituted into Equation (5), ana if

3f/arl is represented by fl, etc., then the following equation

results:

f"S ( - -1 + R)ff,, + M (f 2 
- I) + x [ ca . (p)

iaxfd r
cir
x 0.The term R is a measure of loc•l increases in body radius,

xdU l uM 3- is a pressure gradient parameter, and f' = The boundary

conditions for Equation (8) are:

n- 0: f' " 0, f -0
W W

and

rV-o :f--* 1.

For ccmputational purposes, It is necessary to obtain the

third derivative of f evaluated at the wall. From Equation (8)

and the application of the conditions (9), it can be shown that I



f"' -M-. (10)
W

Considering Equat;on (8), when R - 0 and M is constant, the

bracketed expression containing the partial derivatives with respect

to x vanishes and the following ordinary non-linear differential

equation is obtained4 :

fill a ()ffu' + ?i(f' 2 - 1).

This relationship provides a family of "similar" solutions.

A final transformation is applied to Equation (8) for the

purpose of numerical calculations. The quantity • is introduced,

such thzt•

f = +r,

f l *' . 1, (11)

and
F= * etc.

Equation (8) becomes:

R'(r+) 21
_2+ )4+) il+ 2W$')4 + x 14 +

(12)

with the boundary conditions:

a n d fl 0 : 0 , ' - -( 3

n -- * :?' - O.
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Equation (12) has 3everal noteworthy advantages over other

possible representations: one is the fact that the starting process

is very simple. At x - 0, all x-dependence is removed, leaving

only an ordinary differerntial equation to solve. A second advantage

of Equation (?2) is that almost all of the variation in boundary

layer thickness has beer eliminated. The thickness in the transformed

system seldom varies by more than 50 percent over a range of x,

whereas the actual physical boundary layer thickness might vary by

e factor of 10 or higher. Finally, it is very important to note

thac these equations see entirely free of mathematical "pathologies."

They are well behaved ýt x - 0, and solutions of Equation (12)

exhibit an asymptotic coavergence nature for large rT2 ' 13

Displacement Thickness and Skin Friction

The displacement thickness 6 is given by12

- F61 (1 - ) dy.

0

In nondimensional form, this becomes:

1-- (-f) dn1.

0

After utilizing Equations (9) and (11), the nondimensional

displacement thickness becomes:

_______________
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6 = liim (n-f) - € , (14)
n - O

The local skin friction coefficient Cf is defined as the

ratio of the local shear stress T at the wall to the local dynamic

pressure outside the boundary layer. The relation is:

C c= 2.u = @-) f"i 2 (X) w' (Is)

w e ef i 2 Lx w Ux w v

wh ere I

/du f,, .(U1

The parameters C1 and f" are very useful in studying the
W

growth of the boundary layer and the variation in skin friction

along a body's surface. Graphs and some additional discussion of

these quantities for a spherical and an ellipsoidal body are

presented in Chapter IV.

Vorticity Relationships

The coordinate system illustrated in Figure 1, the assump-

tions made on Pages 4 and 6, and the metric coefficients

Equation (I) are used here to develop the vorticity equation. It

is assumed that v is negligibly small, and the magnitude of the

gradients in the y-direction is much greater than the x-wise

gradients. Also, since w - 0 and the 0-wise gradients are zero
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for axisymmetric flow, then it is a relatively simple task to show

that the only significant vorticity comuponent is the 0 compronent
4

W8 4 The relation for w., consistent with the approximations mnade

above, is:

•, _au
-- .~-.(16)

The momentum Equation (2) is differentiated with resoect to

y and rearranged to give:

u T- y Y -y/ _jY r + aY+ Ii 2 a~y. (17)

Now, the indicated diffrrentiations in the continuity Equation (3)

are carried out, yeldin:g the expression

dr

au +av V (18)ax ay r x

Finally, kquations (16) and (18) are substituted into Equation (17)

to obtain the vorticity transport equation:
a2.

@w, aw wu dr 2
ue + r + '- (19)ax a . y r r0 dx By2

The terms on the left-hand side of this relation are the famil'ar

convection terms. The last terms recogn ized as the rate of change

due to molecular diffusion of vorticity. The first quantity on

the right-hanr, side of Equation (19) is a vcr.ex stretching effect.

4

________
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If this term is rewritten as:

%u•(2-nro 0I

2lTr dx
0

then it clearly represents a change in vorticity due to the extension

or contraction of vortex-lines resulting from the variation in body

circumference with x. There is an Intensification of vorticity due

to the extension of vortex-lines when d(Zrro)/dx is positive
0

Consequently, the vortex stretching term is a source of vorticity

for bodies whose radius increases downstream.

In order to study the terms of Equation (19), it is again

convenient to introduce the stream function ý for u and v and the

transformation defined by Equation (7). The nondimensionalized

terms of the vorticity transport equation become

awe

F 1i

ax O lM.2R fill (v-convection),
LXa

Weu dr

r dx
0

o W - Rf'f" (stretching),
U (-



and

a. f i v(diffusion).

vx) (2.0)

Each term of Equation ()9) can now be computed from the solutions

obtained for Equation (12).
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CHAPTER III

METHOD OF SOLUTION

Basic Scheme

The method of solution that is used in this work is based

on a method developed by Smith and Clutter 13 They replaced the

x-wise partial derivatives in Equation (12) by finite difference

approximations as originally suggested by Hartree and Womersley

(1937). The equation is converted to an ordinary differential

equation. If the flow in the x-direction is divided into n

stations, then the ordinary differential equation has to be solved

n times in succession, since M and R as well as @, (', and ý" vary

with x. The numerical methods used are a form of the ordinary

finite difference treatment since discrete variable approximations

are made in both the x and rn directions.

Solution in the x-Direction

Two finite differencE representations of Equation (12) are

possible. The first is called the "point" form. Here, the

differential equation is written to apply at a point; that is, the

x-derivatives at a point are replaced by their finite difference

equivalents. The second treatment is to deal in terms of mean

values of the variable 0 over a finite region; this is referred to

as the "mean" form.

