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ABSTRACT 

It is shown how, by carrying out a sequence of three coordinate 

axis rotations in Poincare space, one can calculate the principal 

basis and the real, nonnegative eigenvalues of any symmetric 

polarization scattering matrix. Then the two eigenvalues and the 

three Eulerian angles of the principal axes in Poincare space 

constitute a complete set of pure scatterer parameters. A scatterer 

classification scheme based on these parameters is constructed, 

with the help of a geometrical representation, in Poincare space, 

of polarization transformations. The procedure is applied to 

several simple scattering configurations. Some conclusions are 

reached concerning the scatterer geometry in various cases. 
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1.0 INTRODUCTION 

Efforts to make the polarization scattering matrix more useful 

for scatterer identification have usually been directed toward 

extracting from it a set of pure object parameters, i.e. quantities 

determined solely by the scattering object and independent of what 

polarizations are transmitted and of what polarization basis is used. 

If such a set of parameters can be found, then one would hope that they 

would yield information about the geometry of the scattering object, or 

at least that they could be used as a basis for classifying scattering 

objects into a number of characteristic types for purposes of recognition, 

There have been at least two different approaches to the problem of 

finding pure object parameters. One of these involves the null 

1 2 
polarizations of the scattering matrix ' ; but the possibilities appear 

to be quite limited.  The other seeks to find the eigenpolarizations 

and eigenvalues of the scattering matrix.  It has long been known how 

to do this for an object having bilateral symmetry with respect to a 

plane containing the line of sight, by means of a simple axis rotation 

3 4 
about the line of sight .  Recently a procedure was given by Bickel 

for diagonalizing any general symmetric scattering matrix by means of 

two successive orthogonal changes of basis, one of which is a rotation 

about the line of sight, and the other an ellipticity change. The 

eigenvalues that Bickel obtains for the scattering matrix are in 

general complex.  The real parameters of these and of the basis 

transformations constitute a complete set of pure object parameters. 



The present paper is to some extent equivalent to Bickel's 

4 
work , but goes beyond it in several respects.  By means of a third 

change of basis, the scattering matrix is reduced to real, nonnegative 

diagonal form; and this makes it possible to take over some concepts 

from tensor analysis, particularly the concept of principal basis 

and the concept of degeneracy, which turns out to be quite useful 

in setting up an object classification scheme and interpreting it. 

Also the present paper, unlike Bickel's, devotes a good deal of 

attention to the geometrical representation of polarization trans- 

formations, this representation being expressed in terms of rotations, 

reflections, and other transformations in Poincare space, i.e. the 

three dimensional space in which the Poincare sphere  is embedded. 

The geometrical representation is quite helpful in constructing the 

object classification scheme, as well as in giving insight into the 

analytical operations. 

The basis finally arrived at by means of the three basis 

changes mentioned above (i.e. the basis in which the scattering 

matrix is in real nonnegative diagonal form) will be called the 

principal basis of the scattering matrix, in analogy with the 

principal axis system of a tensor.  An explicit procedure will be 

given (Section 5) for calculating the principal basis of any symmetric 

scattering matrix.  This procedure yields three real parameters 

specifying the principal basis:  they are just the Eulerian angles, 

in Poincare space, of the principal basis axis system relative to 



the fundamental Poincare axes (which will be defined in Section 2). 

The three Eulerian angles of the principal basis and the two real 

eigenvalues of the scattering matrix make up the set of pure object 

parameters that will be used in this paper.  It will be shown how 

their values are related to geometry in Poincare space (Section 6) 

and also to the object geometry, and furthermore how the ranges of 

their values lead naturally to a classification scheme for all scattering 

surfaces satisfying the reciprocity condition. The procedure will 

be tried out on a number of simple examples (Section 8). 

It is assumed that a monochromatic, monostatic radar system 

is used, and that the same two orthogonal polarizations are received 

as are transmitted. Only actual scattering effects are considered; 

effects due to the propagation medium (such as Faraday rotation) 

are supposed to have been already removed from the scattering 

matrix. Absolute phase will not be kept track of; a change in the 

absolute phase of the complex electric field components or of the 

scattering matrix will not be considered to have any significance. 

2.0 REPRESENTATION OF POLARIZATIONS AND BASES IN POINCARE^ SPACE 

We shall make considerable use of the Poincare sphere, laid 

out in the usual way , as shown in Figure 1.  We shall use not only 

the spherical surface but also the entire three dimensional space 

in which the Poincare sphere is embedded.  This will be called 

Poincare space.  It is not the same as physical space. 



Left ! circ. 

