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ubC 519.8

The book deals with the fundamental characteristices of the
equipment employed in combat engineering, as well ag with the
reliability, effieiency and economy of this equipment. Methods
are presented for the evaluation of these characteristics in var-
tous combat and operational situations by means of anaZytzaaZ
"methods and the method of statistical modeling.

We emamine problems on the evaluatton of armament efficiency
in various combat situations, with consideration of its quality,
reliability and various forme of enemy countermeasures. Informa-
tion 13 presented on clasgical and new mathematical methods of
optimization employed for the solution of mzlztary engineering
problems. A particularly detailed presentation is offered with
respect to the method of statistical modeling on electronic com-
puters. The material covered in thie book is elarified thmough
the use of numerous examples. The appendix to this book aontaznq
tables intended to facilitate caleulation.

The book is intended for the many engineers who deal with

problems of developing, testing, producing and operating combat
equipment.

FTD-HT-23-51-68



PREFACE

In the development, manufacture and Operation of combat
equipment it}is necessary to resolve numerous problems to en-
sure maxlmum effilclency for stlpulated expenditures or to

achieve mini‘um expendltures for stipulated efficiency. In con-

nection with|the fact that combat equipment is becoming in-

. creasingly more complex, the solution of such problems becomes
increasingly more difficult. While it was possible, prior to the
Second World|War, to use only the most elementary calculations

based on the | simplest mathematical methods in the processes of

decision-making with respect to milltary engineering problems,
the situation has now changed drastically. At the present time,
to make proper declsions 1t 1s necessary to carry out numerous
and laborious calculations based on various mathematical methods
which have been categorized under the common heading of "methods
of operations research." These methods have found extensive ap-
plication inirecent years in various flelds of human activity -

in industry,‘in transport, in trade and in military affairs. A

new applied science 1s deve10ping before our eyes and this dis-

cipline is kncwn as "operations research."

Despite | the youth of thils new science, the llterature in
this fileld hag become qulte extensive. Many nations publish books
and specialized Journals, hold conferences on operations research

and publish the transactlons of these conferences. With regard
to operations research in combat engineering, the literature in
this fileld consists primarily of journal articles. We sense a
need for books containing a systematic outline of the methods of
operations research and their application to combat engineering
problems. Thms book 1s an attempt to fill this gap.

At thils point we should also make mention of the book by
Ye.S. Venttsel' "Vvedeniye v issledovaniye operatsiy" [Introduc-
tion to Operations Research], published at the time that this
book was being readled for press and which the authors recommend
to the readers. Our book is intended for a wide range of engi-
neers who are concerned wlth the development, testing, manufac-
ture and oper@tion of milifary hardware. The materlal covered in
this book reqguires of the reader a knowledge of the general
courses of advanced mathematics and the theories of probability

as taught at
scope, for ex

The book
tary hardware
effectiveness
and operation
methods, and

institutions of higher technical education (on the
ample, of the well known book by Ye.S. Venttsel').

dlscusses the fundamental characteristics of mili-
, methods are presented for the evaluation of the
and. reliability of this hardware in varicus combat
al situations by means of a variety of analytical
there is also a method for statistical modeling on
2

- -
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electronic computers. Particular attention 1s devoted to this
last method, since it exhibilts great generality and universality.
The material in the book is clarified through the use of numerous
examples which are i1llustrative in nature and are hypothetical.
The appendix to the book includes tables Ilntended to faclllitate
calculations. Moreéover, to facilitate modeling on computers we
have presented approximation polynomials for most of the tables
contained in the appendix.

The book has been divided among the authors in the following
manner. Yu.V. Chuyev served as the general editor; in addition
he authored §§0.9, 1.11, Chapter 2, §§6.4, 6.6, Chapter 8 (with
the exception of §8.7); P.M. Mel'nikov wrote §§1.3, 1.5, Chapter
5 (with the exception of §5.3) and §§7.8, 8.7; S.I. Petukhov was
responsible for the writing of Chapter 4 and §§7.3, 7.4, 7.5, 7.¢
and 7.7; G.F. Stepanov wrote §§1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 3.1,
3.2, 3.7, 6.1, 6.2, 7.1; Ya.B. Shor wrote the introduction (with
the exception of §0.9), §§1.7, 1.8, 1.9, 1.10, 3.3, 3.4, 3.5, 3.6,
6.3, 6.5, 6.7 and 7.2; V.I, Kuz'min wrote §5.3 and V.S. Bogolyub-
skly derived the approximation polynomials for the appendix to
the book,

This book represents one of the first attempts to broduce a
book on operations research in combat engineering; it is doubt-
lessly, therefore, not devold of errors. The authors willl be ex-~
tremely grateful to their readers for any critical remarks which
should be addressed to the publishers at the following address:
Mogecow, Main Post Office, P.0O. Box 6393,

The authors wish to extend thelr gratitude to N.P. Buslenko
and D.B. Yudlina for theilr assistance and advice 1n connectlon
with the preparation of the book.

The following system of ernumeration and references has been
adopted in tnis book. The chapters are numbered successively from
1 to 8. The sectlons have been assigned two numerals, of which
the filrst indicates the number of the chapter, and the second in-
dicates the number of the section in that chapter. Many sectlons
have been subdivided, and these subdivlisions are denoted with
capital Russian letters [translator's note: in this translation,
these denotations have been altered to the corresponding letters
of the English alphabet].

Formulas are numbered in sequence within the limlts of each
sectlon. In referring to a formula of a given section, we indi-
cate the number of that formula in parentheses: for example see
Eq. (15). When reference is made to a formula in another sectlon,
the parentheses include first the designation of the section,
and then the sequential number of the formula in that sectilion:
for example, see Eq. (7.2.15), i.e., Eq. (15) from §7.2.

The figures and tables are ldentified 1In the same manner as
references to formulas from other sections, but without paren-
theses: for example, Fig. 7.2.1, Table 7.2.3. The tables in the
appendlx at the end of the book are ldentifled by number from 2
to 11. _ 1

-3 - !
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The 1list of llterature citations included at the end of the
book is enumerated 1n numerical sequence, with the numbers indi-
cated in square brackets in the text.
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INTRODUCTION | |
§0.1. OPERATIONS RESEARCH

A large number of books and articles has been published
during the past ten years on operations researc¢h, A number of
countries publish specialized Journals, hold conferences and
symposla, and special scientific socleties have been organized
in connection with operations research.

What 1is "operations research"?

The literature has not yet adopted a generally accepted
definition of thls term. However, an examlnaticn of publlished
works and in analysis of accumulated experience, in our opinion,
makes 1t possible in the following manner to characterize this
new scientific trend:

operations research is an applied science intended to find
optimum solutions in various fields of human activity — industry,
trade, combat engineering and in the art of military warfare;

operations research, as a rule, provides a quantitative ba-
sis. for declision making, facllitates the making of a decision,
but does not provide the actual decision; in order to make a
declsion it 1s generally necessary to resort to accumulated ex-
perience and sound thinking processes, since it is necessary to
take Into consideratlon those factors which are not easily eval-
uated from the quantitative standpoint so that they may be intro-
duced into the calculation;

operations research operates with a variety of guantitative
criteria of effectiveness (economic, combat, etc.) and achieves
optimization of declsion-making on the basis of these criteria;

operations research makes extensive use of mathematical
methods — the theory of probabilities, mathematical statistics,
the theory of mass service [systems] engineering, the theory of
games, linear and dynamic programing, the methods of statistical
testing, etc; ‘

operatlons research is a part of the more general discipline
of cybernetics.

The present book wilill deal only with the military engineering
aspects of operations research. However, because of thel general
nature of the methods employed in operations research, much of _
the material covered here may prove useful as well for individuals

engaged in other aspects of operations research. |

.
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§0.2. THE CONCEPTS OF QUALITY AND RELIABILITY IN MILITARY HARD-
WARE

- As 1s well known, the quality of any piece of equipment is
understood to refer to the totality of properties determining
the degree of sultabllity of that plece of equipment in the ap-
plications for which 1t was designed. This applies equally to the
great varlety of military hardware and installations.

. Thus, for example, the quality of artillery and rocket ar-
mament 1s determined by 1ts range, rate of fire, firing accuracy
(i.e., accuracy and firing pattern), maneuverability, Jamming
1nvulnerabili@y, service life, safety 1n handling and during
firing operations, faultfree operations, duration of useful life
(in storage, transportation and operation), adaptability for re-
palr, convenience and difficulty in servicing, etc.

\

_ The qualﬂty of reconnaissance and target radar stations is
deflned by théir range of acquisition, the resolving power, jam-
ming invulnerabllity, survivability, dimensions of the scanning
field, the scanning rate, the accuracy of target coordinate de—
termination, maneuverability, faultfree operation, service 1life,
suitability er repalr, convenlence and difficulty in servicing,
etc. ‘ | .

Reliability (general reliability) refers to the ability of
a plece of equipment to function in a faultless manner, to exhib-
it long serviée life and sultabllity for repair, as well as to
ensure the normal executlon of assigned functions. This property
1s associatedlwith the possibility of maladjustments arising in
a plece of equipment during the course of its utilization [132].
It follo#s from this that reliability 1s a part of quality
and is included therein. It should be stressed that in a number
of cases reliibility is a very significant part of quality, and
at times, the most lmportant part. . '

Frequently, in the place of the term "reliability," we util-
1ze the term "operational reliability." The purpose of this is
to underscore &he fact that reliability is brought to light in the
operation of the equipment. Thus, operation of the equipment is
understood to refer to the totality of all phases of 1ts exist-
ence: storage, transportation, testing, preparation for utiliza-
tion as specified, utilization as specified, technical servicing
and repair. i '

FauZtZess!operation refers to the capability of a piece of
equipment continuously to retaln i1ts readiness for operation
(1.e., no breakdowns) under specific conditions of operation.
Breakdown i1s understood to refer to complete or partial loss of
operational re%diness.

Operationhl readiness refers to the status of a piece of
equipment in which it can satisfy all specifications, at a given
instant of timé, as set with respect to the basic parameters of
the equipment.| If a certain plece of equipment doectc not meet all
specifications?set with respect to its secondary parameters,

\
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such equipment status 1s referred to as secondary malfunction. In
this case there 1s no dlsruption of equipment operational readi-
ness [efficiency] and no breakdown.

Service life of equipment refers to the capability of that
plece of equipment to retain operational readiness [efficiency]
for a prolonged period of time, provided that the required tech-
nical servicing 1s accomplished (and this may include various
forms of overhaul). Service life is characterized either in terms
- of operational time, or by the number of operational cycles, or
by the volume of work accomplished.

Suitability for repair wlth respect to a plece of equipment
refers to the ease with which malfunctions can be corrected and
to the malntenance of technical service 1life through preventive
maintenance, detectlon and elimination of malfunctions and break-
downs. Sultability for repalr 1s characterized by expendltures on
labor, time and facllitles on such operations.

In conclusion, let us stress the difference in approach to
the concepts of "reliability" and "survivability."

Survivability refers to the property of a combat englneering
installation to preserve 1ts capability of carrying out its func-
tion despite combat damage. However, when we speak of rellabllity,
we generally have in mlnd the normal condltions of operation, in
the absence of combat damage.

§0.3. THE CONCEPT OF THE COMBAT SITUATION

In studying the efficlency of combat engineering installa-
tions we have to consider their function in various combat situa-
tons. In this case, cecombat situation 1is understood to refer to
the totality of the following c¢ondltions and information.
A. Data on Friendly Forces

the number of subject installations, ammunition and spare
parts, tools and accessories;

types and number of other installations [pieces of equip-
ment ] with which the subject equipment interacts;

the stated combat problem and the time allotted for i1ts exe-
cution;

the characterlstic of reconnalissance facilifles;

the characteristic of camouflage facilities;

the characteristic of communications and command facllities.
B. Data on the Enemy

types, number and characteristlc of targets (for example,
number of attacking enemy alrcraft, thelr possible speeds, combat

ceiling, damage probabllity, etc.); -
-7 -



types, nuhber and characteristic of enemy fire and radio

countermeasure

character

\
S

istic of enemy reconnalssance facilities;

character&stic of enemy tactical operations (for example,

velocities, al

titudes, headings, enemy aircraft maneuvers, inter-

vals between aircraft, formation, etc.).

C. External Co

timevof y

weather c¢
tion, dust, et

nditions
ear and day;

onditions (temperature, humidity, wind, illumina-
C),

conditions of terrain (level, hilly, mountainous, etc.);

locatilon
houses, efc.

Pf nearest rallroad stations, alrflelds, ware-

In the analysis of the efficlency of combat engineering

equipment, of
typical combat

be carried out.
entlre classes

as to varilous
values.

great importance is the proper selectlion of several
' sltuations for which the study of efficiency must
. In a number of cases 1t 1s possible to consider
of combat situations differing from one another
parameters which may be replaced by thelr average

§0.4. THE CONCEPT OF EFFICIENCY IN COMBAT ENGINEERING EQUIPMENT

Effzczenay of combat engineering equipment 1s understood to
refer to the characteristic of the level of completion by that

equipment of ¢
case of armame

hose functions for which it was designed. In the
nt the term efflciency is understood to refer to

the totality of characteristics for the level of executlon by

that armament:

\of combat assignments for which it is intended.

Armament efficlency 1s frequently determined in final analysis

by the magnitude of damage inflicted on the enemy. In a number of
cases, armament efficilency may be characterized by the magnitude
of damage prevented. ‘

In general, efficiency characteristics are functions of the
purpose for which the armament was deslgned. For example, an anti-
alrcraft rocket complex - -1s intended to inflict damage on aircraft

which fly within a certain altitude range. Let us compare two
versions of an antlalrcraft rocket complex. Of these, the more
efficlent wilﬂ be the one which inflicts damage on aircraft with
greater probability, with smaller expenditure of rockets and
within a shorter period of time.

We can see from this example that effiCioncy iz evaluated

‘!be means of a|large number of quantitative criteria, including,
- for example: probability of target damage, average number of

rockets expended to damage a single target, average cost to 1n-

flict damage on a single target, the average time spent to in-
flict damage on a single target, etc.
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This circumstance greatly complicates comparison of effi-
clency between various versions of combat ~engineering equipment.
I2 may turn out that according to certain criteria one of the
compared versions exhibitsg predominant efficiency, whereas the
other proves to be more efficient on the basis of different cri-
teria.

Comparison of efficiency between various versions'is compli-
cated even further by the circumstance that the efficiency cri-
terla depend significantly on the combat situation. Thus, for
example, one verslon of an antiaircraft rocket complex may ex-
hibit high efficiency in repelling the attacks of low- flying
targets and limited efficiency in repelling the attacks of high-
flying targets, whereas the other version of an antiaircraft
rocket complex may exhiblt precisely opposite characteristics.

The efficlency characteristics for combat engineering equip-
ment depend on three groups of factors:

the characteristics of gquality and reliability for that
equipment;

_ the economlc characteristics of that equipment (the cost of
the equipment and 1ts elements, labor expenditures with respect
to servicing, etc.); :

the characteristics of the combat situation in which the
operation of this equipment 1s being examined. ‘

Let us take note of the faet that the concept of eIIiCiency
is employed most frequently with respect to weapons systems and
to individual pieces of combat engineering equipment which exe-
cute independent functions (for example, reconnaissance radar
stations). However, the concept of efficiency 1s not applied to
many pleces of combat englneering equipment included in weapons
‘systems. Thus, for example, we do not speak of the efficiency of
the launching installation of a rocket complex. |

On the other hand, 1t 1s always possible to speak,of relia-
bility criteria for indiVidual installations included Within a
.system, but 1t does not always make sense to speak of reliability
criteria for a system as a whole (see §1.10).

§0.5. SELECTION OF CRITERIA TO EVALUATE ARMAMENT [WEAPONRY] EF-
FICIENCY

As was pointed out earlier, armament efficiency may be char-
acterized by a large number of various quantitative criteria. As
such criteria we may employ: !

the probability of completing the combat assignment within
a given combat situation;

the probability of inflicting damage on a given number of

targets; ;

the mathematical expectation of the number of damaged tar-
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gets;

the mathematical expectation of ammunition expenditure on
the completlon of the assignment;

the matnematical expectation of cost of facilities ex-
pended on completion of the assignment;

expenditure of ammunition to ensure executlion of assignment
~.with the given probability; . :
\
mathematical expectatlon of expenditure of time on comple-
tion of assignment :

mathematical expectation of damage 1nflicted on enemy;
\
mathematical anticipation of damage inflicted by the enemy,
etc. ‘

‘ Selection of criteria depends on the goal of the study being
carried out, (the characteristics of the weaponry versions being
compared. and‘on the target for which the armament is intended.

The criteria must be sensitive to the varying parameters of the
types of armament

A clear. example of the importance of proper selection of
efficiency criteria is presented in Reference [50]. During the
Second wOrld‘War antlaircraft weapons were carried aboard British
merchant vessels to fight off attacking aircraft. These measures
were implemented by reducing the antiaircraft cover of other im-
portant sites and cost quite dearly. There arose a question as to
the feasibility of thls measure. To resolve this problem, expen-
sive information on aerilal attacks against merchant vessels was
processed. It turned out that with respect to the criterion
"mathematical expectation of damage inflicted on the enemy" the
efficiency was low — only about 4% of the aerial attacks were
conc¢luded with the destruction of the enemy aircraft. It devel-
oped from this criterion that the firing of antialrcraft weapons
from merchant vessels did not even offset the expenditure of
their installation But, in additlon, a determination of the cri-
terion "mathematical expectation of damage inflicted by the en-
emy" was also carried out. It turned out that (of the total num-
ber of vessels attacked) 25 per cent of the vessels without anti-
aircraft weapons was sunk, whereas of the vessels with antiair-
craft cover only 10 per cent of those attacked were sunk. Thus,’
installation lof antiairecraft weapons on merchant vessels reduced
- the damage inflicted by the enemy by a factor of 2.5, which more
than offset the expense of installing such weapons on the vessels.

Since tHe basic purpose of installing antiaircraft facilities
was not the destruction of enemy alrcraft, but the protection oif
the vessels, ‘the second criterion was the correct basis of proce-
dure.

Thus we |can see that the correct solution of a given problem
may depend on the selection of the efficiency criterion.
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Let us also take note of the following circumstance. If we
are comparing two weapons systems on the basis of a glven effi-
ciency criterion, we should not lose sight of the other indi-
cators characterizing these systems. Such indicators may be the
various characteristics of quality (for example, rellablility,
handling safety, etc.). Having compared two systems as to effi-
ciency, care should also be taken to make certain that the re-
maining indicators of quality for these systems fall within
specified permissible limits.

§0.6. ECONOMIC CHARACTERISTICS OF VARIOUS SPECIMENS OF COMBAT
~ MATERIEL AND WEAPONRY

The economlc characteristics of combat materiel and weaponry
may be divided into two groups:

A Includes the characteristics defined by the labor input
on the fabricatlon of the subjJect ltems;

B includes the characteristics defined by the labor input
in the operatlon of these items.

!
The characteristics of group A can always be expressed in

monetary units. The characteristics of group B cannot always be
expressed in monetary units. Thus, for example, the labor Anput
involved 1n the utilization of combat materiel and weaponry, when
there 1s rather great llkellhood of injury being inflicted on the
crew servicing this equipment, cannot be expressed in monetary '
units.,

: |
Group A includes the following characteristics: |

the cost of preparing the design draft and the cost of ad-
Justing the experimental model;

the cost of capital construction necessary for series manu-
facture; :

the cost of fabricating series specimens; |

the cost of fabricating spare perts and accessoriés;

the cost of fabricating packing and transport facilities.
Group B includes the following characteristlcs:

the cost of transporting the goods;

the cost of storing the goods; |

the cost of current expenditures required for operation of
the products (including the cost of 1tems spoiled in storage)

the cost of capital construction required for storage ana .
operation of the materiel and equipment;

cost of training specialists to service the materiel anc
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equipment ;

the number of people 1n the crew servicing these items;

labor input in man-hours for various stages of materiel
and equipment operation in combat units.
\

§0.7. CLASSI#ICATION‘OF COMBAT ENGINEERING INSTALLATIONS

Combat engineering Installations can be divided into five
large groups:

A. Facilities to iInflict damage.
\
B. Means:of delivering damage-inflicting facilities to the
target. E

|
i

C. Facilities to obtain and process information.

D. Facilitles to control combat equipment and military ac-

E. All remaining combat engineering facilities.,

As examples of the facillties in group A we can cilte artil-
lery shells, rocket warheads, alrcraft bombs, etec.

As examples of the facllitlies in group B we can cite artil-
lery pleces, rockets and theilr launching installations, bomber
aircraft, etc

As examples of the facilities of group C we can cilte recon-
naissance radar stations and special digital computers designed
to process reconnaissance data.

\

As examples of the facilities in group D we can clte com-

mand electronic computers and radlio communications 1lines.

As examples of group E we can cite radio jamming stations.

The facilities of these groups are frequently consolidated
into single systems. Thus, for example, an antiaireraft rocket
complex includes antiaircraft rockets, launching installations,
rocket guidancc stations, as well as reconnalssance and target*

indication stations.

On the other hand, various combat engineering installations
are broken down into individual units and elements. For purposes
of the examination into the problems of reliability, of great
significance is the breakdown of these items into two clascses:

\

one~time items which, in the event of fallure, need not or

cannot be repaired

re-usablelitems which, in the event of failure, can be re-

¥
|
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palred.

We should stress that the same items may be re-usable in
one phase of operatlon and of the one-time variety in another
phase.

As examples of one-time items we can cite the elements of
electronic radio equipment (vacuum-tube devices, semiconductor
devices, resistors, capacitors, etc.), components of machines
and instruments (gears, bearings, gyroscopes, etc.), aetonators,
-rocket warheads, fuzes, etc.

As examples of re-usable items we can cite the various elec-
tronic computers, radar stations, communications equipment, cars,
rocket launchers, etc. ‘

Let us stress that on~-board rocket facilities may be re-
garded as re-usable in storage and during preparatlion for launch,
whereas they must be regarded as one-time items in - flight opera-
tlons.

Of great significance in the analysis of problems of relia-
bility 1s the separation of combat engineering facilities into
yet two other classes:

facilities without reserve (without spare parts) which are
characterized by the fact that malfunction of any element in
such facilities results in the breakdown of the entire device;

faeilities with reserve (with spare parts) for whlch break-
down of a number of elements does not result in the failure of
~the entire device.

|
§0.8. CLASSIFICATION OF COMBAT ENGINEERING ASSIGNMENTS}
The combat englneering assignments considered in our book
may be divided into three classes:

1. Assignments which arise during the course of establishing
tactical engineering specifications wilth respect to new models of
combat equipment.

2. Assignments arising in the development and testlng of
the experimental models of new equipment.

3. Assignments arising 1n the operation of series-produced
items.

The first class of assignments includes:

validation of the tactical engineering specificatilons imposed
on new specimens of combat equipment;

validation of optimum armament system.

The second class of assignments includes:
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comparative evaluation of various draft versions and devel-
opment of recommendations with respect to selection of the best
versions; :

evaluation of quality, reliability and efficiency of newly
developed models on the basls of thelr draft data and on the ba-
sis of test results;

economic bvaluation,of newly developed models.
The thirdlclass of essignments includes:
' |

evaluatioh of quality, reliability and efficiency of series-
produced models on the basls of test and operational results;

economic Tvaluation of these models; .

development of optlmum system of technical servicing (a sys-
tem of preventive mailntenance operations, spare-part and accessory
standards, overhaul system, etec.);

development of optimum operational regimes (norms for accep-
tance in various stages of readlness, normg for combat utiliza-
tion based on weather conditions, based on target parameters,‘
etc.).

§0.9. APPLICATEON OF MODELING IN OPERATIONS RESEARCH

In the solution of many combat englneering assignments it
proves to be advisable and efficient to employ the methods of
modeling. Let us clarify the foregoing by means of an example.
Given that we have to define the optimum tactical engineering
characteristics of a rocket complex which is scheduled for de-
velopment. Sinoe these speclflcatlions, as a rule, are contradic-
tory (the greater the maximum range, the greater the weight and
cost; the higher the firing accuracy, the more expensive and
more complex the guidance system, ete.), a quantitative basis
must be provided for these specifications.

These charLcteristics could be validated with greater preci-
slon by the testing of a number of rocket~complex versions under
actual combat conditions. However, such tests in the overwhelming
number of cases are unrealistlc, first of all, because of a
lack of opportunity for such tests in peacetime and, secondly,
because of the colosual cost 1nvolved 1in the development of rocket
systems. In this case the most expedlent method of operations re-
search is the modeling of combat-action processes, the comparison
of various solutions on these models and the selection of the
best of the solutlons.

There are three fundamental modellng methods: mathematical,
physical and combined (see Fig. 0.9.1). Mathematical models dif~
fer from the originals in physlical nature and geometric shape,
but they exhibit similarity in that they are described by iden-
tical mathematical equations. Physical models are similar to the

original in physical nature and geometric shape, but differ from

the original in |dimensions, in the speeds of tne process and in

- 14 -
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terms of other properties which are taken into precise considera-
tion. The combined model represents a combination of the mathema-
tical and physical model, with that portion of the process which
is most difficult or does not lend itself to description by mathe-
matlcal functions being modeled physically. '

Research

Methods ‘ - ]‘
[
Natural Modeling
Physical Mathematical Combined
. Analytical . | Statistical
Methods Modeling
)
Determination of D . . 1
mathematical ex= fete;-mu'_latmn Probability Verification of
pectation of cri | | €7 terion Determination| | Hypothesis
terion ispersion |
']
' - I |
Mathematical : : ! Correlations
Expectations Dispersions iFrobabilities (links)
\ J J

Fig. 0.9.1

An advantage of the mathematical models 1s the universality
of the methods and apparatus for thelr investigation (we have
reference here to the various computer devices, starting with a
slide rule and ending with the most complex electronic digital
"computer); the possibllity of studylng any processes lncluding
those which cannot presently be achleved physilcally; the most
-extenslve possibilities and the greatest simplicity in finding
.optimum solutions. '

An advantage of the physical model 1s the possibility of
studyling all processes regardless of whether or not they lend
themselves to description by mathematical means, and also the
great clarity of results. Among the methods of physical modeling
we can lnclude speclal war games and studles, as well as individ-
ual test-range operatlions (excluding those which must, of neces-
8lty, be carried out under natural conditions). It may !seem, at
first glance, that these methods, which have been applled to mi-
litary affairs for a long time, in any event, long before the
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term modelzng came Into beilng, are capable of providing answers
to all questions. However, this 1s by no means the case. An im-
portant element of combat is the counteraction of the enemy, and
this process '1n any game or test can be taken into consideration
only in an extremely conditional manner, and this thus cannot
help but have an effect on the over-all results of such a model-
ing operatlon. A definite advantage of physical modeling is the
participation of man, the descrliption of whose actions in each
specific situation by any glven algorithms will be very difficult.

It 1s obyious that the best results can be achieved by a com—

- blnation of mathematical and physical modeling, and this combina-

tion may involve stages, 1.e., a mathematical model, then a veri-
flcation of the results in speclal studies, followed by a refined
mathematical model, or it may involve & combination of a mathe-
matical and a\physical model (for example, the incorporation of a
human being into the mathematical model).

Mathematical modeling in recent times has found extensive ap-
plication because of the achievements of mathematices which have
made 1t possible to develop and investigate rather complex models,
as well as because of the development of electronlc computers. On
the other hand the growth in the potentlals of contemporary weap-
ons in conjunction wlth the rlse in their cost calls for in-

creasingly extensive application of the methods of mathematical
modeling. |

|
“A mathematlcal model represents a system of mathematical
equations and rules of loglc whose utilization make 1t possible
to calculate c"iterial values for each selected version with the
glven parameters Mathematical models can be divided into two

fundamental groups models of statistlcal tests and analytical
models. !

The method of statistical tests involves the obtaining of
a number of rdndom realizations of a criterion and the subsequent
statistical processing of these realizations.

The analytioal method makes 1t posslible to calculate the
mathematical expectation of a criterion and its dispersion by
means of analytical formulas.
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Chapter 1 ‘

CERTAIN CHARACTERISTICS OF ARMAMENT
§1.0. INTRODUCTION o

In the first chapter we consider the fundamental character-
1stlcs of armament which may be used as the initial data for the
solution of problems in operations research, In certaln assign-
ments with respect to operations research we assume character-
istics of armament accuracy, rellabllity and effectiveness as the
initial data. In other assignments, we assume the cost of the
armament or the effective range of the reconnaissance facllifles
as these initial data. Each of these characteristlcs may be as-
signed a specific value in certain assignments of operations re-

"search, whereas in others they must be estimated prior to the

beginning of the research.

. Determination of both accuracy and reliability characteris-
tics for armament is rather complicated; occasionally, this 1s
possible through experimentation. Particular attention 1s there-
fore)devoted to these questions in this chapter (§§1.1, 1.2, 1.7-
1.10). :

This chapter also deals with damage probabilities (§§1.3-
1.5). Quite a number of works have been published on this ques-
tion. However, tne importance of these characteristics for opera-
tions research has led to the need for a brief description.

One section is devoted to detectidn_[acquisition]lrange

(§1.6).
In conclusion, cost characteristics are examined in §1.11.

A number of important armament characteristics whose deter-
mination 1s rather simple (welght, maneuverabllity, etc.) are
not consldered.

§1.1. FUNDAMENTAL CHARACTERISTICS OF FIRING ACCURACY
A, The Fundamental Concepts of Firing Accuracy

Firing accuracy is an objective characteristlc of armament
quality. It 1s not by chance that each new form of weapon is
tested prior to acceptance to determine accuracy characteristics.
Aceuracy characteristicg are understood to refer to the charac-
teristics of firing accuracy and pattern.

Flring accuracy 1s evaluated in terms of deviation of the
1
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mean trajectory from the center of the target while firing pat-
tern refers to deviations of individual shells [missiles] from
the mean trajectory.

In speaking of firing-accuracy characteristics, we should
distinguish between generalized and special characteristics. The
former describes flring accuracy under a great variety of con-
ditions (time| of year, weather conditions, firing azimuth, etc.).
The latter are determined for specific (special) conditions such
as, for exampie, a speclfic season of the year or a specific
firing azlmuth.

|

The distribution functions corresponding to averaged charac=-
teristics represent a superposition of functions corresponding to
a large numbel of speclal characterlstics.

Let us examine the factors responsible for deviation of
rockets and missiles from their targets. The basic factors re-
sponsible for the deflection of "ground-to-ground" rockets from
their targets‘will be the following [131]

1) geodesic errors;
2) weather forecast errors;

3) ballistic errors;

'y errors due to technical scattering.

The scatﬁering of artillery shells is brought about by the
same factors.

Occasionally it is more convenlent to divide the causes of
scattering into those dependent on the rocket (with consideration
of Wsather—forecast and ballistic errors) and the scattering
which 1s independent of the rocket (geodesic errors and errors
in the indirect laying of the line of sight). Regardless of whnich
scattering characteristics are used, it must be borne in mind
which of the factors leading to the scattering are being taken
into consideration here.

Flring errors are characterized by thelr mathematical ex-
pectatlions and the standard deviations ¢ or thelr squares, i.e.,
the dispersions D = g2 [10, 24].

|

Frequent use 1s made in firing theory of the main probable
deviations FE (mean deviations) and, according to American litera-
ture [49], the‘circular probable error CPE [CKO]. The circular
probable errorxis defined as the radius of a circle about a tar-
get, with the probability of hitting within that circle equal
to 50%. This rfdius is occasionally denoted rsp.

The mean deviation 1s half the depth of a band of infinite
width for which the hit probabllity is equal to 50%.

There eXists a certaln relationship between ¢, F and rs,
which will be shown below (see subsection B).
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In actual practice we use yet another term: "maximum devia-
tion." However, for the majority of distribution functions this
term is devoid of significance if no indication is provided as
to the probability that the deviatlion will or will not exceed
this "maximum deviation."

For the maximum deviation we generally assume +U4F, and oc-
casionally +3a0. ‘ . .

B. The Normal Distribution Function for Firing Errors on a
Plane

_ Flring errors are random quantities which are characterized

by distribution functions. The normal distribution function for
random quantities is the one most frequently employed in actual
practice. The random deviation of a missile from a plane is char-
acterized by two random quantities for the impact-point coordi-
nates, and in space, by three random quantities; it is therefore
advisable to treat the normal distribution function for firing
errors separately for a plane and for space.

. It 1s demonstrated in the theory of probabilitiles that this
function 1s limited. The summation of a large number of approxi-
mately identical deviations distributed accordling to various func-
tions will lead to a deviation distributed in accordance with the
normal function. These conditions are generally satisfied for
firing errors.

In the general case, the density of the normal distribution
of firing errors in a plane 1s expressed by the formula

- l 1 - :)‘
[, §) = ———r= exP{“z([ —r?) [(X ’g -

T 2nsy0, Vi-n %

a0

_l 2r (x —m;) (!I“mv)_{-_(_y_'m")a]} | (l)
2 »
e

v ¥

where m_ and m are the mathematical expectatlions of random devia-
z Y tions in the points of missile [shell] impact
along the coordinate x- and y-axes;
o and cy are the root mean square firing deviatlons;

r 1s the correlation factor for the magnitudes of
x and y.

The density function f(x,y) for the normal firing-error distribu-
tlon defines the probability of missile [shell] impact within the
clementary area Ax Ay. It 1s not difficult to prove [25] that the
density of flring-error distribution along one of the coordilnates
1s also subjJect to the standard function having the deqsity

= o [~ @
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and w1th dens;ty

ho=va exp[_@__;m], 3y

while the correlation factor

0.9y" | (u)

where K, is the coupling moment.

Graphically f(xz,y) can be shown in the form of a hill (Fig.
1.1.1) whose apex 1s situated over point (mm, m ), while the width

of the base is infinite. The steepness of the slopes of this hill
is a function of the root mean square deviatlons o, and oy. The

width of the\base may be limited +30,, +30, from the point having
the coordinaTes (m, my) ¥ ‘

A number of sectlions of the sur-
face f(x,y) by planes parallel to x0y
wlll yleld a family of similar and _
ldentically located ellipses which, in
projection onto a plane, wlll have a
common center at point (mx, my). The

probability density f(z,y) 1s constant
at all points of each of these ellipses.
Such ellipses are therefore referred to
as ellipses of equal density or gcat-
tering ellipses. The n and £ axes,
which pass through the major and minor
axes of the scattering ellipse are
referred to as the prinoipal socatter-
ing azxzes. .

If we combine the coordinate origin with the point (m_, m, )

and the coordinate axes ¢ and y are turned through an angle o and
1f these are 'combined with the principal axes, we will derive an
equatlion for the scattering elllpse in canonical form. The angles

a1 and az aré determined from the equation

| |
3 tg 20 = 2% | (5)

U‘—'G”

where the anéles a1 and o differ by w/2.

The cancnical of the normal functlon on a plane has the form

& 2

,(E 'rl) 21“ u" exp(_— ;:2'_-_&:2-')' (6) }

where UE and g, are the principal root mean square deviatinns
in firing.

Generally, in processing the measurement results for devia-
tions of missliles [shells] from a target on a plane, an effort is
made to choose the coordinate axes ox and oy in advance in such a
manner that they coincide with the principal scattering axes. For
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this the ox-axls must be made to colncide with the firing direc-
tion {1line of sight]. The root mean square deviations along the
z- and y-axes will be the principal root mean square deviations
in this case, and the normal function will have the form

(x—m)?" (y—m,)

i (—\', !]) = §’w]x’v exp [__ 292 29 ] ’ (7 )

X 1)

In the case of a two-dlmensional normal distribution the
probabllity of impact in a circle of radius » is determined from
the formula

.P (r)=Si.(x, y)&xdy. (8)

r

Having substituted the density of the distribution flx,y) and
having integrated Eq. (8), it 1s possible for us to derive the
radlus rso of the circle within which the probability of impact
is equal to 50%.

In the simplest case in which o, = 0, =0, and with P(»r) =
= 0.5, we will have ‘ Y

ro=r(P=05)=1,17743 (9)

or )
. | - ryo=1,746E. (10)
In the more general case in which the dispersions a}¢ﬁf are

not equal, the integration and approximation of the derived func-
tion r=f (sx ,5,) ylelds the possibility of obtaining the following
approximate relationship: -

r,o=0,589 (o +I5u) (ll)

r;o%0.615ax+0»562’u' ! (12)

or

where Gy 1s the greater value of these two errors.

Formula (11) yields more exact coindence (within limits of
3%) in the range “=0,2-+1,0.
; v .
The principal probable deviations and the root mean square
deviations are assoclated by the relationship EF=pV 25, where p =
= 1
(this relationship is determined from the equationﬁbwy/ﬁ:=3)-
(13)
C. Normal Distribution Function fbr Firing Errors in Space
~The normal function of firing errors in space describes the
scattering which results in firing long-range missiles. In general
Torm the density of the normal distribution of firing errors in

space is expressed by a rather cumbersome formula which depends
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on ninefparnmetérq (My, 1My, My, Ox, Oy, O, F1gy T23, Tyy). We will therefore lim-
1t ourselves exclusively to the canonical form of the density dis-
tribution for the firing errors in space

; : 1 * 1 x? H 22
|-

where s, 9, s are the princlpal root mean square quadratic devia-

tions. |
D. The Rice Disgribution

In acddition to the normal distribution function for firing
errors, the Rice distribution 1s of great practical significance.
Thn Rice dlstribution characterizes the magnitude of the miss
dlntance for the missile with respect to the target with a sh
in fha prouplng |center in the case in which the distribution of
the coordﬁnatea of the impact (explosion) points is normal.

I

The Rice dz%trzbufﬂon function refers to a function having

the density

o=z ew (<555 4 (55) when r >0,
‘ f(r):O . when << 0,

(15)

where ¢ 1s the rbot mean square deviation of the gquantity »

| e
‘ r=yy'+2% (16)

\ a:::Vm.z—l—mz. (17)
|

m and m_ are the mathematical expectations of the random quan-
Y tities‘y and 3, respectively;

%(S%) is a zéroth—order Bessel function.
j

The curves df the Rice distribution functions are shown in
Flg. 1.1.2.

If a/0 1s small, the Rice distribution function differs lit-
tle from the Rayﬂeigh distribution function and is described by
the followlng equation [40]

(18)

| Fig. 1.'1.2'_
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The Rice dilstribution 1s occasionally referred to as the
-generalized Rayleigh distribution for reasons which willl become
more evident from the following subsection.

E. The Rayleigh Distribution

In the absence of systematic deviations in a/c = 0 and in
the normal circular distribution of the coordinates for the point
of mlssile impact (explosion) the missile miss distance is subje.
to the Raylelgh distribution.

The density of the Rayleigh distribution is expressed by the
formula
f ()= Lsexp (-‘—i,:—',)_for‘ r>0,

f(r)e.o for r<q. (19)

The functlon f(r)dr represents the Impact probability of two
independent random quantities distributed according to the normal
functlion with ldentical parameters cy =0,=0 into a ring

bounded by two concentric circles of radii » and r + dr whose cen
ter is situated at the polnt of maximum density for the normal
distribution f(y,=z).

i) Elllipses of equal deﬁsity with

20 0. = 0_ = 0 change into circles of
/\0=an ¥ ' |
L6l 4 radius » = Ag0.
\ 2k ' We can see from Egs. (19) and (18)
12 that the Rayleigh distribution is a
/ 6=04¢4 ‘ special case of the Rice distribution
ag with the grouping center of the random
81 | - quantity » made to coincide with the
. l/ - coordinate origin (a = 0).
4 P,
\ N Graphically the probabllity den-
, S sity of the Rayleigh distribution can
@ o2 be represented in the following manner
Flg. 1.1.3 (Fig. 1.1.3). The numerical character-

istics of the random quantity r dis-
tributed according to the Rayleigh func
tion are determined from the following
equations:’

— *n.ﬂthem.at-ical expectatlion o
m, = 1,253a, (20)
— dispersion _
Dr=:°f::0328f. (21)
In actual practice, the eccentricities of component parts
In the machine-bulldlng industry, the service life of certain
types of electronic tubes and, as has been indicated earlier, the

miss distances of missiles [shells] and rockets in artillery
operations are subject to distribution [82].
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The Rayleigh distribution function 1s found from the equa-
tlon 1 ‘ ‘
‘ f
] ' ]
(r)a-—f f(r)dr.—l—-exp[ ;,]. (22)
| .
It 1s not difficult to calculate F(r) in accordance with
Eq. (22), but it 1s also possible to use tables (see Table 8 in
the appendix) |

F. Random and S}stematic Firing Errors

Firing accuracy 1s associated with deviations in the explo-
sions from the center of the target, 1.e., with firing errors.
What type of firing errors can there be and how are they to be
classifled? :

Let us demonstrate this by means of examples. Let us assume
that the firing operations are belng conducted against a target
situated on a horizontal plane, all other conditions equal. We
will determine the deviations of the explosions from the center
- of the target. In this case a two~dimensional coordinate system
1s needed and itwshould be convenient to make thils system coin-
clde with the center of the target. One of the coordinate axes
(x) may be directed along the firing line-of-sight, while the
second axis (y) is set perpendicular to the former. All explo-
slons will be situated within an area bounded by an ellipse. The
deviation of the| scattering center from the center of the target
characterizes the accuracy or systematlc firing error, while the
deviation of the\indiviuual shells [missiles] from the scattering
center characterizes the random firing errors or the firing pat-
tern. |

An objective characteristic of systematic errors is their
mean value, derived Through multiple repetitions of analogous
firing operations

, n ' n
! =1\,
\ M=y ) R = P (23)
{=1 i=1

An objective characteristic of random errors is represented
by thelr root mean square deviations O and o or their disper-
slons D_ and D Y

x Y
1 n

D—ﬂ‘ﬂ:T (xi—m,)?,

- (24)

R B
\ Dy== dif:;-::'fz (yi—my).
| i=1

\

Errors in flring at a moving target will be examined on the
basis of an example of an antlailrcraft complex [system]. Let us
assume that the target is flying rectilinearly at a constant al-
titude and at coqstant speed. The firing operation i: being con-
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ducted by a four-gun antliaircraft system using shells with long-
range fuzes in accordance wilth data derived from the solution of
- the missile-target impact problem by means of antlaircraft fire-
control instrumentation AAFCI [NYA30] and from information pro-
vided by the weapons guidance station WGS [COH].

The system operates automatically and ensures the firing of
salvos at a given rate. Let us establish the deviations of each
explosion from the center of the target. In this case we wiil
need a three-dimensional coordinate system, with the coordinate
origin also easily made to coincide with the center of the tar-
get. During the perlod of time that the target i1s within the
firing zone the system will execute a series of salvos.

All of the shots of a single salvo will deviate from the
center of the target in accordance with the errors at the output
of the lnstrumentation complex. However, there will be a scatter-
ing of explosions for each salvo, and this will COrrespond to the
individual errors of each of the weapons.

On the whole, all of the exploslons willl be distributed with
in a certaln space around the target in a random manner. Expe-
rience shows that when firing at a nonmoving target, the geometri
body containing all of the explosions will be an ellipsoid. In ou
example this will also be an ellipsoid, since the coordinate ori-
gin moves together with the target.

The deviation of the ellipsold center from the target center
will be governed by systematlc errors, while the deviations in
the explosions within the ellipsoild with respect to the ellipsocic
center will be caused by random errors. However, if we now com-
pare the explosion ellipsoid derlived from firing operations car-
ried out today with the ellipsoid derived from firing operations
on another day, given identical initial data, we will find that
the centers of these ellipsoids do not coincide. Consequently,.
the systematic errors change. In the given case the deviation of
the elllipsoid centers is due to the errors in firing preparatiocn.
However, 1f the deviations in the scattering centers occur re-
pcatedly, these deviations will be systematic. They may be caused
elther by errors in the instrumentation system or by errors in
firing preparation. Thus we should distinguish between the gys-
tematic errors that are characteristic of specific conditions
(daily errors, system errors, etc.).

G. Error Groups

In the case of antlalrcraft firing operations random errors
are generally divided into two or three groups which are asso-
¢lated with the firing conditions. For example, in the firing of
an antiaircraft battery the random errors are divided into three
groups. The division of the firing errors into groups is acconm-
plished on the baslis of their correlation functions: errors
closely associated with each other are 1nciuded in one group;
those errors lcos closely assoclated with each other are grouped
in another, etc. The first group of errors contalns indlvidual
errors, i.e., the technical scattering of the shells [missilecz ]
and the errors due to the positioning of the weapons. Trne root
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mean square dev

errors in the fi

The second
instrumentation

1zed by the root

result in deviations of an indivi

lation g+ is an exhauétive characteristic of the
rst group.

error group includes errors at the output of the
system (errors of dynamics) which are character-
mean square deviation Orp- These errors do not

dual missile, but for all shots

of a given sequence.

The third error group lncludes ballistic¢ errors and errors

in meteorologlc

tions in all sh

al firing preparation (o
ot

III) which cause devia-
s of a glven firing operation. '

When the firing efficiency of a single weapon is beling eval-

uated by means
errors are divi

contalns errors

:

f an independent fire-control system the firing
ed Into two groups. In this case, the first group
of technical explosion scattering and a portion

of the errors at the output of the instrumentation system, which

are lndependent
second error gr
mentation error
gical errors in

§1.2. DETERMINA

MENTATION

A. Methods for

of the transition from one shot to another. The
oup includes the remaining portion of the instru-
5, as well as ballistic errors and the meteorolo-
preparation for firing. ‘

TION OF FIRING-ACCURACY CHARACTERISTICS BY EXPERI-

fhe Determination of Accuracy Characteristics

- We distingﬁish the following methods of determining accuracy

characteristics

1. The expérimental method, assoclated with the direct firing

of shells or rockets

derived results
type artillery.

‘ [131] and the subsequent processing of the
+ This method 1s extensively employed in cannon-

2. The expérimental-theoretical method which is understood

to refer to the

‘utilization of simplified theoretical functions

as interpolation formulas to extend experimental data to other

conditions.

3. The method of statistical modeling in which perturbations
are determined by means of a statistical analyslis of material

from laboratory
wlith the accura

tests and from the processing of launch results,
>y characteristics subsequently determined by

means of electr¢nic modellng of the perturbed motion of rockets
in a large number of tests [35].

b, The ana}ytical method
tles are calculated.

Naturally,
higher accuracy
ctharacteristics

|
in which the accuracy characteris-

thé last two methods stand out becéuse of their
with respect to the derivation of the scattering

s slnce they make 1t possible to take into consia-

eration a considerably larger number of factors affecting the

firing operatior

1. The resulting experimental material in thi:z
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case 1s seemingly enriched.

Analytical expresslons for an evaluatlon of the accuracy of
the derived scattering characteristics in statistical modeling
are presented in §2.3. These make 1t possible to evaluate the ac—
curacy of the results obtained under specific conditions.

In §2.5 we have an example of the application of the method
of statistical modeling for an evaluation of firing accuracy.

B. Determination of Firing Errors by Experimentation

_ Determination of accuracy characteristics through experimen-
tation is most conveniently demonstrated by means of examples.,

- We will not divide the errors into groups at this time.

EXAMPLE |. To derlive scattering characteristics, let us
launch rockets under ldentlcal condltlons. The point coordinates
are determined by the same method. As a result we obtaln n pairs
of measured deviatlions In the explosion points from the target
with respect to range and direction on the plane, In an Inde-
pendent manner and for identical conditlions. The measurement re-
sults (x1, y1), (X2, y2), ..., (¢,, y,) are independent systems
of random quantities for which :

2
Myi =My, My, =my, Dy, =D, =0,

DV{ i DII == GZ °"de,'v‘ :sz,

where the subscript < pertains to the measurement pair. Find the
approximate accuracy characteristics and evaluate these.

Solution. The approximate values of the independent quan-

- : 2 - .
tities m s my, O, and 0" are defined in the same manner as in
the processing of linear measurements, l.e., on the basis of the
formulas

(1)

' ' (2)

where m*_, m*y, 0;2 and 052 are the experimental values of the
mathematical expectations and dispersions of the measurements.

In estimating the accuracy of the resulting charac*eristics
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we generally make use of the following formulas (see [82], pages
i28 and 136) :

a o*, g o*
‘ cm,m—ﬁ:-‘:—ﬁ, °m"=_‘/_'v','_;_'g %. _ (3)
| x ¥
‘ 6y %,
%o }/2n—-l 4 ]fln——l 4
| g, e*, * (4)

1 }/2n—l $ T Vin—1.4
|
Since the Instant of contact is the mathematical expecta-
tTion of the producf resulting from the devliations of the random
quantities x and y from thelr mathematical expectations, the ap-
proximate value of the instant of contact K* ls determined from
the formula *y

S 2 (2= m*2) (go = %) (5)

=1

K*xy -

An evaluation of the accuracy for the instant of contact is
conveniently glven by the correlation factor whose general char-
acteristic Is|determined from the equation

Kay (6)

Fsv =73 =9,"

The experlmen+al correlation factor
\

KW
‘ : r*:u == G}"‘(;:*vv' ( 7 )
EXAMPLE 2 To deTermIne the scattering characteristics for
an an+nalrcraf+ weapon, firlng operations are carried out against
a nonmoving poinT in three-dimensional space with n shots. The
coordinates of the explosion points are determined by identical
methods. ‘ :

: From measuremen*s of the deviations of the explosions from
the target we 'derived 3n independent random quantities. Determine
the apgroximafe values of the sca++ering characteristics m; m*,
m*, g*2, gr?  g*?, k% . KX and KX . 4

3 x y *' s Yy’ “xa Yz

Solution. Determination of the numerical characteristics of
a system of T*o random quantities reduced to the processing of
linear measurements. Therefore, In the case of a system of three
random quan*i%ies, in analogy, we can write the working formulas
for the approximate values of the fundamental numerical character-
istics of the/ system, adding another function with respect to the
2 coordinate to the earliier derived functions.

At the conclusion of thls section we willl examine the ac-
curacy characteristics for the case of an antialrcraft systenm

firing at a mcving target. Since the target is moving, all of the

accuracy characteristics will be random functions of time.
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The fundamental characteristics of random functions include
the mathematical expectation mx(t), the dispersion Dx(t) and the

correlation function Kx(tl’ t2). And 1f we are considering two

random functions x(¢) and y(t) at the same time, to the above-
cited characteristics we have also to add the instant of contact
ny(t). The baslic problem of processing random functions there-

fore involves determination of the approximate values or these
characteristices.

EXAMPLE 3. An antlaircraft artlillery system functioning in
conjunction with antialrcratt fire-control instrumentation [AAFCI]
on the basis of data from a weapons guidance station [WGS] pre-
pares inltial data for firlng at an aircraft flyling at a constant
altitude, rectilinearly and at a constant speed. The unit has car-
ried out n independent experiments (observations) and as a resulft
has obtalned n reallzations of the random functions x(t) and y(t),
characterizing flrlng accuracy (firing errors In the picture
plane).

Find an estimate of the characteristics for the random func-
tion:
my (), my (1), Dy (t)andDy (),
K: (th tz). Ky (tl. ta)andK:v (t)-

Solution. Let us examine a number of cross sections of the
random functions x(t) and y(t) for the Instants of fime ¢,, ?,,

+eny tm and let us record the values assumed by the functions

x(t) and y(t) at these instants of time. The section of the ran-
dom function refers to the value of It+s random reallzations at

a fixed instant of time. To each of the instants t1s t2, “ees tm

there will correspond n values of each function. In this case,
the Intervals between the instants tl’ t2, ey tm are selected

so that i+ will be possible to ascertaln the most S|gn|f|canT
changes in tThe functlons and these are generally established by
the speed at which the random process is photographed,

Let us assume that the functions z(t) and y(t) in our ex-
ample have been established with an interval of 0.5 sec. The
coordinate origin ¢ = 0 in this case corresponds to the instant
at which the target passes through the heading parameter.

The values of the functions x(t) ‘are presented in Table
1.2.1. ' ,

For each value of tj let us calculate the mathematical ex-

pectation, the dispersion and the correlation function in accord-
ance with the formulas presented above (1.5). The results of the
calculations are given In Table [|.2.2.

The correlation function Kx(tj’ tq) in the example has been

calculated only for the single value of tj = 0.
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TABLE 1.2.1

vnluesﬁof x,—(t) ‘ [g.i-. ]'(go_n'iometer readings)

lj.sec

! 0o |05 l.Oll.S 2025|3035 |40 |4.5| 5,0

1 2,2 {2,7/8,5]4,7(6,2]7,5/7.9| 8,1 |7,8{7.1] 6.5

2 1.9 12,7|4,3/5.3(5.8(6.3/6.7| 6.9 | 6.9 |6.7] 6.7

.3 i)5]2,8{3.6/3.914.0({4.0/4.3]5.0|5.5|5.8]5.7

L4 3,0 (3.413.5{3,714,315,2/5.9|6.0 5.9 !6.2] 6.7

5 1,2 12.313.2/3.6/3.8(3.7|3.5| 3.4 | 3.6 |4.2] 5.1

6 1,2 [1.912.112,1{2,0]2.2/3.0] 4,0 | 4.3 |4.1] 3,7

7 5.8165/7.0(7,4|7.5/7.6/7.56(7.5|7.2(7.0]6.9

8 5.1 |4.8|4.6/4,9/5.86.8/7,2]7.1|6.7 |6.4] 6.4

9 3.2 3,9{4.0/3,6/3.3(3,0[3.2(3.7| 4.7 |5.6| 5.8

10 3.4 |2.3/1.20.9/1,1(1.8|2.5| 3.5 | 4.4 |5.0 5.2

1 6.8 |6.6]6.4/6.2/5,8/5,5|5.3] 5.3 | 5.4 |5.5] 5.8

12 3,8 |3.313.1(2.9/2.52.3|2.3| 3.5 4.7 [4.9] 5.1
TABLE 1.2.2

|

“P sec 0 |0.5{1,0{1,5{ 2 |2.5/3,0[3,5/4,0/4,55,0

n\‘ () [er] |3,2]3.6/3.8]4.1/4,3/4,6/4.9/5.35.5/5,7|5,8

Dictler 123,30 1,7]2.6(3.1(3.7|4.4(4.2]2.0]1.7]0.8]0.9

ty, see | —|0.5/1,0/1,5] 2 {2.5(3.0{3.5]4,0/4.5]5.0

K;kt AN et — [1.5]1,8/1,7]1;5]0.8/1,110,8{0,6{0,6{0.2

The random functlons are processed analogously as well with
respec+ to fhe\second coordinate y(t) for the same flxed values
of t -

The correla+|on instant K (t .J is calculated in accordance

with Eq. (5) tor each fixed value of ta

At times 1t 1s convenient to present the calculational re-
sults 1in the form of graphs as functlons of time, with K given
in the form of‘an analytical function.

Random functions are sometlimes convenlently presented in
the form of a canonical or spectral expansion. The methods for
obtaining such 'expansions are described in §2.2.

The error values obtained at the output of the instrumenta-

. tion system (m* mg, D%, D; K: K; and K*y) are used in cal-
culating the firing efficiency of an antlialreraft system. The

results obt ained in this case from the calculation of efficlency
will correspond to those conditlons of the combat utilization of
the system at which the experimental values for the errors were
obtained at the output of the AAFCI [antialrcraft fire-control
instrumentation] (target veloclty, target altitude, heading para-
meter and range to target).




§1.3. FUNDAMENTAL CONCEPTS AND CHARACTERISTICS OF DAMAGE PROBA-
BILITY

_ The basie function of each shot is to damage a target. This
can be achieved either by striking the target (for certain types
of missiles) or by the detonation of the missile at a certaln
distance from the target. This distance should be no larger than
that established for the given missile and target. Detonation of
the misslle may be accomplished either by a contact (impact) fuze
actuated on impact against an obstacle or by means of a noncontact
fuze which provides for detonation on the basis of a given indi-
cator (reflection of a signal from the target, on the basis of
flight time, etc.).

Target damage probability is understood to refer to the con-
ditional probability of target damage under the condition of a
specified number m of missiles striking the target (in the case
of missiles with contact fuzes) or under the condition that the
detonation of the missile takes place at a point having the co-
ordinates (x, y, &) (the coordlnate damage probability for a mls-
sile for a noncontact fuze).