4
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After extensi- calculations, using both the "point'' and

"4mean' forms, Smith 3nd Clutter found that tne ''point" forms were

generally more accurate and exhibited a greater degree of stability.

in particular, the "point" form with three ana four points proved

to be the most Accurate of all13

The basic scheme of the finite difference representation is

illustratad in Figure 2. The variables M and R are known as

functions of x. The lines xn, Xn_1I n-2, etc., partition the

x, rn space into a number of regions. Sin;.e Equation (12) is

parabolic in for., it must be solved in the direction of increasing

X. It is assumed that the solution @ (n) and its derivatives '

and 0" (ni) are knovwn at all stations up to -nd i 1,'ding Xn.l*

The problem is to obtain the solution at x . To accomplish this,

the "point" method is applied to Equation (12) at xn .

rhe two, three, and four-point "point" forms that replace

th-" x-wise partial derivatives in Equation (12) are easily obtained

by difilcrentiating the Lagrangian interpolating polynomials of two,

three, and four points, respectively. !n the actual computer

pru•ram, these formulas are written to handie unequal step lengths.

cor the sake of simplicity only, the four-pcint formnula for equal

step iength is presented here.

The four-point fo,.Yulas for n and \7x )n including t:e

error tcrms are:
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I "
f'li,)

0n-3 Xn-2 1n-I x,
x

Figure 2 Coordinate and Notation System

l ii l ii l i
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/at lln " |8n-I + 9tn-2 - 2 n-3 (Ax) 3 ;4.( (21)
n -6---+----x- , (21)

ax

and

11'-l4n'_, + 9T1'2 -2q,"_ 4 ax

S66x ax (22)
3 The error terms indicate that these

where Xn. <_ (x) <_x.

relationships are of third-order accuracy and become exact for

third-degree polynomial variations.

If Equations (21) and (22), without the error terms, are

substituted into Equation (12), the following equation for the

four-point approximation results:

_(nn + + R ( Val) ¢ + Mn (Obn2 + 2 n'n) + x1 nl~(N + xI

ni n- n3 n n TA~i 9 n- (n-3j

Consequently, Equation (12) has been transformed into an ordinary

non-linear differential equation at xn .

It Is important to observe that the ratic x/tx, rather than

the step length Ax, is a primary parameter. In fact, Smith and

Clutter found that this ratio should not exceed 25 for a stable

solution using single-precisicn arithmetic on a digital computer.

I
.$
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Solution of the Ordinary- ifferential Equation

The crdinary differential Equation (23) is solved with a

predictor-corrector (or extrapolation-interpolation) technique.

2
The formular used in this method are developed in Collatz' book2.

The four-point predictor relationships written in Lagrangian

form, including the local error terms, are-

h In- + h(ý + 2p h+ 180'' -230'ý' + 72, 7''
i+] 1 . -[

8~''iI ':2 l'3J

+ 0(hT), (24)

•i+l =i+ hi'.' + [3230." 2640'I + 15901123 +0(h

(25)

and

0,, ,= ,, h /" ' - " ¢i 2 - 901.1 15 .

i[ i 5h V 590i-1 + 37 '2+ O(h5 ) (26)
i+1 i L' - -i-2 -31+

The corresponding corrector type equations are:

- 0 + ho +h 0+401ri+l - [I 7hP'-'+17 + 1200'i' - 210'i'= +O(n
2 i+ 720Li1

(27)
h2  r3 2• O*h

9i1= ¢i + hp'.'_ + ;3S$'i'• + 1715'.",- 365i'-1 + 7i- 0Ih,

(28)

and

i l + h "' + 190'i' -
5 "':l + V.2 - 0(h5). (29)I " 19-I

rI
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In these formulas, h Is the step length in the n-direction ard i

Is the step count. The procedure is to make a prediction by means

of Equations (24), (25). and (26). Using these values in Equation

(23), 0',', is computed; then, Equations (27), (28), and (29) are

eMployed to obtain improved results. As a consequence of the fact

that the above relationships provide a high degree of accuracy,

this single improvement is sufficient for each n step.

The solution is started at the first point by a Maclaurin

expansion which is used as a predictor. The series for 4 has the

form:

h2 h'
Op " 0 + '+ "+ ' (301w 2" $w •- w

and similarly for 0' and p". The values of 4p, q' and @p are
p pp p p

substituted into Equation (23) to find the extrapolated quantity

•p'. These extrapolated values are used to compute improved values
p

by Obrechkoff's corrector type formula (Hildeorand, 1956):

h @ + , 2 ,h3 ,,

c w + t( w ) (p - w) + (T ' + ) - 0(hT; (31)

tith cerresponding relations for 0' and '". An imp-oved value forC c
."' is now computed from Equation (23). The improved quantities

0 0' and 0" are now substituted for the predicted results db
c€ € c p,

*' and 0" into equations of the type (31) to produce further
pp

Improved values. This iterative process is repeated several time.

until the convergence of 0"' is effected. This method of integration

'1

I
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Is now exteoded to the next two points by using two- and three-

point formulas of the same family as the four-point relations

presented above. Finally, the four-point formulas can be utilized.

A constant r,-step length h is used except for the first four

points where its values is h/4. The same fl-step sizes are used

throughout the entire x-range since most of the variation in

boundary layer thickness has been removed (cf. Page 10).

Integration Procedure

In general, a non-linear boundary value problem with two-

point boundary g.,nditions, one point being an asymptotic condition

at T1 -, can be ratSer difficult to solve. However, in this case,

a simple method consists -if solving it as an initial value problem

using an arbitrary value of tr,. unknown condition (Pw at the initial
w

po. it. It is then necessary to search among the single infinity of

possible values of the unknown condition for the particular value

which allows the boundary conditions to be satisfied asymptotically

at the second point.

The essence of the present method is to seek in a systematic

"manner the value of such that Equation (23) is satisfied in

conjunction with

a 0 O, P' = -1 at n - 0,

<nd
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where E is a prescribed small quantity. The detailed process,

illustrated in Figure 3, is as follows;

1) Choose an initial estimate for 4w and a value

for rlý.

2) Solve Equation (23) by "marching" outward away

from the wall using the technique outlined in the

preceding section.

3) Continue until

(a) >' > -e, or

(b) W - r

4) If 3(b) occurs before 3(a), then the initial estimate

for 0" was too low. Therefore, 0" Is increased by

an appropriate amount aI and the process is started

over again at step 2. This case is indicated by

curve (a) in Figure 3.