Linear 

Figure 1  Poincare sphere 

The coordinate axes shown in Figure 1 (i.e. the three axes 

whose positive senses represent linear horizontal polarization, 

linear at 45  to horizontal, and left circular) will be called the 

fundamental Poincare axes.  The angles 6 and <:D  will be used to 

denote the polar and azimuthal angles of a given direction (OP) in 

Poincare space, referred to the fundamental Poincare axes.  Thus a 

given polarization can always be specified by the values of its 

9 and its co.  The angle 8 is related to the ellipticity angle a by 

the equation, 

TT 
- 2a 



as seen by comparing Figure 1 with Reference 5, Figure 6(b).  The 

angle © is equal to double the azimuthal angle, in physical space, 

of the polarization ellipse major axis, measured from the positive 

horizontal direction. 

Besides the fundamental Poincare axes of Figure 1, it will be 

necessary to use other axis systems having the same origin but 

differently oriented.  Such a system will be denoted by P , P , P  . 

Its orientation in Poincare space shall correspond to the polarization 

basis that is being used, as illustrated in Figure 2.  To specify 

a polarization basis, two items must be decided on:  first, the two 

orthogonal basis polarizations that are to be used, and second, a 

convention establishing what the phase relationship between these 

two polarizations is to be.  Let us take the coordinate axis 

orientation to be related to the basis as follows.  First, the 

positive and negative P axes shall be in the directions (in Poincare 

space) of the two orthogonal basis polarizations; then the complex 

components of a polarization in the + P, direction will be proportional 

to (1, 0), and those of a polarization in the - P direction will 

be proportional to (0, 1).  Second, the phase convention and the 

direction of the P axis shall be such that a polarization in the 

+ P1 direction will always have components proportional to (1, 1), 

and one in the -P direction will have components proportional to 

(1, -1). Then for polarizations in the + P„ directions, the complex 



components come out to be proportional to (1, -i) and to (1, i) 

respectively.  A careful study shows that all these rules are consistent 

Figure 2 shows the axis orientations for two commonly used bases. 

P, (left circ.) 

.P, (lin. at 
45°) 

Pa (left circ.) 

(lin. at 45 ) 

Pj (lin. horiz.) P, (lin. horiz.) 

Figure 2  (a) A circular basis.  (b) A linear basis 

It should be emphasized that the angles 6 and cp for a given 

polarization state will always be referred to the fundamental Poincare 

axes of Figure 1; whereas the values of the complex electric components 

of a given polarization state will depend not only on the polarization 

state but also on the choice of basis used. 

Let us now restrict our attention to the circular basis of 

Figure 2 (a).  In this basis the simplest polarizations, with amplitudes 



normalized to unity, have components as follows, to within an arbitrary 

phase factor, according to the conventions already adopted. 

Left circular, (1, 0), 

Linear Horizontal,—   (1, 1), 

4? 
Linear at 45 ,-— (i, -i), 

Right circular, (0, 1) 

Linear Vertical,  (1, -1)\ 

Linear at 135°,-— (1,1) , 

(1) 

For a general polarization state specified by spherical angles 

6 and cp, the complex electric field components, referred to the basis 

of Figure 2 (a), are proportional to 

1 „     icp/2 1  o     -lcp/2 cos -roe and sin — o e (2) 

as follows from the theory of the Poincare sphere ' .  The quantities 

(2) are to be multiplied by the real amplitude |E| of the electric 

%i,^, 

field, and they can also be multiplied by an arbitrary phasor e   , 

which expresses the absolute phase.  Thus, 

l„l 1(      i   (cp + 10/2 , 
E     =   |E|   cos -8   e     w 

II      .     1 fl     1  (•   - Cp)/2 
E2  =   |E|   sin - 6  e 

(3) 



where the subscripts 1 and 2 refer to the left circular and right 

circular components respectively.  The quantities (3) are just the 

6 / 

components of a spinor in Poincare space, having Eulerian angles 

(9, cp, ty).  Therefore all the machinery of spinor theory can be 

taken over and used on the present problem.  For example, if the 

coordinate axes in Poincare space are rotated, the components of a 

spinor undergo a linear transformation with a unitary matrix U.  For 

an axis rotation about the P axis through an angle cp , 

(4) 

For an axis rotation about the P axis through an angle 6 , 

(5) 

For derivations see Reference 6, but note that the matrices (4) and (5) 

are the inverses of those given there.  This is because the rotations 

being considered here are coordinate axis rotations, whereas those 

in Reference 6 were rotations of spinors with the coordinate axes 

held fixed. 



The matrices (4) and (5) can also be derived from the familiar 

real orthogonal transformations of solid analytic geometry, without 

explicit use of spinor theory . 

It has been seen in the foregoing that, in Poincare space, 

any direction from the origin specifies a particular polarization 

state. Now what does distance from the origin signify? If the 

complex electric components (3) of a polarized wave are given, then 

the distance from the origin to the point of Poincare space that is 

specified by the components (3) is equal to 

j (Ex E*  + E2 E2*) , (6) 

from spinor theory .  But the expression (6) is proportional to the 

power density of the electromagnetic wave.  Thus, distance from the 

origin in Poincare space measures power density.  Poincare spheres 

of different radii represent electromagnetic waves of different 

power densities. A transformation of Poincare space that distorts 

the family of Poincare spheres into a family of nonspherical surfaces 

corresponds to a target that changes the power densities of differently 

polarized waves by different factors.  Transformations with this 

property will be encountered in Section 6. 



