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UDC 519.8 

The book deals with the fundamentaz characteristicg of the 
equipment eritployed in combat engineering, as WSZZ aw wikh the 
re Ziability, efficiency and economy of this equipment. Methods 
are prewented for the evaZuation of these characteristica in var- 
ious combat and operational situations by means of analyticaZ 
methods and the method of statistical modeling. 

We examine probZems on the elialuation of armament efficiency 
in various combat situations, with consideration of its quality, 
reliabitity and various forms of enemy countermeasures. Informa- 
tion is presented on classical and new mathematical methods of 
optimixation employed for the solution of military engiveering 
p,-oblem’s. A particularly detaiZed presentation is offered with 
respect to the method of statistical modeling on electrqnic uom- 
puters. The material! covered in this book is clarified through 
the use of numerous examples. The appendix to this book oontains 
tables intended to facilitate calculation. 

The book is intended for the many engineers who deaZ with 
problems of developing, testing, producing and operating combat 
equipment. 

-l- 
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~ PREFACE 

In the development, manufacture and operation of combat 
equipment its is necessary to resolve numerous problems to en- 
sure maximum~efficiency for stipulated expenditures or to 

expenditures for stipulated efficiency. In con- 
fact that combat equipment is becoming in- 

the solution of such problems becomes - 
While it was possible, prior to the 

to use only the most elementary calculations 
based on thelsimplest mathematical methods in the processes of 
decision-making with respect to military engineering problems, 
the situation has now changed drastically. At the present time, 
to make proper decisions It is necessary to carry out numerous 
and laborious calculations based on various mathematical methods 
which have been categorized under the common heading of "methods '. 
of operations research." These methods have found extensive ap- 
plication inrecent years in various fields of human activity - 
in industry, fin transport, in trade and in military affairs. A 
new applied dcience is developing before our eyes and this dis- 
cipline is known as "operations research.' 

Despite !,the youth of this new science, the literature in 
this field has become quite extensive. 
and specialided journals, 

Many nations publish books 
hold conferences on operations research 

and publish the transactions of these conferences. With regard 
to operation4 research in combat engineering, the literature in 
this field consists primarily of journal articles. We sense a 
need for books containing a systematic outline of the methods of 
operations re~search and their application to combat engineering 
problems. Thins book is an attempt to fill this gap. 

At this ~point we should also make mention of the book by 
Ye.S. Venttse!l' "Vvedeniye v issledovaniye operatsiy" [Introduc- 
tion to Operations Research], published at the time that this 
book was bein'g readied for press and which the authors recommend 
to the readeris. Our book is intended for a wide range of engi- l -  

neers who ai-ei concerned with the development testing, manufac- 
ture and operlation of military hardware. The'material covered in 
this book req.bires of the reader a knowledge of the general 
courses of advanced mathematics and the theories of probability 
a:; taught institutions of higher technical education (on the 
scope, for of the well known book by Ye.S. Venttsel'), 

The book discusses the fundamental characteristics of mili- 
tary hardware, methods are presented for the evaluation of the 
effectiveness and, reliability of this hardware in various combat 
and operationbl 
methods, 

situations by means of a variety of analytCcal 
and phere is also a method for statistical codeling on 

I 
I - 2 - 
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electronic computers, Particular attention is devoted to this 
last method, since it exhibits great generality and universality. 

,The material in the book is clarified through the use of numerous 
examples which are illustrative in nature and are hypothetical. 
The -appendix to the book includes tables intended to facilitate 
calculations. Moreover, to facilitate modeling on computers we 
have presented approximation polynomials for most of the tables 
contained in the appendix. I 

The book has been divided among the authors in the following 
manner. Yu.V. Chuyev served as the general editor; in qddition 
he authored $$O.g, 1.31, Chapter 2, ss6.4, 6.6, Chapter 8 (with 
the exception of $8.7); P.M. Mel'nikov wrote sSl.3 ,1.5, Chapter 
5 (with the exception of $5.3) and ss7.8, 8.7; $.I. Petukhov was 
responsible for the writing of Chapter 4 and ss7.3, 7.4, 7.5, 7.6 
and 7.7; G.F. Stepanov wrote $$l.l, 1.2, 1.3, 1.4, 1.5, 1.6, 3.1, 
3.2, 3.7, 6.1, 6.2, 7.1; Ya.B. Shor wrote the introduction (with 
the exception of §O.g), $91.7, 1.8, 1.9, 1.10, 3.3, 3.4,.3.5, 3.6, 
6.3, 6.5, 6.7 and 7.2; V.I. Kuz'min wrote $5.3 and V.S. Bogolyub- 
skiy derived the approximation polynomials for the appendix to 
the book. I 

This book represents one of the first attempts to produce a 
book on operatlons research in combat engineering; it is doubt- 
lessly, therefore, not devoid of errors, The authors wl'L1 be ex- 
tremely grateful to their readers for any critical remarks which 
should be addressed to the publishers at the following address: 
MOSCOW, Main Post Office, P.O. Box 693, 

The authors wish to extend their gratjttude to N.P. Buslenko 
and D.B. Yudina for their assistance and advice in connection 
with the preparation of the book. 

The following system of enumeration and references has been 
adopted in this book. The chapters are numbered successively from 
1 to 8. The sections have been assigned two numerals, of which 
the first indicates the number of the chapter, and the second in- 
dicates the number of the section in that chapter. Many sections 
have been subdivided, and these subdivisions are denoted with 
capital Russian letters [translator's note: in this translation, 
these denotations have been altered to the corresponding letters 
of the English alphabet]. 

. 

Formulas are numbered in sequence within the limits of each 
section. In referring to a'formula of a given section, we indi- 
cate the number of that formula in parentheses: for example, see 
Eq. (15). When reference Is made to a formula in another section, 
the parentheses Include first the designation of the section, 
and then the sequential number of the formula in that section: 
for example, see Eq. (7.2.15), i.e., Eq. (15) from $7.2. 

The figures and tables are identifiea 1n the, seme manner i2s 
references to formulas from other sections, 'but without ;3aren- 
theses: for example, Fig. 7.2.1, Table 7.2.3. The tables in the 
appendix at the end of the book are identrified by number Iron;, 1 
to 11. 

-3- 
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The list’of literature citations included at the end of the 
book is enwnerated in numerical sequence, with the numberF fndi- 
cated in square brackets in the text. 

. 
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INTRODUCTION 
$0.1. OPERATIONS RESEARCH 

A large number of books and articles has been published 
during the past ten years on operations research. A number of 
countries publish specialized journals, hold conferences and 
symposia, and special scientific societies have been organized 
in connection with operations research. 

What is Noperutiong rssearoh”? 

The literature has not yet adopted a generally accepted 
definition of this term. However, an examination of published 
works,and an analysts of accumulated experience, in our opinion, 
makes it possible in the following manner to characterize this 
new scientific trend: 

operations research is an applied science intended to find 
optimum solutions in various fields of human activity - Industry, 
trade, combat engineering and in the art of military warfare; 

operations research, as a rule, 
sisfor decision making, 

provides a quantitative ba- 
facilitates the making of a decision, 

but does not'provide the actual decision; in order to make a 
decision it is generally necessary to resort to accumulated ex- 
perience and sound thinking processes, since it is necessary to 
take into consideration those factors which are not easily eval- 
uated from the quantitative standpoint so that they may be intro- 
duced into the calculation; 

operations research operates with a variety of quantitative 
criteria of effectiveness (economic, combat, etc.) and achieves 
optimizat,Zon of decision-making on the basis of these criteria; 

operations research makes extensive use of mathematical 
methods - the theory of probabilities, mathematical statistics, 
the theory of mass service [systems] engineering, the theory of 
games, linear and dynamic programing,the methods of statistical 
testing, etc; 

operations research is a part of the more general discipline 
of cybernetics. 

The present book will deal only with the military engineering 
aspects of operations research. However, because of the: general 
nature of the methods employed in operations research, bch of 
the material covered here may prove useful as well for individuals 
engaged in other aspects of operations research. 

c I 
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$0.2. THE XONCEPTS 
WARE 

OF QUALITY ,AND RELIABILITY IN MILITARY HARD- 

As is well known, the quality of any piece of equipment is 
understood to refer to the totality of properties determining 
the degree of~suitability of that piece of equipment in the ap- 
plications for which it was designed. This applies equally to the 
great variety !of military hardware and installations. 

Thus, for example, the quality of artillery and rocket ar- 
mament is determined by its range, rate of fire, firing accuracy 
(i.e., accuracy and firing pattern), 
invulnerability, service life, 

maneuverability, jamming 

firing operations, 
safety in handling and during 

(in storage, 
faultfree operations, duration of useful life 

pair 9 
transportation and operation), adaptability for re- 

convenience and difficulty in servicing, etc. 
I 

The quality of reconnaissance and target radar stations is 
defined by their range of acquisition, the resolving power, 
ming invulnerability, survivability, 

jam- 

field, the scanning rate, 
dimensions of the scanning 

the accuracy of target coordinate de- 
termination, maneuverability, faultfree operation, service life, 
suitability for repair,, 
etc. 

convenience and difficulty in servicing, 
I 

ReZiabiZqty (general reliability) refers to the ability of 
a piece of equipment to function in a faultless manner, to exhib- 
it long service life and suitability for repair, as well as to 
ensure the normal execution of assigned functions. This property 
is associated ~with the possibility of maladjustments arising in 
a piece of equipment during the course of its utilization C1321. 

It follo& from this that reliability is a part of quality 
and is included therein. It should be stressed that in a number 
of cases reliability is a very significant part of quality, and 
at times, the ~most important part. 

Frequentl~y, in the place of the term "reliability," we util- 
ize the term "ioperational reliability." The purpose of this is 
to underscore ~the fact that reliability is brought tolightin the 
operation of the equipment. Thus, operation of the equipment is 
understood to refer to the totality of all phases of its exist- 
ence: storage,~ transportation, 
tion as specif'ied, 

testing, preparation for utiliza- 

and repair. ~ 
utilization as specified, technical servicing 

FauZtZessl operation refers to the capability of a piece of 
equipment continuously to retain its readiness for operation 
(i.e., no breakdowns) under specific conditions of operation. 
Breakdown is understood to refer to complete or partial loss of 
operational readiness. 

Operational readiness refers to the status of a piece of 
equipment in which it can satisfy all -specifications, at a given 
instant of tim'e, as 
the equipment.~ 

set with respect to the basic parameters of 

speciflcations~ 
If a certain piece of equipment does not meet all 

I 
set with respect to its secondary parameters, 

-6- 



such equipment status is referred to as secondary maZfunction. In 
this case there is no disruption of equipment operational readi- 
ness [efficiency] and no breakdown. 

Service Zife of equipment refers to the capability of that 
piece of equipment to retain operational readiness [efficiency] 
for a prolonged period of time, provided that the required tech- 
nical servicing is accomplished (and this may include various 
forms of overhaul). Service life is characterized either in terms 
of operational time, or by the number of operational cycles, or 
by the volume of work accomplished. 

SuitabiZity for repair with respect to a piece of equipment 
refers to the ease with which malfunctions can be corrected and 
to the maintenance of technical service life through preventive 
maintenance, detection and elimination of malfunctions and break- 
downs. Suitability for repair is characterized by expenditures on 
labor, time and facilities on such operations. 

In conclusion, let us stress the difference in approach to 
the concepts of "reliability" and "survivability." 

SurvivabiZity refers to the property of a combat engineering 
installation to preserve its oapability of carrying out its func- 
tion despite combat damage. However, when we speak of reliability, 
we generally have in mind the normal conditions of operation, in 
the absence of combat damage. 

$0.3. THE CONCEPT OF THE COMBAT SITUATION 

In studying the efficiency of combat engineering installa- 
tions we have to consider their function in various combat situa- 
tons. In this case, combat situation is understood to refer to 
the totality of the following conditions and information. 

A. Oata on Friendly Forces 

the number of subject installations, ammunition and spare 
parts, tools and accessories; 

types and number of other installations [pieces of equip- 
ment] with which the subject equipment interacts; 

the stated combat problem and the time allotted for its exe- 
cution; 

the characteristic of reconnaissance facilities; 

the characteristic of camouflage facilities; 

the characteristic of communications and command facilities. 

B. Data on the Enemy 

types, number and characteristic of targets (for example, 
number of attacking enemy alrcraft, their possible speeds, combat 
ceiling, damage probability, etc.); 

-7- 
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types, number .and characteristic of enemy fire and radio 
CountermeasureL; 

characteristic of enemy reconnaissance facilities; 

characteristic of enemy tactical operations (for example, 
velocities, alkitudes, headings, enemy aircraft maneuvers, inter- 
vals between aircraft, formation, etc.). 

C. External Comnditions 

time of year and day; 

weather c,onditions (temperature, humidity, wind, illumina- 
tion, dust, etc.); 

condition:s of terrain (level, hilly, mountainous, etc.); 

location ,of nearest railroad stations, airfields, ware- 
houses, etc. 

In the analysis of the efficiency of combat engineering 
equipment, of ~great importance is the proper selection of several 
typical combat situations for which the study of efffcPency must 
be carried 'out. In a number of cases it is possible to consider 
entire classes~ of combat situations differing from one another 
as to various 'parameters which may be replaced by their average 
values. 

$0.4. THE CONCEPT OF EFFICIENCY IN COMBAT ENGIN.EERING EQUIPMENT 

Effieienciy of combat engineering equipment is understood to 
refer to the characteristic of the level of completion by that 
equipment of those functions for which it was designed. In the 
case of armament the term efficiency is understood to refer to 
the totality of characteristics for the level of execution by 
that armament,~of combat assignments for which it is intended. 
Armament efficiency is frequently determined in final analysis 
by the magnitude of damage inflicted on the enemy. In a number of 
cases, armament efficiency may be characterized by the magnitude 
of damage prevented. 

In genera)l, efficiency characteristics are functions or' the 
purpose for which the armament was designed. For example, an anti- 
aircraft rocket complex is intended to inflict damage on aircraft 
which fly within a certain altitude range. Let us compare two 
versions of an antiaircraft rocket complex. Of these, the more 
efficient will! be the one which inflicts damage on aircraft with 
greater probability, with smaller expenditure of rockets and 
within a shorter period of time. 

~ 

a% 
We can see from this example that efficiency is evalua.Led 

by means of allarge number of quantitative criteria, includl'ng, 
for example: probability of target damage, average number of 
rockets expended to damage a single target, average cost to in- 
flict damage dn a single target, the average time spent to in- 
flict damage on a single target, etc. 

-8- 
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This circumstance greatly complicates comparison of effi- 
ciency between various‘versions of combat engineering equipment. 
I'; may turn out that according to certain'criteria one of .the 
compared versions exhibits predominant efficiency, whereas the 
other proves to be more efficient on the basis of different cri- 
teria. 

Comparison of efficiency between various versions:is compli- 
cated even further by the circumstance that the efficiency cri-. 
teria depend significantly on the combat situation. Thus, for 
example, one version of an antiaircraft rocket complex,may ex- 
hibit high efficiency in repelling the attacks of low-flying 
targets and limited efficiency in repelling the attacks of high- 
flying targets, whereas the other version of an antiaircraft 
rocket complex may exhibit precisely opposite characteristics. 

I The efficiency characteristics for combat engineering equip- 
ment depend on three groups of factors: 

the characteristics of quality and reliability for that 
equipment; 

the economic characteristics of that equipment (the cost of 
the equipment and its elements, 
to servicing, etc.); 

labor expenditures with respect 

the characteristics of the combat situation in which the 
operation of this equipment is being examined. ~ 

Let us take note of the fact that the concept of efficiency 
is employed most frequently with respect to weapons systems and 
to individual pieces of combat engineering equipment which exe- 
cute independent functions (for example, reconnaissance radar 
stations). However, the concept of efficiency is not applied to 
many pieces of combat engineering equipment included in weapons 

systems. Thus, for example, we do not speak of the efficiency of 
the launching installation of a rocket complex. 

On the other hand, it is always possible to speakiof relia- 
bility criteria for individual installations included within a 

system, but it does not always make sense to speak of reliability 
criteria for a system as a whole (see $1.10). 

$0.5. SELECTION OF CRITERIA TO EVALUATE ARMAMENT [WEAPONRY] EF- 
FICIENCY 

As was pointed out earlier, armament efficiency may be char- 
acterized by a large number of various quantitative criteria. As 
such criteria we may employ: 

the probability of completing the combat assignment within 
a given combat situation; 

the probability of inflicting damage on a given number of 
targets; I 

the mathematical expectation of the number of da.rrATed tar- i b 
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gets; 

the mathematical expectation of ammunition expenditure on 
the completion of the assignment; 

the mathematical expectation of cost of facilities ex- 
pended on completion of the assignment; 

expenditure of ammunition to ensure execution of assignment 
,-with the given probability; 

mathematical expectation of expenditure of time on comple- 
tion of assignment; 

mathematical expectation of damage inflicted on enemy; 

etc. 
mathematical anticipation of damage inflicted by the enemy, 

Selection of criteria depends on the goal of the study being 
carried out, 'the characteristics of the weaponry versions being 
compared and~on the target for which the armament is intended. 
The criteria;must be sensitive to the varying parameters of the 
types of armament. 

R clearexample of the importance of proper selection of 
efficiency criteria is presented in Reference [50]. During the 
Second World~War antiaircraft weapons were carried aboard British 
merchant vessels to fight off attacking aircraft. These measures 
were implemented by reducing the antiaircraft cover of other im- 
portant site? and cost quite dearly. There arose a question as to 
the feasibilEty of this measure. To resolve this problem, expen- 
sive information on aerial attacks against merchant vessels was 
processed. It turned out that with respect to the criterion 
"mathematical expectation of damage inflicted on the enemy" the 
efficiency was low - only about 4% of the aerial attacks were 
concluded with the destruction of the enemy aircraft. It devel- 
oped from this criterion that the firing of antiaircraft weapons 
from merchant vessels did not even offset the expenditure of 
theltr installation. But, in addition, a determination of the cri- 
terion 
emy" 

"mathematical expectation of damage inflicted by the en- 
was also carried out-. It turned out that (of the total num- 

ber of vessels attacked) 25 per cent of the vessels without anti- 
aircraft weadons was sunk, whereas of the vessels with antiair- 
craft cover only 10 per cent of those attacked were sunk. Thus, 
installation lof antiaircraft weapons on merchant vessels reduced 
the damage inflicted by the enemy by a factor of 2.5, which more 
than offset the expense of installing such weapons on the vessels. 

Since the basic purpose of installing antiaircraft facilities 
was not the destruction of enemy aircraft, but the protection s: 
the vessels , ~the second criterion was the correct basis of proce- 
dure. I 

Thus we ican see that the correct solution of a given problem 
may depend on the selection of the efficiency criterion. 
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I;et us also take note of the following circumstance. If we 
are comparing two weapons systems on the basis of a given effi- 
ciency criterion, we should not lose sight of the other indi- 
cators characterizing these systems. Such indicators may be the 
various characteristics of quality (for example, reliability, 
handling safety, etc.). Having compared two systems as to effi- 
ciency, care should also be taken to make certain that the re- 
maining indicators of quality for these systems fall within 
specified permissible limits. 

$0.6. ECONOMIC CHARACTERISTICS OF VARIOUS SPECIMENS OF,COMBAT 
MATERIEL AND WEAPONRY 

The economic characteristics of combat materiel and weaponry 
may be divided into two groups: 

A includes the characteristics defined by the labor input 
on the fabrication of the subject items; 

B includes the characteristics defined by the labor input 
?q the Jperation of these items. 

The characteristics of group A can always be expressed in 
monetary units. The characteristics of group B cannot always be 
expressed in monetary units. Thus, for example, the labor input 
involved in the utilization of combat materiel and weaponry, when 
there is rather great likelihood of injury being infliyted on the 
crew servicing this equipment, cannot be expressed dn monetary 
units. I 

Group A includes the following characteristics: ~ 

the cost of preparing the design draft and the cost of ad-, 
justing the experimental model; 

the cost of capital construction necessary for se&es manu- 
facture; 

the cost of fabricating series specimens; 

the cost of fabricating spare parts and accessories; 

the cost of fabricating packing and transport facilities. 

Group B includes the following characteristics: 

the cost of transporting the goods; 

the cost of storing the goods; 

the cost of current expenditures required for operation of 
the products (including the cost of items spoiled in storage); 

the cost of capital construction required for storage and 
operation of the materiel and equipment; 

cost of training specialists to service the materiel snc 
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1 
I 

equipment; 
. . 

1. the number of people in the crew servicing these items; 

labor input in man-hours for various stages of materiel 
and equipment operation in combat units. 

$0.7. CLASSIFICATION OF COMBAT ENGINEERING INSTALLATIONS 
’ Combat e:ngineering installations can be d+vided into five 

large groups:! 

! A. Facilities to inflict damage. 
I 

B. Means1 of delivering damage-inflicting facilities to the 
target. I 

C. Facilfties to obtain and process information. 

tons. 
D. Facilities to control combat equipment and military ac- 

E. All remaining combat engineering facilities. 

As examp+es of the facilities in group A we can cite artil- 
lery shells, rocket warheads, aircraft bombs, etc. 

As exampies of the facilities in group B we can cite artil- 
lery pieces, rockets and their launching installations, bomber 
aircraft, etcl 

As examples of the facilities of group C we can cite recon- 
naissance radar stations and special digital computers designed 
to process redonnaissance data. 

3. , 

I 

As examples of the facilities in group D we can cite com- 
mand electronsc computers and radio communications lines. 

As examples of group E we can cite radio jamming stations'. 

The facilities of these groups are frequently consolidated 
into single syistems. Thus, for example, an antiaircraft rocket 
complex includes antlaircraft rockets, 
rocket guidancb stations, 

launching installations, 

indication stapions. 
as well as reconnaissance and target- 

On the other hand, various combat engineering installations 
are broken down into individual units and elements. For purposes 
of the examination Into the problems of reli'ability 
significance i$ the breakdown of these items into tie 

of great 
classes: 

one-time items which, in the event of failure, need not or 
cannot be repaired; 

re-usable)Items which, in the event of failure, can be re- 

c 
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paired. 

We should stress that the same items may be re-usable in 
one phase of operation and of the one-time variety in another 
phase. 

As ex;unples of one-time items we can cite the elements of 
electronic radio equipment (vacuum-tube devices, semic~onductor 
devices, resistors, capacitors,-etc.), components of machines 
and instruments (gears, bearings, gyroscopes, etc.), detonators, 
rocket warheads, fuzes, etc. 

As examples of re-usable items we can cite the various elec- 
tronic computers, radar stations, 
rocket launchers, etc. 

communications equipment, cars, 

I 
Let us stress that on-board rocket facilities may'be re- 

garded as re-usable in storage and during preparation for launch, 
whereas they must be regarded as one-time items in flight opera- 
tions. 

Of great significance In the analysis of problems( of relia- 
bility is the separation of combat engineering facilities into 
yet two other classes: 

faciZities without reserve (without spare parts) which are 
characterized by the fact that malfunction of any elemknt in 
such facilities results in the breakdown of the entire~device; 

facizities with reserve (with spare parts) for which break- 
down of a number of elements does not result in the fa$lure of 
the entire device. 

I 
$0.8. CLASSIFICATION OF COMBAT ENGINEERING ASSIGNMENTS; 

The combat engineering assignments considered in our book 
may be divided into three classes: 

1. Assignments which arise during the course of edtablishing 
tactical engineering specifications with respect to new models of 
combat equipment. 

I 
2. Assignments arising in the development and testing of 

the experimental models of new equipment. 

3. Assignments 
items. 

arising in the operation of series-produced 

The first class of assignments includes: ~ 

validation of the tactical engineering specifications imposed 
on new specimens of combat equipment; 

validation of optimum armament system. 

The second class of assignments includes: 



comparative evaluation of various draft versions and devel- 
opment of recommendations with respect to selection of the best 
versions; 

evaluation of quality, reliability and efficiency of newly 
developed modells on the basis of their draft data and on the ba- 
sis of test re,sults; 

economic evaluation,of newly developed models. 

The third1 class of assignments includes: I 
evaluation of quality, 

produced model' 
reliability and efficiency of series- 

$ 
on the basis of test and operational results; 

economic evaluation of these models; '\ 
developmeht of optimum system of technical servicing (a sys- 

tem of preventive maintenance operations, spare-part and accessory 
standards, overhaul system, etc.); 

developmeqt of optimum operational regimes (norms for accep- 
tance in various stages of readiness, norms for combat utiliza- 
tion based on $eather conditions, 
etc.). 

based on target parameters, 

90.9. APPLICATION OF MODELING IN OPERATIONS RESEARCH 

In the solution of many combat engineering assignments it 
proves to be advisable and efficient to employ the methods of 
modeling. Let us clarify the foregoing by means of an example. 
Given that we have to define the optimum tactical engineering 
characteristics of a rocket complex which is scheduled for de- 
velopment. Slnc,e these specifications, as a rule, are contradic- 
tory (the great;er the maximum range, the greater the weight and 
co,s t ; the higher the firing accuracy, the more expensive and 
more complex the guidance system, etc.), a quantitative basis 
must be provided for these specifications: 

These charbcteristics could be validated with greater preci- 
sion by the testing of a number of rocket-complex versions under 
actual combat conditions. However, such tests in the overwhelming 
number of case&are unrealistic, first of all, because of a 
lack of opporturity for such tests in peacetime and, secondly, 
because of the colossal cost involved in the development of rocket 
systems. In this case the most expedient method of operations re- 
search is the modeling of combat-action processes the comparison 
of various solutions on these models and the selegtion of the 
best of the solutions. 

There are three fundamental modeling methods: mathematical, 
physical and combined (see Fig. 0.9.1). Mathematical models dif- 
fer from the originals in physical nature and geometric shape, 
but they exhibit similarity in that they are described by iden- 
tical mathematiqal equations. Physical models are similar to the 
original in physical nature and geometric shape, but differ from 
the original in idimensions, in the speeds of trle process 2nd in 

( 
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terms of other properties which are taken into precise considera- 
tion. The combined model represents a combination of the mathema- 
tical aqd physical model, with that portion of the process which 
is most difficult or does not lend itself to description by mathe- 
matical functions being modeled physically. 

Research 
Methods 

I 

I 

I 

Natural Modeling 1 
Mathematical phylicsll 

Analytical Statistical . 
Methods Modeling 

4 1 

1 

I I I I 

Mathematical Correlations 

Fig. 0.9.1 

An advantage of the mathematical models is the universality 
of the methods and apparatus for their Investigation (we have 
reference here to the various computer devices, starting with a 
slide rule and ending with the most complex electronic digital 

-computer); the possibility of studying any processes including 
those which cannot presently be achieved physically; the most 
extensive possibilities and the greatest simplicity in finding 
optlmum solutions. 

An advantage of the physical model is the possibility of 
studying all processes regardless of whether or not they lend 
themselves to description by mathematical means, and also the 
great clarity of results. Among the methods of physical modeling 
we can Include sp.eclal war games and studles, as well as lndivld- 
ual test-range operations (excluding those which must, of neces- 
sity 3 be carried out under natural conditions). It may 'seem, at 
first glance, that these methods, which have been applied to rr.i- 
litary affairs for a long.time, in any event, long before the 
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term modeZing came into being, are capable of providing answers 
to all questions. However, this is by no means the case. An im- 
portant element of combat is the counteraction of the enemy, and 
this process in any game or test can be taken into consideration 
only in an eQremely conditional manner, and this thus cannot 
help but have an effect on the over-all results of such a model- 
ing operation. A definite advantage of physical modeling is the 
participation of man, the description of whose actions in each 
specific situation by any given algorithms will be very difficult. 

It is ob'bious that the best results can be achieved by a com- 
bination of mpthematical and physical modeling, and this combina- 
tion may involve stages, i.e., a mathematical model, bhen a veri- 
fication of the results in special studies, followed by a refined 
mathematical model, or it may involve a combination of a mathe- 
matical and al physical model (for example, the incorporation of a 
human being into the mathematical model). 

Mathematical modeling in recent times has found extensive ap- 
plication because of the achievements of mathematics which have 
made it possible to develop: and investigate rather complex models, 
as well as because of the development of electronic computers. On 
the other hand, the growth in the potentials of contemporary weap- 
ons in conjunction with the rise in their cost calls for in- 
creasingly extensive application of the methods of mathematical 
modeling. 

I 
'A mathemqtical model represents a s'ystem of mathematical 

equations and;rules of logic whose utilization make it possible 
to calculate criterlal values for each selected version with the 
given parametdrs. Mathematical models can be divided into two 
fundamental groups: models of statistlcal tests and analytical 
models. 

The methcid of statistical tests involves the obtaining of 
a number of rtindom realizations of a criterion and the subsequent 
statistical processing of these realizations. 

The analyitical method makes it possible to calculate the 
mathematical eixp'ectation of a criterion and its dispersion by 
means of analytical formulas. 

, 
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Chapter 1 

CERTAIN CHARACTER,ISTICS OF ARMAMENT 
Sl.0. INTRODUCTION 

In the first chapter we consider the fundamental character- 
istics of armament which may be used as the Initial data for the 
solution of problems in operations research. In certain assign- 
ments with respect to operations research we assume character- 
istics of armament accuracy, reliability and effectiveness as the 
initial data. In other assignments, we assume the cost of the 
hrmament or the effective range of the reconnaissance facilities 
as these Initial data. Each of these characteristics may be as- 
signed a specific value in certain assignments of operations re- 

'search, whereas in others they must be estimated prior to the 
beginning of the research. 

Determination of both accuracy and reliability chAracteris- 
tics for armament is rather complicated; occasionally,'this is 
possible through experimentation, Particular attention fs there- 
fore devoted to these questions in this chapter ($$l:l, 1.2, 1.7- 
1.10). 

This chapter also deals with damage probabilities (§§1.3- 
1.5). Quite a number of works have been published on this ques- 
tion. However, t;?e importance of these characterfstics for opera- 
tions research has led to the need for a brief description,. 

One section.is devoted to detection [acquisitionl'range 
CD.61 9 

In conclusion, cost characteristics are examined in $1.11. 

A number of important armament characteristics whose deter- 
mination Is rather simple (weight, maneuverability, etc.) are 
not considered. 

$1.1. FUNDAMENTAL CHARACTERISTICS OF FIRING ACCURACY 

A. The Fundamental Concepts of Firing Accuracy 

Firing accuracy is an objective characteristic of armament 
quality. It Is not by chance that each new form of weapon is 
tested prior to acceptance to determine accuracy characterfstics. 
Accuracy charaotcristics are understood to refer to the charac- 
teristics of firing accuracy and pattern. 

F'irinf: accur~~cy Is evaluated ir, terms of' dcv:iatfon of the 
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mean trajecto,ry from the center of the target, ,while firing pat- 
tern refers to deviations of individual shells [missiles] from 
the mean trajectory. 

In speak9ng of firing-accuracy characteristics, we should 
distinguish between generalized and special characteristics. The 
former describes firing accuracy under a great variety of con- 
ditions (times of year, weather conditions, firing azimuth, etc.). 
The latter are determined for specific (special) conditions such 
as, for example, 
firing azimuth. 

a specific season of.the year or a specific 

The distribution functions corresponding to averaged charac- 
teristics represent, a superposition of functions corresponding to 
a large numbe of special characteristics. 

the factors responsible for deviation of 
rockets and missiles from their targets. The basic factors re- 
sponsible for~the deflection of "ground-to-ground" rockets from 
their targets~will be the following [131]: 

1) geodeiic errors; 

2) weather forecast errors; 

3) ballistic errors; 

4) errors due to technical scattering. 

