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ABSTRACT 

A solution is given to the problem of constructing a unified theory of 

the gravitational and electromagnetic fields.    The theory exhibits 

the following features:   (1) It is fully geometrical,  the geometry 

being a special type of four-dimensional Riemannian space-time. 

(2) It is completely unified,  all physical features (i.e. ,  all curvature) 

being introduced via a quantity which transforms irreducibly under 

the coordinate transformations of general relativity.    (3) The gravita- 

tional field and the electromagnetic field are inextricably linked, 

each being merely E. different manifestation of the geometrical 

structure.    (4) Charged particles move according to the Lorentz 

force law.    (5) The energy density is everywhere nonnegative. 

(6) The field equations insure that the electrical current density is 

everywhere timelike and that charged particles have extended 

structures rather than point structures. 
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Section 1 

INTRODUCTION 

The success of Einstein in geometrizing the gravitational field led 

him and others to search for a way to geometrize the electromagnetit 

field as well.    However, no complete geometrization of electro- 

dynamics was achieved,  and it now seems that the search has been 

abandoned by most physicists.    The purpose of this paper is to 

present a solution to the problem.    As we shall see, the key to the 

problem is that one must specialize the metric of space-time 

sufficiently so that all curvature is introduced via a quantity which 

is irreducible under the coordinate transformations of general 

relativity. 



Section 2 

SPECIALIZATION OF THE METRIC 

We follow Einstein in considering a four-dimensional Riemannian 

space-time with metric   g      .     The signature of the metric is taken 
uv 

to be + 2,  and we adopt the summation convention that repeated 

indices are summed from 0 to 3.    It is well known that   g        may be 

expressed in the form 

g        =   g.A^ (1) 

where   g..   is the Lorentz metric diag (-1,1,1,1) and   A     is an 

orthonormal tetrad of vectors.    It must be clearly understood, 

however,  that the superscript   i   on   A     is not a space-time index. 
i * th 

Thus,  the symbol   A     must be read as "the   u       component of the 
th ^ 

i       vector."   One advantage of using this tetrad formalism is that 
i i 

g        has the same signature as   g..   for all   A    .     Thus,   A     simply 
V-v 6 6ij u M 

introduces any curvature which may be present in the *pace described 

by   g If  A        = A ,   where a comma denotes ordinary partial 

differentiation,  then there exist four functions   <p     such that 

A    = <p      .In this case,  Eq 1 merely expresses a coordinate trans- 
it        «K 

formation, and the metric   g        describes a flat space.    Thus, 

physical interest must center upon ca°es in which at least one of 

the quantities 

F1      =   A1       - A1 (2) 
|JLI> V, jJL |j.,V 



is nonvanishing.    Now, however, we are faced with a dilemma.    One 

of the most beautiful features of Einstein's gravitational theory is 

that   g       transforms irreducibly (Ref 1) under coordinate trans- 
(IV 

formations.    Our dilemma is based upon the fact that the quantity 

F       (which brings in all curvature) is not, in general, irreducible, 
uv 

Since the superscript   i   is not a space-time index, it follows that 

the four quantities   F     , F     , F       and F       transform separately 
uv       uv       uv uv — - 

under the coordinate transformations of general relativity.    Irre- 

ducibility can be obtained only if these four quantities are scalar 

multiples of each other.    We therefore restrict our attention to 

cases in which 

F4      =   K*F 
|JLV UV 

(3) 

where   F       does not vanish.    Next we identify   F       as the electro- 
uv uv 

magnetic field and hence require that there exist a vector   A     such 
V- 

that 

F        =   A        - A 
Uv v,u        u,v 

(4) 

is nonvanishing.    It follows easily from Eqs 2,  3, and 4 that either 

K    must be constant, or the invariant   t  "^ F     F       must vanish. 
op   uv 

Since we do not wish to restrict the electromagnetic field in this 

way, we require that   K    be constant.    This implies that   A     is of 

the form 

i A A <p      + K A (5) 



Before proceeding further, we must be certain that we have not 

specialized to a metric whose determinant   g   vanishes identically. 