Damage probability 1s determined by target vulnerability and
missile warhead strength (the destructive factors).

Let us examine in greater detall the coordinate damage proba-
bility and the destructive factors of various types of ammunition
[warheads]. In the general case, the probabillty of damage 1is a
complex function which depends both on the coordinates of the
point of impact and on the characteristics of fuze actuation.
Thus, for example, in the case of antialrcraft fire a necessary
condition for the damaging of the aerial target by means of a
high-explosive fragmentation warhead is the fact that the vulner-
able elements of these targets must be covered by the region of
explosive-charge inflicted damage [49]. The instant of detonation
in this case must be selected with consideration given to the
velocities of target motlion and the destructive elements. With
this purpose in mind, each warhead is fitted out with a fuze.

The fuze must thus ensure the properly timed detonation of
the warhead intended to achieve the greatest possible target dam-
age. '

A. Coordinate Damage Probability

The probability of target damage as a function of the coordi-
nates of the points of impact (detonation) of missiles 1s referred
to as the "coordinate damage probability." The coordinate damags
probability characterizes the fully determined combination of
missile and target and may be treated both in a plane and in
space., As an example characterizing the coordlnate damage proba-
bility in a plane we can conslder the damage probabllity for
ground targets (tanks, armored vehicles, dugouts, etc.) when at-
tacked with several high-explosive or high-explosive fragmenta-
tion shells. Mathematically, this function 1s expressed as an
equation of the followlng form: :



\i‘ _Gﬂ (xu Yy Xas Yas - ooy X yn):
‘\1 =1 —[1 —G, (x, y)}[1 —G,(x,, Y)] - [1=G, (x5, ya) (1)

with the condltlon that all of the explosions having the coordi-
nates (xi,yi)gare independent from the standpoint of damage, i.e.,

in the "absence of accumulated damage" [130].
] N :
Here Ga(%, 45 X3, Y2 .. X, ya) 18 the coordinate damage probability
for the target attacked with n shells [missiles] and Gl(mi’yi) is

the coordinate damage probabllity for a firing attack involving a
single ith shell [mlssile]. The coordinate damage probability of
the target attacked with » missiles represents the conditional
probablility of target damage on condltion that the missiles [shells]
explode at polnts (xi1,y1), (®2,y2), ete., to (mh,yn).

In the case of firing operations agalnst aerial targets the
coordinate da@age probablility in analogous fashlon may be written
in the following manner Ga(x, Y1, 2); X2, Y2, 225 ... %n, Yn, 2n), Which, 1in the
absence of accumulated damage, 1s expressed in terms of Gl(xi, Yyo
3.) , :
* Gn (xn Y1y 245 KXoy Yoy 25353 Xny Y, zﬂ)z

=1 “‘"[1 *Gl (xn Y Z,Hl “"01 (.JC,, Y 2,)] Ses
- e [1—=G, (X, Yar 20))- (2)
i |
Let us assume that all n shells exploded at the same point (z, y,
z2). In this case, Gi(x1, y1, 81) = G1(x2, y2, 32) = G1 (®,, ¥,
zn) and from Formula (2) we wlll obtain
Gu (%, y, )=1—[1—G, (x, y, =1 —e "Mt 0", (3)

where G (x, ¥, |3) 1s the conditional probabillity of target dam-
age on condlition of missile [shell] explosion at the point (x, y,
a3). :

Equation (3) is also used to calculate the coordinate damage
probability of\a target attacked with fragmentatlon shells, where
the number of fragments striking the target on detonation of the
shell is taken as the value of n, and where G;(x, y, &) is taken
as the condltlonal probabllity . of target damage by a single frag-
ment of a glven welght category on condition of shell explosion
~at the point (x, y, #).

B. DéstructivelFactors of Various Types of Ammunition
a) Destructive |[factors of a nuclear explosion

Exploslve atomic devices are based on the utilization of the
atomic energy lﬁberated virtually instantaneously with an explo-
sive reaction [pE?].'Explosive atomic weapons may presently be
used in the form of atomic or hydrogen aerlal bombs, missiles

and rockets. These weapons are intended for the destruction of
various objects‘[sites], the destruction of compat materiel and
weapons and to inflict injurdes on personnel.
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A nuclear explosion may inflict damage in the following man-
ner:

light radiation;

shock wave;

penetrating radiation;
radioactive.contamination of terrain,

The nature and degree of damage inflicted by all of these
factors vary and are functions of target vulnerability.

Target vulnerabl!lity. Injuries inflicted on people exposed’
directly to the shock wave are classified as light, medium, ser-
ious and critical [95] (Fig. 1.3.1).

At the front of the alr shock wave it may be assumed that
to destroy conventional urban structures the excess pressure must
te Ap, = 0.5 kg/cm? [128].

Light radiation causes the combustion and charring of wvar-
lous combustible materials. On the battlefield, light irradiation
of combat personnel may produce skin burns, wooden structural
and material parts may burn or char, as may the paint on aircraft,
tanks and similar armament items; covers and the rubber rollers
of tanks and motor vehicles may burn. Storage areas for fuel and
lubricants, ammunition dumps and other warehousing facllities are
particularly subjJect to this danger [128].

The degree of damage inflicted by the shock wave and light
irradiation depends on the distance from ground zero and on
the TNT equlvalent of the nuclear weapons.

The degree of damage exhiblted by various factors of nuclear
exploslion as a function of the radius and of the TNT equlvalent

1s shown quantitatively in Fig. 1.3.1 [95].

We can see from Fig. 1.3.1 that on a clear day the greatest
radius of damage will be achieved by light Irradiation, whereas
the shock wave will produce the greatest damage in the case of
poor atmospherlc transparency which may reduce the radius of dam-
age from light irradiation by a factor of two and more, depending
on the transparency factor.

The damage radius in the case of penetrating radiation is a
weak functlion of the magnitude of the TNT equivalent of the nu-
clear weapons, and in terms of magnitude it 1s smaller than the
radius of shock-wave damage. '

Radioactive contamination of the terrain may also inflict
injuries on human beings, if these are not provided with protec-
tive equipment. The dimensions of the territory contaminated by
radioactive fallout depend on the TNT equivalent of the nuclear
explosion. The degree of radioactive contamination is also a
strong function of weather conditions. In rairn, snow and fog ccn-
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tamination will be stronger. The greater the speed of the wind,
the smaller the dimenslons of the terrain exhiting a high level
of radiation. :

"b) The destructive factors of chemical weapons

Polsonous substances PS [0B] and the means by which they are
employed on the battlefield make up the concept of chemlcal wea-
~pons [129]. Th% basis of the destructive effect of a chemlcal.

weapon 1s reprqsented by the polsonous substances which, in for-
elgn armies, are condltionally divided into stable and unstable
substances.

The stablegPS Include those which retain their destructive
effect from several hours to several days.

The unstable PS include those substances which retain their
destructive effect for several minutes, and sometimes for several
hours. }

Both the stable and the unstable PS inflict injuries on un-
protected personnel. These substances easily penetrate structures
not protected against chemical warfare, as well as tanks and other
combat equipment, inflicting injuries on the personnel within such
" vehicles.

¢) Destructive factors of ammunition with conventional explosive
substances

The nature | of the effect produced by ammunition of this type
depends‘on the caliber of the ammunition and 1ts classification
(high-explosive, fragmentation and fragmentation-high explosive).

The basic destructive factor of high-explosive ammunition

is the shock wave which Infllcts Injury on personnel and damage

on materiel and weapons. : ‘
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The explosive force depends on the weight of the explosive
substance and on the rate of detonation, quantitatively expressed
in terms of the pressure of the exploding gases at the instant of
thelr formation, by means of the following formula [127]

P=15% (4)

where p is the pressure in kg/m2 at the surface of the chargeé
Y 1s the bulk weight of the explosive substance in kg/m°®;

D 1s the rate of detonation propagation, in m/sec.

For TNT, according to Formula (4), we obtaln

— 1w.___h_600;g 209' =z 200000 atm.
As a result of this pressure, the explosion exhaust gases
begin to expand in all directions at a speed close to that of the
detonation. The ambient air alsc begins to move at the same
speed, forming an area of strong compression or an area of an
a.r shock wave propagating in all directions from the center of
the explosion at supersonic speed. The pressure at the front of
the shock wave subsequently approaches the pressure of the unper-
turbed alr and the speed of the front begins to approximate the
speed of sound. The shock wave degenerates into an ordinary sonic
wave.

In firing operations agalnst aerial targets, as a result of
the shock-wave effect, the structural elements of the target are
compressed and other effects are produced, causing the target to
loose aerodynamic stability. On the detonation of a high-explo-
sive charge which has penetrated the target we find that the
structure of the target explodes outward. For missiles [shells]
of small caliber, used in firing operations against aerial tar-
gets, fitted out with contact fuzes, the basic destructive factor
is the shock wave which destroys the structure, disrupts control
and causes the ignition of the fuel.

An explosive shell intended to produce the largest number
of fragments is referred to as a fragmentation or fragmentation-
high explosive shell. The formation of fragments in this case 1is
accompanied by a high-explosive effect which should not be over-
looked in the case of explosions at short distances from the tar-
get.

However, the basic destructive effect for shells [missiles]
and warheads of this type 1s represented by the fragments.

The fragments of artillery shells are distinguilshed as to
shape and weilght, whlle the fragments of antiaircraft guided mis-
sile AGM [3YP] warheads are approximately identical in shape and
dimension (in weight) [49]. The production of such fragments is
achieved by the implementation of a variety of structural [design]
measures.

The characteristics of warheads (shells) achieved through
the detonation of fixed warheads (mlssiles) on the ground (under_
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static condltlons) and governing the effectiveness of the fragmen-
tatlon effect against a target include the following: the total
number of fragments and the parameters of their distribution with
respect to the scattering angle within limits of AP (Fig. 1.3.3),

| oo
the welpght and flight veloeity of the fragments, thelr ballistic
coefficlent, etc. Distribution with respect to angle of fragment
scattering under static conditions 1s uniform in the plane per-
pendicular to the axis of the warhead and nonuniform in the plane
passing through this axis.

On the basls of the fragmentatlion characteristics derived
In the detonation of warheads (shells) under static conditions
and based on thel conditions of encounter, we calculate the para-
meters of fragment distribution in motion relative to a target.
The latter characteristics are used to determine the flow density

and the energy parameters of the fragments which impact on the
target. ‘ 1

The fragmentatlion effect against an aerial target is achieved
in the form of the mechanical, incendlary and initiating effect

of individual fragments or groups of fragments against the vulner-
able elements ofl the target.

Projectile above target

Projectile beneath target

Fig. 1.3.2

The effectiyeness of the fragmentation action will obviously
depend on the number of fragments striking the vulnerable elements,

~as well as on the welght and speed of lmpact of these fragments

relative to the #arget [130].
With the aréa of the vulnerable element determined, the num-

ber of fragments{striking that area 1s determined by the density

of the fragmentation field covering that element. Thus the effi-

clency of the frégmentation effect devends on the structure cof

Tragmentation Tield moving 2t a certain speed relative to the

n turn,}the structure and energy characteristics of the

¢ Its orientation relative to the axis of the moving tar-

‘hF characteristics of the condifions of missile-
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angle (o), the velocity of the missile (? ) and the angle of its
encounter wlth the target (8).

As an illustration of the foregoing, in an example let us
examlne the manner in which the parameters of motion for a single
fragment vary, 1.e., let us examine the elements of the field in
the case of a varilation only 1n the angle of encounter for fixed
values of all remaining characteristics. Figure 1.3.2 shows how
the magnitude of V and the direction (given by the angle ¢) rela-
tive to the veloclty of the fragment vary as a function of the
change 1n the angle of encounter within
limits of 0 < @ < m. On detonatlion of
the warhead under static conditions this
fragment exhibilted a certaln veloclty
value — Vd — and a certain escape angle

Pt The changes 1n direction and magni-

tude of fragment-target impact velocity
shown in the drawing, in addition to the
change in the structure of the field,
govern the various values of energy and
momentum transferred to the target by
the fragments. As another example, Fig.
1.3.3 shows how the structure of the
field of fragments moving relative to a
target varlies as a function of the rela-

7(1)

. : tive velocity vector (the cases V
Fig. 1.3.3 (2)) with the fragments under static

conditions exhlbltling ldentical veloc-
1ties Vd in the scatterling sector wilth

an apex angle A® st For these two char-

acteristics of missile- -target approach we have derived the follow-
ing various field directions (91, 92), the magnitudes for the frag-
ment-target impact velocitiles (VP';Q% and the scattering sector

angles (091, A92), determining the densilty of the fragment stream.

The fleld formed by the fragments capable of inflleting dam-
age on a target 1is referred to as the region of target damage by
the fragmentation effect. This region represents a hollow cone of
finite dimensions filled with the trajectories of the relative
fragment motion (Oosk in Fig. 1.3.4). Figure 1.3.4 shows, as well,

the region of the pure high-explosive effect Of and the reglon of
target damage resulting from the comblned fragmentation-high ex-
plosive effect. This latter region 1s denoted Of noosk'

The entire regilon 0tS of target damage by a fragmentation-
high explosive warhead 1s achleved as a result of a consolidation
of the regions Of and oosk’

Since we have already examined the characterlstlcs of war-
head effect, let us now turn to the problem of target vulnerabil-
1ty which is characterized by the vulnerability of 1ts individual
elements or "microtargets."
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Fig. 1.3.5

- According to the data in [29, 49], these basic elements of
plloted aerlal targets (Fig. 1.3.5) include: the flight deck J;
the engine A; the fuel gystem T; the target airframe K, the con-
trol system and the bomb load B. On occasion, 1t is only the war-
head which 1s the vulnerable element of military ballistic rockets,
as 1s the case with the "Pershing" missile, and occasionally the
vulnerable elements include the warhead, the frame and the control
system ("Corporal," "Sergeant") etc. To determine the probability
of damage with respect to target elements it is necessary to know
their vulnerability characteristics. These include, for example,
in the case of{the fuel system: the vulnerable area of the system,
the type and quantity of fuel in the tanks, the distribution of
. the tanks and fuel-feed systems to the englnes within the target,
the strength characteristlcs of the tanks and of the structural
elements of the target protectling the tanks. Moreover, we require
data as to the means of fuel-system protectlion agalnst the 1incend-
diary effect of fragments. These include: protection of gascline
tanks with plastics which are self-sealing when penetrated by
fragments, the filling of the free space in the tanks with an
inert gas, speclal screening of the tanks, automatic fire-extin--

gulshing equipment, etec. [29].

In the case of damage resulting from mechanical effects we
must know the Qimensions of the vulnerable element, its strength
characteristics, etc.

Other taréets are examined in analogous fashion.
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§1.4. DAMAGE PROBABILITY FOR NUCLEAR‘NEAPONS

The damage probabllity for nuclear weapons 1s understood to
refer to the probabllity of target damage as a function of the
dictance between the target and the eplcenter of the explosion.
Let us examine the damage probabllity
for an atom bomb with a TNT equivalent

-
G;? ~\[ of 20 thousand tons (the so-czalled
N nominal bomb). For this bomb in Refer-
- , ence [95] we find the probability of
70 I\ injury inflicted on personnel situated
\ within cities as a function of the :
50 \ distance to the epicenter of the ex-
\\ _ plosion,
\ |
30 \ Figure 1.4.1 shows the change in
Y the percentage of extreme injury cases
10 ; AN (fatalities) as a function of the dis-
0 ﬁ% é&7 é& Mo ] KM tance from the eplcenter in the case
‘o feet of an aerial explosion. The curve is
Fig. 1.4.1 derived for atomic bombs dropped over

Japan, with a TNT equivalent of 20
thousand tons [95].

_ The given coordinate damage pro-

babllity G(ro) will be valld for operations agailnst protected

personnel, since it is plotted on the basis of results from the
- effect of atomic bombs on cities. It is clear that we can thus
explain why in Fig. 1.4.1 @(ry) # 100% when ry = 0. We can see
from Fig. 1.4.1 that at a range of up to 900 m from the epicenter
there exlsts a high degree of injury, whereas with a range rg
greater than 900 m the degree of injury begins rapidly to drop.

Utllizlng the coordinate damage probability G(re), we can
calculate the effectiveness of bombing operations with atomic
[(nuclear] weapons.

For nuclear weapons different from the nominal bomb, we can
calculate G(r) by using the curves shown in Fig. 1.3.1, assuming
that the identical damage [injury] effectiveness can be achieved
at various distances from the epicenter, but with the identical
effect of the shock wave or wilth the same energy of 1light irradia-—
tion.

This assumption 1s valid, since for nuclear weapons the law
of similarity [95] which makes it possible to determine the radius
of damage effectiveness for a single nuclear weapon is valid,
glven that this law of similarity is kriown for another atomic
(nuclear] weapon.

For two atomic bombs, the ratio of the dilstances from the
eplcenter of the explosion at which the identical effect on the
Yarget is achieved by the shock wave and the 1light irradiation
1s proportional to the ratio of the TNT equlvalent ¢ and ¢o¢ to
2 power 1/3 -

RN ¢ B
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where go and ﬁo are; respectively, the TNT equlvalent and the
distance for the bomb adopted for the purposes of the comparison
(in the given case, for the nominal atomic bomb).

In Fig. l 3.1, along the axls of absclssas, we have plotted
the ratlo of the TNT equivalents liberated on the explosion of
the nuclear weapons, and along the axls of ordinates we have
plotted the ratlio of the distances from the point of the bomb
explosion (the distances from the epilcenter will be corresponding-
ly smaller as a functlon of explosion altitude). In this case,
for the comparison unit we have taken the TNT equivalent and the
distance corresponding to a nomlnal atomic bomb. It was assumed
that the energy required to produce moderate burns on the skin
and incendiary effects is, respectively, equal to 3 and 10 cal/
/em?. The curves in Fig. 1.3.1 have been taken from Reference
[951. {
The inJuries inflicted on people by the shock wave directly,
as indicated earlier, are divided 1nto 1ight medium, serious and
critical.

_ Figure 1\3 1 shows curves for several of these cases which
are in good agreement wlth Formula (1) and the curves character-
1zing injurles resulting from neutron radiatlon, and these are
not in agreement with the formula.

With the curves in Figs. 1.4.1 and 1.3.1 we can plot the
coordinate damage probability G(»r) for various degrees of damage
[injury]. !

Let us demonstrate this by means of an example:

EXAMPLE 1. Construct the coordinate damage probabllify for
the nuclear warhead of a rocket with a TNT equivalent of 60 thou-
sand tons with the shock wave acting on protected personnel in

the case of a medium degree of injury,

Solution: the ratio (q/qe) = (60/20) = 3. From Fig. [.3.1

we find that r/ro = 1.42 or r = |.42py. Then, from ry in Fig.
l.4.1 we find G(ro). Let us calculate the value of r (according
to the formula r = }|.42r3) and let us prepare a tfable for the

coordinate damage probabillity G(r).
The resuﬂ+s of the calculatlon are presented in Table |.4.1.
|

TABLE l.4.1

j _

re. km 0,3 0.6 0,9 e 1.8 2.1

rokm-| 043 | 085 | n2s | 1,7 | 25 | 3.0
|

Gy | 004 | 0.8 | 079 | 055 | 014 | 0.04
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in operations agalnst unprotected personnel, G(Q) = 1.0.

§1.5. DAMAGE PROBABILITIES FOR SHELLS [MISSILES] WITH CONVEN-
TIONAL CHARGES

Artillery shells and rocket warheads wlth conventional
charges are used for operations both agalnst ground and aerial
targets. Depending on the design of the shell and the type of
- fuze, we use high-explosive, fragmentation or fragmentation-hign
explosive shells.

High-explosive rocket warheads are considerably less power-
ful than atomic warheads [131]. The radius of the damage zone
for these warheads 1s also determined by means of Formula (1.4.1).
Consequently, for these warheads we can use the same method of
determinlng the damage probability as in the case of nuclear
weapons. '

In this section we wlll examine the determination of the
damage probability for shells with a contact fuze which Inflict
damage only with a direct hit on the target, for fragmentation
(fragmentation~high explosive) shells used against ground tar-
gets and for fragmentatlon warheads used 1n AGM [antilaircraft
guided missiles].

A. Damage Probability for Shells Which Inflict Damage Only in
the Case of a Direct Hit on the Target

The probability of target damage from a single hit 1n this
case may be calculated in accordance with the following formula
{10] .

G, =3 =g (Sy), (1)

where § 1is the area of the projection of the target onto a plane
' perpendlcular to the relative trajectory;
S5, 1s the area of the projection of the vulnerable part of
the target onto that same plane.

Equation (1) is valid under the condlition that the scatter-
Ing exceeds the dimensions of the target and the points of impact
are uniformly distributed over the area S§. With this condition the
-frequency of striking area Si will be Si/s' '

The probabllity of target damage with m hits and in the ab-
sence of damage accumulation is determined from the equation

G 1 —[1 - g (SOIm=1—Gm, - (2)

where

G=1—g(S)- (3)

The mathematical expectation of the number of hlts (w) re-
qulred for target damage 1s determined from the followling formula
([10], page 82)




o ' t ,
=60 . (8
Then 3 ' o S @

: Gm=1‘—[1—wg(8,-)]f"=l—-(lm-;—)m_'_.

If we take into consideration that (1 — (1/w))® = e~t, we
find :

m

Gn ~1l—e®. (5)

We can see from Eq. (5) that the damage probability can be
calculated by means of an exponential function. This damage pro-
bablility is referred to as the exponentzal damage probability in
the literature.

The form of the functlon Gm is shown in Fig. 1.5.1. We can
see from Fig.?l.S.l that theoretically Gm represents a monotonic-

ally increasing function (1). However, since m increases dlscrete-
ly, Curve (2) will be practlcally stepped.

|
| Grmt=87%" '
‘ Gm a‘:-a.f .
? l ' .-;,::——=T
| .
| Y
| :
| “ 1
0 4 J 4 3 -rn
Fig. 1.5.1

The damage probabllity 1s found by an experimental-theoret-
ical method. The experimental method 1s used to determine the
damage vulnerability of 1ndividual parts of the target, while G
or w are calculated theoretlcally.

Let us examine the determination of w by experimentation,
following the method shown in [130]. To damage an aircraft it is
necessary to penetrate the skin and to destroy or to damage the
vulnerable compartments of the target. The degree of damage wlll
vary as a funption of the strength of the weapons for a given
type of target. For a glven type of shell, alrcraft damage will
occur with a single hit, whereas for another type of shell sev-
eral hits will be required. This 1s explalned by the fact that
for the less powerful shells there 1s accumulation of damage
which must bel taken into consideration. For example, the first
- shell may penbtrate the skin and the second shell, having passed
through this cpening, will cause the breakdown of the vulnerable
compartment (control system, etc.).

\

For expernmental determination of w the target is condi-

tionally divided into a number of equally vulnerable parts (com-
‘ |
\
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zzrtments). In the event that such division is possible, some
tiopartments of lower vulnerabillity are left.

As an example let us examine the calculation of w for a
hypothetical two-engine aircraft. We will assume the relative
areas and damage probabllities for the individual compartments
of the two-engine aircraft (with a single solid hit of a small~
caliber antlaircraft shell and a certain position of the aircraft
relative to the trajectory) to be the following:

TABLE 1.5.1
[ [
Ai £ t Relatxve com= Probability of com=
ircraft or compartment parts partment area asi&m:gt‘?:r:?tge
l ) ! .
Right engine 0,06 1
Left engine ' .. 0.06 1
Elevator . .. 0.03 1
Right wing . 0.07 0.5
Left wing e 0.07 0.6
Fuselage . 0.12 0,8
Compartments damaged thh a
single hit (flight deck, elec- _
trical wiring, control rods,
etc.) o 1o
Undamaged compattments ’
|

We can see from Table 1.5.1 that although the engine is dam-
aged by a single hit, the probabllity of achieving that hilt is
very low (0.06); 1f we count on the damage of the target only
with hits on the fuselage, this wilill require no less than four
hits, since

Gi=1—(1—0,5)$=0,98. (6)

This is high damage probabillity, although the area of the compart-
ment makes up only 12% of the area of the aircraft, while the
probability of four independent shots hitting this compartment

1s equal to 2+10”*. On the whole, the probability of damaging
this compartment will be very small (2+10""). Therefore we can
neglect the accumulation of damage for the fuselage and the wing
center sectlon, with the average number of hits calculated for
each compartment in accordance with Formula (7), glving consider-
ation to the probability of hitting the Zth compartment

= (7)
Y pigi (S0

= l

where p; = S . /S is the probability of hitting the <th compartment ;

91(31) is the probability of damaging the Zth compart-
ment with a single hit.

Formula (7) is valid for the condition that the damage of a given
part or compartment of the aircraft will cause the destruction
(damage] of the entire target.

By means of (7) according to the data of Table 1.5.1 we find
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An analogous calculation of w 1s accomplished for several
positions of the target with respect to a relative trajectory,
“and these are then averaged. The resulting value of w for each
type of alrcraft will be a function of the welght of the explo-
sive charge EC [BB] (qBB) for fragmentation-high explosive shells

and a function\of shell welght for fragmentation shells.

Contemporary antialircraft shells exhibit the following se=-
quence of shell— and. EC~weight magnitudes [115]:

ThBLE 1.5.2

Projectile weight Explosive charge

Projectile type and caliber (mm) kg weight, kg
\

’ np (semiarmorpiarcing) 0,138 0,008

i 20 (fragmentation) 0.120 0.015

|| 30 . : 0,420 0,060

} 40 . 0.960  from 0,115 to 0,140
J 57 . 3.0 0,400

} 75 - 6.0 0,600

1 88 . 9,0 0,900

! 90 » 10,0 1,0

| 120 - 22,0 2.3

|

|

If we calculate the average number of hits required for each
shell caliber, we can construct the relationship
!
: m_'f (qaa) '

The typical form of this function for an aerial target is
given in Fig. '1.5.2. Calculations show that having established the
function for a given type of target 1t 1s possible to determine a
simllar curve for another type of target in accordance with the
equation |

| w=Cf(950)

where C 1is deﬁermined experimentally.

i
i

A\
N\
~

g 03 L0 Qo+ &
Fig. 1.5.2
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The same method may be employed to determine the damage pro-
babillty when using impact shells agalnst tanks, armored vehicles
and similar targets. :

B. Damage Probability for Fragmentation Shells Used Against
Ground Targets

Unlike damage probabllity for shells with impact fuzes for
whlch the conditlonal probabllity of target damage was taken as
the quallty criterion, in the given case the quality criterion
i1s assumed to be the mathematical expectation of the number of
damaged targets resulting from the explosion of a single shell
([10], pages 279 and 305)

a,=S(1— e, (8)

where S 1s th§ number of targets (for example, riflemen in a
group) ;

n 1s the fragment density in the target (the number of
fragments per square meter of area on a spherical sur-
face of given radius with the center at the point of
explosion);

C is the coefflclent by means of which we take into con-
sideration the percentage of penetrating fragments.

TABLE 1.5.3
I
Percentage of Percentage of Percentage of
q. fragments of & g, fragments of @, fragments of
g welght q and & welight q and € welght q and
mofre more | more
] il
I 100,0 | 10 29,0 19 16,0
2 75.0 11 27,0 20 15,0
3 62,5 12 25,5 30 11,5
4 53,5 13 23,0 40 10,0
5 47,0 14 22,0 50 8.5
6 42,0 15 20,5 75 6,5
7 38.0 16 19,0 100 4,5
8 34,5 17 18,0 125 3,0
9 31,5 18 17,0 150 1,5

For the determination of ¢ 1n accordance with Table 1.5.3
the minimum welght g of the fragments which wlll penetrate must
be determined experimentally and the percentage of fragments of
a given weight and higher must be taken as C.

Equation (8) is applicable for an evaluation of the mathe-
matical expectatlon of the number of damaged targets both when
firing rockets with a built-in warhead and when firing artillery
shells so that they will ricochet, or when firing delayed-action
high-exploslve shells. For each of the enumerated types of shells
the denslty of penetrating fragments and their percentage of the
total number of fragments are determined experimentally.

Using the delayed-actlion shell as an example, let us demon-
strate the calculatlon of the required characteristics.

- The number of fragments and thelr welght depend on the cali-
ter of the shell, the quality of the metal, the weight and grade
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of the explosive charge. The welght distribution of the fragments
is determined experimentally ([10]1, page 293).

Table 1.553 shows the distribution of the fragments by weight
on the exploslion of a steel delayed-actlion high-explosive shell
as a percentage of the total fragment weight.

The flight veloecltles for the fragments vary greatly.

The initia] velocity of the fragment may be calculated from
the formula

i v__}/v34~v -}- vyvc cos B, (gi
 where v, is thL velocity imparted to a fragment by the explosive
charge,
vy is the velocity of the shell at the instant of the ex-
plosyon
B' 1s the angle between the directions of the velocitiles
v, and v

The greativariety of fragment shapes leads to various losses
in fragment flight velocity. This circumstance makes 1t impossible
to establish a constant magnitude of the penetration interval for
all‘fragments

TABLE 1.5. N o
‘ lmpact Interval m Meters
v, m/sec

“E 400 . 800 1 200 1400
1 1 2.3 4,1 5.4 5.9
‘ 5 8,2 11,2 13.4 14,4
| 10 13,0 16,8 19,6 20,8
| 20 "18,0 22,8 26,2 27.8
\ 50 29,3 35,9 40,6 42,8
i 100 41,1 49,3 . 65,2 58,1
i 200 57,1 G7.9 75,1 78.6

The penetratton interval 1s generally regarded as the dlSu
tance of the explosion from the target at which half of all frag-
ments exhibit a kinetic energy adequate to damage the target. The
penietration interval is determined experimentally. Table 1.5.4
gives the numerical values of the penetration intervals for var-
ious initial velocities and for various weights ¢ of the frag-
ments. In thls case the energy needed to damage the target (to
injure personnel) is assumed to be equal to. 10 kg-m.

To determine the nature of fragment dispersal we examine the
surface of a sphere with 1ts center at the polnt of shell explo-
sion. The surface of the sphere may be conditionally divided intn
19 belts of 10° éach (Fig. 1.5.3).

Experime&tal data [10] show that the relative number of
fragments incldent on each spherical belt will be as shown in
Table 1.5.5. Here, however, we find the density of impact for n’
fragments in the spherical belts on the explosion of a steel
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shell (R = 3 m, ¥ = 1000).

Since the area of the sphere surface varies in proportion
to the square of the radius, the fragment density from Table
1.5.5 must be multiplied by the ratio of the squares of the ra-
dii R and r, where R = 3 m (for which Table 1.5.5 has been com-
plled) and » 1s the distance of the target from the point of ex-
plosion.

For example, the fragment density ‘of the 5th belt at a point
removed by 10 -m from the polnt of explosion will be equal to

n'=2,8 -3 =0,25.
_ The fragment density for another number of fragments (pro-
‘portional to the change in the number of fragments) varies anal-
ogously.

With explosion of the shell on the trajectory the fragment
distribution over the spherical belts will vary as a result of
a translational velocity. The fragment density 1n thilis case may
be calculated in accordance with the following formula ([10],
page 305)

, V (ug + vg -+ 2v‘,;v"1 coé By '

v? (vp -+ vg cos B)

(10)

n=~n

where

§H=p—kaﬁdn(%%smﬁ% (11)

B' is the angle between ﬁhe directions of the velocitles » and v,

a"__;p + .50'
These characteristics are used gor the calculation of dg-

Let us demonstrate the method for the calculation of «. by
means of an example. ' -
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TARLE 1.5.5

Belt number ', degrees 5:;&12!\"&;{ Belt area, "Fragment ,
: fragments m density! 1
1 0 0,2 0,21 9.6
2 10 0,3 1,71 1,8
) 20 0.6 3,37 1.7
4 30 1.1 4.92 2,2
.9 40 1,8 6,34 2,8
] 50 2,7 7,56 3,6
b7 60 4,0 8.54 4,7
.8 70 6.2 9.9 6.7
L9 80 15,0 9,70 . 15,3
0 90 24,0 9.86 24.4
Y 100 18,4 9.70 19,1
P12 110 9,2 9,26 9,9
13 120 B.4 8.54 6,3
P14 130 3,b 7,56 4,6
15 140 2.6 6.34 41
16 150 1.9 4,92 3.9
Y 160 1,3 3,37 3,9

18 170 1,0 1,71 5.8
19 180 6,8 0,21 37,2

EXAMPLE 1. Determine the mathematlcal expectation of the
number of Injuked targets (individual riflemen wlith a vulnerable
surface of O.S;mz), 1¥f the direction to the target forms an angle
of B = 60° with the dlirection of shell trajectory to the point of
explosion and if the distance to the target from the point of the
explosion is equal to 20 m. The number of fragments welghing 10 g
and more is IOpO, vr = Q000 m/sec and vS = 500 m/sec.

|

Solution II. Let us He*ermlne the denslity of fragments n'cor-

responding to a spherical surface R = 3 m. From Formula (I1l) let
us determine Tbe angle ' '

I
i
\
i

. Ua __gFo -
# =B + arcsin (-v—p- sin ﬂ) = 85°.

'
i
i

From Table [.5.5 we find that n' = 19.8,

2. From Formula (10) let us determine n

3 ,(l/-uf,-{-vz +- 20,0, cOS ﬁ')'
| T e By

(VT T6° F25-T0¢ & 2-10° cos 85)°"

; = 0"~ GV (I 107 7 500 cos 85) 203
!
3. From Table 1.5.4, given v = 1000 (1.29)72 = 1135 m/sec
and given the magnitude of the penetration interval (r = 20 m)

equal to the distance of fthe target from the point of explosion,
let us find the required fragment weight:

g= 10 g and more,

The per cent off fragments weighing 10 g and more is found from
Table 1.5.3 (29%). '

4. The density of fragments at a distance of 20 m froh The
point of explosion will be equal fo
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3
n=263 5w =0,59.

5. The number of penetrating fragments Incldent on the area
of the target Is equal to

nC=0,59 - 029 - 0,5=0,086.

6. The mathematical expectation of the number of imjuregnc

[damaged] targets is determined from Formula (8): a, = | — e =
= 0.086. | o

C. Damage Probability for AGM [antiaircraft guided missile] Frag-
mentation Warheads

Calculation of the damage probablllty for a fragmentation
warhead 1s carried out for specific points in a reglon of danger-
ous explosions for established conditlons of encounter between an
antiaircraft gulded missile and a target, approximately in accord-~
ance with the following scheme. Initially the parameters of the
damage reglon (the fragmentation field) are determined. On the
basis of these parameters, for each welght group (k) of fragments,
we calculate the density of the fragment stream (Ak) and the en-

ergy characteristics (Ek): the energy, momentum, etec.

Then we determine the area (Sé) of the projection onto a

surface perpendicular to the direction of the fragment stream of
that portion (wj) of the volume (l{) of the jth vulnerable ele-

ment which is covered by the fragment field

w; :Lljoocx-
The mathematical expectation of the number of fragments of the
kth group striking the jth element is equal to the product Aksj.
In this case the coordinate probabllity for the Jth element can
be calculated from Formula (1.3.3)

Gi(x, 9, =1—e "7, (12)

where mj(x, y, ) 1s the mathematical expectation of the frag-
ments damaglng the target element. It is equal to

mj==35"; 21,(/)‘;(5‘“), (13)

k
where Pj(Ek) {s the probabllity of element damage by a single
fragment, determined on the basis of the value of the energy para-
meter Ek for a specific form of fragment damage effect.
EXAMPLE 2. Let there be given a vulnerable target element
area S’ = 0.2 m? and two groups of fragments with densities Ay =

= ZOSK/m2 and Az = 4°Sk/m2, respectively, and fragment damaging-
effect probabilities of Pj(El) = 0.5 and Pj(E2) = 0.3. Find the
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damage probabllity of the vulnerable element.

Solution. Having utllized Formulas (12) and (13), fet us
find ? '

Gj(x. g z).= ] _e—0220.544.08 _ ¢ 36

‘The probability values of P ., as indicated earlier, are de-

termined experimentally, the function of a random number of frag-
ment hits on a target 1s established in the same manner, etc.
However, the direct reproduction of the effect of fragments on a
target at a specific altitude 1s possible only by means of spe-
cial antiaircraft rocket control ARC [3PK] tests [49]. Because of -
their high cost, the number of experiments 1s limited and does

not provide sufficient information. The parameters of the damage
probabilities of vulnerable elements are therefore established
from the results of modellng the process of the effect of the
damaging factors on target elements under ground conditlons.

The coordinate damage probability for an AGM target is de-
termined on the basis of the coordinate probabllities for 1ts
vulnerable elements It 1s given by the probabllity of the occur-
rence of a specific combination of corresponding elementary events
resulting in the damage of the vulnerable elements. Let us con-
sider certain‘ﬁariants introducing ldentical denotations for tne
vulnerable element and the event concluding in the damage of that
element. }

1. The target has been damaged to a certain extent, i.e.
it is changed to this conditlion as a result of damage inflicted
on at least one of two elements such as, for example, N and A.

The damaging of the target as an event B [C] will be a combina-
tion representing the consolidation of concurrent events N and
A. For 1ndependent elementary events we will obtain

| P(C)=1—[1—P D[l — P 1) (14)

By induction, changing to the case of n events and introducing
the denotations| for the damage probability, we will obtain

G(x, y_, 2)31—‘"[1'_'0.1'()51 Y, 2’)]. (15)
- i : c

where‘Gj is theicoordinate damage probabllity of the jth vulner-
able element. ?

EXAMPLE 3.1Parficular values are gliven for the coordinate
damage probability of the flight deck: Gp = 0.4; for a single

engline Gg = O.Z!and for the control SySTem Gy = 0.1 at a polnt
having the coordlnafes z', y' and 2'. We know that the target

will be damagedilf only one of these of Its elements is damaged.
Determine G(x', y', &'). :

Solution., Erom Formula (15) we find
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G(x', ¢, 7) =1 —=(1—0,4)(1 —0,2) (1 —0,1) = 0,43,
2. w3 tarzet conslist of 2z flight deck and two engines Ly
OGS sez, 20 16t 1% Camage be achleved by dazmzge of the element
b or of voth elements Ay and L. Assuming that the damage of each
element is an lindependent event, we obtain an expression for the
damage probability of the target

G(x.v Y, 2)21—(1—»Gn)(l 11 Ilz) (16)

Here we also assume the right-hand portion of Expression
(16) to be a function of the coordinates which, for the sake of
simpler notation, have been dropped.

Assuming the condltional damage probabillities of uniform
vulnerable elements of the jth type to be identical,

Gﬂl = Gﬂ.' G.’I. = G.n. ete.

bv ‘induction for the case of damage of at least one of several
groups of uniformly vulnerable elements of the jth type we find
the expression

Gx, 9, =1—Tl1--G}), (17)
!

where n; is the total number of uniform elements of the jth type
which must all be damaged simultaneously.

EXAMPLE 4., Given that the damaging of some targets with a
high degree of certainty Is possible only In the event that both
pilofs or both Tdentical englnes, or the fuel compartment, or the
structure will be damaged or injured simultaneously. The condi-
tional element damage probabilities at the poun+ ', y', ' are
glven:

anaﬁanmthrﬂmanﬂQ&

Find the coordinate probabillity of target damage.

Solution. Cbnsiderlng that n, = n, =2 and n_ = n,_ = 1, from
v : 1 d t k
Formula (17) we find
Gx'. y, 2')=1—(1-—0,5%) (1 —0,43) (1 —0,2) (1 —0,3) == 0.65.

3. For the damage of a target to a certain extent, the

. flight deck Nl must be damaged or no less than three of the four
engines i1, A2, A3 and Q4. It is assumed that the events leading

to the damage of each element are Ilndependent of each other. Let

us complle the various possible combinations of engine damage:

= ‘ ur englnes.
G Gﬂ GﬂzGﬂaGﬂ represents the damage of all four g _

-
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” . - - o=
T S "I U §
3 g, ahg kg ohe

G,=G, 1—G,)G,G ‘
’ o A T ! Damage to three and no

|

|

damage to one of the
engines

Gy= G:x,Gn. (1— GJ-) Gy
G, =G,06,G,(1 —G)).

'

“ince the combination of englne-damage events does not occur si-
multaneously, the probability of achieving the fallure of no less
. £ ' - .

than three engines is equal to ZJGf We will then find

vzl i
|

4 8
G=G,+V.6,—G, )G, (18)
vl ’

Then, in ﬁiew of the independence of events D. we will have
(in the denotations of damage probability) v

-] 4 4 . 3
ZQ=H%H*Z““QQ2%f
i=l o =] kbl

|
Having taken iﬁto consideration these substitutions into Formula

(18), after elementary transformations we derive the expression
for the probability of target damage in the form of

| G(x,y, z)m-l—-(l—-Gn)[l— Gn‘—
4 3 =t (19)
‘mzu—qﬂu%y_
i=l Rkl

EXAMPLE 5.}In the assumption of the situation just described,
particular values of the coordinate damage probabilities are

glven for the vulnerable elements: ¢, = 0.5; G = @ = 0.7;
M iy Jig} A2

6ny = G, = 0.5. Find the values of the target-damage probability
Glz'y, y'y, 3').

4

i
l‘\ N
Solution Is obtained with Formula (19)
%G(x’, g 2) =1 —(1~o,5)[1—~0.7n_—-2(1-_0,7)0.'i 0,5 —
‘ —2(1—0,5)0,5.0,7"] = 0,74,

Having ca|¢u|a+ed Glx, y, a#) for a number of values of the
coordinates for|the point of shell explosion, we derive the co-
ordinate damage probabillty for the target.

§1.6. RANGE OF ﬁARGET ACQUISITION AND ITS CHARACTERISTICS
A. The Concept of Acquisition

The most important property of each form of armament which
must be consldered in any models of combat 1is the capabllity of
that weapon [armament] to acquire [detect] a target and to re-
veal itself [sic. Since the acquisitlon of the ith target at &

| - K2 -



given range 1s a functlon of many random factors, the acquisition
range will be a random quantity for each jth facility. Thus we
must examine the probability of detecting the 1th target by means
of the [th facility... /. . IR {

Detectlon may be accomplished by visual, optical radio~en—
gineering and sound-measuring techniques

In thils section we will consider the probability of detect-
ing an aerial target by means of radar and the visual detection
of a ground target. We can consider both the typlcal case of the
probabllity of spotting a tank or an antitank installation on the
ground or the detection of ground targets from a reconnalssance
alrcraft. The latter case pertains to the theory of search with
which we will not deal at this time.

In carrylng out combat operations the troops adopt all ca-
mouflage measures in order to prevent their detection until they
are ready to resort to arms. In that event, the instant of detec-
tion will coincide with the instant at which fire 1s opened. For
all intents and purposes, many targets on the battlefield can be
detected only at the instant at which they begin to perform thelr
function.

The probabllity of detection depends on the range and on the
status of the facility (in operation en route, under cover, etc. )J
on the time of day and on the external conditions (weather, re-
lief). Formulas for the calculation of detection probability must
therefore take these conditlons into consideration.

B. Visual Detection of Targets

The maximum range for the detection of ground targets depends
on the rellef of the terrain. With defilade angles € < 0 the max-
imum range 1s governed by the direct visibility, whereas with de-
filade angles € > 0 the range 1s governed by the distance to the
defilade. When firing at moving targets 1t is therefore convenient
to regard the detectlon probabllity P(x) as the product of the
direct-visibility probability (II) and the detection probability
pel(x), given the conditlon that the direect visibility is ensured:

P (x)=Tp, (x). : (1)
They direct-visibility probability is defined as the ratio

m
2 dx,,

0= . 1=l - . , (2)

Y oax 4+ ) ax,
1=1 =)

where Axv 1s the visible Zith segment of the target heading;

ij is the hldden jth segment of the target headlng,

m 1ls the number of visible segments,
n is the number of hidden segments.
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The probabllity of direct visibility is calculated by means
of a topographic map. Terrain profiles are constructed for this
purpose within the search sector in several directions from the
observation point and by means of Eq. (2) these profiles are
used to calculate the probabillity of direct visibility for moving
targets (tanks, armored vehlecles, etc.). Isoprobability curves
for the probabllity of direct vislbility are then plotted within
the sector and these are used to calculate the probablility of
target detection with the ald of Eq. (1).

If we consider the detection of a moving target (a tank, a
motor vehicle) under the condition that direct visibility is as-
sured (I = 1), 1t turns out that this 1s a random quantity which
is a functlon of the observer, of the lllumination of the ter-
rain and of the extent to which the coloration of the target has
been adapted to the coloratlion of the surrounding area. The basic
numerical characteristics of detection range in this case include:
the average detection range Ao, the dispersion Gﬂ and the proba-

bility Po(A4) oﬂ target detection as a function of the range 4.
All of these characterlstlics are determined experimentally,

As one ofithe possible verslons, a test to determine the
visual-detection range of a tank can be carried out in the fol-
lowing manner. The tank executes no less than ten starts in a
given direction and at the same speed 1n each case. The tank 1is
tracked by a reconnalssance radar statlion at which the range 1in-
dicator is photographed, including the electrical signals trans-
mitted to the camera from the observers. The observers are sit-
uvated within the area of the radar station. The processing of
these observations makes 1t possible to derive the density of
detection-range distribution, the average range value and its
dispersion, as well as the frequency of target detection as a
funetion of range :

EXAMPLE IJ Hundred (100) measurements of range (A) have been
carried out on a tank by means of visual observation. The measure-
~ent results have been reduced fo a statistical series (Table

l.6.1). Determine the numerical characteristics of tTank detection
range. | '
TABLE 1.6.!
: .
J‘L‘.f, kmif 1,525 (253535, 4.5] 4555 5.5; Q.S 6,5: 7.9 7.5: 85
1
%“ 4 | 18| 33 22 . 19 3 1
P* 10,040,803 02 | 019 | 0,03 | 000"
i ' .
|

Here ﬂi represénTs the |imi+s of the range ca+egories)
m. is the | number of values referred to each ith category;

Pg Is The‘correspondlng frequency, defined by the equation
|
| pr =T (3)
n is the numbeﬁ of observations.
| - 54 -
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The numerical characteristics of detection range can be de-
termined approximately from the equations

shd

gy = Mo (m = Y Bepoe, o
. . i=l1

k
er? = Dr[a] = ¥ (e —D5P, (5)

where ﬁi is the average value of range in the lth cafegory;
Pg Is the frequency of the ith category;
k Is the number of categories.

In our example:

0% =451 km", c;12= 1,65 km?, 0% = 1,28 km.

The sign * Indicates That the characteristics are selective ra-
ther than general.

~ The frequency of target detection as a function of range is
defined by the statistical distribution function P§(4).

[t should be borne In mind that

- ' k

Pty (Daw) = 3, Pi =1
i=1

for B -+ 0D,

We have

Py (Ax) 1,00 0.96 0,78 0.45 0.23 0.04 0.0l

Hence we can see that rellable tank detection occurs at ranges
below 3 km, With consideration of terrain relief, the probabil-
ity of tank detection is determined from Eq. (l).

" C. Target Detection by Means of Radar

The range of target detection by means of radar 1s also a
random magnitude, since among a large number of factors on which
it is dependent, many are random magnitudes. For example, the
magnitude of the effective reflecting surface of the target,
nolses in the radar receiver, etc., are random magnhitudes affect-
ing detection range. Target detection range is therefore aszocl-
ated with the probability which is a function of target helght,
type of aircraft, radar-unit characteristics, means of target
searches and the range to the target. Target detection probabll-
ity at a gilven altitude can be determined experimentally accord-
ing to detection frequency. However, in order to find the rela~
tionshlp between detection probability and conditions of target
flight and the conditions of the search, a large number of ex-
periments have to be carrled out. To reduce the number of eXperi-
ments and to achieve more complete search characteristics Zor The
radar unit, analytical methods of calculating the probabllity of
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NOT REPRODUCIBLE

target detection are needed.

The maximum target detectlon range Tax 1s determined from

the condition that the power of the reflected signal, applied to
the innut of the recelver, 1la equal to the threshold power
R AV NI I SAVTAI 7 o5 oF LI'UJ
P sl 1

The range equation as a function of the structural parameters
of the radar station with consideration of reflection from the
ground or from water and the absorption of radlowaves in the
atmosphere for target elevations € < e€o, where e, = (A/4n),
Reference [70] has the form

— GropFPrepSaSuyplbal ‘o —0,588rma
| Axnax ]/ Pnp i (hH)' e , ( 3 )
where P ., 1s the power emitted by the transmitter, w;

Gper s the directivity factor of the transmitter antenna;

Gnep=‘4%'sxnm‘ ' (7)

S is the antenna aperture area, m2;
Xip 1s the area utilization factor for the antenna.
With a parabolic reflector having diameter A4,

Grep 0,507,

.S'pr is the effective area of the receiving antenna

Snp :SKBH‘

For antennas with parabolic reflectors Sop T 0.58z.

Ppr min 1s the receiver sensitlvity, w;

A is thewworking wavelength, m ' 2
Se'is the effective target reflecting surface, m-;

§ 1s the*radiowave attenuation in the atmosphere, db/km;
h is the‘antenna height, m;

3

H 1s the target altitude, m.

For elevations € > eg Eq. (6) has the form

|

I

| 5/ GrerPrerSaSan [ 4 1.2 2RAH 1A _—0.115bx00y
\Amv_nzl/--r%:;p '—[45"11;“]"- o (8)
|

np min max

We can use Eqs.i(G), (7) and (8) to determine z, ax» 1f the basic
parameters of the radar unit are known. ‘

The curvesishowing § as a function of A, given in [70],
show that when A = 10 cm, § = 0.

Radiowave ettenuation attains a maximum (& = 10 db/km) when
A = 0.5 em and prapidly drops to O when X = 10 cm. In most case:z
the attenuation of the waves in the atmosphere must be taken into
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conslderation on waves on the order of 3 ecm and shorter.

Se is determined experimentally. The values of Se from the
data of [25] are the following:

for heavy bombers Se = 100-150 m2;

for medium bombers S, = 40-70 m°;
for interceptors Se = 5=15 m2;

for the nose cone (the warhead) of an intercontinental bal-
listic rocket 5, = 0.2-0.5 m?.

The wavelength A, the transmitter power Pper’ the recelver

sensitivity Ppr min and the antenna helght » are determined by
the structural features of the station. '

The maximum detectlon range =z .. would be obtalned in the

case of the stable functioning of all statlon parameters and

with constant search condltions. However, since these parameters
are scattered wlth respect to time, in actual practice we note a
scattering of the detection range. Consequently, x will be a ran-
dom quantity, and the event occurring in target detection at a
range £ will also be random. The probabllity of this event 1s as-
soclated with the structural features of the station and the
search conditions. To derive the target detectlion probablility as
a function of target velocity, as a function of headlng parameter,
as a function of search [scanning] speed and as & functlon of

the structural parameters of the station, let us turn to the
analytical expression for the probability of target detection,

Let us examine the interval of time t from the instant ¢t = O,
when :

X=X max.
Let us divide this time by »n intervals Ati in each of which the
probability of target detectlion may be presented as
Pi=KF (t;) Aty, (9)

" where F(t.) is the average excess of useful'signal over the
mean nolse level during the tlme Af

]
Ki is the proportionality factor. v

The events — the appearance of the target at intervals Ati -

are assumed to be independent. In thls case the totel probabllity
of target detection during the time t 1s equal to

Pl —exp[— 3 K () 4] (10)
. {al
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Pagsling to the limit with At + 0, we obtailn

. f ) . ’
P=1—exp[— KF () at], | (11)
=0

where KF(t) 1s a function of range f(x).

Assumlng ﬁhat the time ¢ corresponds to the horizontal

range z, and w%th t =0, & = Toax® e obtain

p(x)=1?-exp [—f f(x)dx]. (12)
Having denotedéypﬁ::f f(x)dx, we obtain

|
I
i
|
i
|
|

Px)=1—e"", | (13)

From this formula, cited in [50], we can calculate the in-
creasing probabllity of detectlion as a function of horizontal
range to the target with a heading parameter close to zero, 1if
f(xz) and Loax a?e known.

The values of x . are calculated according to Formulas (6)

or (8), and f(x) are determined by means of experimental data
with respect to the frequency of detection for a target flying
past with small heading parameters.

According fo experimental data the function f(x) 1is generallJ‘
wrltten in the form of the linear relationship | .

Xmax — ¥

L e | (14)

a=yVu(l—e™, (15)

where Vts is thé target velocity;

T is thé average time of the scanning cycle;
X 1s a factor determined experimentally.

Having substituted (14) into (12), and then into (13), we
obtain 1 ‘ ‘

T
(¥ipax = X)?

L | P(x)ﬁl.“‘exp[“‘x_%_.“{_]'

\

Calculatioﬂ with Formula (16) permits derivation of detec-
tion probabllity for low-flying target as function of horizontal
range x for target heading parameter close to zero 1f =

defined by Eqs.1(6) and (8) and x is known.

(16)

max is

: |
Under actual conditions a target moves directly at the unit
very infrequently. Most frequently the headling of a nonmaneuvering
target 1s a str@ight line passing at a random distance from the
| _
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radar station. The detection range will be a weak function of the
target lrradlation direction, since the reflected signal remains
virtually unchanged. The power of the signal reflected from the
alrcraft at a wavelength of A = 10 em with irradiation from the
front varles within limits of ‘15-25 db, while with a change in
the flight target aspect with respect to the line of sight the
power of the reflected signal varies within limits of 15-30 db
([70], page 37). *

This permits the assumption that in motion of a target with
a parameter different from zero, the balancing factor ¥ will, for
all intents and purposes, be a weak function of the target head-
ing parameter.

In this case, if we employ the approximate function f(x),
for_the headlng of a target x with the parameter sz at altitude
H, 9(x, H, 3) 1s determined from the formula

at
*max

.;(JC,' H, 2)= S nmax"'VH‘l-i-zi_-l-xt dx, (17)

where Aax 18 the maximum slant range determined from Formula (6)
or (8). ' |

The probabllity of target detection as a function of the
horizontal range x can be calculated according to the equation

Plg)=1—c 30, (18)
where H = const, = =.const.

Determination of the experimental balancing factor x will be
demonstrated in an example,

EXAMPLE 2. We have carried out 200 measurements of detection
range for a target_flying at an altitude of 1000 m by a weapons

guidance station (T = 4 sec, =z = 28 km, 2 = 0, v, = 400 m/
max ts

/sec). The measurement results have been reduced to a statistical
series.

TABLE 1.6.2
l

|
ouwmu

;00 J10; 92 12; 04| 11;06 | 16, 18 ) 18; 20| 20; 22| 22; 24| 24; 26 | 20; 28

37 | 34 ] 30 | 20 13 4
0,19/0,17{0,15/0,10 0,06 0,02

P

3 5 17 | 32
0,01/0,05/0,08{0,16

my 1

P ]‘0,01

Determine the detection frequency F*(A) of the target and the
balancing factors a and X of the theoretical and experimental val-
ues of the detection frequencles.

Solution. Having defined the detection frequency as the dis-
tribution function F*(A) (Table 1.6.3), from Eq. (16) we find
a = 7.7 km when F*(4) = 0.5, while from Eg. (15) we find x = 19.5.
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The coefficient X makes it possible to determine the target de-
tection probabnln*y theoretically as a function of scanning con-
ditions.

TABLE 1.6.3 |
Roowuw| 7] ol | 35|17 10| 21| 23| 25] 27

F* (1) | 1.00] 0.99(0,98 0,93/ 0,85/0,69 0,50 0,33 0.18 | 0,08 { 0,02,

P (ll) |0.9910.940,92[0,86/ 0,76/ 0.650,50| 0,34 | 0,19 0,08 | 0,01
1 :

30 20 10 ' g

Antiaircraft
syatem

Fig. 1.6.1

Table |I. 6 3 glves the target detection frequency F*(Q) de-
termined experimentally, and also the detection probabiliity P(A4)
derived from Formula (16). Instead of ﬂz we assumed x . which In

this case are:V|r+ually identical. We can see from Table 1.6.3
that the coinclidence of the theoretical and experimental values
for detection probablility Is quite satisfactory.