It is also possible to give the significance of the rectangular 

coordinates P , P  and P , of a point in Poincare space.  These 

are related to the complex electric components (3) by the equation , 

1 * * \ 
V2<E1E2    +E2E1> 

i * * 

\  =  "2   i   (E1 E2     "  E2 El  > 
(7) 

1  , * *•, 
P3 = 2   (E1 El     "  E2  E2  > 

These quadratic expressions, together with (6), are the (monochromatic) 
Q 

Stokes parameters of the electromagnetic wave. 

3.0 TRANSFORMATION OF POLARIZATIONS BY A SCATTERER 

It is usually assumed that, on reflection from a scatterer, the 

complex electric components undergo an ordinary linear transformation, 

just as would be the case for transmission across a boundary without 

change in the propagation direction.  The matrix of the linear trans- 

formation is the scattering matrix for the particular object.  Now 

the use of an ordinary linear transformation for a reflection leads 

to difficulties, because it implies that an object whose scattering 

matrix is the identity matrix would leave every polarization completely 

unchanged, whereas it is known that every real object causes changes 

in at least some polarizations.  For example, a large plane surface 

10 



normal to the line of sight changes a right circular or right elliptic 

polarization into the corresponding left-handed polarization and 

vice versa; in other words, it reverses the phase difference between 

the horizontal and vertical complex electric components, as judged by 

the observer. Similarly, a phase difference reversal of some kind 

turns out to occur on reflection from all other objects, and this 

fact ought to be expressed in some way in the transformation equations , 

if these equations are to give an accurate account of what actually 

occurs. 

The following formulation is designed to satisfy this require- 

ment; and, in addition, it leads to a complete geometrical representation, 

in Poincare space, of the effects of the object on the complex 

electric components, as will be shown in Section 6. We assume that, 

on reflection, the complex electric components undergo not an 

ordinary linear transformation, but rather a linear conjugate trans- 

formation of the form 

* * 
Erl = Sll Etl + S12 Et2 

Er2 " S21 Eti* + S22 Et2* 

(8) 

where the subscripts "t" and "r" stand for "transmitted" and "re- 

flected" and the subscripts 1 and 2 designate the components in what- 

ever basis is being used. The conjugation of E  and E  on the 

11 



right side of (8) takes account of the phase difference reversal 

/Sll Sl2\ mentioned in the preceding paragraph.  The matrix is 
\S21 S22/ 

the scattering matrix. 

With this formulation, it is necessary to adopt two conventions. 

First, the numerical specification of the different polarization 

states shall be exactly the same for the reflected wave as for the 

transmitted wave.  For example, if the basis of Fig. 2(a) is used, 

the complex components of both waves shall have their values determined 

according to formulas (1).  Second, the transformation of the complex 

electric components under a change of basis shall be exactly the 

same for the reflected wave as for the transmitted wave and shall 

follow the spinor rules based on the transformations (4) and (5). 

Eqs. (8) can, of course, be forced into the form of an ordinary 

linear transformation by changing the terminology, e.g. by defining 

the components of the reflected field to be the complex conjugates of 

the quantities that we are calling E  and E „.  Then a corresponding 

change must be made in the definition of the scattering matrix elements; 

and also the two conventions of the preceding paragraph must be 

9 
suitably altered.  Using a scheme equivalent to this, Graves  succeeded 

in deriving the correct transformation rule for the behavior of the 

scattering matrix under a change of basis,i.e. the congruent trans- 

formation (18).  However, Graves' treatment is confusing. 

It should be noted that, in ordinary practical radar work, 

it makes no difference whether one uses the transformation (8) or 

12 



an ordinary linear transformation without conjugation, because 

ordinarily the basis used is selected to match the polarizations 

actually transmitted and received, so that E  and E „ would always 

be proportional either to (1, 0) or to (0, 1), and hence would not 

be changed by conjugation. 

The distinctive feature of Equations (8) is the conjugation; 

9 
and in Graves' theory also a conjugation is implicit, namely in 

the relationship between the transformations of the incident and 

reflected components under a change of basis.  The mathematical 

reason why a conjugation inevitably turns up, in one place or another, 

is that the reflection of the radio waves by the object in physical 

space induces a reflection of the points of Poincare space in one 

of the diametral planes (as will be shown) , and this must be expressed 

in some way in the theory. Now in dealing with complex components 

a reflection is expressed by conjugation; thus, in expressions (2), 

conjugation reverses the sense of the angle Cp, and this constitutes 

a reflection of all points in the P P plane of Figure 2 (a). A 

reflection in any other diametral plane can be accomplished by a 

combination of this reflection and a suitably chosen rotation. 