This may be done in the following way:   Assume that   g   vanishes 

identically.    Then Eq 1 implies that the determinant of  A     vanishes 
* 0       1 

identically.    This,  in turn,  implies that the four vectors   A   , A   , 
2 3 ^       u 

A     and   A     are linearly dependent.    Hence there must exist four 

constants   C.    such that 
l 

C.A     =   0 
1   P 

(6) 

By differentiating Eq 6 with respect to    x     and subtracting the result 

from the corresponding equation with   u   and   v   interchanged, 

C.F 
1     [XV 

C.K F 
1 |iV 

0 (7) 

Since   F        is nonvanishing, we conclude that   C.K     must vanish. 
[XV 1 

Hence if we substitute Eq 5 into Eq 6, we obtain 

c./   + C.K\A. 
i  ,u i        u 

C.<p        =   0 
1  »V- 

(8) 

But   C.<p       can vanish only if the determinant of   a>        vanishes. 
1   fU .u 

Hence we conclude that   g   can vanish identically only if the deter- 

minant of   <p       vanishes identica.lly. 



For the reasons discussed in this section, we restrict our attention 

to metrics defined by Eq 1, using tetrads of the type given in Eq 5. 

In summary, then, we take 

g        =   g.^A-1 

|iV IJ    \i    v 

g..   =   diag(-l, 1,1,1) 

A     =   <p      + K A 

(9) 

K    =   constant 

Det <p       *   0 

F        =   A        - A *   0 
UV V,[J. u,v 

and we identify the antisymmetric tensor   F       as the electromagnetic 

field.    We shall later specialize further to the case in which 

K' (K  , 0, 0, 0) ,   but the reason for this choice will be clear only 

after we have derived field equations. 



Section 3 

THE LORENTZ FORCE 

We define the electrical current density   j     in the usual way by 

J      =   F   - (10) 

where the semicolon denotes covariant differentiation with respect 

to the Christoffel symbol   <      > .     Next we show that Eq 9 insures 

that charged particles move according to the Lorentz force law.    We 

begin by defining inverse tetrads   A.    through the relations 

A^A1    =   6^ 
1     v 

A1 A?   =   61 

V-   J J 

and defining the proper charge density   p   associated with   j 

through the usual relation 

(11) 

IJ J. (12) 

The velocity field associated with the current is,  of course,  given by 

(13) 

Quite clearly,  the acceleration field is given by 

v      v 
p.;v 

(14) 



and the quantity  j   (     may be written in the form 

j .   = (j AV ) 

=   j.     A1 + j AV 
i,v u     a l   |JL;V 

{15) 

where the scalars   j.   defined by 

j. = j K 1    > i 
(16) 

are the physical components of the current density (referred to a 

local Lorentz frame).    That the   A.    lead to a locally Lorentz 

frame is clear from Eq 1.    Equation 14 may now be written as 

v      v 
J.     v 
l.v 

A*   - 
P,vV 

Of     2 V 
v    +  v A. A      v 

H        a   i    u;v 
(17) 

If we now consider the physical components 

a. = A?V   vv 

i i   u;v 
(18) 

of the acceleration field, we obtain 

*i   - 

P     v 
,v ,        .k     .Li v 
  v.  +  v. A      A"v 

P i         k   |JL;V   I 
(19) 

where the quantities 

v.   =   v A^ 
1 u   j. 

(20) 

Mi $ 

■A ■" 



MM 

are physical components of the velocity field.    Now,  the vector   A 
k * 

being differentiated in forming   A is precisely the tetrad through 
[l',V 

which the metric is defined in Eq 9.    By using Eq 9, we easily find 

that 

u;v 
AM 

P   H1' 
(21) 

where 

-i(KßF      +KFß    + KFß) (22) 

and 

K      =   K.A1    =    g-.^A1 (23) 

Upon substituting Eq 21 into Eq 19,  and using Eqs 22 and 23, we 

obtain 

a. 
V V 

j.       v p       V 
1, V 

-     -    (v K   I F., v 
p \ VI       IK 

(24) 

where the quantities 

ik A!VF 
k   (j.v 

(25) 

represent the physical components of the electromagnetic field. 

Now,   consider the meaning of the quantity   p     v    .     It is just the 

time rate of change of   p   as seen by an observer who is riding along 

with the charged fluid.    Therefore,  it vanishes in the important case 

of incompressible flow.    This is true even if there are world tubes 



s*. 