To evaluate efficiency of an antialrcraft system as a func-
tion of horizontal range = and altitude H according to Eq. (18)
! we calculafé the target detection probability. lsoprobable curves
(Fig. 1.6.1) are then plotted and the efficiency of the system
I's calculafed{

§1.7. COMPONEMT [ELEMENT] RELIABILITY CRITERIA
A. General St&tements

Since the elements are irreplaceable items (see §0.7), the
rellability characteristic of each specific element will be its
oo individual service 1life ¢ calculated from the start of element
) service to the instant of element breakdown. Here, of course, we
' have in mind certain specific operational conditions (climatic
conditions, load conditions, vibrations and acceleration, etc.).
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Examination of numerous similar elements reveals their ser-
‘vice lives to be random quantities. Let f(t) denote the distribu-
tion density of the element's service-1ife duration. We can then
present the followlng equations for the basic element reliability
criteria (see [82], page 364).

1. Probability of faultlese element operation during the
perlod of time ¢ _ :

e
P(t)r.'Sf(t)dt. (1)
2. Average element service life
| ‘ ' o " o )
| top == J:f (t) dt = dgp(t) dt. | (2)
3. Element failure rate

BB 1 4P

M=y =—p@ —di (3)

The physical significance of this criterion will be clarified
below.

Let us stress the following circumstance. Knowing any of
the three functions f(t), p(t) and A(t), we can determine the
remalning two. Indeed, having integrated Eq. (3), we obtain

i

#w=mn(—§unm) W

Equations (1), (3) and (4) make 1t possible, from any of the
indlcated three functions, to find the remaining two.

t

Fig. 1.7.1

Let us examine two successive time intervals ¢ and T (Fig.
1.7.1). The probability of faultfree element operation in the in-
tervals from 0 to ¢t and from 0 to ¢t + T wlll correspondingly be
equal to P(t) and P(t + T1). Let Pt(r) denote the conditional pro-

babllity of faultfree element operation in the interval from t to
t + 1, calculated for the condition that at the instant ¢ the
element was repaired. According to the probability multiplication
theorem we can write

CPUFN=P P ().

hence

-
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P9= 245, (5)

From Egs. (4) and (5) we obtaln

t+1

P;(‘H)*’*QXP( ‘Sl(t)dt) L - (6)

where
4%

W1 . |
ch_—f—‘ J‘X(t)dt. (7)

To ascertain the physical significance of the fallure
rate let us examine Eq. (6) for the special case in which the in-
terval Tt 1s very small, and namely T = At. In this case, obviously,
A = A(t) and from Eq. (6) we find

sr .
| Pi(af)=e e MM e | Aga (1) (8)

Hence we derive the fallure probability for the time inter-
val from the 1nstant t to the Instant ¢t + At for the condltion
that at the in?tant of time ¢t the element was repaired
i . g (Af) = AL (1), 9

It follows from thls equation ‘that the failure rate at ‘
the given 1nstant of time ¢t is equal to the failure probability
per unit time close to that instant ¢ (under the condition that

at the instant |t the element was repaired)

Experience demonstrates that the fallure rate for the ele--
ments frequently depends on time as shown in Fig. 1.7.2. We can
see from the figure that the llfe of the element involves three
separate periods:

: ' 1) The period from the start
Aft) . ' ~ of operation to the instant t;
3 which 1s referred to as the adjust-
1 ment period, or the instant mortal-
! ' 1ty perlod (or the period of defec-
tive~element burnout). This period
is described by an elevated fail-
t ~ure rate which is explained by the
presence of hidden production de-

Fi 1.7.2 fects which generally appear during
Be Lo the initial period of element opera-

tion.

3 ' 2) The period from the instant
t1 to the instant t, which is characterlized by a constant failure
rate. . 1 _

| ' ' |

This perlod is referred to as the period of normal operation.

3) The perlod after the instant ¢t which 1s characterized by
an incrcased rite of failurebecause of element aging (wear). This



period 1s known as the element aging (weanr).

It follows from Fig. 1.7.2 that one way of increasing ele-
ment reliablility is the so-called "tralning" of the elements,
which involves the following. Prior to use of the elements they
are held under load for a period of time ¢:. During this time a
- portion of the elements will break down because of hidden defectis
or weak spots, wlth the remaining elements exhibiting greater re-

llabillity than the initial over-all group, since the failure
rate will be lower., - : _

B. The Exponential Service Duration Distribution Function

The service duration distribution density in the sublect
case 1s written in the form

f(O)=ae™", (10)

wihere A is the dlstributlon function parameter (Fig. 1.7.3).

| Fee)

!
}0

Fig. 1.7.3

From Eqs. (1)-(3) we obtailn

P )=, ' (11)

R — (12)
A)=2, N 6% )

l.e., the fallure rate 1s constant here and coincldes with the
distribution function parameter.

The exponential functlon 1s encountered in actual practice
when the elements are used on completion of the adjustment period,
and aging (wear) phenomena are negligibly small. This occurs, for
example, with many elements of radiocelectronic apparatus: capaci-
tors, resistors, semiconductor devices, ete. Electron tubes and
shf [CBY] devices generally exhibit no exponential function,
since wear (aging) phenomena are of great significance in the
operation of these devices.

From Eq. (5) we find
| Pi(r)=e", (14)
i.e., the probabllity of faultfree element operation during the
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1nterval T under the condition that 1t was repaired at the begin-
ning of thls interval 1s independent of the duration ¢ of the
pre7ious operatlon. Thils remarkable property of the exponential
distributlon is explalned by the absence of aging (wear) on the
part of the elements in their operation. In this case, instead of
the curve (Fig. 1.7.2) we have a straight line parallel to the
axis of abscissfs. |
|
Hence 1t follows that with exponential distribution of ele-
ment service duFation, "training" of elements is inexpedlient.
C. Service Duration Distribution According to the Weibull Func-
‘tion |

| ‘
The service duration distribution density in this case 1is

written in the [form
¢m ‘
[)=frtm-rexp(—47), (15)

where to and m are the distribution function parameters (Fig.
1,7.4). ‘

From Eqgs. [(1)-(3) we obtain

p(t);—.exp(w%). | (165
&?::ﬂ?r(%;4&1):' (17)
zﬂﬁ:%%w"t.__ (18)

It follows from Eq. (18) that when m < 1 the failure
rate diminishe§ with time, while when m > 1 the rate of failure
increases with time. When m = 1 the Weibull function degenerates
into an exponential function (Fig. 1.7.5). Thus, assumlng various
magnitudes for |m, we can describe the entire curve in Fig. 1.7.2

by parts with ﬁhe Weibull function.
Ve \ Alt)
meas

‘ mz=2
me? . . m-qs

Yyl

¢ — ' o

'3
} e
H
]

1
=
rd
[N
g
[
-
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Experience shows that the Welbull function with the para-
meter m > 1 1s found for many types of electron tubes, shf de-
vices, ball bearings, etec.

From Eq. (5) we obtain
P =exp(—IR=T, (19)

As an example, let us consider the case in which 19 = 1,
T =1, and m = 0.5 or m = 1.5, Results of calculation with Eq.
(19) under these conditions are shown in Table 1.7.1.

TABLE 1.7.1

t . 0 1 2 3 4 3

Pi(<) tor maa0,5 0,37|0.66 | 0,731 0,77 | 0.79 | 0,81
Pi(x) tor me=1,6 - |0,37| 0,16 | 0,00 { 0,06 | 0,04 | 0,03

We can see from this table that preliminary "training" of
elements when m = 0.5 raises the probabllity of their subsequent
faultfree operation (adjustment occurs). When m = 1.5, "training"
1s 1nadvisable, since probability of subsequent faultfree opera-
tion diminishes (element wear occurs during the operating time).

D. Experimental Determination of Failure Rate

For simplicity, let us examine the case in which the service
duration distribution function for the elements is exponential.
The experiment in this case is formulated in the following manner.
Under the given conditions n elements of the given type are
tested on a stand for a period of time t. As a result of the ex-
periment the number m of failing elements 1s established.

The experimental rate of faiiure is determined from the
results of this test by the equation

Aon== 5 ~(20)

Reliable boundaries for the assumed reliable probability «o afe
found from the equations

. J'u":luo | . (21)

r

2, == tor, (22)

-
where the coefficients »r) and r; are determined from Table 7 of
the appendix for the given o and the experimentally derived m
(see [82], page 388).

If the test reveals no failures (m = 0), the reliabllity
boundaries are found from the equations
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Ag=0, ln"‘_"%o (23)

where ro 1s determined from Table 7 of the appendix.

CEXAMPLE 1.7.1. In testing 10,000 resistors for 1000 hours,
there were 3 fallures. Find the rate of fallure of the reslis-
tors.

From Eq. (20) we find

Aon=3+10-7,

Assuming a = 0.95, for m = 3 from Table 7 of the appendix
we find r; = 3.66 and »2 = 0.39. From Eqs. (21) and (22) we find
|

Ag=0,82.10-7, Ay=T7,7+10-7,

This example shows that even a large number of tests yields
a rate of fallure with poor relative accuracy

§1.8. RELIABILITY CRITERIA OF IRREPLACEABLE ITEMS
A. General Statements

The reliability characteristic of each specific 1tem in an
examination of\the operation of similar i1rreplaceable items under
certaln set operatlonal condltions will be the 1individual service
duration t of that item, reckoned from the start of service for
the 1tem to the instant that it breaks down. The situation is the
same in the case of elements (see §1.7). All element reliability
characteristics considered in §1.7 are therefore applicable to
any irreplaceable products _

If an irreplaceable product for which there are no reserves
conslist of k elements exhiblting a fallure rate

! 2, (t)l z.(t): RN a-g(t),

\
the rate of fallure of the product on the whole is found from
the equation |

% .
| 20)=Y ). (1)
i 1=1
In the Special case 1n which all elements exhibit constant
rates of failure Aly A2s seey k’ the service duration of the

product will be distributed exponentially. The mean service dura-

tion t for the entire product (to the first fallure of any of
the elements) 1n thls case will be determined from the equation

%ﬂi]‘ (2)

where ¢ _..... 1s the mean service duration of the ith element.
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Equation (2) 1s a simple consequence of Egqs. (1) and (1.7.12).

Irreplaceable products are frequently intended for work
during a predetermined interval of time tr’ Thus, for example,

the radio fuze of a missile 1s intended for operation throughout
the fllght time of the missile. For a fuze tr must therefore be
equal to the flight time.

An important reliability characteristic of such products is
the probability of faultfree operation during the time tr

Pty =e v Mo, (3)

The fallure probabllity during the time tr is also employed fre-
quently :

qlty)=1—Pty). | (3a)

When ¢ 1s small in comparison to ¢ Eq. (3a) may be writ-

sr?

ten approximately in the followlng form:
alty) == (4)
D_ ‘“'
If the product functions in cycles of duration t.s the pro-
bability of faultfree product operation 1ln n cycles 1s written in
the following form:

Ant

Pny=e "P=(e Pp=pF, | (5)

where P, 1s the probability of faultfree operation during a single
cycle.,

B. Reliability Characteristics in the Process of Preparation for
Work :

: To prepare lrreplaceable products for application we require
a certain normal preparation time tn' If fallure of certain ele-

ments included in the product is noted during the preparation,
the actual preparation time tf will be larger than tn due to the

time spent on the determination and elimination of the faults.
Let us introduce the denotation
==ty — 1y (6)

The preparation lag t is random. Processing of experimental
statistics wlll yield its distribution function. We denote its
conditional probabillty density ¢(t) (given that there 1s a pre-
paration lag).

In first approximation we can assume the exponential expres-
sion :
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EXAMPLE
0.90 and T

sr

1000 produ

for

So[uf{on.

average, will

age, 100 produ
ucts, the aver
paration lag Tt

LetT us as
we find

This means tha
products wlll

C. The Reserve

Let us co
identical inde

tional probability qy(t) that the preparation lag
d the given time ¢ 1s found from the equation

9 (t)-—bys»m d=m1¥exp( ) (8)

onal probability q(t) that the preparation lag
d the glven time £ 1s found from the equation

(9)

=)

g()=1—(1 —Py)exp (

e normal preparation probability (i.e., preparation |

paration lag 1s equal to zero with probabillity Pp,
bility 1 - Pp the mean preparation time 1ls equal
conditional mean preparation lag will be

Tc_pﬁpu‘o‘l‘(l_P:x)‘cﬁz(l““pn (10)

) tep-

Let the experimentally determined values be Pp
2 hr.

cts.

Find the mean preparation characteristics

Since Pp 0.90, 1000+0.90 900 products, on the

be prepared for operation without lag. On the aver-

cts will be prepared with lag. 0f these 100 proa-

age preparation lag time is 2 hr. The average pre-

ime for all 1000 products is found from Eq. (l0)

| Top==(1—0,9):2=20,2 hr.

sume the preparation ]ag t = | hr. From Eq. (9)
g(t)=1—(1—0,9)exp (—{7)*:0.939.

t, on the average, of |000 products 1000+0.939 = 939

be prepared with a lag no larger than | hr.

Case

naider the case 1n which a product consists of &
pendent simultaneously operating blocks. The product
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1s held to function faultlessly over the time interval from 0 to

t 1f at least a single block functions faultlessly during this
Interval.

Let one block exhibit the rate of faillure Ai1(t) and a pro-

bability Pi(t) of faultless operation during the time from 0 to
t. For the entire product we will then have

Py()=1—[1—P, ()] | 1)

The fallure rate for the entire product is found from Egs. (11)
and (1.7.3)

k[L— Py (=14, () Py () :
[ =[i=hoOr (12)

A () ==

For simplicity, let us examire the case of k = 2,
A, (f)==const=23,, P, (f)=eV,

Here, Eqs. (11) and (12) are rewritten in the following
form:

Pu(t) =27 e, (13)
' —a—M
L=t | (14)

Figures 1.8.1 and 1.8.2 show the curves P,(t), Ai(t) and
Aa(t) for the case A = 1. We see from these figures that reserves
vield the following results:

1. Probability of faultfree operation 1lncreases noticeably.
When k > 2 this phenomenon is intensified.

Prt)
!

Alt)

At

ast _
A t)

0 .1 7 a2l g I 7 71
Fig. 1.8.1 Fig. 1.8.2

. 2. The fallure rate diminisghes sharply with small ¢, and
then asymptotically approaches the value which it exhibits in
the abserice of reserves. -
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D. Element Recerves with Disconnection and Shortcircuit Type
Failures

Let us cohsider the case of the so-called constant element

reserve in which the baslc and reserve elements function simulta-
neously, i.e., all elements are equal.

The elemehts may be connected 1n three ways:
1. Series}connection (Fig. 1.8.3).
2. Parallel connection (Fig. 1.8.4).

| .
3. Mixed connectlon (Figs. 1.8.5 and 1.8.6).

Fig. 1.8.3

The element group exhibiting one of the above-indicated con-
nections willl be referred to, Iin the interest of brevity, as an
element system‘

 We will distinguish two types of fallure: a) disconnection
and b) shortcircuiting.

With series connection of elements the "disconnection" type

of fallure in any one of the elements causes the fallure of the
element system, while the "circuit" fail-

ure type leads to the fallure of the sys-

4 r'} | ftem only 1f 1t occurs in all elements of
the system.
71 \
| =1 With parallel element connection the
] . "shorteircuit" fallure type in only one
—{ 3 1 of the elements leads to the fallure of the
element system, while the "disconnection"
| faillure type leads to the failure of the
| element system only 1if 1t occurs in all of
1 | the elements of the system.
Fig. 1.8.4 In the mixed element connection any

type of fallure in one of the elements will
not cause the fallure of the entire element
system. Here fallure of the element system
may occur only with m disconnections (in
all m)parallel lines) or with n shortcircults (in one of these
lines).

Let us note that the subject reserve method 1s possible only
when the parameters of the element system do not exceed the es-
tablished tolerance limits for the element in reserve.

We denote by go the probability of element disconnection,
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and gs the probabllity of shortcircult. Then
q=qo+ql (15)

will be the probabllity of element failure for any reason.

Fig. 1.8.5

SRela}
0 -0 05
-0

Fig. 1.8.6

We begln with the case of series element connection. Dis-
connection of the system wlll occur on disconnection in only one
of the system elements. This probability will be

Q=1 (1 —g0)" (16)

Shorteircuiting of the system will occur on shortcircuiting of
all system elements. This probablllty will be

Qn.-‘_—qg. . ! ‘ (17)

The probability of any system fallure in series connection
of n elements will be

Qu==1—(1— g +5.- (16)

Analogously, for a system of m parallel connected elements we
will have

Qme_‘:;qg" o (19)
Qm.zl“—(l '“'-qa)ml - (20)
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|
!

| Qu=q" +1—(1 — g™ (21)

We now examine the mixed connection. of elements shown in
Pig. 1.8.5. Thls system may be treated as a parallel connection
of m elements 'each of which exhibits the probabilities of discon-
nection and shortecirculting according to Eqs. (16) and (17). The
failure probabllity Q of such a system may therefore be found

from Eq. (21)» if in this equation we substitute q, and q, for

%, “and Q, according to Egs. (16) and (17). This substitution

ylelds \
| mn=[1— (= goJFm - 1 — (1 — g )m.  (22)

\
We now examine the mlixed connection of elements shown in
Fig. 1.8.6. This system may be regarded as the series connection
of n elements each of which exhibits the probabllities of discon-
nection and shortcircuiting described by Egs. (19) and (20). The
fallure probability Q of such a system can be found with Eq.

(18), 1f 1in this equation we substitute qo and qs with @ and
Qm3 according to Egqs. (19) and (20). This substitution yields

3 Qam=1— (1~ g )"+ [1 — (1 ~g,)"]", B E-ED

‘ .
‘Equations |(18), (21), (22) and (23) permit solution of all
problems associated with the subject reserve cases.

We conslder the practical important case of sufficiently
small probabilities qo and gs (each less than 0.01). Equations
(18), (21), (22) and (23) can then be simplified if we limit our-
selves to the first two terms 1n an expansion in a Newton bino-
mial. This yjelds approxlmate equations ‘whose accuracy is fully
adequate for pqactical ‘purposes

\ Qu=ngy44}. C(2h)
| Qm =gy +mq,, | (25)
% Qrn = (nq5)™ - mqs (26)
| Qum = gy} -+ (mg,)". (27)

We introduce the denotation

kz_q;'-. (28)

7’
where q 1is defined by Eq. (15).
We then ha&e
' |
i qo==kq, . (?9)
| = (1—k)q. (30)

With these jequations we can rewrite Eqs. (24)-(27) to the
form \ : '

| - 72 -

|




Quenkgf-(1— kg, (31)

Qm=qum+rzz(l—~k)q, (32)
an = (ﬂ-k)’“Q"f 4"’ m(l - k)ﬂqn" . ( 33 )
Qum = nkmgm™ - m™ (1 — k)" g™ (34)

We see from Eq. (31) that when nk > 1, @, > q, 1.e., series

connection of elements with nk > 1 1s lnexpedlent, since failure
probabllity with this connection increases. Analogousliy, from
Eq. (32) we have that when m(1 — k) > 1, 9, > q. Hence, parallel

connection is inexpedient when m(l — k) > 1.

As an example, we consider the case of a comparison of Egs.
(31)-(34) for an identical number of elements in the system. We
assume the number to be equal to 4. Equations (31)-(34) are then
written in the form

Qu== kg 4-(1 — £'g", (35
, Qm=k'g'+-4 (1 —k)q, (36)
Qrn = 4k%* -} 2(1 — k)q®, ' (37)
Qum == 2k%¢" - 4 (1 — B)Yg%. | (38)
TABLE 1.8.1 |
¢:=0,01 ¢ = 0,000}

W 1 0@ | ¥Qnn’ | U | 99, | 910 | 01Qmy | €/Qum

0 10 | 0,25 50 - 25 .10 [0,25 | 5000 | 2500
0,001 | 260 | 0.25 50 25 250 | 0,26 (. 5000 | 2500
0.1 2,5 (0,28 60 a1 2,5 0,281 600D | 3100
105 10,5 {056 67 1 67 0.5 10,5 6700 | 6700
0.9 0,2812,6 3 60 0,2812,5 3100 | 6000
0.999 | 0,25 | 250 25 50 0,25 |-250 2500 | 5000
1 0.25 | 10¢ 25 50 0,25 | 10 2500 | 5000

For q let us assume the values 0.01 and 0.0001. Table 1.8.1
shows results of calculations by these equations for various k.
This table shows the q/@ ratios which indicate the reliability
gain resulting from the reserves (if these ratios are larger than
1) or the inadvisability of reserves (when these ratios < 1).

This table shows that reliability 1s increased with mixed
connection for any k. The reliability gain increases with a re-
ductlon in gq. With series element connectlion rellability in-
creases only with rather small k, whlle with parallel connection,
reliability increases only with rather large k. ~

E. Experimental Reliability Characteristic Determination

The fallure rate for irreplaceable products 1s determined
gxperimentally in complete analogy with that for elements (see
1.7.D).

We conslder the problem of experimental determination of
faultless operating probability within a specified time. The
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exprriment 1s set up’ as follows. We test » products under opera-
tional load for time tr and establish the number m of products

which falled. The experimental fallure frequency is found from
the equation

on =" (39)

and the reliable boundaries for rellable probability a = 0.95
is found from the equations

= S (ho)
=T (41)

wnere the coeﬂficients R1 and R, are found from Table 6 of the
zppendix according to the values of m and m/n (see [82], page
193)

If the experiment yielded no fallures (m = 0), the reliable
boundaries are found from the equatlons

i ‘h;=0» Qnm&. ‘ (u2)
| :
where Ry is determined from Table 6 of the appendlix from the
given reliable probability o and the quantity n.

The experimental probability of faultless operation and the
reliable boundaries for that probability are determined from the
equations

pon-“—"l""qom ' : (143)
=1-q, (4l
Py=1—0a | (45)

. We note that when (m/n) < 0.10 in Egs. (40)-(42) we can re-
place the coefficients Rl, Rz and Ro by the coefficients r1, r2
and rg defined from Table 7 of the appendix.

EXAMPLE 2. In testing n = 1000 producis we obfalned m = 100
fallures. Evaluate the probability of faultfree operation.

Solution, Here g =-=-=ol0. From Table 6 of the appendix for

m = 100 and (m/n) = 0.10 we find Ry = 1.18 and Rz = 0.86. From
Eqs. (40) and (41) we find

0.,10. 0,10 __ ‘
gu =T T3 IB=0 085, ¢» m-b-"-—é-—o.llﬁ.

From Eqs. (43)-(45) we find P__ = 0.90, P_ = 0.884, P_ =
= 0.915. °op n v

I
EXAMPLE 3. In testing 100 fuzes we found not a single fail-
ure. Evaluate!the probability of faultless operation.
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From Table 6 of the appendix for n = 100 and o = 0.95 we
find Rg = 2.95. From Eqs. (42) and (44) we find qy = (2.95/1001 =
= 0.03, P, = 0.97. Obviously, Pv = |.

§1.9. RELIABILITY CRITERIA FOR REPLACEABLE ITEMS
A. Nonreserve Cases

The work of replaceable items generally begins on connec-
tion of apparatus. One of the reliability criteria should there-
fore be the probability Pv of normal connection.

In well adjusted devices the guantity Pv is genérally very

close to 1. However, in tests and adjustment this quantity may
differ significantly from unity. Apparatus failures in this case,
on connection, should be counted separately from failures which
arise durlng operation (see [82], page 452).

Further, for the rellabllity characteristics of replaceable
products we should consider the parameters of the so-~called per-
+d of product adjustment. In this period which marks the begin-
ning of operation for newly fabricated items, the element and
installation failure rate 1s elevated. The basic parameters of
this period, adequate for practlical purposes, are the average
duration tpr of thls periecd and the average number mpr of fail-

ures during thils period.

- On completion of the adjustment perlod it is generally pos-
sible to treat the occurrence of failures in product operation
as a simple flow (see §4.1). The basic fallure flow characteris-
tic 1s the flow parameter A
1
A==, (1)

where T 1s the average time to fallure or the average time of
faultless operation.

With the parameter A the probability of product faultfree
operation probabllity for any time interval ¢ 1s easily found:

P()=e"M=eT, (2)

If the apparatus 1s switched on at the start of the time ¢
interval, the probabllity of faultfree operation during the time
t will be

Py ()==Pye™", (3)
where P 1s the normal connection probability.

The basic characteristics of suitability for repair in re-
placeable products is the average restoration time T and the
readiness factor

KrzT“_‘*'_t?-_".v (L‘>
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The quantity T, defines the average product idle time due to
efforts to seek out and eliminate fallures.

The readiness factor represents the probability of finding
the subject product 1n operating condltlion under the condition
that it 1s examined over a sufficiently long period of operating
time.

|

In Eq. (4) we conslder only the down time resulting from
product repair after fallure determination. At the same time,
down time occurs in preventive malntenance as well. Thls down
time may be teken into consideration by means of the use factor

: . _

| ‘ 54 ‘
| Kn: tpas +t:o:+tnp00 ' (5)

where trab is the duration of proper product operation over a
sufficiently large Interval of time ¢;
t i1s the down time due to measures to eliminate fail—

TeM yres found during time ¢;
tprof 1s (the down time due to preventive maintenance during

time t.

Down time due to other causes in this case (for example,
service personnel vacations) is not considered. In the subject
period t let there have been m fallures in the time t ab* Divid-

ing the numerator and the denomlnator of Eq. (5) by m, we obtain

T
' K“=T+n+r;;-' (6)

where Tprof is the average preventive maintenance time per single

failure occurring in time ¢ We note here that the number m

rab’
does not include fallures ascertained during the preventive main-
tenance work.
failures determined during the preventive maintenance is not
included 1in t‘e but in ¢

prof’
B. Reserve Cases Without Replenishment of Reserves

We now consider reserve cases in which reserve elements
(blocks) breaking down 1n operatlon are not replenlished and on
which repairs are carried out only after the fallure of the ba=-
sic and all reserve elements (i.e., on breakdown of the entire
product). This case occurs when the inoperative product 1s sent
for repair toispecial repair subsections.

We consider reserve substitutlon cases 1n which there 1s a
silngle basic element and n — 1 reserve elements. On breakdown of
the basic element 1t 1s replaced by one of the reserve elements.
Fallure of a system consisting of n subject elements-occurs when
the last of the reserve elements breaks down.

We present the equations required for two reserve variants.

\
1) Loaded (hot) reserve in which the basic and all reserve

\ :
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elements are in a single operating regime (under load).

2) Unloaded (cold) reserve in which the basic element is in
the operating regime, and all reserve elements are awalting Iinclu-
‘ sion in the operating regime (not under

J-T-T load) .

__{::}__‘ S For the sake of simplicity we will
5 consider the case in which all subject
| B elements (blocks) have passed through

the adjustment (training) period and

"Flg. 1.9.1 for each of which Eq. (2) 1s valid.

With loaded reserve the probabll-
ity of faultless operatlon of a system

?g g)elements (blocks) during time t is written in the form (see
2])):

pn(tjél—_[l—exp ()] | (7).

_ The average time of faultless operatlon for a system of n
elements will be

T,,--.-_—T.(l-{-_—;—,+-%~+...—]—7:—). . @

With unloaded reserve, instead of Egs. (7) and (8), we will
have

t n—1 '
Pu)=e T VL., - (9)
2;1w1_ | |
T.=nT. ' (10)

We note that Egs. (8) and (10) are derived by integration of
Expressions (7) and (9) in limits from 0 to « [see Eq. (1.7.2)].

As an example, let us consider the product whose diagram is
shown in Fig. 1.9.1. Here block A has no reserve and a loaded re-

. serve 1s used for block B. The probability of faultless operation
for block A is found from Eq. (2)

P y=e"". (11)

The probability of faultless operation for a system of two
"blocks b is found from Eq. (7) :

P ()= 9 B _. 7B, | (12)

The probability of faultfree operation‘for‘the‘entire prod-
uct 1s found from the theorem of probability multiplication

p (t) . e—f/TA [2e—l[7'5 _ e2I[T5]. . ) ( 1 3 )

=TT -



| _ |
The average time T of faultfree operation for the entire
product is found by integration of Expression (13) in limits
from 0 to » [see Eq. (7.1.2)]. On integration we obtain
| T T5@T4+Ts
I=mFrper, 1y (14

The product readiness factor 1s found from Eq. (4) where 7

is defined by Eq. (14) and T, 1s the average time to repair the

failure of the éntire product (can be determined experimentally).

C. Reserve Cases with Reserve Restoration

For simpliéity and brevity we limit ourselves to cases in
which a product: consists of two ldentical blocks of which one is
operative and the other 1s put into operation only on appearance
of failure in the first (unloaded reserve). Restoration of the
broken block begins immediately on fallure. We assume that the
work time prior to fallure and duration of restoration for each

block are subje?t to exponential laws with rates

’ ) 7,= ! and =

1

i

We calculate the probability P(t) of faultless product opera-

tion in the time interval from 0 to # if at the instant ¢t = 0
both tlocks are‘Operative. For this purpose we will seek the dis-
tribution density f(t) for the product operating duration t prior
to first fallure.
' \

. dz at
r l/'_—\'_ T T - -
0 'z _ T t
Fig. 1.9.2

If at the instant ¢ the product fails, this means that at
some 1nstant = there occurred the failure of a single bloek, the
restoration of this block had not been concluded at the instant
t and the second block broke down at the instant ¢ (Fig. 1.9.2).

Let the igﬂ fallure of the block occur at the instant x. We
can then write

“n

w |
(tyat=Y, § fi(x)dx P (x) e 0= et U—03e 0 t=x) (15)
1=1 . i
Here f,(x)dx 1s the appearance probabllity of ith block failure
near instant z;
P(x) 1s the probability of no product fallure prior to
instant x; _ '
e ¥=" 15 the probabllity of faultless block operation from
instant « to iInstant ¢;
e ¥ 1s the probability that repair of the block failing
at instant x will not be completed at instant t;
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AeU=9at 1s the probability of block fallure near instant ¢.

Equation (15) can be rcwrittén to the form

flt)y=2 jp () e~ = ‘dxi‘l F1 (%), (16)
=1

where

© =g o)
From Egs. (100.3), (101.3) and (101.4) (see [82]) we have

fog)=2 (18)

b8

From Eqs. (16) and (18) we obtaln

i

ef()=2 S P (t)e"dx. | (19)

Differentiating both parts of Eq. (19) with respect to t
and taking into consideration Eq. (1.7.1), we derive the differen-
tial equation
Py P () 2P (t)=0. (20)
The initial conditions here have the form
PO)=1, P'0)=-—](0)==0.

Hence we find the solution

Pt _ts_ gt (21)
where _ l _
&, = (14 1+ VT (22)
4= (LY — VI F19; (23)
. T
_QY==7:=§%%._ ‘(24)

The average time Ti of faultless operation of the entire

product is found by integration of Expression (21) in limits
from 0 to = [see Eq. (1.7.2)]. After integration we have

Ta=2T (1--1). | (25)

We note that when the reserve 1s not restored, according
to Eq. (10) we would obtain

T,==9T. (26)

Equations (25) and (26) yleld a galn which provides for re-
storation of the reserve
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“ _7_:‘._:;-_1_1_7 (27)

In actual practice. the quantity y generally varies from sev-
eral units to several tens. The gain from Eq. (27) 1s therefore
quite substantial.

We consﬂder the practical important case in which the quan-~
tity vy 1is 1aqge in comparison with 1. In approximate terms 1t may
then be written

|

|
|

VAFT=VTF 0= 1=0+D Y1~ gy =
N 1
=(L+Y)P*“gﬁj:ﬁ]=ﬂ-%7—“yﬁ%:ﬁ- (28)

|
i
|

For the case of large vy Eqs. (22), (23) and (28) yield

- 1 \ 1
a,=-—T—-(2—l-—2Y"--2—+—2'§-). (29)
I 1
d.—*:-—?.--é—_l_—z—,'. _ (30)
. ) )
242 —5152 .
n_ 22, - (31)
ay ay 2+21_2+2"
.
x 242
ala ] . =0. (32)
SRt P TI

|
From Egs. (21) and (25) we then obtain

PO exp(— ) =" (33)

Thus for‘g restorable product with a restorable reserve the
same equation as for irreplaceable products on completion of the
adjustment (trailning) perlod is valld (see §1.7).

\

D. Experimental Determination of Reliability Charécteristics

Ta determine the probabllity of normal connectlon we can use
the method of determining the probability of faultless operation,
covered in §1.8. ‘

We now conbider the problem of the experimental determination
of the average time to fallure. Let n products be subjected to
tests, the times to fallure during the period of the tests for

these products given, respectively, by‘t;, oy euoy tn. Let m,,

Moy vevs my faigures be recorded for these products in this case.

The experimental average time to fallure 1is found from the equa-
tion :

o bbb Sty
TOll_‘"" m;+ma+---+mg' (3“)
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and the reliahle boundaries for the given reliable probability «
is found from the equations

T§=raronr (35)
Taﬂrgrorin (36)
where the coefficlents r; and », are found from Table 7 of the

appendlx on the basis of the gilven probability a and the total
number of fallures m (see [B82], page U450).

If there were no failures during the tests, the reliable
boundaries are found from the equations

Tom=e (it taten a1,

Th::'mv'

(37)

where the coefficlent », 1s also found from Table 7 of the ap-
pendix.

- EXAMPLE |. Three devices were tested. The test times for
these devices amounted to 500, 700 and 400 hr, with the number
of failures 6, 8 and 3, respectively. Evaluate the average time
to failure.

Solution. From Eq. (34) we find

500 -} 700 - 400

Tou == W"“*Q-‘ hr.
From Table 7 of the appendix for a = 0.95 and m = 17 we find
ry = |.58 and r2 = 0.67. From Eqs. (35) and (36) we determine
T =

63 hr, TV = 149 hr,

EXAMPLE 2. In testing apparatus for (00 hr there were no
fallures. cvaluate the average time to fallure.

‘Solution. We assume the reliable probability & = 0.95. From
" Table 7 of the appendix we find »o = 3. From Eq. (37) we deter-
mine T, = 33.3 hr.

§1.10. ASSEMBLY RELIABILITY CRITERIA

In §1.7-1.9 we considered the reliability criteria for ele-
ments of irreplaceable and replaceable products. Any armament
system consists of many products and we can say that the assembly
(system] reliabllity is defined by the totality of reliabllity
criteria for all of the parts 1ncluded in that system.

. There arises the question as to whether it would not be
possible to characterlze the reliability of the system as a whole
with some single criterion. It develops that this 1s possible
only 1In the simplest cases. The reliability of the system as a
whole in these cases 1s characterized by the probability of 1ts
normal functioning

Px=P,PP,...P, (1)
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where P, 1is the probablility of normal (faultless) functioning of -
the system, while Pis Py, «.., P are the probabilities of fault-

less functioning of parts (elements, blocks) included in the sys-
tem. !

: Equation}(l) 1s a rather good characterization of system
reliabllity in the simplest case in which the breakdown .of any
.part of the system leads to the breakdown of the entire system.
In complex caaes in which the system operates wlth several par-
allel channels, stations, étec., Eq. (1) is not longer adequate
as a characteﬂistic of system reliability.

As an example, let us conslder the case in which the system
consists of a eingle launch 1nstallation and = rockets. It 1s
evident that the breakdown of one or several rockets does not in-
dicate the breakdown of the entire system. In this case the pro-
bability of normal functioning, calculated with Eq. (1), is ina-
dequate to characterize the system reliability. In thils case we

can introduce the followling as additional reliability indicators:

the probability P of normal system functioning in the

J

case of m 1aunches from a total number n launches;

the mathematical expectation M(m) of the number of normal
launches from a total number of n launches.

We present equations for these system reliability indicators
for the case in which the rellabillty function of the launch in-
stallation is exponential This means that the probability of the
normal functioning of the launch installation in the case of %k
successive launches is equal to P%, where P1 is the probability

of the normal functioning of the launch installation on the first
launch, ‘ ‘

Let us in%roduce the denotation Qk for the probability of

the following event: the launch installation functioned normally
in all 1aunches from the first to the launch having the number

k (inclusive) and failed on the (k + l)th ‘launch. Then, obviously,
we have ‘

i | Q=1-"P,
: ‘ Qxﬂpl(l_Px)n

Q=P (1—Py)

(2)
Q=P (1 —P), -
Q=P -

where Q is the probablility that the launch installation in all

n launches funptioned normally. It 1s easily proved by direct
addition that the sum of all Probabilities (2) is equal to unity




_‘\Qn“—‘l'-. (3)

k=0

as was to be expected, since we are deallng here with a total
group of events..

We introduce the denotation Ry for the probability of the
normal functloning of a single rocket. We can then write the
equation

P, == QuR + @ Clty BT (1 — R+
FQuaiC, RT 1 —RY .. .
A Qo €y R (1 —R)™ 1 4 QuC RT (1 — Ry, ()

n—=1
For brevity we introduce the denotation
. 2=Pl(l—R;)- (5)
From Egs. (2), (4) and (5) we obtain
. . n—m—1 :
Pun=PIR (1—P) ¥ Ch.\2*+
T &, (6)
+CPTRT |

The probability of having no less than m normal launches
"out of n will be '

n
Py o= Z Pin

I=m

(1)

In the speclal case m = 0 from Eq. (6) after simple trans-
formations we obtain

Pone=(1— Py 2Etam, (8)

Hence. for the probability of having at least one normal
launch out of n we have

1— Z

PYy=1—P,n=(1—2") T2 | (9)

For the mathematical expectation of the number of normal
launches out of n we have (by definition of mathematlical expecta-
tion) :

M (m)=i iPi.w

=]

(10)

= 0.9. From Eq.

We present an example. Let n = 3, Py = R,
(5) we find 2 = 0.09. From Eq. (8) we find Py 3 = 0.11. By means
of Eq. (6) we determine P1.3 = 0.10, P2.3 = 0.24 and P3_3 = 0.53.
From Eq. (9) we find P} 5 = 0.89.
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With Eq. (10) we determine M(m)
mean fractionﬂof normal launches

2.17. Hence we find the

M (m)
n

S
=3 =072

We note the probabllity of the normal functioning in the‘first'
launch to be larger — 1t 1s equal to P1Ry = 0 81.

We have considered the simple case of a system whose relia-
'bility can be characterized by the probability indicators (6)-
(10) which are functlions of the reliability indicators for the
component parts of the system and only of these.

With more complex systems it 1s impossible to characterize
thelr reliability by means exclusively of the reliability indi-
cators of the component parts of the system — it becomes neces—
gary to resort additionally to combat application effectiveness
indicators.

In the simplest case the combat application effectiveness
of a system can be characterized by the probabllity 2B of exe~
~euting the combat assignment

‘ - . )
: \ R=PHR.. . (ll)

where Rgy 1s thL conditional probability of executing the combat
assignment under the condltion that all elements of the system
are functioning faultlessly. Obviously, Re 1s a functilon of sys-
tem accuracy, effect agalnst target and similar characteristics
of system quality, but 1s 1ndependent of system rellability. Sys-
‘tem reliability characteristics are included in the factor Pk

Let us now consider the case of one or more system parts
breaking down without causing the breakdown of the entire system,
but simply reducing 1ts effectiveness,

As beforel let the system consist of n parts for which the
probability of! faultless operation 1s equal to Pl’ P2, caey Pn'

The probability of the system completing the combat assignment

. under the condition of faultless operation of all of 1ts parts

is denoted Ro. On breakdown of only the single ith part of the
system, let the probability of execution of the combat assignment
be equal to Ryv

On breakddwn of only two parts (the ith and the jth) of the
system, the prdbability of execution of the combat assignment
will be equal to R. i

For simplicity, we consider the case of breakdown of three
or more system parts where the probabllity of combat-assignment
execution becomes equal to zero. Then, for the unconditional
probability R of combat-assignment execution we have the equation

\‘ R PHR +)-QR2+Z Q”R‘j’ (12)

Q=1 i]-—-xl

| \
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where Qi 1s the probability of that state of the system in which
only the ith part has broken down, and
Qij 1s the probability of that condition of the system in
which only the Zth and Jth parts have broken down.

With the breakdown of individual system parts independent,
we can wrlte the equations - '

Q=P PP PP (13)

| Quy=P,P,...P;_ (I —P)Pisye Py (1= PPy Pp. (14)

.. We 1llustrate Eqs. (12)-(1&)-by means of an example. Let

n=3, P,=P,=P,=P, R,=0, | o o '
| o Ruy=Ryy=0.

From Eqs. (12)-(14) we then find ,

| E;mm+wme-m+wfwh4»+mwa_pn (15)

We conglder four versions of numerical values for the quan-
tities in Eq. (15). These versions and the calculational results
for these from Egqs. (1) and (15) are shown in Table 1.10.1.

Thls table shows that probability ¥ for execution of the _
combat assignment may be higher in the case of a complex system
than the probability Pk'for the normal functioning of the entire

system. With a simple system 1t follows from Eq. (11) that R < P

always (since Ro < 1). k

TABLE 1.10.1

Version Ry Ry Ry Ry P ;; Pn
A 0,90 | 0,80 | 0,70 | 0,50 | 0,80 | 0,65 | 0,51
B 0,90 | 0,50 { 0,30 | 0.10 | 0.85 | 0,64 | 0.61
c 0,90 | 0.85 | 0,85 0,80 | 0.75 | 0.66 | 0,42
D 0,70 | 0.30 [ 0,30 | 0,10 | 0,85 | 0.52 | 0,61

This table also shows that the probabllity P, cannot serve

as a comparative evaluation of the quality of two systems. Indeed,
the table shows that a system with a smaller Pk may exhibit higher

effectiveness R. Thus, for example, P, in system A 1s smaller
than for system D, while the effectiveness of A4 is greater than
for D.

This example shows that Pk for the normal functioning of

the entire complex cannot serve as the reliability criterion for.
a complex system. Proper evaluation of reliability in complex
systems can be achieved by examination of thelr effectlveness
criteria during whose calculation the reliabllity criteria of

- the component parts of the system are taken into consideération.
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§1‘11 ARMAMENT COST . CHARACTERISTICS AND THEIR DETERMINATION
A. The Concept of Armament Cost

The cost. of armament 1s one of 1ts most important character-
istics, governing to a great extent the feasibllity and possible
scope of 1ts application, Armament cost increases. continuously
and analysis of thls factor is therefore becoming increasin
urgent. Figure 1.11.1 shows a curve taken from Reference [3%] in-
dicating the varlation in the percentage of expenditures on mili-
tary equipment in the over-all cost of material military expendi-
tures. Analogoua data for the USA during the Second World War are

- presented, The curve shows that the expenditures on armament in-
crease both in relative and absolute terms. It ig interesting
that the USA expenditures for research and development in arma-
ments shows a substantial increase. |

p

9o}

70}

[

50

J0 -

|
\
\

1 1 L 1 i .
1700 1750 1800 . 1850 1900 ~ 1950
. years

Fig. 1.11.1
|
|

In' speaking of armament costs 1t is necessary to specify pre-
clsely what we are talking about. Flrst of all, we must take into
conslderation phe circumstance that armament consists not only of
rockets, alrcraft, military vehicles and related military units,
but of an entire complex of auxiliary machinery, devices, etec.

The costs of these various complexes must therefore be compared,
bearing in mind that, for example, the least expensive rocket

- does not always correspond to the least expenslve system. Speaking
"of the cost of|a complex [system], we should always bear in mind
the stage of eouipment servicing from which we consider that Sys=-
tem (factory, base, technical utilization, ete.).

Secondly,lconsideration should be glven to the expenditure
volume  for research projects, armament development, armament
fabrication at factories, storage, etc. Of course, in these com=
parisons we can limit ourselves to an analysis of individual ex=-
penditures, since these expenditures, in part, may not be the
most important, nor ldentical; however, in all cases there should

be a preliminary consideration of all expenditures in order to
avoid gross errors. .
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For example, 1n resolving the problem of the introduction
feasibllity of a new ltem, even 1f inexpensive, we must take into
conslderation the expenditures on its development, since these
may have been significant. '

Development expenditures should be understood to refer to
those costs incurred on theoretical research, on sclentific and
experimental-design projects, on fabrication of experimental mo-
dels and on thelr testing. The latter may call for the develop-
ment of speclal test areas, as well as for the development of
test-area equipment. Moreover, the tests are not always success-—
ful ‘and -additional processing of the model may be required.

Thirdly, the significant effect of production volume on
cost should be borne in mind: single specimens cost considerably
more than those mass produced.

Finally, an important indicator characterizing the cost of
an 1tem is the number and quality of the servicing personnel.
These factors govern the expenditures on training of personnel
(teaching staff, materials) and costs of maintalnling personnel
(instead of the production of material goods — tralning).

B. Effect of Lot Size on Cost

First of all, let us dwell on the cost of producing arma-
ment specimens. The cost of specimen production is reduced by
increasing the quantities of items fabricated. This is a result
of a reduction in overhead expenses, the cost of mechanical proc-
essing, technical production expenses which, in this case, are
distributed over a larger number of items, and through the ac-
quisition by the workers of greater work experience and, conse-
quently, a rise in labor productivity. Moreover, with an increase
in production volume material supplies can be improved (large-
scale purchases), and it also becomes possible to eliminate struc-
tural and production defects. :

Cost determination in the USA [11] is frequently accomplished
In the assumption that a 20% reduction in average costs per prod-
uct in a lot can be achieved by doubling the number of items.

Let us derive the appropriate formulas in the assumption
that on doubling the number of items the average cost per product
in a lot diminishes by a factor of a (according to American data,
a = 0,8). Let ¢, denote the cost of the first item; the cost of
two items will then be 2qC;, the cost of four i1tems will be 4a?C,,
the cost of eight items 8a°C:i, ete. In the general case we can
write that the cost of a lot conslsting of n ltems 1s

Cnnhnm == Na‘g"NCl EC1N1+,,' ‘ ( 1 )
where . .
_loga . -
I)__Mg2' (2)
for @=0,8
| P=-—03



The average cost of an Litem in a lot from the 1lst to the
Nth item |

To calculate the cost of the Nth specimen we proceed in the

following manner. We find the derivative of C artid from the
number of items P
‘, aCnanﬂm P
| ~SN (l + P)C, N (4)
The cost\increment
| o _
0= (%) on. (5)

\

The cost increment for one item (¥ = 1) will be the cost of the
ltem. In this case, instead of ¥ the value of the derivative
should show (¥ — %), since in this case the value of the deriva-
tive will ?e taken for the mean of the subject interval (from

v -1 to N |

Thus |
\ - C=C0+th (N'—g)”. (6)
\ )

As an illustration of the strong relationship between cost
and the number of items, we present the followlng table.

TABLE 1.11.1

\ Product number N : | S 10 100 1 000
i

Cost of Nth product, ‘

Cx .. 1,00 0.35 0.18 |- 0,09
A‘vusge cost per lot, o . .
Cir . .| 100 0.50 0.25 |- 0,13

All previous formulas are valid if in the production process no
significant structural changes are introduced into the product,
nor any significant changes in the fabrication technology.

C. Determinat1on of Rocket Cost

To determine the tentative cost we can use a weight factor
K showing the cost of kilogram of a similar product under the
- production conditions for a similar quantity of items

\ | CchKQ. (7)

: |
where @ 1s the weilpght of the subject item.

This evaluation exhiblts a number of drawbacks assoclated
with differences in design, limited experience in mass production,
complexity of calculating costs of measures to malntaln rigorous
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control and high product quality and, finally, by the in%roduc-

tion of a large number of structural changes calling for tech-
nological changes.

- The formula cited above is approximate also because it fails
- to take into consideration the effect of many factors associated
with armament cost. Figure 1.11.2 shows the fundamental factors
affecting armament cost, which must be taken into consideration
and of which we spoke in the previous section.

Armament
cost

P Weapon
Componeént cost

parta
Cost of

auxiliary
aquipment

Training

Expenditures
on servicing
personnel

Expen_-.uu

Maintenance
for

il

research
wotk

Sclentific J

, Production

Size of
1ot . Storage

Fig. 1.11.2

At the same time, we can note a feature involving a trend
toward a reduction in relative cost as the weight of the rocket
inereases. This trend exhlbits specific physical significance.
Obviously, the cost of a large item, all other conditions being
equal, will be smaller per unit weilght, since the expenditures
on production will be reduced in this case.

_ Analysis shows that thils correction is approximately propor-
tional to @ °. If we take this factor into consideration, the
cost of the rocket can be determined from the followlng formula:

Cep ==K, (8)

Finally, even at a given weight the cost of a rocket depends
in great measure on design and basic characteristics. Figure
1.11.3 shows a dlagram indicating the baslc structural features
of a rocket and its fundamental characteristics, affecting cost.

However, an approximate method of cost determination for
rockets 1s 1inapplicable to those cases in which the effect of
various factors on cost 1s to be determined. As an example, let

- 89 -



us consider the derivation of a more detalled formula for the
cost of a ballistic rocket. :

Let the cost of 1 kg of fuel be denoted Cx- It is a function

in great measure of the type of propellant (solid, 1liquid) and of
its energy andioperational characteristies.

Let the construction costs for an engine be denoted Cav:
It depends in great measure on the type of engine (liquid pro-
pellant, solid propellant, ramjet), the number of stages, the

materials utilized, the welght characteristics, ete.
| _

Roclket
. cout Liquid
: .
Baslc ) Ramjet
structural ' :
features Enpgine . :
type Solid
propeliant
. [ Number of ) One
"tages
Several
\| Presence and
type of cone
trol system ' None
Damage zone Autonomous
/ radius
Basic . i "
L _| characteriatica| - + Navigational
. Fliring
\ accuracy Remote
control
r—e
Firing Homing !
range
— )
I i
| Fig. 1.11.3

Let dg, denote the welght of the control system instrumenta-
tion, and let évﬁ denote the cost. The quantity qu varles in

limits from 70-270 kg for autonomous control systems, while cost
represents 0.4-40.7 of the cost of the rocket. Let the welght of
the warhead be |denoted by chh’ and 1ts cost by Cbch' For con-

ventlonal warheads thls cost represents about 10% of the cost
of the rocket and 1s, on the average, equal to 30 dollars per 1
kg, ‘

The cost of the rocket then is
C=CoyCecy-Cro 4 CKym; (9)
where w 1s the weight of the propellant;
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Kdv 1s the ratio of the structural welght of the engine to
the weight of the propellant.

Proceeding from parabolic theory, we can determine approxi-
mately the required velocity Vs to achleve a given range x

v;=yﬁia- _ - (10)

According to the Tsiolkovskly formula, thils velocity will be egual
to

w+K)lum+Qcy+QG!

0 =0,In Kzuw 4+ Quy + Qo »

(11)

Here v 1s the effective exhaust velocity.

Hence

L

e;)'_____ w + K:Anm+ Quy +Qﬂ v
T Ko + Quy + Qo «

(12)

W == (Qcy-I-Qo ,‘)(e"_-_ I)

v

1 — Kgs (e?:—l)

Vix l
m__,____(Qcy‘*"Qou)(e b —-l) )

Vgx

1
ke le 7 —1) (13)

Substituting (13) into (9) yields
- CﬁCG 1 'l"Ccy+
Yax

*JCV+KMQWMQY+QWJQU'H4). (14)

Vix,

I—K;u(e * -—-l)

Reference [35] presents the formula associating control system
cost with the root mean square error o of this system

Coy== 2 (15)

To determine the cost of a high-explosive warhead we can proceed
as follows. The weight of the explosive charge (wBB) is associated

in the followlng manner with the radius r3 of the damage zone:

_ U)BB:_‘K,-T;. . . (16)
Qs «=Kgs quB=K5 'xKrfgn (17)
Cﬂ y 2016 \IQO y = C;d -(Kﬁ uKrrg . (18)
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Here X, X, and Coen @Te the coefficients of the damage-zone
radlus, the quantity of explosive charge in the warhead and cost.

Substituting into (14) the quantities from (15),

(18), we derive
rocket wilth its

(17) and
a formula assoclating the cost of a ballistic
fundamental characteristics: range, accuracy and

damage—zone radius

|
|
|
|
i
This formula has

rocket body nor
Analogous form

C Clﬁ IKG 4 rra +K”

Vgx

T )

L3

(Cr+Kun-nn) (Qcy"'KU IK "3) (

Vgx
v —l

(19)

._l...

1 —Kgs (e

not taken into consideration the cost of the
the cost of other units, amounting to 3-10%.

ulas may also be derived for similar rocket types.

These, naturally, will be written differently, but the principle

of theilr derivat

ion will not differ from that discussed above.

Cost data for nuclear warheads, taken from [97], are pre-

sented below:

TNT equivalent,%

Cost, in millioﬁs of dollars..

-3

Approximate
formula:

10
4

100
6

in thousand tons....... 1.0 1000

8

ly these data may be deseribed by the following

where q 1is the TNT equivalent in kilotons;

c is the ¢

bech
D. Cost of Groun

_ It should b
attaln significa
severalfold, ‘

We present
thelr capaclty.

Table 1.11.
approximately by

is a coe
is the ¢
creasing
per 1 to
is the c

where a
b

ost of the warhead in millions of dollars.
d Equipment

e noted that the cost of ground equipment may
nt magnitudes, exceeding the cost of the rocket

lthe cost of Amerlcan trucks as a funection of

3 shows that the cost of a truck may be described
the followlng formula: _

Fficient equal approximately to 3000 dollars;

cefficient for the increase in weight with in-
capacity, equal approximately to 1400 dollars

n;

apacity
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An analogous formula 1s valld for helicopters as well. In this
case, a = 8000 dollars, b = 190,000 dollars per 1 ton. It goes
without saylng that In thls case it is necessary to take into
conslderation the relationship between cost and the size of the
lot. . :

Expenses for the construction of silos for ballistic long-
range rockets, control centers and appropriate equipment reach
significant amounts. This is assoclzted

TABLE 1.11.3 - with the need to provide for storage
and work areas, equipment for periodic
Cape  |vorome of | Costof 1 monitoring of the misslle complex and
e | Grder i for replacement of elements that have
- _ broken down or are not functioning
0,25 1000 3500 sufficlently well. Finally, measures
gﬁg ;%g 3;% must be taken to ensure safety.
0.75 10000 2900 _ :
2.5 4200 4 300 Even more substantilial expenditures
z.a 3 a0 o for ground equilpment are encountered in
' the case of antlaircraft missiles. This

1s assoclated with the presence of ra-
dar stations, complicated computer
equipment, these belng more expensive
than the antialrcraft missiles. In

view of thils, analysis of ground-equip-
ment cost in a number of cases may
prove to be even more lmportant than analysis of rocket cost.

E. Relationship Between the Cost of Development, Production and
Storage ‘

In addition to production cost, the cost of development plays
an important role. We can see from the data of [U44] that this
cost 1Is equal, on the average, to the cost of 1000 rockets, i.e.,
sufficiently large for 1t to be taken into consideration in eval-
uating the cost of rocket armament. In addition to development
cost, as such, 1t 1s necessary also to bear in mind the expendi-
tures associated with production which may involve construction
of new factories, the manufacture of new materials, etc.

An important role 1s also played by expenditures for arma-
ment storage. There are indications in the press that in certain
cases these expenditures over a period of 10 years may be several
times greater than the costs of armament production. Among these
expenditures we should include those for the construction of
storage areas, thelr repair, heating, protection and primarily
the carrying out of maintenance work and the corresponding re-
Placement of units and components.

Thus, the general expenses for gulded misslile armament can
be determined from the following formula:

Co — Cpnn ‘{‘ cnp _}_ Ncccp [ + Nnc(zp n'+
“{" Nccxp [} + Nncxp 1 + Cp.

where NS is the number of missiles;

(22)
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¢ is the average cost of a single missile;

N_ 1s the number of ground systems;

¢ 1s the average cost of the ground system;

is the?average cost of rocket storage; _
is thejaverage cost of ground-system storage;
¢, represents expenses on training of personnel;

K4 represents the cost of preparation for production.