As an illustration of the above statement that the reflection 

of the radio waves in physical space induces a reflection of the 

points of Poincare'space, consider again the large plane scattering 

surface normal to the line of sight. Aside from absolute phase, 

13 



this object surface returns all linear polarizations unchanged, and 

all circular and elliptic polarizations are returned unchanged except 

for a reversal of rotational sense.  But this is exactly the same 

as saying that all the points in the Poincare space of Figure 1 

have gotten reflected in the equatorial plane, or plane of linear 

polarizations. 

Following are some elementary scattering matrices, in the 

basis of Figure 2 (a). 

Large plane normal to line of sight v       ) (9) 
1  0 

,   I      0 . 
Large right angle corner with edge  ;       ) (10) 

along P axis      ' 0   1 

•'  1   l \ Horizontal straight wire J (11) 
^ 1  1 

2i\ 

Straight wire at angle X  to  ) -21\ ) ^12^ 
horizontal  )      ' 1     e 

Each of these can be verified by substituting it into Equation (8) 

and taking for E  and E  the numerical values, given in formulas (1), 

for each of the different polarizations in turn; it will be found 

that empirically correct results will be obtained.  Note, however, 

that if an ordinary linear transformation without conjugation is used, 

14 



incorrect conclusions will be reached for some polarizations.  For 

example, if the scattering matrix (9) for a large plane normal to 

the line of sight is applied to each of the sets of components (1), 

without conjugation, one arrives at the incorrect conclusion that 

the 45 linear and the 135 linear are interchanged. 

4.0 TRANSFORMATION OF SCATTERING MATRIX WITH CHANGE OF BASIS 

A change of basis consists of a rotation of the coordinate 

axes in Poincare space, as already noted in Section 2.  It was also 

noted there that such a rotation transforms the complex electric 

components by a unitary transformation; let its matrix be called U. 

Let primes refer to the new basis. Then in matrix notation, 

Er - S Et* 
(in °ld basis) (13) 

and E ' = S' E '* (in neW baSis) (14) 
r       t 

Also, 
E ' = UE and E ' = UE  . (15) 
t     t     r     r 

From Equations (14) and (15) , it follows that 

UEr = S'  (UEt)*  . (16) 

15 



From Equation  (13) , 

UE     = USE 
r t 

*  _1    *      * 
US(U  )       U    E 

= USCU*)"1   (UE  )*     . (17) 

From Equations   (16)   and   (17), 

*  -1 
S'   = US(U ) 

and therefore, 

S' - USUT  , (18) 

T 
where U is the transpose of U and is equal, since U is unitary, 

-1 * 
to (U x)  . 

Equation (18) is the desired transformation for the scattering 

matrix.  It is called a congruent transformation.  As already mentioned 

at the beginning of Section 3, this transformation has been derived 

9 
by Graves  in a different way. 

The congruent transformation (18) will now be applied to the 

problem of calculating the principal basis of any symmetric scattering 

matrix. 

16 



5.0 CALCULATION OF PRINCIPAL BASIS AND EIGENVALUES OF THE SCATTERING 

MATRIX 

This will be done by means of three rotations of the coordinate 

axes in Poincare' space , starting from the circular basis of Figure 2 

(a).  The coordinate axes after the first, second, and third rotations 

will be denoted by single, double, and triple primes respectively. 

The three rotations will be, respectively, a rotation about the P 

axis through an angle C9 , one about the P ' axis through an angle 

8  and finally one about the P " axis through an angle ty .  The 
r J r 

three angles CO , 8 , ty , are yet to be determined. 

5.1 Rotation about P„ through op 
 _J  r, 

Let the original scattering matrix be written in polar 

form: 

ke 
IK 

*teU 

» iX. 

me 

Then  from formulas   (18)   and   (4) , 

bll       b12 

b21       b22 

-ico /2       n / e       r 0 

i(K-co ) ke r 

.   IK .   IX -icp /2 , ke       -Ce       \    , e       r 0 

icp 111 \. iX    m e    r ve      me 

le 
iX 

14 I'l e     r 

(19) 

^e1'1 mei(U+V> 

17 



For reasons that will appear in the next rotation, it is necessary 

to determine cp so that the quantity (S  ' - S  ')/S  ' will be real 

This requires that 

Im (.   i(K-cp )    i(U-Kp ) \,,   iX i ke   ^r  - me    r J/le 

or: 

or: 

or: 

k sin (K-X) cos cp - k cos (K-X) sin cp 

= m sin (|-i-X) cos cp + m cos (H-X) sin cp  , 

k sin (K-X) - m sin Qi-X) 
<Pr " k cos (K-\)  + m cos (|J.-X)  ' 

r ,      IK    IP.. , lX-1 
ImL(ke     -  me    )/e     J 

tan co    =  * ; rrf TT— 
r      ReL(keLK+ me^)/elX] 

or; 

tan cp    = 
r 

Ira[(Sn   -   S22)/S123 

Rel(Su 4- S22)/S12] 
(20) 

This to be solved for CO and then Sn ' and S„ ' can be calculated 
r 11      22 

by Equation (19).  Note that S  ' • S1?.  There is no loss of generality 

in restricting CO to the interval 0 < cp  < 180 , and this should be 
r — r — ' 

done to avoid ambiguity. 