 .  

within which   p   is large, corresponding to the motion of a charged 

particle.   Consider also what our observer sees if the flow is not 

incompressible but he is riding along with a stable concentration of 

charge.    (By a "stable concentration" we mean that the charge 

density is large, and that the flow appears to be incompressible 

when oscillatory fluctuations in the density are averaged over 

appropriately small time intervals.)  In this case, it is clear that 
y 

the time-averaged value of  p    v     is small.    A similar argument 
v, 'v 

shows that  j.    v     is small.   Moreover, the charge density   p   is 

large within the world tube of a charged particle.   Thus we see that 

in the case of a charged particle, the first two terms of Eq 24 may 

be neglected and the equation reduces to 

a. = - (VVK )F.,y 
l V        vl    lk 

(26) 

which is the Lorentz force law.    It must be emphasized that we have 

not proved the existence of charged particles.    We have only proved 

that if charged particles exist, then they must move according to the 

Lorentz force law.    Moreover, it is not clear whether this deficiency 

can be removed until the present theory is quantized. 

10 
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Section 4 

THE FIELD EQUATIONS 

It is clear from Eq 9 that both   g        and   F       have geometrical 
\XV UV 

significance.    Indeed,   F        is the quantity which brings all curvature 

into   g      .     We shall therefore form an invariant from   F        and 
UV (J.V 

g      ,   by contraction, and we shall use this invariant as a Lagrangian 

density function in deriving field equations.    Moreover, we require 

that the invariant be only bilinear in   F      ,   so that it will lead to 
uv 

second-order field equations.    The only invariant which satisfies 

equations from the variation principle 

these requirements is   F     F       .     We therefore derive our field 
ui> 

FKV^g"dx   =0 (27) 

where both the vector   A     and the scalars   <p    are varied.    It is 

emphasized that, because of Eq 9, the quantity 

FHV   =   g>VßF   _ (28) 
ap 

depends upon   A     through the metric as well as through   F       , 

while it depends upon   <p    only through the metric.    By varying   A    , 

we obtain 

j      -   K^E (29) 
V (JLV 

11 
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where 

r „     _  a      1 aß 
E        =FF       - -r g     F   _F 

uv \iQ   v        4    (iv   aß 
(30) 

is the usual stress energy tensor for the electromagnetic field.    By 

varying   <p   ,  we obtain 

V UV 
(31) 

which is automatically satisfied because of Eq 29. 

Now, it follows from Eq 29 and the identity (Ref 2) 

EE        =TgEQEH 

ua   v 4 °uv   aß 
(32) 

that 

jVj     =   i K.KSS   flE
aß 

J
  Jv 4     i        aß 

(33) 

aß 
but it is well known (Ref 3) that   E     E        is nonnegative and vanishes 

if and only if   F        is a null field (Ref 4).    Since we do not wish to 
uv 

restrict our attention to null fields, we see from Eq 33 that we must 

choose the constants   K    to be timelike, i.e., 

K.K   < 0 
i 

(34) 

This is necessary and sufficient to insure that   j     is everywhere 

timelike.    Since we have chosen timelike constants   K   ,   there is no 

loss in generality in taking   K   = (K   ,0,0,0)   since this form can 

always be obtained by a Lorentz transformation on the Latin indices, 

12 



leaving   g.. = diag(-l, 1, 1, 1)   unchanged.    With this choice of   K   , 

the Lorentz force law, Eq 26,  reduces to 

a. K  v  F., v 
O    O     IK 

(35) 

where all indices refer to physical components.    It is clear from 

Eqs 12 and 33 that   p   is nonvanishing if   F        is not null.    This 
UV 

implies that charged particles must have extended structures rather 

than point structures.    At first glance, it also appears to violate 

the experimental data,  since it implies,  for example,  that there is 

a nonvanishing charge density where there is a static magnetic field. 

The difficulty,  however,  is only apparent,  for we shall see in the 

next section that    1/2(K   )     must equal Einstein's gravitational 

constant   K .     With this value of   K    ,   the largest magnetic fields 

as yet produced in the laboratory correspond to charge densities 

well below the present level of possible detection. 

It seems clear that no reliable discussion of charge-to-mass ratio 

or other features concerning particle structure can be given within 

the framework of a classical theory.    Nevertheless,  it is interesting 

to note that if   v     is unity (corresponding to a charged fluid locally 

at rest) then the coefficient of   F., v      in Eq 35 gives a charge-to-mass 
lk 

ratio much smaller than that of any known charged particle.    In 

general,  however,    v      is just    (1 - ß^) ,   so we can obtain any 

larger value of charge-to-mass ratio by properly choosing    ß . 