The scattering of artillery shells is brought about by the 
same factors. : 

Occasionally it is more convenient to divide the causes of 
scattering inqo those dependent on the rocket (with consideration 
of weather-ferecast and ballistic errors) and the scattering 
which is indep~endent of the rocket (geodesic errors and errors 
in the indirect laying of the line of sight). Regardless of which 
scattering chdracteristics are used, it must be borne in mind 
which of the fiactors leading to the scattering are being taken 
into consider&ion here. 

Firing errors are characterized by their mathematical ex- 
pectations Andy the stfndard deviations o or their squares, i.e., 
the dispersionis D = o [lo, 241. 

Frequent use is made in firing theory of the main probable 
deviations E (mean deviations) and, according to American litera- 
ture [49], then circular probable error CPE [CKO]. The circular 
probable erroriis defined as the radius of a circle about a tar- 
eret, with the probability of hitting within that circle equal 
to 50%. This radius is occasionally denoted ~50. 

width 
The mean deviation is half the depth of a band of infinite 

for which the hit probability is equal to 50%. 

There exists a certain relationship between 0, E and ~50 
which will be Fhown below (see subsection F3). 
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In actual practice we use yet another term; "maximum devia- 
tion." However, for the majority of distribution functions this 
term is devoid of significance if no indication is provided as 
to the probability that the deviation will or will not exceed 
this "maximum deviation." 

For the maximum deviation we generally assume t4E, and OC- 
casionally 53~. 

6. The Normal Distribution Function for Firing Errors dn a 
Plane 

Firing errors are random quantities which are characterized 
by distribution functions. The normal distribution function for 
random quantities is the one most frequently employed in actual 
practice. The random deviation of a missile from a plane is char- 
acterized by two random quantities for the impact-point coordi- 
nates, and in space, by three random quantities; it is therefore 
advisable to treat the normal distribution function for firing 
errors separately for a plane and for space. 

It is demonstrated in the theory of probabilities, that this 
function is limited. The summation of a large number of approxi- 
mately identical deviations distributed according to various f'unc- 
tions will lead to a deviation distributed in accordance with the 
normal function. These conditions are generally satisfied for 
firing errors. 

In the general case, the density of the normal distribution 
of firing errors in a plane is expressed by the formula 

f (x, 0) 
* 2Xf,U” v 1--r* 
= ---- 1 exp 1 --- 1 L (x -- rn,): 

2 (1 -r*) u2 

* --2r (x - m,) (I/ - m,) ++!P (y 11 ;, (1) u*oy Y 
where m 2 and m 

Y 
are the mathematical expectations of random devia- 
tions in the points of missile [shell] impact 
along the coordinate x- and y-axes; 

u 2 and CI 
Y 

are the ,root mean square firing deviations; 
P is the correlation factor for the magnitudes of 

x and y. 
The density function f(o,y) for the normal firing-error distribu- 
tion deflnes the probability of missile [shell] impact within the 
elementary area AX Ay. It is not difficult to prove [25] that the 
density of firing-error distribution along one of the ooordinates 
is also subject to the standard function having the density 
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and with density 

while the correlation factor 

where Kxy is the coupling moment. 

Graphlci+ly ;P(z,y> can be shown In the formof a hill (Fig. 

(3) 

(4) 

1.1.1) whose~apex Is situated over point (mm, m,), while the width 
of the base is infinite. The steepness of the slopes of this hill 
is a function of the root mean square deviations uz and o . The 
width of thelbase may be limited L3urr t3u ~ from the pain! having 

~ 

the coordlna'es (mz,-ml/). 
\ 

I 
Fig. 1.1.1 

A number of sections of the sur- 
faoe f(s,y) by planes parallel to x0~ 
will yield a family. of slmllar and 
identically located ellipses which, In 
projection onto a plane, will have a 
common center at point (mX, my). The 
probability density f(x,y) is constant 
at all points of each of these ellipses. 
Such ellipses are therefore referred to 
as eltipsee of equai! dene<ty or suat- , 
tsring ettipses. The,n and 6 axes, 
which pass through the major and minor 
axes of the scattering ellipse are 
referred to as the prina$paZ soutter- 
ing axea. 

If we combine the coordinate origin with the point (mX+ my) 
and the cooknate axes 3c and y are turned through an angle o! and 
if these areicomblned with the principal axes, we will derive an 
equat%on for~the scattering ellipse in canonical form. 'The angles 
~11 and alp are determined from the equation 

(5) 

where the angles o?l and ~12 differ by 7t/2. 

The candnical of the normal function on a plane has the form 

where 0 E and~u 
~ n 

are the principal root mean square. deviations 
in firing. * 

Qenerally, in processing the measurement results for devla- 
tlons of mistilles [shells] from a target on a plane, an effort is 
made to chooie the coordinate axes ox and oy in advance ill suc'n a 
manner that they coincide with the principal scattering axes. For 
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this the ox-axis must 
tion [line of sight]. 

be made to coincide with the firing direc- 

x- and g-axes will be 
The root mean square deviations along the 

in this case, and the 
the principal root mean square deviations 
normal function will have the form 

In the case of a two-dimensional normal distribution the 
probability of impact in a circle of radius r is determined from 
the formula 

(8) 

Having substituted the density of the distribution f(z,y) and 
having integrated Eq. (a), It is possible for us to derive the 
radius PSO of the circle within which the probability of impact 
is equal to 50%. 

In the simplest case in which c = (I = u, and with P(r) = 
= 0.5, we will have X Y 

rao=r(P=0,5)= 1,1774Y (9) or I 
I rgo= 1,746E. (10) 

In the more general case in which the dispersions o2+;2 are 
iI " 

not equal, the integration 
tion r=f (ox ,aU) yields the 
approximate relationship: 

and approximation of the derived func- 
possibility of obtaining the following 

r ,,==O,615~,+0,562rr~, (12) 

where u 
Y 

is the greater-value of.these two errors. 

Formula (11) yields more exact coindence (within limits of 
3% > In the range 2;-=0,2+1,0. 

The principal probable deviations and the root mean square 
deviations are associated by the relationship j?=-pv%> where p = 
= 0.4769 

(this relationship is determined from the equation(L)@/?)=;). 

(13) 
C. Normal Distribution Function fbr Firing Errors in Space 

The normal function of firing errors in space describes the 
scatterin@ which results in firing long-range missiles. In general 
Corm the density of the normal distribution of firing errorS in 
space is exprtissed by a rather cumbersome formulL which depends 
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ofi nine parameters (rn,, tn,, m,, u,, u,, cb, r12; r23r r31). We will therefore lim- 
it ourselves exclusively to the canonical form of the density dis- 
tribution for tne firing errors in space 

;f(G Y, ?I>- 1 
(2R)3%,lym, exp (14) 

where 3x3 =u, 52 
tions. 

a+ the principal root mean'square quadratic devia- 
I 

D. The Rice Dts~ribution 

In aCdltion to the normal distribution function for firing 
errors, the Rice distribut$on is of great practical significance. 
'I'he f?:Ice dlstrib,ution characterizes the magnitude of the miss 
dl. :: t :?.n c ri: 
in t,!-lC 

f'or the missile with respect to the target with a shift 
,r; r CJ u [J 1. n L; center in the case in whfch the distribution of 

+,hfi: c9orc5.nates 01' the impact (explosion) points is normal. 

The /?ice diltribution funckion refers to a function having 
t43e density I 

'~ 

f (4 = 0 when f<O, (15) 

whek? CT is the rbot mean square deviation of the quantity r 
) 

r =)AJ'-f.zf; (16) 

lC=~d+~~. (17) 

m and m 
Y 

a are the mathematical expectations of the random quan- 
tities ly and a, respectively; 
Is a zgroth-order Bessel function. 

I’ The curves of the Rfce distribution functions are shown in 
Fig. x.1.2. 

If a/a is small, the Rice distribution function differs lit- 
tle from the Rayleigh distribution function and is described by 
the following equation [40] 

c r 
9’ r 

2 3 5 6 7 S 

Fig. 1.1.2 
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The Rice distribution is occasionally referred to as the 
‘gensraliaed RayZeigh distribution for reasons which will become 
more evident from the following subsection. 

E. The Rayleigh Distribution 

In the absence of systematic deviations in c1/c = 0 and in 
the normal circular distribution of the coordinates for the point 
of missile impact (explosion) the missile miss distance is sub5tiL 
to the Rayleigh distribution. 

The density of the Rayleigh distribution is expressed by the 
formula 

The function f(r)dr represents the impact probability of two 
independent random quantities distributed according to the normal 
function with identical parameters c = 17 

Y 2 = u into a ring 
bounded by two concentric circles of radii P and 27 t dr whose ten 
ter is situated at the point of maximum density for the normal 
distribution f(y,s). 

Ellipses of equal density with 
u = u 

Y x 
= Q change into circles of 

radius T = Au. 

12 

a# 

We can see from Eqs. (19) and (18) 
that the Rayleigh distribution Is a 
special case of the Rice distribution 
with the grouping center of the random 
quantity ZJ made to coincide with the 

a4 
coordinate origin (~1 = O).' 

Graphically the probability den-- 
0 sity of the Rayleigh distribution can 

be represented in the following marine? 
Fig. 1.1.3 (Fig. 1.1.3). The numerical character- 

istics of the random quantity r dis- 
tributed according to the Rayleigh func, 
tion are determined from the following 
equations:' 

- methemat.icrrl cxpectaiion 

mr=, 1,253a. (20) 
- dispersion 

D, = 3”. = 0,428#. (21) ,. 
In actual practice, the eccentricities of component parts 

in the machine-building industry, the service life of cert.ain 
types of electronic tubes and, as has been indicated earlier, the 
miss distances of missiles [shells] and rockets in artillery 
operations are subject to distribution [82j. 
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The Rayleigh distribution function is found from the equa- 
tion 

F(r)?! f(I)dr=l-exp[-;;I. 
I 0 (22) 

It is not qifficult to calculate F(r) in accordance with 
Eq. (22), but it is also possible to use tables (see Table 8 in 
the appendix). ~ 

F. Random and Sistematic Firing Errors 

Firing accdracy is associated with deviations in the explo- 
sions from the center of the target, i.e., with firing errors. 
What type of firing errors can there be and how are they to be 
classified? 

Let us demo'nstrate this by means of examples. Let us assume 
that the firing ~operations are being conducted against a target 
situated on a hoirizontal plane, all other conditions equa‘l. We 
will determine the deviations of the explosions from the center 
of the target. In this case a two-dimensional coordinate system 
is needed and iti should be convenient to make this system coin- 
cide with the center of the target. One of the coordinate axes 
(3) may be direcped along the firing line-of-sight, while the 
second axis (y) Ps set perpendicular to the former. All explo- 
sions will be situated within an area bounded by an ellipse. The 
deviation of ,the scattering center from the center of the target 
characterizes the accuracy or systematic firing error, while the 
deviation of thelindividual shells [missiles] from the scattering 
center characterizes the random firing errors or the firing pat- 
tern. 

An objectivk characteristic of systematic errors is their 
mean value, derived through multiple repetitions of analogous 
firing operations I 

t 

n n 
llt,=$ c Xi, mu=+ 

I: 
yi* 

1-t (23) i=I 

An objectivk characteristic of random errors is represented 
by their root mean square deviations oX and u or their disper- 
sions D 5 and D Y 

Y 

Errors in firing at a moving target will be examined on the 
basis of an examQle of an antiaircraft complex [system], Let us 
assume that the t,arget is flying rectilinearly at a constant sl- 
titude and at coystant speed. The firing operation is being con- 
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ducted by a four-gun antiaircraft system using shells with long- 
range fuzes in accordance with data derived from the solution of 
the missile-target impact problem by means of antiaircraft fire- 
control instrumentation AAFCI [llYA30] and from information pro- 
vided by the weapons guidance station WGS [COH]. 

The system operates automatically and ensures the firing of 
salvos at a given rate. Let us establish the deviations of each 
explosion from the center of the target. In this case we will 
need a three-dimensional coordinate system, with the coordinate 
origin also easily made to coincide with the center of the tar- 
get. During the period of time that the target is within the 
firing zone the system will execute a series of salvos. 

All of the shots of a single salvo will deviate from the 
center of the target in accordance with the errors at the output 
of the instrumentation complex. However, there will be a scatter- 
ing of explosions for each salvo, and this will correspond to the 
individual errors of each of the weapons. 

On the whole; all of the explosions will be distributed witk 
' in a certain space around the target in a random manner. Expe- 

rience sholrs that when firing at a nonmoving target, the geometri 
body containing all of the explosions will be an ellipsoid. In OL 
example this will also be an ellipsoid, since the coordinate ori- 
gin moves together with the target. 

The deviation of the ellipsoid center from the target center 
will be governed by systematic errors, while the deviations 3-n 
the explosions within the ellipsoid with respect to the ellipsoid 
center will be caused by random errors. However, if we now corn- 
pare the explosion ellipsoid derived from firing operations CZ- 
ried out today with the ellipsoid derived from ,firing operat;iarls 
on another day, given identical initial data, we will find that 
the centers of these ellipsoids do not coincide. Consequently, 
the systematic errors change. In the given case the deviation of 
the ellipsoid centers is due to the errors in firing, preparatic;?. 
However, if the deviations in the scattering centers OGCUP re- 
peatedly, these deviations will be systematic. They may be cailsed 
either by errors in the instrumentation system or by errors i.n 
firing preparation. Thus we should distinguish between the sys- 
tematic errors that are characteristic of specific conditions 
(daily errors, system errors, etc.). 

G. Error Groups 

In the case of antiaircraft firing operations random erpors 
are generally divided into'two or three groups which are asso- 
ciated with the firing conditions. For example, in the firing of 
an antiaircraft battery the random errors are divided into three 
igroups. The division of the firing errors into groups is accom- 
plished on the basis of their correlation functions: errors 
closely associated with each other are included in one group; 
those errors 1~s:; closely associated with each other are grouped 
in another, etc. The first group of errors contains indlviduai 
<231'rors, i.e., the technical scattering of the shells [ci,;:.lie::l 
and the errors due to the positiocing of the weapons. FiF; root A. . 



mean square deviation cI is an exhaustive characteristic of the 
errors in the first group. 

The second; error group includes errors at the output of the 
instrumentations system (errors of dynamics) which are character- 
ized by the roost mean square deviation cII. These errors do not 
result in devia~tions of an individual missile, but for all shots 
of a given sequ!ence. 

The third brror group includes ballistic errors and errors 
in meteorological firing preparation (uIII) which cause devia-' 
tions in all shots of a given firing operation. 

When the firing efficiency of a single weapon is being eval- 
uated by means 

& 
f an independent fire-control system the firing 

errors are divi, ed into two groups. In this case, the first group 
contains errors of technical explosion scattering and a portion 
of the errors at the output of the instrumentation system 
are independent1 of the transition from one shot to anothe;. 

which 
The 

second error group includes the remaining portion of the instru- 
mentation errork, as well as ballistic errors and the meteorolo- 
gical errors inlpreparation for firing. 

s1.2. DETERMINAfION OF FIRING-ACCURACY CHARACTERISTICS BY EXPERI- 
MENTATION~ 

A. Methods for fhe Determination of Accuracy Characteristics 

We distinguish the following methods of,determining accuracy 
characteristicsl 

1. The experimental method, associated with the direct firing 
of shells or rockets [131] and the subsequent processing of the 
derived tiesults. 
type artillery.1 

This method is extensively employed in cannon- 

2. The experimental-theoretical method which is understood 
to refer to the utilization of simplified theoretical functions 
as interpolation formulas to extend experimental data to other 
conditions. 

3. The metbod of statistical modeling in which perturbations 
are determined by means of a statistical analysis of material 
from laboratory C tests and from the processing of launch results, 
with the accuracy characteristics subsequently determined by 
means of electrenic modeling of the perturbed motion of rockets 
in a large number of tests [35]. 

I 
4. The analytical method In which the accuracy characteris- 

tics are calcul$ted. 

Naturally,~the last two methods stand out because of their 
higher accuracy!with respect to the derivation of the scattering 
characteristics; since they make it possible to take into consia- 
cration a considerably largernumber of factors affectinK the 
firing operatioh. The resulting experimental material in this 
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case is seemingly enriched. 

Analytical expressions for an evaluation of the accuracy of 
the derived scattering characteristics in statistical modeling 
are presented in $2.3. These make it possible to evaluate the ac- 
curacy of the results obtained under specific conditions. 

In $2.5 we have an example bf the application of the method 
I of statistical modeling for an evaluation of firing accuracy. 

B. Oetermination of Firing Errors by Experimentation 

Determination of accuracy characteristics through experimen- 
tation is most conveniently demonstrated by means of examples. 

We will not divide the errors Into groups at this time. 

EXAMPLE I. To derive scattering characterlstlcs, let us 
launch rockets under ldenttcal condttfons. The point coordinates 
are determined by the same method. As a result we obtain n pairs 
of measured deviations In the explosion points from the target 
with respect to range and direction on the plane, In an Inde- 
pendent manner and. for identical conditions. The measurement re- 
sults (XI, y11, (x2, 3J21, . . . . (3: 

of random quantities for which 
Izs yn) are independent systems 

where the subscript i pertains to the measurement pair. Find the 
approximate accuracy characteristics and evaluate these. 

Solution. 
tities mz, m’, 

TQe apprgxlmate values of the independent quan- 
u ;e and o are defined in the same manner as in 

the piocessi:g of linea? measurements, 1.e 
formulas 

., on the basis of the 

.*z * 

.J+2 
Y 

I 
In*” = y 

YJ I 
Yi 

1-l 
1 

n 1 
1 

-- n-3 2 
(x4 - m*.p 

l=I I 

n I* 
1 

= i--i z: 
(Yi - fn*J’ 

I=1 
1 

(I) 

(2) 

where m* 
X’ 

m* 
Y' * 

ck2 and uy*' are the experimental values cf thi 

mathematical expectations and dtspersions of the measurements. 

In estimating the accuracy of the resulting characteristics 
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we generally make use of the following formulas (see C8.21, pages 
128 and 136) 

(3) 

1 

Since the instant of contact is the mathematical expecta- 
tion of the product resulting from the deviations of the random 
quantities x And y from their mathematical expectations, the ap- 
proximate value of the Instant of contact K* 
the'formula 

"y is determined from 

(5) 

An evaluition of the accuracy for the instant of contact is 
conveniently lven by the correiatron factor whose general char- 
acteristic is determined from the equation 

-0 

i 

K =n fry 7 10. x Y 

The experimental correlation factor 

(6) 

EXAMPLE 2. To determlne the scattering characteristics for 
an antiaircraft weapon, .firtng operations are carried out against 
a nonmoving point in three-dimensional space with n shots. The 
coordinates of the explosion points are determined by identical 
methods. 1 1 

i I of the deviations of the explosions from 

/ 
the target wederived 3n independent random quantities. Determine 
the apgroximate*;alues of the scattering characteristics rn$ 
rniJ -0" , o*~,~o. , K* 

w” Ki2 and K* 
m;, 

X Y ,a Y2’ 
SolutIoni Determination of the numerical characteristics of 

a system of two random quantities reduced to the processing of 
I inear measurements. Therefore, 
random quantiiies, in analogy, 

In the case of a system of three 
we can write the working formulas 

for the approximate values of the fundamental numerical character- 
istics of theisystem, adding another function with respect to the 
2 coordinate to the earlier derived functions. 

At the cbnclusion of this section we will examine the ac- 
curacy charackerlstics for the case of an antiaircraft system 
firing at a mbving target. Since the target is moving, all of the 
accuracy characteristics will be random functions of time. 

I . . 

I - 28 - 



The fundamental characteristics of random functions include 
the mathematical expectation mx,ltl, the dispersion Dzltl and the 
correlation function Kx(tl, t2). And if we are considering two 
random functions x(t) and g(t) at the same time, to the above- 
cited characteristics we have also to add the instant of contact 
Kzy(tl. The basfc problem of processing random functions there- 
fore involves determination of the approximate values oi' these 
characteristics. 

EXAMPLE 3. An antlaircraft artillery system functioning in 
conjunctlon with antialrcraft fire-control instrumentation [AAFCI] 
on the basis of data from a weapons guidance station [WGS] pre- 
pares initial data for ffrlng at an aircraft flying at a constant 
altitude, recti linearly and at a constant speed. The unit has car- 
ried out n independent experiments (observations) and as a result 
has obtalned n realizations of the random functions x(t) and y(t), 
characterizing firing accuracy (flrfng errors In the picture 
plane). 

Find an estimate of the characteristics for the random func- 
tion: 

Solution. ,Let us examine a number of cross sections of the 
random functions xc(t) and y(t) for the instants of time tl, t2, 

. ..J t,,, and let us record the values assumed by the functions 

x(t) and yltl at these instants of time. The section of the ran- 
dom function refers to the value of its random realizations at 
a fixed instant of time. To each of the instants tl, tZ, . . . . tm 

there will correspond n values of each function. Ir, thiis case, 
the intervals between the instants tl, t2, ,.., tm are selected 

so that it will be possible to ascertain the most significant 
changes in the functions and these are generally established by 
the speed at which the random process is photographed.1 

Let us assume that the functions x(t) and y(t) in our ex- 
ample have been established with an interval of 0.5 sec. The 
coordinate origin t = 0 in this case corresponds to the instant 
at which the target passes through the headi’ng parameter. 

The values of the functions x(t) ‘are presented in Tabla 
1.2.1. 

For each value of t. let us calculate the mathematical ex- 
3 

pectation, the dispersion and the correlation function in accord- 
ance with the formulas presented above (1.5). The results of the 
calculations are given in Table 1.2.2. 

The correlation function Kx(t., tmql in the example has been 
3 

calculated only for the single value of t. = 0. 
J 
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TABLE 1.2.1 

- 

2.7 3.5 4,7 6,2 
2.7 4.3 5.3 5,s 
2,8 3.6 3.9 4.0 
3.4 3.5 3.7 4.3 
2.3 3.2 3.6 3.8 
I,9 2.1 2,1 2,0 

6,5 7.0 7.4 7.5 
448 4.6 4.9 5.8 
3,9 4.0 3,6 3.3 
2.3 I.2 0.9 I.1 
6,G 6,4 6.2 5,a 
3.3 3.1 a.9 2.5 

TABLE 1.2.2 

7.9 8,) 
t,; $09 

“3:; ;:t 

$0 4:o 
7,s 7.5 
7,2 7.1 
3,2 3.7 
2,s 3.5 
5.3 6,3 
2,3 3.5 

7.1 6.5 
6,7 6.7 
5,8 5.7 
6.2 6,7 
4.2 5,l 
4.1 3,7 
?,O 6.9 

it E 
S:O, 5:2 

52 # 2 , 

2.5 3,0 3.5 4.0 4.5 5.0 
------ 

4,G 4.3 5d3 5,s 5,7 s,a 
----II- 

4.4 4.2 2.0 1.7 0.8 0.9 
------ 
2.5 3.0 305 4,O 4.5 5.0 
--w-e-- 
0.8 I,1 0.8 0.6 0.6 0.2 

I 

The rando? functions are processed analogously as well with 
respect to thelsecond coordinate y(t) for the same fixed values 
of t.. 

3 

The correlation instant Kzy(tj) is calculated in acdordance 

with Eq. (5) fcbr each fixed value of t.. 
3 

sults 
At times :t Is convenient to present the.calculational re- 

In the form of graphs as functions of time, with Kx given 
in the form of ian analytical function. 

Random functions are sometimes conveniently presented in 
the form of a canonical or spectral expansion. The methods for 
obtaining such;expansions are described in $2.2. 

The error,values obtained at the output of the instrumenta- 
tion system (mJ?, my*, D;, D;, K; , K; and Kzy) are used in cal- 
culating the f&in@: efficiency of an antiaircraft system. The 
results obtained in this case from the calculation of efficiency 
will correspond to those conditions of the combat utilization of 
the system at dhich the experimental values for the errors were 
obtained at the output of the AAFCI [antiaircraft fire-control 
instrumentation] (target velocity, target altitude, heading para- 
meter and ran& to target). 
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$1.3. FUri-DAMENTAL CONCEPTS AND CHARACTERISTICS OF DAMAGE PROBA- 
BILITY 

The basic function of each shot is to damage a target. This 
can be achieved either by striking the target (for certain types 
of missiles) or by the detonation of the missile at a certain 
distance from the target. This distance should be no larger than 
that established for the given missile and target. Detonation of 
the missile may be accomplished either by a contact (impact) fuze 
actuated on impact against an obstacle or by means of a noncontact 
fuze which provides for detonation on the basis of a given indi- 
cator (reflection of a signal from the target, on the basis of 
flight time, etc.). 

Target damage probabiZity is understood to refer to the con- 
ditional probability of target damage under the condition of a 
specified number m of missiles striking the target (in the case 
of missiles with contact fuzes) or under the condition that the 
detonation of the missile takes'place at a point having the co- 
ordinates (z, y, E) (the coordinate damage probability for a mis- 
dile for a noncontact fuze). 

Damage probability is determined by target vulnerability and 
missile warhead strength (the destructive factors). 

Let us examine in greater detail the coordinate damage proba- 
bility and the destructive factors of various types of ammunition 
[warheads]. In the general case, the probability of damage is a 
complex function which depends both on the coordinates of the 
point of impact and on the characteristics of fuze actuation. 
Thus, for example, in the case of antiaircraft fire a necessary 
condition for the damaging of the aerial target by means of a 
high-explosive fragmentation warhead is the fact that the vuiner- 
able elements of these targets must be covered by the region of 
explosive-charge inflicted damage [49]. The instant of detonation 
in this case must be selected with consideration given to the 
velocities of target motion and the destructive elements. Wit-n 
this purpose .in mind, each warhead is fitted out with a fuze. 

The fuze must thus ensure the properly timed detonation of 
the warhead intended to achieve the greatest possible target dam- 
age. 

A. Coordinate Damage Probability a 

The probability of target damage as a function of the coordi- 
nates of the points of impact (detonation) of missiles is :-eferred 
to as the "coordinate damage probability." The coordinate damag? 
probability characterizes the fully determined combination of 
missile and target and may be treated both in a plane and in 
space. As an example characterizing the coordinate damage proba- 
bility in a plane we can consider the damage probability for 
ground targets(tanks, armored vehicles, dugouts, etc.) when at- 
tacked with several high-explosive or high-explosive fragmenta- 
tion shells. Mathematically, this function is expressed as an 
equation of the following form: 
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i := l-11 --G, (X,rY,)1[1 -q-q* YJ'*'[l--G, (X,, Yn)] (1) 

with the condition that all of the explosions having the coordi- 
nates (~~,~<&are independent from the standpoint of damage, i.e., 
in the "absence of accumulated damage" 11301. 

Here G~(?~,YI; ~2, YZ; . . ..x.,t/,) is the coordinate damage probability 
for the target attacked with n shells [missiles] and Gl(riJgi) is 
the coordinate damage probability for a firing attack involving a 
single &th shell [missile]. The coordinate damage probability of ' 
the target attacked with n missiles represents the conditional 
probability of target damage on condition that the missiles [shells] 
explode at points (~1~~1)~ (scP,~~), etc., to (z~.Y,). I 

In the c&e of firing operations against aerial targets the 
coordinate damage probability In analogous fashion may be written 
in the followihg manner G,,(xI. ye, 21: x2, ~2, 4; . . . . Xn, Ynr zn), 
absence of accumulated damage, which, in the 

ai> 
is expressed in terms of Cl(~i, yi, 

. Gn (x,, Y,. 2,: x2, Ya, 2,; * * : x?l* Ynv zn) = 
= 1 -[I --G, (xi, ~1. ~,I11 -00, (x,, ynr ~a>] :. . 

. . .I1 - G, Ix,, y,, ~,,)]a (2) 

Let us assume that all n shells exploded at the same point (3, y, 
2). In this case, Gl(rcl, yl, 21) = GI(z:P, ~2, SZ) = GI (cn, 
an> and from Formula (2) we will obtain 

y n’ 

Gta k Y, 4 = 1 -[l-G, (x, y, ~1))” ~1 -e-“““’ u- ‘1, (3) 

where G~(x, ~,la> is the conditional probability of target dam- 
age on condition of missile [shell] explosion at the point (x, Y, 
a). 

Equation 43) is also used to calculate the coordinate damage 
probability of Ia target attacked with fragmentation shells, where 
the number of fragments striking the target on detonatlon of the 
shell is taken (as the value of n, and where G~(z:, y, a) is taken 
as the conditional probabillty.of target damage by a single frag- 
ment of a given weight category on condition of shell explosion 
at the point (7, y, a). 

B, Destructive IFactors of Various Types of Ammunition 

a) Destructive (factors of a nuclear explosfon 

Explosive iatomic devices are based on the utilization of the 
atomic energy l+berated virtually instantaneously with an explo- 
sive reaction [;127]. Explosive atomic weapons may presently be 
used in the form of atomic or hydrogen aerial bombs, missiles 
and rockets. Thkse weapons are intended for the destruction of 
various objects1 [sites], the destruction of combat materiel and 
weapons and to Fnf'rict injur,ies on personnel. 
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ner: 
A nuclear explosion may inflict damage fn the following man- 

light radiation; 

shock wave; 

penetrating 

radioactive 

radiation; 

contamination of terrain. 

The nature and degree of damage inflicted by all of these 
factors vary and are functions of target vulnerability. 

Target vulnerablllty. Injuries inflicted on people exposed. 
directly to the shock wave are classified as light, medium, 
ious and critical [95] (Fig. 1.3.1). 

ser- 

At the front of the air shock wave it may be assumed that 
to destroy conventional urban structures the excess pressure must 
te Apf = 0.5 kg/cm? [128l. 

Light radiation causes the combustion and charring of var- 
ious combustible materials. On the battlefield, light irradiation 
of combat personnel may produce skin burns, wooden structural 
and material parts may burn or char, as may the paint on aircraft, 
tanks and similar armament items‘; covers and the rubber rollers 
of tanks and motor vehicles may burn. 
lubricants, 

Storage areas for fuel and 

particularly 
ammunition dumps and other warehousing facilities are 

subject to this danger c128l. 

The degree of damage inflicted by the shock wave and light 
irradiationdepends on the distance from ground zero and on 
the TNT equivalent of the nuclear weapons. 

The degree of damage exhibited by varfous factors of nuclear 
explosion as a function of the radius and of the TNT equivalent 
Is shown quantitatively in Fig. 1.3.1 [951. 

We can see from Fig. 1.3.1 that on a clear day the greatest 
radius of damage will be achieved by light irradiation, whereas 
the shock wave will produce the greatest damage in the case of 
poor atmospheric transparency which may reduce the radius of dam- 
age from light irradiation by a factor of two and more, depending 
on the transparency factor. 

The damage radius in the case of penetrating radiation is a 
weak function of the magnitude of the TNT equivalent of the nu- 
clear weapons, and in terms of magnitude it is smaller than the 
radius of shock-wave damage. 