5) If 3(a) occurs, then there are three possibilities:

(a) /I'/ < e and n - rln. When this occurs, an

acceptable solution for 0" has been found.
w

This situation is represented by curve (b) in

Figure 3.

(b) 0' > c (high trial). This Indicates that the

initial estimate of 40 was high. It is reduced

by a small amount a 2 and the process is repeated

again from step 2. See curve (c) in Figure 3.

I
I
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Figure 3 Typical Integration Trialsi i

i I
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(c) 0' < E. Continue "marching" until either 5(a)

"or 5(b) occurs or -' becomes less than -e. If

- 0' < -e (low trial), then the initial value for

0" was low and a new estimate is found by adding

a sriyarl increment a3 and then the procedure is

started over again at step 2 (curve (d) in Figure

3).

6) When a high and a low trial are found, a new value

for 0" Is obtained from the arithmetic mean of
W

these trials. This averaging will lead to conver-

gence because 0.1 varies almost linearly with 0"w

for a wide variety of flow problems investigated by

Smith and Clutter.

7) After step 6 has been executed, the estimates for

" are continually improved by taking the mean
w

of the best high and low pairs.

8) When three values of 0w are obtained that satisfy

the condition that 1 0 < c and n - n,, then the

final solution is found by forming a simple three-

point interpolation.

9) Proceed to the next x-station and use the final value

of 0" from step 8 of the previous station as the
w

initial guess for '

I



It should be mentioned that this method Is not completely

devoid of difficulties. As the integration proceeds downstream

in the x-dlrection, a great sensitivity to initial estimates of

q" develops. in fact, it becomes virtually impossible to find any

solution where 4' is kept within the range + c. This problem is

most probably a result of the following causes: (1) the value of

and the associated asymptotic boundary condition; (2) the value

of C; (3) the accumulative error due to the product of the four-

point-interpolation errors with the ratio x/Ix; (4) round-off error;

(5) a coupling effect of all or some of these factors.

After a considerable number of trial calculations, it was

found that this difficulty can be effectively overcome by lowering

and increasing E by small increments. However, these changes in

either n.,, or E should be kept as small as possible in order to

minimize the attendant error In the final value of €".

w
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CHAPTER IV

RESULTS AND CONCLUSIONS

Discussion of Results

A conputer program was written to solve the equation of

motion (12) with the associated boundary conditions (13). The

program was executed for the cases of a sphere and an ellipsoid

with an eccentricity of 1/2 (semi-major axis a - 2 and semi-minor

axis b , 1.73205) in a meridian plane. The nondir•ensional displace-

ment thickness 61 and f"
mint~~ ~~ thc[s iadf See Equation (160J for both bodies of

revolution are illustrated in Figures 4 through 7. In Table 1, a

comparison between the present method and that due to Smith and

Clutter is given for the sphere.

In these graphs. the curves denoted by R - 0 represent the

special case when r0 is constant. The increase in boundary layer

displacement thickness is a consequence of the fact that the

vorticity generated on the body's surface Is transported chiefly

due to the action of viscous diffusion, while the effect of convec-

tion towards the wall is negligible. Whereas, in flows where r

varies, there are the opposing actions of convection toward the wall

and viscous diffusion away from it. Consequently, the boundary

layer grows more rapidly and the skin friction (shear stress at the

wall) is smaller in magnitude for the case when r0 is constant

comared to the case when r varies.0
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TABLE I

COMPARISON OF VALUES OF f" ON A SPHERE AS
w

CALCULATED BY THL PRESENT METHOD AND THE
METHOD DUE TO SMITH AND CLUTTER

fl fi i
w w

a8 Present Method Smith and Clutter

0 1.31348 1.31189

30 1.26038 ).25888

60 1.07652 1.09011

90 0.63127 0.6562

l00 0.34365 0.3580

104' 0

105.9' 0

aixt rapolated values.
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In Figures 8 through 15, the dimensionless terms (20) of

"the vorticity Equation ().) have been plotted for several longitu-

dinal location; on' the sphere and ellipsoid. Here, the effects of

each term can be observed and the most important of these is

described bel-w.

In the region near the forward stagnation point, the vorticity

produced due to stretching is almost exactly equal in magnitude to

the u-convection of vorticity as indicated in Figures 8 and 12.

This is a result of the fact that near the stagnation point u and

w8 can be written as:

u = cxf'(r),

and

W =-u•- C xf",

12where c is a constant2. In addition, since r - x,

W4 dr _w

0

and, therefore,

uW8 dr -C2

0

and

uC X-f- I I..

u
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Here, the diffusion of the vorticity produced in t- lower boundary

layer is effectiveiy opposed by the action of -,ýv, otion normal to

the surface.

Further downstream, the counteracting effect of diffusion

becomes very evident (Figures 10 and 14). Since

-P ý7y W P dX

from Equations (2) and (15), it is easily seen that

G\y;-w ") 2L •
-5 . W P ax (32)

So, from Equation (32), the integrated diffusion term is proport:onal

to the pressure gradient. Now, since Dp/Dx is negative due to the

acceleration of the external stream, it is apparent that diffusion

is becoming predominant and the vorticity production in the lower

boundary layer (stretching) is transported away entirely by diffu-

sion to higher levels.

.4I



42

Conclusions

The principal results and conclusions obtained from this

study are sumtmarized by the following statements:

1) A computer program was successfully developed to

solve the incompressible laminar boundary layer

equations for the case of steady flow at high

Reynolds number about blunt-nosed bodies of

revolution where there are no large variations in

longitudinal curvature. The method appears to

provide sufficient numerical accuracy for most

engineering applications except near flow separation

where the accuracy falls to about two decimal places

(cf. Table 1). Lastly, the program is capable of

providin, solutions rapidly, since the total

execution time was under three minutes for either

the sphere or the ellipsoid.

2) The local tendency of large vorticity production in

the lower boundary layer creates larger curvature of

the vorticity distribution in the middle boundary

layer. Therefore, there is more rapid diffusion

which increases the boundary yer growth and

counceracts the trend towards large values of
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vorticity at the wall. Hence, w is increased

by only a small percentage, even though the local

stretching effect can be very large.

3) Vortex stretching tends to produce a Sreater increase

in vorticity in a region close to the surface.