18 



5.2 Rotation about P ' through 0 
 2    r 

The effect of this rotation on the scattering matrix S' 

is calculated by using formulas (18) and (5), and it can be shown 

that the transformed scattering matrix S" will be in diagonal form 

if the rotation angle 6  is suitably chosen.  However, it is more 

efficient to write the congruent transformation (18) the other way 

round, i.e. to show S' equal to a congruent transformation of S" 

(which is assumed to be diagonal), the transforming matrix being 

the inverse of (5).  Thus , 

,Sll'     S12\     /cosier-Sini9rUSll"     °       WCOSkSi4*r 

Sn'     S22>]     \sin|er       cos±er/\0 S22'/\-sin|8rcOS^r 

(sn"+s22") + (a   • •-s22")coSer    (su"-s22-•).iB8] 

Therefore 

(Sn"-S22")sinOr     (S11
,,+S22

I,)-(Sn
1'-S22")cos£r 

Sll'  +S22'   -Sll"+S22" (21) 

Sll'   "  S22'   "  (Sll"  "  S22M)   COS 9r ^22> 

S12'   =i(SllM  -S22">   Sin9r     • (23) 

19 



From Equations   (22)   and   (23),   it   follows   that 

cot  6r «   (Sn'   -  S22')/2S12'      . (24) 

This is the condition that 9  must satisfy in order for S" to be 
r 

diagonal.  Equation (24) can be satisfied by a real 0  because the 

right side of Equation (24) is guaranteed to be real by Equation (20) 

Equation (24) is to be solved for 9 , with 0 < 9 < 180 ; and then 

S " and S '' can be calculated as follows. 

From Equations (21) and (23), 

Sll" = 2  (Sll' + hi"*  + (Si2Vsin V (25) 

S22" = \    (Sn' + S22') - (S12'/sin 9r)  .       (26) 

But sin 0  can be expressed in terms of Sn ', S„ ' , and S, ' by 
r 11   22       12 

using Equation (24), and thus Equations (25) and (26) can be written 

in the form. 

(27) 

v -7<«n, + 822,> -si2'[1+ l!i!r!7Ll f (28) 
2S12 

20 



5.3.    Rotation about P " through tr 

The scattering matrix S" is diagonal, with  (in general) 

complex diagonal elements.    Let these  be S.." • ae      and  S?2" • be     , 

with a,   b, a,  and (3 all real and nonnegative.    Then by  formulas   (18) 

and   (4) , 

-i*   /2    0 
e      r 

ia    r> ae        0 
-l -r/2       0 \ 

e^v/2l     \ 0 beiP/   \ 0 i*   12 e    r' 
(29) 

Let us  choose 

*r > j (a - 0) (30) 

Then Equation (29) simplifies to 

ae i(a + p)/2   0 

be 
i(a + p)/2 

(31) 

This is the simplest attainable form for the scattering matrix in 

any basis.  If the absolute phase is discarded in (31), then 

/a   0 \ 

(32) 

0   b 

and is all real, with a and b both > 0. 

/ 
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At this point, it is appropriate to state the mathematical 

relationship between the basis changes just given and those given 

4 
by Bickel , already cited in Section 1.  Bickel's work starts from 

the linear basis of Figure 2(b). His congruent transformation 

IRef. 4, Eq. (13)J is the opposite way round from the one used here 

[Equation (18)]; to get it the same way round, his two basis change 

matrices [Reference 4, formulas (12) and (20)] would have to be 

replaced by their transposes, i.e. by the matrices (still in Bickel's 

notation) , 

and ' (33) 

By formula (5), the first of these represents a rotation through 

28 about Bickel's P axis; and the second, according to spinor 

theory , represents a rotation through 2a about Bickel's P.. axis. 

But from Figure 2, it is seen that the P and the P. axes of the 

linear basis of Figure 2 (b) correspond to the P and the P  axes- 

respectively, of the circular basis of Figure 2 (a), which is the 

basis used in this paper.  Therefore Bickel's two basis changes, 

transformed to our present basis, would be identical, after appropriate 

changes in notation, with basis changes described by the matrices 

(4) and (5) . 
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6.0 GEOMETRY OF POLARIZATION TRANSFORMATIONS IN POINCARE^ SPACE 

From Section 5 it is seen that the principal axis system P'" 

P '" P *" of the scattering matrix has Eulerian angles 6 , <p , $   , 
2 3 r  r  r' 

referred to the fundamental Poincare axis system of Figure 1. 