This    ß   would then correspond to the velocity of the charged fluid 

within the particle's world tube (including both its average motion 

and its internal or oscillatory motion).    Then,  because of the 

relativistic law for addition of velocities,  a particle's charge-to-mass 

13 



ratio would become dependent upon particle velocity at sufficiently 

high energy.    Although we cannot predict at what energy this dependence 

becomes significant,  one can construct models such that it becomes 

significant only at energies much larger than those presently available. 

14 



Section 5 

THE TOTAL STRESS-ENERGY TENSOR 

Following the notation of Synge (Ref 5), we define the Riemann 

curvature tensor by 

R„        =   A.  |A„ - A„ ) 
puv l \   ß;u;v        ß;v;u/ 

(36) 

.a 
and the Ricci tensor by   R      = R .     The Einstein tensor is defined 

uv \1VQ 
in the usual way by 

G        =   R       - - g     R 
fiv (JLV        2     (j.v 

(37) 

where   R = g     R      .In this notation,  Einstein's equations are 

G        =   -KT (38) 

where   K   is the Einstein gravitational constant and   T        is the total 

stress-energy tensor.    Now,  it is clear from Eqs 21 and 36 that the 

Riemann tensor may be expressed in terms of   F        and its first 

covariant derivatives.    When this is done, we find that the Einstein 

tensor is given by 

\xv 
- -(K  )    E      + M 

2 O JJLV |j.V (39J 

where the "matter term"   M        is 

M        =   K 
(j.v ~a u 

jg       -T(KJ    +Kj|   +-KKF     Faß +  Z (40) 
a u.v       2 V   UL v v ix'        4     u   v   aß u.v 

15 



with   Z        defined by 

1 z     = - u u ~ l(U   I    + U   I   ) 

i g      [u°U    +  2(K   )2F     Faßl 
4  6jiv L a o'     aß        J 

(41) 

and 

U     =   K^F 
(iV 

(42) 

The vertical stroke    I     in   U   ,      denotes covariant differentiation 
a with respect to   L        =   A?AX       .     When we consider the physical 
\i.V 1     \i, v 

components of   U    ,   i.e., 

u. = u Ar 
i       v. i 

(43) 

we see that   U.   is of the form 
l 

u.  = (o,u1,u2,u3) (44) 

Finally, we consider the physical components of   G      ,   i.e. , 

lJ 
A^AVG (45) 

With the aid of Eq 44 and the fact that 

=   0 
iv 

(46) 

16 



we find that the time-time component of   G..   is just 

3 2   2 G      =  - 7(K ync 

oo 4     o (47) 

From Eqs 38 and 47, we see that the time-time component of the 

total stress-energy tensor is everywhere nonnegative and vanishes 

only where all physical components of the magnetic field  H   vanish. 

Notice also that the correct value of the gravitational constant may 

be obtained through suitable choice of the constant   K    . 

It is emphasized that Eq 39 has been derived without using tae field 

equations, Eq 29.    By using the equations, however, we find that 

the matter term  M       defined by Eq 40 may be simplified to 

M 
\i.V 

=   I*"!  g    )   -   (K j    + K j   ) + Q (48) '       a (JLV/        V   (j. v        v (JL/        uv 

where 

Q       =   7 U U    - -|(u       +U       ) 

i     r * 
4  6uv L        a 

+ 2(K  )2F  flF
aH o 'aß       J 

(49) 

and find also that the Riemann curvature invariant   R   is just 

R   .   (Ko)2(iE2-3H2) (50) 

17 



where   E   is the total electric field referred to physical components. 

Now, suppose that   g        describes a 

Eqs 47 and 50 that this would imply 

Now, suppose that   g        describes a flat space.    We see from 
\i.V 

E   =   H   =   F       =   0 (51) 

so we conclude that the space described by   g       is flat if and only 

if  F       vanishes. 

18 
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Section 6 

DISCUSSION 

The results of the previous section clearly imply that our space 

describes a universe containing only gravitation and electromagnetism. 

If one is optimistic enough, however, one can hope that the short- 

range forces of high-energy physics might correspond to quantum 

effects, or to nonlinear electromagnetic and gravitational effects 

which are important only in regions of intense field strengths.    Be 

that as it may, the need for quantizing the present theory is clear. 

This is apparent because the timelike physical component of the 

current given by Eq 29 is either everywhere positive or everywhere 

negative,  depending upon the choice of sign for   K    .     Our theory 

can therefore describe either positively charged particles or their 

negatively charged antiparticles, but not both simultaneously.    This 

is a feature which is hardly surprising in an unquantized theory. 

19 
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