Consequently, skin friction is increesed, creating

more rapid growth of the boundary layer which, in turn,

tends to inhibit the increase in skin friction.

_ • mi m
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APPENDIX A

COMPUTER PROGRAM FOR SOLVING THE BOUNDARY LAYER EQUATIONS

The following computer program was written in the Fortran IV

G language for the IBM 360/67 digital computer of the Computation

Center at The Pennsylvania State University. A detailed discussiorn

of the method used can be found in Chapter III.

I
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C COMPU1TER PROGRAM FOR SOLVING THE AUUNUARY LAYER EQUATIUNS

REAL K
DIMENSION XI(505),)X2 505),X3(505),X44505),X5(3),SOLI(3),SOL2|3),$O

IL3(3),PRFV0(25,505),PREVI(25.505),LW(3OJ,PI(100)),P'I(l0OJPo](1O0
2),PTIII00),XYZ(300),EPSI(25),EP52(25),ST.O00I,UV(25).TA(3),TRE3),V

3ELISC)S.Fr.'J, 505)
INTFGcR mH(450)

DATA Xl/S*O./,X2/5*0./.X3/5*O./,X4/5*0./
PIAfA,,C.D,0EF.G.H) = 4*IB-1.)-C*(O-E)+F*(G.H)
PPIA(A,9,C,O,F,F) = -1.*A*(B*C)-D*(E-F)

PDI&(A.RI,C,D) = A+R*(C.O)
RFTAi(A,RC,D,EF,G,X,YZ) = A+B*C+D*E+F*(188.*G-123.*X+72.*Y-17.*

SETA2(A,B,C,D,EFGX) = A+B*C.D*(3?3.*E-264.*F÷159.*G-38.*X)

ZETAI(A,R,C,D,E,FG,X,Y,Z) = A.B*C÷D*E+F*(17.*G÷120.*X-21.*Y÷4.*Z)
ZETA2(A,R,CO,E;,ýG,X) a A+B*C+D*(3R.*E+171.*F-36.*G÷7.*X)

ZETA3(A,9,C,0,E,F) = A+8*÷9.*C+19.*[)-5.*E.F)
RFAD 500,K,PHIDPW,ETAINFHP.AIS1,LIMSTUPID
REAn SO ,(EPSIj(mZ),M7=I,LIM)
READ 5fl,(FPS2(NZ),NZ=I,LIM)
READ 502,1CK,CKI,CK2,MESS,LOGM,LOGN,LOGO

READ 505, (IJV(JL).JL=ILIM)
REaD 506,IrA(LAT)tLAT=1I3I,(TRILRT).LBT=1,3)
X21tl = -1.

X3(l) = PwIDPW
FINANS = X3(1)

XYZ(1) = 10000.

FSLN(1) = n.

LSO 0
LC = 0

ETAI = HI
H1HALF = .5*H1
HISO = HiHALF*H1
MISQI .2*HISO

HICtJB HISHISOI/12.
Hr ) H/24.

HSQ S*.5*H*H
HCI•R = HSO*H/360.

HS01 = HSO/180.
On 24 LAM = 1,LIM
ICOIINT = 0
CALL IDInT(K,P,TA,TBLAM.LOGM.L0GN,LOGOI
IF(LAM-MFSS) 23.900,900

900 LC = 1
23 LS = 0

1H =

IL m I
MIN a I

Ix x I
MST = I
X4(I) = -EPSI(LAM)
STill = X3(l)
NH(l) = 0
LWEII = 0

11 P1 = -HI+HISO*X3(1),I+HIH1SQ/3.)*XW.(l)
PPkl -1.+-mHX311)+oI4S00X4(I)
PDPRI X3(11]Hl*X4(i)
PTPRJ = TRIPIPFtEVO,PREV|,LAMýEPSI(LAM),ETA1,2,PIoPPM1,POPRI,EPS2(L

______
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IAM! ,LC. (V I
PH(I) = PIA(HIHALFPPR1,HIS01,POPRIX3(]))H1CUBtPTPP(iX4(1))

PPI(1) = PPIA(HIHALF.PDPRI.)3(1),HISQI,PTPR1,X4(1))
P)III) a PrIA4X(1A ),IX I H ALF,PTP I,X 4( )
PT(1) TRIPPREVOPREVILA!,EPSIILAM),ETAI.2,P(Pi,.PPI(I).POI(l)

1,FPS2ILAM),LC,UV)
ICOUNT w lCOUNT+l

1 J I-2

P(il) = PIA(HIHALF,PPRI.HlSOI.POPRlX3(1),HICUBPTI(J),X4(1))
PPH (1) = PPlA(HIHALF,PIlPRl,X3il),H1Sl•I.PII(J)tX4(i)1
PDT(I) = PI)IA(X3(12,HIHALF,PII(J),X4( ))
PTII1) = TRIP(PREVn,PREV1,LAM,EPS1(LAM),ETA1,2.PI(1),PPI(1),Pf )I(I )

1,FPS2(LAM),LC,UVl
IF(ABS(PTI(I)-PTI(JI .LE.CKI1 GO TO 2

GO TO 1
2 ETA = ETAl

Xl(2) = PR(IM
X2(2) = PPI(1)
x(3(2) = PO I ( I
X3(2) = PTI)()

CALL STAMCH(PREVOPREV1,Xl(2).X2(2),X3(2).X4)2),ETA,HI.EPSI(LAM),L
IAM.Xl(5),X2(5),X3151,X4e5),X4(4),X4(3),X1(4),X1(3),X2(4),XZ(33,:PS
22( LAM) X4( 1) ,CK2,LC,UVcXV ( 31 ]X3( 4) ,tFSLN)

NM = 6

ETA = H
ITILT 0

-3 FTA c ETA*H
KK = NM-I
KX = NM-2
KY a NM-3
KZ = NM-4
Yi = BETAI(XI(KK),HX2(KK).HSOX3)KK) HCUB•X4('K),X4(KX),X4(KY),X4

I(KZ))
Y2 a BFTA2(X2(KK),H,X3(KK),HSOIX4(KK),X4(KXI.X4(KY),X41KZ))
Y3 = BETA3(X3(KK),HO,X4(KK),X4(KX).X4(KY).X4(KZ))
Y4 z TRIP(PRFVO,PREVI,LAMEPSI(LAMh)ETANMYl,Y2,Y3,EPS2(LAM),LC,U