Radioactive contamination of the terrain may also inflict 
Injuries on human beings, 
tive equipment. 

if these are not provided with protec- 
The dimensions of the territory contaminated by 

radioactive fallout depend on the TNT eq*uivalent of the nuclear 
explosion. The degree of radioactive contamination is also a 
strong function of weather conditions. In rain, snow and fog COL- 
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The curves for light and meditip 
dewees of damage due to the’ 
shock wave effect; the curve for 
primaty alpha, beta and #urnma 
radiation (a 400 r dose)‘and the 
curves for light and neutron ir- 
radiation. 

2 
gra e 

u t 

q0 = 20 thousand tonm of TNT *- .- 

Fig. 1.3.l. 

tamination will! be stronger. The greater the speed of the wind, 
the smaller thd dimensions of the terrain exhitlng a high level 
of radiation. 

b) The destrucjive factors of chemical weapons 

Poisonous (substances PS COB] and the means by which they are 
employed on the battlefield make up the concept of chemical wea- 
pons [129]. Thd basis of the destructive effect of a chemical 
weapon is repreisented by the poisonous substances which, in for- 
elgn armies, 
substances. 

aqe .conditionally divided into 'stable and unstable 

The stablei PS include those which retain their destructive 
effect from several hours to several days., 

The unstable PS include those substances which retain their 
destructive effect for several minutes, and sometimes for several 
hours. I 

Both the stable and,the unstable PS inflict injuries on un- 
protected personnel. 
not protected akainst 

These substances easily penetrate structures 

combat equipment, 
chemical warfare, as well as tanks and other 

infllctlng injuries on the personnel within such ' 
'vehicles. 

cl Destructive iactors of ammunition with conventional explosive 
substances 

1 

The nature~of the effect produced by 'ammunition of this type 
depends on the caliber of the ammunition and its classification 
(high-ekploslvel fragmehtation and fragmentation-high explosive). 

The basic qestructlve factor of high-explosive ammunition 
is the shock wave which inflicts injury on personnel and damage 
on materiel and~weapons. 



The explosive force depends on the weight of the explosive 
substance and on the rate of detonation , quantitatively expressed 
in terms of the pressure of the exploding gases at the instant of 
their formation, by means of the following formula Cl271 

(4) 

where p is the pressure in kg/m2 at the surface of the cherge. 
y is the bulk weight of the explosive substance in kg/m'; 
D is the rate of detonation propagation, in m/set. 

For TNT, according to Formula (4), we obtain 

1 600.7 200* 
P= 40, w 200 000 am. 

As a result of this pressure, the explosion exhaust gases 
begin t-o expand in all directions at a,speed close to that of the 
detonation. The ambient air also begins to move at the same 
speed, forming an area of strong compression or an area of an 
aAr shock wave propagating in all directions from the center of 
the explosion at supersonic speed. The pressure at the front of 
the shock wave subsequently approaches the pressure of the unper- 
turbed air and the speed of the front begins to approximate the 
speed of sound. The shock wave degenerates into an ordinary sonic 
wave. 

In firing operations against aerial targets, as a result of 
the shock-wave effect, the structural elements of the target are 
compressed and other effects are produced, causing the target to 
loose aerodynamic stability, On the detonation of a high-explo- 
sive charge which has penetrated the target we find that the 
structure of the target explodes outward. For missiles [shells] 
of small caliber, used in firing operations against aerial tar- 
gets, fitted out with contact fuzes, the basic destructive factor 
is the shock wave which destroys the structure, disrupts control 
and causes the ignition of the fuel. 

An explosive shell intended to produce the largest number 
of fragments is referred to as a fragmentation or fragmentation- 
high explosive shell. The formation of fragments in this case is 
accompanied by a high-explosive effect which should not be over- 
looked in the case of explosions at short distances from the tar- 
get. 

However, the basic destructive effect for shells [missiles] 
and warheads of this type Is represented by the fragments. 

The fragments of artillery shells are distinguished as to 
shape and weight, while the fragments of antiaircraft guided mis- 
sile AGM CBYP] warheads are approximately identical in shape and 
dimension (in weight) [49]. The production of such fragments is 
achieved by the implementation of a variety of structural [design] 
measures. 

The characteristics of warheads (shells) achieved through 
the detonation of flxed warheads (missiles) on the ground bder 



stat-ic conditions) and governing the effectiveness of the fragmen- 
tat%on erfect against a target include the following: the total , 
number of fragments and the parameters of their distribution with 
respect to the s,cattering angle withinlimfts of A9st (Fig. 1.3.31, 
the weight and f:light velocity of the fragments, their ballistic 
coefficient, etc:. Distribution with respect to angle of fragment 
scattering under static conditions is uniform in the plane per- 
pendicular to the axis of the warhead and nonuniform in'the plane 
passing through ~this axis. 

On the basins of the fragmentation characteristics derived 
In the detonation of warheads (shells) under static conditions 
and based on then conditions of encounter, we calculate the para- 
meters of fragment distribution in motion relative to a target. 
The latter chara~ctetiistics are used to determine the flow density 
and the energy pprameters of the fragments which impact on the 
target. ~ 

The fragmenbation effect against an aerial target is achieved 
in t?e form of the mechanical, incendiary and initiating effect 
Of indiv:',dual fragments or groups of fragments against the vulner- 
able elements ofI the target. Tn f=c I/.. 

a 

Projectile above targe 

Projectile beneath tar 

P *o c_ 

Fig. 1.312 

The effectiveness of the fragmentation action will obviously 
depend on the number of framcnts striking the vulnerable elements, 
as well as on the weight and speed of impact of these fragments 
relative to the target [130]. 

With the area of the vulnerable element determined, the num- 
ber of fragments~striking that area is determined by the density 
-Of the fragmentation field covering that element. Thus the effi- 
I" ? e i: c v b is :' the fr&entation effect decends on the structure of 
t !.,e :‘~~.~::::en:etIo,lh Ti?lZ mzving 2'; a certain. speed relative to the 
-  ,. .* “A r  
h .I A ,L ,, L  . 

- -  l , 
._ L L t ilril ,~ t:?e strul3ture and energy characteristics of the 

fielii al=d Its orientation relative to the axis of the mo'ving tar- 
get dete1TiI:w ttic characteristics of th 

f 
conditions of missile- 

t: srpr‘t ~:li" cLnt err and namely, velocity ( ts) and the target heading 



angle (a), the velocity of the missile (Tr > and the angle of 
encounter wllth the target (0). 

its 

As an Illustration- of the foregoing, in an example let us 
examine the manner in which the parameters of motion for a single 
fragment vary, i.e., let us examine the elements of the field in 
the case of a variation only in the angle of encounter for fixed 
values of all remaining characteristfcs. Figure 1.3.2 shows how 
the magnitude of B and the direction (given by the angle VP> rela- 
tive to the velocity of the fragment vary as a function of the 

change in the angle of encounter within 
limits of 0 -C 0 < IT. On detonatlon of 
the warhead under static conditions this 
fragment exhibited a certain velocity 
value'- Vd - and a certain escape angle 

v St' The changes in direction and magni- 
tude of fragment-target impact velocity 
shown in the drawing, in addition to the 
change in the structure of the field, 
govern the various values of energy and 
momentum transferred to the target by 
the fragments. As another example, Fig. 
1.3.3 shows how the structure of the 
field of fragments moving relative to a 
target varies as a function of the rela- I- -. 

*o +clI ,tive velocity vector (the cases Vr and 
Fig. 1.3.3 $(a 

r ) , with the fragments under static 
conditions exhibiting identical veloc- 
ities Vd in the scattering sector with 
an apex angle Alpst. For these two char- 

acteristics of missile-target approach we have derived the follow- 
lng various field directions (cpl, cpz), the magnftudes for the frag- 
ment-target impact velocities $f),v;2)) and the scattering sector 
angles (01, An), determining the density of the fragment stream. 

The field formed by the fragments capable of inflicting dam- 
age on a target is referred to as the region of target damage by 
the fragmentation effect. This region represents a hollow cone of 
finite dimensions filled with the trajectories of the relative 
fragment motion (Oosk in Fig. 1.3.4). Figure 1.3.4 shows, as well, 
the region of the pure high-explosive effect Of and the region of 
target damage resulting from the combined fragmentation-high ex- 
plosive effect. This latter region is denoted Of llOosk. 

The entire region Ots of target damage by a fragmentation- 
high explosive warhead is achieved as a result of a consolidation 
of the regions Of and Oosk. 

Since we have already examined the characteristics of war- 
head effect, let us now turn to the problem of target vulnerabil- 
ity which is characterized by the vulnerability of its individual 
elements or "microtargets." 
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Accordingto the data in [29, 491, these basic elements of 

b) 

Fig. 1.3.4 

Fig. 1.3.5 

piloted aerial~targeta (Fig. 1.3.5) include: the flight deck Jl; 
the engine 14; the fuel system T; the target airframe tC, the con- 
trol system an@ the bomb load 6. On occasion, it is only the war- 
head which is the vulnerable element of military ballistic rockets, 
as is the case~with the "Pershing" missile, and occasionally the 
vulnerable elements include the warhead, the frame and the control 
system ("Corporal," "Sergeant") etc. To determine the probability 
of damage with~respect to target elements it is necessary to know 
their vulnerability characteristics, These include, for example, 
in the case of~the fuel system: the vulnerable area of the system, 
the type and quantity of fuel in the tanks, the distribution of 
the tanks and fuel-feed systems to the engines within the target, 
the strength cbaracterlstics of the tanks and of the structural 
elements of the target protecting the tanks. Moreover, we require 
data as to the imeans of fuel-system protection against the lncend- 
diary effect 07 fragments. These include: protection of gasoline ' 
tanks with plastics which are self-sealing when penetrated by 
fragments, the ~fllllng of the free space in the tanks with an 
inert gas, speqial screening of the tanks, automatic fire-extin-, I 
guishing equipment, etc. [29]. 

In the ca$e of damage resulting from mechanical effects '\Ie 
must know the dimensions of the vulnerable element, 
characteristlcd, etc. 

its strength 

Other targets are examined in analogous fashion. 
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$1.4. DAMAGE PROBABILITY FOR NUCLEAR'WEAPONS 

The damage probab 
refer to the probabili 
dictsnce between the t 

ility for nuclear weapons is understood to 
ty of target damage as a function of the 
arget and the epicenter of the explosion. 

Let us examine the damage probability 
for an atom bomb with a.TNT equivalent 
of 20 thousand tons (the so-called 
nominal bomb). For this bomb in Refer- 
ence [95] we find the probability of 
injury inflicted on personnel situated 
within cities as a function of the 
distance to the epicenter of the ex- 
plosion, 

Figure 1.4.1 shows the change in 
the percentage of extreme injury cases 
(fatalities) as a function of the dis- 
tance from the epicenter in the case 
of an aerial explosion. The curve is 
derived for atomic bombs dropped over 
Japan, with a TNT equivalent of 20 
thousand tons 1951. 

Fig. 1.4.1 

The given coordinate damage pro- 
bability GCro) will be valid for operations against protected 
personnel, since it is plotted on the basis of results from the 
effect of atomic bombs on cities. It is clear that we can thus 
explain why in Fig. 1.4.1 G(ro) f 100% when ~0 = 0. We can see 
from Fig. 1.4.1 that at a range of up to 900 m from the epicenter 
there exists a high degree of injury, whereas with a range Z-O 
greater than 900 m the degree of injury begins rapidly to drop. 

Utilizing the coordinate damage probability G(r01, we can 
calculate the effectiveness of bombing operations with atomic 
[nuclear] weapons. 

For nuclear weapons different from the nominal bomb, we can 
calculate G(r) by using the curves shown in Fig. 1.3.1, assuming 
that,the identical damage [injury] effectiveness can be achieved 
at various distances from the epicenter, but with the identical 
effect of the shock wave or with the same energy of light irradia- 
tion. 

This assumption is valid, since for nuclear weapons the law 
of similarity [95] which makes it possible to determine the radius 
of damage effectiveness for a single nuclear weapon is valid, 
given that this law of similarity is known for another atomic 
[nuclear] weapon. 

For two atomic bombs, the ratio of the distances from the 
epicenter of the explosion at which the identical effect on the 
target is achieved by the shock wave and the light irradiation 
is proportional to the ratio of the TNT equivalent q and qo to 
a power l/3 

r3 .-- . . . . . . . ,,- .--1. *, ...,- ..^ ,-. ., --- .- ~...!JY ._ ." , 

A-‘,- - ”  
I,. . ,,.... 1. / ,, .*: ,‘*.“--, “fir, 

LL - -  
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where qo and tie are, respectively, the TNT equivalent and the 
distance for the bomb adopted for the purposes of the comparison 
(in the given case, for the nominal atomic bomb). 

In Fig. 1.3.1, along the axis of abscissas, we have plotted 
the ratio of tihe TNT equivalents liberated on the explosion of 
the nuclear weapons ; .and along the axis of ordinates we have 
plotted the ratio of the distances from the point of the bomb 
explosion (the distances from the epicenter will be corresponding- 
ly srtialler as :a function of explosion altitude). In this case, 
for the comparison unit we have taken the TNT equivalent and the 
distance corre~sponding to a nominal atomic bomb. It was assumed 
that the energy required to produce moderate burns on the skin 
and incendiary~ effects is, respectively, equal to 3 and 10 cal/ 
/cm2. The curves in Fig. 1.3.1.have been taken from Reference 
c951. I 

The injuries inflicted on people by the shock wave directly, 
as indicated e!arlier, are divided into light, medium, serious and 
critical. 

Figure 1.~3.1 shows curves for several of these cases which 
are in good agreement with Formula (1) and the curves character- 
izing injuries~'resulting from neutron radiation, and these are 
not in agreemeint with the formula. 

With the icurves in Figs. 1.4.1 and 1.3.1 we can plot the 
coordinate damage probability G(r) for various degrees of damage 
[injury]. i 

Let us demonstrate this by means of an example: 

EXAMPLE 1~. Construct the coordinate damage probabi I ity for 
the nuclear warhead of a rocket with a TNT equivalent of 60 thou- 
sand tons with, the shock wave acting on protected personnel in 
the case of a ;medium degree of InJury. 

Solution:: the ratio (g/q01 = (60/20) = 3. From Fig. 1.3-l 
we find that q/r0 = 1.42 or r = 1.42~0. Then, from TPO in Fig. 
1.4-l we find G(rol. 
to the formula’ r = 

Let us calculate the value of r (according 
1.42~0) and let us prepare a table for the 

coordinate damage probabi I lty G(r). 

The resullts of the calculatfon are presented in Table 1.4.1. 
I 

TABLE I ,4. I 

k. km- 0,43 0.85 I',28 1,7 3.0 2,56! 

G (r) 0.04 0.89 0.79 0.55 0,14 0.04 
-1-- 
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In operations against unprotected personnel, G(O) = 1.0. 

$1.5. DAMAGE PROBABILITIES FOR SHELLS [MISSrLES] WITH CONVEN- 
TIONAL CHARGES 

Artillery shells and rocket warheads with conventional 
charges are used for operations both against ground and aerial 
targets. 
-fuze, 

Depending on the design of the shell and the typE of 
we use high-explosive, 

explosive shells. 
fragmentation or fragmentation-hi&L 

High-explosive rocket warheads are considerably less power- 
ful than atomic warheads [131]. The radius of the damage zone 
for these warheads is also determined by means of Formula (1.4.1). 
Consequently, for these warheads we can use the same method of 
determining the damage probability as in the case of nuclear 
weapons. 

In this section we will examine the determination of the 
damage probability for shells with a contact fuze which inflict 
damage only with a direct hit on the target, for fragmentation 
(fragmentation-high 'explosive) shells used against ground tar- 
gets and for fragmentation warheads used in AGM [antiaircraft 
guided missiles]. 

A. Damage Probability for Shells Which Inflict Damage Only in 
the Case of a Direct Hit on the Target 

The probability of target damage from a single hit in this 
case may be calculated in accordance with the following formula 
Cl01 

(1) 

where S is the area of the projection of the target onto a plane 
perpendicular to the relative trajectory; 

Si is the area of the projection of the vulnerable part of 
the target onto that same plane. 

Equation (1) is valid under the condition that the scatter- 
ing exceeds the dimensions of the target and the points of impact 
are uniformly distributed over the area S. With this condition the 
frequency of striking area Si will be Si/S. 

The probability of target damage with m hits and in the ab- 
sence of damage accumulation is determined from the equation 

G,,, = 1 - [ 1 - g (Sj)]” == I - Gm, 

where 

(2) 

The mathematical expectation of the number of hits (w) re- 
quired for target damage is determined from the following formula 
(DOI, page 82) 
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c-43 
Then 

If we take into consideration that (1 - (l/~))~ z e -1, we 
find 

m - 
&w.l-e*; (5) 

We can see from Eq. (5) that the damage probability can be 
calculated by:means of an exponential function. This damage pro- 
bability Is referred to as the sxponentia2 damage probability in 
the literature. 

The form of the function Gm id shown in Fig. 1.5.1. We can 
see from Fig .~ 1.5.1 that theoretically G, represents a monotonic- 
ally increasing function (1). However, since m increases discrete- 
ly, Curve (2)~will be practically stepped. 

,, 
Fig. 1.5.1 

The damage probability is found by an experimental-theoret- 
ical method. The experimental method is used to determine the 
damage vulnerability of individual parts of the target, while Gm 
or w are calculated theoretically. 

Let us examine the determination of w by experimentation, 
following then method shown in [130]. To damage an aircraft it is 
necessary to penetrate the skin and to destroy or to damage the 
vulnerable compartments of the target. The degree of damage will 
vary as a funptlon of the strength of the weapons for a given 
type of target. For a given type of shell, aircraft damage will 
occur with a single hit, whereas for another type of shell sev- 
eral hits will1 be required. This is explained by the fact that 
for the less bowerful shells there is accumulation of damage 
which must be' taken into consideration. For example, the first 
shell may penbtrate the skin and the second shell, having passed 
through this ,opening, will cause the breakdown of the vulnerable 
compartment (icontrol system, etc.). 

For experimental determination of w the target is condl- 
tionally divi~ded into a number of equally vulnerable parts <Corn- 
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; c',rr.55t s ). In the event that such division is possible, some 
::z?;rtments of lower vulnerability are left. 

As an examph kt us examine the Calculation Of w for a 
hypothetical two-engine aircraft. We will assume the relative 
areas and damage probabilities for the indiv2dual compartments 
of the two-engine aircraft (with a single solid hit of a small- 
caliber antiaircraft shell and a certain position of the aircraft 
relative to the trajectory) to be the following: 

TABLE 1.5-l 

i Aircraft or compartment parts Relative corn- Probability of corn- 

Right engine 
Left engine m . . 

. m . 
Elevator . . . 
Right wing . . 
Left wing .  .  l 

Fuselage . 
Compartments damaged *w&h-a 

single hit (flight deck, elec- 
trical wiring, control rods, 
etc.) 

Undamaged compartments 

Es6 
0:03 0.07 
0.07 
0.12 

0.46 
0.13 

: 
1 

0,5 
0.6 
0,5 

:, 

We can see from Table 1.5.1 that although the engine is dam- 
aged by a single hit, the probability of achieving that hit is 
very low (0.06); if we count on the damage of the target only 
with hits on the fuselage, this will require no less than four 
hits, since 

G,= I-( I-0,5)'=0,98. (6) 

This is high damage probability, although the area of the compart- 
ment makes up drily 12% of the area of the aircraft, while the 
probability of four independent shots hitting this compartment 
is equal to 2~10~~. On the whole, the probability of damaging 
this compartment will be very small (2*10g4). Therefore we can 
neglect the accumulation of damage for the fuselage and the wing 
center section, with the average number of hits calculated for 
each compartment in accordance with Formula (7), giving considzr- 
ation to the probability of hitting the ith compartment - 

(7) 

where pi = Si/S is the probability of hitting the ia compartment; 
gllSil is,the probability of damaging the ith compart- 

ment with a single hit. 
Formula (7) is valid for the condition that the damage of a. given 
part or compartment of the aircraft will cause the destruction 
[damage] of the enti-re target. 

By means of (7) according to the data of Table 1.5.1 we find 
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w=+=l,4. 
I 

An analogous calculation of w is accomplished for several 
positions of the target with respect to a relative trajectory, 
and these are then averaged. The resulting value of w for each 
type of aircraft will be a function of the weight of the explo- 
sive charge EC; [BB] (qBB) for fragmentation-high explosive shells 
and a functions of shell weight for fragmentation shells. 

Contemporpry antiaircraft shells exhibit the following se- 
quence of shell- and.EC-weight magnitudes [115]: 

TkBLE 1.5.2 
1 1 

&jectile type and caliber (mm) 
PrOlectile weight Explosive charge 

kp: , weight, kg 
.- 

20 (mamlarmorplarcln~) 0.138 0,005 
20 (fregmestutlon) 0.120 0.015 
30 . 0,420 0.000 
JO . 0.960 from0,115 to 0.140 
57 I 0.400 
75 

E 
0.600 . 

:t : 1E 0.900 

120 l 22:o 

If we calculate the average number of hits required for each 
shell caliber; we can construct the relationship 

I 1 o=f &I* 

The typical form of this function for an aerial target is 
given in Fig. 11.5.2. Calculations showthat having established the 
function for ti given type of target it is possible to determine a 
similar 
equation 

curveifor another type of target in accordance with the 
I 

. 
I OF W%Eh 

where C is determined experimentally. 

Fig. 1.5.2 



The same method may be employed to determine the damage nro- 
babllfty when using impact shells against tanks, armored vehiiles 
and similar targets. 

6. Damage Probability for Fragmentation Shells Used Against 
Ground Targets 

Unlike damage probability for shells with impact fuzes for 
which the conditional probability of target damage was taken as 
the quality criterion, in the given case the quality criterion 
is assumed to be the mathematical expectation of the number of 
damaged targets resulting,from the explosion of a single shell 
(ClOl, pages 279 and 305) 

(8) 

where S is the number of targets (for example, riflemen in a 
group > ; 

n is the fragment density in the target (the number of 
fragments per square meter of area on a,spherical sur- 
face of given radius with the center at the point of 
explosion); 

C is the coefficient by means of which we take into con- 
sideration the percentage of penetratfng fragments. 

T 'ABLE 1.5.3 
I 

Percentage of percentrap of 
4. rregment L or Ira msntR Of 

pL..centH~e of 

w weIEht q end WC ght LI end f ’ I 
4. fregments Of 
_ wrkht rl and 

I I 100.0 
3 ;;:I 
4 53:5 
: 42.0 47.0 

7 3R.0 

ii 34.5 31.5 

!Y 29.0 27.0 I :i 16.0 
15.0 

12 25.5 30 11.5 
Ii 23.0 

22,0 
ix 10.0 

8.5 
15 20.5 75 6,5 
;: 19.0 18.0 100 125 f,; 
18 17.0 150 (5 

For the determination of C in accordance with Table 1.5.3 
the minimum weight q of the fragments which will penetrate must 
be determined experimentally and the percentage of fragments of 
a given weight and higher must be taken as C. 

Equation (8) is applicable for an evaluation of the mathe- 
matical expectation of the number of damaged targets both when 
firing rockets with a built-in warhead and when firing artillery 
shells so that they will ricochet, or when firing delayed-action 
high-explosive shells. For each of the enumerated types of shells 
the density of penetrating fragments and their percentage of the 
total number of fragments are determined experimentally. 

Using the delayed-action shell as an example, let us demon- 
strate the calculation of the required characteristics. 

The number of fragments and their weight depend on the cali- 
ber of the shell, the quality of the metal, the weight and grade 
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of the explosive charge. The weight distribution of the fragments 
is determined experimentally ([lo], page 293). 

Table 1.5.3 shows the distribution of the fragments by weight 
on the explosi~on of a steel delayed-action high-explosive shell 
as a percentage of the total fragment weight. 

The flight velocities for the fragments vary greatly. 

The initi!al velocity of the fragment may be calculated from 
the formula ! 

CJ = r/u; + uz + cJ,uc cos p’, (9); 

where vz is thle velocity imparted'to a fragment by the explosive 
charg'e; 

vs is the velocity of the shell at the instant of the ex- 
plosi~on; 

B1 is th;e angle between the directions of the velocities 
% an,d vs. 

The great: variety of fragment shapes leads to various losses 
in fragment flight velocity. This circumstance makes it impossible 
to‘establish al constant magnitude of the penetration interval for 
all* fragments.~ 

TABLE 1.5.4 

T 
Impact Interval in Meters 

I v. m/msc 

400 800 ( I!200 / IICKI 

1 I I 
. 

2.3 8.2 1% 
13.0 16:8 

1% 
19'6 

1x 
20:8 

‘18.0 22.8 26:2 27.8 
29,3 35,9 40.6 42,8 
41.1 40.3. ,e5,2 58,l 
57.1 G7.5 75,1 78.6 

Ths penet~ration interval! is generally regarded as the dis- 
tance of the e~xplosion from the target at which half of all frag- 
ments exhibit Ia kinetic energy adequate to damage the target. The 
penetration interval is determined experimentally. Table 1.5.4 
gives the numerical values of the penetration intervals for var- 
ious initial velocities and for various weights q of the frag- 
ments. In thisj case the energy needed, to damage the target (to 
injure personnel) is assumed to be equal to 10 kg-m. 

To determine the nature of fragment dispersal we examine the 
surface of a s~phere with its center at the point of shell explo- 
sion. The surflace of the sphere may be conditionally divided Snt? 
19 belts of lO,O each (Fig. 1.5.3). 

ExperimeAtal data [lOI show that the relative number of 
fragments incident on each spherical belt will be 'as shown in 
Table 1.5.5. Here, however, we find the density of impact f0r.n' 
fragments in the spherical belts on the explosion of a steel I 
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shell (R = ,3 m, 1 = lOO.O>.. 

Fig, 1.5.3 

Since the area of the sphere surface varies in proportion 
to the square of the radius, the fragment density from Table 
1.5.5 must be multiplied by the ratio of the squares of the ra- 
dii R and r, where R = 3 m (for which Table 1.5.5 has been com- 
piled) and r is the distance of the target from the point of ex- 
plosion. 

For example, the fragment density ‘of, the 5th belt at a point 
removed by 10-m from the point of explosion willbe equal to 

n’,=2,+=0,25. 

The fragment density for another number of fragments (pro- 
'portional to the change in the number of fragments) varies anal- 
ogously. 

With explosion of the shell on the trajectory the fragment 
distribution over the spherical belts will vary as a result of 
a translational velocity. The fragment density in this case may 
be calculated in accordance with the following formula. ([lo], 
page 305) 

where 

Tt=d v ("'p + fJE + 2vpv, CO8 B')' 
u; (VP + va co9 B') 

, (10) ' . 

~=P+afcsin (%sinB); (11) 

13' is the angle between the directions of the velocities t, and D r 

These characteristics are used $or the calculation of aS. 

Let us demonstrate the method for the calculation of a bY 
means of an example. s 
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TABLE 1.5.5 ' 

EXAMPLE 

0 
10 

3x 

5400 
60 
70 
80 

1: 
110 
120 
130 
140 
150 
160 
170 
180 I - 

0.21 
I,71 
3,37 
4.92 

7'2 
8:54 
9,26 
9,70 + 

2% 
9;26 
8,54 
7.56 
6,34 
4,92 
3,37 
1,71 
0,21 

I ~. Determlne the mathemattcal expectation of the 
number of inju'red targets (individual 
surface of 0.5! m2), 

rlflemen with a vulnerable 
if the direction to the target forms an angle 

of f3 = 60° wit:h the dlrection of shell traJectory 'to the point of 
explosion and ~if the distance to the target from the polnt of the 
explosion is e!qual to 20 m. The number of fragments weighing IO g 
and more is 10100, vr = 1000 m/set and us = 500 m/set. 

Relstivr 
number of 
fragmenta 

Fttlyment 
dcnslty’ It’ 

9,6 
I.8 

Solution /I. Let us determtne the density of fragments n'cor- 
responding to ~a spherical surface R = 3 m. From Formula (II) let 
us determine t~he angle 

From Table l.5~.5 we find that n' =‘l9.8, 

2. From Formula (I01 let us determine n 

3. From Tbble 1.5.4, given v = 1000 (l.291V2 = 1135 m/set 
and given the magnitude of the penetration interval (r = 20 m) 
equal to the dlistance of the target from the point of explosion, 
I,et us find the required fragment weight: 

qet 10 g end more. 

The p,er cent off fragments wejghing IO g and more Is found from 
Table 1.5.3 (2~9%). 

4. The de~nsity of fragments at a distance of 20 m from the 
point of explo~sion will be equal to 
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3' 
n-26,3 gji-Q,59. 

5. The number of penetratf!g frpgments Incident on the area 
of the target Is equal to 

6. The mathematical expectatton of the number of ilnjureinC 
[damaged] targets is determined from Formula (8): aS = I - e = 
= 0.086. 

C. Damage Probabillty for AGM [antiaircraft guided missile] Frag- 
mentation Warheads 

Calculation of the damage probability for a fragmentation 
warhead is carried out for specific points in a region of danger- 
ous explosions for established conditions of encounter between an 
antiaircraft guided missile and a target, approximately in accord- 
ance with the following scheme. Initially the parameters of the 
damage region (the fragmentation field) are determined. On the 
basis of these parameters, for each weight group (k) of fragments, 
we calculate the density of the fragment stream (A,) and the en- 
ergy characteristics (Ek): the energy, momentum, etc. 

Then we determine ,the area (Sj) of the projection onto a 
surface perpendicular to the direction of the fragment stream Of 
that portion (wj) of the volume (U) of the.jx vulnerable ele- 
ment which is covered by the fragment field 

The mathematical expectation of the number of fragments of the 
kth group striking the jth element is equal to the product X,Sj. - - 
In this case the coordinate probability for the jth element can 
be calculated from Formula (1.3.3) 

Gj(X, fi, 
--'"j 

z)=l--e 
(x. LI. 2) 

,  (12) 

where mjlx, y, z) is the mathematical expectation of the frag- 
ments damaging the target element. It is equal to 

(13) 

where Pi(ER) is the probability of element damage by a single 
fragment, determined on the basis of the value of the energy para- 
meter Ek for a specific form of fragment damage effect. 

EXAMPLE 2. Let there be given a vulnerable target elemen+ 
area S! = 0.2 m 2 and two groups of fragments with densities X1 = 

= 2 oskJ/m2 and hi = 4°sk/m*, respectivel-y, and fragment damaging- 
effect probabilities of Pj(E1) = 0.5 and Pj(E2) = 0.3. Find the 
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damage probabl(ity of the vulnerable element. 

Solution., Having utilized Formulas (12) and (131, let us 
find 

Gj (x, f/# 2) f 1 - e -0.2 WJ.S+4.W = 0 ,s. 

The probability values of Pi, as indicated earlier, are de- 
termined experimentally; the function of a random number of frag- 
ment hits on a'target Is established in the same manner, etc. 
However, 
target at 

the d;rect reproduction of the effect of fragments on a 
a specific altitude is possible only by means of spe- 4 

cial antiaircraft rocket control ARC [3PK] tests [49]. Because of- 
their high cost, the number of experiments is limited and .does 
not provide sufficient information. The parameters of the damage 
probabilities of vulnerable elementsare therefore established 
from the result,s of modeling the process of the effect of the 
damaging factors on target elements under ground conditions. 