To calculate the magnitude of ckhr s for 1 year, we can use
the followlng formula

where Cskl s

According to

‘ ."'l
“‘ Cxp c(:)r—"ccnnc‘{"z :‘ “+C_p.Np_v ' (23)
\ {=1 : '

1s the warehousing cost, the equlpping and malnte-
nance of warehouses, per 1 rocket per year;

is the cost of individual units and rocket assemblies
(for example, solld propellant charge);

is the depreciation period, i.e., the period within
which certain units have outlived their usefulness;
1s the cost of maintaining servicing personnel
(security, technlcal personnel working on replace-
ment)of units and assemblies, servicing, monitoring,
etc

is the number of people needed to service a single
rocket

|

American data, expenditures for a single military

serviceman average 4500 dollars per year.

As a special example, Reference [44] shows the following

relationship
silles:

of expenditures for a total quantity of 7500 mis-

|
development cost —4,3%;
|

production preparation cost — 8.7%;

missile

pnoduction cost — 32.5%;

ground equipment production cost — 54%;

storage

cost (for 1 year) — 0.5%.

We should bear in mind the great difference between peace-
time and wartime economles. If cost i1s of decisive significance
in the former case, time becomes the chief factor in the latter

case.

All of the cited figures are extremely approximate and are
basically i1llustrative in nature.
|
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Manu-
script
Page
No.
33
36
36
37
37
37
37
)
Le
50
50
50
51
51
56
56
56
61
65
65
65
67
67
67
68
75

LSy
I

ff =

U=ts = tsel'

D= 1r=

Transliterated Symboils

front = front

= statiticheskly = statistical.

target

]

raketa rocket

OCK.= osk = oskolok = fragment(ation)

$=1r =
o= 4 =
B= gz =
C=135 =
A= 1 =

=4 =
y = =
KI=_lk =
T=f =
np = pr

UM = ip
CP = sr

on = op

fugasnyy = high explosive
detonatslya = detonation

zaryad = charge. (explosive)
snaryad = missile (shell)

letchik = pllot

dvigatel' = engine

upravleniye = control [guidénce]
konstruktéiya - structuré |
toplivnyy otsek = fuel compartment

= priyemnik = recelver

. 11ep = per = peredayushchly = transmitting

ispol'zovaniye ploshchadl = area utilization

srednly = average [mean] |

= opyt = experimental [test]
nizko = low

vysoko = high

rabota = work

normal'nyy = normal
fakticheskly = actual [factuall
podgotovka = preparation

vklyuchenliye = switch on [connection]

- 95 -



75
75
76
76
76
76
81
87
90
90
90

90
93
93
93
93
94

Op = pr = prirabotka = adjustment
I = g = gotovnost' = readiness [preparedness]
n =1 = ispol'zovaniye = utilization

pac

rab = rabota = work

bem = rem = remonf = repair [overhaul]
HP0®?= prof = prdfilaticheskiy = preventivé
K = # = kompleks = complex [system] |
napmu? = partii = parti&a = batch [lot]

I = g = goryucheye = fuel [propeilant]‘

OB =%dv = dvigatel' = engine .

Cy = su = sistema upravleniya = control [guidance]
; system ‘

Gu =ébch = boyevaya chast' = warhead

H =n = nazenmyy = ground

Xp =1khr = khraheniye = storage

P = r = raschet = team [crew]
Ip = pr = proizvodstvo = production [manufacture]
CKII =§skl = sklady = warehouses
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Chapter 2

THE METHOD OF STATISTICAL TESTS AND ITS
APPLICATION IN OPERATIONS RESEARCH

§2.0. INTRODUCTION

The method of statistical tests in operations research, or
~as 1t is sometimes known, the Monte Carlo method, is being used
extenslvely. Indeed, the area of applicabllity for thils method

has no fundamental limitations and is limited practically only

by the time spent on the performance of calculations. Extensive
development of electronic computers in considerable measure re-
duces thls limitation and for this reason this 1s a fundamental
method in operations research for the solution of complex prob-
lems, ‘ :

The problems of calculating target damage probabilities are
resolved analytically only for comparatively simple cases. In the
complex cases which arise in actual practice, the most efficient
calculation method 1s the method of statietical tests. The same
may be sald of problems in the theory of mass service engineering,
not to speak of the problems involved in the study of armament
effectiveness under difficult combat situations, where considera-
tion must be given to the counterefforts of the enemy, the pro-
bablllities of detection, the problems of target distribution,
etce. _

A positive feature of the method 1s the simplicity of its
practical application. If a subject process can be described by
a system of arbitrary equatlions, rules of logic, etc., the per-
formance of statlistical tests presents no basic difficulties,
imposes no limitatlion on the earlier cited equations and rules,
nor do these require simplification.

In connection with the material of this chapter, there 1ls
a rather detalled description of the essence of the method, i1ts
advantages and shortcomings and the most efficlent areas of ite
application are 1ndicated. Methods of deriving random events,
function magnitudes and the magnitudes of flows of random events
are also described here, as are problems pertalning to evalua-
tion of the accuracy of the method, and certain methods of rais-
ing that accuracy.

An example 1s presented at the end of this chapter on appli-

catlon of the method of statistical tests to determine guided-
missile firing accuracy.
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§2.1. THE METHbD OF STATISTICAL TESTS AND THE AREAS QF LTS APPLI-
CATION \
\

A. The Essence}of the Method of Statistical Tests

The method of statistical tests (or the Monte Carlo method)
presently refers to any procedure involving the use of methods

of statistical selection for approximate solutions of a given
mathematical or physical problem. We will immediately point to
two variations/ in the utilization of this method:

the application of the method of statistical tests for a
study of probabllity processes (it is assumed in this case that
the mathematical or physical model of this process has been de-

veloped);

~the application of the method of statistical tests for solu-
tion of nonprobability problems (by analogy between the equations
which describe| this problem and those which describe the proba-
bility processes). ‘

‘ .

In operations research it frequently becomes necessary to
- resort to the first variant of this method. In studying military
action it 1s comparatively easy to make up complex descriptive
schemes (models) including the probabilities assoclated with such
random element$ as detectlon probabllity of certain targets, the
probability of‘reliability in operation for all system elements,
the probability of hitting a target, the probability of damaging
a rocket in flight, the probability of target destruction, etc.
The study of s#ch a model by analytical methods is extremely
difficult in many cases. In any event, the possibillities of con-
structing complex probabllity models describing the processes of
military action rapidly overtake the potentials of mathematical
analysis for the study of such models. In this connection, the
methods of statistical tests in a number of cases have turned out
to be the only}practically sultable methods of study. We should
take note of the fact that the majority of models in which we
examine bilateral millitary action (counteraction) are exceeding-
ly .complex for investigations by analytical methods and in these
cases 1t becomes necessary to resort to the method of statistical
tests. : :

Let us exémine the application of the method of statistical
tests on the simplest of examples., Given the calculation of the
probabllity (P) of a rocket hitting a target represented by a
clrcle of radius r, for the case of rocket scattering character-
1zed by the gquantities g, = 0, = 0, and no systematic error.

This problem 1s solved analytically (see §3.3)

L B A
‘ P=[rR"TarR=1—c7, (D
o
where . )
R=L. - (2)
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As an example thils problem has been chosen for convenience in
comparison of exact results with the method of statistical tests.
At the same time, slightly greater complexity in this problem
makes 1t 1mpossible of exact analytical solution, and the method
of statistical tests for practical cases thus becomes expedient.

To calculate P by the method of statistical tests it is nec-
essary to go through a series of tests:

1. Determine the coordinates x, and 3z of the polnts of
rocket lmpact n

xﬂ:‘abl.ﬂl | (3)
é:t=°85.n, : ' (4)

where 61 " and 62 " are random numbers distributed normally with
b ] -

root mean square errors equal to unity and a mathematical expec-
tation equal to zero. We will speak of the methods for the deriva-
tion of these numbers in §2.3. In this case we will use a table

of random numbers (see Table 2 of the appendilx);.

'n is the reallzation number (of the test).

TABLE 2.1.1

n 1 2 3 4 5 6 7
x, =3, | 0,80.-0,5¢4|0.42 | —0.48 | 0,16 | 1.05| 1.87
zh 8y (—0.67] 0.61]1.15 | ~0.19 | —0.90 |-0.70{ ~0.36
, 104 0811122 | 052 | 082 | 2,07 1,90
m 0 1 2 3 3 3
P 0 { 0.50 0.3 0.50 | 0.60 | 0.50| 0.43
n 8 9 10 11 12 13 14
%o =8, | 0,63 |—1,48]—0,49| —2.02 1,72 |—0.90| —0.24
2y =8, |0,05| 0.66| 1,28 —1.18 | —0.66 |—0.08| 1.76
r. L l0.63] 1.68| 1.37] 315 .84 | 1.13| 1.78
m s | a4 4 4 4 4 4
P |05 044|040 | 0.3 | 0.33 |0.31 | o0.29

n 15 16 17 18 19 20
X, =8, 0,24 0.34 | —=0.88 | —1,07 0,47 1.46
Z,=8, | —2,47 | —0,32 2,22 0.02 | —0.55 2,62

o 2,48 0.47 2.39. 1,07 0.72 3,00

m 4 5 5 5 6 6

P 0,27 0.31 |. 0,29 0.28 0.32 0,30
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2. Calculate the distance between the points of rocket im-
pact and the target

rn#-l/xi_—}-zﬁn. ; | (5)

3

3. Compare r, and r». If r, < r, we have a hit on the target.
Let there be m such cases. If r > r, there 1s no hit.

4. Calculate the probability of a target hit

=", : (6)

| The results obtalned from calculations by this method are
presented in Table 2.1.1 for the case 0 = 1 and R, = 1.

The exact‘value of probability P = 0.393. The table shows
that 20 tests permit determination of this quantity with insuf-
ficiently high accuracy. The error is about 25% and the root
mean sguare deviation, calculated with Formula (2.3.12), amounts
to 27.5% of the determined quantity. It is interesting to note
that with three realizations (»n = 3) a more exact result is ob-
tained than with 20 realizations, while an even more exact result
is obtained with 10 realizations. These, however, are random
facts. The root mean square deviation of the derived results from
the true value with an lncrease in the number of realizations,
as will be demonstrated below, diminishes in a regular manner.

B..App]icat1on\of the Method of Stat1st1ca1 Tests for the Solu-
tion of Nonprobability Problems \

Since the following chapters will present and consider in
comparative detail a number of examples for the application of
the method of statistical tests 1In the study of probablility mo-
dels associated primarily with analysis of military action, we
note other possible applications of this varlation of the method.
This method may be employed to solve an entire series of problems
associated with the study of the operation of an individual ar-
mament model, in particular for the evaluation of the reliability
exhibited by complex systems, to study the firing accuracy of
rocket systems, to study production operations associlated with
fabrication as well as with the assembly of rockets and the pre-
paration of these for launching, etc.

The application of the method of statistical tests for the
solution of nomprobability problems 1s assoclated, first of all,
with the construction of probability model—analogs of functional
equations. Thié method is used most extensively to calculate in-
tegrals, and particularly, multiple Integrals.

\
To calculate the integral Sindx we can use the following

method. To calculate this integral means to determine the area that
is cross—hatched in Fig. 2.1.1l. We select random pairs of numbers

a1B81, az2B82, etc > in which o, are distributed according to the
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law of equal probability in the interval a, b, and in which B, 1s

diztributed according to the law of equal probability in the in-
terval 0, y, and we willl observe to see into which area the point
falls: the cross-hatched area, as aiBi, 0sBs, or in the area that
-1s not cross-hatched, as azBz, auwBu. This indicates the satisfac-
tion or nonsatisfaction of the inequality

f @) > Be-

Let the number of cases in which this inequallty 1is satisfied,
l.e., when the point falls in the cross-hatched area, be equal

to m, and let all of the cases be denoted by n. It 1s then proved
that

b . ' : f
(1ods=2y6—a). (7)

yfix)
8) -

. ‘.azpz
* 4By

Fig. 2.1.1

"It is obvious that if the points are uniformly distributed over
the area, the number of their inclusions within the area bounded
by the curve y = f(x), the axis of abscissas and the verticals.
x = g and £ = b will pertain to the total number of tests as the
area of the above-~indicated reglon pertains to the entire area
into which the points may fall. From this we have Formula (7).

Another method 1s also possible. Let a denbte a guantity
uniformly distributed over the interval (a, b). If we select a
specific realization number (n) of this quantitya,, if we calcu~

late f(at) and the mathematical expectation

MiF@) = Y1 @, (8)
- =1
it iz proved that )

b ) N v
[F)ax=—a)Mif ()] (9)
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Indeed, the mathematical expectation f(z) in the interval (a, b)

o
" Y

Mf (1)) ==

: or at the limit (/1 =+ 00)
| ‘ . b
' f(x)dx

MIf N == .

from which Formula (8) follows.

A large number of simple similar calculations 1s character-
istic of both cases.
* R

i R — — |
EXAMPLE. Qalculate .7==SRe *dR for R, = 1. We note the exact

¥
value of this integral J=1—e’. With Ry = 1, J=0393. As &n ex-
ample this: quantity has been selected for convenience In evaluat-
ing result accuracy Let us now use the method of statistical
tests, and primarily, the first method. For .this, from the table
of random numbers distributed according to the law of equal pro-
babllity (Table 2 of the appendix, we select 2 numbers each, be-
ginning with Nl in sequence (8 and §,) and, having multiplied
these by 107 °, we round off to 0.001, We then calculate f£(8§1) and
compare with GJ 1 1r Ff(81) > 62, we hold that the event occurred;
in this Opposiﬁe case, the event did not occur. Summing the num-
ber of cases in which the event occurred, we refer these cases

' to the number of experiments and derive the quantity ¥, .2 Table
2.1.2 shows the calculational results for a test number up to 20.
For each number of trials the value of the integral has been cal-
~culated and denoted Y, :

When using the second method we seek only the random number
81, we calculate f(81) and then the integral according to Formula
(9). This value 1s known as Y, and also shown in the table. That
table also shows the square roots from the selected dispersions
of J, which are denoted §, and the values of ¢ are also calcu-
lated from Formula (2.3.2).

The first calculation method yielded an error of 14.5% and
the second calculation method yielded a smaller error of only
7.9%. The root mean square deviation in the first case, calcu-
lated with Formula (2.3.12), amounts to 27.5%; in the second case,
calculated with| Formula (2.3.8), 1t amounts to 9.4%. Thus the
second method for the calculation of the integral is more effec-
tive. }

Methods analogous to those indicated above may be suitable
for solution of systems of linear equations, solutions of bound-
ary problems, the calculation of continuous integrals and a
whole serles of other problems, However, since these calculations
in operations research are only auxillary in nature, we will
not dwell on these any longer.

/163 ‘
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TABLE 2.1.2

n 1 2 3 4 5 6 7

8, 10.667| 0.993 | 0,242 [0,090 [0.610 {0.131 [0.352
& |o91 | 0,182 | o/192 |0.025 |0.557 |0.530 |0 865
F@) |05 | 007 | 0265 10,634 0506 |0.1%0 [0.3at

m 4 4 4 4
J, 1 1. 1 I {0,800 [0.667 {0,571
. :y, 0.534 0,670 0,459 [0.495 |0.497 |0,436 |0,42!

) — 0,0548 0,195 |0,176 0,153 |0,203 |0,190

a — -— -— 0,1520]0,0967 | 0,1070] 0, 0880

n 8 "9 0 . 1 12 .13 "

3, [0.646 | 0,646 | 0,680 [0.398 {0,339 |0.806 0,699
3 0,105 | 0,864 | 0,136 [0.579 {0.541 |0.238 |0 432
i(aﬁ 0.525 | 0, 525 0, 540 0,368 |0.320 {0,583 |Q,547

m 5 _ 6 6 7 8

,7' 0,625 0.556 0. 600 0.645 10,507 [0,538 |0.571

."j. 0,434 0.444 0.454 10,446 10,435 [0,447 (0,454
S 0,181 0,171 0.163 [0,157 10,157 |0,152 {0,150
L] 0.0757| 0.0658 | 0,0584 |0,0520(0,050! | 0.0463|0,0436
B 15 18 17 18 19 20

8 | 0984 | 0327 |0.120 | o146 | 0,660 | 0,430
& | 0033 | 0462 | 0,284 | 0161 | 0,990 | 0.547
[@) | 0.606 | 0310 | 0128 | 0,145 | 0585 | 0.302
I .

m . 9 9 9
J, 0,600 0,562 0.529 , 500 0,474 0.450 -
I, 0:464 0,454 0,435 0.425 | 0,424
S

-}

0

0.419
0,151 0,151 0.166 0,173 0,171 0.165
0,0421 | 0,0405 | 0,0431 | 0.0435 | 0,0416 | 0.0390

C. Application of the Methods of Statistical Tests for the Solu-
tion of Probability Problems

With respect to the solution of the first'group of problems,
l.e., the study of probability processes, the method may be di-
vided into the following basic stages (Fig. 2.1.2):

1) determination of the characteristics of random processes
(initial data);

2) the

‘tions, flows

3) the
with respect
model of the

derivation of realizations of random numbers, func-
and events,

performance of multiple repetltive calculations
to a selected algorithm describing the probability
subject process, proceeding from random reallzations

selected in the previous item;

4) statistical processing of results, evaluation of accu-
racy for results and making declisions as to cessation or continua-
tion of the process of statistical tests. An important position
1s held by the human monitoring of model operation. In certain
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lDeterana:im of

‘rapdom process
‘characteristics .

. e —

Transformation of
| e Generation of o | rand bars
i [ | random numbess ] inte raquired flows,
‘ functions, etc,

| | r- ===
‘ Monitering of Calculation by Physieat !

model oper- selected algos [~ model - )
. ation rithm R
1 : L DU |
‘ .
|
' y
i .- 1
! Statistical pro= Calculation
: cessing of Resujt i
‘ results .
i Evaluation of age " Given
| curacy of darived accutucy =
; reaulte g

Decision ae to

" \wed continuation or

cessation of
count

Filg. 2.1.2

cases it becomes necessary to combine the mathematical model with

& physical model. There then arises the question of the combina-

tlon of the mathematical model with instruments, devices or even
with a human being. S ‘

To study any probabllity process we have to know the charac-
teristics of the random quantities, functions, flows, ete., de—
fining the process. For models of mllitary action these charac-
teristics include the probabilities of target detection, fault-
less weapon operation, hitting the target, damaging the target,

. ete., 1.e., thelcharacteristics of weapons systems. As a rule,
these characteristics are determined experimentally. In a number
of cases they may be assumed in order to determine their optimum
levels. Finally, they can be determined theoretically, in partic-
ular, by the same method of statistical tests in which we use

the characteristics of individual weapons elements that have been
determined experimentally.
\

In addition to the characteristics of weapons sites, in a
number of cases we must consider the random characteristics of
the amblent medlium, as, for example: ‘

of the atm'sphere (temperature, pressure, direction and

speed of wind, visibility from various altitudes, and at various
distances, ete.); ‘ :

\




relief (direct visibllity range, the avallability of cover,
the possibllity of movement, etc.). - - :

The location of combat unit elements (the distance between
units at the front and in the rear) and the strength of the units
(with consideration of losses), the preparation [training] time,
the speed of movement, etc., may all be random quantities.

: Determination of all of these characteristics goes beyond

the 1limits of the method of statistical tests; however. 1t is
important to bear in mind that the accuracy requirements imposed
on the method must be set on the 'basis of the accuracy with which
these characteristics are determined. The more coarsely these
characteristics are determined, the less rigid the requirements
that are to be 1mposed on the accuracy of the method.

D. The Accuracy of the Method and the Complexity of the Model

Several words should be sald in connection with the accuracy
of the quantity derived 1in the process of statistical tests and
its relatlonship to the root mean square deviation of the random
quantities affecting the process and their mutual relationship.

In the course of the solution we determine the mathematical
expectation ¥ which is a sum of X independent quantitiles %, wlth
the mathematlical expectation Mt and the root mean square devia—
tion 0. For example, let this be the mathematical expectation

of the number of targets damaged by various means. The quantity
o for M in a single test will then be

- ‘
a= 2 a, s - (10)
=
*

M EMi (11)

l-_l

The relative magnitude of ¢

o= (12)
M7 .
M
i=l
Let . C :
Mle,Z.,:mM(_‘:M.,
c,=c,=c;=...=a¢u—-a,.
" Then . .
.3 B e. .
MTMYVE : (13)

Thus, with an increase in the number of 1ndependent factors af-
fecting the process, the relative magnitude of the mean square
deviation of M diminishes. If the quantities‘xi are dependent,
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according to page 213 in Reference [25]

a=ch’[1+r (/a—li) ‘- (14)

where »r 1s the porrelation factor (we assume that they are all
equal). i

"In this case the relative magnitude of the root mean square
deviation diminishes more slowly, but nevertheless diminishes.
- This means that the method of statistical tests yilelds a more
exact expectation of the sought quantity, the more complex the
process belng studied (in the sense of the number of affecting
factors). Of course, the foregcing cannot serve as a rigorous
proof of this statement; however, experience in the study of com-
plex probablility processes convinces us of the fact that with an
increase in the number of random factors affecting the process,
the application of the method of statistical teasts becomes more
feasible

Let us examine the situation in which the method of statis-
tical tests 1s used to determine the root mean square devliation
of some quantity.

- Glven that we are seeking the root mean square deviation of

" the quantity z which is a sum %k of‘ the quantities Yy z_—-_;.Zy,. We

assume that 8, =3, =0, T=...==0 i=1

_. . |
Then ‘sz.ﬁ‘; and according to (14)
. =1

| F=hd 4 k(k—1)rad.
| .

After N tests, the square of the selected root mean square devia-

tion . ‘
| _ e s
- l)wzw—z)“ z(z ~Y )=

I=1 . 131 i=1 =1

N

‘ . L[i(yt”‘yi)']w

=1 i=]

However, according to the rule for the calculation of-the square
of the sum

[\ (Ji-'yi)] Z(J, —7 +2Z(yf~+yf) (s — 92)-

i=1
! l.-_-.l
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Then

J 2

o R . .
2
S'(N——l)z ) -Hy)’—l—QlL(Ji—-J:)(yl yz)
i=l f=1 i=:1 =! .
Taking 1nto consideratmn that

x (!Ii '—ga‘)’f—-—(N — l)'Sz ,

)_, (4 —yf) (!/z yz)— (N —lm,

‘.
1= L

where my y is the correlation moment. Then we obtain
91 o
k
Z +22'"

l=l

We know [36j that after N tésts
20t
l' ) ] —r !l

c’(Sz)— o’(m =F=T %%,

Assuming all oy to be identical we obtain _

' a'(s'-‘)—ka (Sg)—!—k(k«-—l)a’(m )

2 % (k —

| —I-F N——l ﬂ-"fﬂ
Hence
o (S =
3 (S) V
'l _ e VITET=
o2 V? VEW =11 +(k—1)r] .

Let the quantities y not be related. Then r = 0,

e(Shy L yEt (15)
Te YN,
l.e., the root mean square deviation of the selected dispersion
is independent of the number of factors affecting the process

(k).

Let the quantities y be assoclated so that r » 1. Then

s i | 16
¢ kYKWN=1)" (16)

l.e., the root mean square deviation in this case for the sought
dispersion drops sharply with the increasing number of factors
affecting the dispersion.

Thus the highest accuracy 1n the determination of the root
mean square deviation can be expected from the method »f statis-
tical tests in those cases in which it is defined by mutually
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assoclated quantities, i.e., precisely in those cases 1in which
the analytical solutlon is most difficult.

The considerations presented above are primarily illustra-
tive in nature; however, they may be useful in selecting methods
for the study of models.

E. Area of Applicability for the Method

The law of large numbers serves as the theoretical basls for
the method of statistical tests. The Chebyshev theorem, a form of
this law, states that with an unlimited increase in the number
of independent tests the arithmetic mean of the observed values
of a random quaptity exhibiting a finite dispersion converges in
probability to i1ts mathematical expectatlon, i.e.,

- P
tim P

T
X '_.

EJ;—-“”‘Q(:)ﬂl (17)
for any € > 0, where x. are independent random quantities with
the‘mathematic%l expectation m, and finite dispersion.
The Bernodlli theorem, another form of thls law, states that
with an unlimited increase in the number of independent tests
under constant |conditions the frequency of the subject event con-
verges in probability to the probability of that event, i.e.,

i
1

lim P (fn (A) ~ P| K ) =1, B (18)
where 4 is the event, fn(A) 1s the frequency of that event in »n
tests and P 1s |the probability of that event.

Thus the method of statlstlcal tests 1s based on the most
general theore@s of the theory of probabilities and essentially
contains no limitations. This method may be applied to the solu-
tion of any problem, and with a sufficiently large number of

tests any degr?e of accuracy may be imposed on the method.

These ciréumstances represent incomparable advantages of the
method and govern its extensive application for solutlon of the
most varied and most complex problems. This method.1s frequently
used to evaluate approximation theories, acting in the role of
“unique experimint. -

At the same time, this method exhibits the drawback of hlgh
labor input, in which connection extensive application of this
method began wilth the development of computer englneering. It is
true that in specific cases this difficulty 1s not great, as it
may appear at first glance, and in a number of cases 1t can be
reduced substantlally. '

Metaphorically, the second drawback of the method is its
"blindness." As the method is applied there 1s no way of seeing
how certain fa?tors affect the derived results and 1t therefore
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becomes necessary to carry out a large number of calculations
even for .a qualitative study of the effact of various factors,
which 1s lmportant in design procedures, selection of optimum
solutions, etc., whereas analytical methods make it possible to
carry out such evaluations simply. .

The combined application of simplified analytical methods
making possible the selection of a comparatively narrow range of
studies, the evaluation of the nature of the effect of various
factors, the simplification of the model of a phenomenon by eli-
mination of secondary factors, and the method of statistical
‘tests making possible evaluation of a more exact but more limited
‘region 1s therefore the most efficient solution.

Analytical mod
t " methods A ‘egt me
) ,0 000 . // S"a\is{\c .
1000 _Adceptable time
100 iézfA _
10 Y,
d, ﬂ' dﬂ . e ) . ’
Fig. 2.1.3

It 1s precisely thls comblnation of analytical and statis-
tlical-test methods that 1s recommended for operations research.
. In the literature [114] we find the followlng interesting curve
. showing the expenditure of time (¢) on the solution of a problem
by the analytical method and by the method of statistical tests
as a function of the number of independent parameters affecting
the subject process (d).

This curve 1s shown 1in Fig. 2.1.3. The denotations here are
the following: '

de is the number of factors from whicﬁ the method of statis-
tical tests becomes most advantageous;

dqJ is the number of factors from which the applicatlion of
analytical methods requires more time than is acceptable;

‘ d, 1s the number of factors from which the method of statis-
tlcal tests requires more time than 1s acceptable.

We can see from this graph that the study of complex proc-
esses 1s feasibly carried out by the method of statistical tests,

while simple processes are most advantageously studied by analyt-
ical methods.

We should take note of the fact that the method of statis-
tical tests has much in common with experiments. As In the caze
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of experiment, we obtain a final result that is sufficiently re-
liable and, as. a rule, requires considerable expenditure of work.
Its drawback in comparison with experiment is the impossibility
of takilng into consideration all factors. However, it exhibits
an advantage consisting in the possibility of studying a process
which is difficult to study by experimentation. For example, the
derivation of limit values for weather conditions In tests car-
ried out under actual conditlions is difficult but simple with
simulation; firing at arbitrary azimuths over sufficiently large
ranges 1s difficult but rather simple in simulation.

§2.2. DETERMINATION OF RANDOM NUMBERS AND FORMATION OF REALIZA- -
TIONS IN THE SIMPLEST CASES

For the calculation of each realization of a sought quantity
by application of the method of statlistical tests we have to
achieve random‘realizations of the quantlties, functions, flows
and simplest phenomena.

The starting point for the formation of any of these reallza-
tions in discretg calculation 13 a device exhibliting equal pro-
babllity of yielding O or 1. A ¢coin may serve thilis purpose, with
the index 0 on one slde of the c¢oin, and unlty on the other;
"chips in an urn (marked 0 and 1 equally), a die with three sides
marked 0 and the other three sldes marked 1; and speclal elec-
tronic devices. i

Having acgieved appropriate amounts of 0 and 1 in random
sequence, from these we can form random numbers distributed ac-
cording to the|law of equal probabllity and exhiblting an arbi-
trary number of signs. The methods of this formation are described
in Item A.

Moreover, we can use tables of appropriate random numbers
calculated by someone in advance. Using uniformly distributed-
numbers, we can obtaln numbers distributed according to other
laws (Item B), | realizations of random functions (Item C), of
flows (Item D) | and of events (Item E).

If the experiment yielded realizations of random quantities,
functions, floWs, etec., having assigned a number to each such
realization and using uniformly distributed random numbers in
the interval from 0 to the number of realizations at our dispo-
sal, we can select the appropriate realizations of random quan-
titieg, functions, flows, etc.

A. Derivation Lf Uniformly Distributed Random Numbers

_ As a rulel random numbers are distributed according to the
law of equal probability in the range 0-1. There are specilal
tables of such! quantities, an example of which is given in the
appendix (see Table 2, showing random quantities distributed uni-
formly in the interval 0-39999). Such tables are used in manual
calculations. Baslcally speaking, these may be used in computer
calculations. However, the large quantity of such numbers needed
for calculations, in addition to the limited memories of the com—

‘puters, compelé us to employ other methods of deriving the quan-

|
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titles, and of these 1t i1s important to take note of two: by
means of physical generators of random numbers and by means of
methods for the derivation of pseudorandom numbers.

The simplest physical generator of random numbers 1is a coln
with 0 indicated on one side and 1 shown on the other. With this
generator we can have the numbers 0 and 1 with equal probability.
The random number is calculated according to the formula

t= 22 222 2 e 22 (1)

where 2, is the sequence of numbers 0, 1 derived by means of the
generator described above.

It is not difficult to prove that the quantity £ is distrib-
uted uniformly from 0 to 1. However, we have to limit the number:
of blts in the practlcal realization of this method. In an elec-
tronic computer this 1s associated wilth design (the number of
bits), in manual procedures this 18 associated with the need to
save time. Therefore, instead of a continuous population of num-
bers with uniform distribution, we use a discrete population of
numbers, If the computer has k binary bits, thils population will
consist of 2% numbers with identical appearance probabilities.
The number of binary bits in existing computers is so great
(around 30) that there 1s no reason to expect any inaccuracies
because of discreteness in the solutlon of problems pertaining fto
operations research. '

As an example let us consider the calculatlion of the random
number § from the uniform distribution of 0,1, limiting ourselves
to 7 bits. Tossing a coin, we obtalned the following sequence:
5=20,1, 1, 0, 1, 0, 1. On the basis of (1) we then obtaln

0 1 1 0 1 0 1
t=gtytetEtatatm=04

The calculatlon result was rounded off to 0.01, since this 1s
approximately the magnitude of the discreteness spaclng in the
case of .7 binary bits (1/128).

Practically, radioactive partlicle counters or radio tubes
with significant tube nolse are used as the physical generators.

The first method involves the following. If an even number
of particles has been counted at a preclse instant of time, this
corresponds to a reading of 1l; otherwise, 1t corresponds to 0.

The circult of such a generator 1s easily connected to a ccmputer.

In the second case the radio tube noilses are converted into
a series of pulses which play the role of the radiocactive parti-
cles in the previous generator.

Pseudorandom numbers are numbers derived by calculation with
a special algorithm without resort to physical generators. One of
the possible methods of achieving uniformly distributed pseudo-
random numbers (the means of a square) involves the following.
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Given an én—l — m=bit binary number
i By ==, 27 0,270 gy 27, (2)
The square of this number will have the form |
| =827, 2t+ CE b2 (3)

Let us isolate the mean bits of this number and assume

‘ Enﬁf(en‘-i) =a"" -|‘-l 2 +8"'_2"+2' .2"+:. . .+‘83_1';2.2-m. <L‘)

P
Anaiogously weican derive & ] ? ete.
Let us take as an example
| =3+ 141 +16+5§m-041

Squaring this by successive multiplication, we obtailn

‘ g.=7 T st etatat

; +etntetatmt

| bttt st

_ +Ef+&+ﬁm+bm+3m+'

| ot ottt ow

3‘? :=%+“'+ *\6+w+tf+w§+%{+mf%mm

As E we assume the followlng number (because in our example m

is odd instead of the resulting (m/2) + 1l = 3.5, we take 3,
ete.): \

1 0 1 0 1
En == "§'+ "4"+_8'+E }—\52 - 0'66'

The danpger encountered with such methods is "degeneration"
(getting zeros !in all bits, the formation of cycles of repeated
sequences, etc.).

Let us note that on obtaining pseudorandom numbers 1t is
absolutely necessary to carry out a statistical verification of
these numbers Qof the mathematical expectation, dispersion, and
the distribution function)

B. Derijvation of Random Quant1t1es Distributed According to Ar-
bitrary Lawg

Let a random number‘ki-be derived from a uniform distribu-

tion from 0 to 1. This has to be transformed into a random num-
ber from a sequence with a given distribution function. There are
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2 basic methods for thils transformation: using the properties of
an integral distribution function and the propertles of the dis-
tribution laws.

. We examine the first method. In the theory of probabllities
[71] it is proved that 1f the random quantity & has the distribu-
tion density f(x), the dilstribution of the random quantity

E C '
Sf(x)dx (5)
_ o ,
1s uniform from 0 to 1.
Proceedlng from this property, the rule for the derivation
of numbers =z distributed according to the given law f(z) will

'be the following. We obtain A; from a uniform distribution in

the 1lnterval 0-1. We find the quantity z, by solving the equa-
tion

Xy

lifx'g [(x)&x. ! | : (6)

-0

As first example'we examine the transformation of the quantity
Ai into xi_distributed with probabllity density f(x) = 2z in the

interval 0-1. On the basls of (6) we write

. x‘ -
= {2xdx, (7
1]
A=, (8)
Hence ‘ '

As second example we present the formula for the derivation c¢f
the random numbers E distributed according to the exponential
law

f (E) —=ae M, (9)
On the basis of (6) we write
Eq _
di= e MdE=1—e ad (10)
—
Hence by - L In (1 2.

Having taken into consideration that 1 — A i1s distributed accord-

int to the law of equal probabllity, as is l ;o We can simplify
this formula

f=— Lina,
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We can proceed analogously to find the numbers x. distrib-
uted according t¢ the Weibull law. For this law

(x|_x )
x; _ -
S;f(x)dx-;l-e o (11)
; _‘(X,.-.t" ym
‘ Then 1;:‘:—1’—6 * ' (12)

Here z ., mand z, are the parameters of the Welbull law; \; are
the uniformly distributed numbers in the interval. 0-1.

- The formula for the derivation of the numbers ' »r, distributed
according to the Raylelgh law 1is derived analogously:

| r,-_—ayzm(l-'z“,) - (13)
Here o is the parameter of the Raylelgh law.

\ .
This 1s a;universal method. However, in a number of cases
-1t cannot be used conveniently on a computer. This occurs when
1t 1s impossible to take the integral and the table for the in-
tegral distribution function has to be introduced into the com-
puter memory. Then it 1s possible to use the second method which

involves utilifation of specific features of the laws.

Glven that we have to find a numbepr distrlbuted normally.
We must elther utllize tables or the Integral distribution
function, or to recall one of the basic properties of the normal
law, involving the fact that the sum of a sufficlently large num-
ber of numbers [distrlibuted according to arbitrary laws will be-
distributed according to the normal law.

We will cﬁlculate the numbers x, by means of the formula

| o "
‘l' ' x,-:zlj. _ - (14)

where_xj are distributed uniformly from 0 to 1. According to
the foregoing,ithe numbers x, will then be distributed according
to the normal law. The mathematical expectatlion and the root

mean square deviation of the quantities z, wilill be
| M'(x,.):_;i, (15)
- _ (16)
| a(x,) 2',.3. Vﬂ .

If the requiredfnumber y; must correspond to a normal sequence
with M(y ) = a end oly;) = g, the resulting number x. must be

‘ _transformed in the following way

\
i
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;Ii=;r;*f+a- : (171}
2wy

Practically, the normal distributed random quantities are derived
in this way. However, for close correspondence to normal distribu-
tion the number of terms must be sufficlently large (on the order
of 10). To reduce this number we employ the followlng transforma-
‘tion: '

) 3
X (2% K
: a‘*]_/:n_-'- 20’1< Yn nl'r_l-)" (18)
The distribution law for @, with n = 5 1s sufficlently close to
the normal. A transformation of the following type ([12]

_ R . .
x 41 [ A e XL (19)
“f:-T},;—[‘—" W<T 105-+ 15)]
makes 1t possible to achieve good agfeement with the normal dis-
tribution when n = 2, .

For the second example of the utilization of this method,
let us consider the derivatlon of the quantities distributed ac-
cording to the Raylelgh law. We know that the modulus of the ran-
dom vector is distributed according to the Raylelgh law. Hence
follows the rule for the derivation of numbers distributed ac-
cording to the Raylelgh law:

we obtalin 2 numbers xi and z. from the normal distributlion
with 0 = 1 and ¥ = 0; t

-.- we find the number r; :Vx: —}—z:. (20)

This number will correspond to the number from the Rayleigh dis-
tribution with the parameter o = 1.

Analogously, we can derive the quantities from the Rice dis-
tribution ' '

r-tat

P=Se ™ 1,( %), (21)

a?

where-lo(ji) is a Bessel function;

a and ¢ are dlstribution parameters.

Taking into consideratlon that this law describes the pro-
bability distribution of the modulus of a random vector on a
plane with independent components which have the dispersion ¢ and
a mathematical expectation different from zero, we will use For-
mula (20) in this case as well, but as z, we will take a number

from a normal distribution with ¢ = 1 and ¥ = a # 0, 3ince in
this case we obtain the magnitude of the modulus of the random
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vector for which the projections are independent and distributed
according to the normal law wlth M # 0.

If we require numbers from the Simpson distribution, these
can be derived‘by summing two numbers from a unifeorm distribution,
since we know that the sum of two uniformly distributed quantities
is distributed according to the Simpson law.

Numbers from the x* distribution with one degree of freedom
can be obtained by squaring the numbers taken from a normal dis-
tribution with mathematical expectation 0 and dispersion 1 (squares
of normally distributed quantities with mathematical expectation
0 and dispersion 1 have distribution x? with one degree of free-
dom). The derivation of the modull of normally distributed quan-
tities, of a logarithmically normal distribution and of other
quantities presents no difficulties.

In conclusion of this section we consider a method for the
derivation of random numbers distributed according to the Poisson
law }

\

P (k) =% (22)
with mathematical expectation a.

We use the Polsson limit theorem if P is the probability

of event A in a single test, the probability of the occurrence of
k events in n independent tests as n + « and P + 0 1s asymptotic-
ally equal to P(k). _

We will model series of » independent tests in which the oc-

currence probability for events A 1s given by P which 1s on the

order of 0.1- 0‘2 In this case, the following condition will be

satisfled between a, P and nt

p.=2, | (23)

which c¢an be achieved by appropriate selection of the test number
n. For the numbers x distributed according to the Poisson law

we- should then select the number of cases of the actual occurrence
of event A.

C. Obtaining th? Realizations of Random Functions

In a numbe% of cases 1t becomes nhecessary to obtain the real-
lizations of random functions. As an example of such realizations
- we can clte the temperature of alr, the speed and direction of
wind as a function of altitude, engine thrust as a function of
the time of engine operation, the fuel consumption in the fuel
tank as a function of the distance traveled, etc. It 1s impos-
sible to reduce the problem to the determination of random quan-
tities at separate points, since a correlation link — these quan-
titlies are dependent — eXists between the quantities at the indi-
vidual points.
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Let us stress that random functions must be distinguished
from the nonrandom functions of random quantities (for example,
the nonrandom function of aircraft flight range relative to the
weight of the charged fuel which is a random quantity). The deriva-
tion of nonrandom functions of a random quantity presents no dif-
ficulties (with one of the methods described above, we obtaln a
random quantity and calculate its function).

The function whose ordinates for any fixed values of the
argument are random quantities is referred to as a random func-
tion z(t) of the argument ¢t.

The basic characteristlcs of the random function are its
mathematical expectation mx(t) and the dispersion Dx(t), nonran-

dom funectlons of the argument, and the normed correlation func-
tion rm(t1, t2), a nonrandom functlon of two variable values of

the argument at two points. All these characterlstics are deter-
mined by processing experimental data by the conventional methods
of mathematlcal statisties.

‘ For any kind of transformation, as well as for utilization
in models, a random function ig convenlently presented in the
form of canonical expansions, the method for whose derivation was
deve10ped by V.S. Pugachev [64]. .The random function is written
in the following form: ‘

X, (t)=#z(t>+ﬁ Qv,-f;-«)- (24)
=1

Here x. are independent random quantities wilth a mathematical
expectation equal to zero;
f (t) are nonrandom functions of the argument, which are also
known as coordinate functions.

Without dwelling on the derivation of the formulas for the
caleulation of D(z.) and f;(t), we will present only the final
results, taken from ReIerence [25] '

‘ Let the following be determined by experiment: the mathemat~
lcal expectatlion, the dispersion Dx(t) and the correlation function
Kot t)=ry(ts 1)V Dy (@,)D:(l) of the random function X,(t). We denote

X=X, —~m.() =Y xf: 0. (25)
I=1 ’

Calculate the dlspersions x, = D(x ) and r; (t). We can use

the following recurrence formulas for the calculation of f (t .J
and D(x ):
-1 )
K (n. )~ Y Dl (t fa(t))

iy = o - (26)
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Fig. 2.2.1

It should be borne in mind in this case that when 7 > 7

and f.(t,) = 1,

shown in Fig. 2.

EXAMPLE. Present the random function glven by the following
matrix of correllation moments .in canonlcal
.the values of the correlatlion function).

| N .
The sequence of calculation 1s the following (we limit our-

1.e., the coordinate functions have the form

2.1.

Fe(ts) =0,

TABLE 2.2.1

t; . .
\\L\ 1 2 3 ‘ s
“ .

i LI B —

[ I
(=]
ee
B
[N
e=e
Pl
Qoo —
coeo |
3338
=]

G0 NI D LN

selves to ftwo values):

- Dy==Ke (fu 1) = 0,16,
o ’:l ([l)ml.lol -

=(lis )" 0.14
fi (l:)=£“%—i=b'—m=0.87.

b ) = =gt = =0.50,
Ky (’lil ) ._9'05 _
[i(ty) = D.M_HOH.TB“O 3,
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Dy = Ky (fai &3) — [+ (¢2))2 D, = 0,20 —0,872-0, 16 == 0,08,

fr (1) =0,
\ fr{ta) = 1.0, _
fg(f,)=K= (4 L, ).‘-—D‘f: (f,)f,(l,) 0, 18“0.3(?6228%0.69::'1-05-
fa(ty) = K.(ls; ‘)-._-D flx (t2) fy (L, ) 0. l7—0.(1)6(-)g.87-0.50m1'25.
oty = Keltsi t— Dgl, (D1t 014 -0.16:0.87 0, 3'==_1.21;

= Kz ()i t;) "'{[fx (£ D. +fa (#2)]? Dy} =
=0,23 —0,691.0, 16-]-] 05’ -0, 08 =0, 07.._
Foe =0,
fa(ta) =0,
L) =1,0.
K:Uu D—(D:F (8 Fa (8 )+Daf=(t )f:(‘q)]

D,

020-0 16069050+0 081 051 25
0,07 .

:tlns—'Dltals D:litl:’l
h(l‘)mK( ) [nf()g'ft)-l- fa(t) F2 (8)] _

0.19—-0.16'0.69 0.31 -+0.08:1,05-1,21
0,07

= K: (tai t) = {[h (22 Dy +{F2 (L1 Da +1h (14)}' D)} =

...0_26 10,5070, 16 4 1,252.0.08 + 0,572.0,07 = 0.07, -
foth) =ftta) =fo(t;) =0,

Iy (te) =

==0.57,

=0,77;

fo(t;) = 1.0, _
Kz (L 1) Dif s (¢ )fl(ta)""D T2t )F a(¢s )+D fs (f.)f Us)]
folty) = D,
022—~016050031+008125121+007057079 a
== 0 07 __0|55|

Dy = K (ts; 85} == {{F+ (t)13 Di 4 [Fa (£:))3 Da + [ ()12 Dy -
+ [f4 (1)}2 D} = €,28 - 0.312.0,16 - 1,212.0.,08 + 0.772-0,08 +-
4 0,552-0.07 == 0,09,
fa(’l)" fa(tz)—fs(‘:)—— ’s (1) =0,
fa{ts)=1,0.

The coordinate functions calculafed In this example are
shown 'in Fig, 2.2.,1.

If a canonlcal expanslion of the random function has been ob-
tained, there will be no difficulty in obtailning its random real-
1zation. Indeed, in this case it is enough to have »n random num-
bers E) exhibiting the dispersions D and the required distrlibu-~

tion, which 1s accomplished 1In the manner demonstrated in the
previous section, followed by the calculation
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X () ==me () +x.f (),
X (t)=m (L) +)§1f1 (ts) - xafs (tsy)

: X ()= m, (ta)+2xifi {ta)s _ ‘ (28)
' =1 -

*(ta) == ms (t,)ngz_xif_; -

This method of\deriving random functions is most convenient for
a computer, although not the only method.

We frequently encounter uhe so~called stationary random func-
tions for which

| | me (ty==const, (29)
i Kq (b t) =Ke (s), (30)

where T = £, — tl, l.e., with stationary functions the correla-
tion furction is independent of the magnitude of the arguments,
but depends exclusively on thelr difference. The dispersion of
the stationary function 1s constant.

For statibnary random functions, rather than the canonical
expansion, it is simpler to obtaln the so-called spectral expan-
slon, i.e., the representation of the expansion in the form of
the sum of harmonic oscillations exhlibitlng various amplitudes
and frequencies. This expansion may be interpreted as a special
case of the canonical expansion in which trigonometrlic functions
'play the role Qf coordinate functions. In the interval -7 + T

x(t)zg(x;,cos .zt—|—x,,sm u‘) (31)

i=0

where n 1s a sufficlently large number,
X1 and lei are random numbers, the dispersions for each pailr
it 4 >

of which are equal to one another and on the basis of the
famillar correlation function are determined from the
following formulas:

| ij(ﬁ)df | (32)
| D,-::,-—j « (1) cos 7, . (33)
| ’ |
With the spectral expansion of the random function, it is

rather simple to achieve its random realization, using the randor
numbers and- pormula (31).

D. Formatiaon oﬂ Random Flows
| ) .
First of all, let us note that in the case of complex flows
it 1s best to %ntroduce experimental data into the model. Here we
1
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will examine the formation only of the simplest flow and we refer
the readers to References [12, 13] in which are discussed methods
for the formation of random flows with uniformly distributed in-
tervals between calls, methods for the formation of Erlang [sic]
flows, generalizations of Erlang flows, flows with fixed minimum

time, flows with varilable parameters, as well as for flows of more
general character.

°

Thus, glven the requirement for the formation of the simpiesv
flow, 1.e., determine the times\tk for the arrival of requlsitlons.

Let us represent these times in the followlng form:

t, =t
ty=8 +E,

. , .
W=Vt (34)

The function for the density of any intervals between calls E
for the simplest flow has the form :

[()=a™. | (35)

Therefore, the construction of the realization of a flow of sim-
plest events can be reduced to the formation of a sequence of in-
dependent random numbers dlstributed exponentially. The method
for the derivation of such numbers was covered earlier.

EXAMPLE. Formulate the simplest flow with A = |.

From the table of random numbers we obtain fhe numbers Ai

distributed according to the law of equal probability from 0 to I;
we will transform these into numbers distributed exponentially by
means of Formula (l10) and we will then determine the times of

event occurrence by means of Formulas (34). The calculational re-
sults are presented in Table 2.2.2. ' ‘

TABLE 2.2,2

n 1 2 3 4 5 [
n . |0.66674 | 0,99279] 0.24202! 0,94010] 0.60981| 0, 13094
By o — 1o |3.033 lo.277 |2.814 [0.939 (0,14
l \ . B
-_[ ln (l“"k‘)
n . : R
ta ==:£:e. 1.110 ~ |5.044 |5.321 |8.135 [9.074 |[9.215
i=l . - .
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E..Mode1ing of handom Events

In statlstical tests it frequently becomes necessary to an-
swer the guestion whether or not a random event occurred, if its
probability 1s known For example, we conslder a battle between
two tank groups. A salvo has been fired. The probabllity of tank
damage 1is known The question that has to be answered: was the

tank damaged on not.

First of all, let us consider the case in which this event
is independent of all others. In thils case, we have to select a
number Ai from|the population of numbers uniformly distributed

from 0 to 1 and compare that number with the probability P of the
subject event:

If P > A, i event A occurred;

\
|
f Ir P < l i event A did not occur.
It 1s easy to prove that with a large number of tests the fre-
quency of event A determined in thls manner colncides wilth 1ts

probability [13]

With thislmethod it 1s possible to form more complex Iinde-
pendent eventsi As an example, let us consider the modeling of
two dependent random events: A having the probabililty PA and B

having the pﬁobability PB. Moreover, we know the conditional pro-

bability P(B/A) of event B for the condition that event A has oc-
curred. ‘

We derive A as the random number from a population uniformly
distributed in the interval 0-1. If A < P,, we assume that event

A has occurred. In this case, for tests with event B we employ

the‘condit*onal probability P(B/A). We obtain X, , and if A, <

< P(B/A), we assume that event B has occurred. In the opposite
case, we assume that event B has not occurred.

If A > PA, event A has not occurred. In this case, for a

test associated with event B, we must use the probabllity

o —P,P(BA) -
P (BE) =L 1_‘}»,\‘3‘ e (36)

|

|
i.e., the probability of event B for the conditlion that event A
has not occurred At the conclusion of thls part we will recall
the relationship of the correlation coefficient forevents A and
B [»(AB)] with\ the events probabillties PA and PB and the condi-
tional probability P(B/A): '

PP (B/A)— PPy

r(AB)== -
@n) 2N P Pgll =Py * (37)
EXAMPLE. The probablllty of the first and serond arflllfry
sheils fired at a target from an automatic canon s equal to O.f,
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l.e., P, o= 0.6 and Pp = 0.6. However, these events (the shells

hitting the target under conditions of firing from an automatic
canon) are dependent In view of the presence of common firing
errors. The probability of the second shell hitting the target
under the condition that the first shell has hit Is therefore
higher than 0.6. Let it be equal to 0.8 [P(B/A) = 0.8]. We have
to model these random events. '

Using the table of random numbers uniformly distributed in
the interval 0-99999 (Table 2 of the appendix), we find the ran-
dom number 57705, This will correspond to a number from those
unjiformly distributed in the Interval 0=

57705 * .
’\l = "9_'9_'9'9_9 =0|57705| )

A1 < 0.6; consequently, event A (the first shell hitting) has oc-
curred., In this case, to determine whether or not event B oc-
curred, we use P(B/A) = 0.8.

We determline

o 71618 ‘
| ?s; = 55655 =0.71.5|_8<Q.8.:

Consequently, the second hit also occurred.

If the relationship between the events were not taken into
consideration, Az > P(Bg = 0.6 and we would have to assume that
the event did not occur.

§2.3. EVALUATION OF ACCURACY IN RESULTS DERIVED BY THE METHOD OF
: STATISTICAL TESTS ‘ | ;

The problem of the accuracy of the results derived by the _
method of statistical tests is a fundamental question in the meth-
od, since essentially it governs the applicability of the methed.
Indeed, 1f the method of statistical tests is to be used to select
a solution from among many, and for the evaluation of each of
these many solutions with a sufficiently high degree of accuracy
we have to derive a large number of reallzations, 1t may turn
out that the expenditure of machine time will be so great that
we will have to reject the application of the method.

A. General Problems in the Evaluation of Method Accuracy

: There are three baslc reasons leading to errors in the appli-
catlon of the method of statlstical tests:

inaccuracy in the determinatlion of the input data;

methodologlcal errors assoclated with simplifications of
the model and failure by the model to make allowance for certaln
factors;

errors assoclated with smallness of the selection and, more-
over, calculation errors which, as a rule, can be neglected.
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The accuracy of the methcd can be described by the follow-
ing formula: |

Geu = 2(35‘) + +a' - (1)
i=l

where Usi is the total root mean square error of the method;

X 1s the criterion determined at the concluslon of the
application of the method (the mathematical expecta-
tion lor the root mean square deviation of some quan-
tityJ the probability of some event);

u. represents the factors affecting the magnitude of the
criterion,

o] 18 the root mean square error in the determination of
i the magnitudes of these factors;

o 1s the methodological error. The determination of this
error when, for simplification of the model, after in-
vestigation of the effects of various factors we ne=
glect the secondary factors, 1s not difflcult

In= 2 (dm ‘uu)’ (2 )

k=1 L
where M repreeents the magnitudes of the factors whose effect

we have neglected However, if this error, arising as a result

of impossibility of describing the effect of any factors by analy-
tical relationships, such a model must be checked out by other
methods (testing of the physical model, evaluation at limit as-
sumptions, etc‘) in order to arrive at a conception of the mag-
nitude of O | :

o 1ls an error assoclated with the small number of realiza-
tions. In the following sections of thils chapter we will examine
the magnitude of this error in detail.

|

It should be borne in mind that a change in the magnitudes
of the components in the total error in those cases in which they
are markedly smaller than the remalning does not lead to a sig-
nificant change in the total error. Therefore, if any of the com-
ponents is sufficiently small (on the order of 0.5 of the largest),

its reduction leads to no notlceable lowering of the total error.

If the detérmining error is the error due to ilnaccuracies
in the determination of input data, the permissible error from
limitation on the number of realizations can be determined from

the formula i

 em0s 2(0». m) W

lml

| o If o is 1ndeed smaller, the number of realizatlons can be
reduced :
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In constructing a model we should also analyze such problems
as the possibllity of model simplification. This increases the
methodological error, but reduces the time spent on achieving one
reallzation and at the same time for a given machine time makes
1t possible to increase the number of realizations and, conse-
quently, to reduce the error resulting from the smallness of that
number. Thus it 1s possible to find the optimum complexity of the
model assuring the minimum magnitude of the total error for the
given machline time.

Below we examine the errors assoclated with a small number
of reallzations. :

B. Accuracy of Determ1n1ng the Mathematical Expectation of the
Sought Quantity

As a result of ¥ statistical tests we havé obtained the fol-
lowing values for the sought quantity: Tys Tos w3, rers Xy and
. we have calculated

= llN
x*—“ﬁzx.,-—v,“ | (u)

N
S=yhy—an (5)

T

The quantity x is taken as the mathematical expectation of
the sought quantity.

In mathematical statistics (see [71], page 215) the follow-
ing 1s demonstrated

vampmb(——eg._x--—-x <), (6)

where z¢ 1s the true value for the mathematical expectation of
the sought quantity;

:S . ’
e'_-*_‘tuﬁ' (7)
ta 1ls the o function and ¥ = ¥ — 1 for the Student distribution
whose values are given in Table 4 of the appendix.

In order for us todetermine the mathematical expectation
of the criterion such that the error does not exceed a glven val-
ue for a plven degree of reliability, we have to use Formula (7)
and the table. FFor convenience in introducing the tables in the
appendlx into the computer, approximation polynomials are of—
fered.

The root mean square deviation of the quantity x — zo ac-

cording to [71] is
- T "
('_ o)""ﬁl/'._.g. (8)
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This formﬁla should be used when we have to calculate total
errors, for example, by means of Formula (1).

The cited formulas make 1t possible to evaluate the accuracy
of the derived results or to evaluate the adequacy of the number
of 'realizations.
| EXAMPLE Determine the mathematical expectation of a quantity
calculated by #he method of statistical tests if It Is requlred
that the error not exceed 7% of the mathematical expectation wlth
a probabllity of 0.9.

|

[+ 1Is mosﬁ expedient here, after derivation of each realiza-
tion N, to calculate ® and § according to Formulas (4) and (5);

then, from a =1 0.9 and k = N — | In Table 4 of the appendix to
find t, and by means of Formula (7) to calculate the € which is

then referred to z. |f this quantity Is equal to 7% or less, the

calculation can be curtalled. Otherwise, It must be continued.
The lnd(c§+ed method (s carried outf well on computers.
Table 2.3}! shows the results of calculations by the method

described. For the number x, we have taken the random sequence

|
of numbers from Table | of the appendix, beglinning with the 2Ist
number, Increased by 5.