IV)

XI(NM) 2 ZLTAI(XI(KK),H,X2(KK),HSQ,X3(KK)I HCI B, f4,X4(K,(),X4(KX),G(4
IfKY))

X2#NM) * ZtTA2(X2iKK),HX3(KK).dISQIY t•4(KK),X4(KX).X4(KY))
X3)NM) ZETA3(X3(KK),HD0Y4,X(KKIJX4(KX),X4(KY))
X4(Nm) = TRIPIPREVO.PREVILAMEPSI(LAM),ITANM,XI(Nm).X2(NM),X3(NM

I).FPS2(LAMI.LC,UV)
IFEIUTLT.FQ.I) GO TO 32
TF(x2tNMI.GT.-K) GO TU 31
IFIETA.LT.eTAINF) GO 10 930
IX a IX+i
XYZIIX) = A•S(X2(N9))

IF(XYZ(IX).GF.XYZ{IX-I)i GO TO 6n20
XLW = X3tl)
MIN = MIN÷I

6020 X3(1) w X31I)+.025
GO TO 6

930 !F(ABS(X2(NM)).LE.I.) GU TO 932

X3•() a .5*(HIGH+X3(1))
GO TO 777

932 NM a NN41
GO TO 3
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31 ITILT I
32 IFPI2INM).G1.P) GO TO 4

IF(X2(NMI.LT.-K) GO TO S
IF(PTA.GF.FTAINF) GO TO 8
NM = NM•l

GO TO 3
4 IH 2 I1+1

HN(IHI = NM
IF(HH(II4).LF.HH(IH-1)) GO TO 41

HIGH X3(j)
41 X3(IL = X3(l)-SI

GO TO 6
5 IL IL+l

MIN =MIN2
LW(IL) = NM
IF(LWIIL).LF.LW(IL-1)) GO T0 51
XLW = X3(I)

51 x3(l) = X3(U)÷A1
6 IF(X3(I)) 301,66,66

66 IF(IH.GT.1.ANO.MIN.GT.I) GO TO 7
GO TO 11

7 X3(1) = .5u(HIGH+XLW)
777 MST = MST+I

STIMST) = X3(1)
IF(ST(MST).F3.ST(MST-1)) CALL CHGETA(ETAINF,X3(I),F23,C?5,FINANSL

1IS,STUPIOICK)
r n Til l
-S = LS*I
S!nL3(LS) = X3)(NM)
SfLI(LS) XI(NM)
SIL2ILS) = X2(NM)
XS(LS) = X3(1)
IF(LS.FO.3) GO TO 10

EF(SOL2(LS).GT.O.) GO TO 9
X3( 1) = Svf{X5(LS)+HIGH)

r,0 TO I1
9 X3(11 = .5*IXS(LS)+XLW)

GO TO II
10 IF(SOLZI])-SOL2(2)) 98(5,9864,9865

9864 IF(SIL2(I)-S5L2(3)) 986S,9866,9865

986b IFISOL2(2)-SOL213)) 9865,9868,9H65

9868 FINANS = XS(1)
GO TO 200

9865 FINANS = 0FC3(XSSOL2)
200 PRINT 20nn

PRINT 2100, (SOLI(LLS).SOL2(LLS)*SI)L3(LLS).X5(LLS),LLS=I,3
PRINT 22nO,FINANS,LAM,ETAINF,LSD

X3(1) = FINANS
PRFVO(L AM, ) = o.
PREVl(LAM,I) = -1.

API = -H|MHISO*X3EI)+IHI*HISO/3.)*X4(1)
APPRI = -. +MH1X3(1)IHtSQ*X411)
APAPR1 = X31l)+HI*X4(1)
APTPRI = TNIPIPREVOPREVI,LAM,FPSIILAM),ETAI,2,APIAPPII,APUPRI,EP

1S24 LA ) ,LC ,lJV)
PI lI = PVAIHIHALF,* PPRI.MISQI.API)PRI,X3(I),HICUR,APTPRI,X4II X )

PP1l() PPIA(HIHALFAPDPRIX3(1),HISOI,APTPR1,X4(1,I
POlrl) POIAC X34 I1 ,H-4ALF,APTPRt, X4( I))
PTI() =RIP(PREVO#,PREVI,LAMEPSI(LAM),ETAI,2,Pl I ).PPI(II,POI(|)

,ýPS2LA i , LC ,IUV
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L =2
201 Li L-I

P14L) = PlhI41HALF,APPRI.HISOI,APDPRIX3(1),HICUR,PTI(LJ),X4(1))
PPI(L) = PPIA(IHIALF,AP()PRI,X3(l),HISOIPTI(LJ),X4(1 )
PD! CL) PDIA(X31 1).I ) HALF,PTf(LJ),tX4) ))
PTI(L) TJIPiPR VOPREV1,LAM•EPSIILAM),ETAI,2,PIIL),PPI(LJtPOI(L)

1,FPS2(LAMI,LCtUV)
IFIA8S(PTI(Lf-PTI(LJ)).LE.CKl) GO TO 202
L - L•-i

GO TO 201
202 FTA = ETAl

XI(2) - P1(L)

FSLN(21 = XI(2)IETA
X2(2)a PPI(L)
X3(2) = PfIl(L)
X412) = PTI(L)
PREVOILA14.2) = PI(L)
PREVI(LAM.2) = PPI(L)
CALL STA4CH(PREVOPREVI,XI(2),X22)2 X3(?).X4(2),ETA.,H1,EP.I(LAM) ,L

IAM,XI(5•.X2(5),X3(5 ,X4,('5),X4(4),X4(3).XI(4),XI(3).X2(4),X2(3),EPS
22(LAM),X4( 1 ),CK2,LC,UV,X3( ]3),X3(4)I ý,FSLN)