The coordinate damage probability for an AGM target is de- 
termined on then basis of the coordinate probabilities for its 
vulnerable elements. It is given by the probability of the occur- 
rence of a specific combination of corresponding elementary events 
resulting in the damage of the vulnerable elements. Let us con- 
sider certain 'variants, introducing identical denotations for the 
vulnerable element and the event concluding in the damage of that 
element. I 

1. The tar'get has been damaged to a certain extent, I.e., 
it is changed to this condition as a result of damage inflicted 
on at least one of two elements such as, for example, Jl and JJ. 
The damaging of: the target as an event E [C] will be a combina- 
tion representing the consolidation of concurrent events Jl and 
PI. For independent elementary events we will obtain 

! P(c)=1-[[1~-p'(JI)][1--(~)]. (14) 

By induction, changing to the case of n events and introducing 
the denotationsi for the damage probability, we will obtain 

G (x, y, z) = 1 - n [l --j (A-, Y, z>l, (15) 
I 

where Gj is the!coordinate damage probability of the j% vulner- 
, 

able element. ~ 

EXAMPLE 3.1Particular values are given for the coordinate 
damage probabiljty of the flight deck: G, = 0.4; for a single 

engine G 
A 

= O.Pland for the control system G,, = 0.1 at a point 

havl ng the, coorbl nates x’, y’ and 3’. We know that the target 
will be damaged~lf only one of these of Its elements is da.maged. 
Determine C(CC’, iy’, ar’). .y.- 

Solution. tram Formula (15) we find 
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G(x’, ~.i)=1 -(I-0,4)(1 -0,1)(1-Oo,1)=s0.43. 

2. ;c:t; 2. :%:,r;:c;% consist of 2 flCgh’; &CL cd twz erlsir.2ts 2.1 
:;. *,* ‘; *’ . t-I , 5.f:‘L iC: % L';E d~~..e be achlef:ed 51; Zazzge GI’ she GYerie::Z 
n ‘Jr’ CJ~ b6t.h elements A1 and fro. Assuming that the damage of each 
element Is an independent event, we obtain an expression for the 
damage probability of the target: 

G(x, y, z) =l -(1 -G,)(l -G,,G& (16) 

Here we also assume the right-hand portion of Expression 
(16) to be a function of the coordinates which, for the sake of 
simpler notation, have been dropped. 

Assuming the conditional damage probabilities of uniform 
vulnerable elements of the jth type to be identical, - 

G,, = G,,, G,q, = G,, etc. 

b:r induction for the case of damage of at least one of several 
groups of uniformly vulnerable elements of the jth type we find 
the expression 

- 

G(x, y, z)= 1 - n(l-+,, (17) 
1 

where nj is the total number of un-iform elements of the jt& type 
which must all be damaged simultaneously.' 

EXAMPLE 4. Given that the damaging of some targets with a 
high degree of certainty is possible only In the event that both 
pilots or both Identical englnes, or the fuel compartment, or the 
structure wil 1. be damaged or injured simultaneously. The condi- 
tiona.1 element damage probabilities at the point x”, y’, 3’ are 
given: 

Gn =0,5; fflt F 0.4; G, -0,2; G, -0,3. 

Find the coordinate probability of target damage. 

Solution. Considering that nl = nd = 2 and nt = nk = 1, from 
Formula (17) we find 

G (I’. y’, 2’) = 1 - (1 -0,5~) (I -0,4q(I -0,2)(1 -00,3) =00.65. 

3. For the damage of a target to a certain extent, the 
flight deck Jl must be damaged or no less than three of the four 
engines Al, AZ, AS and AS. It Is assumed that the events leading 
to the damage of each element are Independent of each other. Let 
us compile the various possible combinations of engine damage: 
Gl = ‘A?AzGAsGA4 represents the‘damage of all four engines. 
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Xince the camblinatlon of engine-dtiage events does not occur si- 
multaneously, ,the probability of achieving the failure of no less 

6 
than three en&es is equal to 

I2 GV. We will then find 
VZl i 

Then, In blew of the independence of events Di we will have 
(in the denotations of damage probability) 

Having taken irito consideration these substitutions into Formula 
(18), after elementary transformations we derive the expression 
for the probabqlity of target damage in the form of 

, 
G(x, y, z>- i-(l-GA)[l-~Gnt- 

I=1 

- 
(19) 

EXAMPLE 5 .N In the assumption of the situation just described, 
particular values of the coordinate damage probabilitie’s are 
given for the vulnerable elements: G, = 0.5; G 

Al 
= G 

AZ 
= 0.7; 

Gns = “Lb 
= 0.5: Find. the values of the target-damage probability 

Clx’, y’, a’). ; 
, 

Solution Is obtained with Formula (19) 

; G (x’, y’. 2’) = I -(I-0.5)[1-0,7# -2(l-0,7)O.i 0.5’- 

- 2(1 - 0.5) 0,5*O,P] = 0,?4. 

Having calculated Gts, g, a) for a number of values of the 
coordinates forithe point of shell explosion, we derive the co- 
ordinate damage (probabi I fty for the target. 

81.6. RANGE OF TARGET ACQUISITION AND ITS CHARACTERISTICS 

A. The Concept d,f Acquisition 

The most Uriportant property of each form of armament which 
must be considered In any models of combat is the capability of 
that weapon [arrriament] to acquire [detect] a target and to re- 
veal itself [sic~l. Since the acquisition of the iti? target at h - 

I 
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given range is a function of many random factors, the acquisition 
range will be a random quantity for each jth facility. Thus we 
must examine the probability of detecting the ith target by means 
of the ;'a facility- 1 .,-,: , I r;'::y' - tf 

Detection may be accomplished by visual, optical, radio-en- 
gineering and sound-measuring techniques. 

In this section we will consider the probability of detect- 
ing an aerial target by means of radar and the visual detection 
of a ground target. We can consider both the typical case of the 
probability of spotting a tank or an antitank installation‘on the 
ground or the detection of ground targets from a reconnaissance 
aircraft. The latter case pertains to the theory of search with 
'which we will not deal at this time, 

' In carrying out combat operations the troops adopt all ca- 
mouflage measures in order to prevent their detection until they 
are ready to resort to arms. In that event, the instant of detec- 
tion will coincide with the instant at which fire Is opened. For 
all intents and purposes, many targets on the battlefield can be 
detected only at the instant at which they begin to perform their 
function, 

The probability of detection depends on the range and on the 
status of the facility (in operation en route, under cover, 
on the time of day and on the external conditions (weather, re- 
lief). Formulas for the calculation of detection probability must 
therefore take these conditions into consideration. 

B. Visual Detection of Targets 

The maximum range for the detection of ground targets depends 
on the relief,of the terrain. With defilade angles E 5 0 the max- 
imum range is governed by the direct visibility, whereas with de- 
filade angles E > 0 the range is governed by the distance to the 
defilade. When firing at moving targets it is therefore convenient 
to regard the detection probability P(x) as the product of the 
direct-visibility probability (II) and the detection probability 
po (xl, given the condition that the direct visibility is ensured: 

(1) 

Thgdirect-visibility probability is defined as the ratio 

where Ax v 
i 

is the visible it& segment of the target heading; 

Ax,~ is the hidden jth segment of the target heading; 
m is the number of visible segments; 
n is the number of hidden segments. 
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The probab,ility of direct visibility is calculated by means 
of a topographic map. Terrain profiles are constructed for this 
purpose within the search sector in several directions from the 
observation point and by means of Eq. (2) these profiles are 
used to calculate the probablllty of direct visibility for moving 
targets (tanks, armored vehicles, etc.). Isoprobabillty curves 
for the probability of direct visibility are then plotted within 
the sector and ~these are used to calculate the probability of 
target detectio,n with the aid of Eq. (1). 

If we consider the detection of a moving target (a tank, a 
motor vehicle) 'under the condition that direct visibility is as- 
sured (II = 1), hit turns out that this Is a random quantity which 
is a function off the observer, of the Illumination of the ter- 
rain and of then extent to which the coloration of the target has 
been adapted tom the coloration of the surrounding area. The basic 
numerical characteristics of detection range in this case include: 
the average det~ectlon range Ao, the dispersion 0: and the proba- 
bility PO(A) of target detection as a function of the range A. 
All of these ch!aracteristics are determined experimentally. 

As one of ~the possible versions, a test to determine the 
visual-detectiqn range of a tank can be carried out in the fol- 
lowing manner. The tank executes no less than ten starts in a 
given direction and at the same speed in each case. The tank is 
tracked by a re,connalssance radar station at which the range in- 
dicator is phot,ographed, including the electrical signals trans- 
mitted to the camera,from the observers. The observers are sit- 
uated within the area of the radar station. The processing of 
these observati~ons makes it possible to derive the density of 
detection-range dfstribution, the average range value and its 
dispersion, as 'well as the frequency of target detection as a 
function of range. 

EXAMPLE I .~ Hundred (100) measurements of range ICI) have been 
carried out on ~a tank by means of visual observation. The measure- 
r,ent results halve been reduced to a statistical series (Table 
1.6.1). Determine the numerical characteristics of tank detection 
range. 

TA@LE l-6.1 

Here Ai repres4nts the limfts of the range categories; 

rni is the /number of values’ referred to each itJ category; 

P: Is the icorresponding frequency, defined by the equation 

(3) 

71 is She? numbery of observations. 



The numerical characteristics of detection range can be de- 
termined approximately from the equations 

k 

(4) 

where ai is the average va I ue of, range in the Zth category; I...’ 
-: 
,., 

Pz is the frequency of the itJ category; ** ,-! . . 

k Is the number of categories. 

In our example: 

a*, = 4.51 km’, 0:” = 1.65 kmP, o*A = I,28 km. 

The sign * indicates that the characteristics are selective ra- 
tCIer than, general. 

The frequency of target detection as a function of range is 
defined by the statistical dlstributTon function Pj(A). 

It should be borne In mind that 

k 

We have 

P,, km 2 3 4 5 6 7 8 
P*, m 1.00 0.96 0,78 0.45 0023 0.04 0.01 

Hence we can see that reliable tank detection occurs at ranges 
below 3 km. With consideration of terrain relief, the probabil- 
ity of tank detection is determined from Eq. (I). 

C. Target Detection by Means of Radar 

The range of target detection by means of radar is also a 
random magnitude, since among a large number of factors on which 
it is dependent, many are random magnitudes. For example, the 
magnitude of the effective reflecting surface of the target, 
noises in the radar receiver, etc., are random magnitudes affect- 
ing detection range. Target detection range is therefore aszoci- 
ated with the probability which is a function of target height, 
type of aircraft, radar-unit characteristics, means of'target 
searches and the range to the target. Target detection probabil- 
ity at a given altitude can be determined experimentally accord-. 
ing to detection frequency. However, In order to find the rela- 
tionship between detection probability and conditions of target 
flight and the conditions of the search, a large number of ex- 
periments have to be carried out. To reduce the number of experi- 
ments and to achieve more complete search characteristics for the 
radar unit, analytical methods of calculating t‘ne probability of 
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target detection are needed. 

The maximum target detection range zmax is determined from 
the condition that the power of the reflected signal, applied to 
tt;hq i nrJ[tt nt tfle mcBt.ve??, La equal. ko t>he threshold power 
,, 1 
- 1.L. r.TI.1 .*" +,:;\1+ 7 ft :I: c',.MI;'r' Y7-x * 

The range' equation as a function of the structural parameters 
of the radar s~tation with consideration of reflection from the 
ground or from water and the absorption of radiowaves in the 
atmosphere fork target elevations E < ~0, where co = (h/4h), in 
Reference [703 has the form -1 

where P 
per 

is the power emitted by the transmitter, w; 
is 

'per 
the directivity factor of the transmitter antenna, 

S is the antknna aperture area, m** 
KiP 

is the arch utilization factor f& the antenna. 

With a parabolic reflector having diameter 41 

G nep=0,5LI;, 

S Pr is the effective area of the receiving antenna 

s ny = %I. 

For antennas w3th parabolic reflectors S 
Pr = 0.5&.. 

P pr min is the ~receiver sensitivity, w; 
h is the iworking wavelength, m; 

Se is the ieffective target reflecting surface, m2; 
6 is the (radiowave attenuation in the atmosphere, 
h is the ~antenna height, m; 

db/km; 

H is the Itarget altitude, m. 

For elevations E > EO Eq. (6) has the form 

We can use Eqs.; (6), (7) and (8) to determine tmax, if the basic 
parameters of the radar unit are known. 

The curves1 showing 6 as a function of A, given in [70], 
show that when h = 10 cm, 8 = 0. 

Radiowave bttenuation attains a maximum (A = 10 db/km) when 
h = 0.5 cm and TapIdly drops to 0 when X = 10 cm. In most case'z 
the attenuation; of the waves in the atmosphere must be taken ir,to 



conslderatlon on waves on the order of 3 cm and shorter, 

Se 1s determined experimentally. The values of Se from the 
data of [25] are the following: 

for heavy bombers Se = loo-150 m2; 

for medium bombers Se = 40-70 m2; 

for interceptors Se - 5-15 m2; 

for the nose cone (the warhead) of an intercontinental bal- 
listic rocket Se = 0.2-0.5 m2. 

The wavelength h, the transmitter power Pper, the receiver 

sensitivity Ppr mZn and the antenna height h are determined by 

the structural features of the station. 

The maximum detection range zmax would be obtalned In the 
case of the stable functioning of all station parameters and 
with constant search conditions. However, since these parameters 
are scattered with respect to time, in actual practice we note a 
scattering of the detection range.‘Conaequently, z will be a ran- 
dom quantity, and the event occurring in target detection at a 
range t will also be random. The probability of this event Is as- 
sociated with the structural features of the station and the 
search conditions. To derlve the target detection probability as 
a function of target velocity, as a function of heading parameter, 
as a function of search [scanning] speed and as a function of 
the structural parameters of the-station, 
analytical expression for the probability 

Let us examine the interval of time 
when 

let us turn to the 
of target detection. 

e from the instant * = 0, 

Let us divide this time by n Intervals A&$ In each of which the 
probability of target detection may be presented as 

where F(tiJ Is the average excess of useful slgnal over the 
mean noise level during the time A&$; 

Ki Is the proportionality factor. 

The events - the appearanae of the target at Intervals At m - 
are assumed to be Independent. In this case the total probablilty 
of target detection chrlng the time t 1s equal to 

(10) 
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passing to the ilimit with At + 0, we obtain 

P=l KF(t)dl , 1 (11) 

where KFlt) is !a function of range f(z). 

Assuming that the time t corresponds to the horizontal 
range x, and width fi = 0, x = xmaxS we obtain 

P (x) = l-exp - [ f HW]. 
Xmax 

(12) 

Having denoted ~v(x)=[ f(x)&, we obtain 
I 
I *mat 

P (X) = 1 - e-7 (x1* (13) 
From this formula, cited in [50], we can calculate the in- 

creasing probab+lity of detection as a function of horizontal 
range to the target with a heading parameter close to zero, if 
f(x:) and zmax are known. 

The values~ of xmax are calculated according to Formulas (6) 
or (8), and f(r) are determined by means of experimental data ~ with respect to,the frequency of detection for a target flying 
past with small~heading parameters. 

According to experimental data the function J@(X) Ls generally 
written in the form of the linear relationship 

f (x) = y XI 

a = XV, (1 - e-‘1, 

(14) 

(15) 
where Vts is th& target velocity; 

T is the average time of the scanning cycle; 
x Is a factor determined experimentally. 

Having substituted (14) into (12), and then into (13), we 
obtain 

P (x) E 1 - exp 
[ 

3a;a; 4’ 1. 

Calculation with Formula (16) permits derivation of detec- 
tion probability for low-flying target as function of horizontal 
range x for target heading parameter close to zero if x 
defined by Eqs. l(6) and (8) and x is known. max is 

I 
Under act&l conditions a target moves directly at the unit 

very infrequentjy. 
target is a 

Most frequently the heading of a nonmaneuvering 
straight line passing at a random distance from t‘r,e 
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radar station. The detection range will be a weak function of the 
target Irradiation direction, since the reflected signal remains 
virtually unchanged. The power of the signal reflected from the 
aircraft at a wavelength of X = 10 cm with irradiation from the 
front varies within limits of'15-25 db, while with a change in 
the flight target aspect with respect to the line of sight the 
power of the reflected signal varies within limits of 15-30 db 
U703, page 371. 

This permits the assumption that in motion of a target with 
a parameter different from zero, 
all intents and purposes, 

the balancing factor x will, for 
be a weak function of the target head- 

ing parameter. 

In this case, if we employ the approximate function f(x), 
for-the heading of a target ;x: with the parameter 8 at altitude 
II, 9(x, If, sl is determined from the formula 

(17) 

where 4nax is the maximum slant range determined from Formula (6) 
or iW 

The probability of target detection as a function of the 
horizontal range z can be calculated according to the equation 

p (x) II 1 _ e-.3 (=a If. 21, (18) 

where H = const, 8 = const. 

Determination of the experimental balancing factor x will be 
demonstrated in an example. 

EXAMPLE 2. We have carried out 200 measurements of detection 
range for a target-flying at an altitude of 1000 m by a weapons 
guidance station (r = 4 set, xmax = 28 km, z = 0, v+s = 400 m/ 

/set). The measurement results have been reduced to a statistical 
series. 

TABLE 1.6.2 

2&:28 

I 3 5 17 32 37 34 30 20 13 4 

P', jO,Ol 0.01 0,05 0.08 0,16 0.19 0.17 0,15 0.10 -O,O6 0.02 

Determine the detection frequency F*(A) of the target and the 
balancing factors a and x of the theoretical and experimental val- 
ues of the detection frequencies. 

Solution. Havfng defined the detection frequency as the dis- 
tribution function F*(A) (Table 1.6.31, from Eq. (16) we find 
a = 7.7 km when F*(J) = 0.5, while from Eq. (15) we find x = 15.5. 
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The coefficient x makes it possible to determine the target de- 
tection probability theoretlcally as a function of scanning con- 
ditions. 

TABLE 1.6.3 

I 8 bi) 

Fig. l-6.1 

Antlaircrdt 
systam 

Table 1.6.3 gives the target detection frequency F*(A) de= 
termi ned experiment-a I ly, and also the detection probabi I ity P(A) 
derFved from Formula (16). Instead of A; we assumed zei which In 
this case are virtually identical. We can see from Table 1.6.3 
that the coincidence of the theoretical and experimental values 
for detection :probablllty Is quite satisfactory. 

To evalua,te efficiency of an antiaircraft system as a func- 
tlon o,f horizontal range x and altitude H according,to Eq. (18) 
we calculate the target detection probability. lsoprobable curves 
(Fig. 1.6.1) aire then plotted and the efficiency of the system 
IS calcu1ated.i 

$1.7. COMPONEN~T [ELEMENT] RELIABILITY CRITERIA 
, 

A. General Sta~tetnents 
.: 

Since then elements are irreplaceable items (see $0.71, th,e 
reliability ch!aracteristic of each specific element will be its 
individual ser,vice life t calculated from the start of element 
service to then instant of element breakdown. Here, of course, we 
have in mind c~ertailn specific operational conditions (climatic 
conditions, load conditions, vfbrations and acceleration, etc. >. 
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Examination of numerous similar elements reveals their ser- 
,vice lives to be random quantities. Let ft&l denote the distribu- 
tion density of the element's service-life duration. We can then 
present the following equations for the basic element reliability 
criteria (see [82l, page 364). 

1. ProbabiZity of fauZt&ees element operation during the 
period of time t 

(1) 

2. Average elsment serv$oe Z<fe 

3. Element faCZure rate 

(3) 
The physical significance of this criterion will be clarified 
below. 

Let us stress the following circumstance. Knowing any of 
the three functions f(t), pftl and Aft), we can determine the 
remaini'ng two. Indeed, having integrated Eq. (3), we obtain 

Equationp (11, (3) and (4) make it possible, from any of the 
Indicated three functions, to find the remaining two. 

Fig. 1.7.1 

Let us examine two successive time Intervals * and T (Fig. 
1.7;1). The probability of faultfree element operation In the in- 
tervals from 0 to t and from 0 to t + 'c will correspondLnglg be 
equal to Pft) and Pft + Al. Let P,(r) denote the conditional pro- 
bability of faultfree element operation in the interval from t to 
t + r, calculated for the condition that at the instant e the 
element was repaired. 
theorem we can write 

According to the probability multiplication 

hence 
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Pt (%)=qy . 

From Eqs. ,(4) and' (5) we obtain 

(5) 

I \r’ .J 
.I where 

(6) 

ret x 1 cp =- t s A (t) df. 

To ascertain the physical significance of the failure 
rate let us examine Eq. (6) for the special case in which the in- 

(7) ., 

terval 't Is very small, and namely T = At. In this case, obviously, 
A sr = X(t) and ifrom Eq, (6) we find 

p6 (At) = e-*'%s 1 - At;l(t). 

Hence we derive the failure probability for the time inter- 
val from the instant k to the instant t + At for the condition 
that at the ingtant of time e the element was repaired 

qt (it) = AtA( (9) 

It follows) from this equation that the failure rate at 
the given inst&t of time t is equal to the failure pro,bability 
per unit time close to that instant t (under the condition that 
at the instant ‘t the element was repaired). 

Experience demonstrates that the failure rate for the ele- 
ments frequently depends on time as shown In Fig. 1.7.2. We can 
see from the figure that the life of the element involves three 
separate periods: 

1) The period from the start 
of operation to the instant tl 
which Is referred to as the adjust- 
ment period, or the instant mortal- 
ity period (or the period of defec- 
tive-element burnout). This period 
is described by an elevated fail- 
ure rate which Is explained by the 
presence of hidden production de- 
fects which generally appear during 
the, Initial period of element opera- 
tion. 

., 
: 

2) The period from the instar& 
tl to the instdnt t2 which is characterized by a constant failure 
rate. : 

This period is referred to as the period of norma operation. 

3) The peliiod after the instant t 2 whfch is characterized by 
XI :1..ncr~?n;.;e(:l r;{te of' fatlure because of element aging (wear) . This 
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period is known as the element aging (wear). 

It follows from Fig. 1.7.2 that one way of increasing ele- 
ment reliabilfty is the so-called "training" of the elements, 
which involves the following. Prior to use of the elements they 
are held under load for a period of time ~51. During this time a 
portion of the elements will break .down because of hidden defec:s 
OF weak spots, with the remaining elements exhibiting greater re- 
llabillty than the initial over-all group, since the failure 
rate w:ll bc .l~wer. 

B. The Exponential Service Duration Distribution Function 

The service duration distribution density in the sub!ect 
case is written in the form 

(10) 

where X Fs the distribution function parameter (Fig. 1.7.3). 

Fig. 1.7.3 

From Eqs. (l)-(3) we obtain 

P (t) = e-", 

&I = $I 
(11) 
(12) 

;I(f)=l, (13) 

i.e., the failure rate is constant here and coincides with the 
distributlon.function parameter. 

The exponential function is encountered in actual practice 
when the elements are used on complet,ion of the adjustment period, 
and aging (wear) phenomena are negligibly small\ Thls occurs, for 
example, with many elements of radloelectronfc apparatus: capaci- 
tors, resistors, semiconductor devices, etc. Electron tubes and 
shf [CBVI devices generally exhibit no exponential function, 
since wear (aging) phenomena are of great significance in the 
operation of these devices. 

From Eq. (5) we find 

P f (2) = e-11, (14) 

i.e., the probability of faultfree element operation during the 
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interval 'r under the condition that it was repaired at the begin- 
nlnr< of thin ?-n?erval is independent of the duration t,of the 
prevrlous opera,tlon. This remarkable property of the exponential 
distributLon iz, explained by the absence of aging (wear) on the 
part of the elements in their operation. In this case, instead of 
the curve (Fig., i 1.7.2) we have a straight line parallel to the 
axis of absciss~as. 

Hence It f~ollows that with exponential distribution of' ele- 
ment service du~ration, "training V of elements is inexpedient. 

C. Service Dura~tion Distribution According to the Wefbull Func- 
tion 

I 
The servic'e duration distribution density in this case is 

written in the ~form 

where fro snd m 
1 l 7. .‘I )  .  

Frorr Eqs. II 

T,t followl 
rate diminishe: 
Increases with 
into an exponel, 

from Eq. (18) that when m < 1 the failure 
with time, while when m > 1 the rate of failure 

time. When m = 1 the Weibull function degenerates 
tial function (Fig. 1.7.5). Thus, assuming various 

magnitudes for lm, we can describe the entire curve in Fig. 1.7.2 
by parts with the Welbull function. 

(15) 

Ire the distribution function parameters (Fig. 

[l)-(3) we obtain 

P(t)=exp -2 , 
( > 

x(f)=p-‘. ., 

06) 

(17) 

(18) 
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Experience shows that the Weibull function with the para- 
meter m > 1 is found for many types of electron tubes, 
vices, ball bearings, etc. 

shf de- 

From Eq. (5) we obtain 

Pf(t)=exp - 
( 

(f +zp-tm 
> t. ' (19) 

As an example, 
T 

let us consider the case in which to = 1, 
= 1, and m = 0.5 or m = 

(19) under th 
1.5. Results of calculation with Eq'. 

eae conditions are shown in Table 1.7.1. 

TABLE 1.7.1 

We can see from this table that preliminary "training" of 
elements when m = 0.5 raises the probability of their subsequent 
faultfree operation (adjustment occurs). When m = 1.5, "training" 
is inadvisable, since probability of subsequent faultfree opera- 
tion diminishes (element wear occurs during the operating time). 

D. Experimental Determination of Failure Rate 

For simplicity, let us examine the case in which the service 
duration distribution function for the elements is exponential. 
The experiment in this case is formulated in the following manner. 
Under the given conditions n elements of the given type are 
tested on a stand for a period of time t. As a result of the ex- 
periment the number m of failing elements is established. 

The experimental rate of failure is determined from the 
results of this test by the equation 

Ll- ;. (20) 

Reliable boundaries for the assumed reliable probability c1 are 
found from the equations 

1, A, 

(21) 

(22) 

where the coefficients rl and r2 are determined from Table 7 of 
the appendix for the given u and the experimentally derived.m 
(see C82l, page 388). 

If the test reveals no failures (m = 01, the reliability 
boundaries are found from the equations 
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(23) 

where ro is determined from Table 7 of the appendix. 

EXAMPLE 1.7.1. In testing 10,000 resistors for 1000 ho'urs, 
there were 3 failures. Find the rate of failure of the rests- 
tors. ~ 

I 

From Eq. (201 we find 

a on-3.10-t. 

ing & = 0.95, for m = 3 from Tab 
= 3.66 and ~2 = 0.39. From Eqs. 

Assum 
we find r1 

te 7 of the appendix 
(21) and (22) we find 

h.-0,82. IO-', A,-7,7*10-r. 

Thfs example shows that even a large number.of tests yields 
a rate of fatlure with poor relative accuracy. 

$1.8. RELIABILiTY CRITERIA OF IRREPLACEABLE ITEMS 

A. General Stat;ements 

The reliability characteristic of each specific item in an 
examination of~the operation of similar irreplaceable items under 
certain set operational conditions will be the individual service 
duration ti of that item, reckoned from the start of service for 
the item to the instant that it breaks down. The situation is the 
same in the case of elements (see §1,7). All element reliability 
characteristics considered In $1.7 are therefore applicable to 
any irreplaceable products. 

If an Irreplaceable product for which there are no reserves 
consist of k elements exhibiting a failure rate 

the rate of failure of the product on the whole is found from 
the equation 1 

In the sl: 
rates of fail 
product will 1: 
tion tsr for t 

I the elements) 

where fCPi zz ,I.- t.i 

cial case in which all elements exhibit constant 
Te Al, x2, .*., G the service duration of the 

distributed exponentially. The mean service dura- 
e entire product (to the first failure of any of 
n this case will be determined from the equ,ation 

it 
I i -= r OD Ii- 

(2) 
fcp 1 

I 
l=I 

s the mean service duration of the ith elerrreni;. - 
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Equation (2) is a simple consequence of Eqs. (1) and (1.7.12). 

Irreplaceable products are frequently intended for work 
during a predetermined interval of time tr. Thus, for example, 
the radio fuze of a missile is intended for operation throughout 
the flight time of the missile. For a fuze tr must therefore be 
equal to the flight time. 

An important reliability characteristic- of such products is 
the probability of faultfree operation during the time er 

p (tp) = cXIp= e+-. (3) 

The failure probability during the tinie tr is also employed fre- 
quently 

q (C,) = 1 - P (tp): (3a) 

When tr is small in comparison to tsr, Eq. (3a) may be writ- 
ten approximately in the following form: 

4 M = $j. (4) 

If,the product functions 
bability of faultfree product 
the following form: 

In cycles of duration erJ the pro- 
operation In n cycles is written in 

p (a) = e-p = (p’)” = p; , (5) 

where P1 is the probability of faultfree operation during a single 
cycle, 

B. Reliability Characteristics in the Process of Preparation for 
Work 

To prepare irreplaceable products for application we require 
a certain normal preparation time *n. If failure of certain ele- 
ments included in the product is noted during the preparation, 
the actual preparation time tf will be larger than t, due to the 
ti,me spent on the determination and elimination of the faults. 

Let us introduce the denotation 

The preparation lag T is random. Processing of experimental 
statistics will yield Its distribution function. We denote Its 
conditional probability density Q(T) (given that there Is a pre- 
paration lag). 

sion 
In first approximation we can assume the exponential expres- 
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(7) 

where 'c sr is the mean preparatlon lag (for those cases in which 
there is preparation lag). 

The cond$tional probability qyCtl that the preparation lag 
does not exceed the given time t is found from the equation 

&(l)= &v=l-exp(-&). J (81 

Unconditi,onal probability qle) that the preparation lag 
does not exceed the given time ti is found from the equation 

I 

q(t)= 1 -(l --P,),exP (-&), (9) 

where P p is thk normal preparation probability (Le., preparatlon 
without lag). 

Since preparation lag is equal to zero with probability P 

and with probaiility 1 
P' 

b - Pp the mean preparation time is equal 
to 'csr3 the un 

p 

onditional mean preparation lag will be 

T,,=P,,.O+(l--P,)z,p=(l--P,)Z,p. (10) 

EXAMPLE 1~. Let the experimentally determined values be P = 

= 0.90 and =sr~ = 
P 

2 hr. 

for 1000 produkts. 

Find the mean preparation characteristics 

Solutlon.~ Since P 
P 

= 0.90, 1000*0.90 = 900 products, on the 

average, WIII be prepared for operation without lag. On the aver- 
weI 100 products will be prepared with lag. Of these 100 prod- 
ucts, the averbge preparation lag time 1s 2 hr. The average pre- 
paration lag tiime for all 1000 products is found from Eq. (IO) 

Top “(1 .-0,9)*2.=0,2 hr. 

Let us askume the preparation lag t = I hr. From Eq. (9) 
we find 

1. 
9(l)== l-(1-oo,9)cxp --ij- =0,939. ( > 

This means thaf, on the average, of 1000 products 1000D0.939 = 939 
products will be prepared with a lag no larger than I hr. 

C. The Reserve,Case 

Let us cohsider the case in which a product consists of k 
identical indebendent simultaneously operating blocks. The product 
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is held to fun&ion faultlessly over the time interval from 0 
t if at least a single block functions faultlessly during this to 
interval. 