Specifically, 0 and co are the polar and azimuthal angles of the 

P "' axis referred to the fundamental Poincare axes, and ty  is the 
3 r 

azimuthal angle of the P '" P '" P '" system about the P '" axis. 

The Eulerian angles of the principal axes are shown in Figure 3. 

Figure 3.  Eulerian angles of the principal axes 
(P "' axis not shown). 
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From Equation (32) , the equations for the polarization trans- 

formation in the principal basis are 

E "' = a E '"* 
rl       tl 

1 

Er2'" - bEt2"'*  , 

(34) 

This transformation consists of two operations, which are commutative, 

viz. (1) conjugation and (2) multiplication by a and b respectively. 

A geometrical interpretation of these two operations will now be 

given. 

(1) Conjugation.  From formulas (2) and Figure 2 (a), 

conjugation in the unprimed coordinate system causes all points of 

the Poincare space to be reflected in the P.. P plane.  Analogously, 

in the P '" P '" P '" system conjugation causes all points to be 

reflected in the P '" P '" plane. 

(2) Multiplication of the components by a and b respectively. 

This is a hermitian transformation of Poincare space.  If a 4  b and 

if a and b are both ^ 0, then according to spinor theory  it trans- 

forms the family of Poincare spheres of different sizes into a family 

of confocal, equieccentric prolate spheroids all having their major 

axes along the P "' axis, as shown in Figure 4. 
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Figure 4.  Hermitian transformation of Poincare space 

Thus the two orthogonal polarizations in the + P '" directions 

are changed in magnitude only; these are the eigenpolarizations of 

the scattering matrix. All other polarizations get their directions 

changed. 

From the above, it is seen that the total effect in Poincare 

space of the polarization transformation (8) is to reflect all the 

points of Poincare space in a certain diametral plane (the P "' P "' 

plane) and to cause a hermitian transformation in Poincare space 

whose axis (the P '" axis) lies in the plane of the reflection. 

The angles 9 , <p , ^  specify the reflection plane and the hermitian 
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axis relative to the fundamental Poincare axis system, and the 

quantities a and b are the eigenvalues of the hermitian transformation, 

It is evident from this purely geometrical interpretation of the 

polarization transformation, that the quantities 9 , cp , i|> , a, b 

are independent of what polarizations are transmitted and received, 

and also independent of what basis is used.  They are pure scatterer 

parameters. 

The above statements need to be modified if a or b vanishes, 

in which case the scattering matrix is singular, or if a = b, in 

which case the scattering matrix can be called degenerate, in analogy 

with the terminology of tensor theory.  These two special cases will 

now be discussed. 

Singular Scattering Matrix.  The determinant is zero; this 

is true even before transformation since the determinant is invariant 

to the congruent transformations used here.  The hermitian trans- 

formation maps the entire Poincare space onto the positive P '" 

axis or the negative P "' axis, the prolate spheroids shrinking to 

line segments along the + P "' axis. 

Degenerate Scattering Matrix.  In this case, the hermitian 

transformation degenerates to a multiplication of all polarization 

amplitudes by one and the same positive number; and the overall 

transformation consists of this together with a reflection of 

Poincare space in a diametral plane.  It is geometrically evident 
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/ 
that the eigenpolarizations (i.e. those whose directions in Poincare 

space are not changed) are all the polarizations lying in the P '" 

P "' plane; thus there is a single infinity of them.  However, in 

general only one orthogonal pair of these eigenpolarizations can be 

linear, since the P "' P '" plane can intersect the plane of linear 

polarizations only in a single line.  (Exception:  the case where 

the P '" P "' plane coincides with the plane of linears; for this 

case l|l = 90°) . 
r 

Let us now return to the non-singular non-degenerate case. 

It is convenient to divide this into two sub-cases, according as 

6  =90 or 8 ^ 90 .  If 8  =» 90 , the two eigenpolarizations are 
r r r     ' 

linear polarizations, and therefore, according to the geometrical 

interpretation given earlier in this section, the transformation (34) or 

(8) treats the upper and lower hemispheres of the Poincare sphere 

symmetrically; thus the object will respond equally to left circular 

and right circular polarizations.  If 9  ^ 0, the response is greater 

for one circular than for the other. An object of this type can be 

said to have "helicity", according to Huynen. ''   Quantitatively, the 

helicity is probably best defined as (a - b) cos 8 , for if this 

is positive the response is greater to left circular, if negative 

to right circular, and if zero, there is no preference.  A degenerate 

object shows no preference, as seen from the geometric inter- 

pretation. 
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An example of a nondegenerate scatterer with zero helicity 

(8  = 90 ) is any elongated convex surface having bilateral symmetry 

relative to a plane containing the line of sight, e.g. a surface 

of revolution. This case has been widely treated. However, it is 

not certain that bilateral symmetry is a necessary condition for 

the helicity to vanish because the different parts of the scatterer 

might conceivably be arranged unsymmetrically, but in such a way 

that the effects of the dissymmetries would cancel out. 