LNM = h
FTA = H

203 ETA = ETA+H
LKK - LNM-1
LKX = LNM--

LKY = LNM-3
LKZ x LNM-4
YI = RFTAI(Xl(LKKI,H,X2(LKKI.HS4J.X3ILKK),HCtiXK4(LKK) ,X4!LKX),X4(L

*, IKY)tX4(LKZ))
Y2 = RETA2(X2(LKK),2H,X3(LKK),HSQI,X4iLKK),X4(LKX),X4(LKY),X4(LKl)I
Y3 = BFTA3(X3(LKK),HL),X4(LKK),X4(LKX),XE'(LKYI:X4(LKZ))
Y4 = TRIP(PREVOPREVILAMEPSI(LAM) ,ETA.LNMYI,Y2,y3,EPS2(LAMJLC,

XIILNM) = ZETAI(Xl(LKK).H,X2(LKK),HSOX3(LKK),HCUL.Y4,X4(LKK)iX4(L
IKX)tX4I )4L Y)

FSLN(LNK) = XIfLNM)+ETA
X2(LNM) = ZFTA?(X2(LKK),H,X3(LKK),HSQI.Y4,X4(LKK).X4'L'(X),X4,(LKY)
PRFVO(LAM.LNM) = XI(LNM)
PREVI(LAMLNM) = X?tLNM)
X3(LNM) =ZFTb3(X3(LKK(.Il,Y4,X4(LKK),X4(LKX).X4( LKYY))
X4(LNM) = TRIPIPREVOP.;eVI,LAM,.EPSIILAM),ETALNMXI (LNM),X2(LNM),X

13(LNM),FPS2(LAM),LC,UV)
IF(FTA.TGE.ETAINF) GO TO 204
LNM . LNM,1

GO TO 203
20' PRINT 504.X2ILNM•)x3CLNM)

PRINT 4000. ICOUNTUV(LAM)

lISPL s -XI(LNN)
0o 4n0 IKW a ILNM

400 VELIIKW) - X2(IKW)÷I.
PRINT 5000
PRINT 5001,1-:LI IKZI, ]KZ2 ,LNMI
PRINT 1ý002,D1SPL

PRINT 5n03
" PRINT Snn4.Ir3(LKW),LKW-I.LNM)

PRINT 5n0og

PRINT 5006, (FSLNILZZ) ,LLZI , LNM)
PRINT 0on7
PRINT 5008.,X4,LBG),L8G=I.LNN)
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24 CONTINOE
GO TO 25

101 PRINT 503 3fi •,LAM
25 STOP

500 FORMAT(7FIO.7.13,FS.2)
501 FOR4AT15F1?.8)50? FoPMAT•1I0,?F12.A,;10,313)

503 FORMAT(10.'A NEGATIVE TRIAL VALUE FOR WALL SHEAR = ','-1.8,O CCU

IRRED AT LAM = 1.14)

504 FORMAT(' ','AT INFINITY X2 ',F14.8,' AND X3 - ,tF14.R)
5 0 Ffl MAI( 6 P 2 .6)

5n6 FORmATtbFIO.)7

200n FORMAT('10,7X,'SfLl',IlbX,'SOL2',15X,'SOL31.12X,'XS'I
2100 FORMATI' I*4(F14.B,5X))
2200 FORhATIn'g,'FINANS x 1,F14.8,5X,'FOR LAM a ',13,5X,'ETAINF = ',F14

I . 7,* 9X ,'I TAL NO. Or- CHANGES IN ETAINF - ',I4)

4000 FORMAT(10','ICOIJNT = ',14.5X,'FUR THETA = I¼F12.6,o DEGREES')

5000 FlRMAT'9-1'.'THE VELOCITY PROFIILE IS'5
5001 FOR MAl14 1 '.IIFII,7I

5002 FORMAT(Io',tTHE NON DIMENSIONAL DISPLACEMENT THICKNESS IS',F12.7)
5003 FORMATI'T0''HE VELOCITY GRADIENT PR(IFILE IS')

5004 FORMAT(, '.IFII.7)
500 5 FORMATI 0o'.'THE SOLUTIUN PROf'ILE FOR F IS')

5006 FORMAT(' ',IIFII.
7

)
5007 FORMATfI 01.THE PROFILE FOR F TRIPLE PRIME IS')
500k FORMAT I ',IIFII.7)

FND
StUBROIITINF STAMCH(F,G,AA, RtCC.ODE.,O.YM, IRRI0.RIIRI2,RTII.XXI,Y

IYIAO,OAI.81,RW,C,JJ.U.X33,X34,FrS)
0IMENSION F125, n5) ,G?5,SOS),PCPSO0,PCR(50),PCD(50),STC45O)I.I0(

10)*01501, .0152),I 50), QT (50) ,Il 25),*r-•(505)

INTEGFR P
SIGl(A.F.C,0,F,F,GX) = A*B*C.r*F+F*(17.*G+120.*X)
SIGI(A.R.C.D,EF) = A+R*C+D*(3R.*E+171.*F)SlG2(A,R.C,O) z A*gk*19.*C+Ig.*Dl

GAM0.A,tC.D,E,FG,X,Y1 = A+,NC+O*E+F*( 17.*G+120.*X-21.*Y)
GAM!(A,,C.0,F,,F,G) = AA*C+U*(38.*E*I7I.*F-36.*G)
GAM2fA,9.CD,,F = a Ig. CI.1 O-5.*E)

OELTOA,9.C,).E*FGtX,Y.Z) z A+B*C÷D*E+÷•( 1.'G*120.'K-21.'Y+4.*Z)

DELTIIA,R.C.DE.F,G,X) = A+B*C+D*(3R.SE*17T.*F-36.*G÷7.*X)
DELT2(&,R.C,D,E.F) = AR*(9.*C÷19.*D-5.*EF)

ON= HO/24.