Let one block exhibit the rate of failure An(t) and a pro- bability Pl(tl of faultless operation during the time from 0 to 
15. For the entire product we will then have 

Pi it, = 1 - [ 1 - P, (t)]k !W 
The failure rate for the entire product is found from Eqs. (11) 
and (1.7.3) 

4’ (0 = k [I - P, (t)p -.’ A, (I) PI 0) 
l-[l-P,(t)p l (12) 

For simplicity, let us examine the case of k = 2, 

1, (t) = const = I,, P, (t) se-“. 

form: 
Here, Eqs. (11) and (12) are rewritten in the following 

, P, (t) = 213~~ -e--O’, (13) 
1, (t) = *y -y l - (14) 

Figures 1.8-l and 1.8.2 show the curves P2(t), Al(t) and 
A,(t) for the case A = 1. We see from these figures that reserves 
yield the following results: 

1. Probability of faultfree operation increases noticeably. 
‘When k > 2 this phenomenon is intensified. 

a 

Fig. 1.8.1 Fig. 1.8.2 

2. The failure rate diminishes sharply with small t and 
then asymptotically approaches the value which it exhibiis in 
the absence of reserves. 
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D. Element Resbrves with Disconnection and Shortcircuit Type 
Failures 

Let us consider the case of the so-called constant element 
reserve In which the basic and reserve elements function simulta- 
neously, i.e., all elements are equal. 

The elemehts may be connected in three ways: 

1. Series connection (Fig. 1.8.3). 

2. Parallkl connection (Fig. 1.8.4). 

3. Mixed bonnection (Figs. 1.8.5 and 1.8.6). 

D-.. +TJ- t 9‘ 3 

Fig. 1.8.3 

The element group exhibiting one of the above-indicated con- 
nections will be referred to, in the interest of brevity, as an 
element systems. 

We will distinguish two types of failure: a> disconnection 
and b) shortclkcuiting. 

With series connect$on of elements the "disconnection" type 
of failure in any one of the elements causes the failure of the 

element system, while the "circuit" fail- 
ure type leads to the failure of the sys- 
tem only if it occurs in all elements of 
the system. 

, 
With parallel element connection the 

"shortcircuit" failure type in only one 
of the elements leads to the failure of the 
element system, while the "disconnection" 
failure type leads to the failure of the 
element system only if it occurs in all of 

‘the elements of the system. 

Fig. 1.8.4 

all m parallel 
lines). 

In the mixed element connection any 
type of failure in one of the elements will 
not cause the failure of the entire element 
system. Here failure of the element system 
may occur only with m disconnections (in 

lines) or with n shortcircuits (in one of these 

Let us noie that the subject reserve method is possible only 
when the paramdters of the element system do not exceed the es- 
tablished tolerance limits for the element in -reserve. 

WC denote iby q. the probability of element disconnection, 
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and q3 the probability of shortcircuit. Then 

4=40+41 wi) 

will be the probability of element failure for any reason. 

Fig. 1.8.5 

Fig. 1.8.6 

We begin with the case of series element connection. DIs- 

n ’ 
1 

2 

iz!t 

3 

: . 

m 

connection of the system will occur on disconnection in only one 
of the system elements. This probability will be 

Q #+= 1 -(l -&)". (16 

Shortcircuiting of the system will occur on shortcircuiting of 
all system elements. This probability will be 

Q,,, = 4; . 
The probability of any system failure In series connection 

of n elements will be 

.Qn-1 -(l-O+q;- 
Analogously, for a system of m parallel connected elements we 
will have 

Qm, = I- (1 --qIp, (26) 



Qm = 4: + 1 - (1 -q,)". (21) 

We now eliamine the mixed connection.of elements shown in 
Fig. 1.8.5. This system may be treated as a parallel connection 
of m elements :each of which exhibits the probabilities of discon- 
nection and shortcircuiting according to Eqs. (16) and (17). The 
failure probability Qmn of such a system may therefore be found 
from Eq. (21),; if in this equation we substitute 40 and 43 for 
Q and Q 
y%ds 

ns acicordlng to Eqs. (16) and (17). This substitution 

Q,,-[l-(l-qO)'++ l-(l-q;)m. (22) 

We now exkmine the mixed connection of elements shown in 
Fig, 1.8.6. This system may be regarded as the series connection 
of n elements each of which exhibits the probabilities of discon- 
nection and shortcircuiting described by Eqs. (19) and (20). The 
failure probabflity Q,, of such a sys,tem can be found with Eq. 
(18), if in this equation we substitute qo and qa with Qmo and 
Q m3 according to Eqs. (19) and (20). This substitution yields 

( Qnm = 1 -(I -q;)"+[l -(I -qpj"'. (23) 

Equationsi(18), (21), (22) and (23) permit solution of all 
problems assocSated with the subject reserve cases, 

We consider the practical Important case of sufficiently 
small probabilStles 40 and 49 (each less than 0.01). Equations 
(W, (211, (+) and (23) can then be simplified if we limit our- 
selves to the qirst two terms in an expansion in a Newton bino- 
mial. This yie;ds approxZmate equations'whose accuracy is fully 
adequate for practical purposes 

Qm n A (nqJm + mq; , 

Qnm ‘= nq0” + (mq,)n. 

We introduke the denotation 

kd$, 

where q is defined by Eq. (15). 

(24) 

(25) 

(26) 

(27) 

@a> 

We then have 

q,, - kq, (29) 

qa==:(l -R)q. (30) 

form 
With these iequations we can rewrite Eqs, (24)-(27) to the 

I 
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Q"-~&+(l--)"q", '* (31) 
Q m=Rmqm+tfz(l -k)q, (32) 

Q,, = (nkpqnf j- m (1 - k)“qn, (33) 
Q,, = nkmq” + mn (1 - k)ti q”. (34) 

We see from Eq. (31) that when nk > 1, Qn > 4, i.e., series 
connection of elements with nk > 1 Is inexpedient, since failupe 
probablllty with this connectl.on increases, Analogously, from 
Eq. (32) we have that when ml1 - kl > 1, Q, > 4. Hence, parallel 
connection is inexpedient when ml1 - kl > 1. 

As an example, 
(31)-(34) f 

we consider the case of a comparison of Eqs. 
or an identical number of elements in the system. We 

assume the number to be equal to 4. Equations (31)-(34) are then 
written in the form 

Qn = 4kq + (I- kj4q’, 
Ql??=- k4q4+4(1 --)q, 

Q mn = 4k’q’ + 2 (1 - k)‘q3, 
Q nm = 2PqP + 4 (1 - kyqa. 

TABLE 1.8.1 

k T q = 0,Ol II q = 0.0001- 

OIP, 

:k’il 
x2 
0'28 
0:25 
0.25 

- 

- 

4/Q, 1 4%“’ 1 ,qxiI m, 1 q/Q, / q/Q,, 1 q/Q,, 

0,25 
0.25 
0.28 
0.5 

xix 
IO’ 

- 

2500 
2500 
3100 
6700 
6000 
5000 
5000 

(35) 
(36) 
(37) 
138) 

I 

For q let us assume the values 0.01 and 0.0001. Table 1.8.1 
shows results of calculations by these equations, for various k. 
This table shows the q/Q ratios which indicate the reliability 
gain resulting from the reserves (if these ratios are larger than 
1) or the inadvisabillty of reserves (when these ratios < 19. 

This table shows that reliability is increased with mixed 
connection for any k. The reliability gain increases with a re- 
duction in q. With series element connection reliability ink 
creases only with rather small k, while with parallel connektion, 
reliability increases only with rather large k. 

E. Experimental Reliability Characteristic Determination 

The failure rate for irreplaceable products is determined 
experimentally in complete analogy with that for elements (see 
s1.7.D). 

We consider the problem of experimental determination of 
faultless operating probability within a specified time. The 
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exp~~~r.l.men% %:; 3~2% up'as follows. We test n products under opera- 
tlorlal ~~xd fur time kp and establish the number m of products 
which failed. The experfmental failure frequency is found from. 
the equation 

4 m on=?;-* (39) 

and the reliab~le boundarles for reliable probability 01 = 0.95 
is found from Ithe equations 

(40) 

(41) 

s;her~ the coedficients RI and R2 are found from Table 6 of the 
zF>e:ld.ix according to the values of m and m/n (see [82], page 
l93li. 

If take edperiment yielded no faTlures (m = O), the relrtable 
boundaries ares found from the equations 

4a=o, qIl=+* (42) 

where Ro 5s determined from Table 6 of the appendix from the 
given reliabl? probability a and the quantity n. 

The experimental probability of faultless operation and the 
reliable bound;aries for that probability are determined from the 
equations I 

PO, = 1 - qon, (43) 
p,= I---qq,, (44) 
P,==l-qm. (45) 

: We note $hat when ,(m/n) < 0.10 in Eqs. (40)-(42) we can re- 
place the coeqficients RI, R2 and Ro by the coefficients ~1, r2 
and x70 defined from Table 7 of the appendix. 

EXAMPLE 2. In testing n = 1000 products we obtained m = 100 
failures. Evalluate the probability of faultfree operation. 

Solution. Here m 
4Lln- ,z .---Go,~o. From Table 6 of the appendix for 

m = 100 and (m/n) = 0.10 we find RI = I.18 and RZ = 0.86. From 
Eqs. (40) and ~(41) we find 

0.10 0,lO 
qm = f16-0.085, qs = 0,86=0,116. 

From Eqs. (43)-(45) we find P 
= 0.915. OP 

= 0.90, Pn '= 0.884, Pv = 

EXAMPLC: Ii. In testing 100 fuzes we found not a single fail- 
Ul-e. Evaluateit-hc probability of faultless operation. 
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From Table 6 of the appendix for n = IO0 and c1 = 0.95 we 
find Rp = 2.95. From Eqs. 
= 0.03, Pn 

(421 and (441 we find 4, = 12.95/1001 = 
= 0.97. Obvtously, Pv = I. 

$1.9. RELIABILITY CRITERIA FOR REPLACEABLE ITEMS 

A. Nonreserve Cases 

The work of replaceable items generally begins on cDnnec-, 
tion of apparatus. One of the reliability criteria should there- 
fore be the probability P, of normal connection, 

In well adjusted devices the quantity Pv is generally very 
close to 1. However, in tests and' adjustment this quantity may 
differ significantly from unity. Apparatus failures in this case, 
on connection, should be counted separately from failures which 
arise during operation (see [82J, page 452). 

Further, for the reliability characteristics of replaceable 
products we should consider the parameters of the so-called per- 
Id of product adjustment, In this period which marks the begin- 
ning of operation for newly fabricated items, the element and 
installation failure rate is elevated. The basic parameters of 
this period, 
duration t 

adequate for practical purposes, are the average 
w of this period and the average number m 

Pr 
of fail- 

ures during this period. 

On completion of the adjustment period it is generally pos- 
sible to treat the occurrence of failures in product operation 
as a simple flow (see $4.1). The basic failure flow characteris- 
tic is the flow parameter A 

where T is the a.verage time to failure or the average time of 
faultless operation. 

Smith the parameter A the probability of product faultfree 
operation probability for any time interval * is easily found: 

p (t) c e--41 c e--I/T. 

If the apparatus is switched on at the start of the time t 
interval, the probability of faultfree ope.ration during the time 
t will be 

p, (I) = P, e-‘lr; 

where Pv is the normal conneption probability. 

(3) 

The basic characteristics of suitability for repair in re- 
placeable products is the average restoration time TV and the 
readiness factor 

&=T- 
T+T.’ 
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The quantity TV defines the average product idle time due to 
efforts to seek out and elrminate failures. 

The readiness factor represents the probability of finding 
the subject product in operating condition under the condition 
that it is examined over a sufficiently long period of operating 
time. 

I 
In Eq. (4) we consider only the down time resulting from 

product repair after failure determination. At the same time, 
down time occurs In preventive maintenance as well. This down 
time may be taken into consideration by means of the use factor 

K H= f;n6 . 
Ipa + tpow + fnpoQ, ’ 

where trab is the duration of proper product operation over a 
sufficiently large interval of time 6; 

t Is %he down time due to measures to eliminate fall- 
rem u&s found during time t; 

tprof is ;the down time due to preventive maintenance during 
time t. 

Down time due to other causes in this case (for example, 
service personnel vacations) is not considered. In the subject 
period t let there have been m failures in the time trab. Divid- 

' ing the numer tor and the denominator of Eq. (5) by m, we obtain 

Ku- T T + T. + Tnpo+’ 

where T prof iA the average preventlve maintenance time per single 
failure-occurring in time trab. We note here that the number m 
does not include failures ascertained during the preventive main- 
tenance work. owe also note that the time spent on elimination of 
failures determined during the preventive maintenance is not 
included in trem but in t prof' 
6. Reserve Caqes Without Replenishment of Reserves 

We now consider reserve cases in which reserve elements 
(blocks) break2ng down in operation are not replenished and on 
which repairs dare carried out only after the failure of the ba- 
sic and,all reserve elements (i.e., on breakdown of the entire 
product). Thi' case occurs when the inoperative product Is sent 
for repair to 9 special repair subsections. 

We consider reserve substitution cases in which there is a 
single basic element and n - 1 reserve elements. On breakdown of 
the basic element it Is replaced by one of the reserve elements. 
Failure of a system consisting of n subject elements,-occurs when 
the last of the reserve elements breaks down. 

We present the equations required for two reserve variants. 
I 

1) Loadeq (hot) reserve in which the basic and all reserve 
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elements are in a single operating regime (under load). 

2) Unloaded (cold) reserve in which the basic element is it: 
ti?e ope:*atlng regime, and all reserve elements are awaiting inclu- 

sion in the operating regime (not under 

-?--c+ load)- 

For the sake of simplicity we will 
consider the case in which all subject 
elements (blocks) have passed. through 
the adjustment (training) period and 

Fig. 1.9.1 for each of which Eq, (2) is valid. 

With loaded reserve the probabil- 
ity of faultless operation of a system 

of n elements (blocks) during time t Is written In the form (see 
CW): 

P, (tj = 1 -1’ -eexp (-+)]“. (7) 

The average time of faultless operation for a system of n 
elements will be 

With unloaded 
have 

reserve, instead of Eqs. (7) and (8), we will 

We note that Eqs. .(a) 
Expressions (7) and (9)‘in 

As an example, let us 

I=0 

T,=nT, cm 

and (10) are derived by integration of 
limits from 0 to = [see Eq. (X.7.2)]. 

consider the product whose diagram is 
shown in Fig. 1.9.1. Here block A has no reserve and a loaded re- 

i serve is used for block 6. The probability of faultless operation 
for block A is found from Eq. (2) 

I n-l 

P,&)=e - 7 
E 

tr Tlil’ 
w 

p, (i) = e--r’r? (11) 

The probability of faultless operation for a system of two 
blocks 6 is found from Eq. (7) 

p, (I) = 276 - e-2f’rq 

The probability of faultfree operation for the 'entire prod- 
uct is found from the theorem of probability multiplication 



The aver?ge time T of faultfree operation for the entire 
product is 
from 0 to 0 

foun,d by integration of Expression (13) in limits 
[see Eq. (7.1.2)]. On integration we obtain 

TAT, I3T, + T,i 
T = (TA + TJ (9, + T&l l 

The produck readiness factor is found from Eq. (4) where Y 
is defined by Ep. (14) and TV is the average time to repair the 
failure of the entire product (can be determined experimentally). 

C. Reserve Cases with Reserve Restoration 

which 
For simplicity and brevity we limit ourselves to cases in 

a product! consists of two identical blocks of which one is 
operative and the other is put Into operation only on appearance 
of failure in the first (unloaded reserve>. Restoration of the 
broken block begins immediately on failure. We assume that the 
work time prior~to failure and duration of restoration for each 
block are subject to exponential laws with rates 

We calculate the probability Pltl of faultless product opera- 
tion in the time interval from 0 to $ if at the instant,* = 0 
both blocks are operative. For this purpose we will seek the dis- 
tribution density f($l for the product operating duration t prior 
to first failure. 

& 4t 
1 X f 't 

Fig. 1.9.2 

If at the instant t the product fails 
some instant LI: there occurred the failure 

this means that at 
Af a single block the restoration of $his block had not been concluded at the insiant 

t and the second block broke down at the instant t (Fig. 1.9.2). 

Let the ith failure of the block occur at the instant x. We 
can then write7 

f'~(t) At =? / fi,(x) dx P (x) e-x(f--x) e--P(‘-cC)le-x(‘-x’At. 
2, (15) 

I 
Here fi(x)dx Is t~he appearance probability of ith block failure 

near? instant - 
'(~1 is 

2; 
t h e Drobability of no product failure prior to (‘4 (f -.r) inat,ant' x; : q the probability of faultless block operation from 

instNant z to instant C* 
e- r('--X) is the probability tha; repair of the block failing 

at i,nstant x will not be completed at instant t; 
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Xe*a('-")At is the probability of block failure near instant &, 

Equation (15) can be rewritten to the form 

f (t) = I “P (x) e-’ (‘-4 ,dxi fr (x), 
s (16) I=1 

where 
: ,, il4A4.L~ - (17) 

From Eqs. (100.3), (101.3) and (101.4) (see [82]) we have 

(18) 

From Eqs. (16) and (18) we obtain 

e”/ (t) r= la ‘P (t).e”ddx. 
s 

(19) 

Differentiating both parts of Eq. (19) with respect to 6 
and taking into consideration Eq. 
tial equation 

(1.7.1), we derive the dlfferen- 

P” (f) + SP (1) + A’P (I) = 0. (20) 

The Initial conditions here have the form 

P~O)==l, P'(O)--f(O)=O. 

Hence we find the solution 

where 

p (f) E L e-“ “ -  Rp e -‘I,1 

&,--a, a,-a, 
, 

a1 =+(wY-t1/2Y+y*); 

a,=T ’ (1+Y-+y+Y); 

(21) 

(22) 

(23) 

2y=++. (24) 

The average time Ti of faultless operation of the entire 
product is found by integration of Expression (21) in limits 
from 0 to a [see Eq. (1.7.213. After integration we have 

Tn=2T(l+-y). (25) 

We note that when the reserve, is not restored, according 
$0 Eq. (10) we would obtain 

T, -f 2T. (26) 

Equations (25) and (26) yield a gain which provides for re- 
storation of the reserve 
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In actual practice,the quantity y generally varies from sev- 
eral units to several tens. The,gain from Eq. (27) is therefore 
quite substantial. 

We consider the practical important 
tity y is 1ar:ge in comparison with 1. In 
then be writt)en 

I 

case in which the quan- 
approximate terms it may 

For the case of large y Eqs. (22), (23) and (28) yield 

.a, 2 f 
( 2+a-&)* 

a, I’ 1 
= 72-27 

(?9> 

(30) 

From Eqs.( (21) and (25) we then obtain 

P(t)- exp 
( 
--~T22~~~)=e-f'r~. (33) 

Thus for g restorable product with a restorable reserve the 
same equation .&s for irreplaceable products on completion of the 
adjustment (trginlng) period is valid (see $1.7). 

D. Experimental Determination of Reliability Characteristics 
I 

To determine the probability of normal connection we can use 
the method of determining the probability of faultless operation, 
covered in §1.8,. 

We now conbider the problem of the experimental determfnation 
of the average pime to failure. Let n products be subjected to 
tests, the times to failure during the period of the tests for 
these products given, respectively, by tz, $2, . ..) %l' Let ml, 
m2r . . . . m n failures be recorded for these products in this case. 
The experimental average time to failure Is found from the equa- 
tion 

T fl + fa + . * . + f* 
011” -- m,+ma+...+m* ’ 

I - 80 - 

(34) 



and the reliable boundaries. -for the- given reliable probabi.lity a 
1.8 found from the equations 

T H =rpTonr (35) 
Ti ===r,T& (36) 

where the coefficients ~1 and r 2 are found from Table 7 of the 
appendix on the basis of the given probability 01 and tpe total 

1 number of failures m (see [82], page 450). 

If there were no failures during the tests, the reliable 
boundaries are found from the equations 

where the coefficient PO is also found from Table 7 of the ap- 
pendix. 

EXAMPLE I, Three devices were tested. The test times for 
these devices amounted to 500, 700 and 400 hr, with the number 
of failures 6, 8 and 3, respectively. 
to failure. 

Evaluate the average time 

Solution. from Eq. (34) we find 

T 
500 + 700 + 400 

on - 6+8+3 
=34 hr. 

From Table 7 of the appendix for 01 = 0.95 and m = 17 we find 
PI = 1.58 and r2 = 0.67. From Eqs. (35) and (36) we determine 

Tn 
= 63 hr, TV = 149 hr. 

EXAMPLE 2. In testing apparatus for 100 hr there were no 
fat lures. Zv-aluate the average time to failure. 

Solution. We assume the reliable probability c1 = 0.95. From 
Table 7 of'the appendix we find ro = 3. From Eq. (37) we deter- 
mine Tn = 33.3 hr. 

$1.10. ASSEMBLY RELIABILITY CRITERIA 

In $1.7-1.9 we considered the reliability criteria for ele- 
ments of irreplaceable and replaceable products. Any armament 
system consists of many products and we can say that the assembly 
[system] reliability is defined by the totality of reliability 
criteria for all of the parts included in that system. 

There arises the question as to whether it would not be 
possible to characterize the reliability of the system as a whole 
with some single criterion. It develops that this is possible 
only in the simplest cases. The reliability of the system as a 
whole in these cases is characterized by the probability of its 
normal functioning 

P, = P,P,P, . . . P,, 
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where Pk is the probability of normal (faultless) functioning of 
the system, while Pl, "2, . . . . Pn are the probabilities of fault- 
less functioni~ng of parts (elements, 
tem. 

blocks) included in the sys- 

Equation ~(1) is a rather good characterization of system 
reliability in the simplest case in which the breakdownof any 
part of the sy~stem leads to the breakdown of the entire system. 
In complex casies in which the system operates with several par- 
allel channels~, stations, etc., Eq. (1) is not longer adequate 
as a characteristic of system reliability. 

As an ex&mple, let us consider the case in which the system 
consists of a ~single launch installation and n'rockets. It is 
evident that the breakdown of one or several rockets does not in- 
dicate the bre~akdown of the entire system. In this case the pro- 
bability of normal functioning, calculated with Eq. (l), is ina- 
dequate to cha,racterize the system reliability. In this case we 
can introduce the following as additional reliability indicators: 

I 
the probability Pm n ,of normal system functioning in the 

case of m laun~ches from's total number n launches; 

the mathematical expectation M(m) of the number of normal 
launches from & total number of n launches. 

We present equations for these system reliability indicators 
for the case ih which the reliability function of the launch in- 
stallation is exponential. This means that the probability of the 
normal functioning of the launch installation in the case of k 
successive laupches is equal to Pf, where Pl is the probability 
of the normal functioning of the launch installation on the first 
launch. 

Let us in reduce 
t 

the denotation Qk for the probability of 
the following event: the launch installation functioned normally 
in all launches from the first to ‘the launch having the number 
k (inclusive) and failed on the (k + l)t& launch. Then, obviously, 
we have 

I Qp=l-PI, 
Q, = P, (1 -PA 
Q, = P; (1 - P,); 
.* . . . . . . . . 

Q.er=Pf’ (1’~-PI), 
(2) 

where Q, is thk probability that the launch installation in all 
n launches funktioned normally. It is easily proved by direct 
addition that the sum of all Probabilities (2) is equal to unity 
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Ii, -. 

LQ l b=l, 
h=O (3) 

as was to be expected, 
group of events., 

since we are dealing here with a total 

We introduce the denotation Rl for the probability of the 
normal functioning of a single rocket. We can then write the 
equation 

P m, n=,QmRT: +Qm+rC;+, R’,” (1 -R,)+ 

.+ Qn,+aC;+2 R; (1 - RJP + . . . + 

+ Qn- ,C;ml Ry (1 -RI)“++’ + Q,C; R;” (1 - R,)+T (4) 

For brevity we Introduce the denotation 

z = P, (1 - R,). 

From Eqs. (21, (4) and (5) we obtain 

(5) 

The probability of having no less than m normal launches 
out of n will be 

(7) 

In the special case m = 0 from Eq. (6) after simple trans- 
formations we obtain 

Po,n=(l - P,)G+zY 
(81 

Hence.for the probability of having at least one normal 
launch out of n we have 

P* ,.r=l-Po,n=(l-zz”)~. 

For the mathematical expectation of 
launches out of n we have (by definition 
tlon) 

M (m) = 5 iPi*,. 
lrl 

(9) 

the number of normal 
of mathematical expecta- 

(10) 

We present an example. Let n = 3, PI = ~1 = 0.9. From Eq. 
(5) we.find 21 = 0.09. From Eq. (8) we find P, 3 = 0.11. By means 
of Eq. (6) we determine. P 

v.2 

1.3 = 0.10, P2*3 

From Eq. (9) we f’lnd P:-? = 0.89. 
= 0.24 and P3 = 0.53 .'3 

- .  J 
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With Eq.' (10) we determine M(m) = 2.17. Hence we find the 
mean fractiorl of normal launches 

M ON -=2+=o,72. n 
We note the probability of the normal functioning in the first 
launch to be larger - it is; equal to ~1~1 = 0.81. 

We have konsidered the simple case of a system whose relia- 
bility can beicharacterized by the probability indicators (6)- 
(10) which are functions of the reliability indicators for the 
component parts of the system,and only of these. 

With more complex systems it Is impossible to characterize 
their reliability by means exclusively of the reliability indi- 
cators of the $omponent parts of the system - it becomes neces- 
sary to resort additionally to combat application effectiveness 
indicators. 

I 
In the siimplest case the combat application effectiveness 

of a system cqn be characterized by the probability R of exe- 
outing the combat assignment 

I 
ii = PnRp, (11) 

where RO is th b conditional probability of executing the combat 
assignment under the condition that all elements of the system 
are functionink faultlessly. Obviously, Ro is a function of sys- 
tem accuracy, effect against target and similar characteristics 
of 'system quality,.but is independent of system reliability, Sys- 
tem reliability characteristics are included in the factor Pk. '1 

I 
Let us "now consider the case of one or more system parts 

breaking down without causing the breakdown of the entire system, 
but simply reducing its effectiveness, 

, 

As before! let the system consist of q parts for which the 
probability of!faultless operation Is equal to Pl, P2, . ..) pn' 
The probabllit$ of the system completing the combat assignment 
under the condition of faultless operation of all of its parts 
is denoted Ro. :On breakdown of only the single ith part of the 
system, let the probability of execution of the combat assignment 
be equal to Ri. 

On breakdown of only two parts (the ith and the jth) of the 
system, the prdbability of execution'of thecombat assignment 
will be equal tlo R ij- 

For simpldcity, 
or more system harts 

we consider the case of breakdown of three 
where the probability of combat-assignment 

execution becomes equal to zero. Then, for the unconditional 
probability P) OF combat-assignment execution we have the equation 

(12) 
w t, 
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where Q, is the probability of that state 
only the ith part has broken down 

of the system in which 

Q 
and ij is the probability of that condition of the system in 

which only the Zth and jth parts have broken down. - - 
With the breakdown of individual system parts independent, 

we can write the equations 

Q(==P,,P I... Pi-I(l-Ppi)Ps,,...P,,- 03) 
Qij-=P,P,. . . Prsl (1 -Pi) Pi+l t . . Pj-, (l- Pj)Pj;,...P,, (14) 

We-$ilustrate Eqs. (12>-(lb>-by means of an example. Let 
n=3, P,=P,=P,=P, R,=O, 

R I,=R,,=O. 
From Eqs, (12)-(14) we then find 

i = I&?* + R,F’ (1 -. P) + R,F’ (1 - P) + RJ’ (I- p)‘, (15) 
We consider four versions of numerical values for the quan- 

tities in Eq. (15). These versions and the calculational results 
for these from Eqs. (1) and (15) are shown in Table 1.10.1. 

This table shows that probability R for execution of the 
combat assignment may be higher in the case of a complex system 
than the probability Pk for the normal functioning of the entire 
system. With a simple system it follows from Eq. (11) that ?? 5 Pk 
always (since RO 2 I). 

TABLE 1.10.1 

This table also shows that the probability Pk cannot serve 
as a comparative evaluation of the quality of two systems. Indeed, the table shows that a system with a smaller Pk may exhibit higher 
effectiveness R. Thus, for example, 
than for system D, 

Pk in system A is smaller 

for D. 
while the effectiveness of A is greater than 

This example shows that Pk for the normal functioning of 
the entire complex cannot serve as the reliability criterion for 
a complex system. Proper evaluation of reliability in complex 
systems can be achieved by examination of their effectiveness 
criteria during whose calculation the reliability criteria of 
the component parts of the system are taken into consideration. 
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$1.11. ARMAMENT COST CHARACTERISTKi AND THEIR DETERMINATION 

A. The Concept of Armament Cost 

The cost of armament Is one of its most important character- 
istics , governing to a great extent the feasibility'and possible 
scope of its application. Armament cost hcreases continuously 
and analysis of this factor ia'therefore becoming lncreasin ly 
urgent. Figure 1.11.1 shows a curve taken from Reference [3 % 1 in- 
dlcating the variation in the percentage of expenditures on mili- 
tary equipment in the over-all cost of material military expendi- 
tures. Analogous data for the USA during the Second World War are 
presented. The curve shows that the expenditures on armament in- 
crease both in relative and absolute terms. It is Interesting 
that the USA expenditures for research and development in arma- 
ments shows a~substantlal increase. 

1 I 

years 

Fig. 1.11.1 

Inspeaking of armament costs it is necessary to specify pre- 
cisely what wei are talking about. First of all, we must take into 
consideration the circumstance that armament consists not only of 
rockets, aircraft, military vehicles and related military units,~ . 
but of an entipe complex qf auxiliary machinery, ,devices, etc. 
The costs of these various complexes must therefore be compared, 
bearing in mind that, for example, the least'expensive rocket 
does not always correspond to the least expensive system. Speaking 
of the cost of a complex [system], 

4 
we should always bear in mind 

the stage of e uipment 
tem (factory, base, 

servicing from which we consider that sys- 
technical utilization, etc.). 

I Secondly,~consideration should be given to the expenditure 
volume for research projects, armament development, armament 
fabrication atfactories, storage, etc. Of course, in these com- 
parisons 'we can limit our$e,lves to an analysis of Individual ex- 
penditures, since these expenditures, in part, may not be the 
most important! nor identical; however, in all cases there should 
be a preliminary consideration of all expendituresin order to 
avoid gross er$ors. '., 



For example, in resolving the problem of the introduct,ion 
feasibility of a new item, even if inexpensive, we must take into 
consideration the expenditures on its development, since these 
may have been significant. 

Development expenditures should be understood to refer to 
those costs incurred on theoretical research, on scientific and 
experimental-design projects, 
dels and on their testing. 

on fabrication of experimental mo- 

ment of special test areas, 
The latter may call for the develop- 

test-area equipment. 
as well as for the development of 

Moreover, the tests are not always success- 
ful and *additional processing of the model may be required. 

Thirdly, the significant effect of production volume on 
cost should be borne in mind: 
more than those mass produced. 

single specimens cost considerably 

Finally, an important indicator characterizing the cost of 
an item is the number,and quality of the servicing personnel. 
These factors govern the expenditures on training of personnel 
(teaching staff, materials) and costs of maintaining personnel 
(instead of the production of material goods - training). 