TABLE 2.3.1|

| . - R . x

N 2y - S . . 3 s

‘ ) .

| S . L
1 4,33 4,33 = — — — —
2 5:6] 4097 0!64 - i T — _
3 .6,15 5.36 0,72 | 2,920 |1,21|0,23] —
4 4,91 5,25 0,62 2,353 10,73 0,14 ] 0,54
5 4,10 5,02 0.71 | 2,132 | 0.67 | 0,13 ] 0,45
6 4,30 4,90 0.69 2,015 [0.560,1210,3
7 4,64 4.86 | 0,63, 1,943 | 0,47 | 0,10 0,29
8 5,05 4,89 | 0,59 1,902 0,40 | 0,08 | 0.23
9 5,56 |. 4.96 0,59 | 1,860 | 0.37 | 0,08 | 0,23
10, G.28 5.09 | 0.68 1,836 | 0.40 | 0,08 | 0.25
11 3,82 4.98 0,74° | 1.812° 10,41 | 0.08] 0,25
12 4,34 . 4,92 0,73 1,797 | 0.38 { 0.08 | 0.23-
13 4,32 4.8 [ 0,71 1,782 0.36 ] 0,07 | 0.22

3

‘Iimltation may also be set wi+th respect to o, in which
case |T has To\be calcdilated by means of Formula (8) and compared
with the given

C. Accuracy of Determining the Sought‘Root Mean Square Deviation

As an appﬁopriate value for the root mean square deviation
we assume S, calculated with Formula (5).

In mathematical statisties([71], page 217) the following is

demonstrated: |
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¢=P;ob-[3§;qa], ' (9)

‘where o is the true value of the root mean square deviation;
q 1s determined by means of Table 5 of the appendix on the
basls of o and k = ¥ — 1,

Reference [82] presents an approximate formula for o(8)
which 1s 1in good agreement with the exact formula

T YIN=14"
Formula (9) 1s used for the case 1n which we have to deter-
mine 0 with an error not to exceed the glven value. In this case,

the required number of reallzations can be determined prior to
‘the start of the tests.

a(S) (10)

_ Formula (10) is used 1in those cases in which we have to de-
-termine the total error. Its application is made difficult by
the fact that the quantity o (general dlspersion), as a rule, is
unknown. With a sufficiently large number of tests in this case
instead of o we must assume approximately S.

EXAMPLE. FInd the number of realizations for the determina-
tion of o if we requlire, with probabillty 0.95, that it not ex-
ceed the true value by more than 20%.

By means of Table 5 of the appendix, having taken g =
= (1/1.2) = 0.834 and a = | ~ 0,95 = 0.05, we find K = 50, whence

N=K+4+1=5041=>51,
D. Accuracy of Determining the Probability of Some Event

‘ Let there have been carried out ¥ tests in which the subject
event occurred m times. The probability @®f this event occurring
will be defined as

P=3 (11)

The root mean square deviation for P from the true value (Py)
can be determined by means of the following formula:

o (P) = Pl “;‘ 0. (12)

Thls formula is useful in evaluating the total error of the
method; however, not knowing the exact magnitude of Py, makes the
utilization of this formula more difficult. Occasionally, instead
of Pp we have to assume P approximately.

In determining the probabllity P by the method of statis-
tical tests, 1t is frequently necessary to determine the proba-
pility a that P will not differ from the true value (Py) by more
than a definite quantity AP, or by a quantity AP = |P — Py | which
will not be exceeded, with the given probabllity a. The guantity
AP is Xnown as the confidence interval.
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|
i
|

We have to use Table 6 of the appendix to determine this
quantity. In N statistical tests, if the subJect event has not
chnsurred a aingle time, we find Ry from Table 6, and from this

WL owe nzlAauilzee
e T

Pa=g. (13)

. The quantity Av is the upper confidence boundary and the lower
’ |

confldence boﬁndary in this case is P = 0.

In ¥ statistical tests, 1f the subject event has occurred
'm times, according to o, m/N and m we find the coefficlents Ry
and Ry in Table 6, and by means of these we calculate the con-
fidence boundaries

: Cm T

We should bear in mind that if

- . rw(PmPy=q, (16)
\1 B ' Prob(Pq:; P3)=¢..' . (17)
‘ then Prob (Py g P g Pp)=a,+a,— 1, (18)

| .
EXAMPLE. a) Durlng the course of the statistical tests we
have to determine the probablility of an event with an error not

exceeding 0.204 with a rellability of 0.90. For 20 tests we have
m= 3. g ' ‘
\

~ The question arises as to whether the derivation of the real-
izations should be contlinued or whether they can be stopped.

By means of Table 6, having taken m/N = 0.15, m = 3 and a =
= 0.95 [see - Formulas (I6) (17) and (18)], we find

. R: '-*‘-'3.56- Rl=0.43,

m
Py = NR, = 0,04, P,=0,35,

i Pron(0,04 &5 P << 0,35) =0,90,

AP, =035 omaom>3m 0,15—004=011, [.,e., do not exceed 0.20. Consequently,
the derivation of the reallizations can be stopped. We note that
APy > AP always, and we can *herefore limit ourselves to deter-
mination of APy

\
‘ b) For N = 20 let m = 0: glven a = 0.975 and a confldence

interval no hlgher than 0.20,.

From Tableiﬁ we find R = 3.37. Then P, = (Ro/N) = 0.17.

AP = 0,17 — 0.0b = 0.17 < 0.20. The calculation can be stopped.
‘ _ . |
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E. Accuracy in Determining the Function of a Slngle Var1ab1e in
the Given Interval

Frequently, in solving operations research problems i1t be-
comes necessary to seek not one constant, but a function on the
glven interval of argument variation. Let us, first of all, con-
slder the problem in which the form of this function is known,
in particular, let this be a polynomial of degreen. In this case,
we have to determine the average magnitude of the root mean-
square error o, of the function on a glven interval and to se-

lect the method of determining that functlion so that for a given
number of tests we obtain the minimum Ogp to determine the func-
-tion Let the glven interval be 0-tT.

Let us consider the simplest case in which the sought funec-
tion is afirst ~-degree polynomial

y=F(=ax+B | (19)
in the 0=t interval.
To determine the coefficients of this polynomial we have to

calculate the values of F(z) at least at two points (x1; y1) and
(x2; y2). Then

=y, o 0 5 (20)

The quantitles x, and x», contain virtually no errors, and
y1 and y: are determined experimentally with errors characterized

by Uyl and oyz, a result of the limitations on the number of
tests.

On the basis of the theorem of linear function dispersion,
we can write

2 x,—x x —x\? o
= (xg — x. %, + (x, — X %

_ 1 Xy —Xx\? 2 fx—x, \? 2 .
Oep, TS[(x:-—x. av-+(x.—-x.) ]dx
. . 0
] (e +¢ )—-3‘\:(4#.1‘,'-l-.:z',cvy.)-}-ii(x2 " +x, h)
- eI - (21)

Let us now seek the optimum quantities z: and z, at which O;r1 is
minimum. Considering that c ry 1s symmetric with respect to t/2,

we can conclude that the optimum variant must be the one for
which

c‘h r::a“-__"oy mﬂ. x,:.—:: _-xl‘
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Then

212q2 .-*-.‘6':-09 ’x, -_i- 36.9 x5
"":p.: 7 y_3_(1_‘:2x‘): Lt (22)
‘ t)ugp. v " _
From the condition ‘75f==0 we find xy = 0, 1.e., the points *q5

and z,, Y-, should be set at the ends of the interval.
Y1 22 Yo 5 ,

In this casé the calculations show that g, =0,817¢,. Analogous

studles were carried out for polynomials of hlgher degrees. It was
assumed 1In thls case that the points =i, yi1; %2, y2; ... are sit-
uated uniformly 9ver the given interval, beginning from the ends,
and that thelr number 1s minimum, i.e., equal to the power of the
polynomial plus unity. Studies show that the minimum number of
polnts assures a minimum Isp, * Analysis of the formulas for Gsri

\

makes 1¢ possiblé to select the optimum distribution of the num~

ber of tests oveﬁ the points. If we assume that %‘==#%? where

n. is the numberiof tests at the gilven point, and if we impose
n+l ’ '

the condition E:h;==N, we can determine the optimum'ni ensuring

=1
the minimum o . Corresponding data are presented in Table 2.3.2.

3r': |
That table also shows the coefficlent K: from the formula
| ) . :
| o
|

o, m=—e.
| T /N 2
| 43 (23)

\ ] .
In a number of capes ¢ 13 unknown and we have to assume S for it.

\
TABLE| 2.3.2

Values of K,
ol .a_-e &‘ For the moat ads=
palnaminl L e Bt W Trnce | RaRELCS! | vintaneaia i
t ot "1 T mumher of teuty
0 ’ 1. 000N 1,00 1.00
1 \ 0.500N; 0,500N . 1,34 1,34
2 0,250N; 0,500N; 0,250N 2,40 2.14
\ 0.153N; 0,347N; 0.347N . -
3 ! 0.153N 3.69 3.22
4 0.112N; 0,280N;" :
| 0.216N; 0.280N; 0,112N 5.3‘3-‘ 4,71
| 60N 012N ) 8.3
0

However, in a number of cases the exponent of the sought
function is unknown. In this case, in addition to the error due
to the small volume of selectlon at the reference polnts, there
may also arise an lerror due to the form of an improperly selected
function. Let us consider the problem of this error. First of
all, let us see what results from the selection of a first-degree
polynomial instead of a second-degree polynomial under the condi-
tion that the mean magnitudes of all terms in the given interval

(0-1) are equal to each other.
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In this case the true polynomial is written as follows:
.‘;_”a; i g |
Mn~—;§fﬁ§(:r+";ﬁ-1) (24)
where Op is the root mean square value of the sought function in

the given interval.

If instead of this polynomial we take a first-degree polynomie
for which the quantities y coilncide with the corresponding values

of y» from (24) at the ends of the interval, the polynomial will
have the following form:

=it (T H1). (25)

The root mean square error in the subject interval 1s deter-
mined in the following manner:
. ‘ ' 2

im==§IWni"yuﬂ'dx¥=§§- o (26)

It turns out that osr2 is also a functlion of the comblination

of the signs of y(g). If we assume all combinations?of signs to be

equiprobable, analogous calculatlons for each combination of sign:
and the average o, will give us

9ep, = 0,3759, = K.a,. \ | (27)

Analogous calculations were carried out for other cases as
well. Table 2.3.3 shows the coefficlents K, where the degree of th
true polynomial is equiprobable from 0 to ¥, and the degree of the
adopted polynomial 1s =. _

In practical applications it 1s difficult to expect that the
sought function will exhibit a large number of extrema and in-
flexions, and for this reason 1t will, for all intents and pur-
poses, always be well approximated by polynomials of the 3rd-4th
degrees.In any event, we can expect that M < 6.

TABLE 2.3.3
M '
1 2 3 4 5 6 . 7
| n :
0 0,000 0,270 0,353 0.453|0,502 (0,556 | 0,591
1 0,000 0.0000.125|0,252|0.33910,435; 0,533
2 0,000]0.000!0,000|0,026|0,053}0,087 | 0.119
3 0.000] 0,000 | 0,000 | 0,0000,005 | 0,013| 0.920
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Let us now consider the problem of selecting the optimum
degree of the approximating polynomlal. The total mean error of
the sought function in the given interval (taking into considera-

tion that Oep and Osp, BT€ independent)
o e ’Kn ’
acp—V c,,,+c,,, =)/ K (28)
Cup VmaK +K2|
where‘}
' a .
’n_cFVﬁ' , ' L (29)

Since K; and K2 for fixed M are functions of xn, o r/UF will
be a function of n and m. S

The calcula?ional results are shown in Fig. 2.3.1 from which
we can- see that there exists an optimum quantity » which is a
function of m. The physical significance of m 1s the followlng:
it is the relative accuracy in the determination of the function
at the reference polnt. The higher this accuracy, the greater the
degree of the polynomlal that should be assumed, With m > 0.2 it
1s advisable to take n = 2; with m < 0.2, the quantity »n 1s best
taken as equal to‘3

EXAMPLE. Flnd the probabiiity of target damage as a function
of the ratlio of the radius of the damage zone to the root mean
square devlaflon k = »/0 In the interval R, = I- ; In this case,
P=§l% dR I's cchula*ed by the method of s+a+is*lcal tests.

(This example was, selected only for convenience In comparlson with

exact results, slnce In actual practice this function is calcu-

latiad analyflcally) We can carry out 100 tests Yo calculate this
function.

mgy
ma2

- maQ !
meQ0S
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Regardless of the degree of the polynomial, in the form in
which we will seek the functlon we will have to carry out the
tests at the ends of the Interval. We can see from Table 2.3.2
that as a function of the degree of the polynomial, in which form

we will seek the function, from 50 to 11,2% of the tests will
nave to be carrlied out at the ends of the interval. Let us carry
nut cets of |l tests and determine ¢. )
For the point with By = 1 we will use the calculations shown
in Table 2.1.2, whence for n = 11, S(I) = 0.157, P(l) = [Ja=0446.
For the polnt with Ry = 3 we will carry out analogous calcu-
culations as a resul* of which for n = |! we obtain § = 0,590
. (3)
and P(3) 0.999.

We now calculate ¢ (for o we actually assume S):

52‘ +S2
qgsﬂl/i’T‘ﬂmo.ss.
Op = ‘/i)——z*"w=0,07.

L 0.55
s VN 0.7V100

m== =0,07,

Proceeding from m, we determine that the most advantageous degree
of the polynomial will be 3.

The distribution of *the number of realizations over the
points must then be the following (see Table 2.3.2):

for Ry=1 — 15 realizations
R,=1.67 — 35 realizations
Ry =2,33 — 35 realizations
Ry=3 — 15 realizations

Having carried out the corresponding calculations, we determine
Pi and Si'

TABLE 2.3.4

R 1 1,67 ’ 2,33 3
N 15 35 35 15
Sy 0,151 0.302 0,377 0.560
Py 0,464 0.736 0,978 0.933

P ==aR* 4 bR + cR +d.

Having substituted the corresponding values of Ri and Pi

into this formula and having solved the resulting system of equa-
t+ions for a, b, ¢, d, we will have the following formula for P:

P = —0,149R® 4- 0,71 1R* — 0,672R + 0,571, (30)
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Having calculated 0r=080 o= 0,375, m 20,06, by means of FJQ. 2.3.1 we
will find +ha+

uepgo,lﬂp‘-—‘ 0.08.

For compatison Fig. 2.3.2 shows the exact graph of the func-
tion and that obtained by means of Formula (30).

1 Fig. 2.3.2

F. Verif1cation of the Hypothesis Pertaining to the Magnitude
of the Mathematica1 Expectation

In Operations research we very frequently encounter a case
in which, of two variants (A and B) we have to select one, whose
mathematical expectation is greater than the criterion of mathe-
matical expectation of the other, In this case, neither the mathe-
matical expectation nor the dispersion of the criteria are known
prior to the investigation, and the criteria themselves are de-
termlned by the\method of statistical tests.

In this case prior to the start of the tests 1t 1s impos-~
slble to answer the questlon of the number of the tests required.
As the tests are carrled out, it becomes necessary to calculate
Gx =Xy~ T, the mathematical expectation and the root mean

. Z
square deviation of that quantity

! N

| By )

‘ . a/\.-—-——-j—v— Zax"

j =1

: N — (31)
! Sr==:L E (8x; —ax)™ ‘

Then, assuming that for the determination of each of the subject

quantities up to\N have been carried out, we calculate the cri-
terion

i = EyE @32)

Further, from Table 4 of the appendix, having taken K = 2 (¥ - 1),
we [ind the probability o that Xp > Te, i.e., that éx » Q. If
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this probatility corresponds to that which is to be obtained,
the calculetion 1s stopped. Otherwise, it is continued until the
required probabllity 1s obtalned.

EXAMPLE. Determine which mathematical expectation of the
quantities xp Or xp is the larger. The correct answer must be

given with probability 0.95. The resuits of the calculations are
shown in Table 2.3.5. The calculation can be stopped after 4
tests. .

TABLE 2.3.5 .
N %A x| Wy bx s ! K -
1 lo0.33| —o.19 052 los2| — | — | — | < ’
2 |1.61| 0,29 1032 | 0,92 | 0,40 | 2.30| 2 |o0.84
3 leois] 217 | —0.02 | 0,61 0,53 ] 1.64] 4 |0.82
4 |08l —0.63 1,44 0821056 | 2,54| 6 [0.95
5 |o.10] —0.11 0.21 |0.67|0.54 |25 8 |0.9

G. Verification of the Hypothesis Pertaining to the Magnitude of
the Root Mean Square Deviation

Occasionally 1t 1s necessary to select the variant (from A
and B) for which the root mean square deviation of the criterion
is larger than for the other. In this case we carry out ¥; Cests
for variant A, and on the basls of the results we calculate SA

and we carry out N, tests for variant B from which we calculate
' 55. It 1s demonstrated in mathematical statistics ([71], page

245) that

AP, (33)

where F is the function Ky = N1 — 1 and Kz = N2 — 1 and the glven
probability that SA > SB.

Table 8 in the appendix gives the values of the function F
for P = 90 and 98%. In that table we find selection for the case
Ny = N, (i.e., Ky = K») and for the case of the optimum ¥; and ¥Na,
by which we understand the combination of these such that for the
given N, + N, the quantity P is maximum. We see from the table
that the number of realizations for the variant with the smaller
dispersion 1s best made as large as possible.

EXAMPLE. A serles of 2| tests were carried out for each of
the two variants, from which it was determined that

SA=I10, Snﬂ&

We have to answer the question whether 5, is larger Than Sg

with the probablility of a correct answer at 90%.
Determine whether the derivation of realizaTions should be
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continued or whether it can be stopped. We have

Ka+Kp=21+21—1—1=40,

Sy 100
1 -S—Qm—sg-i:«:l,ﬁﬁ.
We see from Table 8 of the appendix that P < 90%, since
A/S2 = |.56 < '2.12. Consequently, fhe derivation of reallza+lons

must be conflnued

If we asste that with conTnnuaTion of the experiments SA/S

wnII not change, we determine from the ftable that to achleve P =
90% the iofaw number of experiments must be around |20,

{n the givbn case it is necessary to carry out a successive
analysis of the test results, increasing the number of tests for
The variant with the smaller dispersion so that Kz approaches the
optimum. The la++er, of course, yields a noticeable effect only
with a small number of tests.

lnfroduc+lon of the corresponding algorithm lnfo the com-
puter presents no diffnculties.

H. Ver1f1cat1on\of Hypothesis Pertaining to the Magnitude of Pro-
bability g

Finally, there 1s posslible the case 1in which 1t 1s necessary
to establish whether the probabllity corresponding to variant A
1s larger or smaller than the probability corresponding to variant
B. ‘

With a sufficiently large number of tests (on the order of
30) it may be assumed that

\ m : m
: A B
i PA_._‘__._.andPB__,..__B

will be distributed according to normal laws with the magnitudes
of the root mean square deviations

i g :;v/ifigjifﬂi. (34)
| -
| —|/ PB“ Pol (35)

In thiu case the differences ﬁf~—ﬁ% will also be distributed ac-

cording to the normal law with

|
| o=V d+a. (36)
\
Then the probability a that Py > P, can be determined from the
equation \
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a==F ,'
_ I/(Piu-Pg(+P§u-Pg- | (37)
N} N

If we assume P, = mA/NA and PB = mB/NB, which can be done only
with sufficlently large N, and NB, we have

. mp Mg
| Ny Mg
a="F 7 T on : (38)
l/mA (Np—mp)? _l_’"B(A'B_"‘B)'
M Ny
Here : )
| = _x ,
R 2 .
FQJ_'VE_Se dx, (39)
-—oo

The F(x) tables are given in the appendix (see Table 3).

EXAMPLE. Thirty (30) tests have been carried out, and the
event A occurred 15 times, and event B occurred |0 times. Check
the hypothesls that probability of event A is greater than event
B with reltlability a = 0.975,

15 10
30 30 _ ]
- ' = F(1,97) == 0,9756,
2=F 152 (30 — 15)=+ 107 (30 — 10) F(1,97) == 0,9756
304 304 .

i.e., check the probability that Pp > Pg is greater than 0.975,
and that the derivation of the realizations can be stopped.

I. Verification of Hypothesis Pertaining to the Presence of Rela-
tionships Between Two Quantities

In investigating the method it may become necessary to es-
tablish whether or not a relationship exists between the criterion
(x) and some other quantity (y), i.e., in other words, to answer
the question whether this quantity (y) affects the criterion. For
this we have to calculate the correlation factor by carrylng out
¥ tests to determine x and y:

N
X(xiyi —xy) (40)
r==t=___
— NS.S, .
We then have to determine the parameter ¢:

= Y2 - (41)

T Vi=n
Having taken the quantities ¢t and K = N — 2, by means of Table &

of the appendix find the probability that the resulting correla-
tion 1s not random.
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EXAMPLE. l% studying a model It was established as a resulf
of 20 tests that between the criterion and one of the factors
there exists the correlation factor » = 0.4. What is the proba-
bility that this relationship indeed exists?

04Vm—2

T YT=0.4v

From Table 4 of the appendix for ¢ = 1.23 and K = 20 — 2 = 18 we
find a < 0. 800,1i e., the probabllity of the existence of a rela-
tionship is not| sufficien+ly large for reliable affirmation of
its existence.

= == ],23.

In carrying out statistical tests the quantity o is generally
given. Then, after derivation of each of the realizations it is
necessary to calculate §, and S ; after this, from Formulas (40,

41) we calculate the quantities r and t and we use the table to
calculate a.

This quantity a should be compared with the gilven and de-
- pending on the result of the comparison, the calculation should
-be stopped or continued, Thls algorithm 1s easlly realized in a
computer. To simplify the computer calculations, the tables of
the corresponding functions give the approximate calculation poly-
nomials, convenient for introduction into the computer.

In workinglpractice we may encounter other cases of hypothesis
verification, e’g., hypotheses pertaining to the nature of the
distribution for the sought quantity. The description of these
hypotheses is gﬂven in courses on mathematical statistlcs, for
example, 1n Reference [71].

§2.4. MEANS OF REDUCING DISPERSION

Earller we considered the accuracy of results in the funda-
mental cases which may be encountered in application of the meth-
od of statistic&l tests. From thils consideration we see that this
accuracy 1ls sa fdnction of the number of tests carried out and
‘the root mean square deviatlon 1s approximately proportional to
the square rootwof that number. Thus if accuracy is to be in-
creased by a factor of 10, the number of realizations must be
increased by 100. This 1s by no means always possible. There
therefore arises the questlon of reducing the dispersion of the
measured quantities by other means. In thls case the reduction of
dispersion, in and of itself, cannot serve as the criterion of
method feasibilitv We must consider the magnitude of the disper-
sion for one andl the same expenditure of time.

We presently know many such ways. They can all be divided
into two groups:

1. A combination of statistical tests with analytical methods.
This may be the most effective way. It represents a unique method
of combating the "blindness" of the method.

|

&. Application of special selectlons. These methods have
much in common with those employed for analogous purposes in
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mathematlical statistics.

Let us examlne each of these procedures in greater detail,
although we should bear in mind that in specific cases they may
be used in conjunction with each other.

A. Combination of Statistical Tests and Analytical Methods

Let there be a requirement to determine the probability of
hitting a target represented by a cirecle of radius r for glven
rocket and control system characteristics. The model for the solu-
tion of this problem consists of two basic blocks: the block to
evaluate firing accuracy, at the output of which in each test we
obtailn the rocket deviatlons from the center of the target (ri)’

and a block to evaluate the probability of hitting the target,
thls unit being bullt in various ways. It may be built on the
principle of using the method of statistical tests. In this case,
for each realization of the first block a comparison of the de-
rived deviation r, with the target radius r 1s carried out. If

r, < r, the target has been hit. Otherwise, we assume that the
target has not been hit.

The probability (p) of hitting the target is defined as the
ratio of the number (mg of hits to the total number of tests (n)

p=-= (1)

This 1s a case in which the method of statistical tests 1s used
in "pure" form.

Another principle is possible for the construction of the
block to evaluate effectiveness. The data derived from the first
block are subJected to statistical processing as a result of
which the root mean square deviations with respect to range and
direction (cx and cz) are calculated. Let these be equal to each
other

g == d;==a, (2)

We assume these to be equal to the selected root mean square
S. In this case the probability of hitting the target can be de-
termined from the formula

(5 N S (3)

=]—e .

p: 1 —
where

‘ . (4)

e

Here we have a combination of the method of statistical tests
with the analytical method. Let us compare the errors of these
two cases.

According to the materlal covered in the previous section,
the error in the determination of p in the first case after N
realizations is



| ) 2 |
— s _e BTy, W (5)
— p(l—=p) __ {l—e )e _
’p."‘V"“‘“N_—"/ ] :

To calculate op; we will use the approximate equality

op 1 9 (6Y)
| °n= s | =7 95" s
Bl.lt\ . :
| - ot (7)
! S 7T
Wh@ré
- -
i =l
| w . e o (9)
| 36 = " o ' ‘
The}n
. LI
. . e 28 (lo)
‘ AT YT YN—O0,7 "
Hence I

Sp ___V_N*_O_Z.w Vz (eElF—l). (11)

Since p uniquely deflnes b, we can express o /0 P2 as a function

of p and ¥. The results of the corresponding calculations are
shown in Fig. 2.4.1.

Qn?éu

Fig. 2.4.1
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We see from the figure that there exist regions where the
first method is more advantageous, and regions where the second
method 1s most advantageous. When p = 0.05 the second method leads
to a root mean square deviation that 1s smaller by a factor of
3 than the second. And this actually indicates the possibility

of reducing the number of realizations approximately by a factor
of 10.

1 The cited example permits us to draw a concluslon as to the
effectiveness of combining the method of statistlcal tests with
analytical methods. The literature gives examples of considerably
more effectlive combinations. It goes without saying that in cer-
tain cases 1t may prove more advantageous to investigate the
first part of the model analytically, while the second part of
the model 1s Investigated by statlistical tests. '

B. Analysis of Reéu]ts Obtained During the Realizations, and
Adoption of Appropriate Changes in Calculation

In American literature this method is occasionally referred
to as "Russian roulette." The essence of the method may be il-
lustrated well by means of an example (see Table 2.1.2).

It 1s obvious that 1if z > 1or a, > 1, then r,>1 and
dm = 0., Consequently, if it turns out that ® > 1, the calcula-
tion need not be continued, but the assumption should be made
immedlately that the target has not been damaged.

If = < 1, we have to find s . If & > 1, 1t should be as-
sumed that the target has not been damaged. Finally, if x, < 1
and B, < 1, it 1s advisable to carry out one more verification.
Indeed, 1if z, < 0.7 and a, < 0.7, r<¥V0,7°4+0,77=1 and the target
1s damaged. This means that in this case r, need not be calculated.

We see from Table 2,1.2 that according to the criferion x, >

> 1 the calculation can be curtailed in T casesvout of 20 and
that according to the criterion z <1, but with 2, > 1, the cal-

culation can be stopped in 5 cases, whlle according to the cri-
teria x, < 0.7 and 2, < 0.7 the calculation can also be stopped

in 5 cases. Thus in only 3 cases out of 20 is calculation of r

necessary. Of course, in the subject example the calculation of
r, 1s not a difficult operation and the resulting savings 1n time

1s small. However, 1f the calculation of r, and its comparigcon

with r were the fundamental operations 1in terms of labor input
(this occurs in the more complex calculation cases), the calcula~
tlons could be carried out approximately 7 times more rapidly,
which would make it possible, within the same period of time,

to increase the accuracy of the derived results by a factor of
apporoximately 2.5.

In statistical modeling of military action, when great losses
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- have been infl icted on one of the sides, 1t 1s obvious that there
is no need to continue the calculation of this realization to its
conclusion, but rather, 1t may be assumed that combat with that
side has been lost. In this case, there arises the problem as to

what 1s meant by "great losses." Most frequently the answer to
thiz question can be given by analysis of the previous variants.

A clear example of the application of this method in sta-
tistical tests is given by analysis of the process of aerial re-
connaissance with consideratlon of weather. If it turns out that
the cloud cover screens the target, the calculation process may
be stopped under\the assumption that reconnaissance has produced
no effect. In this case, the constructlon of the model must be

-such, first of all, as to provide the information required to

carry out the evaluations, and then to carry out the difficult
caleculation. !

Any complex model must be carefully analyzed and criteria
for the cessation of calculation must be introduced in thos

cases in which iatermediate results make 1t possible to adopt a
given decision. ;

c. Determ1nat10n of Parts Determined Analytically
We will clarify the essence of this method by several exam-

ples. First of all, when the integral is calculated with respect
to the frequency of random points hit-

|
| ting an area bounded above by the in-
| - tegrated function, it is advisable to
ke b 1imit the subject area to the smallest
K possible magnitude, as follows from
| Fig. 2.4,2. It 1s evident that there
| s 1s no need to use statistical tests to
F'y 8 calculate that portion of the area
‘ AA'BB' which 18 easily calculated
‘ analytically.
Al 8 As another example we can use the
1 R
Pig. 2.4.2 calculation Jm:jRe *dR. From the inte-

] L]
grand, let us isolate the linear por-
tion and we will calculate

| : |
- I={uw +0.6R]dR=§lf(R)dR_|_o,3' | (12)

R

- [R)=Re "';‘"—QosR R(’R?._ds) | (13)

Recalling that the exact value of this Integral is equal to
0. 303, we see that the essence of the method involves calculation
of its baslc part (0.3) analytically and only a small portion
(0.093) by the method of statlstical tests. The results of these
calculations are shown in Table 2.4.1, The random numbers are the
same as in Table 2.1.2.
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From the table we see that the error » (1.5%) 1is consider-
ably smaller than in the case shown in Table 2,1.2. The root
mean square deviation (3.6%) 1s also considerably smaller here.

Let us examine yet another possible way of using the subject
method. Let there be a requlrement to calculate

3 R _
p:J:SRe 2 dR. _ (14)
. ' 0 ' '
The results from the calculation of this quantity for n = 1%

were presented in the previous sectlion. The calculation accuracy
can be conslderably increased 1f we recall two clrcumstances:

2) rule 30, according to which the probability of deviation
above 30 1s very small.

We will assume that the probability of deviation above 6¢
ls neglliglbly small.

TABLE 2.4.1

+ a i 1 2 3 4 5 6 7 8 9 i 10
| . | g

i 0.134 | 0,011 {0,090 0.040 | 0.140 | 0,051 | 0,120 | 0,137 | 0,137 | 0,132 i

i 0,434 | 0,372 | 0.378 0.369 | 0,383 | 0.378 | 0.384 | 0.390 | 0.39% i 0,399 ;

S — | 0.0949 |[0,0632 |0,0348 | 0.0548 | 0,0490 | 0.0532 | 0.0548 | 0,0434 | 0.0527 |

a - - — 10,0475 | 0.0346 | 0,0258 | 0,0246 | 0.0230 | 0,0i67 ! 0.0189 i

| L |

n E I 12 ! 13 14 53 16 17 18 19 ! 20 "

! i

o | ' |

i l 0.120 0,117 | 0.09 0.128 | 0.016 | 0,114 | 0,05l 0,057 | 0.134 | 0,134 |

i ( 0.402 | 0,403 ! 0.403 | 0,405 | 0,399 | 0,400 | 0,397 [. 0,395 | 0,397 E 0.399 :

s | 0.0412) 0.0514 i 0.0466 | 0.0382 | 0,0463 | 0,0416 | 0,0380 | 0,0406 | 0.0349 { 0.0416 3

a % 0.0139 | 0.0164 i 0.0141 | 0.0111 | 0.0130 | 0,0112 | 0,00986 | 0.0102 | 0.00850 { 0.00969 ?

| | l | j
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TABLE 2.4.2

n 1 2 3 4 5
1‘=--3+3u¢ 5,001 5,979 3,726 5,820 4,830
0,667 0,993 | 0,242 0.940 | 0,610
w(Y)lO‘ 0,186 0,00103 |36.0 0.00257 | 0,414 -
p—‘l 0,99994 | 0,99997 | 0,93637 | 0,99728 | 0,99780
121“”
X | .
'8 — | 0,00004 | 0.00622 | 0.0053) | 0,00482
o — — — 0,00468 | 0.00305
n 6 7 8 9 10
Ye=34-3z | 3,303 | 4,056 |4.,038 | 4,038 |5.040
&y 0.131 0,352 | 0,646 0,646 0.680
¢ (1) 100 107 10,9 0.251 0,251 | 0.154
p=1—3% 0,99280 | 0,99340 | 0,99418 | 0,99484 | 0.99536
. _
24 (e
X S )
) 0.0129 | 0,0119 {0,0112 | 0,0107 | 0.0102
o 0.0Q680 | 0,00551 | 0,00468 | 0.00412 | 0.00366
T
}'n n 12 13 14 15
1
3-|—3a‘ 4,194 4,017 | 5.418 5,097 5952
0,398 0,339 10,806 |0,600 | 0,984
?(Ti) 104 6,33 12,6 0,0229 | 0,116 0,00121
p-l—s 0,99562 | 0,99565 | 0.99598 | 0,99628 | 0,99652
El‘?(h)
i
X T -
s 0.00074 | 0,00926 | 0,00894 | 0.00867 | 0.00840
o 0.00329 | 0.00295 | 0,00272 | 0,00252 | 0,00234
n 16 17 18 19 20
3{-3a. [ 3,081 3.387 3.438 5,007 4,290 °
0,327 0,120 | 0,146 0.669 | 0.430
9(7)10- 14.4 109 93,2 0,180 4,33
p=ll —3 0,99646 | 0,99475 | 0,99349 | 0,99382 | 0,99406
n _
pXASD). '
ii=]
B
'S 0,00812 | 0,0106 | 0.0116 | 0,0114 | 0.0111
K3 0.00218 |- 0,00275 | 0.00291 | 0,00278 | 0.00262
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Then

_p=1—SRe 2dR. o (15)

And the most significant part (1) is calculated analytically
here, while the less substantial part is calculated by means of
statistical tests, wlith this belng done even at the cost of in-
troducing additional assumptions (the upper integratiorn 1limit 1s
assumed to be equal to 6 1instead of =),

The results of the calculations carried out in this manner
are presented in Table 2.4.2, The random numbers are the same as
- in Table 2.1.2. '

Since here the integration interval is from 3 to 6, the ran-
dom numbers ai obtained from the interval 0-1 must be transformed

into vy, distributed in the interval 3-6:
| vi=3+3a.. (16)

The calculation 18 then carried out in the conventlional se-
quence, the only difference being that in calculatling the inte-
gral the mathematical expectation of the integrand 1s multiplied
by the integration interval (in the given case, by 3).

We see from the data of the table that this method was very
effective., The error amounts only to 0.52%, the root mean square
deviation amounts only to 0.25%, 1.e., considerably less than 1in
previous cases. When calculating by the conventilonal method, we
find that the root mean square error amounts to 13%.

D. Use of Significant Selections

With this method we will begin discussion of speclal selec-
tion forms. It 1nvolves derivation of selections from that
prompted by the problem itself, and multiplicatlon of the final
result by a standardizing factor — a correction factor — which
offsets utilization of an incorrect distribution.

The essence of this method reduces to the carrying out of a
large number of samples in the regions of greatest interest, il.e.,
in those regions producing the most significant results. For ex-
ample, 1f we are interested 1in evaluating the effect of an oppo-
nent's missiles on some structure, we must examlne cases 1n which
the missiles strike close to this structure; however, cases of
" great deviation need not be considered, although 1n thils case we
do neglect small cases of destructlon.

If we are interested in evaluating the work of a compleXx
queueing system [mass service engineering], this 1s best accom-
plished with the most intensive flow of requilsitions. Evaluation
of a system of antitank defense 1s best carrled out wlth a mass
armored attack, since in this case all 1ts weak aspects are most
clearly revealed. Again, in this case no consideration (or a
limited degree of consideration) is glven to cases of attack by
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weak forces, b@t these prove not to be decisive.

Let us examine this method more specifically on an example
of integral calculation. Given the requirement to calculate

L,
f I={F(x)dx. (17)
| @

Let & be d random quantity whose probability density corre-
sponds Yo two condltions: pfxz) > 0; when a < z < b

| b
| {pax=1. (18)

We can write thé obvlous equality
i Fro (19)

i X

| stﬁrpaw&

o ‘

Let us consider what the mathematical expectation FCE)/p(E) will

equal: *

(
P (§) p (k)

, |
1 M [L‘i’- -._,-jj--e—)-p(E)dE—_—:ﬂ. (20)
} a

Consequently, aé an evaluation of the sought integral we can as-
sume '

n
LR S
| 3=—,7L7;(5;)'- (21)
! =1
The dispersion éf the quantity f(£)/p(£) will be equal to
O

b

1(8) ‘ (e
mmpmﬁﬁaﬂ—ymﬁ—aa (22)

| D=
!
D has a minimum Mhen

B>

a

IF ()

‘ /0 (X)‘-‘-':“_";—“"_"“'*-
| §reonds (23)
| J

The substitution of (23) into (22) then yields
! b - N !
| D..=—-=[j lf(x)ldx] —a (21)
| ; I

This means that if the integrand does not change sign, the dis-
persion 1s equal to zero. Utilization of Formula (23) directly
prior to the start of the calculation is inmpossible, since for
- caleculation with this formula it is necessary to know the sought
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integral. However, 1t 1s extremely important, since, first of
all, it provides an indication of the fact that the distribution
of the random quantity £ must be selected in a manner such that
the largest number of points falls within fhose reglons in which
the values of the integrand are maximum and, secondly, it may be
used in calculations in which the integral is determined accord-
ing to a limited selection which also provides information as to
the form of the function f(ax). | - |

As an example

¥ =5 Re ? dR,

1 R*
T

assuming

P(R) = kR, (25)

The calculatlions are carried out for the same integral in
order to compare the effectiveness of various means of reducing
dispersion., Here K 1s the coefficient correcting the "incorrect
distribution." It 1s determined from the condition

1 1
5P(R)dR=l, KSRdR-_-I.

. ‘ Uy (26)
K=2,

Thus calculation of the integral 1s carrled out according to the
. formula

| LI l?
‘7='§ﬁ'ze 2 ’ (27)
=1 .

where t?e numbers Ei'are distributed with the denslty of Probabil-
ity (25). _

These -can be calculated by means of the formula
‘where Ai are numbers distributed according to the law of equal
‘probability in the interval 0-1. Derivation of this formula is
shown 1in §2.2.

Calculation with Formula (28) when n = 20 ylelded the fol-
lowing results: J-=03852, $=0,0529. Thus, the error in the determina-
“tion of the integral amounted to 1.98%; the root mean square error
according to Formula (2.3.8), amounted to 3%, i1.e., a significant
improvement 1n accuracy takes place here as well.

E. Selection by Groups

Assume that we are required to calculate the probability of
target damage by bombing from bombers in any weather. One of the
logical methods of solving this problem is solution of the problem
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: : P
by groups: each group for a different kind of weather, but iden=-
tical weather within the group, with subsequent averaging of the
derived result with consideration of the probablility of a glven
kind of weather. In final analysis, such a problem reduces to
seeking an integral. However, the lntegral can also be calculated
with respect to m groups

b ) rn b,; - .
1 (fax=Y { I (29)
1 a , hk=1a, ‘

If each of the integrals ih the sum 1s calculated by the sim-
plest method of statistical tests, then

e (30) -;'
Z]l o ﬂf(sf DI
where :

lu=bn-ﬂu. l"D' . (31)
| . k==l )
Du=Df Cal= 55 j P o) de —
| w
| — ey | fdx. (32)

\
| o
If we establish the total number N of tests, 1t 1s not dif-

ficult to demoPstrate that for minimum D 1t 1s necessary to se-
lect n, proportional to 1,V Dy In this case

|
T SP—
| | (\ I VD..) ' - (33)
1 I, _‘ .
However, the values of D, at the beginning of the calculation

are unknown. In this case we generally assume Ny proportional to
Zk' In this case

b—a :
Y D (34)

k=1

D=

However, ‘a successive method may be employed to determine,
on the basis of a limited number of samplings, the diupersions
in accordance with which the remalning samplings are divided.

Let us cohsider the problem of the effect of the number of
groups on the hccuracy of caleculating the integral when Zk and

n,s 8s well as D, are equal to each other. In this case

(b—-ﬂ)'

D= Dy, (35)
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1.e., the dispersion of the integral is a function of the number
of groups only in terms of the quantity Dk' For a qualitative

evaluation of the effect of

the number of groups on Dk let us
congider the case - -

fg=Ke. (36)
Then, in:each group
o T T }
. - K‘n
e e I T
Dy (7 0) — M1 oty dx =
9 ' . .
1, :
1 L. T
='I—“-S‘(Kx -—-n_‘_l)dx_.“
0
2 nt 2
=KD @+ (rF 1y =81, 9(n), (38)
where Afk is the 1increment of thé function 1in the group
‘P(n):: (Qn:}f:‘)(rhfl)‘ - (39)

and 1s dependent on the form of the function. Its form 1s shown
in Flg. 2.4.3.

Thus, the smaller the increment of the function in the group,
l.e., the smaller the group, the smaller the dlspersion. At the

limit we come to the groups consisting of a single point. This
selection is known as systematic.

TABLE 2.4.3

i
aon Error | ROOt mean square -
Group i 4 in error in determinas
numberv % tion of ., in % of _/
] 0.4240 | 7.9 9.4
2 0.4140 { 5,3 5.2
- 5 0,4030 | 2,6 . 2,2
20 | 0.3931 ; 0,03 0,5¢
¢ ! ? J ¢ in *Tentatively, proceoding tram.
Formula (38),
' Fig L] 2 . }4 - 3

' . 1 _'13'_
As an example we have calculated the integral YRe * 4R
for various numbers of groups and a total number of realizations

equal to 20. The results of these calculations are shown in Table
2.4.3,
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We see from the table that this method may be very effec-
tive. The root mean square errors are approximately inversely
proportional to the humber of groups, which follows [rom Formyla
(387. ! |

F. The Uti]izatiqp of Dependent Quantities

Ley 1t be required that a comparison be carried out of the
firing accuracy of two rockets (S, and S2), gulded only during
the powered phase, with the automatic range controls designed
variously.

The range deviation for each of the rockets can be deter-
mined in the follewing manner:

X=X, +x,, (40)
'\-3 = xu. + xn.' ( Uf 1 )

where x and x, | are the deviations of the powered phase, l.e.,
1 % errors due to the automatic range unit;

Ly and x,, are deviations of the unpowered phase.

Let g, =1, Qm::Q5%m:=%mz:L To calculate 5; and S2 by the

method ofmstatisﬂical tests, we have to determine the random re-
alizations Xs» %ap %naa X, and then =z, and xz by means of Formulas

(4) and (41). -

If we carry out the calculations of x,, X,, X, ed X,, and con-

a’

sequently, of =z jand z2, proceeding from the indeﬁendent quan-—
tities, we derive the following picture (Table 2.4.04).

TABLE 2.4.4

n 2 | a 4 5 5 |7 8 9| T,
of §
e |013lo.07 1.57\-0.67-—o.74 1.95(1,61] 0.68]-0.92 —
| xa |-1.82 0040 | 2,42'—0.70] 2.30|-—-0.37|1,56|—0.96 1,09 —
S, | — 10.04/0.85| 0,93/ 0,93 0.96/0,99| 0.92| 0,98 1.41
S, | -~ |t.00|2.16| 1.80] 1.90| 1.78|1,65| 1.61| 1,53} 1,11
|

We see from the table that the S obtained in the second case
are conslderably larger than in the first case, and 1t 1s thus
Impossible in 9 ﬂests to select the best rocket (an incorrect
selection may be made). It 1s possible to make this problem ea-
sier by using dependent random quantities (in the given case,
identical quantities are best of all) to calculate x,  and z,

Tn this case we will have the following situation (Table 2.4.5).
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TABLE 2.4.5

n 1 2 3 4 5 6 7 8 9 value

of
% (0,13} 0,07 |1,57| —0.670.74]1,25|1.51(0.68]| 0,92 —
x3 | 0,61|—0,84/0.76|—0,73|0,53(1,35]{2.05]0,51 | —0,84

0.0410,35| 0,93{0,93(0.,96/0,99(0.92| 0.98] 1.41
1.020.83| 0.,85/0,78(0,88|1,05|0,98{ 1,01] .11

Selectlon of the best rocket in the given case from 9 tests
1s also impossible, but no basic error is assumed here. On the
basls of the calculational result, the rockets are equal. More-
over, fewer random quantlties were needed in this case,

Thls example has no practical significance, sincé 1t was
clear without calculation which of the rockets was better. Its
only purpose was to show the essence of the method.

However, the basic 1dea of this example 1s of practical sig-
nificance. Let the points of 1ncidence for two types of rockets
be determined experimentally and given that we know nothing in
advance as to the scattering of each rocket type. If we test the
rockets under varlous weather conditions (this corresponds to the

selection of 1independent random numbers to determine xn; and xnz),

we obtaln the picture presented in Table 2.4.4. If the tests of
each palr of rockets for both types are carried out under iden-
tical weather conditions (which corresponds to the case of iden-

tical random numbers for the calculation of xnl and wnz), we ob-

tain the situation shown in Table 2.4.5, and can solve the problem
- of selecting the best rockets with a limited number of tests.

: An analogous situation may be encountered in testing the
mathematical model, when the result 1s obtained by celculation
-wlth a rather complex system of equations which cannot be ana-
lyzed, and where it becomes necessary to compare two relatively
large fluctuating quantitles to calculate a small quantity.

In this case the comparison is best carried out, all other
conditions belng equal, by using dependent (or even identical)
quantities. In this case, of course, a sufficiently large range
of changes 1n conditlons must be encompassed, because the variant
sultable under certaln conditions may prove to be less sultable
under other conditions. One of the expressions of thls method is
the requirement to remove everything extraneous from the model.

Earlier we clted a case involving the utilization of de~
pendent quantities for comparison of the root mean square devia-
tions. Thlis case may be used with equal success to compare mathe-
matical expectations, probabilitles and integral calculations.

The utilization of dependent .quantities may prove to be ex-

.'tremely effective in comparing results of exact and applied the-
ory.
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"In conclusion, let us present an example of the application

of dependent quantities for the calculation of the integral. Let
there be a requlrement for the calculation

SRRt | |
9=Re ’-'dR=dSrp(R)_dR. (42)
0

'Since the ﬁntegrand In the subject interval increases mono-
tonically, with a large number of points falllng on the inltlal
part of the interval,we obtaln a reduced value for the integral;
in the opposite case, the lntegral value 1s exaggerated. To avold
this situation, we will use the dependent quantities., Having ob-

tained the random nhumber a,, we will determine the number 1 - a.

This also achleves uniform distribution of the numbers over the.
integration interval. We calculate the integral with the formula

n :
1 v(m)+v(b—un :

BEEEES) )

| i=1 B '

This method is?occasionally referred to as the symmetrization of

the integrand. |

Calculation with this method for 20 realizations leads to an
error of 6.9% in the integral, and the root mean square error
amounts to 3. 2m This is a significant improvement in the accu-
racy of the me?hud Combination of the gsymmetric selection with
separation intc 5 groups permitted reduction of the error 1n the
integral to 0. 3% for a root mean square error of 0.35%.

With respect to more complex models, this method may in-
volve, for example, the calculatlion of the reallzations for the
subject pTOCEbS in the case of symmetric deviations from the mean
statistical temperature value.

|
G. Additional Remarks

‘ _

Above we presented certaln methods permitting slgnificant
reduction in diapcrsion In certain cases this reduection in dis-
perslion may amount to 10% times. A characteristic circumstance in
this case 1is the fact that with utilization of these methods the
laws of "conservatlion of value" are not observed, if we can ex-
press ourselves in thls way. In other words, 1t is posslble to
achleve a significant reduction in dispersion either entirely
without 1noreabinb the scope of the calculation, or with a mini-
mum increase in this scope, involving absolutely no comparison
with the reduction in dispersion achieved. As a rule, this is not
the case in co?ventional numerical analysis.

Of course, the cited formulas can rarely be used directly.
‘It is more important and gdvisable to employ these methods and
.combinations of them. The most effective may be those methods
based on the utilization of specific features of the problem, as
can be seen from the example of the transformation
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D w m
j’Re Tyr=1—Re ?dR, (L)
‘ 3

in which it was possible to reduce dispersion by a factor of 2700.

The cited methods by no means exhaust the possibilitlies of re-
ducing dispersion.

One of the means of slgnificantly reducing the amount of
calculational work is the application of two-, three-stage selec-
tion and, finally, a method of sequentlal statlstlcal analysls,
with the scope of the book not permitting a detalled examlnatlon
of these methods.

Another Interesting way 1s the use of nonrandom numbers. We
dwelt on the application of correlated quantities, as well as on -
"the nonrandom division of the integration interval. Both lead to
nonrandom numbers wlithin 1limits. In calculating the integrals,
instead of unlformly distributed random numbers, we can use the
Kholton [sic] sequence [12] which for sufficiently smooth func-
tions ensures the proportionality of the root mean square devia-
tion of the quantity 1n” N/N instead of 1/(N)~% for the use of
random numbers (where n is the multiplicity of the integral and
N is the number of tests), i.e., higher accuracy (when n = 1,
¥ = 10 root mean square deviatlons are proportional to 0.230 and
0.320, respectively; when ¥ = 100 the root mean square deviations
are proportional to 0.046 and 0.100, respectively).

TABLE 2.4.6

i 5 b 2§
b 56 | o5%S%y
Calculation Method QEZ‘ E% . ‘ -’é;gg%g
5 g2t | 2359z
533 o ws pocaac
U=} x+dnzr .. 25 27.5 !
i R . -
— m .
2 SRe dR=-—n" ...... 14,5 27.5 1
o .
1 n 1 n
31 (R Far=7 Yoo 7.9 | 9.9 9
0 i=1
4 | vVariant No. 1 in analysis of
results during the courge of .
the realizations & « « + . . . 3.3 1.8 5
1 __B_' 1
5 SR&: 2dR=5i(R)dR+0.3 1,5 4,4 60
3 .
G | Significant selection . . 2,0 _3.9 80
7| By 2groups  + » 4 0 4 - - 5.3 52 30
By 5 groups  + + s s = o s 2.6 2.2 3(1)80
By 20 groups v ¢ + ¢ v e - 0.03 "3 78
g Symmetrization = ¢ = ¢ ¢+ = 6.9 .
Division into 5 groups and sym-
metrization *» * v ¢ ¢ v - 0.3 : 0.35 | 6000
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In conclusion, we will present certain summary results, ad-
mittedly, without evaluation of the calculation time which for
such simple examples is conditional. In all cases we consider the
probabllity of target damage for r» = ¢ and 20 tests.

The above table shows that the various methods of reducing
dispersion, and |the combinations of these methods even more so,
may yleld a significant effect. Of course, under various condi-
tions different methods may prove to be more effective and the
. table cannot therefore be regarded as a characteristic of the
methods that 1s vaild in all cases.

|

§2.5. APPLICATION OF THE METHOD OF STATISTICAL TESTS TO DETERMINE
FIRING ACCURACY

A. Features of ﬁhe Problem

As indicated in Chapter 1, firing accuracy 1s generally de-
termined experimentally However, the expense of tests to determine
firing accuracy, the need to carry out a large number of such
tests for reliable determination of firing accuracy under various
conditions, etc., forces us to seek theoretical methods of deter-
mining firing accuracy. One such objective method 1s statistical
modeling of misnile flight with consideration of perturbations
affecting same [35] It is this method that i1s discussed below
as an example of the application of the method of statistical
tests to determine armament characteristics.

In this case the problem is divided into 4 stages: determina-
tion of perturbations; determination of the system of equations
describing the process of missile motion; statistical tests, each
of which determmnes The devliation of the missile from the target;
statistical processing of resulting data and evaluation of the
accuracy of the results derived.
|
Among the Qerturbations affecting a missile we should include:
\
weather disturbances;

perturbations associated with target maneuvering;

perturbations assoclated with fabrication inaccuracies and
inaccuracies of unit operatilon;

electrical ﬁnterference.

The problewn of weather disturbances will be considered in

§8.2. |

The problam of possible target maneuvers is rather indeter-
minate. In the general case target motion may be described by
the coordinates of its center of mass, which are random func-
‘tions of time. Determination of the form of these functlons re-
quires ‘analysis of the tactics involved in the utilization of
corresponding facilities and their maneuvering poteritials.

rerturbations associated with inaccuracies of fabrication
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and operation or deviation from rated characteristics;

aerodynamic characteristics (the axial force factor CT, the
normal force factor_Cn, the coefficients for the stabllizing and
damping moments, the appearance of aerodynamic eccentricity aa);

engine characteristics (thrust &, engine operating time tys

- per-second flow rate Gsek’ appearance of gasdynamic eccentricilty
ag); |
welght and dimenslon characteristics of the rocket (rocket
welght mg, inertial moments of the rocket, distance from the cen-
ter of mass to the point of control-force application, midsection
area,’® etc.);

parameters of the control system, for example, the control-
system gain, the servomechanism time constant, etc.

The number and nature of these parameters depend in great
measure on the deslign of the system. '

B. A System of Equations for Solutions on a Computer

The System of equations describing the motion of a guided
misslile can be divided into the following groups of equatilons:

1. The equations of target motion

xuenu—_-fl (), yuenxx=f2('t)-- (l)

In the speclal case 1In which the target 1s stationary, these
equations degenerate into target coordinates.

2. Equations of preparation of initial conditio=ms. This
group must define those lnitial conditions under which launch is
accomplished and the conditions for the installation of corre-
sponding devices in the missile. In particular, for guided "air-
to-ground" missiles an important initial conditlion is the angle
of the veloclty vector. An error in the initial direction of the
misslle requires additional acceleration to guide the missile to
‘the target.

3. Equations of motlon of the center of mass and the axes of
the missile. These are ordinary equations of motion for a solid
body under the action of a reaction forge, for aerodynamic forces
and the forces of gravity in a perturbed atmosphere.

k. Equations of the guldance system are determined entirely
by the baslc scheme and design of the guidance system, differing
slgnificantly for the cases of remote control, autonomous control
and homlng. The equatlons of this-group must make it possible to
determine commands to the controls as a function of the mutual-
locations of rocket and target.

5. Equations of device operation which make it possible to
determine the instant of warhead detonation.
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The method of carrylng out the statlstical tests to deter-~
mine firing accuracy is basically no different from that employed
in other cases. For each test we determine the weather condition,
the characteristics of the rocket assemblies,; initial conditions
are prepared and by Integration of the system of equations de-
scribing missile motion, we determine the missile miss distance
at the instant that the detonating devices are actuated.

‘ Thus, in statistical modeling it is necessary to test a

rather large number of missiles "in flight." For each circumstance
and for each set of missile parameters we have to make a large
number of declisions in order to take into consideration the
changes 1n statlistical quantities from flight to flight. The ac-
curacy of the derived results 1s determined in the manner demon-
strated in §2.3.

We note that rocket flight can be modeled by means of elec-
tronic dlgital computers and by means of electronic models (ana-
log computers). There 1s no need in thils case to speak of manual
calculation because of the complexity of the systems of differen-
tial equations describing missile motion.

Existing electronlic models do not require great expenditure
of machine time, and they are more easily readied for operation.
Their drawback 1s the lower accuracy (requiring transformation of
the equatlons into different equations) and the limitations on
problem complexity with respect to nonlinear terms.

\ W
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Digital computers are highly accurate and exhibit extensive
potentials for the solution of complex systems of equations, and

these are limited primarily by expenditures -of machlne time and
the time spent on programing.