HOSO = HOaHO

HOSQI s2HO•o
HSO2 = HOSQl/IRO.
MOCIIB b.4n*HnSQ/720.
PHIPI AA÷HO*RA÷HOSOI*CC+HOCUR*(lRR.*DO-123.*W)
PHPP1 R RHO*CC+HSQ2*(323.*DD-2h4.*w)
PHOPI z CCHOO+i155.*D)--S9.*W)

STPI = TRIP(F.,.I.YM,E,3,PHIP1.PHPPIPuNPItR,JJ,U)
PCP(|) = SIGI(AAHO,BB.HOSQI,CC.0OCUB,STPI,0O)
PCR(1) z SIG1IIAHOqCC,MSQ2,STPIDD)

PCO(II = SI^2(CCHOD, STPI, DD)

STC(1) = TRIP(F.',I,YM.E.3,PCPIIPCRI ),PCDOII),R.JJ.U)K =2

101 L - K-I

PCP(K I a SIGO(AAHO,BB.HJSQI.CC.HOCfR.STC(L),00)
VC I 2 SK I I IBM, MU, LL.HSSQ2 SILIL),00))
PCfl)(KI = SIG2(CC.M(1OSTC(L),DD) I
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STCMK) * TRIP(FG. , IYVME3,PCP(K),PCRIK)PC0(K) ,RtJJU)
IF{ABSISTC(K)-STC(L).LE.CJ G(l TO 102

K = K+!
GO TO 101

102 FS(3) 2 PCP(KJ+E
E E+HO
00 * PCP(A)+HO*PCR(K)+H4SQI*PCO(KI)HOCUB*(IBB.*STC(K)-123.*OD+72.*

1w)
01 PCRIK)IHO*PCO(K)+HS02.( 323.*STC(K)-264..*O+I59.*WI
02 PCr,= K( •(K.f,05I..STC(KJ-5'Y.*DDO37.*Wj
Oil TRIP(FGtIYME,4,GO,01,OIJJJ ))

IO(1) = GAMOIPCP(K),HdJ,PCRIK),HOSOI.PCD(K),HOCUR,U)TI,STC(K),DD)
011(l) - GAMI(PCR(K).HO.PCD(KI,HSO2.QTI.STC(K),DD)
012(1) r GAM2PC0OK),,H0OQTISTCfKJ.DD)
OT! 1 =) TRIPIF,GItYM,E.4.QIOIII,(].' (1)0I, 2(1).k.JJ,IJ)
N= 2

103 P N-1
010(N) 1 GAMO(PCP(KJ,HO,PCRIK).HOSOI.PCD(K),H4OCUR,(JTI(P),STC(K),DD
1)

011(N) GAM4I(PCR(K),H41,PCO(K),4SO2,OTIIP),STC(K),.nD)
012(N) GAM2)PCD(K),HI)U,QII WI.STC(K),DOD)
CTI(N} = TfP(F,GI.Y., E,',OIOIN).OII{N),012(NIR,JJ,U)
IFI4AS(OTI)N)-QTI(PH).LE.C) GO TO 104

N a N+I
GO TO 103

104 FS(4) = 010(N.+E
E a E+Hf
RO - OI0dN)+HO*011(N)+HUSQI*0I2(N)+HnCUR*i188.*OTI(N?-123.*STC(K)+
172. n0-17. *W
RI v OI(N)IHO*012(N)+HSO2*(323.*QTTIN)-264.,STC(K)159.,*FO-38.*W)
R2 a 012(NJ.HOU*455.,oTI(N)-59.*STC(K)+37.*•0-9.*W)
RTI m TRIP(F,GI,YM,E,5.RORIR2,R.JJ,U)
k1O = DELTniOIO(N),HO.0l1(N),HOSO1.QI2(N),HOCIJF.RT1,OTIIN),STC(K),

Rki = OFLTI(OIl(N),HU,012(N).HSQ2,RTI,OTI(N),STC(K),DO)
R12 = DELT?(0I2(N),HO00.RTI,OTI(N),STC(K),DD)
RTIl a TRIP)F,GI.YM,E,5.RI0,RI1,RI2,R,JJU)
FSI5) v RIO*E
XXI = OTIMN}
YYI - STC(K)
An = 010(N)
80 2 PCP(K)
Al = OII(N)
B1 = PCRIK)
X33 - PCO(K)
X34 v QI2N)
F41.3) w BO
FI l,4) a AO

F(I.5) - RIO
G(I,3) 21

GII(,4) A l1
G(I,5) - RI
RETUiRN
ENO
SUBROUTINE CHGETA(XtY#,.A,Z,I U.J)
I a 1+1
IFII.rT.J) GO TO 20

X 2 X-(i
V R I
RE TURN 1
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20 PRINT ROO0

RETIrN 2
8000 FORMA(H'O','FAILURE')

END
SUBJ6OtjTINF IUjl( X.YA,ifL,M,,N.JO
OnMFNSION 4d3.),93) J
IF(L-M) 1*2.2

2 IFIL-N) 3,4*4
3 X = A41)

V - M()
GO TO 1

4 IFIL-JO) 5.6,6
5 X - AM2

Y = B(2)

GO TO 1
6 X a A(3)

Y a 9(31
1 RFJURN

END
DIMNCTION DEC I(X,Y)
DIMFNS ION X(3),Y(3),P(3l,S 3), ]XP13), 1XS[3) .

IJP = o
IKS = 0

SPOS = 1.
K = 0

BNEG = 1.
DO 5 I = 1,3
IF{(V))I 3,5,1

I J = J*1
P(J) a Y( 1)
IXP(J) = 1 3
IF P(J)-RPIS ) 2,5.5

2 aPos a P(J)
lp= IXPJ
jJP = I

GO TO 5
3 K = K*I

SIK) = ARS(Y(j))

IXS(KI m I
1F(S(K)--NFG) 4,5,5

4 BNFG - 5(K)
KK = IXS(K)
IKS = 1" CnNTIN,1F
IF(IJP.EQ.I) GO TO 6

nFCIO = X(KK)
GO TO Ill

SIF(IKS.FU.1) GO TO 7 I
nFCID - xrjj)

GO TO 111
7 IFIABS(X(JJ)-XK(KU)-.0000001) 13,13,77

13 IF(RP[PS-RNFG4 131,131,133
131 DECIr) - x(JJ)

CO TO 111
133 DECIO - XIKK)

GO TO Ill

77 IFfRvOS-8NEGt 8,9,10
SR A v BNFG/RPOS

RAT - AINT(R)
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DECID = (RAT*X(JJ)+XIKKI )/IRAT+1.I

GO TO Ill
9 DFC1" = .5*IX(JJ)IXIKK))

GO TO Ill
10 R = BSPRS/ANFG

RAT = AINTIRI

DECID = (RAT*X(KK)+X(JJI)/(RAT+1.)
Ill RETURN

FND
FUNCTION TRIP(XYJ,XM, TK,A.B.C.R,N. S)
DIMENSION X125,505 ),Y(25,5051 ,S( 25)
Z = -(.5r(XM÷I.).R)*iA+T.*C+XMsIR*R+2.*R)