B: Effect of Lot Size on Cost 

First of all, let us dwell on the cost of producing arma- 
ment specimens. The cost of specimen production is reduced by 
increasing the quantities of items fabricated. This is a result 
of a reduction in overhead expenses, the cost of mechanical proc- 
essing, technical production expenses which, in this case, are 
distributed over a larger number of items, and through the ac- 
quisition by the workers of greater work experience and, conse- 
quently, a rise in labor productivity. Moreover, with an increase 
in production volume material supplies can be improved (large- 
sdale purchaties), and it'also becomes possible to eliminate struc- 
tural and production defects. 

Cost determ,ination in the USA [ll] is frequently accomplished 
in the assumption that a 20% reduction In average costs per prod- 
uct in a lot can be achieved by doubling the number of items. 

Let us derive the appropriate formulas in the assumption 
that on doubling the number of items the average cost per product 
In a lot diminishes by a factor of a (according to American .data, 
a = 0.8). Let Cl denote the cost of the first item; the cost of 
two items will then be 2aC8, the cost of four items will be 4a2C1, 
the cost of eight items 8a Cl, etc. In the general case we can 
write that the cost of a lot consisting of n items is 

where 

p++, . 

(1) 

(2) 

ror n=O,S 

PG--0,3. 
, 
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The aver&e Cost of an item in a lot from the 1st to the - 
iVs item - 

To calculate 
following manner. 
number of ite$s 

C 
cp= 

Cno;ma =C,$P. (3) 

the cost of the NE specimen we proceed in the 
We find the derivative of C partii from the 

ac ;;‘““=(I +P)C,N”. (4) 

The cost iincrement 

The cost incre,ment for one item (&V = 1) will be the cost of the 
item, In this icase, instead of N the value of the derivative 
should show (4 - i), since in this case the value of the deriva- 
tive will be tiaken for the mean of the subject Interval (from 
N - 1 to N). 

Thus ) 

c=c,(l,+P) N--i p. ( > (6) 

As an illhstration of the strong relationship between,cost 
and the number of items, we present the following table. 

TAaLE 1.11.1 

Product number N I 10 
I I- 

loo Iwo 

E$t of /vth product, _ , . 1 ,oo 
0.35 0,18 0009 

A%yerage cost per lot, 
c ‘ST . . I 1,oo 0.50 

I 
0.25 : 0,13 

All previous fcrmulas are valid if in the production proces’s no 
significant sttuctural changes are introduced into the product, 
nor any signlf+cant changes ln the fabrication technology. 

C, Determinatiin of Rocket Cost 

To determjne the tentative cost we can use a weight factor 
K showing the cost of kilogram of a similar product under the 
production convitions for a similar quantity of items 

where Q is the 'weight of the subject item. 

This evaluation exhibits a number of drawbacks associated 
with differences in design, limited experience in mass production, 
complexity of calculating costs of measures to maintain rigorous 
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control and high product quality and, finally, by the infroduc- 
.tion of a large number of structural changes calling for tech- 
nological changes. 

The formula cited above is approximate also because it fails 
to take into consideration the effect of many factors associated 
with armament cost. Figure 1.11.2 shows the fundamental factors 
affecting armament cost, which must be taken into consideration 
and of which we spoke in the previous section. 

Armamunt 
cost 

L 

Fig. 1.11.2 

At the ,same time, we can note a feature involving a trend 
toward a reduction in relative cost as the weight of the rocket 
increases. 
Obviously, 

This trend exhibits specific physical significance. 
the cost of a large item, all other conditions being 

equal, will be smaller per unit weight, since the expenditures 
on production will be reduced in this case. 

Analysis shows that this correction is approximately propor- 
tional to Qa3. If we take this factor into consideration, the 
cost of the rocket can be determined'from the following formula: 

cc, = K1Q2”. (8) 

Finally, even at a given weight the cost of a rocket depends 
in great measure on design and basic characteristics. Figure 
1.11.3 shows a diagram indicating the basic structural features 
of a rocket and its fundamental characteristics, affecting cost. 

However, an approximate method of cost determination for 
rockets is inapplicable to those cases in which the effect of 
various factors on cost is to be determined. As an example, let 
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us consider th,e derLvation of a mo.re detailed formula for the 
cost of a ballistic rocket. 

Let the c'ost of 1 kg of fuel be denoted Cm. It is a function 
in great measure of the type of propellant (soTid, liquid) and 
its energy Andy operational characteristics. 

of 

Let the CbnStrUCtiOn costs for an engine be denoted cdv. 
It depends in great measure on the type of engine (liquid pro- 
pellant, solids propellant, ramjet), the number of stages, the 
materials utilized, the weight characteristics, etc. 

I 1 r 

Fig. 1.11.3 

Let Qsu denote the weight of the control system instrumenta- 
tion, and let C denote the cost. The quantity Q $U su varies in 
limits from 70-270 kg for autonomous control systems while cost 
represents 0.410.7 of the cost of the rocket. Let thi weight of 
the warhead be Idenoted by Qbch, and its cost by Cbch. For con- 
ventional warheads this cost represents about 10% of the cost 
of the rocket and is, on the average, 
kg. 

equal to 30 dollars per 1 

I 

I 

I 

The cost of the rocket then is 

I where w is the iweight of the propellant; 

I 
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Kdv is the ratio of the structural we>ght of the engine to 
the weight of the propellant. 

Proceeding from parabolic theory, 
mately the required velocity ok 

we can determine approxi- 
to achieve a given range x 

k=j.+. (10) 
According to the Tsiolkovskiy formula, 
to 

this velocity will be eyLai 

D=Vcln ~+Kn.~+Qcy+Qc~ --. Knu~+Qcr +Qar 

Here zle is the effective exhaust velocity. 

Hence 
0 

Y 
e* zrr o+K,,,,o+Qcv+Qsu ,--- 

Knu~ + QEY -I- Qs v ’ 

Substituting (13) into (9) yields 

(11) 

(1.2) 

(13) 

(141 

Reference [35] presents the formula associating control system 
cost with the root mean square error c of this system 

ccy=K$* (15) 

To determine the cost of a high-explosive warhead we can proceed 
as follows. The weight of the explosive charge (wss> is associated 
in the following manner with the radius r3 of the damage zone: 



Here KP, Kbch and Cbch are the coefficients of the dam?ge-zone 
radius, the qualntity of explosive charge in the warhead and oost. 

(18), 
Substituting into (14) the quantities from (15) (17) and 

we derive a formula associating the cost of a ballistic 
rocket with its fundamental characteristics: range, accuracy and 
damage-zone radius: 

This formula has not taken into consideration the cost of the 
rocket body nor! the cost of other units, amounting to 3-10%. 
Analogous formulas may also be derived for similar rocket types. 
These, naturally, will be written differently, but the principle 

I of their derivation will not differ from that discussed above. 

Cost data for nuclear warheads, taken from [97], are .pre- 
sented below: ~ 

TNT equivalent,: in thousand tons ....... 1.0 10 100 1000 
cost, in milllobs of dollars ........... 2 4 6 8 

Approximately these data may be described by the following 
formula: I 

~ 
I CO .=2vi, (20) 

where 4 is the TNT equivalent in kilotons* 
Cbch is the dost of the warhead in mil&.ons of dollars. 

D. Cost of Grour/d Equipment 

It should d, noted that the cost of ground equipment may 
attain significynt magnitudes, exceeding the cost of the rocket 
severalfold. 

We present !the 
their capacity. , 

cost of American trucks as a function of 

Table 1.11.3 shows that the cost of a truck may be described 
approximately by the following formula: 

C=a+bQ, (21) 

where a is a coeifficient equal approximately to 3000 dollars; 
b is the c 

creasing capacity, P 
efficient for the increase in weight with in-. 

equal approximately to 1400 dollars 
per 1 ton; 

& is the capacity. 
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An analogous formula is valid for helicopters as well. In this 
case, a = 8000 dollars, b = lgO,.OOO dollars per 1 ton. It goes 
without saying that in this case it is necessary to take into 
consideration the relationship between cost and the size of the 
lot. 

Expenses for the construction of silos for ballistic long- 
range rockets, control centers and appropriate equipment reach 

TABLE 1.11.3 

0,26 
0,25 
0,75 
0.75 
2.5 

2: 

“,LP Of 

Coat of 1 
piece, 

c 

I 000 3500 

E 3100 4200 
yg 
4 500 

4300 2900 

3900 
3200 10600 

prove to be even more 

significant amounts. This is associrted 
with the need to provide for storage 
and work -areas, equipment for periodic 
monitoring of the missile complex and 
for replacement of elements that have 
broken down or are not functioning 
sufficiently well. Finally, measures 
must be taken to ensure safety. 

Even more substantlal expenditures 
for ground equipment are encountered in 
the case of antiaircraft missiles. This 
is associated with the presence of ra- 
dar stations, complicated computer 
equipment, these being more expensive 
than the antiaircraft missiles.,In 
view of this, analysis of ground-equip- 
ment cost in a number of cases may 

important than analysis of rocket cost. 

E. Relationship Between the Cost of Development, Production and 
Storage 

In addition to production cost, the cost of development plays 
an important role. We can see from the data of [441 that this 
cost is equal, on the average, to the cost of 1000 rockets, i.e., 
sufficiently large for it to be taken into consideration in eval- 
uating the cost of rocket armament. In addition to development 
cost, as such, it is necessary also to bear in mind the expendi- 
tures associated with production which may involve construction 
of new factories, the manufacture of new materials, etc. 

An important role is also played by expenditures for arma- 
ment storage. There are indications in the press that in certain 
cases these expenditures over a period of 10 years may be several 
times greater than the costs of armament production. Among these 
expenditures we should include those for the construction of 
storage areas, their repair, heating, protection and primarily 
the carrying out of maintenance work and the corresponding re- 
Placement of units and components. 

Thus, the general expenses for guided missile armament can 
be determined from the following formula: 

where Ns is the number of missiles; 
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C sr s is the! average cost of a single missile; 
Nn is then number of ground systems; 

c sr n is the, average cost of the ground system; 
Ckhr s is the' average cost of rocket storage; 
Ckhr n is then average cost of ground-system storage; 

Cr represents expenses on training of personnel; 
C 

pr 
represknts the cost of preparation for production. 

To calculate the magnitude of Ckhr s for 1 year, we can use 
the following formula: 

(23) 

where Cskl s ib the warehousing cost; 
nance of warehouses 

the equipping and mainte- 

C 
, per 1 ro.cket per year; 

sr si is the cost of individual units and rocket assemblies 
(for example, solid propellant charge); 

ai is the depreciation period, i.e., the period within 

C 
which certain units have outlived their usefulness; 

rl is the cost of maintaining servicing personnel 
(security, technical personnel working on replace- 
m&t of units and assemblibs, servicing, monitoring, 
e+c. 1; 

N i4 the number of people needed to service a single 
r1 rocket. 

According to American data, expenditures for a single military 
serviceman average 4500 dollars per year. 

As a special example, Reference [44] shows the following 
relationship of expenditures for a total quantity of 7500 mis- 
siles: I 

development cost -4.3%; 

production preparation cost - 8.7%; 

missile pr$duction cost - 32.5%; 

ground equipment production cost - 54%; 

storage cost (for 1 year) - 0.5%. 

We should ~bear in mind the great difference between peace- 
time and wartime economies, If cost is of decisive significance 
in the former chase, time becomes 
case. 

the chief factor in the latter 

All of the cited figures are 
basically illustrative in nature. 

extremely approximate and are 

J 
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Manu- 
script 
Page 
No. 

Transliterated Symbols 

33 Q = f = front = front 

36 CT = St = statiticheskiy = statistical 

36 4= ts = tsel' = target 

37 P = r = raketa = rocket 

37 ocK.= ask = oskolok = fragment(ation) 

37 gl=,f = fugasnyy = high explosive 

37 ~=d= detonatsiya = detonation 

46 3E z = zaryad = charge, (explosive) 

46 cc s = snaryad = missile (shell) 

50 3I=l= letchik = pilot 

50 A= d = dvigatel' = engine 

50 y= u = upravleniye = control [guidance] 

51 K= k= konstruktsiya = structure 

51 T= t = toplivnyy otsek = fuel compartment 

56 rrp= pr '9 priyemnik = receiver 

56 nep= per = peredayushchiy = transmitting 

56 RII = zp = ispol'zovaniye ploshchadi = area utilization 

61 cP = sr = sredniy = average [mean] 

65 on = op = opyt = experimental [test] 

65 H Q n = nizko = low 

65 B= v= vysoko = high 

67 P = r = rabota = work 

67 Hz n = normal'nyy = normal 

67 qJ=f= fakticheskiy = actual [factual] 

68 II= P = podgotovka = preparation 

75 Br v = vklyucheniye = switch on [connectSon] 
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75 

75 

76 

76 

76 

76 

81 

87 

90 

90 

90 

90 
.., 

93 

93 

93 

93 

94 

nP =. PT = prirabotka = adjustment 

r = g = gotovnost' = readiness [preparedness] 

PI = i = ispol'zovaniye = utilization 

pad G rab = rabota = work 

PeM h rem = remont = repair [overhaul] 

nPO# ~= prof = profilaticheskiy = preventive 

K xl-$= kompleks = complex [system] 

rrapTnh = partli = partiya = batch [lot] 

r =g= goryucheye = fuel [propellant] 

AS =,dv = dvlgatel' = engine 

CY = ~TU = sistema upravleniya = control [guidance] 
system 

bu =,bch = boyevaya chast' = warhead 

H =n= nazenmyy = ground 

XP = khr = khranenlye = storage 

P =r= raschet = team [crew] 

nP = pr = proIzvodstvo = production [manufacture] 

CKJI =~ skl = sklady = warehouses 
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Chapter 2 

THE METHOD OF STATISTICAL TESTS AND ITS 
APPLICATION IN OPERATIONS RESEARCH 

§2.0. INTRODUCTION 

The method of statistical tests in operations research, or 
as it is sometimes known, the Monte Carlo method, is being used 
extensively. Indeed, the area of applicability for this method 
has no fundamental limitations and is limited practically only 
by' the time spent on the performance of calculations. Extensive 
development of electronic computers in considerable measure re- 
duces this limitation and for this reason this is a fundamental 
method in operations research for the solution of complex prob- 
lems, 

The problems of calculating target damage probabilities are 
resolved analytically only for. comparatively simple cases. In the 
complex cases which arise in actual practice, the most efficient 
calculation method is the method of BtatisticaZ tests. The same 
may be said of problems in the theory of mass service engineering, 
not to speak of the problems involved in the study of armament 
effectiveness under difficult combat situations, where considera- 
tion must be given to the counterefforts of the enemy, the pro- 
babilities of detection, the problems of target distribution, 
etc. 

A positive feature of the method Is the simplicity of Its 
practical application. If a subject process can be described by 
a system of arbitrary equations, rules,of logic, etc., the per- 
formance of statistical tests presents no basic difficulties, 
imposes no limitation on the earlier cited equations and rules, 
nor do these require simplification. 

In connection with the material of this chapter, there is 
a rather detailed description of the essence of the method, its 
advantages and shortcomings and the most efficient areas of itd 
application are indicated, Methods of deriving random events, 
function magnitudes and the magnitudes of flows of random events 
are also described here, as are problems pertaining to evalua- 
tion of the accuracy of the method, and certain methods of rais- 
ing that accuracy, 

An example is presented at the end of this chapter on appli- 
cation of the method of statistical tests to determine guided- 
missile firing accuracy. 
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$2.1. THE METHOD OF STATISTICAL TESTS AND THE AREAS OF ITS APPLI- 
CATION i 

A. The Essence' of the Method of Statistical Tests 

The method of statistical tests (or the Monte Carlo method) 
presently refers to any procedure involving the use of methods 
of statistical~ selection for approximate solutions of a given 
mathematical or physical problem. We will immediately point to 
two variations~in the utilization of this method: 

the application of the method of statistical tests for a 
study of probability processes (it is assumed In this case that 
the mathematical or physical model of this process has been de- 
veloped); 

the application of the method of statistical tests for solu- 
tion of nonprobability problems (by analogy between the equations 
which describelthis problem and those which describe the proba- 
bility processes). 

In operations research It frequently becomes necessary to 
resort to the first variant of this method. In studyigg military 
action it is comparatively easy to make up complex descriptive 
schemes (models) Including the probabilities associated with such 
random elements as detection probability of certain targets the 
probability of~reliability in operation for all system elemints 
the probability of hitting a target, 
a rocket in flight, 

the probability of damagini 
the probability of target destruction etc. 

The study of such a model by analytical methods is extremgly 
difficult in many cases. In any event, the possibilities of con- 
structing complex probability models describing the processes of 
military action rapidly overtake the potentials of mathematical 
analysis for the study of such models. In this connection the 
methods of statistical tests in a number of cases have tuGned out 
to be the only~practically suitable methods of study. We should 
take note of the fact that the majority of models in which we 
examine bilateral military action (counteraction) are exceeding- 
ly ,complex for~investigations by analytical methods and in these 
cases it becomes necessary to resort to the method of statistical 
tests. 

tests 
Let us examine the application of the method of statistical 

on the simplest of examples, Given the calculation of the 
probability (P) of a rocket hitting a target represented by a 
circle of radius 21, 
ized by the 

for the case of rocket scattering character- 
qu 'ntities a ucr: = c8 = u, and no systematic error. 

This problem is solved analytically (see $3.3) 
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As an example this problem has been chosen for convenience in 
comparison of exact results with the method of statistical tests. 
At the same time, slightly greater complexity in this problem 
makes it impossible of exact analytical solution, and the method 
of statistical tests for practical cases thus becomes expedient; 

To calculate P by the method of statistical tests it is nec- 
essary to go through a series of tests: 

1. Determine the coordinates X~ and 8x of the points of 
rocket impact 

Xl, = 08, ,nr (3) 

a,, = 4.m (4) 

where 61,n and 132,~ are random numbers distributed normally with 
root mean square .errors equal to unity and a mathematical expec- 
tation equal to zero. We will speak of the methods for the deriva- 
tion of these numbers in s2.3, In this case we will use a table 
of random numbers (see Table 2 of the appendix); 

n is the realization number (of the test). 

TABLE 2.1.1 

x,, == 8, 0,80-0.54 I 0.42 -0.48 0.16 I.95 1.87 
z,, =7 8, --0.67 0.61 1.15 -E -0.90 -0,70 -0.36 

‘n 1.04 0.81 1.22 I 0.92 2.07 Ill 
P : Of50 0.;3 0750 0:60 

3 igo 
0.50 0.43 

-- 

xn=8, 0.63 --I,48 -0.49 
2, = 82 0,05 0.66 1.28 

TPl 0,63 I,68 1.37 
m 
P 0.450 0444 0,:o 

-2.92 1.72 -0,'JO 
-I. I8 -0.66 -0,GS 

3,15 1.84 1.13 

OT36 0:33 0,51 

-0.24 
J,76 
I,78 

Of29 

i 16 I I 17 

I 
X” “8, 0,24 0,34 -0.88 -1.07 0;47 1.46 
Z.--d, -2,47 -9.32 2.22 0.02 -0.55 2.62 

r,, 2.48 2.39 0.72 3.00 
m 
P ot27 

o647 io7 

0.31 0529 0.28 0632 0.50 
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2. Calculate the distance between the points of rocket im- 
pact and the tirget 

(5) 

3. Compare rn and r. If r < r, n we have a hit on the target. 
Let there be m such cases. If rn > r, there is no hit. 

4. Calculate the probability of a target hit 

The results obtained from calculations by this method are 
presented in TAble 2.1.1 for the case Q = 1 and Rl - 1. 

The exactivalue of probability P = 0.393. The table shows 
that 20 tests permit determination of this quantity with insuf- 
ficiently highiaccuracy. 
mean square deviation, 

The error is about 25% and the root 
calculated with Formula (2.3.12), amounts 

to 27.5% of the determined quaritity. 
that with three realizations (n 

It is interesting to note 
= 3) a more exact result is ob- 

tained than with 20 realizations, while an even more exact result 
is obtained with 10 realizations. These, however, are random 
facts. The root mean square deviation of the derlved.results from 
the true value,wlth an increase in the number of realizations, 
as will be demonstrated below, diminishes in a regular manner. 

B. .Application~of the Method of Statistical Tests for the Solu- 
tion of Nonprobability Problems 

Since theifollowing chapters will present and consider in 
comparative detail a number of examples for the application of 
the method of statistical tests in the study of probabllfty mo- 
dels associated primarily with analysis of military action, we 
note other possible applications of this variation of the method. 
This method may be employed to solve an entire series of problems 
associated with the study of the operation of an individual ar- 
mament model, In particular for the evaluation of the reliability 
exhibited by complex systems, to study the firing accuracy of 
rocket systems j to study production operations associated with 
fabrication as !well as with the assembly of rockets and the pre- 
paration of these for launching, etc. 

The applihation of the method of statistical tests for the 
solution of nonprobability problems is associated, first of all 
with the const$uction of probability model-analogs of functional 
equations. ThiA method is used most extensively to calculate in- 
tegrals, and particularly, multiple integrals. 

b 
To calculate the integral 

1, /(x)~x we can use the following 

method. To calculate this integGa1 means to determine the area that 
is cross-hatched in Fig. 2.1.1. We select random pairs of numbers 
C11B1, 0~262, et+., in which CL; are distributed according to the 
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law of wlual probabilfty in the interval a, b, and in which 6; is 
distributed according to the law of equal probability in the in- 
terval 0, g, and we will observe to see into which area the point 
,falls: the cross-hatched area, as alf31, ~383, or in the area that 
is not cross-hatched, as ~282, c~b(3,+. This indicates the sstisfac- 
tlon or nonsatisfaction.of the inequal'ity 

Let the number of cases in which this inequality is satisfied, 
i.e., when the point falls in the cross-hatched area, be equal 
to m, 
that 

and let all of the cases be denoted by n. It Is then proved 

b 

s 
f(X)dX= $(6-u). 

II 
(7) 

Fig. 2.1.1 

'It is obvious that if the points are uniformly distributed over 
the area, the number of their inclusions within the area bounded 
by the curve y = f(z), the axis of abscissas and the vertic'als. 
X = a and T = b will pertain to the total number of tests as the 
area of the above-indicated region pertaZns to the entire area 
into which the points may fall. From this we have Formula (7). 

Another method is also possible. Let a denote a quantity 
uniformly distributed over the interval (a, b). If we select a 
specific realization number(n) of thisquantity 
late ffcri) and the mathematical expectation 

ai* if we calcu- 

it is proved that 
.<. . 

9 

s f (x) dx = (b - n) M [f (q)]. (9) 
a 
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Indeed, the mathematical expectation f(z) in the interval (a, b) 
> 

- . il 
‘Is f (4 

M If Wl= ‘=ln 
or at the limit (-4 

from which Formula (8) follows. 

A large number of simple similar calculations is character- 
istic of both cases. 

EXAMPLE. qalculate J=RRe'dR for R1 
s. 

= 1. We note-the exact 

value .of this antegral -F 3=1-e . With R1 = 1, 3'kO,393. As & ex- 
ample this quantity has been selected for convenience in evaluat- 
ing result accuracy. Let us now use the method of statistical 
tests, and primarily, the first method. For-this, from the table 
of random numbers distributed according to the law of equal pro- 
bability (Table 2 of the appendix, we select 2 numbers each, be- 
ginning with 41 in 
these by 10-5, 

sequence (61 and ~5~) and, having multiplied 
we round off to 0.001. We then calculate,f(61) and 

compare with 61.' If f(6,) > 62, 
in, this oppositie case, 

we hold that the event occurred; 
the event did not occur. Summing the num- 

ber of cases in which the event occurred, we refer these cases 
to the number of experiments and derive the quantity '3, .2 Table 
2.1.2 shows then calculational results for a test number up to 20. 
For each number' of trials the value of the integral has been cal- 
culated and derioted 9,. 

When using' the second method we seek only the random number 
61, we calculate f(6l) and then the integral according to Formula 
(9). This values is known as *Y, and also shown in the table. That 
table also shows the square roots from the selected dispersions 
of r,, which ares denoted S, and the values of u are also calcu- 
lated from Formula (2.3.2). 

The first calculation method yielded an ierror of 14.5% and 
the second calculation method yielded a smaller error of only 
7.9%. The root mean square deviation in the first case, calcu- 
lated with Formula (2.3.X?), amounts to 27.5%; in the second case, 
calculated withiPormula (2.3.8), it amounts to 9.4%. Thus the 
second method for the calculation of the integral is more effec- 
tive. 

'Methods analogous to those indicated above may be suitable 
for solution oflsystems of linear equations, solutions of bound- 
ary problems, the calculation of continuous integrals and a 
whole series ofiother problems, However, since these Calculations 
in operations research are only auxiliary in nature, we will 
not dwell on these any longer. 
l/i63 
2/163 

~ 
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TABLE 2.1.2 

6 

3,646 

:%x 
' 6 

3,625 
3.434 
3,181 
3.0757 

15 

x.:2 
0:693 

9 
O,GOO 
0:464 
0,151 
0,0421 

I 

- 

- 

2 

0.993 

X% 
'2 
1 

0,570 
0,0548 

9 

f4: 
Oh26 

O.ii56 
0,444 
0,171 
040658 

3 

0,242 
0,192 
0,235 

3 
I 

0.459 
0,195 

4 

x’;s: 
oka4 

4 
1 

0.495 
0,176 
0,152O 

10 
I 

II 

0,454 0,446 
0.163 0.157 
0,0584 0,0529 

I6 

00% 
0:310 

.0,5:2 
0.454 
0.151 
O.d405 

C. Application of the Methods of Statistical Tests for the Solu- 

IT 

x*:2 
Oh28 

OXi 
0,435 
0.166 
0.0431 

I 

3 

:*t:; 
0:566 

0.8400 
0.497 
0,153 
0,09G7 

12 

0.339 
0.541 

Om3i0 
0,503 
0.435 
0,157 
0,0501 

- 

- 

16 

0,146 
0,161 
0.145 

020 
0.419 
0,173 
0.0435 

1 

I I 
6l ‘I 

0.131 6.352 
0,530 0,865 
0,130 0,331 

O.Gif a,& 
0,436 0,421 
0,203 0,190 
0.1070 0.0880 

13 I L 
14. 

0.806 0.699 
0,236 0.432 
0,583 0.547 

o.5i.9 0.5!* 
0,447 0,454 
0;152 0.150 
0.0463 0.0436 

IO 

;g 

0:535 

0.4$4 
0.425 
0,171 
0,041G 

m . 
- 

$43~ 

0: 392 

0.4:0 
0.424 
0,165 
0.0390 

tion of Probability Problems 

With respect to the solution of the first group of problems, 
i.e., the study of probability processes, the method may be di- 
vided into the following basic stages (Fig. 2.1.2): 

1) determination of the characteristics of random processes 
(initiai data) ; 

2) the derivation of realizations of random numbers, func- 
btions, flows and events; 

3) the performance of multiple repetitive calculations 
with respect to a selected algorithm describing the probability 
model of the subject process , proceeding from random realizations 
selected in the previous item; 

4) statistical processing of results, evaluation of accu- 
racy for results and making decisfons as to cessation or continua- 
tion of the process of statistical tests. An Important position 
is held by the human monitoring of model operation. In certain 
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~ Fig. 2.1.2 

cases it becomes necessary to combine the mathematical model with 
a physical model. There then arises the question of the combina- 
tion of the mathematical model with instruments, devices or even 
with a human being. 

To study any probability process we have to know the charac- 
teristics of the random quantities, functions, flows, 
fining the process. 

etc., de- 
For models of military action these charac- 

teristics include the probabilities of target detection, fault- 
less weapon operation, hitting the target, damaging the target, 
etc., i.e., the~characteristics of weapons systems. As 8' rule, 
these characteristics are determined experimentally. In a number 
of cases they may be assumed in order to 'determine their optimum 
levels. FLnallyi they can be determined theoretically, in partIc: 
ular, by the same method of statistical tests in which we use 
the characteristics of individual weapons elements that have been 
determlned experimentally, 

In addition to the characteristics of weapons sltes in a 
number of cases owe must consider the random characteristics of 
the ambient medjum, as, for example: 

1 
of the atm sphere 

speed of wind, 4 
(temperature, pressure, direction and 

,islbillty 
distances, etc.); 

from various altitudes, and at various 



'relief (direct Nj.sLbUity range, 

the possibility of movemen't, etc.). 
the availability of cover, 

The location of combat unit elements (the distance between 
units at. the front and in the rear) and the strength of the units 
(with consideration of losses), 
the speed of movement, etc., 

the preparation [training] time, 
may all be random quantities. 

Determination of all of these characteristics goes beyond 
the limits of the method of statistical tests; however, it is 
important to bear in mind that the accuracy requirements imposed 
on the method must be set on the'basis of the accuracy with which 
these characteristics are determined. The more coarsely these 
characteristics are determined, the less rigid the requirements 
that are to be Imposed on the accuracy of the method, 

D. The Accuracy of the Method and the Complextty of the Model 

Several words should be said in connection with the accuracy 
of the quantity derived.in the process of statist&Cal tests and 
its relationship to the root mean square deviation of the random 
quantities affecting the process and their mutual relationship. 

In the course of the solution we determine the mathematical 
expectation M which is a sum of k independent quantities xi with 
the mathematical expectation Mi and the root mean square devia- 
tion ui. For example, let this be the mathematical expectation 
of the number of targets damaged by various means. The quantity 
u for M in a single test will then be 

..1/ 
r 

Q= c .a*;. 
I=1 ‘ 

(10) 

The relative magnitude of c 

il -= (12) 

Let 

Then 

M , I=M,=...=Mr=M,, 

0, = aa = 0; e . . . = 01 =t= a,. 

(13) 

Thus, with an increase In the number of independent factors' af- 
fecting the process, the relative magnitude of the mean square 
deviation of M diminishes. If the quantities'xi are dependent, 
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according to page 213 2n Reference [25J 

(14) 

where r is the correlation factor (we assume that they are all 
equal). 

In this case the relative magnitude of the root mean square 
deviation dimln$shes more slowly, but nevertheless diminishes. 
This means that the method of statistical tests ySelds a more 
exact expectation of the sought quantity, the more complex the 
process being studied (in the sense of the number of affecting 
factors). Of cobrse, the foregclng cannot serve as a rigorous 
proof of this statement; however, experience In the study of com- 
plex probability processes convinces us of the fact that with an 
Increase in the number of random factors affecting the process, 
the application of the method of statistical tests becomes more 
feasible. 

Let us gxainine the situation In which the method of s,tatis- 
tical tests is used to determine the root mean square deviation 
of some quantity. 

Given that~ we are seeking the root mean square deviation of 
I 

the quanttty a which Is a sum k of the quantities y:.-z-:iy~* We 
assume that o~,=~s~,=u~;=...=u~. 1x1 

Then ‘2- iii, and accord,lng to (14) 
l=Ii 

After N tests, khe square of the selected root mean square devia- 
tion 

I 

However, according to the rule for the calculation of-the square 
of the sum 
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--_l _-..-,- . . 
Then 

Taking into consideration that 

where m 
wz 

is the correlation moment. Then we obtain 

We know [36] that after 1v tests 

Assuming all D 
Y 

to be identical, we obtain 

0' (9) = RaP (SZ ) + k (k' - 1) a' (/r&#,", ) T . 
,- 

-r,+ I : : 
: 

Hence . : 

VW'-~W +(k---I,)4 .,. - ,.,, 
Let the quantities y not be related. Then r = 0, 

i.e., the root mean square deviation of 
is independent of the number of factors 
(k). 