An example of an object with non-zero helicity (0 4  90 ) is a 

twisted configuration in which the twist can be recognized by circularly 

polarized waves as either left handed or right handed. 

7.0  REDUCTION OF SCATTERING MATRIX WHEN GIVEN IN AN ARBITRARY BASIS 

In Section 5, it was shown how to calculate the five scatterer 

parameters 9 , <p , l|l , a, b, when the initial basis was that shown 

in Figure 2 (a).  How are the calculations to be made if the scattering 

matrix is given in a different basis, such as that of Figure 2 (b)? 

A direct procedure can surely be worked out; but probably it 

is nearly as simple to proceed indirectly, by converting the scattering 

matrix from the given basis to the basis of Figure 2 (a), and then 

going through the procedure of Section 5. To make the conversion, 

it is only necessary to subject the given scattering matrix to the 

congruent transformation (18) , using for U the matrix of the rotation 

that rotates the given basis axes into the axes of Figure 2 (a). 
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To illustrate this conversion, suppose that the scattering 

matrix is given in the basis of Figure 2 (b).  The axis rotation 

that rotates the axes of Figure 2 (b) into those of Figure 2 (a) 

can be accomplished by a rotation of the axes about P_ through -90 , 

followed by a rotation about P.' through -90 .  The matrices of these 

two rotations can be found from formulas (4) and (5).  Their product 

(with the first one on the right) comes out to be 

AT   '       ' ^^ 

after dropping an absolute phase factor 0/i" ) . Therefore the 

conversion is accomplished by subjecting the given scattering matrix 

to a congruent transformation with the matrix (35). 

8.0 APPLICATIONS TO SOME SIMPLE PROBLEMS 

The classification scheme to be used has been indicated to 

some extent in Section 6.  The full scheme is as follows: 

(A) Singular objects (a • 0 or b = 0). 

(B) Degenerate objects (a - b). 

(1) Isotropic about line of sight (ty  • 90 ). 

(2) Anisotropic about line of sight (• 4  90 ) . 
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(C)   Non-singular,  non-degenerate  objects. 

(a*b,a*0,W0). 

(1) Objects with zero helicity (9  =» 90°) . 

(2) Objects with non-zero helicity (8 4  90°) . 

The angle cp does not appear in the above.  It always measures the 

azimuth of the object about the line of sight. 

It is of interest to compare the above scheme with Kennaugh's 

1 2 
classification ' , which is based on null polarizations and consists 

of four types of objects, viz. linear, isotropic, symmetrical, and 

all others.  Kennaugh's linear objects are those singular scatterers 

[Class (A) above] whose eigenpolarizations are linear.  His isotropic 

objects are the same as Class (Bl) above.  His symmetrical scatterers 

appear to be closely related to Class (Cl). 

A number of simple examples will now be given and the five 

object parameters will be calculated for each. 

(A)  Singular Object.  Straight wire at angle Y to horizontal and 

perpendicular to line of sight.  The normalized scattering matrix 

[see formula (12)] is 

(e2lY       i \ / 1 + cos  2Y sin 2v 

l   e.2iY/ 
orvn  sin2Y 1-c 
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in the bases of Figure 2 (a) and (b) respectively. The procedure 

of Section 5 yields the values, 

cpr - 2Y, 9r - 90°, tr - arb., a - 1, b - 0. (37) 

The single eigenpolarization is linear, along the line of the wire. 

The angle ty is indeterminate, as would be expected. 

(Bl)  Degenerate object, isotropic about line of sight. 

Large plane perpendicular to line of sight.  The scattering 

matrix [see formula (9)] is 

or / (38) 

in the two bases.  The parameters come out to be tp • arb., 6  • 90 , 

• » 90°, a - 1, b - 1. (39) 

The eigenpolarizations are the linears.  The geometrical 

transformation of Poincare space is a reflection in the plane of the 

linear polarizations. 

(B2)  Degenerate object, anisotropic about line of sight. 

First Case, Large right-angle corner, with edge perpendicular 
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to line of sight and horizontal. The scattering matrix, in the 

basis of Figure 2 (a), is 

(40) 

The  parameters are 

c?r = 0,  0r = arb., tr - 0, a - 1,  b - 1. (41) 

The geometrical transformation of Poincare  space is a reflection 

in the P P plane of Figure 2 (a).  The eigenpolarizations are all 

the polarizations in that plane.  The linear eigenpolarizations are 

the horizontal and the vertical. 

If the right-angle corner is rotated about the line of sight 

so that its edge is at angle Y to the horizontal, then cp • 2y, and 

the other parameters are unchanged. 