IF(J.GT.31 GO TO 7n4
GO TO o701.702,703),J

701 TRIP = Z
GO TO 705

702 TRIP z Z+C(C8I.)*(g-Y(1.KI)-C*(A-X(I,K)))

GO TO 705
703 FO = SIJ)=I2.*StJ)-S(J-Z)-S(J-1))/((S(J)-Ski-2))*(S(Ji-S(J-1)))

F1 = S(J)*(S(J)-S(J-2) /((S(J-fl-SJ-2 'ISki-I)-S{J)))
F2 = S(J)*(S(J)-S(J-1))/((S(J-2)-S(J-1})*(S(J-2)-S(J)))
TRIP = Z.U8.1. I*(FoO*R+tSIY(2,KI+F2Y(I1.K))-C*(FO*A+FISX(2,K)+F*2*X(

llK) I
GO TO 705

704 0 v S(J)*( (S(J'I-S(J-2) )*(S(J)-SCJ-1)])/((S(J-3)-SIJ-2))flS(J-3)-S(
1J-1l) )*( S(J-3 )-SC J) ))
I1 SJ)*((S(J)-S(J-3))*(S(J)-S(J-I)))/((S(J-2)-S(J,-31t*(CS(J-2)-S(

1 J-1l'(=lS(J-2)-S(JH) )

V S(J)*( (S(Ji-S(J-3) ')*(S(J)-S(J-2)))/((S(J-I)-S(J-3)))*(S(j-1)-S(
IJ-2),*(SIJ-l)-S(J) )

W uS(J)s((S(J)-SCJ-3) Im(S(')-S(J-2 )+ISCJ)-S(J-3))'tS(.1)-SIJ-1))e+
IS(J)-SI J-2) )*(S( J)-Sl J-1)) tit(SIJ}-S(J-3B)*{('ý J)-S( J-2})1*(S(J)-S(J

2- )))
TRIP = Z+("•1I.)I(W*B÷V*Y(J-1,K),IJ*Y(J-2.0()-O&Y(J-3.K})-C*iW*8+VSX(
IJ-1,K )-'*X ( I-2.K ).0*X( J-3.K ) )

705 RFTURN
ENf

Si
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The input data necessary for the proper execution of the

above program should consist of the following:

I) The first data card should contain values for +c,

an initial guess for f'', ri, the n-step size (h),

-c, a 3 , a,. the number of x-steps and the increment

by which r, is lowered. (See pages 21-25)

2) The next set of data cards consists of M and R, in

that order. These are obtained from the potential

flow and body geometry for the particular body under

consideration. (See Appendix B)

3) The next data card consists of the maximum number

of allc•.aable changes in n., two tolerances for

determining numerical equality (lxlO-7 for single

precision), an approximation for the number of the

particular x-station which is nearest to the point

of separation, and the numbers of the particular

x-steps where the values for +E and -E are to be

changed.

4) The next set of data cards cons;sts of the numerical

values of x (i.e., arc length) at each x-step.

5) The final data card should give the numerical values

for +c and -c at each step where they are to be

changed (cf. statement number three above).
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APPENDIX B

CALCULATION OF M AND R FOR AN ELLIPSOID

Coordinate System and Geometric Relations

A semi-elliptic coordinate systenm is a very convenient

representation for obtaining the potential flow solution about an

ovary ellipsoid. The defining relations are:

X - Klj6,

Y = K(1-1j 2 )1 (1 2-1)½ cos •, (Bl)

and 2 1
Z K(I-ij)7 (6•2_)½ sin w,

where -1 < p < I and I < 6 < The surfaces 5 - constant

p1 = constant are confocal ellipsoids and hyperboloids of rwo

sheets, respectively, with common foci at (+K, 0, 0), and uw is

taken to be the azimuthal angle in the meridian plane. The

coordinates p, 6, w form an orthogonal system with the following

metric coefficients:

h K (82)

and

h 6 K (62_8 ,3)



I.

?I

and

h - K(O-w 2 )i ((2)")

Considering the meridian plane with Z.O of the ellipsoid 6

with seJit-major and minor axes a, b, respectively, the following

geometric relationships hold:

e (a 2 -b 2 )
a

and

K ae, (86)

where e is the eccentricity. The equation of the ellipse in the

meridian plane is given by the familiar equation:

X2 2•
S+ - - .(B7)

a b

Now, from the relations (BI) with (B5), (86), and (87), it is

easily proven that for this body (Lamb, 1945):

-6 -- (B8)
C0

and

X
S(89)

Ia

I
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Calculation of R

Referring to Chapttr 11, the expression for R can be

I , .:*itt•- as:

R dr0  dX (810)
r dX dx

Now, from well-known formulas of integral calculus, the differential

of arc dx and the arc length x are given by:

dx + [ +d dX (811)

and

x = a E (e,P), (B12)

where E (e,ij) is an elliptic integral of the second kind defined

by:

E eii. (813)

dr dX
Since r° Y,- is re.-dily obtained from (87) and 3 from (OI1).

Finafly, the equation for R becomes:

R - 1E (eLI 1 -2)(1-e2p2 j (B14)

I



Calculation cof 8

The velocity potendia, for an ellipsoid moving parallel

to the X axis is given (see La-.*, 1945) by:

€=Ap 6 -in • -I WEt.)

where A - aU I n- In e

From (815) and (82), the velocity in the • direction V is:

)l.

For the ellipsoid 6 , constant 6 8o, the relation for M

takes on the following form:

M x aLV " dd]J (B17)
0 o

3V
The quaotity on 6 Is obtained from (816) and is found to be:

(3v )1 2 2 23 1 [~le e
776 a [01 )Iei-eui•-J (l" ,--- e') L e 'n !"~ - (. 8

0

The expression for L on 6 is most conveniently establ isied by
dx 0

differentiating the coordinate relations (BI) and solving the

resulting set of simultaneous equations algebraically. The result

is:

JJ



i

0 - (Big

After making the appropriate substitutions into (817), M finally

becomes:

' = (I •2 • •,)•(I-i•l (I-e2 2 3 ' (820)

9.i

It
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