(15) 

the selected dispersion 
affecting the process 

Let the quantities y be associated so that r = 1. Then 

0 6:) lo- 
T=k f& (A’- I)’ 

(16) 

i.e., the root mean square deviation in this case for the sought 
dispersion drops sharply with the increasing number of factors 
'affecting the dispersion. 

Thus the highest accuracy In the determination of the root 
mean square deviation can be expected from the method ,?f statis- 
tical tests in those cases in which it is defined by mutually 
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associated quanti.ties, i.e., precisely in those cases in which 
the analytical solution Ts most difficult. 

The considerations presented above are primarily Illustra- 
tive in nature;,however, they may be useful in selecting methods 
for the study of models. 

E. Akea of Appl'icability for the Method 

The law oft large numbers serves as the theoretical basis for 
the method of statistical tests. The Chebyshev theorem, a form of 
this law, states that with an unlimited increase in the number 
of independent ;tests the arithmetic mean of the observed values 
of a random quantity exhibiting a finite disperslon converges in 
probability to Its mathematical expectat,ion, i.e., 

(171 

for any E > 0, iwhere xi are independent random quantities with 
the mathematical expectation m2 and finite dispersion. 

' The Bernoulli theorem, another form of'this law, states that 
with an unlimited increase in the number of independent tests 
under constant 'conditions 

$ 
the frequency of the subject event con- 

verges in prob ,bility to the probabillty of that event, i.e., 

(18) 

where A is the event, f,(A) is the frequency of that event in n 
tests and P is ~the probability of that event. 

Thus the method of statistical tests 1s based on the most 
general theorems of the theory of probabilities and essentially 
contains no limitations. 
tion of any prdblem, 

This method may be applied to the solu- 
and with a sufficiently large number of 

tests any degree of accuracy may be imposed on the method. 

These circumstances represent incomparable advantages of the 
method and govdrn its extensive application for solution of the 
most varied and most complex problems. This method,is frequently 
used to evaluate approximatlon theories, acting in the role of 

this method exhibits the drawback of high 
labor Input, connection extensive application of this 
method began with the development of computer engineering. It is 
true that In specific cases this difficulty is not great, as it 
may appear at first glance, and in a number of cases it can be 
reduced substa$tially. 

Metaphorically, the second drawback of the method is its 
"blindness." As the method is applied there is no way of seeing 
how certain factors affect the derived results and it therefore 
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becomes necessary to carry -out a large number of calculations 
even for,a qualltative study of the‘effect of various factors, 
which is.important in design procedures, selection of optimum 
solutions, etc., whereas analytical methods make it possible to 
carry out such evaluations simply. 

The combined application of simplified analytical methods 
making possible the selection of a comparatively narrow range of 
studies, the evaluation of the nature of the effect of various 
factors, the simplification of the model of a phenomenon by eli- 
mination of secondary factors, and the method of statistical 
tests making possible evaluation of a more exact but more limited 

'region is therefore the most efficient solution. 

. 

Fig. 2.1.3 

It is precisely this combination of analytical and statis- 
tical-test methods that is recommended for operations research. 
In the literature [114] we find the following interesting curve 

--showing the expenditure of time (t) on the solution of a problem 
by the analytical method and by the method of statistical tests 
as a function of the number of independent parameters affecting 
the subject process (d), 

This cur've -is shown in Fig. 2.1.3. The denotations here are 
the following: 

de is the number of factors from which the method of statis- 
tical tests becomes most advantageous; 

dq is the number of factors from which the application of 
analytical methods requires more time than is acceptable; 

dm is the number of factors from which the method of ststis- 
tical tests requires more time-than is acceptable. 

We can see from this graph that the study of complex proc- 
esses is feasibly carried out by the method of statistical tests, 
while simple processes are most advantageously studied by analyt- 
ical methods. 

We should take note of the fact that the method of statis- 
tical tests has much in common with experiments. As in the case 
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of experiment, we obtain a finalresult that is sufficiently re- 
liable and, as ma rule, requires considerable expenditure of work. 
Its drawback in comparison with experiment is the impossibility 
of taking intoiconsideration all factors, However, it exhibits 
an advantage consisting in the possibility of studying a process 
which is difficult to study by experimen-tation. For example, the 
derivation of limit values for weather conditions in tests car- 
ried out underactual conditions is difficult but simple with 
simulation; firing at arbitrary azimuths over sufficiently large 
ranges is difficult, but rather simple in simulation: 

$2.2. DETERMINbTION OF RANDOM NUMBERS AND FORMATION OF REALIZA- 
TIONS IN'THE SIMPLEST CASES 

For the calculation of each realization of a sought quantity 
by application~of the method of statistical tests we have to 
achieve randomlrealizations of the quantities, functions, flows 
and simplest phenomena. 

The starting point for the formation of any of these realiza& 
tions in discrete calculation ig a device exhibiting equal pro- 
bability of yielding 0 or 1. A coin may serve this purpose, with 
the index 0 on:one s,ide of the coin, and unity on the other; 
chips in an urn (marked 0 and 1 equally); a die with three sides 
marked 0 and the other three sides marked 1; and special elec- 
tronic devices! 

Having achieved appropriate amounts of 0 and 1 in random 
sequence, from these we can form random numbers distributed ac- 
cording to the law of equal probability and exhibiting an arbi- 
trary number of signs, The methods of this formation are described 
in Item A. 

Moreover ,~we can use tables of appropriate random numbers 
calculated by someone in advance. Using uniformly distributed- 
numbers, we can obtain numbers distributed according to other 
laws (Item B), realizations of random functions (Item C), of 
flows (Item D) and of events (Item E). 

If the exberiment yielded realizations of random quantities, 
functions, flo+s, etc., having assigned a number to each such 
realization and using uniformly distributed random numbers in 
the interval from 0 to the number of realizations at our dispo- 
sal, we can select the appropriate realizations of random quan- 
tities, functions, flows, etc. 

A. Derivation of Uniformly Distributed Random Numbers 

As a rule; random numbers are distributed according to the 
law of equal p6obability in the range O-1. There are special 
tables of such~quantities, an example of which is given in the 
appendix (see Table 2; showing random quantities distributed uni- 
formly in the interval O-99999). Such tables are used in manual 
calc=tilations. Basically speaking, these may be used in computer 
calculations. However, the large quantity of such numbers needed 
for calculatiohs, in addition to the limited memories of the com- 
puters, compels us to employ other methods of deriving the quan- 

-,llO - 



tities, and of these it is important to take note of two: by 
means of physical generators of random numbers and by means of 
methods for the derivation of pseudorandom numbers. 

The simplest physical generator of random numbers is a coin 
with 0 indicated on one side and 1 shown on the other. With this 
generator we can have the numbers 0 and 1 with equal probability. 
The random number Is calculated according to the formula 

where an is the sequence of numbers 0, 1 derived by means of the 
generator described above, 

It is not difficult to prove that the quantity 4 is distrib: 
uted uniformly from 0 to 1. However, we have to limit the number' 
of bits In the practical realization of this method. In an elec- 
tronic computer this is associated.wlth design (the number of 
bits), in manual procedures this is associated with the need to 
save time. Therefore, instead of a continuous population of num- 
bers with uniform distribution, we use a discrete population of 
numbers. If the computer has k binary bits, this population will 
consist of 2k numbers with identical appearance probabilities. 
The number of binary bits in existing computers is so great 
(around 30) that there is no reason to expect any inaccuracies 
because of discreteness in the solution of problems pertaining to 
operations research. 

As an example let us consider the calculation of the random 
number E from the uniform distribution of O,l, limiting ourselves 
to 7 bits. Tossing a coin, we obtained the following sequence: 
2 = 0, 1, 1, 0, 1, 0, 1. On the basis of (1) we then obtain 

The calculation result was rounded off to 0.01, since this is 
approximately the magnitude of the discreteness spacing in the 
case of 7 binary bits .(1/128). 

Practically, radioactive particle counters or radio tubes 
with significant tube noise are used as the physical generators. 

The first method involves the following. If an even number 
of particles has been counted at a precise instant of time, this 
corresponds to a reading of 1,; otherwise, it corresponds to 0. 
The circuit of such a generator is easily connected to a computer. 

In the second case the radio tube noises are converted into 
a series of pulses which play the role of the radioactive partl- 
cles in the previous generator. 

Pseudorandom numbers are numbers derived by calculation with 
a special algorithm without resort to physical generators. One of 
the possible methods of achieving uniformly distributed pseudo- 
random numbers (the means of a square) involves the following. 
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Given an 4, 1 - m-bit bfnary number 

E ,-,=~,.2-'-C-~~.2-I+...+s,.~-m. 
(2) 

I 

The square of this number will have the form 

~ !“. 
.*,.~~;;2-‘+d,.2-l+,.;:f9,.i-~m.*. 

._., . . (3) 

Let us isolate the mean bits of this number and assume 

Analogously wed can derive 5,+1, etc. 

Let us ta$e as an example -. 

F la-l= * ~+;+~+;+&0,41. 

Squaring this by successive multiplication, we obtain 

As 5, we assum; the following number (because in our example m 

is odd, instead of the resulting (m/2) + 1 = 3.5, we take 3, 
etc.): I 

The danger encountered with such methods is "degeneration" 
(getting zeros fin all bits, 
sequences, etc.!). 

the formation of cycles of repetited 
, 

Let us note that on obtainlng pseudorandom numbers it is 
absolutely necessary to carry out a statistical verification of 
these numbers (~of the mathematical expectation, 
the distributiqn function). 

dispersion, and 

B. Derivation df Random Quantities Distributed According-to Ar- 
bitrary Laws~ 

Let a random number Xi be derived from a uniform distribu- 
tion from 0 to ~1. This has to be transformed into a random num- 
ber from a sequence with a given distribution function. There are 

. 
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2 basic methods for this transformation; using the properties of 
an integral distribution function and the properties of the dis- 
tribution laws. 

We examine the first method, In the theory of probabilities 
[71] it is proved that if the random quantity 5 has the distribu- 
tion density f(x), the distribution of the random quantity 

is uniform from 0 to 1. 

Proceeding from this property, the rule for the derivation 
of numbers xi distributed according to the given law ffxl will 

)be the following. We obtain Ai from a uniform distribution in 
the interval O-l. We find the quantity zi by solving the equa- 
tion 

As first example we examine the transformation of the quantity 
Xi into xi distributed with probability density f(z) = 2x in the 
interval O-1. On the basis of (6) we write 

xi 
ai=- 2XdX, 

s 0 
(7) 

(8) 

Hence ,‘. 
. ’ 

As second example we present the formula for the derivation cf 
the random numbers Si distributed according to the exponential 
law 

j (Ej = ae-Q. (9) 

On the basis of (6) we write 

h 

liE . 
J 

le‘LXEdE =I 1 - e 
--AT‘ 

e 
-w 

(10) 

Hence Ei=--+l(l-ai).’ 

Having taken into consideration that 1 - hi is distributed accord- 
lnt to the law of equal probability, as is Xi, we oan,simplify 
this formula 

-. 
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We can proceed analogously to find the numbers 5~~ distrib- 
uted according to the Weibull law. For this law 

Then 

3 
(X,--x, P --- 

6- 
f(x)dx= l-e ** . (11) 

(12) 

Here xB, m and x0 are the parameters of the Weibull law; Xi are 
the uniformly distributed numbers in the interval O-1. 

The formuia for the derivation of the numbers'r; distributed 
according to the Rayleigh law is derived analogously: 

I 
ri =5@1nj1--+ (13) 

Here u is the barameter of the Rayleigh law. 

This is a,universal method. However, in a number of cases 
it cannot be used conveniently on a computer. This occurs when 
it is impossible to take the integral and the table for the in- 
tegral distribution function has to be introduced into the com- 
puter memory, Then it is possible to use the second method which 
involves utili?ation of specific features of the laws. 

Given that we have to find a number distributed normally. 
We .must @ithe+ utilize tables or the integral distribution 
function, or to recall one of the basic properties of the normal 
law, involvingthe fact that the sum of a sufficiently large num- 
ber of number3 ldistributed,according to arbitrary laws will be 
distributed ac(ording to the normal law. 

We will cjlculate the numbers xi by means of the formula 
I 

(14) 

where h 
i are ddstributed uniformly from 0 to 1. According to 

the foregoing, ithe numbers xi will then be distributed according 
to the normal law. The mathematical expectation and the root 
mean square deviation of the quantities xci will be 

(15) 

(16) 

If the required! number y i must correspond to a normal sequence 
with M(,yi) = a iand sly,) = o, the resulting number xi must be 
transformed in bhe following way: 
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n ( ) x,-- a 
Yi= 

,;;', 
r- +a- 07 1 

Practically, the normal distributed random quantities are derived 
in this way. However, for close correspondence to normal distribu- 
tion the number of terms must be sufficiently large (on the order 
of 10). To reduce this number we employ the following tracsformz- 
,tion: 

(18) 

The distribution law for oc with n = 5 is sufficiently close to 
the normal. A transformat,ton of the following type cl21 

makes it possible to achieve good agreement with the normal dls- 
tribution when n = 2. . 

For the second example of the utilization of this method, 
let us consider the derivation of, the quantities distributed ac- 
cording to the Raylelgh law. We know that the modulus of the ran- 
dom vector is distributed according to the Raylelgh law. Hence 
follows the rule for the derivation of numbers distributed ac- 
cording to the Rayleigh law: 

we obtain 2 numbers xc and I c from the normal distribution 
with c = 1 and M = 0; 

_. we find the number Ti - -I/x; +z;. (20) 

Thid number ~11'1 correspond to the number from the Rayleigh dis- 
tribution with the parameter u = 1. 

Analogously, we can derive the quantities from the Rice dis- 
tribution 

is a Bessel function; 

OL and o are distribution parameters. 

Taking into consideration that this law describes the pro- 
bability distribution of the modulus of a random vector on a 
plane with independent components which have the dispersion c and 
a mathematical expectation different from zero, we will use For- 
mula (20) in this case as well, but as xi we will take a number 
from a normal distribution with CT = 1 and M = ry # 0, since in 
this case we obtain the magnitude of the aodulus of the random 
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vector for which the projections are inde.pendent and di,atributed 
according to t%e normal law with M # 0. 

If we require numbers from the Simpson distribution, these 
can be derived: by summing two numbers from a uniform distribution, 
since we know that the sum of two uniformly distributed quantities 
is distributed~ according to 'the Simpson law. 

Numbers from the x2 distribution with one degree of freedom 
can be obtained by squaring the numbers taken from a normal dis- 
tribution with mathematical expectation 0 and dispersion 1 (squares 
of normally distributed quantities with mathematical expectation 
0 and dispersibn 1 have distribution x2 with one degree of free- ' 
dom). The derivation of the moduli of normally distributed quan- 
tities, of a logarithmically normal distribution and of other 
quantities presents no difficulties. 

In conclusion of this section we consider a method for the 
derivation of bandom numbers distributed according to the Poisson 
law 

(22). 

with mathematical expectation a.8 

We use the Poisson limit theorem: if Pn is the probability 
of event A in d single test, the probability of the occurrence of 
k events in n independent tests as n + = and Pn + 0 is asymptotic- 
ally equal to P(k), 

We will model series of n independent tests in which the oc- 
currence probability for events A is given by Pn which is on the 
order of 0.1-0.2. In this case, 
satisfied betw$en a, Pa and n: 

the following condition will be 

p ",, n=- (23) 

which can be adhieved by appropriate selection of the test number 
rL. For the numb~ers X~ distributed according to the Poisson law 
we should then :select the number of cases of the actual occurrence 
of event A. 

-n 
C. Obtaining the Realizations of Random Functions 

In a numbe!r of cases it becomes necessary to obtain the real- 
lizations of random functions. 

* 
As an example of such realizations 

we can cite thei temperature of air, the speed and direction of 
wind as a function of altitude, engine thrust as a function of 
the time of engine operation, the fuel consumption in the fuel 
tank as a function of the distance traveled, etc. It is impos- 
sible to reduce1 the problem to the determination, of random quan- 
tities at separhte points, since a correlation link - these quan- 
tities are dependent - exists between the quantities at the indi- 
vidual points. 



Let us stress that random functions must be distinguished 
from the nonrandom functions of random quantities (for example, 
the nonrandom function of aircraft flight range relative to the 
weight of the charged fuel whfch is a random quantity). The deriva- 
tion of nonrandom functions of a random quantity presents no dif- 
ficulties (with one of the methods.described above, we obtain a 
random quantity and calculate its function). 

c The function whose ordinates for any fixed values of the 
argument are random quantities is referred to as a random func- 
tion z(t) of the argument +. 

The basic characteristics of the random function are its 
mathematical expectation mz(t) and the dispersion Dz(t), nonran- 
dom functions of the argument, and the normed correlation func- 
tion rz(t;l, tz), a nonrandom function of two variable values of 
the argument at two points. All %hese characteristics are deter- 
mined by processing experimental data by the conventional methods 
of mathematical statistics. 

For any kind of transformation, as well as for utilization 
fn models, a random function is conveniently presented in the 
form of canonical expansions, the method for whose derivation was 
developed by V.S. Pugachev [64]. \The random function is written 
in the following form: 

Here xi are independent random quantities with a mathematical 
expectation equal to zero; 

f;(t) are nonrandom functions of the argument, which are also 
known as coordinate functions, 

Without dwelling on the derivation of the formulas for the 
calculation of D(xi) and f<(t), we will present only the final 
results, taken from Reference [25]. 

Let the following be determined by experiment: the mathemat- 
ical expectation, the dfspersion Dxftl and t.he correlation function 

K, (t,; i,) =rx (1,; !,)I/b,(~,)D,(f,)~of the random function XA(t). We denote 

the 
and 

(25) 

Calculate the dispersions x. - D(xi) and fiIt),. We can use 
following recurrence formula: for the calculation of firtj) 
D$l: 

(26) 
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l . 

I Fig. 2.2.1 

It should be be/me In mind in this case that when i > j 

ft Vd = 0, ,. !27) 

and fibI = 1,i i.e., 
shown in Fig. 21.2.1. 

the coordinate functions have the form 

EXAMPLE. Present the random function given by the following 
matrix of correlation moments .in canonical form (i.e., given by 
the values of tpe correlation function). 

I TABLE 2.2.1 

I 

0.16 
-- 

- 

The sequence of calculat 
selves to two ~41~0s): 

on14 O,lI 0.08 0.05 
0.20 0,18 0.17 0.14 

- 0,23 0.20 0.10 

- - 2 - OZ6 E , 

on 1s the followi!g (we limit our- 



Da = K, (I,; I,) -[I, (Q]’ D, = 0,30 -0,873~0, I6 = 0.08. 

fu VI) = 0. 

f, (fa) = 110. 

fn (fu) = 
K. (f,;f,)-D,J, (f,)f, (f,)-0.18-0, lG.0:87~0.69a1 o5 

a 0.08 . I 

fa U,) - KxU,: W-D,fl (t,)f> (L)=b. 17-0, 16.0.87~0,5ja1 25 
Du 0.08 . 4 

~,~K.~~,:~,~-{ll,~~,~l~~,+I~~~~,~laA}~ 

=0,23-0,69~~0,16+1:Q5~~0r08=0,07.~ 

f,(f,)-0. ’ ‘, 

,’ f,(k) co. :- 
f,(b)-1.0. 

I, U,) - K= (1,; h) -l&f, (I,) f~ UJ + DP~P VA fr &)I 4 
+ D, ,. 

~0.20-0,16~0.690.50+0;08~1,0r;-~;25,~ 57 
0.07 I 1 

~0.19-00.16.0.G0~0.31+0.08~l.r~5-1.21 
0,07 =0,77; 

D, = K, (I,; 1.) - {[I, (1,))’ D, + [fz (t,)]’ Dz + I\, (t.)]’ Da} - 

~0.26~0.50~.0,16+1.25~~0.08'-tO,57~~0.07=0.07. ” . 

f, (I,) = f4 (f,) -f, (f,) = 0. : : 

f, (f5) 4 I .n. .‘. 

f. Us) = 
K, (f,; f&-~DJ~ (1,) f, (1,)+olf*(1~)f~(~,)+D,f* (t,) fn +)I ~ -.-- 

4 
~~0.22-00,16.0,50~0,31+0,08~1~2~-l,2~+0,07~~.~~~~.7~ .’ 

0.07 
=0,55; 

D, = K, (I,; f,) -{IL (fdl’ DI + Ita (f,)l’ Da + [I, (fdl’ Ds + 
+ If, Udl~~4) = cr.28 -0;31~.0.16+ 1,2l'~0.08+0.77'~0,08+ 

+ 0.55~.0.07 -0.09, 

_ fo(f,)--.fb(f2)=fJ(!,)==fI(~I)=0. : ‘- 

f&V3 = 1,o. 

The coordinate functions calculated In this example are 
shown ‘in Fig. 2.2. I. 

If a canonical expansion of the random function has been ob- 
tained, there will be no difficulty in obtaining its random real- 
ization. Indeed, fn this case it is enough to have n random num- 
bers xi exhibiting the dispersions D: and the required distrlbu- 

~ tion, which Is accomplished in the manner demonstrated in the 
previous section, followed by the calculation 
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This method OI? deriving random functions is most convenient for 
a computer, alkhough not the only method. 

tions 
We frequently encounter the so-called stationwy random funo- 

for whicp 
I ‘mx (0 =const; I (291 

Kx (t,; t,) = K; (T), (30) 

where T .= t2 -'tl, i.e., with stationary functions the correla- 
tion fur.ction is independent of the magnitude of the arguments, 
but depends exclusively on their difference. The dispersion of 
the stationary: function is constant. 

For stationary random functions, rather than the canonical 
expansion, it is simpler to obtain the so-called spectral expan- 
sion, i.e., the representation of the expansion in the form of 
the sum of harmonic oscillations exhibiting various ,amplitudes 
and frequencie?. This expansion may be interpreted as a special 
case of the canonical expansion in which trigonometric functions 
play the role of coordinate functions. In the interval --T + T 

(31) 

where n is a sufficiently large number, 
x.1 i and x2 1 i are random numbers, , the dispersions for each pair 

of whidh are equal to one another and on the basis of the 
familiar correlation function are determined from the 
following formulas: 

(32) 

(33) 

With the spectral expansion of the random function, it is 
rather simple to achieve its random realization, using the randor 
numbers and Formula (31). 

0. Formation 04 Random Flows 

First of 411, let us note that in the case of complex flows 
it is best to Tntroduce experimental data into the model. i3ere we 

I 
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will examine the formation only of the simplest flow and we refer 
the readers td References [12, 133 in which are discussed methods 
for the formation of random flows with uniformly distributed in- 
tervals between calls, methods for the formation of Erlang [sic] 
flows, generalizations of Erlang flows, flows with fixed minimum 
time, flows with variable parameters, as well as for flows of more 
general character, 

Thus, given the requirement for the formation of the 'simpidsi; 
flow, i.e., determine the times tk for the arrival of requisitions. 
Let us represent these times in the following form: 

The function for the density of any intervals between calls 5; 
for the simplest flow has the form 

f (2) - leeLt. 

Therefore, the construction of the realization of a flow of sim- 
plest events can be reduced to the formation of a sequence of in- 
dependent random numbers distributed exponentially. The method 
for the derivation of such numbers was covered earlier. 

EXAMPLE. Formulate the simplest flow with X = I. 

From the table of random numbers we obtain the numbers X i 
distributed according to the law of equal probability from 0 to I; 
we will transform these into numbers distributed exponentially by 
means of Formula (IO) and we will then determlne the times of 
event occurrence by means of Formulas (34). The calculational re- 
sults are presented in Table 2.2.2. 

TABLE 2.2.2 

n 

A; 

E *=-- 

- i In ( 1 --A,) 

I 

O.Gc1674 
1.110 

1.110 
* 

3.933 0.277 
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E. Modeling of 'Random Events 

In statistical tests it frequently becomes necessary to an- 
swer the questTon whether or not a random event occurred, if its 
probability is 'known. For example, we consider a battle between 
two tank groups. A salvo has been fired. The probability of tank 
damage i's known. The question that has to be answered: was the 
tank damaged 04 not. 

First of &l, let us consider the case in which this event 
is independent 'of all others. In this case, we have to select a 
number Ai from the population of numbers uniformly distributed 
from 0 to 1 an4 compare that number with the probability P of the 
subject event: ~ 

If P L hi, event A occurred; 
I IfPUp event A did not occur. 

It is easy to prove that with a large number of tests the fre- 
quency of event A determined in this manner coincides with its 
probability [13]. 

With this ~method it is possible to form more complex inde- 
pendent events.,As an example, let us consider the modeling of 
two, dependent random events: 
having the probability Pg. 

A having the probability PA and B 
Moreover, we know the conditional pro- 

bability P(B/A/ of event B for the condition that event A has oc- 
curred. 

We derive#X. 
distributed in~t& 

as the random number from a population uniformly 
interval O-l. If Xi < PA, we assume that event 

A has occurredl In this case, for tests with event B we employ 
the conditional probability P(B/A). We obtain Ai+l and if Xi+1 < 
< B(B/A), we assume that event B has occurred. In the opposite 
case, we assume that event B has not occurred. 

I 

If xc > Ph, event A has not occurred. In this case, for a 
test associated with event B, we must use the probability 

(36) ' 

i.e., the probhbility of event B for the condition that event A 
has not occurred. At the conclusion of this part we will recall 
the relationshkp of the correlation coefficient forevents A and 
B [rp(AB)] withy the events probabilities PA and PR and the condi- 
tional probability P(B/A): 

(37) 

EXAMPLE. ~The probability of the first and second ar?iIIsrt/ 

she\ IS fired ait a target from an automatic CarlfJn ir? r;qual to CJ.~,, 
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I.e., PA = 0.6 and PB = 0.6. However, these events (the shells 

hitting the target under condlttons of firing frorn an automatic 
canon) are dependent In view of the presence of common firing 
errors. The probability of the second shell hitting the target 
under the condition that the first shell has hit Is therefore 
higher than 0.6. Let it be equal to 0.8 [P(B/AJ = 0.81. We have 
to model these random events. 

Using the table of random numbers uniformly distributed in 
the interval O-99999 (Table 2 of the abbendix), we find the ran- 
dom number 57705. This WI 1 I correspond’to 
uniformly distributed in the Interval O-I 

a number from those 

57705 ’ 
A, = 99999 = 0,57706. 

Xl < 0.6; consequently, event A (the first shell hitting) has oc- 
curred. In this case, to determine whether or not event B oc- 
curred’, we use P(B/A) * 0.8. 

We determl ne 

, 
A 71618 

,=~~g=0,71t18<0.8. . 

Consequently, the second hlt also occurred. 

If the relationshi between the events were not taken into 
conslderatfon, A2 ’ Pd = 0.6 and we would have to assume that 
the event did not occur. 

$2.3. EVALUATION OF ACCURACY IN RESULTS DERIVED BY THE METHOD OF 
STATISTICAL TESTS 

The problem of the accuracy of the results derived by the 
method of statistical tests is a fundamental question in the meth- 
od, -since essentially it governs the applicability of the method. 
Indeed, if the method of statistical tests is to be used to select 
a solut'.on from among many, and for the evaluation of each of 
these many solutions with a sufficiently high degree of accuracy 
we have to derive a large number of realizations, it may turn 
out that. the expenditure of machine time will be so great that 
we will have to reject the application of the method. 

A. General Problems in the Evaluation of Method Accuracy 

There are three basic reasons leading to errors in the appli- 
cation of the method of statistical tests: 

inaccuracy in the determination of the input data; 

methodological errors associated with simplifications of 
the model and failure by the model to make allowance for certain 
factors; 

errors associated with smallness of the selection and, more- 
over, calculation errors which, as a rule, can be neglected. 
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The accuracy of the method can be described by the follow- 
ing formula: 

where usi is the total root mean square error of the method; 
K Is the criterion determined at the conclusion of the 

application of the method (the mathematical expecta- 
tion ior the root mean square deviation of some quan- 
tityj the probability of some event); 

% represents the factors affecting the magnitude of the 
criterion; 

u Is the root mean square error In the determination of 
"i the magnitudes of these factors; 
am is the methodological error. The determination of this 

error when, for simplification of the model, after in- 
vestigation of the effects of various factors we ne- 
glect the secondary factors, is not difficult 

where uk represents the magnitudes of the factors tJhose effect 
we have neglected. However, If this error, arlslng as a result 
of impossibilit~y of describing the effect of any factors by analy- 
tical relationships, such a model must be checked out by other 
methods (testing of the physical model, evaluation at limit as- 
sumptions, etc.~) in order to arrive at a conception of the mag- 
nitude of urn. 

0 is an error associated with the small number of realiza- 
tions. In the following sections of this chapter we will examine 
the,magnitude of this error in detail. 

It should Abe borne in mind that a change in the magnitudes 
of the componer+s in the total error in those cases in which they 
are markedly smaller than the remaining does not lead to a sig- 
nificant change in the total error. Therefore, if any of the com- 
ponents is sufficiently small (on the order of 0.5 of the largest), 
its reduction leads to no noticeable lowering of the total error. 

If the det~ermining error is the error due to inaccuracies 
in the determination of input data, the permissible error from 
limitation on t,he number of realizations can be determined from 
the formula 

If G is indeed smaller, the number of realizations can be 
reduced. 
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In constructing a model we should also analyze such problems 
as the possibility of model simplification. This increases the 
methodological error, but reduces the time spent on achieving one 
realization and at the same time for a given machine time makes 
it possible to increase the number of realizations and, conse- 
quently, 
number. 

to reduce the error resulting from the smallness of that 
Thus it is possible to find the optimum complexity of the 

model assuring the minimum magnitude of the total error for the 
given machine time. 

Below we examine the errors associated with a small number 
of realizations. 

B. Accuracy of Determining the Mathematical Expectation of the 
Sought Quantity 

As a result of N statistical tests we have obtained the fol- 
lowing values for the sought quantity: zl, x2, x3, . ..) 
we have calculated 

xN and 

‘N 

Xc; Xi, 
rd (4) l=I -',,. 

$'ZN% e (Xi -iy. (5) 
14 

The quantity x is taken as the mathematical expectation of 
the sought quantity, 

In mathematical statistics (see [71], page 215) the follow- 
ing is demonstrated 

a= Pr~b(---~(Z-x~~e), (6) 

where xo is the true value for the mathematical expectation of 
the sought quantity; 

(7) 

to Is the c1 function and k = N - 1 for the Student distribution 
whose values are given in Table 4 of the appendix. 

In order for us todetermine the mathematical expectation 
of the criterion such that the error does not exceed a given val- 
ue for a eiven degree of reliability, we have to use Formula (7) 
and the table. For convenience in introducing the tables in the 
appendix into the computer, approximation polynomials are of- 
fered. 

The root mean square deviation of the quantity ? - x.0 ac- 
cording to [71] is 
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This formula should be used when we have to calculate total 
errors, for example, by means of Formula (1). 

The cited formulas make it possible to evaluate the accuracy 
of the derived! results OF to evaluate the adequacy of the number 
of'realization~s. 

I I 
EXAMPLE. ~Determlne the mathematical expectation of a auantitv 

calculated by 'the method of statistical tests if It Is required ' 
that the errors not exceed 7% of the mathematical expectation wfth 
a probabllfty of 0.9. 