Second Case.  Two equal straight wires , both perpendicular 

to the line of sight and separated (along the line of sight) by 

distance d.  Let the front wire be horizontal and the rear wire 

vertical. Assume simple superposition of returns, no multiple 

scattering. 
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The normalized scattering matrix in the circular basis of 

Figure 2 (a) is 

(42) 

the first term being the scattering matrix of the horizontal wire, 

with phase advanced by 2 kd. On adding the two terms of (42) and 

shifting absolute phase, one gets for the scattering matrix. 

i sin kd   cos kd 
(43) 

cos kd   i sin kd 

The procedure of Section 5 yields 

cp =0,9  = 90°, •  - kd + 90°, a - 1, b - 1. 

(44) 

The geometrical transformation of Poincare space is a reflection in 

the plane that contains the linear horizontal-vertical axis and 

makes a dihedral angle equal to ^ with the plane of the linear 

horizontal-vertical axis and the circular axis. The eigenpolarizations 

are all polarizations in the plane of reflection.  The linear eigen- 

polarizations are the horizontal and vertical. 
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Three special cases are of interest. 

If     d = 0 then     • =90  , 

d = rr/2k, 

(Xd< (TT/2k) , 

• - 0, r   ' 

90° >\|( >0 
r 

(45) 

Thus, for d = 0 the parameters are identical with those of a large 

plane perpendicular to the line of sight; the configuration is 

recognized  as isotropic.  For d = TT/2k, the object is indistinguish- 

able from a right angle corner if the system is monochromatic.  (However, 

it could be distinguished by varying the frequency). 

(Cl)  Non-singular non-degenerate object with zero helicity. 

Two equal coplanar straight wires, both perpendicular to line 

of sight, one horizontal and the other at 45  to the horizontal. 

Again assume no multiple scattering.  The (unnormalized) scattering 

matrix in the basis of Figure 2 (a) is 

1   1! 

1    1' 

+ 
/ i   1 

V 1  -i 

1 + i  2 

1 - i 

(46) 

The  parameters  are  calculated  to  be 

CO    - 45°,  6     =  90°,  1|I     =  90°   , 
r '     r '     r 

- 2 +</7 - 3.41, b m 2     - t/2    =     .59 (47) 
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Since cp • 45 , the a - axis is at 22.5 to the horizontal and the 

b-axis is at 112.5 to the horizontal, in physical space, as in 

Figure 5. 

horiz, 

Figure 5.  Principal axes (Ln physical space) for case (Cl). 

The two eigenpolarizations are linear, and are along these 

axes.  The plane of reflection in Poincare space is the plane of 

linears. 

(C2)  Non-singular non-degenerate object with non-zero helicity. 

Two equal straight wires, both perpendicular to line of sight 

but separated in range by X./8, with the front wire horizontal and 

the rear wire at 45  to horizontal.  Then 

S.M. for rear wire 
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1 S.M. for front wire • |      I (with phase advance of 90 ) 

;2i  i+i! 
Total S.M. = 

\l+i 0 

The  parameters  are   found  to  be 

cp    = 45°,  cp    = cot-1(l/V2*)   =  54.7°, = 90° r '   Tr ... '     r 

(48) 

a = /lT? + /j/TT= 1.94,  b == </lTT - //T =  .52. 

The helicity [  = (a-b) cos 6 ] is positive, corresponding to the 

left-handedness of the configuration.  The two eigenpolarizations 

are both elliptic polarizations.  The two linears that come closest 

to being eigenpolarizations are those at 22.5 and at 112.5 , as 

one would expect. 

9.0  SOME CONCLUSIONS ON SCATTERER GEOMETRY 

A.  Singular Object.  The only singular object considered in 

Section 8 was one having a linear eigenpolarization.  It is not 

certain whether a singular object can be realized having a circular 

or elliptic eigenpolarization. 
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B. Degenerate Object. In the second example of case (B2), 

Section 8, any arbitrarily assigned values of cp , Y , and a can be 

realized by suitable choices of the azimuth, the separation, and 

the lengths of the two wires. Therefore, at a fixed frequency, the 

polarization effects of any given degenerate object can be duplicated 

by this model.  [Note that, for the degenerate case, a = b, and 0 

;an always be taken equal to 90 ]. 

C. Non-singular,  non-degenerate object.     If the  helicity  is 

zero, the       surface is recognized as elongated.  The long and 

short axes, whose directions (in physical space) are parallel to 

the (linear) eigenpolarizations, have their azimuths about the line 

of sight determined by cp .  The effective lengths of these axes are 

measured by the eigenvalues a and b.  These "lengths" are, of course, 

electrical dimensions, and are not directly related to the actual 

physical dimensions. There appears to be no useful information 

contained in the angle ¥ . 
r 

Objects with non-vanishing helicity have elliptic eigen- 

polarizations, but are also recognized as elongated, with cp , a, 

and b related to the object axes as before.  (This would not be 

true if the eigenpolarizations were the two circulars, a case that 

is probably not realizable). Also the object has a twist, as 

already seen in Section 7. 
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All the above conclusions are based on the assumption of 

monochromatic operation.  If the frequency were changed, the values 

of the parameter would also change, in genera\; and probably more 

could be learned about the sc«tterer. 
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