In principle a combination of digital and analog computers
is possible. As an example, let us consider the modeling of the
firing of an "air-to- ground" missile., Let the missile be launched
from a specific point in space, and further, let the missile be
guided by means of a passlve infrared homing system to the ground
target. For simplicity, we will consider the plane problem, 1.e.
assume that the missile 1s moving in the vertical plane passing
through the launch point and the target.

A silmplified dlagram 1s shown in Flg. 2.5.1. First of all,
let us examline the system of equations for solution on a digital
computer. The equations of perturbed missile motion may be written

in the following form (we are considering the problem of plane
motion):

Qv F—Xap—Xi—(¥;+Vy)a

(2)

dat — m - —g sin G.
d8 _ (P — Xyap—Xi)a , Y+ Yyip . geosh (3)
= o +
J, (,,,+M"’ B4+ Mma a+chnp+Maa+3°a-r0 (4)
' dx (5)
—'?u—zzUSlno
W yeosh, (6
a=9%—0, - . (7)
-~ W, sin8 8
I Arr-ry ( )
vﬁv_Wcmﬂhiu%__ (9)
(I:VKQ'R'C. . (10)
hee : \
X =5 s,[c, (M) +C (M) 2, (12)
=—3’—S NC: (M) a, (13)
Xy,-,p:f (3) for any surfaces, (14)
YYup ::[(6) for any surfaces, (15)
M:=C* (M) W’ ' (16)
— W’ Swlt
=CalM) 55 (17)
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né-Ha =K, +at 1+ =K, WHF (18)

5<snm" _ (19)
B="94-arcig - (20)
This system must be integrated for the initial condition
(¢ = 0):
? U =0,, | (21)
| - b8, | (22)
=9, (23)
x=x, (24)
Y=Y (25)
d=48. (26)

Depending on the conditlons of the problem these quantities may
either be fixed or random. For example, 1f we are considering
target damage probability under any conditlons possible in com-
bat, prellminary analysls of the nature of the combat and the
launch conditions, we have to determine the statlstical charac-~
teristics of the quantities g, Yo, 8, Do, Yownd®y and regard them as
random quantities

If we consider target damage probablility,from a given point,
the random quantities wlll be vy, 69, ¥o and ¥,, since they are
functlons of the descent of the missiles, and the quantities =z,
and yo must be assumed to be constant.

If we assume that the subJect missile 1s fitted out with a
contact fuze, foF the boundary condition we may assume

y=0 | (27)

|
and under these ‘conditlions determine the coordinate z_ of the
incidence point and the miss distance P

8X == Xy — Xg. (28)

If the fuze is of the noncontact varlety, instead of the
condition y = 0 we must write the equation for fuze operation.

The followiﬁg denotatlons have been adopted 1n the system
of equations cited above:

v| ~ veloelty of the center of misslile mass rela-
tive to a nonmoving atmosphere;
v|— velocity of center of missile mass relative
. to the actual atmosphere (with oonsideration
- of wind speed);
t,— time, argument;
P — reaction engine thrust, a random function of
i time; :
X &Y — projection of control force (gas or aerodynamic
control surfaces, rotating engine, etc.), ran-
dom functions of the angle of control rotation;
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Xy and Y,

RiR

QX o

e
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axlal and normal projections of the force of
alr resistance;

angle of attack;

angle of attack with con51deration of wind
speed;

angle of missile axis with the horizon;

angle of velocity vector with the horizon;

mass of the rocket, a random function of time,
acceleration of the force of gravity, constant
for a given latitude and a variable, if we con-
sider a large range of various latitudes;
inertial moment of the rocket, a random function
of time;

derivative of the damping moment;

derlvative of the stabllizing moment;

distance from center of mass to point of con-
trol-force application ‘a random functlon of
time;

angle of aerodynamic eccentricity, a random
quantity;

angle of gasdynamic eccentricity, a random quan=
tity;

coordinates of the misslle center of mass;

Mach number with consideration of wind speed;
speed of sound;

adlabatic exponent of the atmosphere;
atmospheric gas constant;

alr temperature, a random function of the coor-
dinates; '

alr density;

ground alr pressure, a random quantity;

cross sectional area of the midsection, a ran-
dom quantity;

coefficlent of axlal aerodynamlc force, a ran-
dom function of M;

coefficlent of ngrmal aerodynamic force, a ran-
dom function of M; '
angle of control unit rotation;

- coefficient of stabilizing moment, a random

functlon of M;

coefficient of damping moment, a random function
of M;

c¢haracteristic longitudinal missile dimenslon;
servomechanism constant, a random gquantity;
gain, a random quantity;

angular error 1n determination of missile-target
line, a random function of time;

horizontal projection of wind, a random function
of the coordlnates and of time.

Thus; for each test we must have 13 realizations of random
functions, which requires about 200 random numbers. This example
clearly shows the importance of the simple derivation of random

numbers.
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Integration of the system of equations written out also
consumes conslderable time because of its complexity and the prob-
lem «of dqpl/inc‘this method may therefore frequently be governed
Wy rmascnlre <ine,

ERAY .~

C. reatures in the Solution of Problems on E1ectronie Models

‘ It 1s considerably simpler but less exact for the subject
problem to be solved on electronic models. For this, first of
all, the system of differential equations describing the motion
of the missile must be simplified.

We assume the missile veloclty and alr density to be constant
and we select new coordinate axes zi, o1, y1, for which the o,z-~
axls is directed from the 1aunch point at the target. Moreover,
we will assume the rocket mass to be constant and the angles o to
be small, and also that W, = 0.

In this case the system of equations describing the motion of
the rockets 1s considerably simplified.. :

In Eq. (2)§we‘can neglect (Y, + Yupr)a when, considering
that .3v/3t = 0: : ‘

] P~ Xynp— X .
i_ . ’;." ‘.=z gsind. (29)

Substituting (29) into Eq. (3), we obtain
|

|
| gsinau _gcosB ) ¥y +Yyn
1 v + ‘muy = (30)

We see from this equation that the first term is small in compari-
son with the second. Consequently, 1t can be neglected. However,
the second term 1s also small in comparison with the third. The

quantity Yupr is generally smaller than Y: by an order and it may

therefore be neglected. Then

dt v

ab _dy __ Y. _ 3
T dE T e K, (31)
whcre I
2mu

Ky =— oCE () (32)

On the basis of%Fig. 2.5.1 we can wrlte

| m.%%—:--—gmcow,—l—-(}"-{—)’ynp)cos*{. | (33)
Hence, neglectigg Yupr
| c‘l;ﬂlw ;.zsmc:énz\:\)cos't'u —g cosa,,
or considering E32), o
‘f;;’,' =0 Z: COS Y — g COs 3,. (34)

- 160 -




We now transform Eq. (4), considering (7) and assuming
Yymp=K_Q, |
It Gt Moy e @y
+M;a=cK3—M,

where -

|
J }'
M,=Ma, 4 &a ;

a8 _ 1 de
div — K, dt’

(35)

(36)

(37)

Substituting the values from (31) and (37) into (35), we obtain

dta da

n 1 ™ JG M7 a
Je i T 0o g+ Mg T g o+ Ma=cK3—M,

dia da
i TR HKa =K —M,,
where ‘
%%“%M:
J. '

K, TM:
CK..
g; :

K, =

l(_,:

K, =

(38)

(39)

(40)
(41)

(42)

Thus, the following system of equations has been determined:

1848 =K, (a-Fa-}-7-),

8 < 8, 0m,

12 - d 5
":1[:“_]‘1\5 'S‘]:""I_K“:‘i Kb —M,,

3 S
dt 7K,
dy,  dy
_.(“.a_.___o Te CosY — gCosa,,

to which we have to add the obvious equalities

e —
T—x x,=ul.

g=—

Integration of the system must be carried out through =z,
initial conditions are (21)-(26).
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* The bleock diagram for the mathematical modeling of this
problem 13 shown in Fig. 2.5.2, In this case the process of sta-
tlztical modeling consists in the following:

1. The random realizations of the following random quanti-
ties are determined: K, s v, ¢, Js K, m, p, Sy, o (M), M2, M%, M,  Since

a constant vélo#ity, density and mass have been assumed, all
random functions (except n) degenerated into random quantities.
Scattering of the mean rocket veloclty must be calculated in ad-

vance, proceeding from the scattering of the rocket and atmose
phere character;stics. '

2. We calculate the coeffleients contained in the equations,

l.e., K K Ks, Kg, M; from the appropriate formulas for each reali-
zation, N '

3. We carry out the modeling as a result of which we deter-
mine the miss distance 8y; whieh, according to the formula 8y =

= 6y1/sin oo 1s  converted into the miss distance at the ground
surface, |

[Noiae
i Reneralor .
[

\-._77- Lli Oa -
yam P

o

™ S s R x-/{-‘? {—f—}—?

x{-K

i ' Xtk

| (e

dy . d4

QLI P

X, xc‘m‘a XV J

L
To the recording oS8 oas
device ' . ]

Fig. 2.5.2

k. We carry out the statistical processing of the results
and evaluate their accuracy. ‘

In speaking of an evaluation of accuracy, we should bear in
mind that in thils case there i1s a methodological error which may
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attain significant magnitudes. It consists of two. components.
The first is a result of the limited accuracy of the electronic
models. In practical terms, it can be determined by multiple re-
petltion of the modeling under completely identical conditions,
with subsequent statistical processing of the results.

The second component is a result of the simplification of
the system of equations, i.e., of the assumptions adopted. It can
be evaluated by comparing the results of modeling on an elec~
tronic model with the results from the modeling on a digital com-
puter, _

A third method of modeling is possible and consists of a
combination of mathematical and physical modeling. Its essence
calls for the entlre rocket to be included in the modeling con-
tour. The angle of rotation for 1ts control surfaces is picked
up by means of speclal devices and included in the mathematical
model at the output of which we obtaln the angle o which enters
& speclal simulator which moves a mock-up of the target in front
of the head. This modeling makes possible exact consideration of
all features invclved 1n the operation of the internal rocket
contour, but to obtaln objective data many rockets have to be
tested in order to be able to take into consideration the effect
of the scattering of their characteristics.

Manu-

script

Page Footnotes

No

102 ‘we proceed in thils manner because b — a in the gilven
case is equal to 1 and y is taken as equal to 1. Other-
wise, we would have to calculate a, = (b — a)Gl i and

— 2
Bi = ysg’in
- 102 *We proceed in this way because b —a = 1 and y = 1.

155 ‘Manens {s taken from the Dutch "middel" — the middle
and widest portion of a vessel.

Manu-

script .

Page Transliterated Symbo]s

No.

124 cu = 81 = statisticheskiye ispitaniya = statistical

tests

124 M = m = metodicheskly = method(ical)

128 B = v = verkhnyy = upper.

128 H =n = nilzhnyy = lower
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129
155
155
155
157
157
158
158
159

cp ='$r = srednly = average [mean]

CeK = gek = sekundnyy = pef second

r = g§= gazodinamicheskly = gasdynamic
uenu % tsell = tseli = target

yap =§upr = upravlyayushchiy = controlling

nom = dop = dopolnitel'nyy = additional

n = p = padeniya = incidence

M=m

o= ts = tsel' = target

i ,

= midel' = midsection
|
}
|
\
|
i
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Chapter 3

EVALUATION OF FIRING EFFECTIVENESS FOR A
SINGLE WEAPON FORM

§3.0. INTRODUCTION

Thls chapter deals with various cases of evaluating the fir-
ing effectiveness of a single weapon at one or more targets. The
term weapon is understood to refer to firearms, artlllery and
rocket installations of various designations.

The first three sections are devoted to an evaluation of ef-
fectiveness for a single shot and for various forms of the damage
probability. In §3.4 we have an evaluation of firing effectiveness
in the case of an arbitrary number of independent shots at a tar-
get and for an exponential damage probability. Here we present
the necessary expresslons to calculate the damage probability of
a target. In §3.5 we consider an evaluation of firing effectiveness
for dependent shots. We deal with the relationshlip between shots
in the presence of individual errors and errors in the preparation
of initial firing data (in a scheme of two firing error groups).

The following section (3.6) is also devoted to an evaluation
of firing effectiveness for the case of dependent shots. However,
here the relationship between the shots is considered not from the
standpoint of the presence of firing errors, but from the stand-
point of weapon (launching installation) unreliability. The ex-
pressions presented in this section permit consideration of weapon
reliability characteristics in the evaluation of weapon effective-
ness. :

The last section (3.7) is devoted to an evaluation of the
effectiveness of a single weapon in the combat situation in which
it becomes necessary to take into consideratlon not only individ-
ual random factors, but also the simultaneocus action of all of
these factors (accuracy, reliability, scanning characteristics,
survivability, ete.).

The effectiveness of a single weapbn in a combat situation
1s evaluated by means of the total target damage probabllity (Ry)
for a single shot or for »n shots (Rn)'

Unlike the total target damage probability in §§3.1-3.6 we
consider the conditional target damage probability (R,) for a sin-
gle shot and for »n shots (Rn) (for the condition that the target

has been detected and that the system functions reliably.
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§3.1. EVALUATION OF EFFECTIVENESS IN IMPACT FIRING
A. Analytical Methods

Impact projectile firing 1s used extensively to destroy
ground targets, as well as aerial targets. The use of a given _
projectile for firing operations 1s governed by target type and
projectlle power.

In thils section we will deal with an evaluation of firing
effectiveness in the simplest case — a single shot of an impact
projectile at a single target. ‘

The probability of target damage with a single shot is a
complex event and analytically may be expressed as the product of
the probabillities of two random events: hitting the target and
damaging the target when hit

‘ ‘ Ry=P,G, (1)
|
where Ri 1s the conditional probability of target damage under
‘ the conditlon that the target has been detected and that
the system functions reliably;
P, is the probability of hitting the target with a single
shot; |
¢ 1s the probability of damaging the target under the con-
dition of the projectile hitting the target.
[
The damage probability ¢ was dealt with in Chapter 1.
|

We dwell in greater detail on calculatlng the probabillty of
hitting the target The probability P, of hitting the target is
! a function of target dimension and shape,
1 of the location of the mean flight path,
the magnitudes of scattering and firing
direction [10, 24].

Target dimensions may exceed the di-
menslions of the scattering ellipse with
semliaxes along 30x and 303, where O and

Ua are the standard deviations of the pro-

Jectile with respect to range and in the
lateral direction. In this case the pro-
bability of hitting the target will be
affected most decisively by the position
of the mean flight path relative to the
target center. When the mean trajectory
colncldes with the center of the target,
the hit probability will be close to uni-
ty (100%), while with deviation of the

‘ mean trajectory by 30 or 30 over the

‘ ' dimensions of the target, this probabil-

ity will be cloae to zero.

The probability of hitting a band of infinite length with a
single shot 1s glven by the formula
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& B .
=—1 (e & (2)
= Aj‘e dA,

where

c-——VOZCOS’a—l—GfSin’ a; (3)
A; 1s the dlstance from the center of projectile scattering
to the nearest boundary of the band (Fig. 3.1.1);
‘ A2 18 the same for the farthest boundary of the band;
A2 — Ay 1s the width of the band.

Expresslon (2) may be written differently in the following
manner [10]:

Pa=Fo(l3a)—Fo(@;). (4)

where Bﬁzé};pﬁ=ﬁipmdFdﬁ) 1s a tabulated function (see Table 3 of

the appendix).

: Whén firing at a target in the form of a rectangle we deter-
mine the hlt probabllity in two mutually perpendicular bands [see
(4)]1, and then these probabilities are multiplied

P,—=P,-P,. (5)

In actual practice, the calculation of the hit probability
in a rectangle or in a band finds extensive application, for ex-
ample: 1n calculating P when firing at dugouts, trenches, barbed
wire barriers, etc. If the damage probability ¢ or the mean num-
ber w of required hits are known for each of these targets, the
probabllity of target damage with a single shot 1s determined
from Formulas (1) or (6), where instead of G we have 1l/uw:

=P (6)
w
There 1s no exact analytical expression to calculate the
probabllity of hitting a target of complex configuration. Various
approximation methods are therefore employed. Without dwelling on
a detalled discussion, we will enumerate these.

To calculate the hit probability with a single shot for a
target of arbitrary shape we can use a graphical method in con-
Junction with a probability grid or use an approximate method of
comparing the areas of the target and of a rectangle whose sides
are parallel to the directlons Oy and 0 Occasionally, we use

- the so-called coefficient of target configuration, representing
the ratio of target area to the area of the described rectangle.
The probability of hitting the target is then defined as the prod-
uct of the probabllity of hitting the rectangle by that coeffi-
cient.

At the present time, for the solutlon of this type of prob-
iem we can employ the method of statistical tests (see Chapter
2).

N
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B. The Method of Statistical Tests

Let us examine the sequence for the calculation of the dam-

age probability for an airplane with a single shot by the method

' ! of statistical tests, 1f the mean re-
quired number of hits is w = 2, and if
the firing errors are distributed nor-
mally (rnm =m, =0, 0, =25 m and o, =

= 17 m). The area for the projection
of the target onto the xs plane per-
pendicular to the relative trajectory
1s shown in Flg. 3.1.2.

The calculatlion sequence is the
following:

- 1. Plot the area of the target
projection onto a graph, causing the
coordinate origin to coincide with the
aiming point.

Fig. 3.1.2

i ‘ '
2. Determlne the coordinates of the projectile hit point =z

a_: ‘ n’
n
|
l ‘ Xn==0,8, n,
| 2= azb,.n, ( 7 )
where 61 s € ' are random numbers distributed normally over the
3

standard deviations equal to unity and a mathe-
matical expectatlon equal to zero (see Table 1
. of the appendix);

'n 1s the realization number.

3. Plot tﬂe coordinates of the hit point on the graph on
which the target projection has been plotted and evaluate the hit.

' I
If the hit point with the coordinates x,» %, falls within
. the projectionjarea, a hit has occurred; if 1t goes beyond the
area of the projection, there is no hit.

4. Caleulate the conditional probability of target damage
(or hit, in which case, without w) from the formula

3 m
where m 1is theinumber of projectile hits in the area of the tar-
get projection;
n1 1s the number of realizations;
w 1s the mean required number of hits.

This method of calculating the hit probability for a target
of complex configuration may be employed in manual calculation as
well. In this qase, the random numbers 5i , are taken from the

>

table of random numbers, and the results of the calculation are

sumrmarized in a teble, Table 3.1.1 shows the calculational re-
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sults for a number of values of ni1.

TABLE 3.1.1
! " 10 x 3 40 50 70 90 100
m |1 1 1 1 2 |4 |6 |6
0.10 | 0,050 | 0,033 |0,025{ 0,04 |0.057|0,066| 0,06

In the table m is the number of hits for n; shots; p 1s the
hit frequency which with n; > 70 1s close to the hit probabllity.

- We see from Table 3.1.1 that the hit frequency with respect
to an alrcraft is p = 0.06 (for 100 realizations). The minimum
value p ,. = 0.025 was obtained for n = 40, while the maximum

value Prax = 0.1 was obtained for n = 10. It is obvious that p =

= 0.06 will be the more exact value, since this value was obtained
from a large number of realizations and corresponds to the milddle

of the range with variations in p from the minimum to the maximum

value. If we assume conditionally that w = 2, from Formula (6)

we find the probabllity of target damage with a single shot

R, =22--0,03.

§3.2. EVALUATION OF EFFECTIVENESS IN THE CASE OF LONGRANGE FIRING
A. Exact Methods

Unlike impact firing, longrange firing is characterized by
the fact that the target need not be hit directly to achieve tar-
get damage, and that in addition to the scattering of the hit
points in the horizontal plane the explosions are scattered in the

. vertical plane as well. Thus, in the

- _ . case of longrange fliring we have three-
Ix‘\\ dimensional scattering of the explo-
3 = slons in space. This scattering is
{ T 5 subject, as a rule, to normal distrib-

ution. If all of the explosions in a
plane have been distributed within an
ellipse, in space the scattering of
the explosion points will be ellip-
soldal. The explosion elllpsold cen-
ter 1s known as the center of explo-
gion scattering.

" In actual practice we frequently

consider only two-dimensional scatter-
ing of the explosion points in the firing direction and vertically.
In this case, all explosions occurring within the ellipsoid are
projected onto the target plane. The distribution pattern for the
explosion points in the target plane that 1s produced in this
case 1is conditionally referred to as the region of possible explo-
ston [10]. It may be assumed that in firing with longrange projec-—
tiles we will have two-dimensional scattering of the explosions,
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since in this case the scattering in the lateral direction is
considerably smaller than the longitudinal and vertical scatter-
ing, and in a number of problems this scattering may be neglected
(when the width dimensions of the target exceed the scattering in
the lateral direction or when the damage zone for the explosion
of a single projectile exceeds the lateral scattering)

The principal sources of errors resulting in the scattering
of explosions in the vertical plane are errors in determination
of the angle of departure B 1@ ? of the inltial velocity B and

of the fuze actuation time Brt These errors yleld an elliptical

error whose center is at the point ¢y (Fig. 3.2. 1). In Fig. 3.2.1
we have denoted
\
Co 1s the center of explosion sc¢attering;
B 1s the mean deviation of the explosions with respect to
rd range; .
Brv 1s the mean deviatlion of the explosions with respect to
altitude;
a 1s the}semimajor axis of the ellipse;
b is the semiminor axls of the ellipse;
‘@ 1s the angle defining the direction of the semimajor axis.

The elliptical error can be characterized by the semimajor
and semiminor axes. However, 1n actual practice, 1t 1s more con-
venient to use:the probable deviations caused by the unit ellip-
tical errors B d and B which are given in firing tables. Having

- determined B rd | rand B by means of the firing tables, we can con-

rv
struct a unit explosion scattering ellipse in the vertical plane.
To construct the reglon of possible explosions we must increase
the unit ellipse by a factor of 4.

After we have determined theregion of possible explosions,
we can take into consideration other factors affecting the pro-
bability of target damage. These factors include:

a) errors‘in determining initial data for firing;

b) the randOm nature of target damage under the condition of
projectile exploaion in the region of possible explosions with a
deviation of » from the target.

Both of these factors are random. Each of these 1s therefore
taken 1into consideration in calculating the damage probability
wlth the corresponding probability.

The probability of target damage in firing longrange projec-
tlles wlth consideration of these probabilities and the above as-
sumptions to the effect that the three~dimensional scattering re-
duces to two-dimensional is determined from the formula

R,-—-“:SSG(x, 9) P (x, y)dxdy, (1)

where R; is the conditional probability of target danage under
The condition that the target has tesn detscted ana
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given 5/ assumption that all elements of the sys-
tem are/ functioning reliably; \ :
P(x,y)dx dy is the probability of hitting in the region dxdy;
G(xzy) 1s the probability of target damage under the condi-
tion that the projectile has exploded at a point
having the coordinates =z, y.

This formula 1s also valid for only a single shot.

If we cause the coordinate origin to colncide with the scat-
tering center and 1f we dlrect the coordinate axes in the direc-
tion of the principal semlaxes, from the given standard devia-
tions g, and oy of the explosion ellipse we can find the proba-

bility of the projJectile hitting the reglon dady (with respect to
the center of explosion scattering) from the expression

P (X, )= gy eXP [—(-;TJr;‘jg)J dxdy, (2)
x ¥

where z and y are the distances of the explosion from the scat-
tering center along the directions xz and y, respectively.

Let the probability of target damage for the condition of
an explosion at some specific point (x,y) be equal to G(z,y); the
conditional probability of target damage for a projectile hit in
the region dxdy is then determined from the formula

R, (x, y)=0G(x, y)ﬁexp[:—%—;‘(%’-—k%)] dxd_t(. (3)

x . %

Having integrated the last expression for all points of the
explosion ellipse, we can find the probability of target damage
for a single shot with consideration of the explosion scattering
(for the condltion that the target has beenh detected and with
reliable operation of the system) ‘

: |

+00 ‘ | ‘
_ (G 9 _ 1 x|yt
Ry= \S Tnone, e"P[ P ( ) + “i)] dxdy. (4)

We should take rote of the fact that the analytical calcula-
tion of Ry iz cumbersome and it is therefore frequently carried
out by means of a coiputer or resort is made to the utilization
of various approximate calculation methods.

In firing af area targets, the mathematical expectation of
the number (the relative number, percentage) of damaged targets
(or target elements) 1s taken as the effectiveness criterion.

If the mathematical expectation of the number of damaged
targets on explosion of a longrange projectile at some specific
point (x, yJ) 1s equal to M(z,y), with consideration of the pro-
babllity of explosion in the region (x4-dx)(y i-dy) the mathematical
expectation will be
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M(A y)gmexp[ ( -l-y‘)]dxdg. (5)

Having integrated Eq. (5) over the entire region of possible
explosions, we ‘can find the M, for a single shot under the condi-
tions of target detection and rellable system operation. The equa~-
tion for the mathematical expectation of the number of damaged
targets in thils case will have the form

- ,
*r M(x, )| ? 2

M,:Jj‘mﬁi—f:;flexp [—3(%-1-%‘2’—)] dxdy, (6)
—-ﬂ

Equation (6) is solved by means of a computer both through di-
rect 1ntegration and by the method of statistical tests.

Graphically it is possib;e to find an approximate solution
for Eq. (6).

B. The Method of Reference Zones

- The graphical method and the method of reference zones are
included among the approximate methods of calculating the proba-
bllity of target damage, 1f the damage probabllity and error func-
tion are known., With the appearance of computers the graphical
method lost its‘significance, however, the method of reference
zortes has found extenslve appllication. The essence of this method
Involves the fact that the damage probabllity G(r) is used to
determine the reference damage radlus

rozofG (r) dr, (7)

0

and .the hit probability for the reference area (volume) of a tar-
get 1s then determined analytically. In the case of longrange
firing, if the dimenslons of the target are small in comparison
with the damage radius, for the target reference volume wy we
assume a hemlsphere having the radius r,

2 a
w,,:—_-ogwro.

The probability of target damage is defined as the probabil-
ity of hitting a semicircle, where we do not take into considera-
“tion ground explosions, or the probability of hitting a circle,
'1f we take ground exploslions into consideration.

‘ |
The probabllity of hitting a cirele 1s calculated in final
analysis by making the center of explosion scattering coincide
with the target and by assuming Op = Uy = - The probabllity of

hitting a random polnt within a circle In thls case 1is equal to

[24]
| (%)
P==1—c ', (8)

|
|
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where » is the circle radius.

With consideration of ground explosions the probability of
target damage with a single shot of a longrange projectile is de-
termined with the formula

—L(re)?
_R1=l._e 2(¢)u (9)

where ¢ = Op = 0>

rg9 1s the reference damage radius, determined from Fermula

(7).

When using atomic weapons agailnst ground targets, an aerial
explosion 1is used. Let us assume that we are employing the coordi-
nate damage probabllity ¢(r) (see §1.3). In this case, in evaluat-
ing the damage probabllity, the method of reference zones yields
satisfactory accuracy. The probability of target damage is de-
fined as the probability of causing an explosion within a circle
having the reference damage radlus. In this case the scattering
with respect to altitude 1s neglected.

In conclusion of this section we will consider two cases of
the analytical calculation of R; and we will provide an evalua-
tion of the accuracy for the method of reference zones. If we de-
note:

0 as the target;
x,y as the point of projectile [missile] explosion;
xo,y0 as the scattering center,

then Eq. (4) may be written differently as follows:

+ o0

R,= H‘P(x—x.,. y—y)G (¥, y)dxdy. - o)
We denote -
+eoo
SjG(x,y)dxdyzzs, (11)
A H
and )
GOy (x, y), (12)

where S is the reference damage 2zone.

Having substituted (12) into (10), we obtain

R u—SSS¢(x~—xm Y—y) P (x, y)dxdy=Sf (X Yo (13)
where f(xo,y0) 1s the composition of the distributions ¢ and .

Approximately,




. _ 2 2
(5o 9=z 5P ["‘;‘( : +{ﬂ ' (14)

£

w =0, . (15)
‘ e _
oi_—-_—”-,;(x y)xtdxdy. (16)

CASE 1. Cﬂrcular scattering. Stepped damage probability
(see Flg. 3.3.1).

Let
G(r)y==1 when r<r,,
{G(r)r-o when £ 3> 1y,
S=ﬂrg ,. -

where rg¢ 1s the reference radlus of the damage zone

o "‘.” ae) x'dxdy

or

+ oo G '

i‘ d: === SS _Sr_)_ y'dxdy,
—o0 -

since the distributions of x and y are identlcal (&-}y*=r"), so
that %

2 _+°°G(r) Adxd 2‘“6(’) ‘drdo — (2)
2= [ (55 rdudy = [ (&0 rarde ==,
—e 00
) .
| % =3 (17)
With
| x,——y,-—O,
2
-0
2-% '
1 Ri=1—e , S (18)
i R, == Sf (%, ¥y
or |
‘ Rl_—_—.ﬂrgii:_cgn"u . (19)
where
! : n
2 a 7
0y == f-—; (20)
. .
ro Fil o
==z (21)
20’+—§* + P

where z=—=->
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Let us verify the accuracy of Eq. (21) by means of Eg. {(1%).
Trie recults of the calculation are shown in Table 3.2.1 for vari-
cun values of :

We see from Table 3.2.1 that the approximate method of cal-
culating the probability of target damage 1s in good agreement
. with the method of reference zones when z < 1, 1.e., wnen the re-
ference radius for the damage zone does not exveed a single stand-
ard missile deviation. This condition is always satisfied when
firing missiles with conventional warheads and in a number of
cases when firing nuclear ammunition.

TABLE 3.2.1

2" R‘ﬂ L
F1l

i Riml—e 2 245
0 0 0
0.1 0.005 0,006
0.5 0,117 0,118
0.8 0.274 0.276
1,0 0,393 0.400
1,5 0,675 0,720
2,0 0.865 1,0
3.0 0.99 1

CASE 2., Circular scattering. Damage probability G(r) shown
in Fig. 3.2.2:

G(r):l when r'(a;a,
G(I’):A-—- Br when bZ2=r=>a.

Gir)
L0

{5

We determine the reference damage zone S

+00 o
S::SSG(x, y) dxdyr-:Q-nogG(r)rdr:
—
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b
== wg® J- 2= S (A— Br)rdr=

20+ A (nb? — na?) — 2B (_g;__. .93:_),

‘We determine A4 and B from the condition

‘ Ad-Bb=1, A—Bb=0,
3 1 b -

i - B=g—g A=y |
S=r1a* b (b +a)— Sr(@*F-ab+ 69 =3 @pabfor,  (22)
|

From Eq. (16) we determine cw‘
1

SN § TPV LS (23)

=

The total?dispersion 1s determined from Eq. (15)

I
2 g 2
a:_..—'.—c +d N

~while the probabllity of target damage 1s determined from For-
mula (18)

R'-: Sf (Xor Ho)-
Wben xo_—-.-_*_[/o:v.:O .

| ‘, s .
; . Rl__-Qwa%‘ ‘ (2}.})

Having substituted (23) into (24), we obtain

R =——2itabtlh (25)

bt —at
692 + 0,957 —7

In conclusion, let us examine the accuracy of the method .of
reference zones.
|

For the djmage probabllity G(r) shown 1n Flg. 3.2.2, 1t
seems to be possible to obtaln an exact solution for R;:

~
Mo
cn

~

iHaving integrated Eq. (26), we obtain
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by - -al

Ri=l—e ™ (A—Bb)+e *(A—aB—1)—
—aaym{n(3)-n (5)

Having used Eq. (27), we evaluate the accuracy of the method of
reference zones. ' :

(27)

Let b = 5a (see Fig. 3.2.2). In this case we will have

b 5
r“za.; :.:3(1, B=—'-%, 'A‘z-;.
1

Having substituted ro into Eq. (18), we obtain R, for the
method of reference zones

Ri=1—e ", (28)

where

\

Equation (27) under these conditions is simplified
o 2V [p (3\_fp (L
R=1--2Y [F,(z) Fo(z)]. (29)

The calcuiétibnal results for the various values of z are
presented in Table 3;2;2f

We see from Table 3.2.2 that the method of reference 2zones
ensures good accuracy, since the errors of the method of reference
zones do not exceed 13%. In actual prac-

TABLE 3.2.2 tice it therefore finds extensive appli-
cation. .
Rl (R;fer—
2=t otean |R ecor In evaluating the effectiveness of
re=3a) |Ea. (29 target damage with nuclear weapons, when
. g > 0.7 a, we can use Eg. (25) 1if we
0 1.0 1.0 replace the damage  probability G(r)
0.5 1.0 0,993 (§1.3) by the component damage probabil-
ST 5 s 1ty (see Fig. 3.2.2). With o < 0.7 a,
2,0 0,675 | 0.622 Eq. (25) does not provide for the neces-
3.0 _8?% E}ﬁg sary accuracy and the calculation must
10,0 0.045 | 0.054 therefore be carried out in accordance
: with Eq. (27).

As a function of the stated goal of
- the study, the evaluation of effective-
ness for a single shot may be accomplished either by employing
analytical calculation methods or by using the method of atatis-
tical tests. The accuracy and time requlred for calculation
serve as the criteria for the selection of a particular method.
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§3.3. EVALUATION OF EFFECTIVENESS IN FIRING AT A POINT TARGET
WITH A PROJECTILE [MISSILE] CARRYING A POWERFUL WARHEAD

In this section we will consider the case of firing at a
small-scale (point) target. Here we have in mind that the dimen-
sions of the target are small in comparison with the missile's
radius of damaging effect. We are called upon to determine the
probabllity R1 of target damage with a single shot under the con-
dition of .the normal functioning of the firing system.

Let us exam¢ne this problem for the condition that the total

ing errors are subject to circular normal distribution ¢ with
per

ST

ir
1s lon o?

5 WL W - \

Let r denote the random distance between the point of projec-
tlle explosion!and the target. The firing error function in the
absence of systematic errors 1s written 1n the followlng form:

? ()= o0~ )- (1)

|
|
Gir) ;
|

clrl)

7 _ —— .~
Fig. 3.3.1 Fig. 3.3.2

|
\

Let G(r) denote the damage probability, i.e., the probabil—
ity of target ud,mage under the condition that the missile has
been detonated at a distance r from the target.. The damage pro-
bability of the target of interest to us in this case for a sin-
gle shot is then found from the equation

Ri=[e ()0 () ar (2)

mplest damage probabllity has the form shown in Fig.
‘ G(r)r:lwhenOQI"ga, }
_G(r):-_—O when r 7> a. (3)

|
\ o _
In this case, from Eqs. (1)-(3) after simple transformations
we obtain .

a %

Ri=1-— exp(*--%'r)- (4)
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1.e¢., the probability of target damage is equal to the probabil- .
1ty that the projectile will hit a circle of radius a (see [82],
pages 122 and 507).

In actual practice the damage probability generally has the
form shown in Fig. 3.3.2. At some distance a from the target the
damage probability G¢(r) = 1, and then 1t diminlishes to zero with
an increase in r. The quantity a may here be referred to as the
radius of continuous (100%) damage. '

The curve shown in Fig. 3.3.2 can be approximated by various
analytlical expressions. For brevity we will consider only one of
these expressions, and namely

G(r)zl whenr‘;a,‘-} (5)
G(r)=exp[—k (r' — a?)] when r=a.

From Eqs. (1), (2) and (5) after integration and simple
transformations we obtaln

R,=l—l—_'27k;;—i-exp(——g-:-l). (6)

We now examine the case in which there i1s a systematic firing
error h., In this case, instead of Egq. (1) we will have

e =5d () exn (—5), 1

where J¢ 1s the Bessel function (see [82], page 123).

We recall that we have the relationship

'Ev(r)dril.

Hence, from Eq. (7) we obtain

T hr ri dr==a* ht ‘ (8)
We introduce the denotatilons

k= 7a0e 7

. _k’;_:_f_ | | (10,

o

Then, from Eq. (8) we will have

af

k'.’
S"* (feyr) exp (—- k) dr == 'i"!lé: exp (4/3}) | (11)

7]

Let us also examine the integral
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r

(6 fra()m(-tE)e

This integral represents the probability of hitting a circle
of radius r (see Chapter l). This probability can be found from
Table 9 of the appendix. Using the denotations of (9) and (10),
we can rewrlte Eq. (12) to the form

§ rl, (ko) exp (— k) dr =

| . k'Z . ks ‘ . :
== g7 €Xp (-4—%) F (a V 2k, l—fﬁ;‘—) . (13)

We now find the probabllity of target damage for the damage
probabllity (5) and the error function (7). Using Eqs. (2), (5)
and (7), we find

R,zj‘f' (r) dr+?e“" WM (r) dr=

o0 a

o
= F (.‘i .!'.)-|-§e“” =% (r) dr — 5e_" = o (r) dr. (14)

Let us first examlne the first integral in the right-hand
part of Eq. (IH). Using Eq. (7), we obtain
|
1 | o e (r—at 1 s M
i Se— f (P(,—)drz?’—exp(ka —E;;-)X

o

Tt (Y exp (= — ) dr. 1)
Felie o

Here we iﬁtroduce the denotations

, .
k=5t (16)

k==, (17)

|

!
The integral in the right~hand part of Eq. (15) then reduces
to Expression (1ll1) and we obtain

@ 1 ]
oSe"* 0% (r) dr ==

1 e By b
:ﬁrwp“w"ﬁﬁ)ﬂﬁm(ﬁﬁé

C —lee(—iu), e

=1+ 2k {(19)
We now examine the last integral in Eq. (14). Using Egs. (7),
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(13), (16) and (17), we obtain

f —k (r*—a" )(P(r df—*_'exP (ka Hﬁ;)‘x
0

2
Xm(“qu) aV%"y%)_
1 ay h N 20
=?F(T' Fr%xp[-—-_{—,—l—ka ]. ( )

Finally, from Eqe. (14), (18) and (20) we find

R,:F(ﬁ. | .2'.)+%exp[;ﬂ_+ka’]x _ .
wx[1—F[, 23], (21)
& SRR NCR TV )

Equation (21) and Table 9 of the appendix permit evaluation
of the effect on firing effectiveness of the followlng factors:
random and systematic errors (¢ and hA) and the parameters of the
damage probability (a and k).

For greater clarity in Eq. (21) we replace the parameter
k with another parameter of clearer physical significance. Into
the consideration we now lntroduce the radlus r, on which the
damage probability G(r,) = 0.05 (1.e., so small that 1t can be
neglected). From Eq. (5) we then find

k(rg — a%)==3. | (22)

We introduce the denotation

z:—:-._' ' (23)
From Eq. (22) we then obtain

3
k= —im=n (24)

From Egqs. (19) and (24) we obtain

Y =1t (25)

Equation (21) assumes the form

R,=F(%, h\—l— —exp [ —— (1——;—“)(
= 75— aifi) |

[1- e Ji-)] (26)

We see from Egqs. (25) and (26) that R, is a function of
three arguments: a/9, h/c and s. Equation (26) 1s conveniently
utilized when

a=#0 end 2551
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i
In the special case in which a = 0, from Eq. (22} we obtain

;u]w

i ke ey . (27)
and Eq. (21) assumes the form . : A
: Y _ o
o 3h ‘
Rl:*-—rg+6u. eXP[_'rg_'_G,"]- (28)

When a # 0, # = 1, Eq. (21) remains only with the single first
| ternn - :

'*F(a-? (29)

In the special case in which 2 = 0, from Eq (21) we obtain
Eq. (6) which may be rewrltten to the form

| .
} RI=1 Gt +al(zl—-—l)exP( ) (30)

| ‘Equatibns‘(26), (28) and (30) make it possible to analyze
the effect of various factors on the effectiveness of firing at
a point target.

| qre

IR
Fig. 3.3.3

EXAMPLE. Gliven a = |, 2 = 2, h = 2, Find R, as a function of

Solution. from Eqs. (25) and (26) we obtaln

‘ ‘ =14 2a,
e el (5 )

Having acsumed various values of o, by means of these equa—‘
tions and Table 9 of the appendix we flﬂd Ry as a function of @

as shown in Fig. 3.3.3. We see from this figure that there exists
. \ .
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a value @ (£ 1) which corresponds to the maximum of the damage
.probability Ri.

Hence it follows that with systematic errors it occasionally
‘makes sense to Introduce the artificial scattering which leads to
an Increase In the probabllity of target damage. Thus, [f under
the conditions of the subject example ¢ = 0.5, to increase the
probability of target damage o should be approximately doubled.

§3.4. EVALUATION OF FIRING EFFECTIVENESS IN THE CASE OF INDEPENU-
ENT SHOTS

A. Determ1nation of Probab11ity for at Least a Sing]e Hit on the
Target for = Independent Shots

Let »n independent shots be fired at a target, wlth the pro-
bability of hitting the target for each of these shots belng iden-

tical and equal to p. In this case the probabllity of missing the
target with a single shot will be

q=1—p. ' (1)

The probability that in »n shots there will be not a single
hit is equal to

== pr . (2)

Hence the probability of at least a single hit on the tar-
get will be

Poa=1—01—pm™ (3)
With large »n utilization of Eq. (3) becomes lnconvenient for
calculations. In this case, Eq. (3) can be replaced by an approx-

imate equation in the following manner — it may be rewritten to
the form:

P'n=1_¥( —= . (4)

Since

- . a\" -a .
Eq. (4) may be written approximately as |

Po=1-—e"-nP, (6)
The advantage of Eq. (6) over Eq. (3) is that for Eq. (3) we need
a table with two inputs, while for Eq. (6) it is enough to have a
table with a single input.

To evaluate the accuracy of Eq. (6) we find the ratilo

PR bl { nll ) (7)

| —e-np °

The larger n, the closer k to unity. We introduce the deno-
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‘ ’ Y m .
; T T (8)
|

Table 10 of the appendilx shows m as a function of »n and np.

We see from this table that with n > 30 the calculational errors

due to Eq. (6) do not exceed 1%, since m does not exceed 10-11.

With »n > 50 thej errors in calculation due to Eq. (6) do not ex-

ceed 0.5%. i ‘ _

Table 10 also shows that when np < 0.10 the error in calcu-

“lation due to Eq. (6) does not exceed 1%, as soon as n > 5, Thus,

calculation witP Eq. (6) exhibits rather high accuracy In two
cases: | : .

1) for larée n and any p;
2) for smail np and any n.

From Eqs. (7) and (8) we have the formula

| _
i -P',.‘_-=(1+‘-‘—ﬂ1 O'go)(l—e‘"l’). (9)
‘ \ :
With this formula it is possible to determine Pé for any »n and p
by means of Tab%e 10.
' B. Determination of the Probability of a Specific Number of Hits
with Independent Shots :
Let n Independent shots be fired at a farget, with the pro-
bability of hitting the target for each of these shots equal to p.
In this case, the probability of obtalning exactly m hits will be

. (see [82], page|54)

‘ o p C:‘ man-m -’ (10)

where

C. The Number of Shots Prior to Achieving a Single Hit on the
Target

Let us examine the case of firing separate independent shots
with a constant probability p of achleving a hit with a slngle
shot. Let the result of each shot be observed until the following
shot 1s fired, with the firing stopped as soon as the first hit
on the target is achieved. Under these conditions, the number N
~of shots prior to hitting the target is a random quantity. Let
us find the distribution moments of this random quantity. Accord-
ing to definiti?n, for the mathematical expectation we have
M(N)=1P,4-2P,4-3P,+}..., (12)

where P 1s the probability of achleving a hit with the ith shot

under the condition that it has not been achieved in any of the
previous shots,
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Pi=pgt=p(l—p)y-t. (13)

M©N)=p+200+3pg" +...=
=p(+20+3 4+ V=p =y . (1)

D. The Number of Shots to Achieve a Given Probability for at
Least a Single Hit on the Target

Let single shots with the probability p of hitting the tar-
get with a single shot be fired at a target individually. The
%r?bability of at least one hit on the target 1s found from Eq.

3).
_ N Given the probability a for ét least one hit on a target,
Eq. (3) assumes the form :

Ng \
a=1—(1—p)'. (15)

Hence the needed number Na of shots is found in the form

In(l — @)
N“#im. (16)

The approximate formula for N, can be found from Eq. (6)

a=1—e """, (17)
whence ‘ '
nale, (18)
@ 14
where o . .
C,=|In(l—a)|- (19)

Below we give C_ as a function of o according to Egq. (19)

s, % 5 60 70 8 9 95 99
c, 0.69 0,92 1,20 1.61 2,30 3.00 4.6l

Equation (18), on the basis of Eq. (14), can be rewritten to
the form . '

N.=C,Ncp=C,M(N)- ‘ (20)
_E. Determination of Target Damage Probability

In the previous items of this section we spoke of the pro-
babillity of hitting a target. Here we will consider the problem
of determining the unconditional probability of target damage,
1f we know the damage probabllity Gm;

Let us consider the case 1n which n shots are fired at a
target. Let Pm denote the probabllity of m hits occurring during
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thece n chots. Trom the familiar formula for the total probadbil-

- - “ - Fa - = . | — vt v Y,
2. find that the probabdllity of rget damame with

b-.q.-—.

Ra= PG+ PG+ . +PG=T PG (21)

it

It 1s obvious that with an increase in 7 the probabilities
P diminish On the other hand, the probablilities G, increase with

greater Ty which calls for a sufficiently large number of terms
for large n to be taken in Eq. (21). With large »n it is therefore
more convenient‘to transform Eq. (21) so that all terms 1n that
equation d‘minish with increasing 7.
\ ‘
For this we will write the obvlious equality
‘ B _

1221);.

i=0 (22)
Subtracting Eq. (21) from Eq. (22), we obtain
I =Rn=Ro= V1 P (1—G) =V PGi=
. =0 =0 .
N p s 23)
=P, +Y PG, (

where for breviFy we introduced the denotation
. |

In Eq. (23) with increasing 72, the terms in the right-hand
portion diminish, thus making i1t possible in the calculations %o
limit ourselves| frequently to a small number of terms. Moreover,
thls equation 1s of great fundamental significance — it demon-

strates that the greatest role ln damage probability R 1s played

by the first prebabilities of the damage probability. We clarify

this with an example

EXAMPLE .!Le* the probability of hining a target with a
single shot be equal to 0.l. Up to 3 Independent shots are fired
at the target. The target damage probabllity is characterized by

the probabnlnTy‘Gl = 0.5. The probabilities Gz and G3 are unknown.
Evaluate the damage probablility Rj.

Solution. We find the probabilities of none, of one, of two
and of three hits:

| Py = (0,9) =0,729,

| Py =3.0,1-(0,9) = 0.243,
Py =3(0,11-0,9 = 0,027,
P, =1(0,1)" = 0,001,

Let us examine three versions of tne damage probability.
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Ist version: Gz = Gs = |, ijh Eq. (23) we find
| ;'ie'.=o.'729 +0.243-0,6 =0,850.
IInd version: the damage probabl ity is exponentlal. Then
Gy =(0,5)1=0,25, G,=(0.5)"==0,125

and from Eq. (23) we flind

Ry 0,720 +0,243.0,5 4 0,027-0,25 4 0,001 -0, 125 == 0,857,

IITrd version: G2 = Gg = 0.5. From Eq. (23) we find
R ==0.729 +0,243-0,5 4 0,027-0.5 4 0.001-0,5=0,864,

Hence we see how little the quantities G2 and Gi affect the
damage probabllity R3. We also note that versions I and III are
the extreme posslible versions, while the exponential damage pro-
bability occupies an intermediate position between the extreme
possibilitles. . ' :

F. Calculation of Damagé Probability for Independent Shots and an
Exponential Target Damage Probability

Let us conslder the case of an exponentlal target damage pro-
babllity. In this case we have
Gi=G'. (24)
From Eqs. (23), (24) and (10) we find

n - -
Ra=Y C, (pG)ig" i =(pG,+ g (25)

In Eq. (25), having substituted

G,=1—

we will obtéin
bl (1)1 = 2):

whence

Rp=1—(1-5. (26)
Comparing Eq. (26) with Eq. (3) we see that with an exponen-
tial damage probabillity the probabllity of damaglng a glven target
with n shots is equal to the probabllity of at least one hit in
the reference target for which the hit probability with a zingle
shot is smaller by a factor of w than in the given target.

From Eqs. (26) and (6) we obtain

R,=1—e . (27)
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G. Calculating the Number of Shots Required to Damage the Target

First we will consider the general case of the target dam-
age probablility. In this case the average number of shots to tar-
get damage will;be

MN)=1P, +-2P, 43P, 4., (28)

where P. 1is the probability of damaging the target on the ith
shot glven the éondition that the target was not damaged with any
of the previous shots. Obviously,

Pi=R;—Ry_,, - (29)

where R, 1s the probability of damaging the target wlth ¢ shots.

|
\
|
|
|
|

o \
From Eqs. (28) and (29) we obtain

MN)=1R,+2(R,—R))+3(R,— R)+-.. +
T2 Rn—Rn_y)+...

> we have R, = 1, beginning with some value of =
we can assume R =1 and R ., — R = 0. Equation (30) may then be

(30)

|
i
Since with n + «

1

written as follows:

M(N)=—R,—R,—...—Ry_,Fn=

where Ro - 0.

The larger
stead of the app
the exact equatil

=(1_"Ro)+(l""R1)+°"'+(l_'Rn-:)y (31)

n in Eq. (31), the more exact this equation. In-
roximate equation (31) we can therefore write
on ,

-

(32)

M©N)=Y, (1 —Ry).

. i=0

In the special case of the exponential target damage proba-
bility we find from Eqs. (32) and (26), after simple transforma-
tions

w

M(N) = Nep== - (33)

20) remalns valid even if Nsr is determined from

Obviously, Eq. (

Eq. (33).
|

H., Calculation of the Mathematical Ex
Damaged Targets

pectation for the Number of

. Let n shots}be fired at a group of k targets with the dam-
age probability for the <th target during this firing equal to
R;. In this caseF the number of targets which are damaged during

the firing Opera(

ion i1s rarndom. Let us find the mathematical cx-
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pectation of that number. We introduce the random quantity @

which 1s equal to 1 for the damaging of the ith target and equal
to zero 1f this target 1s not damaged. The probability of the
equallty x, = 1 1is Ri’ while the probabllity of the equality x, =

= 0 1s equal to 1 — Ri'

The number of targets damaged during the flring operation
will be

x=x,4 X3+ o X
and'its'mathematical expedtation'

* ok A
M@)=Y M@x)=Y, [Ri+0(1 —R)]=Y Rs. (34)
i=1 . ’ =i

i=1-

Thus the mathematical expectation of the number of damaged
targets is equal to the sum of the damage probabilities for these
targets. We note that this is valid for any relationship between
the shots. '

Let us now consider the speclal case of independent shots
and w = 1 (1.e., to damage the target, a single hit is enough).

Let there be k targets of identical area and let the proba-
bility of hitting each of these targets wlth each shot be iden-

tical and equal to p/k, where p 1s the probability of hitting the
target with a single shot (regardless of which target). We denote

gt (35)

‘as the average firing density, i.e., the number of shots fired
during the firing operation at a single target.

" The probability Ri of damaging the <th target 1s found to be
the probability of hitting thils target at least once |

R,v-ﬁl—(l—%)". (36)
Using Eq. (35), we can write

R.-:lﬁ[(l—%)"]". (37)

We have approximately

(1-—%)‘:&‘1’. (38)

whence

i==1—e"er, (39)

According to Eg. (34) we find the mathematlcal expectation
of the number of damaged targets
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Xep==kR; =k (1 —e-o?), (40)

———-—*—100(1-~e"“’) (41)
Table 3.U§l shows ap as a function of xsr% from Eq. (k1).

TABLE 3.4.1

Fepr % | ap | fopr % ap:
3 0,051 60 - 0.916
10 0,105 70 1,204
20 0,223 80 1,609
30 0.357 90 2,303
10 0.511 95 2,996
50 0,693 99 4,605

XAMPLE 2$ Let firing be conducted at 50 tTargets under the
condition that [the probability of hitting any of the targets is
equal to 0.5 with a single shot. What number of shots in this

firing operation corresponds to the mathematical expectation of

damaging 50% of the targets?

m

Solution., From Table 3.4.1 we find ap = 0.693, whence a =
= (0.693/0.5) 1.38. Further, from Eq. (35) we find

n = ak = 1,38.50 = 69,

| §3.5. EVALUATION OF FIRING EFFECTIVENESS IN THE CASE OF DEPENDENT
SHOTS

(Thé case of a scheme of two error groups)
A. The Scheme of Two Firing Error Groups
 The scheme{of two error groups 1s extensively employed in

practice. Moreover, the calculational formulas are simplified
! here. We will therefore l1limit our-

c2g-el § selves to an examination of this sim-
-I:ﬂ-! R St ple case, For brevity we will first
' | I X consider firing operations with one-
- -5 ~ dimensional scattering along the hori-
: _ 5 = 1 zontal axis (Fig. 3.5.1).
Fig. 3.5.1

|
| Let the center of the target be
\ situated at point 0. Let the trajec-
| tory for the ith shot pass through
the point 5, (=1, 2, ..., n), and let the center of the trajec-

tory scattering;fof a group consisting of »n shots be situated at
point R. We denote the deviation of the Zth trajectory from point
R by E.:

A

£ == RS, | (1)
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The deviation of the point R from the center of the target
1s denoted x: '

::OR.. (2)

The deviation of the trajectory from the target wlll then be

z; =8+ x. o o (3)

The quantities &, are distributed normally with the mathe-
matical expectation O_and the standard deviation % which charac-
terizes the technical scattering of the shots. The quantities gi
are obviously independent of each other and are known as nonrecur-
ring errors.

The quantity x 1s constant for a group consisting of n shots
but varies randomly with transition from one group to another.
The distribution of the quantity x 1s normal wlth the mathematical
‘expectation x, and with the standard deviation og._The quantity

cg is the characteristic for the scattering of group recurring

erfors which in practice are generally errors in flring prepara-
tion. It 1s obvious that these guantities & and Ei are independ-
ent of each other.

Let us examine the total firing errors 3. These are no
" longer independent. For these we have:

M(z) = M (5) - M (x) =0+ X, = X,, _ (L)
3 (@) =9 (i) ot ()=o) +0], (5)
Kij=M (2:2)) -—M(z,-) M(z;) =

— M (& b Exb X)) — X =
=0 x,M () + x,M () 9, =3 (6)

The correlation factor between quantities Z; and % . is found
from the equatlion J

2 2
K 7

I'ij :;_‘(z‘)g(zj)_‘cg (Z q?i +°l'2;"|

Equations (1)~(7) characterize the so-called scheme of two
groups of firing errors (compare [82], page 168).

B. Calculation of the Probability of Hitting a Target in the Case

of a Scheme of Two Groups of Firing Errors with One-Dimensional
Scattering

Let us examine the case in which the target has a wldth 2a
and in which 1ts center coincides with the coordinate origin
_(Fig. 3.5.1). '

The error distribution densities for the first and sccond

- 191 -



proups will be

MO=e =L (22, (8)
...(x'--‘-'o)"' - .
02 1 X
= T =g, (50, (9)
i L4 l’?u . ( ) |
where ‘i.

I ) ' .
‘ WW=5re T . (10)
| | |

With a fixeb error x the conditional probability of hitting
the target with a single shot (under the condition that the group
error 1s equal to x) will be

i a : '
1 P= [ o (i) =

R )

where ¢(u) 1s the Laplace function.

The unconditional probability of hitting the target with a
single shot will be ‘

oo -
P, = Sp(x)‘i’r‘(x).dx: '

e 1 & x 1 3 x-*x‘
-_:.j 55:%( R ;;f?"( °r_°‘)dxd52

- —a

a +a0 :

SlefanEiEge o

=]

The second integral in Eq. (12) represents a composition of
two normal distribution. As a result of this composition, we ob-
tain a normal distribution with the mathematlcal expectation x,
and the dispersion

‘ ot =2 o (13)

(see [82], page 68). Equation (12) may therefore be transformed
in the following manner:

T (2= %\t o (a5 ] (14)
: 2[¢( ° )*_¢( ° )}

| .
Hence it follows that 1n a scheme of two error groups the
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hi%t probabllity with a single shot 1s determined in the same man-
neroan in the case of a single error group, however, with repla-
cercnt of the technlcal scattering by the total scattering of the
two error groups.

The probability of at least one hit on the target with =
shots 1s found from the equation

+00
— .o . . aas fx—x.\ . PR
o= | R L P e Lot (15)
-— .

@p

where P(x).1s found from Eq. (11).

The integral in Eq. (15) is easlly calculated by
methods of numerical integration (for example, by the

ne of the
2 4 = AT

+ 4 b4, S o mmm bl - Lo R U'.mll.y‘\n’ e L
method).

O
g ™
et AAAL.I

If the target démage probability is exponential, from Eq.
(15) we obtain the target damage probability in flring a group
of »n shots

."":‘T {1 “ [1 — BT(.,{‘)]“-}E'I,‘ ?, (f.;xn) dx. (16)

C. Determination of Target Hit Probability for a Scheme of Two
Firing Error Groups with Two-Dimensional Scattering

For simplicity let us considerithe case of firing under the
following conditions: :

a)'the.target 1s a square with a side 2a;

b) the shot scattering is circular;

¢) there are no systematic firing errors.

Let the coordinate origin coincide with the target center.
We denote the errors of the first group (nonrecurring) by & and

n, and we denote the errors of the second group (recurring) by =
and y.

o

The probability density for the errors of the 1lst and 2nd
groups will then be, respectively,

L4 (E—f) %(1:1\ (17)

T _I'

_;!?_ %0 (3)90(£)- | (18)

With fixed magnitudes for the errors of the second group,
the probabllity of hitting the target with a single shot will be



Px g= | S—-l@-?;(e__.x)%(."f_y)d?dm (19)
»fvhencé we find :
Pl g =5 [0(555)+ o (2£5) X
><[¢ (“——é’-)—}-cb(“*”)]. | | (20)

The conditional probability of achieving m hits in the target
out of n shots (with fixed z and y) will be

Pun,n (5, ) =CT [P (x, Im (1 —P (x, hI*=m, (21)

where (™ 18 the number of comblnations of »n 1tems taken m at a
time. ‘

-The unconditional probability of achleving m hits from n
shots will be

+o0 +00

S Spmn(x, D% (3) % (o) dudy (22)

Integral (22) 1s simply calculated in the specilal case in
which n = m = 1. In this case we obtain the probability of hit-
ting the target with a single shot, which, as follows from Egs.
(12)-(14), can be written in the following form:

‘ p..=[¢» (i)] | (23)

where o, is found from Eq. (13).

When n > 1\Integra1 (22) can be calculated by one of the meth-
ods of numerical integration. In this case 1t reduces to the prod-
uct of two single integrals. We will demonstrate how thils 1s done
in the special case of n = 2.

Let us first consider the probability P,». From Egs. (22),
(21) and (20) we find -

i P, fofop(,\ »J? _‘i_ (g):p,,(»--)dxdy“
e e (e
x“-:-[ () o () (B)an

In Eq. (240 we obtained the product of two identical single
integrals, each of which we denote A. In view of the integrand

(24)

| - 10u -
\
\
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symmetry we can write the followlng éxpression for A;

_Aﬁ:é—:j[cp (ﬂ:x)_l_‘p(aj-x)]’% ﬂ _;;_)d.;c;..-

I

Se—r3y8

[<D(%—sz)+¢(-;‘-’;‘-—|—ez)]_"?.,.(z)dvz. - (25)

LR
2

In Eq. (25) we have substituted s = z/0_ and introduced the
denotatlon ' g
NS (26)

We note that the magnitude of A is fully defined by two
parameters: € and Py;.

Indeed, from Eqs. (26) and (13) we find

f=d (1), (27)

whence

= Vi o (28)

If Py: and € are given, from Eq. (23) we determine the ra-
tio a/oz, while from Eq. (27) we determine the ratio a/o, which

is 1nc1uded in Eq. (25) for A.

We now examine the probabiljty P12. From Egs. (22), (21) and
(20) we find

+oo+m0

,.mj' S2P(x,y)[1-—P(x,y)] ?o(,r)%( )dxdy—

=2 f S?P(x 9) 2?0( )cp (i)dx&meP,,. - (29)

_ However, the integral in the right-hand portion of Eq. (29)
1s equal to Pi11. We therefore obtaln

Pu=2pu"2p=a=2pu_2A". (30)

Now 1t is not difficult to find the last of the probabilities
Py, of interest to us. For thils we have to use the fact that the
sum of the probabilities P2, P12 and P2, 1s equal to 1. From
Egs. (30) and (24) we then obtain

P“ﬂl—»QP"—{-A'. (13)
We see from Egs. (24), (30) and (31) that to calculate all
three probabllities of 1nterest to us we need only one single in-
tegration to calculate .. according to Egq. (25).

EXAMPLE 1. Let us consider the case in which the target is &

_195_



square having a side 2a = 4 m, and the standard firing errors for
the two groups are identical: o =a, = | m. Under these condi-

tions, let us fﬂnd the probabFIITTes Pe2, P12 and P2a.

Solution. From Eq. (25), by numerical integration, we find
A = 0.732. From Eg. (13) we obtaln oy = (2)7%, while from Eq.
(23) we find P11 = 0.710.

Fur+her, from Eqs. (24), (29) and (30), we obtaln Pg2 = 0.116,
~Prz = 0.348, Pzz = (0.536.

We note thaf In the case of . Independent shots with Py, =
= 0.710 we will ihave
Py=(1—P11)?=0,084,
P|3=2P1|'(1-—Pn) '-‘0,412.
Pp= P}, =0,604,

The results of these calculations are summarized in Table

3.5.1
'] 0 1 [
Pos 0,084 0.116 0,290
JJT 0.412 0.348 0 .
P2 0.504 0.536 0.710
I3 0,916 0.584 0,710
r 0 0,5 1

Table 3.5.1 also shows the values of the probabllity P’ for
at least a single hit on the target

| Pl =P+ Py,
as well as the values for the correlation coefflclent
2
L i s )
= i e | (32)

"Moreover, Table 3.5.1 shows the probabliity values for & =
= o (p = 1), Here the nonrecurring errors are so small that the
technical scattering of the shots can be neglected and 1t may be
assumed that all of the shots in one group hilt one polint. This
means that if one shot hits the target, all of the remaining
shots would also hit the target. In this case therefore P, = Q,
Pas = P13 and Pgzr = 1 - P11,

The quantitative relationships seen in an examination of
Table 3.5.1 are general. With an increase in e (when € + « or r ~»
+ 1) the followinp gquantitative relationshlps prevall for any
values of n:

P

eeey Po. tend toward U
1n, “2n’ > Ypeiyn >

1) the quantitles P
| !
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?) tne guantity P tends toward P;,;;

~_ tends toward 1 — P
Oon

4) the probability P' of at least one hit tends toward P;,.

3) the quantity P

11
i 43

We also note that when‘!él(f<39 the probability character-
do not significantly differ from those whilch correspond

5
denendent sho
aepen sh

\.lv -

VD. Determination of Target Damage Probability for the Case of a
Scheme of Two Error Groups

" For conciseness in the discussion we will 1limit ourselves
here to the case in which the number of shots in the group 1is
equal to 2.

In this case, according to Eq. (3.4.21), the probability of
target damage will be

R,:PI’GI+PQ|Gai (33)

where the probabllities P;; and P;; are found from Egs.(24) and
(30), while the probabilities G¢; and G, are defined by the dam-
age probabllity.

We will illustrate Eq. (33) by means of an example.

EXAMPLE 2. Find the target damage probability under the con-
ditions of EXAMPLE | for three versions of the damage probability:
i .

#) G1=0.5, Gy=0.5,
) Gy =0,5, Gy.=0.75

G =05 Gy=1,

(here, case b) corresponds to an exponential damage probabiiity).

Sojution. Under the conditions of EXAMPLE | We had P12 =
= 0,348 and P23 = 0.536. ‘

From Eq. (33) we determine the values of Rz shown In Table
3.5.2.

TABLE 3.5.2

' Damage
probability Ry
variant
a 0.442
b 0,576
c 0,710

We see from this table that the exponential damage probabil-
ity occupies an intermediate position (with respect to R2) be-
tween the other cases considered.
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E. Application of the Method of Statistical Modeling to Deter-
mine a Target Damage Probability

We 1imited ourselves above to an examination of several spe-
clal cases and to several examples for the determination of the
target damage probability. We did this because in the more gen-
eral cases we obtain extremely cumbersome analytical expressions
which are of 11tt1e use 1in calculation.

The method of statistical modellng makes 1t possible with a
single simple general scheme to determine the target damage pro-
bability for the most general condltions:

an arbitrary target shape;
an arbitrary number of shots in the group;

‘ noncircular technical scattering with arbltrary direction
for the scattering axes relative to the target;

noncircular scattering of recurring errors with arbitrary
direction for the scattering axes relative to the target;

there may be systematic. errors;

‘the relationship between the errors of successive shots 1s
arbitrary (not necessarily reducing to the scheme of two error
groups) ;.

the targetidamage probability is arbitrary.

The scheme for the application of the method of statistical
tests to determine the target damage probability by a group con-
sisting of n»n shcts involves the following:

1) One group of n shots i1s modeled. By means of random-num-
ber sensors we determine the recurring and nonrecurring errors
and for each shot we determine whether it is a hit or a miss.

We calculate the number of hits. By means of the random-number
sensor and the damage probabillity we determine whether the given
group has damaged or falled to damage the target.

2) Modeling of the shot group is repeated N times. As a re—
sult we have that the target was damaged ¥, times, while fallure
to damage the target occurred N — N; times.

3) We findlthe target damage probabllity from the frequency

| P=Ty. (34)

L) we calculate the accuracy of the solution according to
Eq. (34) by means of the method discussed in §2 3. If the accu-
racy 1s inadequate, the modeling 1s contlnued untll the given ac-
curacy 1s achieved.
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§3.6. CONSIDERATION OF RELIABILITY IN EVALUATING FIRING EFFECTIVE-
NESS

A. Formulation of the Problem

Let us examine the case of flring n shots at a single tar-
get under the following conditions.

1. The probability characteristics of the projectile [mis-
sile] remain unchanged from shot to shot (the probablliity of hit-
- £ing the target, the probabllity of on-board facility fallure,
ete.).

2. The probability of no weapon (launch installation) fall-
ure wilth n shots is written in the form

P(n) =P (1)

(see Eq. (1.8.5), where P, 1s the probability of no fallure with
the first shot, if there were no malfunctlions prior to that shot.

3. In evaluating the target damage probabllity we can ne-
glect the accumulation of damage due to the prevlious shots (if
the target was not damaged by these shots).

Under these assumptions we can write the followling expres-
slon for the unconditional target damage probability with a single
shot:

ﬁ:__‘P:'_Rn (2)

where R; 1s the conditional probabllity of target damage wlth a
single shot, determined for the condition that the weapon did not
fall on that shot.

Let us now examine the following problem: the firing instal-
lation has at its disposal n projectiles, the firing 1s being
carried out against a single target, the results of the firing
are under observation and the firing is stopped when the farget
is damaged. We are required to determine the probability Rn of
target damage.

In analogy with §3.4.1, for the case of independent shots,
this problem has the following solution [see Eq. (3.4.26)1:
Bo==1—(1—R) (3)

However, under these conditions Egq. (3) is not valid, since
the possibility of weapon fallure makes the shots dependent. In-
deed, 1f the weapon falled on some shot, the target damage proba-
bility for all of the subsequent shots is equal to zero.

B. Basic Equations

Let @, denote the probability of the following event: the
target has not been damaged by shots with numbers from 1 to k — 1;
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on the kth shotithe target was damaged.

The quantity Qk 1s easily defined as the product of three
factors: \

j k
the probability of proper weapon function for k shots 1s P;;

the probability of target nondamage with k — 1 shots 1s (1 —
the probability of target damage on the ktg_shot is Ry, 1.e.,

"'"Rl

} Qu==P?R, (1 —R)*"'= P,R,z*", ()
where for brevity we have introduced the denotatlon
z.-"-="-P‘(1""'R1)'_ . (5)
We can now writh the followlng obvious equations:
§ | .
knﬂ?:1Qh (6)
Afﬂzz“kQ}n_ ‘ (7)
k=1

where Mn is the mathematical expectation of the number of shots.

Using Eq. (4) and the relationship

Y A== (8)

from Eq. (6) we obtain
. ] —zn
Ru== PR = (9)

z

This equation is valid when the weapon (launch installation)
is clearly functioning properly at the beginning of the firing
‘operation. If it is not known In advance whether or not the wea-
pon (launch installation) is functioning properly, Eq. (9) should
be written in the following form: ‘ '

A

Ro=K:P.R, =%, (9a)
| _

where K _1s the coefficient of weapon (launch installation) readi-
ness (see §1.9).

Equation (7) can be rewritten to the form

n

My=PR Y k2t = PR - P2t (10)

! k=1 . k=1 .
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After a number of transformations, from Egs. (3) and (10) we ob-
tain

ﬂ“-4n+nzhkl-
Mﬂ—PR (l—'Z)‘ . (ll)

With n + « from Egs. (9) and (11) we obtain

E,,, ,f;. ' o (12)

M= (13)

C. Analysis of Derived Equations

Let us first consider the special case of Py = 1. In this
case from Egqs. (5), (9), (12) and (13) we find

-

Ra=1 -H(I—-' R)", (14)
R = | (15)
Al

ﬁ— (16)

i.e., we derive the well known equations for the case of independ-
ent shots.

Let us now consider the case of P; # 1, while R1 = 1. Tn
this case, from Egs. (5), (9), (12) and (13) we obtain

Rﬂ“"Plp . (17)
M,=P,, (18)

i.e., the results are independent of n. This 1s physically evident,
since when Ry = 1 the target will either be damaged with the first
shot or the weapon wlll fall on that shot and the fjring operatlon
will be curtalled.

In the subj)ect case we have derived Eq. (18) for M, from
which it follows that Mn < 1, which is in agreement with the phys-
1cal sense of the quantity Mn — the average consumption of projec-
tiles fired from a single weapon,

We are frequently interested in the average consumption M' of

projectiles per single damaged target. For thls average consump-
tion the following equatlion is obviously valid:

Y

My=2 (19)

-t
H

From Eqs. (9) and (11) we have

, _ onzntt—(n4-1)zn 41
M'n= =iy i=zm (20)
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| With n + o, ywye thus find

M= ] . ' (21)

@® l—2z

In bonclusion, let us examine a numerical example.

EXAMPLE |. The probability Py = 0.9 of faultfree operatlon
of the launching Installation during the shot and the conditional
probablility R = 0.7 of ftarget damage with a single shot are
known. .Let us determine the I|imit values of the conditional tar-

get damage probﬁbili+y (R,) and the mathematical expectation of
The shots for target damage (M_ and M'_) with an Infinite in-

crease In the n%mber n of missiles aVai]able to the weapon.

Solutlon. From Eqs. (5), (12), (13) and (21) we find z—0.27.
Ry =086, M= 118, My =137,

It Is ln+ehes+lng to note that with Independent shots ﬁm = 1.
Here the quantity R_ < | because of the low reliability of the
instalil |

o
““““ nsTa 1

iation.
With indepéndenf shots the average number of shots for one
target damage with n + « will be I/Ry = 1/0.7 = 1.43. Here M=

= 1.57 < 1.43, This Is explained by the fact that it is impos-
sible to fire a large number of shots at a slingle target because
of the low reliapility of the launching Installation (the aver-
age number of shots from a single launching installation Is M_ =
= 1.10), |

'D. Firing at Several Targets

Let us conslder the case in which the gunner has at his dis-
‘posal »n projectiles [missiles] for the weapon. The firing is
being conducted against one target until it is damaged, and fire
1s then transferred to the next target, etc. We are required to
determine the maphematical expectation M"n of the number of tar-

gets damaged by fire from a single weapon.
. |

It 1s easy fo see that this problem 1s equivalent to the
following: there are »n targets and a single shot from the given
weapon is flired at each of these. :

In this case the probability of damaging the first target.
with the first shot will be PyR;. The probability of proper wei-
pon operation during the second shot will be P2, while the Pro--
babllity of damaging the second target will be P}R.. Analogously,
for the third target we will have P R,, etc. =

The sought mathematical expectation is found as the sum o7
the probabllitles
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My PRy PR PR 4P R ==

.

_ e
Mle;ZlP‘ —:-PlR‘l_Pl - . (22)
Hence, as n + «, we have
e
M =1=p;¢ (23)

This equation is not sultable for the case Py = 1. In this
case from Eq. (22) we have 3

- M",=nR, (24)
and s

M"m — 6o,

EXAMPLE 2. Find M"uo for the conditions of EXAMPLE |I.

Solution. From Eq. (23) for values of Py = 0.9 and R; = 0.7
we have M" = 6.3. This means thaft with an unlimited number of

shots per weapon on the average a single weapon will damage only
6.3 targets (until the weapon fails). It Is assumed here that the
weapon that fails is not repaired during the course of the firing
operation.

§3.7. EVALUATION OF EFFECTIVENESS IN CERTAIN COMBAT SITUATIONS

A. Evaluation of Firing Effectiveness for a Single Weapon Firing
a Single Shot

Let us consider the case in which the firing operation is
being carried out wlth a single weapon which has traveled a con-
siderable distance prior to opening fire. The system 1is given
the command to open fire at a target whose stay time t 1n the
fire zone is limited. As a rule, this may involve an unplanned
target (gathering of people and equipment, rocket launch instal-
lations, etc.).

This assignment can be carried out only by a complex system
equipped with reconnaissance facillties. For example, an alrplane,
a light bomber, an artillery or rocket system with nuclear capaci-
ty and with reconnalssance facilitles.

The effectiveness of such systems can be compared in terms
of target damage probability. The damaging of a target with a sin-
gle shot under these conditions will be. a complex event consisting
of a number of random events.

1. A random event involving the detection of the target by
the ?ystem. This event is evaluated by the detection probability
r t ).

“obnt "o '

2. A random event involving the fact that at tne instant of -
time ¢, = 0 (the instant at which the command to open fire 1is re-
ceived) the system will be ready for operation. Ynis evant is
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evaluated by theiprobability that at the instant of time tk =0
the system will be in an operational state Kg.

3. A random%event involving the fact that the system wlll
function faultlessly for the gilven time tp which is evaluated by

the probability of faultless operation P(t_) during the time ¢
(preparation and launch of rocket). p p
‘ 4., A random event consisting of the fact that the target
will not leave the fire zone (if 1t 1s a moving target) or will
not leave its starting position. This event 1ls evaluated by the
probability of the target staying in the firing zone (at its
starting position) P(r1). |

5. A randomievent consisting of the fact that our system
will not be destroyed during the time tp-by fire from the enemy.

This event 1s evaluated by the probablility of nondamage from ene-
my fire (1 — @). ‘

6. A random' event consisting of the fact that the miss dis-
tance r on launch of the rocket will be less than the reference
racius rp of the damage zone. This event 1ls evaluated by the pro-
bability Pi of hitting a circle with radlus ro.

7. A randomi event consisting of the damage of a target on
launch with a miss distance ». This event 1s evaluated by the
conditional probability of target damage G (r) under the condition
that the missile explodes with a miss distance »r.

The total target damage probability R: with a single shot,
with consideration gilven to all of these random events, is evalu-
ated as the product of the probabillties of all of these events:

- RO =P OKP U P —QR,, (1)
where Ri = P;G(rb and is calculated with Egs. (3.1.1), (3.1.6) or
(3.2.1)~(3.2.29)  as a functlon of the type of ammunitlon. System

reliability P(tpP was considered in Chapter 1 and in the previous
section. Let us examine 1n greater detail the probability P(1t) of

the target remaihing in the firing zone, the readiness factor X
and the detection probability. &

If fire is being conducted at a launching ﬁosition, the time
that the target stays in the fire zone is defined by the time re-
quired to prepare for firing. The usual preparatlon time Tp is

¢haracterized by the average preparation time. However, we will
always have a random target stay time T 1n the fire zone, since
random target detection may occur at the instant that 1t occupies
its launch position at rp = 0 and at any other instant =t g_rp

We may therefore assume an exponential law for the distribution

of the target stay time t at the launch position and caliculate

the probabillty that the target will not leave its launch posi-
ion during the time T wlth the equation

|
\
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Iy

P(':>fn)::—‘e";. (2)

where T > 03

Ty 1s the average target stay time in the fire zone from
the instant of its detection.

At any instant of time, beginning with the lnstant of de-
tection, the target may leave the launch pesition. Here the pro-
babllity of the target staying in the fire zone 1s a function
exclusively of 1 and 1s independent of the position of the reck-
oning origin.

The probability of detecting moving targets was considered
in §1.6. For nonmoving targets the detection probabllity Pobn(t)

is a function of the reconnaissance rate X, and the time ¢ spent
on reconnaissance. The reconnalssance rate xr wlll be understood
to refer to the number of targets spotted per unit time:

s WY 4

Poﬁn-‘—_—l—‘_e*?- . o (3)

The readiness factor Kg must be taken into consideration in those

cases in which the period of preparation does not allow enough
time to permit a technical inspection of the varlous system ele-
ments and to carry out repalrs or substitution of system elements
that have broken down. Should there be enough time to check the
equipment and to repalr it in the case of fallure, the readiness
factor will be equal to unity.

EXAMPLE 1. Evaluate the firing effectiveness of a rocket
system en route with a single launch of a rocket, if it Is known
that the conditlional probability of target damage is R1 = 0.9,
that the effectiveness of the return flire is @ = 0.5, that The
time required to ready the launch Is tp = 0.5 hr, that the aver-

age time of faultless system operation is T = 50 hr, that the
average repalr time isib = 2 hr, that the average target stay

time in the fire zone Is T¢ = 2 hr, that the reconnaissance ravre

is A = 0.5 targets per hour and that the reconnaissance time is

t = |0 hr from the instant that the system gets under way.
Solution |. from Eq. (3) we determine P, (¢) for various

values of the reconnaissance time

t, hr ] 2 4 6 8 10
Posu(t) O 0.635° 0.865 0.950 0,982 0.993

2. The readiness factor

50
Kr =5_0-_‘—_—2=0.973.
5. The probability of faultless operation .. usTermineg fro
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the equation

-~

n

| Pty=e T ==0,990,

4. The probablll+y of the target staying in the fire zone
-1s found from Eq (2) (we neglect the time spent on the proces-
sing of the reconnalssance results and target Iindicatlion)

ty -

P(t>ty)=e *=0,775.

5. The effécfiveness of the system firing at a launch posi-
tlon as a function of the reconnaissance time ¢ Is determlined
from Eq. (1) asiR1(t) = 0,.63520.973+0.990+0.775 (| - 0.5)+0.9 =
= 0,213, etc.

i o 2 . 8 ] 10
|

\

i R 0 0.213 b.290 0,319 0,330 0,333

|
Hence we can see that the firing effectiveness of the sysfem

does not exceed! 33%, whereas the conditional probability of target
- damage Ry = 0.9, The basic factor reducing firing effectiveness

in this example is the effectiveness @ = 0.5 of the countermeas-
ures. ‘ :

B. Evaluation of Firing Effectiveness with Several Shots

With several shots under complex combat conditions the same
random factors which we consldered in the previous item will af-
fect the firing effectiveness of the system. Moreover, we will
also find a relatlonshlp between the shots. However, the rela-
tionship between the shots may occur either at a high firing rate
or with a low rellability of system operation (see %3 6). With
high system rellability and a low firing rate we can neglect the
fact of the relationship and calculate effectivenesss with the
equation |

\
|
R (t)==Posu (t) KeP () P () {1 — [1 — P (t) R\]"} (1 - Q), (8)
where P{t) 1is the probabllity of the system functloning fault-
: lessly durlng time t;
P(toe) is the probabillity of the rocket functioning fault-
lessly during the fllight time ¢,
n 1s the number of rockets launched at a single target;
t i1s the time that the system 1s in operatlon against a
single target.

The remaining parameters have the same significance as in
the previous item. We can use Eq. (4) to calculate the firing <f-
fectiveness ol an antiaircraft system or of an ATGM [antitank
fulded missile] (NTYPC). The detection probability in this case
is calculated with Egs. (1.6.2) and (1.6.18).
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gggépt Transliterated Symbols

No.

170 p = r = razryv = exploslon

170 po = rd = razryv po dal'nostl = explosion, distance
170 DB = rv = razryv'po vysote = explosion, aititude
185 6p = sr = srednily = a&érage, mean

191. 'H = n = normal'nyy = normal

191 T = g = gruppa = group

200 r = g = gotovnost' = readilness

203 00E = obn = obnaruzhenlye = detection

203 0 = o = obnaruzheniye = detection

203 K = k = komanda = command

204 n = p = podgotovka = preparation [tfaining]

205 p = r = razvedka = reconnalssance

205 - B = v = vosstanovleniye = recovery [repairl]
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Chapter 4

APPLICAT§ION OF THE METHODS FROM THE THEORY OF MASS
SERVICE ENGINEERING [QUEUEING] FOR THE SOLUTION
PF PROBLEMS IN OPERATIONS RESEARCH

§4.0. INTRODUCTION

At the present time the ldeas and methods of the theory of
queueing are finding increasing acceptance throughout in prac-
tice, including in operations research. This chapter provides a
brief discusslon of certaln results and methods from the theory
of queueing which may be applied to the solution of military prob-
lems. They are all reduced to calculatlonal relatlonships.

The chapter demonstrates the approaches and methods of for-
mulating and Solving certaln military englneering problems asso-
clated with the theory of queueing, and these are all illustrated
with appropriate examples. In the last sectlon we present the
fundamental principles for the solution of more complex problems
on a computer by the method of statistical tests (the Monte Carlo
- method). At thel end of the book and in this chapter, during the
course of the discussion of the material, we provide references
to available Rugsian literature on the problems of the theory of
queuelng touched upon here. The reader may refer to these cita-
tlons 1if he desires a more extensive and more thorough famlliari-
zation with the methods and results of this theory.

ﬂ 'I 1R lhllll"‘i

FUNDAME AL Co
|
The theoryl of queueing was developed only recently. Its de-
velopment was brought about 1nlitially by the urgent needs of
telephone communications, and then in physics, efficient servicing
of the population (stores, cashlers offices, airports, etc.), re-
pair and serviclng of machine tools, etc.

Q2 [] (Al o A\VS n ]
84 NCEPTS OF THE THEQRY OF QUEUEING

\
In military affairs the methods of the theory of queueing

may be employed to evaluate the effectiveness of an antiaircraft
defense AAD [NBO] system for various sites on the basis of which
requirements are worked out with respect to antialrcraft weapons,
reliability of aerial reconnaissance, to study the firing effec-
tiveness of antitank facilities, the transmission capacity and
the quality of yarious forms of guidance systems, for the deter-
mination of optimum organization in the repalr of combat equip-
ment and systems for the supply to troops of ammunition and other
forms of combat egquipment, the forecasting of peak loads at evacu-
dtion centers, hospitals, decontamination centers, etc. [66].
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As we can see from this brief listing, the range of problems
of applied military nature which may be solved by means of the
methods of queueing i1s rather extensive.

Before turning to the direct appllication of the results anad
the methods of the theory of queueing and examples of its military
application, we must become familiar with its fundamental con-
cepts and terminology.

In solving the above-enumerated applied military problems
we define the term "queueing" to Include the firing at aerial tar-
gets by an antiaircraft defense system, the observation of ground
targets by aerial reconnalssance facillties, the repulsion of an
armored attack by a system of antitank facllities, the processing
of reconnalssance and similar data by a control system, the re-
pair of military hardware, etc. ‘

The queueing system includes devices (lines, flows, etc.) to
provide service. If we agaln turn to examples from the area of
military affalrs, these 1lnclude antlalrcraft defense systems,
aerial reconnalssance facllitles, antitank weapons, industrial
assembly lines [flows] or weapon repalr shops, ete.

The function of any queuelng procedure is the satisfaction
of imposed requirements (requisitions). In military affairs these
requirements (requisitions) for service include aerial targets in
the antiaircraft defense zone, tanks in the operating zone of
antltank facllitles, targets for aerlial reconnaissance, weapons
requiring repalr, etc. These requlrements (requisitions) are in-
troduced into the system to form a certain time sequence of events
which will be referred to as a flow.

Those requirements which are imposed on the system form the
input flow. However, all requirements are not serviced by the sys-
tem. Some of these, rejlected for certaln reasons, are removed
from the system without service. For example, when an enemy force|
of aircraft attacks a site, the antiaircraft systems are not al- ‘
ways capable of firing at these alrcraft. Some of these aircraft |
penetrate to the target, forming an output flow of aircraft which‘
"have not been fired upon (unserviced requirements). {

|

The ouﬁput flow may also conslist of serviced requirements
(aircraft and tanks agalnst which fire has been directed, repaifed
weapons, etc.).

A. Classification of Queueing

All queuelng systems can be divided into two majJor groups:
urniform and nonuniform. The former consists of uniform servicing
devices, while the latter consists of nonuniform devices. For ex-
arple, 1f an antitank defense system consists of uniform antitank
facilities, it will be a uniform queueing system.

The service process 1tself may consist of a number of suces-
sive phases. In this event, 1f there are several such phases,
agueueing systems are known as multiphase systems. Tor example,
an antialrcralt defense system may be regarded as conglsving of
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a guidance system and a fire control system. Targets appearing
in an antiaircraft defense zone are initially detected and dis-
tributed by the ‘guidance system among the antiaircraft fire sys-
tems gthe first;phase) and then fired upon by these (the second
phase). 1 ‘

The operational feature of multiphase systems involves the
fact that the sérvicing facilities of each subsequent phase be-
come operational only when the requirement (requisition) of the
previous phase has been satlsfled. :

In terms of the time for which a requirement remains in ef-
fect in the servicing sphere, all systems can be divided into
three major groups: '

systems wiﬁh fallure;
systems wiﬁh limited expectation time;
systems with unlimited expectation time.

| .
Systems with failure are those in which any new input require-
- ment for service, on finding all facllitlies occupied, leaves the
system. An example of such a system 1s an antialrcraft defense
system in which/the stay time for a target in the firing zone 1is
small and commensurate with the time required to carry out the
firing operation. In thls case, the enemy alircraft (or scme other
aerial attacking device), finding the antiaircraft systems en-
gaged 1n firing at other aircraft, passes through the antialrcraft
defense zone unharmed.

The opposite of the above system is a queueing system with
an unlimited time of ewxpectation for requirements (requisitions)
in sequence (a system with expectation). The operational feature
of such a system involves the fact that an input regqulrement,
finding all service facllities occupied, must awalt 1ts turn un-
til some of the servicing units are freed. As an example of such
a system we can ¢clte a control system processing reconnaissance
results and data on the posltion and status of friendly forces,
repalr workshops, etc. In the latter case, weapons coming in for
repair, if flows engaged in the repair of earlier arrived equip-
ment are occupied, must awailt their turn and weapons thus are
accumulated 1n large quantitiles.

Finally, systems with a limited expectation time OCCupy an
intermediate position. Requirements entering such a system, on
finding all devices occupied, take thelr turn. However, the re-
quirements remain in this system for a limited time, after which,
unable to await service, they leave the system. The fundamental rela-
tionships derived for these systems to describe their functlon
may be used to obtain similar relatlionships for the earlier con-
sidered systems. As an example of such a system we can cite the
grouping of antitank facilitles with rather great [liring range.
The time Iin which an enemy's tanks remaln in the firing zone is
rather great, but limited. For systems with fallure the time ol
“requirement expectation on an in-turn basis is equal to to .= 0.

Zn
|
i .
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Each of the systems may vary wilith respect to the nature of
the requirement to be serviced:

_ the devices are connected for servicing in rigorous sequence
(for example, in numerical order). This occurs when the system
consists of various types of uniform weapons with varlous advan-
tageous characteristics of theilr combat application;

the devices begin to service new input requisiticns 28 thev
become free (for example, industrial repair assembly lines);

the devices are actuated 1n random order (for example, anti-
aircraft systems 1n firing at targets in the case of a strong
~attack from the air). o

In systems with expectation and limited expectation time we
can determine the variations from the sequence with which the re-
quirements are accepted for servicing: ‘

requirements for servicing are accepted in the sequence of
their input into the system (arrival of a malfunctioning weapon
for repair);

- preference for service is given to those requirements which
have minimum time to failure (in the firing zone for antitank fa-
cilities it is advisable, first of all, to fire at those tanks
which ‘are closest to the antitank facilities and capable moust ra-
pidly of penetrating the defense perimeter);

requirements for service are accepted in random order (as an
example we can cite the antilaircraft defense system for a site in
repelling an enemy aerial attack). '

A general feature of all problems assoclated with queuelng
is the random nature of the studied phenomena. The number of re-
gquirements for service and the magnltudes of the time intervals
between these on input into the system are random. The servicing
time, and in certain systems with limited expectation time, the
expectation time as well, are also subject to random fluctuations,
with these random fluctuations, however, not in the nature of
small perturbations. Quite the opposite, this basic feature of
the subject processes imposes a speciflc mark on the properties
of the derived relationships.

B. Characteristics of Requirement Flow

In practical terms, virtually all problems pertalning to
the theory of queueing have been reduced to final calculational
formulas and these, having found practical application, proceed
from the position that the input flow is the simplest (Polsson).
The simplest flow exhibits three basic properties: steadiness,
uniqueness and an absence of aftereffects. A random flow 1is re-
ferred to as a steady flow 1if 1ts probabllity regime does not
vary with time. :

If we plot equal but nonintersecting time intervals t (fig.
4.1.1) on the time axis, the probabllity of the event — the ap-
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pearance during these Intervals of a specific number of require-
ments — depends for the given flow on the magnitude of T and is
independent of the position of this interval on the time axis
(from the instants of time ti1, t2y, tas, €tc.).

o | L b2 | | b
T : T "l"'
i Fig., 4.1.1

For the simplest flow the probability of the appearance
within a time interval of duration T of precisely k requirements
1s determined with the Polsson formulsa

‘ 0 LY

Pk("):- I3 e 3 (l)

|

where A > 0 1s é constant number whose slgnlficance will be clari-
fied below. |
\

Absence of aftereffects involves the fact that the probabll-
ity of the appearance of a speclfic number of requirements within
the time segment 1 1s independent of the number of requlrements
that have already arrived In the system earlier and 1s independ-
ent of the previous history of the subject phenomenon. The ab-
sence of aftereffects assumes the mutual lndependence of the pro-
gress of the flow in nonoverlappling time interval. Uniqueness of
the requlirement | 'flow indicates the practical impossibility of the
appearance of two or more requirements at a single instant of
time. If we aenote the probability of the appearance of more than
one requirement during the time At by P, (At), the unigueness
condition is written as follows:

Por(®) L0 aw At->0.
| At

The simplest flow 1s thus a steady flow, one that is unique with-
out aftereffects. The derivation of the equations for the sim~
plest flow 1s demonstrated extensively 1n avallable literature

on the theory of queueing and the reader may find this material
in Reference [80]

An important characterlstic of the flow 1s ifs rate, which
is defined as the mathematical expectation of the number of re-
gqulrements per unit‘time For the simplest flow, the average
number of requirements arriving during the time ¢ 1s equal to

Mu(0)] “-E kP (1) == e‘“E ROON )

\
where u(t) is the flow rate;
A is the flow parameter.
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The flow parameter in the theory of queueing 1s deflned as
the limlt of the ratio for the probability of the appearance wi(t)
during the time At of at least one requirement to the time At

lim =9 — 2 (3)

At Afad

For the simplest flow the rate is equal to its parameter. For
other steady flows we always have the inequality u #¥ ». Tro sim

" plest flows differ from each other only in theilr parameters. Thus
to assume a simplest flow 1t is enough only to assume 1ts para-
meter A.

Graphically, the simplest flow, as well as other forms of
flow, can be presented in the form of a curve of random functions
having discrete whole nonnegative values (Fig. 4.1.2). The helght
of each step in this graph 1s equal to unity (the appearance of a
requirement), and the length of the step defines the time inter-
val between two successive requirements. The magnitudes of these
intervals are random quantities wilth an exponential distribution
law havling the parameter A.

xit)}
s01
4 0r i

50r

0

Fig. 4.1.2

An exponential distribution exhibits one interesting proper-
ty — the distribution of the duration for the remaining part of
the time prior to the onset of the subseguent event is independ-
ent of the amount of time that has passed since the instant of
the previous event. This property enhanced extensive application
of the exponential distribution in the theory of queueing. Proof
of this property may be found in References [80, %GJA

Particular attention 1s belng devoted to the simplest flow
because it has found overwhelming use in various appllcatlons.
However, experlence in the study of real flows demonstrates that
these may not always be presented in the form of the simplest.
Indeed, we should expect certain aftereffects, nonuniqueness and
nonsteadiness in the flow, and these cannot always be neglected.

The appearance of requirement flows with limited aftereffects
will be examined on the example of the antlaircraft defense of a
major target. According to data from [62] the antlaircraft defense
system of such a target, as a rule, consists of several echelons.
Let the simplest fiow of targets approach the flrst echelon of
the antilaircraft defense system. All of the targets will not be
damaged as they pass through the first echelon. The output flow
of targets will now be a flow with limited aftereffects (& Paln
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flow). If a Poisson flow of targets approaches the first echelon,
as 1t passes through the antlalrcraft defense elements an increas-
ing number of volds will be formed within the flow. The farther
the flow of targets passes through the echelons of the antiair-
¢raft defense, the larger the number of volds and accumulations
will form. This is the meaning of aftereffect.

_Nonsteadinéss of the flow wlth respect to time appears par-
ticularly strongly when it 1s considered over the course of a
large period of time. As the time segment 1is reduced the nonstead-
iness of the flow, as a rule, weakens.

Departure from uniqueness may be demonstrated on the same
example of antlalrcraft defense. Indeed, under practical condi-
tions, two or more aircraft may simultaneously enter the anti-
alrecraft defense zone.

However, the simplest flow contlinues to be used for a number
of c¢ircumstances: :

-~

1 T mn 1
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|
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: 2. It is more difficult to adapt queueing systems to the
simplest flow. Therefore in designing servicing facilities 1n
this case we figure on thelr operation under the most difficult
of conditions. If the servicing facilltles are designed for this
most disadvantageous case, the servicing by the system of other
random requirement flows at the same rate will be more reliable.
This was the conclusion of I.N. Kovalenko [121]. :

|
3. The simﬁlest flow in the theory of queuelng plays the
same role as the normal distribution function for random quan-
tities 1in the theory of probabilitles. In combining several ran-—
dom flows we form a total flow which, in terms of its character-
1stics, approaches the simplest flow (see [121]).

However, ih actual practlce there may arise a need to study
the work of queueing systems which recelve requirement flows sub-
stantially diff?rent from the simplest, and also other flows which
have been sufficiently well studied. In this case the operation of
the queueling system may be analyzed by means of the method of
statistical tests (the Monte Carlo method) in which it is fre-
quently advanta%eous to use digital computers (see Chapter 2).

C. Servicing Time

Servicing time 1s the most important characteristic of any
apparatus (1line) for the servicing of a system and defines its
transmission capaclty. Servicing time 1s a random gquantity. This
"is a result of the instabllity of servicing facility operation
(particularly with particlpatlion of a human being or a staff of
peopie) and because of the nonldentity of the requirements coming
into the system} For example, in repulsing an enemy aerilal attack
by the antialrcraft defense system of a target the servicing time
1s the time required for each antiaircraft system tOC fire at the
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aerial targets. Naturally, the time from each firing operation

at each new target by the system will vary for a variety of rea-
sons. With respect to an antiaircraft artillery system the scat-
tering in the time required to fire at aerial targets will be
governed by changes in range and firing parameters such as veloc-
ity and target maneuvering, variations in the time required for
preparation for firing, reloading time, the time required forthe
transfer of flre, etc. : T

The magnitude of the servicing time tobs therefore should be

assumed to be a random quantity whose total characteristic 1s the
distribution function

.F(t)———ap[toﬁo <t]: ) (u)

where P[tobs < t] 1s the probability of the event that the ser-
vicing time tobs willl not exceed a certain quantity ¢.

From physical considerations the servicing tlime may not be
a negative quantity, i.e., when tobs < 0 we have F(t) = 0. The

servicing time distribution function is determined experimentally
by statistical methods of analyzing the numerical values of the
servicing time for actual systems. The distribution functlons may
be of the most varled kind.

However, both in theoretical applications, and particularly
in practical applications, the exponential law has gained exten-
sive acceptance. With an exponential distribution function all
results are considerably simplifed, whereas development of meth-
ods for the solution of queueing problems with an arbitrary dis-
tribution function for the servicing time encounters tremendous
difficulties. The exponential distribution function has the form

Ft)=1—e", (5)

where u = 1/?6bs 1s a positive constant quantity. The quantity
?obs is equal to the mathematical expectation of the servicing
“time.

The exponential distribution function of the servlicing time
assumes that a significant fraction of the requirements will al-.
ways be serviced rapidly, which is not always 1n agreement with
actual practice. A.K. Erland therefore proposed the assumption of
a distribution density for the servicing time with the formula

Pr(t) = ‘(fﬁf—k))l e MR -1 when £ 0,

(6)
Pu(t) =0 when 0.

It can be demonstrated that @k(t) represents the distribu-

tion density of the sum of k independent random quantities with
an exponential distribution function. The form of the function
¢k(t) is shown in Fig. 4.1.3. This distributicn ol The Servicing
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time 1s closer to the actual distribution. Queueing systems with
an exponential distribution function exhibit an important prop-
erty which must be borne in mind in evaluating armament effective-
ness.

Let a requirement enter a queuelng system consisting of =
various units. The servicing time for the requlirement by each
of the devices is subject to an exponential law with the para-
meter p. The servicing 15 concluded as soon as one of the devicges
has completed its servicing task. It can be demonstrated (see
[121]) that for this case the servicing function by each of the
devices will also be exponential

1 FUWe<:0—_l___‘W+N+~U+mu (7)

wnh the parameter .
DN (8)

If all of the devices have ldentical productivity, u = nu . This

‘means that with’the slmultaneous servicing of the requirement by
several devices[the average servicing time diminishes by a factor
of n in comparison with the servicing time of a single device. It
should be noted‘that the dispersion in this case diminishes by a
factor of n? This property can be 1llustrated by examples from
military activities

@it)

i © Fig. U4.1.3

Such situations arise 1n flring at a single aircraft by sev-
eral antialrecraft systems, iIn the simultaneous bombing of a vessel
-or a similar target by several bombers, in flring at a tank by
several antitank faclilities, etc. [121]. In all of these cases
the servicing of the requirement (firing, bombing) 1is carrled out
until the attack target 1s damaged. This 1s seen 1In the extensive ,
use In combat of massed combined strikes at an enemy.

§4.2. EVALUATION OF THE EFFECTIVENESS OF ANTIAIRCRAFT DEFENSE
WHERE THE TARGET REMAINS IN THE FIRING ZONE FOR A LIMITED
PERIOD OF TIME

Let us consider the antialrcraft defense system of an objective,
consisting of antiaircraft weapons for which the target stay time
in ithe firing zone is commensurate with the time required for re-
liaple objective damage (66, 17]. This situation may be governed Ly
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a combination of target veloclty, flight and altitude parameters

wlth the tactical=- technical characteristics of the antlalreraft
weapon,

Formulation of the problem. The antialrcraft system consists
of n uniform antiaircraft units, each of which can simultaneously
fire only at a single target. The enemy has attacked the antiair-
craft and the slte which 1t is protecting at a rate A We are
required to solve the following lmportant problems:

evaluate the anticipated number of aerial targets downed by
the antiailrcraft system in repulsing the attack;

determine the anticipated quantity of aerial targets capable
of penetrating the antialrcraft system to the site and deter-
mine the combat assignment;

evaluate the basic tactical-technical characteristics of the
antiaircraft weapon from the standpoint of the possible i1mprove-
ment 1in the effectiveness of the antlalircraft system;

evaluate the combat potentials of the attackling facilities
with respect to penetrating the antiaireraflt defense system;

_ determine the necessary composlition of the antialrcraft de-
fense facilities with the required tactical-technical character-
isties, proceeding from the standpoint of the requlred effectlve-
ness.

We assume that the flow of targets in the attack is of the
simplest kind. Adoption of this assumption 1s based on the fol-
lowing points:

despite the need to maintain distance and intervals in the
attack, their magnitudes exhibit random deviations from those re-
quired;

under the action of the fire from the antialreraft defense
facilities, the combat formations of the attacking aircraft are
disrup<ed;

if the enemy attacks the protected site from several di-
rections, the total flow of attacking alrcraft 1s close to a
Polsson flow.

As mentioned earlier, the simplest flow of attacking targets
is the most difficult from the standpoint of repulsing the attack
by an antiaircraft defense system. This makes it possible to eval-
uate the effectiveness of the antialrcraft defense for a site
under more difficult conditions. In solving this problem we give
no consideration to the return fire of the enemy.

Each target appearing In the antiaircraft defense zone is
immediately fired upon by one of the systems. If all of the sys-
tems are already firing at targets, alrcraft newly appeared 1in
the firing zone will penetrate 0O the protecied objective.



We assume that the time required to fire at an aircraft by
an antiaireraft system 1is a random quantity and is subject to
the exponential distribution function having the parameter v.
Therefore, the probabllity that the time required to fire at the
target will not exceed t 1s determined from the expression

P{)=1—¢&",

‘The probability of the opposite event is equal to gl)=e™™. The
antlaircraft defense system may be found in the following situa-
tions: ‘

- Ao denotes 'all systems not engaged in firing operation;
Ak — k syste?s are)firing, with the remaining open k¥ = 1, 2, 3,
veey (=1
A_ denotes all systems firing.

Let us derive the differential equations of these conditions
for an antilalreraft defense system,

Let At denote a very small time interval, We derive the
equatlion of state for Ag. It 1s possible in the following nonsi-

nmultaneous casesh

at the instant of time t all systems are not firing. During
the time A¢ not a single enemy aircraft has appeared in the anti-
alreraft defense zone. The probability of this event is equal to

| Pyt e, (1)
at the instant of time t one of the systems 1s engaged in

firing. During the time At no new targets appeared in the anti-
aircraft defense zone, and the system has concluded firing opera-
tion against the target The probability of this event is equal
to

| P (1 —e) e, (@)

|
where Py(t) is the probabllity of the case that a single system

is firing.

" Since the sﬁbject events are nonsimultaneous, we can derive
the equation of state for A,

(t+At)*--P Oe ™+ P (0 —e "‘”)e A (3)
|
where P (t--Af) is‘the probabllity of not a single one of the sys-
tems firlng during the time (¢t + 4t);
Po(t) 1s the probabllity of finding the antiaircraft de-
XA fense system 1n state Ayp;
e 1s‘the probabllity of not a single target appearing
in the firing zone during At;
| —— e " is‘the probability that one of the systems will con-
clude its firing operations against a target during
the time At.
The quantity e Aé can be presented in the form of & series
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S 2,
while’

1—e " = vAt 4.

Considering the smallness of the quantity At, we can present
Eq. (3) in the form _

Pyt A== Py () (1 — M) 4P () VAL (L —288) - (4)

We dlvide both parts of the equation by At and, passing to the
limit, we obtaln

Pu(t +Al) — Py
=220 2, () + v, ()

88 Af () we obtain
P ()= —2P,(t) VP, (t). o (5)

Let us examine state Ak‘ It 1s possible in three nonsimul-
taneous cases:

at the instant ¢t we have k systems engaged in firing, and
not a single enemy aircraft entered the firing zone of the anti-
alrcraft defense system during the time At nor did any of the sys-
tems conclude firing operations:

Py (¢ (1 — 288) (1 — kva);.

at the instant ¢ the antiaircfaft defense system was 1In state
Ak 1 One more target entered the firing zone during time At¢, but

none of the systems concluded firing operations against its tar-
get:

Py, () J.At(l:—-:fevAt);

at the instant ¢ the system was in state Ak+l’ One of the

systems became free during time At, and no new targets appeared
in the firing zone:

Py, () (1 — 26) (k - 1) vAL.
Then

Py (t - Af) == Py (¢) X (1 — AAf) (1 << kvAt) -+
- P () (1 —hvAH) DL+ Py, (8) (1 — AAE) (k1) vAL, (6)

After analogous transformations we obtain
Pit) == — A+ &) Pa(t) +APaey () + Pasy (O (k1) v. (7)
This equation is valid for the case |
| 0<k<n.
Let us examine the extreme state A . Xt 1s possible in the

following nonsimultaneous cases:
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At

at the 1lnstant of tlme ¢ the antlalrcraft defense system was
in state A/ . Not a single weapons unit became free durlng the time

P () (1 vty
at the instant of time t the system was in state Ak 1 One

more alrcraft appeared in the antlalrcraft defense zone during
the time At and none of the weapons unit became free

Poa_ (t)(1—nvAt) AAL.

After appropriaﬁe transformations and passing to the limlt as
At -~ 0, we obtain

J—— 7 Y-S | (8)

"All of these equations together have come to be known as the Er-
lang system of equations.

Determination oﬁ the Steady Solution

The steady?solution is understood to refer to that scolution
which corresponds to a formulated and steady process in the ab-
sence of any kind of transient phenomena characteristic of the
start of servicing

In determining the steady solution we proceed from the steady-
state process, i e., the state of the system as t + o=,

Let us examine the functioning of an antiaircraft defense
system in the repulsion of a prolonged attack. In this case

Pi(t) > Py=const, P'y(t) >0, k=0, 1, 2, ..., n.
The system of differential equations

P (=—1Py )+ VP, (),
nl)m~~—@*%kv Puﬂ)ﬁ*lph-.U)ﬁ*Pk+;0 (k4-1) v (9)

.! « % v o ® % & a4 4 = & m o . L}

P&. t)=— nVP ) + APy, (t)
is then transformed into the system of algebraic equations
P 4-WD—~0

—"(l'i“l\-\’)Ph '*‘)‘Ph—l+(k+l)\’Ph+l -0, (10)

— nan-‘—an,l —0.

As demonstrated in [121, 80], from this system we can determine
- the probabilitiés of the various states.

The probabmlity of state Pk (k units are firing) is deter-
mined from the. formula

|
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sineve o Lo the zveragze nurber of targets entering the tis
craft defense zone during the average time required for
the weapons unit to fire at a single target

A
K2

[+ =

A 18 the average number of targets entering the antlaircraft de-
fense zone per unit time ‘

1

== ’
toﬁo_

V==

t is the average time required by the weapons unit to fire at
obs -
the target. -

The characteristic of the antilalrcraft defense system re-
presented by the probability of all weapons units belng simul-
t aneously engaged in firing at targets may be of interest. This
probability may be referred to as the probability of the anti-
aircraft defense system permitting the passage of unharmed tar-
gets

“ﬂ
n!

tyah '  _ (12)

pnpon =

I
=0

=

Formula (12) has been derived in the assumption that the servicing
time 1s subject to an exponential distribution function.

B.A. Sevost'yanov [12] proved a more general result accord-
ing to which the Erlang formula remains valid for an arbitrary
servicing time distribution function (see [121]). Tables (11.5)
have been compiled for Formulas (11) and (12). The probability
that each target will have been fired upon is equal to

Pose=1—Pn, (13)

and the probabllity that the target will be downed 1s determined
from the formula ‘

Pog==PosolP, (1)

where P is the probability of the weapons uﬁit damaging each tar-
get as it fires at that target. ‘

The mathematical expectation of the number of downed targets
during the attack is equal to
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i BT . - . . : ’ l
1 . Meg=:NPqs. - (15
| B
The mathematical expectation of the number of aircraft per-

mitted to pass ﬂhrough the covered target without harm is equal
to i

Mupow=N (1 —Pes). (16)
The'mathemdtical_expecfation of the number of weapons unit
engaged in firing is equal to

M,i—_—.EkP,‘=P, =T (17)

The average load of each weapons unit during an attack 1is

Earlier we presented Formulas (15) and (16) which were de-
rived for the steady solution, i.e., for an attack of great dura-
tion. Formulas (15) and (16) are therefore approximate. These
relationships may be used for practical purposes, 1f the attack

time t ., 1s greater by a factor of 2-3 than the average time
required by the unit to fire at a single target.

|
From the results of the calculations carried out by the meth-

: o
od of statistic?l tests we have that when tnal > 2tobs.the non-

steadiness of the subjJect process has no significant effect on
the results and, depending on the relatlonship between the quan-
tities A and v, the calculational errors M b and M do not ex-
ceed 5-10%. | S prop

The utilization of the derived relationships will be exam-
ined through examples.

!
EXAMPLE. A site protected by antiaircraft defense is at-
tacked by an enemy from the air at an average rate of A= 4 air-

craft/min. In the attack area +the site Is profected by 6 units
(n = 6 with an| average time for firing at a single target c¢given
as tobs = 0.5 min. The attack is carried out by 24 aircraft (N =

= 24), We are réquired to evaluate tThe effectiveness of the anti-
aircratt protection system for the site when P =0.7.

'n solving| the problem we proceed from the assumption that
the aircraft attacking +he site represent & Poisson flow. We
find the auxiliary parameter

a=:Moge=4" 0'5‘_:2 aireralt,

"o determine the probabilities of various statos for the
antiaircraft defense system we use the formula




while the results of the calculations are presented in Table
4.2,1.

TABLE 4.2.1
Number of unm' P.
engaged in ML Py, kP,
\iring P
0 1 0,136 0 .
1 2 |0.272| 0.272
2 3 0.272] 0.544
3 1,333| 0,181 0,543
4. 0,666 0,091{ 0,363
5 10,267} 0,036 0.180
6 0.088] 0,012 0,072 .
Total 7,353 1 1,975

Using the results shown in Table 4.2.1, we obtain the fol-
lowing characteristics for the system providing antiaircraft pro-
tection to the site In the attack area:

the probability of permitting the unharmed passage of tar-
gets to the site

Pn=Pr=s=0012;

" the probability of directing fire at each target participat-
Ing Iin the raid

Peog=='1—Pa=099,

the probability of downing a ftarget participating in the
raid

Pes=Poso- P=0,99-0,7=0,7;

the mathematical expectation of the number of targets. par-
ticipating in the raid that are fired upon

AfoceﬁNPoac=24 . 0,99=24 alrcralt; -

" the mathematical expectation of the number of targets par-
ticipating in the raid that are downed

Mcs=Peo  N=0,7-24=16,8 aircrary

the mathematical expectation of the number of aircraft pen-
etrating to the objective

AdupbutN(l—Pco) =24(11—-0,7) =7,2 aircréﬂ:;

the mathematicai expectation of the number of weapons unifs
engaged in firing during the course of the raid

M,=198 units.

e

This means that during fthe attack &ach weapent unis
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= ——=33%, of the time.

n 6
will be engaged:in firing. The remaining time may be used to re-
load or for other purposes

Ty = '_x" =f min,
each of the weabons units will fire at

| N-Pogo 24.0,99
; Noge = n = 6 =‘4 targets,

spending on *hefaverage tobs = 5 min on each of these targets.

The remaining +ime of approximately 4 min may be used to reload
or to fire at other targets.

Let us consider the effect of the number of weapons units
in the antiaireraft defense system on the nature of its opera-
‘tion. Table U4.2.2 shows for purposes of comparison the probabll-
ities of each target being fired upon and the mathematical expec-
tation of the number of weapons units engaged in firing during
the course of the raid.

It follows| from the tabular data that a reduction 1n the
number of weapons units from six to five has an insignificant ef-
fect on the effectiveness of the antiaircraft defense system.
With a further reduction in the number of weapons units the ef-
fectiveness of the antlaircraft defense system diminishes more
markedly. At first glance it may seem to be an unexpectedly small
number of weapons units that are engaged in firing at targets
during the raid. This 1s explained by the fact that new targets
may. appear in the antiaircraft defense zone while these weapons
are firing and these new targets willl thus pass through that zone
without harm. On the other hand, because of the nonuniform load
of the units and the nonuniform appearance of targets 1n the fir-
" ing zone some units may stand idle. However, as follows from
Table 4.2.2, with a reduction in the number of weapons units, the
percentage of their firing load during the course of the attack
increases. f '

TABLE 4.2.2 | TABLE 4.2.3

. Muthematical expectation of the
H Puue MA AT % Number of units

concentrated on number of downed aircraft (Mab)

a single target
when P:=0,1 lwhen P=0,9

2 0.60 | 1.2 60

30 0.98 | 1.61 54 ) me=1 1.2 10,9
4 0,90 | 1,81 45 m=2 2,2 11,2
5 ] 0,06 193 | 39 =3 3.0 10.5
6 | 0,091 '

081 33
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Within the framework of the example, let us analyze the neecd
and feasibility of concentrating the fire of =zeveral unlts at a
zingle target. Let the fire of two or three firing units be con-
centrated at each aircraft. The average time of fire at an air-
craft with this procedure is reduced in comparison with the time
for a single unit by a factor of two or three (refer to the prop-
erty of the exponential servicing function in §4.1), i.e.. tagn s

= 0.25 min, ?30bs = 0.167 min. The auxiliary parameter will then

be equal to wp = 1 aircraft, os = 0.67 aircraft. The remalning
conditions of the example remain unchanged. For these conditions
Table 4.2.3 shows the mathematlcal expectations of the number

M, of downed ailrcraft, when the probabilicies of downing an air-
craft with the firing of a single unit are equal to P = 0.1 and

0.9,

Analysis of the results presented in Table 4.2.3 shows that.
with small values for the probabilities of downing a target with
the fire of a single unit any concentration of fire markedly in-
creases the effectiveness of the antiaircraft defense system.
With high values for the same probabllities, this will either
vield no perceptible increase in the number of downed targets in
the raid (with m = 2), or it becomes unfeasible (with m = 3).

§4.3. EFFECTIVENESS OF AN ANTIAIRCRAFT DEFENSE SYSTEM SET UP IN
ECHELONS CONSISTING OF SIMILAR WEAPONS UNITS

The antiaircraft defense system for a ~major site may be
set up in the form of successive zones or echelons (Fig. 4.3.1).
This is referred to as the echelon defense system. In this case
the enemy aircraft, before reaching the attack objective, are com—
pelled successively to overcome all of the echelons of the anti-
alrcraft defense. There may be various numbers of antiaircraft
facllitles in each antiaircraft defense zone.

%—‘ l/ II Il /
»;-’Q%/ -/ §§ AR .
\}—/ =] / QVJykkig??R
(N = [ o L
RIS e !
et W B \ \ \ \ '
‘\ W\ %‘ A \ *
A \\ ), *
\§§ .\\ N
AN
S
Fig. 4.3.1

Let us evaluate the effectiveness of such an antiaircraft
defense system, consisting of uniform antiairecraft facilities.
As was done earlier, we wlll assume that the enemy aircraft, car-
rying out the attack, form a simple flow with the parameter A.
Let us consider the case in which the time required by a unit to

- 225 -




fire at the targét is a random quantlity with an exponential dis-
tribution function having the parameter v. Each of the units can

fire simultaneously only at a single target.
|

In the solution of the problem we do not take into consldera-
tion the return fire of the enemy. For the enemy aircraft to over-
come the first defense area (the first echelon of the antlaircraft
protection) all of the antlaircraft facilities must be engaged in
firing. The probability of this event for the case in which the
target stay time In the damage zone of the unit is small (system
with fallures) 1s determined by means of Formula (4.2.12)

an

P, = .
ok
'
k=0
For‘th ircraft to pass through the second echelen the antl-
alrcraft facllities of both echelons must be engaged in firing.
The probabllity of this event 1s equal to
‘ aMig™
Po=ii,
.3

| a
| &
=0

" where n; 1s the number of antiaircraft facilities 1n the flrst
. echelon;g
ns 1s the. same number for the second echelon.

. If there are < such echelons, the probabllity of a target
passing through to the defended site 1s equal to

|
! Ry

| aigfs, | e

| P (ny + ng + +"l)'
! 15 Tim+ -y

1 ak

; B
} k=0

EXAMPLE. Ani aerial attack ls belng carried out against a
site with an echelon antlalrcraft defense system consisting of
three defense zones. There are two antiaircraft weapons units in
the first antiaircraft defense zone, there are three such units
I'n the second zone and one unit in the third zone. All of the
weapons units are simlilar. The time required to fire at a target
by each of the antiaircraft facilitlies Is random and has an ex-
ponentlal distribution law and the parameter v = | aircraft/min.
The rate of the attacking aerial targets is A = 2 aircrafft-min.
The probabllity of downing a target with firing from a unit is
close to unity P = |. Evaluate the effectivencss of the antlair-
‘craff defanse cys*.'em far the QbJec'i'T\lA and for each of its eche-
lons. ;

The probabIlITy of +he enemy aircraft penetrating through
the first zone is equal to
I

|
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o8

S 2!
P, = 0.4

. 22
1424 5

This indicates that 60% of the enemy afrcraft will be destroyed.
The probability of the passage of the targets through the second
zone Is equal Yo .

I

LY
kU

and the probabllity of penetration through the entire antiaircraft
defense system Is

This result Indlcates that of a thousand attacking aircraft,
on the average only a single alrcraft willl reach Its objective.

§4.4. ECHELON ANTIAIRCRAFT DEFENSE SYSTEM CONSISTING OF UNITS OF
DIFFERENT TYPES

We will conslder the evaluation of the effectiveness for
such an antiaircraft defense system through the example ol an
objective whose antlaircraft protection consists of two echelons
[62]. The mathematical apparatus developed for this purpose per-
mits optimum distributlon of the antialrcraft facilities into
echelons, depending on the characteristics.

\

Let an attack be carried out against the objective in a
rather narrow band in such a manner that the attacking aircraft
may be fired upon as they move toward the target by one of the
units in each echelon. We are required to evaluate the effective-
ness of the antlailrcraft defense system of the obJective and to
select an efficlent method of distributing the antialrcraft fa-
cilities among the echelons. '

Let us analyze the antialrcraft facilities with damage zones
in which the target stay times are barely adequate for rellable dam-
age. The time during which a target 1s fired upon by each of the
antiaircraft facillties 1is a random quantity is subject to the
exponential function having the parameters u: and upa2, respectively,
for the first and second types of antialrcraft weapons. The enemy
aircraft carry out the attack at a rate X and form the simplest
flow (see §4.4.1). We denote the probabilities of the state for
the antiaircraft defense system in repelling the attack as fol-
lows: :

Poo 18 the probability that neither the first nor the second
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unlts afe firing;

Py, 1s the probability that the first unit is firing and
that the second unit 1s free;

Po1 1s the brobability that the first unit is free and that
the second unit is firing; '

Py: 1is the probability that both units are firing.

A target entering an antlalrcraft defense zone 1is first
fired upon by the first unlt. If that unit 1s already engaged in
firing, any new target will fly deeper and enter the firing zone
of the second unit. If the target 1s fired upon by the first unit
and is not damaged, the second unit will no longer be able to
fire on that target. The [new] target will now be fired upon by
the second unit. If that unit 1s already engaged in firing at the
previous target, the new target will pass unharmed through the
antiaircraft defense 2zone.

|

We denote the states of the system as Ago, Ai1o, Aoy and A,
Tc determine the probabllities of the states we complile a system
of differential equations.

State Agge is possible in the following nonsimultaneous cases:

during theitime t the system was in state Ago. During the
time interval At not a slingle target appeared in the antialrcraft
defense system | '

Pon (t) (1— AAt);

during the time t the antiaircraft defense system was in
state Ayg. During the time A¢ an aerilal target was fired upon by
the first unlt - ‘
| Py () Al
during time t the antiaircraft defense system was ln state

Agi. During the time At the second unit completed firing at a
target ! ‘ .

P, (t) pdt.

The differential equation for state A¢o is then written in the
following form:|

Tpoo (¢ 'L At) == Poo (t) (1 - Z'At)-!"Pn (t) l"‘zAt + Pux (t) l"‘zAt'
After transformation and passing to the limit At + 0 we obtain
P’oo(t_)‘_‘*_‘_"Poo(t)z"l"Pxo(t)l"'x+Pox(t)p'a'- (1)

We examine state Agi. It 1s possible in the following non-
simultaneous cases:

the antiai?craft defense system during time ¢ is 1in state
!
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Rar. Dufing time At no new targets entered the firing zone and
the cecond unlt did not complete its firing

P (1) (1 —28¢) (1 — p,28);
at the instant of time ¢ both units were firing at targets.
During time At the first unit completed firing at 1ts target
Py (t) pAt.

Hence the equation 6f state
Ploy(t)=— Py () G+ 1) Py () 1 (2)

In deriving the differential‘équation of state Ao we must
proceed from the fact that this state for the antliaircraft de-

fense system 1s possible under the followlng nonsimultaneous con-
ditions:

at the instant of time ¢ the system was 1in state Ajo During
time At no new targets appeared and the first unit did not com-
-plete 1ts firing operation

Py () (1 —248) (1 —p,At);
at the instant of time ¢ there were no targets in the firing

zone. During the time At a target appeared over the first unit
and it begin to fire at that target

P, (t) A0t

\
at the instant of time ¢ both units were firing. During the
time At the second unit completed its firing operation

P, (t) AL
Hence the equation of state

Paa(O)=2Poy () = Pio () (1) -+ Py () b (3

Finally, the last state of the antlaircraft defense system
is possible in the followlng nonsimultaneous cases:

at time t the system was in state Apy or Ai;o. During the
time At new targets appeared

[Py (8) -+ P (B)] 2485

at the instant of time ¢ both units were already conducting
fire. During the time A¢ neilther of the units had concluded its
firing operation against the targets

(1 —p,00) (1 —p80) Py (O)-

Hence
P'n([):"z'[Pot(t)—{‘Pm(t)] "‘(P';“E‘I’-:)Pu-

—~
I=
~
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" The general system of equations descrihing the various pos-
sible states of the antlalrcraft defense system 1s presented in

the following form
PO = PP PO
P (t)=—Py ) (At r)+Pu® s
P, {)=— P @t)(A-tn) + P () 24P (s, (5)
P'n @)= Z'Pon @ + a'Pxo ) — (e + 1) Pu (t).

For a steady soﬁution the follcwing_conditions are satisfied:
1 t—oo, Py(t)»0, Pij(t) ~ Pyj==const

and the system pf differential equations is transformed into an
algebraic systep

| P002'=P‘1PN+P’EPOH |

! - Py (l‘l'l"a):PnPn ’

‘ Pm(z'_l-p'l):lpoﬂ'_l— P“P"' (6)
\ (P'l'."l'}"l) Pu=1PM+’-P“-

In the sdlhtion of thls system we determine:

the probaﬂility of an aerial target passing through the anti-

alreraft defense system without harm
At
P,= s ' (7
M A (s Fpe) + (T (A pa ) _
the probaﬁility that all unilts are-not firing
P x'_—Pu (8)

From the §ystem‘of equations (6) 1t 1s easy to derive the
probabilities for the remaining states of the system.

l
EXAMPLE. let us analyze the effectiveness of the antlaircraft

defense system shown in Fig. 4.4.1.




Let w1 = 2 aircraft/min, w2z = 4 aircraft/min and A = 2 air-
craft/min. The probability of a target penetrating to the objec-
tive unharmed is equal to

2I .
2.4
2422+ ) +5322+2+9)

Pu= =0,137.

Let us distribute the antlalrcraft facilities differently.
A unit [system] with the characteristic u = 4 alrcrafi/min is
positioned In the first echelon, while one with the characteris-
tic uw =2 aircraft/min Is positioned in the second. The probabil-
Ity of an enemy aertal target penetrating to the objective being
defended by the antlalrcraft defense system will be different:

N
4.2
24200+ 2) +p22+4+2)

Py= =0,111,

As we can see from the example, for proper positioning of anti-
alrcraft faclilities by echelons It Is possible to raise the ef-
fectiveness of the antlalrcraft defense system.

§4.5. gVéLgATION OF THE EFFECTIVENESS OF THE GUIDANCE [CONTROL]
YSTEM _

Let us examine a system consisting of reconnaissance facil-
1ties and fire control facllities for "ground-to-ground" units
converting the reconnalissance information. The reconnaissance
system, possessing certaln technical facilities, detects fire
facilities, command centers, troop concentrations, etc., in the
Enem% positions, and we will refer to these simply as targets

130]. ' :

Let the reconnalssance possess all manner of facllities
which permit 1t to detect u; fargets per unit time. It 1s natural
to assume that the time intervals between the instants of target
detectlon are random quantities. With time the detected targets
form a flow which 1s very close to the slimplest flow. The recon-
nalssance data on the detected target enter the system processing
reconnaissance data and the fire control system (we refer to this
silmply as the control system) which exhibits a limited transmis-
slon capacity for the processing of the input information per
-unit time. We denote the transmission capacity of the control
system by u,. The time for the processing of the reconnaissance
data for each target 1s a random quantlity. The target data proc-
essed In the control system are distributed among the "ground-to-
ground" firing units for target destruction.

_ Let us conslder the case 1n whlch the target stay time at
a single point is extremely limited and commensurate with the time
needed for 1ts detection, the processing of the iInitial data and
the opening of fire at that target. This complex system, in Tlrst
approximation, may therefore be regarded as a system with fail-
ures:

We denote the probabilitles of system state as:
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Poo denotesjthat the reconnaissance and contrel systems are
free; : ' '

Pyro denotes‘that the reconnalssance system 1s occuplied with
the input of information about one of the detected targets, while
the control system is free;

Po1 denotes;that the reconnaissance system 1s free while
the control system is engaged in processing target Ilnformation;

P denotes that both systems are occupiled.

Let us derive the differential equatlons of state for the
control system, and these may-be denoted, respectively, Aoo, Ao1,
A1o, Ay, ;

System state Ago 1s possible in the followilng nonsimultane—
ous cases:

the reconnaissance and control systems are free at time ¢.
During the interval At not a single target has been detected

i Poo (t) (1 - lAt)o

the entire system at time ¢t was in state Ao). During the
time At data on the target were transmltted to the "ground-to-~
ground™ unit to ?pen fire

| " Py, (t) mAt.
The general equation of state
P, (¢} Af)= PW &) (1 — Aty 4- P, (t) w48,
After passing to the 1limit as At + 0 we obtain

i oo(t)'——_Poo(t)z"l"Pm(t)l"a ' (1)
We have the state Ap: for the system. It is possible in the
following nonsimultaneous cases:

the system is in state Agi1. During the time A¢ no new tar-
gets have been detected and the control system 1s processing no
data on any target

| P (1) (1 — 34t) (1 — )

the system is in state Aig. During the time A¢ the reconnals-
sance system detected and transmitted data on a target to the
control system ‘ . -

. Pl

at time ¢ the system was 1n state Aii. During the time At
the reconnaizsance system detected and transmitted data on a tar-
get to the control system, but the latter did not accept this
information since it was engaged in the processing of data on 2
|
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A

previous target. The input data were therefore irretrievably lost
because of. the brief duratlion of the time that the target spends
in a single position

pu (t) I"'lAt'

~Hence the equaﬁion of state is written after the apprbpriate
transformation

P )= () P ) F P O FePu @ (2)

Let us conslder the system state Ai1o. Tt 1s nossible in the
following cases: ‘
| _
at time t the system was in state Aoo- During time At a tar-
get 1s detected ' ' !

_ Py, (t) 288,

at time t the system 1s in state Ajp. During the Sime At the
reconnaissance system was processing no data on the target and
- none were transmitted to the control system

P,#)(1— p,AL);

. at time ¢t the system waé in state Ai:. During time A¢ the
control system transmitted data for firing at the target

P, () w0t
The equation of state
Py (1) == AP gy (1) — g () - 1P, (- (3)

And the last state is Aj;. It is possible in the following
nonsimultaneous cases: : :

the system 1s in state Ag:1. During time At new target data
are received !

i
|
P, (£) AAL; \
at time t the system was in state Aii. During time At no
target data were processed by the reconnalssance and control sys-
tems

Py (1) [1 — (1 - 122) A1),

Then ‘
Py ()= APy, () — 1) Pir ) W

The various possible system states are described by 211 af
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P 1) 552 = Moy () 3Py (0,
/)'Pl (£) === (2 ‘4“ ) Pul 03] '*‘ Py, (t) + P'lplo(t)’ (5 )
p"m (() == }'p-oo () — 1w, Py (7) + PPy (2),
Py () === 2Py (8) ~ (g b 1) Py (8).
In the steady solution, i.e., as ¢t » o, P}j(t) > 0, Pii(t) P

L5

= bonstﬂ_the differéntial equations are transformed into algebratc
equations: | :

pooz'::l"‘apou
Py, (7'_1“'!"2)::”11011‘-1"‘ !"lpxov

p:o”‘x:ZPoo"}’Pu}"a_
(1%y == o) Py == 2Py,

(6) :

Solving Eqs. (6), we can determine the probabilities for the var~
lous states of the control system: '

P iy ‘
00 (2 Ay (pa = A) °
P — Mg (g A4 pa +8)
PO (b ) (g A R (ra A
‘ —_ \"P-n . ,
Po=tm NIy
' Bk

P

| SRl A VY oy s
where A 1s the rate of the appearance of new targets in the ef-
fectlve zone of the subject system,

The probabilitj that the target will remain undetected and
not fired upon and qill carry out its combat assignment 1s equal
to -

P __il ___&:__(Pol"l' Pu) =] — aprs (A 4= 1 - pa) .
oTH -“: A (A == 1) (A 122) (1% b )

EXAMPLE. On +he¥average, let two targets per unit time (A =
= 2 targets/unit time) appear In the effective band of the recon-
naissance system and of the flre control system for "ground-to-
ground™ units. The reconnaissance system exhibits technical fa-
cilities which make it possible in the given area, with the de-
veloping combat situation, on the average to detect two targets
per unit *ime (uy = 2 targets/untt +ime). The control system can
process and plan the firing of the faclllties at four targets,
on the average, per unlt time (u, = 4 targets/unit time).

Determine the effectiveness of +he system — the probabi ! i+v
of firing being condycTed at each target at 1+ appears

i Py (it B+ 2) .
P 1= Porc= (ol (i M) (4 1) — 044

Let us examine the less perfect control system Wz = 2 tar-
gets/unit time. Then
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P 0,38,

The calculations that have been carried out, with consideration
of the economy Indices, make it possible to select the optimum
parameters for the control and reconnaissance systems and to im-
pose reasonable tactical-technical requlrements on these.

§4.6. EFFECTIVENESS OF FIRING AT TARGETS AS THEY APPEAR
‘ |

We will examine the utilization of the apparatus of the the-
ory of queueing with respect to systems exhibiting limited expec-
tation time on the example of a problem involving the determina-
tion of the effectiveness of weapons by means of whilch battle 1s
Jolned with appearing targets. These targets are understood to
refer to fire positions and similar enemy objectives which, on
detection, remain in their positions for a limited time. To de-
tect targets the opposing sides make use of a developed recon-
nalssance system. However, this system 1s incapable of providing
information about all objJectives which represent important targets
for the attacking side. If we also take into consideration that
these objectives maneuver in their positions, and make attempt
at camouflage, the fact of the random nature of target detection
becomes understandable [130].

In the examination during the course of enemy target detec-
tion process by the reconnalssance system of the attacking force
(for simplicity we wlll refer to the other side as the defenders)
we can note the absence of a relationship between the fact of the
detection of a given object and the number and type of targets
which had been detected earlier. We can also agree with the con-
tention that at a glven instant of time only a single important
target wlll be detected, rather than several targets, and that
during a specific time interval, glven the work imposed, 'in first
approximation, the reconnalssance system exhiblts a certain aver-
age "productivity," 1.e., a capaclty to detect a specific number
of targets per unit time.

On, the basls of these assumptions it may be held that the
detected targets form a flow which exhibits the properties of
the simplest flow with a certaln parameter A. The magnitude of
the parameter X will apparently be a function of the technical
equipment of the reconnaissance facilities of the attacking force,
the number of enemy objectives in the operating zone of the re-
connalssance facilities, the extent of their camouflage, etc.

The time that targets spend in their areas 1s limited, but
not to such an extent that it need not be taken into consldera-
tion. The stay times are random quantities. To derive the cal-
culational formulas the target stay time distribution function
for the detection zone 1s assumed to be exponential with the par-
ameter v, l.e,,

h{t)=ve " ({t>0),

where v = 1/tozh’

tozh is the average time that a target spend: In
: position after detection.
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Under actual comhat conditions the distribution function for
the target stay time in position after detection may differ from
the exponential. However, experience in carrying out a large num-
ber of calculatlons by the method of statistical tests has demon-
strated that the basic characterlstics of operation for a servic-
ing system (thefprobability of passing a requisition unserviced,
the mathematlcal expectation of the number of serviced targets)
for a steady solution are virtually identical for various distrib-
ution functlons of the stay time of a requisition (requirement)
in the servicing zone.

The time required to fire at each target 1s also a random
quantity. Let up assume that 1t 1s distributed exponentially with
the parameter u, 1.e., : '

[(O)=pe™ (>0,
where u = l/¥6b55
®obs

is the average time required to fire at a tar-
get.

Losses of weapon facilities by the attacking side due to
the defenders'’ Xfire are not taken into conslderation. Methods to
account for answering fire are presented in Chapter 7.

\

As soon as a target 1s (targets are) detected, fire is di-
rected at that target immediately by the attacking side. After
damage of the target, fire is immediately transferred to other
targets, if such are avallable. If the attacking side 1s unable
to fire at newly appeared targets because i1t 1s engaged in firing
at targets thatihave appeared earlier, these targets can remain
in the position at which they were detected for a limited time,
after which they disappear. Thus, the armament of the attacking
side with its reconnaissance facilities and the armament of the
defending side nepresent a queueing system with limited expecta-
tion time, }

. :

The system considered above may be found in the following

states: 1

Ao denotes that the attacking side is not firing;

A, denotes - that one of the weapons is firing, while the
remalning weapons are not;

|
A, denotes that. k weapons are firing;
An denotes that all n weapons are firing at their targets;

An+s denotes that all » weapons are firing, but that e de-
tected targetsf are not being fired upon.

The number s may be very large and depends on the number of
objectives of the defending side that may be located in the sphere
of the attackingiside's fire effect. We will not dwell on tne de-
rivation of the Fquations of state and their solutions. The reader
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can find this in [17]. We will write the formulas for the proba-
bilities of the system states derived for steady conditlens:

~ For state Ap

P WS—— Py Py

@ T
C Z‘, (n-+ mp) |

n
k=0
m=

for state Ak

ak
&
=— = o O=k=n)
ak an ————
-+ = 3 .
;Z‘:o kl n! § n(n _*_ mp)
me=1
for state An+3
s
I 2 +mp)
Pﬂ_'_":".-" m=1 s (S; 1)1

n [ i)
AR | A
gok! + ;n (n+ m$)

m=1

A v
where a==--; p—-ﬁn
A particularly important index of the weapon effectiveness

of the attacking side is the probability that each objectlve of
the enemy, detected by hls reconnalssance system, 1s fired upon:

&
‘ s= [T (4 mp)
Pouc — 1 _— % - Irl.—'_}“ . }
k an e |
FrEY T
k=0 s=1 (n +mF)

mr=1

Hence the probability of destroying each detected objective 1s
equal to- :

W:-“:'Poﬁc'P:

where P 1s the probability of damaging the obJectlve when it 1s
. fired upon.

To determine PObs =1 - Potk’ where Potk is the probabllity
that the target will not be fired upon, we can use trne table {(zee
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Table 11 of the appendlx) which was. prepared by O.A. Novikov. To
illustrate the utilizatlien of the derived relationships, let us
consider an example.

EXAMPLE ., The attacking slde has two weapons. To fire at an
objective an average of 2 min Is required. The probabliity of dam-
aging the objective with fire Is equal to p = 0.8. The attacking
side has at Its disposal a reconnalssance system making possible,
on the average, the detectlon of one target per minute (A = | tar-
get/min). The average time that the target spends in position
atter detection |s equal to 4 min (£ . = 4 min). Determine the

effectliveness off+he weapon used by the attacking slde.
To determine Poss we calculate the parameters:

targets

1
Plﬂ__g°|5 i p V== to ==0 25

:nrgau

= -}%-_2' p=:—'l:'=0,5.

With Table || (see the appendix) when # = 2, a = 2, B = 0.5, we
obtain 3 ' :

i Poﬂ; ='0.225.
|
I

The effectiveness of the armament of the attacking side is equal
to !

W=PF (1 —_ Porn) =08 (1 - 0v225) =-0'62'

Varying the fundamental characteristics of the armament (rate of
fire, probability of target damage), we can evaluate the effect

of these parameters on the effectiveness of the armament used by
the attacking side. The method considered above may be employed

in evaluating the effectiveness of antiaircraft defense and sim-
ilar problems. ‘

§4.7. FEATURES IN THE EVALUATION OF THE EFFECTIVENESS OF ANTI-
AIRCRAFT ARMAMENT AGAINST THE ATTACK OF GROUPED TARGETS

A. The Case in Wh1ch the Stay Time for the Target in the F1r1ng
Zone is Small,

In the previous sections we considered the utilization of
the mathematical apparatus of the theory of queuelng, developed
with respect to unique requirement flows. However, in actual
practice there can be cases in which requirements for servicing
enter the system\in rigorously defined groups — pairs, triplets,
etc. On arriving‘in the queueing system, each of the requlrement
groups 1s eilther serviced or rejected, depending on the extent to
which the operator is occupied. As an example of this we can clte
the arrival of pairs, flights, etc., of enemy aircraft 1ln an anti-
aircraft defense| system [133]. Each of the enemy aircraft in the
area of the antlaircraft defense system protecting an obJectlve
will be fired upOn by the antiaircraft units. We are confronted
with the problem of how to evaluate, under these condltions, the
effectiveness of{the antiaircraft defense systerm for the objective
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with respect to repelling the aerial attack.
In solving this problém wé maké thé following assumptions:

1. The flow of alrcraft groups (palrs, flights) 1s a Poisson
flow. There are m aircraft in each group.

2. The time for firing at each aircraft by the antlalrcraft
unit is random and subject to an exponentlal function.

3. Selection of target by each unit 1s accomplished randomly.

4, The antiailrcraft defense system for the objective conslsts
of n antialrcraft units. As soon as the targets appear 1n the
antlaireraft defense zone, they are immediately fired upon. If the
antiaireraft units are already engaged in firing, the newly ap-
peared target will penetrate the antlalrcraft defense zone un-
harmed, because the target stay time in this zone 1s small and
commensurate with the time required for 1t to be fired upon.

5. Conslderation of the enemy counteraction is omitted. The
antiaircraft defense system may be in various states which we de-
note: ' ‘

Ay, which denotes that all antlaircraft units are free;
Ak’ which denotes that k units are engaged in firing;
‘An, which denotes that all units are firing. . |

The probabllities of these states are, respectively, de-
‘noted Po(f), Pr(f), Po(f). The flow of incoming aircraft groups is as-

sumed to be a Polsson flow and the time required to fire at each
target 1s distributed exponentially; the subject process 1s there-
fore a Markov process. '
To determine the probabilities of the states Po(t), Pk(t)
and Pn(t), let us derive a system of differential equatlons. We
will derive the equations by the same method as in §4.2; we will
therefore not dwell on the intermediate calculations. '
State Ao may occur in the following nonsimultaneous cases:

1. At the instant ¢ all units are free. During the time At
not a single group of aircraft arrived.

2. At the instant of time t one of the units was engaged 1in
firing. During time At this unit concluded firing at the target,
but there were no new groups entering the antiaircraft defense
. zone. Then

Py () =—2AP, () 4- 1P, (),

where A is the density of the groups (pairs, flights) in the at-
tack on the objectlve defended by the antiaircraft system

- 239 - |



,.l
todo

po==
t is the average time required by the antlalireraft unit to

obs
fire at 2 single target.

State Ak may occur 1n the followlng nonsimultaneous cases:
1. The antlalrcraft defense system at time ¢t was in state
Ak' During time At not one of the units stopped firing and no
new enemy aircraft groups appeared in the antlalreraft defense
zone.
2. At time t the antlaircraft defense system was In state
k+1 During time At no new targets appeared, but one of the

units concluded Tiring. The equation of state 1s then written as
follows

P';; (6) = — [A 4= kp] P () -+ Pros () (% 1) 1 when (k1)<

Let us consider state A, when k > m. In this case, in com-

narison with the previous case, we add yet another possible var-
lant of the state of the system, :

\ . '

At the instant of time ¢ the antiaireraft defense system was

in state Ak . During time At a new group of aircraft appeared in

the antiaircraft defense zone. None of the units had concluded
firing. The equation of state 18 then wrltten as follows:

| _
Pty = — -k ki) Po () =+ Pows () (- 1) p

+Ph m (t);- when k;”l
Finally, it 1s advisable to consider state A n? i.e., the

state in which all units are engaged 1n firing, which may occur
through several nonsimultaueous ways:

1. At time t the system is in state A . During the time in-

terval At none of the units disengaged and no new targets ap-
peared. |

2. At time t the system was in state A vem® During time At

none of the channels became free and one group of targets arrived.
The equation of the last state 1s

l)’" (t) Tem P”’Pﬂ (t) + Pn—m (l) A

In conclusion, we derive the following system of differen-~
tial equations:
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Py )=~ 3P, )+ P, O

,((t)_———[l—{-p.k] Ph(t)"i“Ph-H(t) (k1)
when k<m
@)= — A4 pk] Pp (&) - Prsi () (R + l)l&‘l-
+Ph m(t)R'When k=m,

P’ (t) '—P-llp (t)+Pn m(t)a'

(1)

Let us conslider the steady case in which ¢ + =, In this case

Piz(t) + 0, Pk(t) > Py and the solution of the problem reduces to
‘a solution of the system of algebraic equations

alP,=P,,
(14~a)P,==2P,,
¢¥éb;ﬂb+lﬂﬂka<m,
(k-2) Py== (k1) Py 4P sen £, )
(ﬁ+a) Ppo=aP,_pn, viben a:%—,
To this syzstem we add one more obvious condifion ﬁ P,=1. The

xr

last expression can be presented in the form Tk=0

n R
Y Pe=P, Y, fala) =1
k=0 k=0
Hence
P,=— ! .
Y @
k=0

The quantity z’fh(a) can be derived from the recurrence formulas
k=0
of the system of algebraic equations (2).

EXAMPLE., Let us examine the effectiveness of an antialrcraft
system defending a certain typical objective, and let this defense
be accomplished by four similar antiaircraft units (n = 4). The
objective Is being attacked by enemy aircraft. For purposes of
comparison let us evaluate the effectiveness of the antiaircraft
system when there may be, in each group, m = |, 2, 3 and 4 air-
craft, with a constant attack density of A = 4 aircraft/min. The
antiaircraft units exhibit speciflic combat characteristics per-
mitting the aerial targets at a specific altitude, with considera-
tion of rcloading, to be fired upon at an average rate of fire

of w = /¢t = 2 alrcraft/min. The probability of downing & tfar-

'geT with the fire from one of the units is equal to P = 0.8. The
numbeér of targets participating In the raid is equal to N = 20.
Let us determine the parameter a = At = 2. We derive the re-

: obs
currence formulas for m = 2:
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P, =2P,,

Py=1/2(1 - a) Py,
Py=1/3(1 + 2a) Py —2P,,
Po=1/4(1 4 32) Py — 2P,

Affer.SUDSTITUTton of the values of a we obtain

Py ==2P,,
Py =3P,
Py = 10/3P,,
P.= 19/6P..

Let us determine the magnlitude of Py:

4
mewwﬁnpmmm
k=0

The probablllfy‘of all units being engaged, T.e.,, The unharmed
passage of the target Is then equal to

! n

| D WIA .

| . k=0 — 2:2,45
!

B. The Case in Nhich the Target Stay Time in the Firing Zone is

Great |

Unlike the previous case, in the problem under consideration
- we must take Into consideration the target stay time in the dam-
age zone of the antialrcraft unit. We will assume that the target
stay time in the antliaircraft defense zone is a random quantity
subject to an exponential distribution function having the para-
meter v. In selecting the distribution function for the target
stay time in the antialrcraft defense zone we can be guided by
the considerations expressed in §4.6.

We will also assume that the aerial targets group entering
the antlalrcraft defense zone forms aPolsson flow with the para-
meter A. The time required to fire at a target by the antiaircraft
unit 1s a random quantity and is subject to the exponential func-
tlon with the parameter u.

As before, we denote the number of units in the antiaircraft
- defense zone by n and the number of targets in each group by m;
the states of the antlaircraft defense system for the objective
are as follows: ' ,

Ao denotes that all units are free;
Ak denotes.that k units are firing;
An denotes that all units are engaged in firing at targets;

As denote% that all units are firing and s new targets

have entered thefantiaircraft defense zone, but they are not fired
upon because the units are engaged.
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The probabilitles of each of these gtates are, respectively,
denoted by Py(f),, Pu(t), Pu(t), Pnys(t). Let us determine the probabilllty

of state Ag. It 1s possible in the following nonsimultaneous
cases: _

l. At instant ¢ all units are free. Durlng time A¢ not a
single enemy group of alrcraft appeared.

2. At instant ¢t one of the units was firing, and it con-
cluded firing during At. Since the events are nonsimultaneous
[incompatible], when Atz + 0 we obtain

P () =—AP, GRS NORE (3)

Let us examlne the state A,(0<i<m). It 1s posslble in the
following nonsimultaneous cases:

1. At the 1instant of tlime ¢ the antialrcraft defense system
was In state Ak' During the time At no new targets appeared in
the antlalrcraft defense zone and none of the unlits dlisengaged.

2. At the instant of time ¢t the system was 1n state Ak+l

During the tlme At no new targets appeared in the antlalrcraft
defense zone, but one of the unlts finlshed firing. The differen-
tial equation of state 1s written as follows:

Pra(t) = — (b k) P () (- 1) 1Prss ()
vihen 0 R m. (w)

Let us examine state Ak for n > k > 0, It will differ from

the previous state in terms of what may occur in the third nocn-
simultaneous case, and namely: at the instant £ the antliaircraft
defense system was in state Ak-m' During the time At one more

group of targets appeared 1n the antiaircraft defense zone, but
none of the units became free. The differential equation of state
Av(m=k=>=m) 1s written as follows:

/”kU):=(14*kﬂ)Phﬂ)%~PAH(0(k—Fl)nﬂF/%hn.U)V- (5)

We have n units at our disposal. It is therefore expedlent
to regard the state An when (n > m). Thls state is possible under
the following conditions:

at the instant ¢ the antlaircraft defense system was in state
A . During the subsequent time interval At not a single' one of
the units became free and no new targets appeared;

at the instant ¢ the antlaircraft defense system was in
state A - During the time At a group of targets entered the
zone, but none of the units became free;

at the instant of time ¢ the antiaircraft defemnse zystenm
was in state An+l' Juring the time Aft no new tarzete ap peawea
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but elther one of the units became free, or one of the aircraft
departed unharmed from the zone. The equation of state is then

P, (t) = _'_.(1 _|.’. ny) Pﬂ. (3] —Fpn_,m (t) A +
. +P'n+t (t) (n}.l.—l—‘\’)- (6)

Let us. examine state A +8 in detail, this state being poOsS~
sible in the following cases ‘

1.
ct
¥

1% ¢ ¢ Tne antigirceralt aeien Jov\- m Lid

. state A . No new targets appeared in th zone during time At,

none of the targets escaped without beilng fired upon, and none
of the units became free;

v

(]
|..|.
&

at the lnstant t the antilalircraft defense system was in

state An¥s-m' A new group of targets appeared in the zone during

the time At, not one of the enemy alrcraft escaped the zone with-
out -having been fired upon and none of the units disengaged from
firing; i

at the insfant of time ¢ the antialrcraft defense system was
1n state An+ +1‘ No new targets appeared during the time At¢, but

either one aircraft escaped the zone unharmed, or one of" the units
disengaged from firing The equatlon of this state 1s as follows:
ﬂ+s(t) = AP m () — Pags ) (A4 np4sv) 4 _
—}-P,,.,_,_,_l(t) [ree 4 (s-+1) v]. : (7)

Let us conéider the steady solution for which we assume
that when

t>oa P (t) >0, md Py (t) = Py = const,

where k = 1, 2,/ ..., %, +o., (n + 8).

In this case we obtain a system of algebralc equations

ZP -;P-P“
()"'l"l“ "‘2P:F’v '

e e e e e e e e (8)
("+nP)Pn“(’ll‘+v)Pn+1+P1n mé
(1+’1P'+ sv) Pn+s-'"[n}'-+(s+l) VIPnsssr+
J-2AP 46 om When | 5 5 << 00,
We denote A/u = a and v/u = B. Equation (8) then is simplified

somewhat
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aP o
(@4 1) Pl—-2P,,

...............

(a—l—k)Pk (k1-1) Pryy -+ aPyom wbenk>m, (9)

(a+n)P _q(n—}-B)P,,H-{—aP,,,m when 1t > M,
(“+n+SB)Pn+n—'—["v+(3+1 B]Pn+s+1+

+G.Pn+3 m Whenlgsqoo

Hence
Pp= Pofh‘(a'» p) m)bﬁ

where i\ (a, p: ’n):a; fn(a» p' m):%“(a_‘"l) etc.

The sum of the probabilities for all possible states of the
system 1s equal to

Zpk=1° (10)

This sum can be presented as follows:

N Py 2 (a, B, m). | (11)
k=0 / k=0
Hence
- JS S— | - (12)
2 fa(s, B, m)
k=0
. o0 |
The quantity ¥, f,(s, §, m) can be derived from the recurrence
k=0 ;

formulas of the system of equations (9).
Let us‘determine the average number of targets situated in
the antiaircraft defense zone that have not been flred upon

S, b=, SPan (13)

The probability of an enemy ailrcraft passing through the antliair-
craft defense zone without having been fired upon i1s equal tTo

k=0 ' (14)

EXAMPLE. The antlaircraft defense system of The objective
consists of 5 antiaircraft units. Each of these spends, on the

average, tobc = | min on firing at an aerial target. 'r" nverane
= ' ' |
|
\
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stay time in the antiaircraft defense zone is equal to tozh = |

min. The enemy aircraft are attacking the objective in pairs (m =

'2). The attacking rate of paired targets is equal to A = 2 tar-
gef pairs/min. Evaluate the effectiveness of the antialrcraft de-
fense system if we assume that each of the units can fire simul-
taneously only at a single one of the enemy alrcraff The number
of targets iIn *he raid Is 20.

:Solution. Lef us determine the auxiliary parameters:

aircraft

| po=1/toe =1 —
: ajroraft
V= 1 flgw = min [}
A
s —— = 2
a > v

===,

We derive the system of algebralc equations

[ 2P.==P|.\_

| @2+ 1) Py =28,

| (24-2) Py =3P, 2P,, .
(243) Py =14P, 4 2Py,
(24 4) Py == 5Py + 2Py,
(2 4+ 5) P = 6P, + 2P,
@+5+1) Py= (5 +2.1) Py +2P,,
(24542 Py=(5+31) Py 2P,
2+ 5+ 3) Py= (5 + 4-1) Py o 2P,
(@+544) Py= B+ 51 Proct 2Py

Neglecting the shall values of Pya and the probablllTles of
higher sequential numbers, we obtain

! 20 ' .
|
\ Z:Pn—-lgpo. o= Tg

The probability bf an enemy alrcraft passing through the antiair-
craft defense zone without having been fired upon is equal to

&

. psz.
i ’ k=0
| Porg=1— FY™) =
1(1.0,105 4- 2.0,153 -4 3-0,175 - 4.0, 165 -- 5.0, 135)

=] um

7.9 == 0,46,

§4 8. DETERMINATION OF THE TRANSMISSION CAPACITY AND LOADS 0F
REPAIR WORKSHOPS

Repair workshOps frequently service units and subunits sit-
uated at consliderable distances from each other. To provide im-
medlate repair of malfunctioning equipment, it would be possible
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t.¢ have repalr workshops attached to each subunit. However, this
1s not always feasible, since the personnel of such workshops may
exceed the repair requirements of such a subunit. It is therefore
advantageous for the repair of specific forms of combat equlpment,
consisting of the armament of many subunits, to employ a number
of speclalized workshops. The number of such workshops 1s deter-
mined from the calculation that they should not remain idle and
without work, while at the same time not forming a bottleneck in
the flow of requilsitions for repair. :

It 1is extremely difficult to solve such a problem by quali-~
tative considerations without a quantitative evaluation. In peace-
time the required number of such workshops can be determined by a
sampling method. For this we can attach a specific number of re-
palr workshops to several subunits. Experience in thelr operation
over a. specific period of time wlll show the valldlty of the
adopted decision. However, with the passage of time the equipment
will change, particularly military equipment, and new and more
advanced forms of armament will appear. At the same time the re-
pair of equipment does not remain at the same level; experimental
determination of the required number of repalr workshops and thelr
personnel may therefore require such a long perilod of time that 1t
willl have an unfavorable effect on the utilization of the armament
by the troops. There is no doubt that such an experiment would be
intolerable during combat operations.

To solve this problem we have to use quantitatlve methods of
~analysis by means of which 1t can be properly solved for a sig-
nificantly smaller required number of statistical data. In this
case 1t 1s advisable to use the apparatus of the theory of queue-
ing, developed in connection with systems with expectation for a
limited number of servicing units [66]. As was mentioned earlier,
before proceeding with the solution of the stated problem, we
must have a specific guantity of statistlcal data. Among these
data we should include: _

the average time required to detect faults;

the average time required to carry out basic operations in
the technological process of armament repair;

the time required for the requisition and arrival of a mo-
bile repair workshop at the subunit (for semistationary workshops
— the time required to deliver the armament to the repalr station),
ete.;

the frequency of armament breakdown.

After the statistical processing of the derived data we can
obtaln the basic parameters characterizing the armament repair
system.

These include:

the density of the armament breakdown flow (the repalr re-
qulsition flow) X; ‘
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thefaverage§time'required to requisition the workshop and to
carry out the repair.

Determination of the assumed equipment breakdown flow under
combat conditions must be accomplished by means of various fore--
casting methods, with consideration given to the nature of the
combat operations; we will not dwell on this point at this time.
With the required statistical data avallable, we can proceed to
the solution of the problem.

A. Statement of the Problem

Let there be n repalr workshops for a specific form of ar-
mament, which are distributed among various units and subunits.
Combat equlpment that has broken down 1s repaired by one of the
repalr workshops. The servicing may be organized for accomplish-
ment by the personnel of moblle workshops which may be directed
at any time to the subunit where repair requirements exist.

The repalr operation may be organized at iarge workshops
with a well organlzed technologlcal flow to which malfunctioning
equipment will be sent.

In elther case, the time required for the repair of the mal-
functiloning armament will be composed differently. In the first
case it will consist of the time required to call for the work-
shop, i1ts movement to the repalr position and the time required
to set up the workshop there, and the tlme required to carry out’
determination of the malfunction and the actual repair. In the
second case, it will be determined by the time requlred to deliver
the malfunctioning armament to the rear repair workshop, to in-

" spect that armament for defects and to carry out the repairs. In
the subject cases the corresponding servicing time ‘components

will vary. Let us assume that the servicing time i1s a random quan-
tity with an exponential distribution function having the para-

meter v, where
|
|

1
v =
tn

t = Ha+t10¢+tnn M+tmsn+tpw+tcm

?vyz ~ the avefage time to call for the workshop;
Eoef - the average time to determine the malfunction,
;ovm - the average time for the movement of the workshop

to the repair locatlion;

the average time to set up and dismantle the work-
shop,

- the average time for repair;

aal
1

razv?®* “sv

|

rem

?? - the average time to repair the malfunctioning ar-

mament
We determine t_ for semlstationary repair workshops in an anal-
Ogous manner.
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The flow of lincomling repair requisitions is limitcd by the
number of subunits being serviced for repalr of combat equipment,
and this flow is assumed to be the simplest. This assumption 1s
valid for the followlng reasons:

1l. The instants of armament breakdown and entry into the

repalr sphere are independent events occurring at nonintersectinb
“time 1intervals.

2. The breakdown of a given weapon is independent of the
number of such weapons that broke down earller.

_ 3. The number of incoming repalr requisitions depends on

the density, 1.e., on the average anticipated number of requisi-
tions A per unit time. We assume that 1f a requisition has come
to the repair sphere, the workshop 1s immediately assigned to the
corresponding subunit. If all workshops are engaged, the weapon
that has broken down will wait its turn for the completlon of the
repalr. :

B. Basic Indicators for a Repair Servicing System

For a quantitative evaluaticn of an armament repair servic-
ing system we can use the following relationships [66]:

1. The probability that all workshops are not engaged in re-
pair _ '

Py=- ,
mlah mi ak
2 RT(m—E) R T E v =ral(m = k)Y (1)

R=n+1

where o = A/v;
A 1s the parameter for the flow of incoming repalr requlsi-

tions,

v = 1/t

t. is the average time required to repair the malfunctioning
equipment;

m 1s the number of weapons 1n the unlts and subunits being
serviced with repair;

n is the number of repalr workshops (technological repair
flows).,

2. The probability that k workshops are engaged in the repalr
of combat equipment

m!ak P,

P
‘3. The same probability for the condition k > n
miak P
Pr= i mmim = w1 (3)

4, The probability that all workshops are engaged in the re-
pair of armament, or the probability of rejection of irmediate
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repair
 mlen Py :
Pﬂ:E‘(’:"_—"’:ﬁ. : (u)

5. The averége number of armament items being repaired and
awaiting repalir: ‘

‘ M!*"‘[E(T-‘W:E)‘t'l‘ ) WW]P-- - (5)
] k=] k=n+1

6. The averége number of weapons which will awalt repailr
(the average walting turn) because the workshops are occupied:

_ “ (k—n)m.lmu* |
M.--E o Pe - (6)

nh=nnl(m— kY ° O
‘ ‘ k=n+41
7. The average percentage of armament awailting repair:

m

Ky= . 100ty = 2 (k—n) (m — 1)lor P(.-100°/§-. | (7)

nr-nnl(m— &)l
k=n+l

8. The average number of workshops not engaged in repair

M, =

(n—k)ymtat , ' (8)
Rm—&Y ° ™ .
0 .

ok

td
il

9. The percéntage of 1dle workshops
| ‘ B
K. :A% 100%/, == [2

Rl k=0

n—i .
Py— 2 kP,‘] 100/, 9)

Let us consider the examples. There are threemoblle work-
shops (n = 3) to'repair 10 weapons (m = 10). Experilence in the
operation of these has demonstrated that on the average each of
the weapons wlll break down once a month, i.e., A = 1 weapons/
/month., To call a workshop and to repalr the equipment an aver-

- age of about six days is required for v = 5 weapons/month. We are
requlred to determine the basic characteristies for the organiza-
tion of an armament repair system. ‘

First of all, let us determine the probability that all of
the workshops are not engaged in repalr. For this we determine
the quantity a =:A/v = 0.2 and compile Table 4.8.1 of the calcu-
lations. 3 '

It follows from Table 8.4.1 that the probability that all of
the workshops will not be engaged in repalr is equal to

Py=0,185."

That means that on 4~5 days of the month all of the workshops
will be free, and thelr techrniical personnel may rest.
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TABLE 4.8.1

x Fa R TN k—m P, | (n—hPy
. Pe
0 ) 0. 1548 0 - 0,4644
PLo2 b o6 | 0,3% — 1 oew
2 1.4 . 0.7786 | 0.3572 —~ O Tee
3 0.% 0.1486 | 0,448 | — | 0
4 0,448 0.0693 | 0.2772. | 0.0693 -
5 0.179 0.0277 0.1385 0.0554 — |
6 | 0.05 | 0,0087 | 0.0522 0.0261 - |
7 | 0.012 0.0018 | 0,0126 0,0072 —
8 | 0.0025 | 0.0004 | 0,0032 0,0020 —
9 0.0004 0,0001 0,0009 0,0006 —
10 0 0 0 0 —_
L =6,4579 | £= 1.0 | M,==1,7972 | M,=0, 1606 | M,=1,3622

‘ However, this does not indicate that there will no "line"

of defective armament requiring repair. The "length" of this line,
of course, will vary in various periods. On the average, the num-
ber of weapons expecting repair will be equal (see the sum of the
fifth column in Table 4.8.1) to

M3=0,16 wéap'mﬂ-

Hence the average percentage of armament expecting repair is equal
to :

Ky =22100ty = 1,6,

Let us see the extent to which the workshops are efflclently
employed. The average number of workshops not engaged 1n repair
is equal to (see the 6th column in Table 4.8.1)

M3=1,36 warkshops,

and the idleness factor 1s equal to

Ky =2 1000/4== 12,1000/, = 46°/,,
i.e., very high.
Let us determine the average number of weapons whicn are

either in repalr or awaiting repair, or more precisely, the aver-
age number of weapons not sultable for combat:

M= 1,79 weapons,

Hence the average percentage of weapons not sultable for combat
is equal to . '
K, =X 1000/, =17,9/s.

m
This is a very high percentage of unsuitabllity for combat and 1t

is determined primarily by the time that the weapon is in repagr\
(the percentage of weapons "expecting" repair is small: k = 1.6%).
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Let us consider another example for the same armament oper-
ating conditions, but with the repair operation organized difrer-
ently. Instead of three mobile workshops to service the weapons,
one semistatlionary repair workshop has been set up with three
well organized technological flows. However, in thls case the
average time required to deliver the malfunctlioning weapon to the
workshop is several times greater than the time required to call
for the workshop and for the arrival of the mobile repalr workshop
-in the subunit. And desplte the reduction in the duration of the
actual repair, the total time that the weapon spends in the repair
sphere is increased by a factor of 2.5. Then v = 2 weapons/month,
o = 005- ' . ' : ‘

\ As before, the required calculations are presented in the
form of a table. '

TABLE 4.8.2

ko LY Py kP, (k=n) P, (n—k) P,
| Po '

0 | 1 0.010 0 - 0,030

1 5 0,061 0.051 -— 0,102

2 11,25 0.115 0,230 —_ 0.115

3 15.0 0.153 0.459 - 0

4 17.5 0.178 0,712 0.178 —

5 17,47 0.178 0.890 0.356 —

6 14.56 0.149 0,794 0.447 —_

7. 9.7 0.099 0.693. 0,306 —

8 | 4,85 0.050 0,400 0.250 —

10 0.28 0.003 0,030 0.021 -
Y =08,19 | 8=1,002| M, = 4.403 | My = 1,744 | M, = 0,247

The results of the calculations are expediently summarized
in the single Table 4.8.3 for purposes of comparison.

TABLE 4.8.3
a::::::ori-uc of Py My [*Kv% | M, Ka% { M K%
| |
“°"“f workshops o0.158/0,16| 1.6 |1.36| 46 [1.79 17,9
Seml‘lluuonary workshops 0,01 [1,74] 17,4 0.25 25 4.4 44
el

It follows from the tabular data that in connection with the
general reduction in the transmission capacity of the repair fa-
cilities there 1s a pronounced increase Iln their work load for a
constant density of incoming requirements for weapons repalr: the
probability of idleness without repair for all workshops (tech-
nological flows) Py diminished by a factor of ~16, the number of
workshops not engaged in repair (technological flows) M; was re-
duced by a factor of 5. However, the average number of weapons
not suitable for combat increased from K, = 17.9% to K = 44%.
"Under combat application conditions there is a pronounced in-
crease 1n the rate of weapons breakdown, With respect to the case
of providing repair services with moblle workshops we assume that
the flow of repair requirements increased by a factor of 5. We
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«ffer a table of comparative results.

TABLE U4.8.4
Value of L P, M, Kv % M, Ks % My Ki %
A=0,2 0.155 (0,16 1.6 |1.36 46 |1.798)17.98
As=1 0,0005) 4,02 { 40.2 10,012( 0,4 | 7,00 70

As follows from the data of the table, the work load of the
workshops increased markedly (we compare Ms, K3, Py). In the last
case the engineers and techniclans will have virtually no free
time. However, despite this, the percentage of weapons not fit
for combat increased markedly from 18 to 70%. It is obvious that
in the last case the avallable number of workshops 1s clearly in-
adequate to provide for armament repalr.

This method may be used to evaluate the effects on the trans-
mission capacity of repair_facilities produced by perfecting re-

palr technology (reducing tdef, trem)’ by improving workshops mo-

bllity ?dvm, by improving the set-up time for repalr and dis-

mantling time after repair, and similar factors. On the basis of
an economic evaluation we can find the optimum armament repair
procedure and we can determine the most advantageous number of
various forms of workshops and the suitability of introducing new
repair methods. ' ‘ ‘

§4.9. THE SOLUTION OF MILITARY PROBLEMS ASSOCIATED WITH QUEUEING
BY THE METHOD OF STATISTICAL TESTS

In the previous sections we presented solutions for certain
problems in queueing which were carried through to calculational
formulas. This became possible through a number of significant
assumptions: the steadiness and uniqueness of the requisition
flows, the absence of aftereffects, the simplest distribution
functions were taken for the operation of the serviclng system
elements, etc. These assumptions are not always in agreement with
practice. Moreover, the operation of actual gueuelng systems 1s
accompanied by the breakdown of servicing devices for various
reasons, thelr repair, the presence of rejects in servicing (in
military affairs, fallure to damage target), ete. All of these
difficulties can be overcome by employlng the method of statis-
tical tests [12]. In solving the problems of gueueing by the meth-
od of statistical tests we note several stages.

The assignment of the requirements (requisitions) flow. In
the modeling of a requisitions flow we find posslble not only
random sequences, but determined sequences. The features of the
latter are determined by the nature of the enemy's use of combat
units. For example, an enemy air force attack under certain condi-
tions can be represented in the form of rather rigorously organlzed
combat formations of air force facilities. The methods of assigning
the various random sequences and of their reallzation in computers
are shown in §2.2 of this book, as well as in [12, 13].
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The time required for the servicing of each requisition, the
time of arrival of each requisition in the servicing zone, etc.,
are random quantities with their own distribution functions. The
 methods of assigning random quantities are rather well worked out
~and discussed in §2.2 of this book. :

The most important is the modeling of the actual servicing
process which i1s presented in the form of an algorithm — a col-
lection of mathematical and logical rules and limitations, If the
servicing process 1s not too complex, and the needed number of
reallizations 1s not large, it can be calculated by hand on paper. -
Otherwise, we have to turn to the electronic computers (see §2.2).
After the calculations have been carried out and after we have
processed many of the reallzations of the process, we carry out
the statistical processing of the results. As quantitles which
are exponents of the servicing quallity we can take those which
have galned greatest acceptance [12, 66]. '

- _

. For systemé,with failure‘the average percentage of failures
in servicing duqing a specific time interval (to, t)

Morx (ton t) = ;:,((“:.' ?) ’

where n(ty, t) 1s the average number of fallures in the realiza-
- tions during the time ¢to, ¢;
N(te, t) 1s the average number of requirements durling this
same time segment. |

1 4 '
For systemq with expectation: Tozh(to, t) is the average

time of expectaﬁion for a requisition in line during the time in-
terval (to, t);;Mo(to, t) is the average length of the line during

this same time segment.

For systems with limited expectation time we can use all of
the above described indicators. In solving military problems we
have to determine other important indlcators as well. These in-
clude the consumption of missiles, the consumption of rockets for
each downed target, the distribution of downed targets over anti-
aircraft defense zones, the possibilities of ammunitlion supplies,
ete. 1 : :

Manu- _
;g;ipt Transliterated Symbols
- No.
210 ox = ozh‘= ozhidaniye = expectation f ‘
215 o6c =§obs = obsluzhivaniye = éerviéing
221 ~ fipon % prop = prOpﬁshchénnyy =_ba§éed-t§efmitted to

pass]

o o
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At
li

221 c6 = sb = sbit = downed

222 Han = nal = nalet = attack [raid]

224 H = n = nalet = attack [raid]

234 oTK = otk = otkaz = failure

248 BH3 = vyz = vyzov = call

248 ned = def = defektatsiya = inspection

248 oIBM = dvm = dvizﬁeniye masterskoy = workshop transfer
248 pasp = razv = razvertyvaniye = setting up
248 ¢B = sv = svertyvaniye = packing up

248 peM = rem = remont = repair [overhaul]
248 P = r = remont = repalr [overhaull]

254 | 0 = o = ochered' = line

#y,
f
{
{f
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