It Is mos~t expedjent here, after derivation of each realiza- 
tion N, to callculate x and S ac_cp.rdfno,to Formulas (4) and (51; , 
then, from a =; 0.9 and k = N - I in Table 4 of the appendix to 
find ta and bi means of Formula (71 to calculate the E which is 

then referred to z. If thfs quantity is equal to 7% or less, the 
calQculatlon can be curtal'led. Otherwlse, it must be continued. 

The indicated method Is carried out well on computers. 

Table 2.3)l shows the results of calculations by the method 
descrfbed. Forithe number z:i we have taken the random sequence 

of numbers from Table I of the appendix, 
number, Increaked by 5. 

TABLE 2.3.1 

beglnning with the 2lst 

*1 

4.33 
5,61 

%f 
$4; 

-1164 
5.05 
5.56 
6.28 
3,82 
4,34 
4.32 

--- 

may a 
case it has tolbe calcu 
with the given. 

C. Accuracy of!Determin i ng the Sought Root Mean Square Deviation 

4.33 
4,97 
5,36 
5,25 
5.02 
4.90 
4086 
4.a 
4.96 
5.09 
4.98 
4.92 
4.88 
. 

- 

.0,73- 1 ,797 
0,71 1,782 

, -. - 

I 

I 

- 
- 

I,21 
0,73 
0.67 
On56 
0.47 
0.40 
0.37 
0.40 
0.41 
0.38 
0.36 

I 
7 I 
I - 

oT;4 
0,45 
0.36 
0,29 
0.23 
0.23 
0.25 
0.25 
0,. 23 
0,22 

so be set with respect to o, in which 
ated by means of Formula (8). and compared 

As an appropriate value for the root mean square deviation 
we assume S, calculated with Formula (5). 

In mathematical statistics([71], page 217) the following is 
demonstrated: , 
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CL s Prod (s Q 4U], (9) 

where c is the true value of the root mean square deviation; 
4 is determined by means of Table 5 of the appendix on the 

basis of a and k = N - 1. 

Reference [823 presents an approximate formula.for u(S) 
which is in good agreement with the exact formula 

d(S)& , I__ 
v*NU- I,4 ’ (10) 

Formula (9) is used for the case in which we have to deter- 
mine u with an error not to exceed the given value. In this case, 
the required number of realizations 'can be determined prior to 
*the start of the tests. 

Formula (10) is used in those cases in which we have to de- 
termine the total error. Its application is made difficult by 
the fact that the quantity u (general dispersion), as a rule, is 
unknown. With a sufficiently large number of tests in this case 
instead of c we must assume approximately S, 

EXAMPLE. Find the number of realizgtions for the determina- 
tion of cI if we require, with probability 0.95; that it not ex- 
ceed the true value by more than 20s. 

By means of Table 5 of the appendfx, having taken 9 = 
= (l/1.2) = 0.834 and OL = I - 0.95 = 0.05,. we find K = 50, whence 

N = K + I =z 50 + 1 s-51.. 

D. Accuracy of Determining the Prdbability of Some Event 

Let there have been carried out N tests in which the subject 
event occurred m times. The probability6f this event occurring 
will be defined as 

P ;-* c- (11) 

The root mean square deviation for P from the true value (PO) 
can be determined by means of the following formula: 

f 
--T P*(l a(p), ---. 

N 
(12) 

This formula is useful in evaluating the total error of,the 
method; however, not knowing the exact magnitude of PO makes the 
utilization of this formula more difficult. Occasionally, instead 
of PO we have to assume P approximately. 

In determining the probability P by the method of statis- 
tical tests, it is frequently necessary to determine the proba- 
bility OL that P will not differ from the true value (PO) b more 
than a definite quantity AP, or by a quantity AP = IP - PO T which 
will not be exceeded, with the given probability 01. The quantity 
hP is known as the confidence internal. 
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We have tlo use Table 6 of the appendix to determine this 
quantity. in ,V' statistical tests, if the subject event has not 
r,r::u~~et.i 2 slr..gle tfme, we find RO from Table 6, and from this 
'~ ; "' AC,&? -et: -;--";-I- :'a ccIc*a - 

P 2. a=-- (13) 

The, quantity P 
Iv 

is the upper confidence boundary and the lower 
confidence boundary in this case Is Pn = 0. 

In A stat~istical tests, If the subject event has occurred 
m times, accor:ding to ~1, m/N and m we rind the coefficients RI 
and R2 in Tabl'e 6, and by means of these we calculate the con- 
fidence boundakes 

We should~bear in mind that if 
., 

PA (P s pi )‘I a,, (16) r- 
I Pmb (P < &) = U,, (17) 

then "c+"<P(PB)=lll+ll,;lS (18) 

EXAMPLE. b, Durlng the course of the statistlcal tests we 
have to determine the probability of an event with an error not 
exceeding 0.2OJ with a reliability of 0.90. For 20 tests we have 
m = 3. I 

The question arises as to whether the derivation of the real- 
izations should be continued or whether they can be stopped. 

By means of Table 6, having taken m/N = 0.15, m = 3 and Q: = 
= 0.95 [see Fo‘rmulas (161, (17‘) and (1811, we find 

P ln HExi& = 0.04, P*= 0.35, 

, P-b(0,04 Gi P < 0,35) -&. 

-\~,~=0.35”-0,15~0,20, .w,=o,15-0,04=0.11, I .e. , do not exceed 0.20. Consequent I y, 
the derivation :of the realftatlons can be stopped. We note that 
AP1 > AP2 plway’s, 
minatton of APll. 

and we can therefore I imit ourselves to deter- 

b) For N =~20 letm = 0: gfven 01 = 
interval no higher than 0.20. 

0.975 and a confidence 

From Table: 6 we find Ro = 3.37. Then Pv = (Ro/iV) = 0.17. 
AP = 0.17 - 0.00 = 0.17 < 0.20. The calculation can be stopped. 
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E. Accuracy in Determining the Function of a Single Variable in 
the Given Interval 

Frequently, in solving operations research problems it be- 
comes necessary to seek not one constant, but a function on the 
given interval of argument variation. Let us, first of all, con- 
sider the Froblem in which the form of this function is known, 
in particular, let this be a polynomial ofdegreen. In this case, 
we have to determine the average magnitude of the root me;n' 
square error c sr of the function on a given interval and to se- 
lect the method of determining that function so that for a given 
number of tests we obtain the minimum csr to determine the func- 
tion. Let the given interval be O-T. 

Let us consider the simplest case in which the sought func- 
tion is a first-degreepolynomial 

in the O-T interval. 

To determine the coefficients of this polynomial we have to 
calculate the values of F(x) at least at two points (ZI; Yl) and 
(~2; ~2). Then 

The quantities xl and 3~2 contain virtually no errors, and 
Yl and Y2 are determined experimentally with errors characterized 
bY 0 Yl 

and u 
Y2' 

a result of the limitations on the number of 
tests. 

On the basis of the theorem of linear function dispersion, 
we can write 

Then 

Let us now seek the optimum quantities 21 and x2 at which airI is 
minimum. Considering that (sir1 Is symmetric with respect to r/2, 
we can conclude that the optimum variant must be the one for 
which 
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Then 

From the conditibn Gp, -=0 we find ~1 = 0, i.e., the points ~1, axa 
Yl and 51 Y-J should be set at the ends of the interval. 

In this case the calculations show that g,=0,817u,.Analogous 
studies were carried out for polynomials of higher degrees. It was 
assumed in this case that the points 3~1, yl; x2, 32; ,.. are sit- 
uated uniformly her the given interval, 
and that their number is minimum, i.e., 

beginning from the ends, 

polynomial plus unity. 
equal to the power of the 

Studies show that the minimum number of 
points assures alminimum c srl’ Analysis of the formulas for lssr, 
makes it possible to select the optimum distribution of the num- 
ber of tests over the points. If we assume that aY,=kI where 
n. is the number lof tests at the given point, and if.we impose 7. 

n+l' 
the condition L 'hi-- 

/=I ~ 
-N, we can determine the optimum-ni ensuring 

the minimum csrl' Correspondi,ng data are presented in Table 2.3.2. 
That table also s~hows the coefficient KI from the formula 

(23) 

In a number of cases c is unknown and we have to assume S for it. 

TABLEi 2.3.2 
Ve1ucs of K, --- 

I)aKfce 0 1 
1 

polynomi;l Mont edvantageous number of 
temtm mt the points In aaquance 

I1 I 
2yp;~c;/ ~~~~~~~- 

point over the points 

0 I 1. OOON I,00 1.00 
: , 0.500N; 0.500N 0;250N 

0.250N; 0.500N; 
2.40 1.34 2.14 1.34 

0.153N; 0.347N 

;,W;; 3 I 
O.llhN; 0,280N;. 

3i9 3.22 
4, 

, 0.216N; 0.28QN; 0.112N 5.33: 4.71 
_ -, 

However, in a number of cases the exponent of the sought 
function is unknotin. In this case, in addition to the error due 
to the small volume of selection at the reference points there 
may also arise an ierror due to the form of an improperly'selected 
function. Let us cdnsider the problem of this error. First of 
all, let us see what results from the selection of' a first-decree 
polynomial instead, of asecond-degreepolynomial under the condi- 
tion that the mean magnitudes of all terms in the given interval 
(O--T) are equal to! each other. 

I 
I 
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In this case the true polynomial is written as follows: 

where uF is the root mean square value of the sought function in 
the given interval. 

If instead of this polynomial we take a first-degreepolynomiz 
for which the quantities y coincide with the corresponding values 
of y2 from (24) at the ends of the interval, the polynomial will 
have the following form: 

bl1== $i% (. ) -“;“+I . (25) 

The root mean square error In the subject interval Is deter- 
mined in the following manner: 

I 

(26) 

It turns out that usr2 is also a function of the combination 
of the signs of yt2). If we assume all combinations'of signs to bl 
equiprobable, analogous calculations for each combination of sign 
and the average u sr2 will give us 

a cp. = 0,3Xa, = KPaF. (27) 

Analogous calculations were carried out for other cases as 
well. Table 2.3.3 shows the coefficients K2 where thedegreeof th 
true polynomial is equiprobable from 0 to M, and the degreeof the 
adopted polynomial is n. 

In practical applications it is difficult to expect that the 
sought function will exhibit a large number of extrema and in- 
flexions, and for this reason it will, for all intents and pur- 
poses, always be well approximated by polynomials of the 3g-4th 
degrees. In any event, we can expect that M < 6. 

TABLE 2.3.3 

I I --.l 

2 

0,270 
0,000 
0.000 
0.000 

3 Ii 1s 16 / 7 

-- 

0,353 0.453 0,502 0,556 0.591 
0,125 0,252 0.339 0.135 0,533 
0,ono 0.02G 0,053 0,087 0.119 
0,000 0,000 0.005 0,013 0.320 

I I 1  1 

- a31 - 



Let us now consider the problem of selecting the optimum 
degree Of the approximating polynomial. The totai mean error of 
the sought function in the given interval (taking into considera- 
tion that osrl aqd usrz are independent). 

(28) 

Since K1 and KP for fixed M are functions of n, asr/aF will 
be a function of in and m. 

The caJcula$ional results are shown In Fig. 2.3.1 from which 
we can see that there exists an optimum quantity n which is a 
function of m. The physical significance of m is the following: 
it Ls the relative accuracy in the determination of the function 
at the reference 'point. The higher this accuracy, the greater the 
degree ofthe polynomial that should be assumed, With m > 0.2 it 
is advisable to take n = 
taken as equal to' 3. 

2; with m < 0.2, the quantity n is best 

EXAMPLE. Finlid the probabtllty of target damage as a function 
of the ratlo of the radius of the damage zone to the root mean 
square deviation b = r/U in the Interval R1 = l-3; in this case, 

& R 
P = 

s 
Re - -i-d R is callcu lated by the method of statlstlcal tests. 

(This example was; se 
exact results, slince 
latjsd analytlcal ly). 
fun'ction. 

lected only for convenience In comparison with 
In actual practice this function is calcu- 
We can carry out 100 tests to calculate this 

Fig, 2.3.1 



9eqardles.s of the degree of the polynomial, in the form in ,_ 
which we wil I seek the function we will have to carry out the 
tests at the ends of the interval. We can see from Table 2.3.2 
that as a function of the degree of the polynomial, in which form 
we rri II seek the function, from 50 to 11.2% of the tests wi II 
7-3~~2 to bc carried out at the ends of the interval. Let US carry 
out ‘,:?ts of I I tests and determine 0‘. 

For the point with RI = 1 we will use the calculations shown 
in Table 2.1.2, whence for n = I I, S( I I = 0. 157, P(, I = Jt-O.Jdk 

For the point with RI = 3 we will carry out analogous calcu- 
culatfons as a resul 
and P(3) = 0.999. 

t of which for n,= II we obtain St,) = 0.590 

We now calculate u (for u we actually as5ume SI: 

OF - = 0.07, 

0 0.55 
m = -* o,77 fiOo 

o,v N 
=0,07. 

Proceeding from m, we determine that the most advantageous degree 
of the polynomial will be 3. 

The distriby$ion of the number of realizations over the 
points must then be the following (see Table 2.3.21: 

for R, = I - 15 realizations 

RI = 1.67 - 35 realizations 

R, = 2.33 - 35 realizations 

R,=3 - (5 realizations 

Having carried out the corresponding calculations, we determine 

% 
and S.. 

2. 

TABLE 2.3.4 

R, 1 I 1 1.G7 1 2.33 1 3 

Ni 
SC 0.::7 020 
Pi 0,978 0.933 

- 

p=nR’+bRP+cR+d. 

Having substituted the corresponding values of Ri and Pi 

into this formula and having solved the resulting system of equa- 
ticns for a, b, c, d, we wll I have the following formula for P: 

P = - 0,149R’ + 0.711 R* - 0,672R + 0,571. (30) 
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Hav i ng ca I cu I ated u~=0,80. cr=O,375. nigO.06, by means of F,Tg. 2.3. I we 
will find that’ 

For compakison Fig. 2.3.2 shows the exact graph of the func- 
tion and that obtained by means of Formula ,(30). 

; a’ 1 2 3 R 
Fig. 2.3.2 

F. Verification~of the Hypothesis 
of the Mathematical Expectation 

Pertaining to the Magnitude 

In operations research we very frequently encounter a case 
in which, of twb variants (A and 6) we have to select one whose 
mathematical exbectation is greater than the criterion of'mathe- 
matical expectation of the other, In this case neither the mathe- 
matical expectation nor the disperslon of the griteria are known 
prior to the investigation, and the criteria themselves are de- 
termined by theimethod of statistical tests. 

sible 
In this case, prior to the start of the tests it is impos- 

to answerthe question of the number of the tests required. 
i; the tests a'e carried out, it becomes necessary to calculate 

i =x -x 
Ai 

)i the mathematical expectation and the root mean 
% ) 

square deviation of that quantity 

eu 
Then, assuming that for 
quantities up toiN have 
terion 

the determination of each of the subject 
been carried out, we calculate the cri- 

t+m=l. (32) 
I  

Further, from Table 4 of the appendix, having taken K = 2 (N - 1-1, 
we find the probsbility c that xA > ;cs, i.e., that cix > 0,. If 
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this probability corresponds to that which is to be obtained, 
the calculation is stopped. Otherwise, it 1s continued until the 
required probability is obtained. 

EXAMPLE. Determine which mathematical expectation of the 
quantities rA or ZB is the larger. The correct answer must be 

given with probability 0.95. The results of the calcu,lations are 
shown in Table 2.3.5. The calculation can be stopped after 4 
tests. . 

TABLE 2.3.5 

: Ye:; 
3 2:15 
4 0,81 
5 0. IO 

-0.19 0.52 0,52 - - 
0.29 1.32 o,92 0.40 2.30 -i 0x4 
2,17 -0,02 OS61 0.53 1.64 0.82 

-0.63 1,4i 0,82 o,56 2,54 : 0.95 
-0. I1 0.21 o,Gj 0.54 2,55 8 Oa96 

I 

G. Verification of the Hypothesis Pertalnlng to the Magnitude of 
the Root Mean Square Deviation 

Occasionally it is necessary to select the variant (from A 
and B) for which the root mean square deviation of the criterion 
is larger than for the other. In this case we carry out iV1 tests 
for variant A, and on the basis of the results we calculate SA 
and we carry out N2 tests for variant 6 from which we calculate 
SB. It is demonstrated In mathematical statistics (C711, page 
245) that 

where F is the function K1 = Nl - 1 and K2 = N2 - 1 and the given 
probability that SA > SB. 

Table 8 in the appendix gives the values of the function F 
for P = 90 and 98%. In that table we find selection for the case 
fll = A72 (i.e., Kl = K2) and for the case of the optimum Nl and 12, 
by which we understand the combination of these such that for the 
given Nl + N2 the quantity P is maximum. We see from the table 
that the number of realizations for the variant with the smaller 
dispersion is best made as large. as possible. 

EXAMPLE. A series of 21 tests were carried out for each of 
the two variants, from which it was determined that 

&=-IO, Ss78. 

We have to answer the question whether SA is larger than SB 

with the probability of a correct answer at 90%. 

Determine whether the derivation of realizations should be 
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, continued or whether it can be stopped. We have 

KA+&=21 +21--1-1-40. 

We see from Table 8 of the appendix that P < 90%, 
sp; = 

since 
I.56 c'2.12. Consequently, the derivation of rsalltatlons 

must be continued. 

If we assulme that with continuation of the experiments SA/S8 

will not change:, we determine from the table that to achieve P = 
='90% the total) number of experiments must be around 120. 

In the giv~en case it is necessary to carry out a successive 
analysis of the test results, increasing the number of tests for 
the variant wftn the smaller dispersion so that K2 approaches the 
optimum. The lamtter, of course, yields a noticeable effect only 
with a small number of tests, 

Introduction of the corresponding algorithm Into the com- 
puter presents no difficulties. 

H. Verificationlof Hypothesis Pertaining to the Magnitude of Pro- 
bability I 

FInalLy, there is possible the case in which it 1s necessary 
to establfsh wh?ther the probability corresponding to variant A 
is larger or smaller than the probability corresponding to variant 
B. 

With a sufficiently large number of tests (on the order of 
30) it may be adsumed that 

will be distributed according to normal laws wfth the magnitudes 
of the root mean square deviatkons 

3A= p,u --pAI. ‘-# NA --; 
(35) 

In this case the'differences G:--x will also be distributed ac- 
cording to the normal law with 

p--1/ -$+a’,. (36) 

Then the probabirity ~4 that P1 > p2 can be determined from the 
equation 1 

, 
. 
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If we assume PA = mA/NA and PB = mg/NB, which can be done only 
with sufficiently large iVA and NB, we have 

“A % , --- 

a=F 
NA N0 

-.- - 
,I$, (Iv, - mA)a 

N,: + m2, ( N,- m 0)’ --- 
N; 1 * 

Here ,: 

. -,, 

* L’ 

-“-dx. (39’) 

The F(z:) tables are given in the appendix (see Table 3). 

EXAMPLE. Thirty (30) tests have been carried out, and the 
event A occurred 15 times, and event B occurred IO times. Check 
the hypothesis t+at probabi I ity of event A is greater than’ event 
B with rell.abi lity c1 = 0.975. 

15 10 -_a-- 
30 30 

-I__-__ - .__- -.---- - 
152 (30 - 1sp+ 101(30 - IO)' 
--- 

JO’ ---Xi----- 
I . 

=F(lJj) -0.9756. 
. 

i .e., check the probabi Iity that PA > PB is greater than 0.975, 
and that the derivation of the realizations can be stopped. 

I. Verification of Hypothesis Pertaining to the Presence of Rela- 
tionships Between Two Quantities 

In investigating the method it may become necessary to es- 
tablish whether or not a relationship exists b,etween the criterion 
Ix) and some other quantity (yl, i.e., in-other words, to answer 
the question whether this quantity (y) affects the criterion. For 
this we have to calculate the correlation factor by carrying out 
N tests to determine x aqd u: 

N 

2, 
-‘(Xi&l* -Xi) 

f=I 

‘=---Ks.s, ’ 

We then have to determine the parameter t: 

(40) 

Having taken the quantities t and K = N - 2, by means of Table 4 
of the appendix find the probability that the resulting correla- 
tion is not random. 
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EXAMPLE. &studying a model it was established as a result 
of 20 tests tha~t between the criterion and one of the factors 
there exists the correlation factor r = 0.4. What is the proba- 
bility that thl,s relationship indeed exists? 

t -ob4v20-- - vl -o,4;=1*23- 

From Table 4 of~the appendix for t = 1.23 and K 
find ,M < 0.800,1 i.e., them probability of the ex 
tfonship is not'sufficiently large for reliable 
its existence. 

= 20 - 2 = 18 we 
istence of a rela- 

affirmation of 

In carrying out statistical tests the quantity ct is generally 
given. Then, after derivation of each of the realizations it is 
necessary to calculate SX and S ; after this, from Formulas (40, 
41) we calculate the quantities'r and t and we use the table to 
calculate a. 

This quantity c1 should be compared with the given and de- 
pending on the result of the comparison, the calculation should 

-be stopped or continued, This algorithm is easily realized in a 
computer. To simplify the computer calculations, the tables of 
the corresponding functions give the approximate calculation poly- 
nomials, conven+ent for introductiqn into the computer. 

In workingpractice we may encounter other cases of hypothesis 
verification, e{g., hypotheses pertaining to the nature of the 
distribution for the sought quantity. The description of these 
hypotheses is, given in courses on mathematical statistics, for 
example, In Reference C71.3. 

52.4. MEANS 0~ FFEDuCING DISPERSION 

Earlier we iconsidered the accuracy of results in the funda- 
mental cases which may be encountered in application of the meth- 
od of statistic& tests. From this consideration we see that this 
accuracy is & function of the number of tests carried out and 
the root mean sqluare deviation is approximately proportional to 
the square root iof that number. 
creased by a fac~tor of 10, 

Thus if accuracy is to be in- 
the number of realizations must be 

increased by 100'. This is by no means always possible. There 
therefore arises! the question of reducing the dispersion of the 
measured quantities by other means. In this case the reduction of 
dispersion, in and of itself, cannot serve as the criterion of 
method feasibiliky. We must consider the magnitude of the disper- 
sion for one and the same expenditure of time. 

We presently know many such ways. They can all be divided 
into two groups:1 

1. A combination of statistical tests with analytical methods. 
This may be the most effective way. It represents a unique method 
of combating the "blindness" of the method. 

“> 
c- . Applicatton of special selectlons. These methods have 

much in common wfth those employed for analogous purposes in 
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mathematical statistics. 

Let us examine each of these procedures In greater detail, 
although we should bear in tind that in specific cases they may 
be used in conjunction with each other. 

A. Combination of Statistical Tests and Analytical Methods 

Let there be a requirement to determine the probability of 
hittfng a target repres,ented by a circle of radius r for given 
rocket and control system characteristics. The model for the solu- 
tion of this problem consists of two basic blocks: the block to 
evaluate firing accuracy, at the output of which In each test we 
obtain the rocket deviations from th,e center of the target (pi), 
and a block to evaluate the probability of hitting the target, 
this unit being built in various ways. It may be built on the 
principle of using the method of statistical tests. In this case, 
for each realization of the first block a comparison of the de- 
rived deviation P i with the target radius r is carried out. If 
r. 5 r, the target has been hit. Otherwi.se, we assume that the 
t&get has not been hit. 

The probability ( 
ratio of the number (m I; 

> of hitting the target is defined as the 
of hits to the total number of tests (n> 

This is a case in which the method of statistical tests is used 
in tlpure" form. 

Another principle is possible for the construction oI' the 
block to evaluate effectiveness, The data derived from the first 
block are subjected to statistical processing as a result of 
which the root mean square deviations with respect to range and 
direction (c 
other 

5 and aa> are calculated. Let these be equal to each 

ax = a, = a. (2) 

i 
We assume these to be equal to the selected root mean square 

; !’ S. In this case the probability of hitting the target can be de- 
. termined from the formula 

1 r’ 

( 1 

I 

p=l--e-” -T 

-_- 

= 1 f e !w , (3) 
where 

6-G. (4) 

Here we have a combination of the method of statistical tests 
with the analytical method. 
two cases. 

Let us compare the errors of-these 

According to the material covered in the previous section, 
the error in the determination of p in the first case after N 
reeiizations is 
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2 1 -.- 

5 ZzL P(1 -PP) = 
(,--eye 2b’* 

P1 v N 
[ 

N 

To calculate U 
P:! 

we will use the approximate equality 

But ; 
I 

where 
I 

I 

They 

Hence 

(8) 

Since p uniquely1 defines b, we can express d /u Pl P2 
as a function 

of p and Iv. The besults of the corresponding calculations are 
shown in Fig. 2.9.1. 

$ 
3 

2 

I 

-I 
,I 

0 iT-----‘-- 40 P 

Fig. 2.4.1 
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We see from the figure that there exist regions where the 
first method is more advantageous, and regions where the second 
method is most advantageous. When p = 0.05 the second method leads 
to a root mean square deviation that is smaller by a factor of 
3 than the second. And this actually indicates the possibility 
of reducing the number of realizations approximately by a factor 
of 10. 

The cited example permits us to draw a conclusion as to thy 
effectiveness of combini,ng the method of statistical te;ts with 
analytical methods. The literature gives examples of considerably 
more effective c6mbinations. It goes without saying that in cer- 
tain cases it may prove more advantageous to investigate the 
first part of the model analytically, while the second part of 
the model is investigated by statistical tests. 

B. Analysis of Results Obtained During the Realizations, and 
Adoption of Appropriate Changes in Calculation 

In American literature this method is occasionally referred 
to as "Russian roulette." The essence of the method may be il- 
lustrated well by means of an example (see Table 2.1.2). 

It is obvious that if xX > 1 or an > 1, then rn > 1 and 
6m = 0. Consequently, if it turns out that xn > 1, the calcula- 
tion need not'be continued, but the assumption should be made 
immediately that the target has not been damaged. 

If x n < 1, we have to find an. If an > 1, it should be as- 
sumed that the target has not been damaged. Finally, if zn < 1 
and xfl < 1, it is advisable to carry out one more verification. 
Indeed, if X~ < 0.7 and ipn 5 0.7, rg5/0,7"+0,7i=l and the target 
is damaged. This means that in this case ry2 need not be calculated. 

We see from Table 2.1.2 that according to the criterion xX > 
> 1 the calculation can be curtailed in 7 cases out of 20 and 
that according to the criterion x11 < 1, but with zn > 1, the cal- 
culation can be stopped in 5 cases, while according to the cri- 
teria xn 

I 
< 0.7 and zn < 0.7 the calculation can also be stopped 

~ in 5 cases. Thus in only 3 cases out of 20 is calculation of rn 
~ necessary. Of course, in the subject example the calculation of 

IL n is not a difficult operation and the resulting savings in time 
is small. However, if the calculation of rn and Its comparison 
with P were the fundamental operations in terms of labor input 
(this occurs in the more complex calculation cases.), the calcula- 
tions could be carried out approximately 7 times more rapidly, 
which would make it possible, within the same period of time, 
to increase the accuracy of the derived results by a factor of 
approximately 2.5. 

In statistical modeling of military action, when great losses 
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have been inflicped on one of the sides, it is obvious that there 
is no need to continue the calculation of this realization to its 
conclusion, but rather, it may be assumed that combat with that 
side has been lost. In this case, 
what is meant by' "great losses." 

there arises the problem as to 
Most frequently the answer to 

this que,stion can be given by analysis of the previous variants. 

A clear example of the application of this method in sta- 
tistical tests is given by 'analysis of the process of aeria? re- 
connaissance with consideration of weather. If it turns out that 
the cloud cover Screens the target, the calculation process 
be stopped under~the assumption that reconnaissance has prodtzzd 
no effect. In this case, the construction of the model must be 
such, first of all, as to provide the information required to 
carry out the evaluations, 
calculation. 

and then to carry out the difficult 

Any complex~model must be carefully analyzed and criteria 
for the cessation of calculation must be introduced in those 
cases in which intermediate results make it possible to adopt a 
given decision. ~ 

C. Determinatlon~of Parts Determined Analyttcally 

We will clarify the essence of this method by several exam- 
ples, First of all, when the integral Is calculated with respeict 

Fig. 2.4.2 

to the frequency of random.points-hit- 
ting an area bounded above by the in- 
tegrated function, it is advisable to 
limit the subject area to the smallest 
possible magnitude, as follows from 
Fig. 2.4.2. It is evident that there 
is no need to use statistical tests to 
calculate that portion of the area 
AA'BB' which is easily calculated 
analytically. 

As another example we can use the 
I H' 

calculation J'-, 
s 

Re -T dR. From the inte- 

grand, let us iiolate the linear por- _ tion and we will calculate 

J = ' If (R) -+ O,GR] dR = ' f (R) dR + 0,3, 
d; s 

f (R) =.Re-' > . 

(121 ’ 

(131 

Rec.alling thpt the exact value of this integral is equal to 
0.393, we see thart the essence of the method involves calculation 
of its basic party (0.3) analytically and only a small portion 
(0.093) by the method of statistical tests. The results bf these 
calculatSons are Shown in Table 2.4.1. The random numbers are the 
same as in Table b.1.2. 

I 
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. 
From the table we see that the error '3 (1.5%) is consider- 

ably smaller than in the case shown in Table 2.1.2. The root 
mean square deviation (3.6%) Is also considerably smaller here. 

Let us examine yet another possible way of using the subject 
method. Let there be a requirement to calculate 

The results from the calculation of this quantity for n = 15 
were presented in the previous section. The calculation accuracy 
can be considerably increased if we recall two circumstances: 

1) (R Re 
R 

s 

-- 
2dR=1; 

0 ,, 

2) rule 3a, according to which the probability of deviation 
above 3u is very small. 

We ~111 assume that the probability of deviation above 60 
ls,negllglbly small. 

TABLE 2.4.1 
I I 

II I ' 2 i 3 
/ I 

i 0.134 0,011 0,090 0,040 0,140 0,051 0.120 0.137 0,137 1 ,0,132 j 
3 ! 0,434 0.372 0,378 0.369 0,383 0.378 0.384 0.390 0.39G / 0,395 : 

s - 0.0949 O,OG32 0.0548 0.0548 0.0490 0.0532 000548 1 0.0434 / 0.0527 / I 
a i- - - 040475 0.0346 0.0258 0.0246 I 0,023O i O,Oi67 1 0.0189 j / , I I I 

s j 0.0412 i 0,0514 j 0,0466 / O.,OSSZ 0.0463 0,0416 0,038O 0.0406 0.0349 j 0.041G ’ 
I 

! 0 / 0.0139 0,0164 / 0.0141 ' 
1 

1 0.0111 ~0~0130 0,0112 OeOO986 0.0102 0.00850 1 / 1 1 i 

P -- 
p=J+e a dR: 

0 
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TABLE 2.4.2 

I a 

3.726 
0,242 

36.0 
0,93637 

4 

5,820 
0.940 
0 00257 
0: 99728 

0.00530 
0,00468 

4.830 
0.610 
0.414 
0 I 99780 

OoOO482 
oooo305 

5,001 
0,667 
0,186 
0 I99994 

x ‘p (Yi) 

XfP’ ## 

is 
~ a 

---!- 

4,056 
0,352 

4,938 
0,646 

IO,9 0,251 
0 I 99340 0,99418 

xz 
oh4 
0.99536 

t E! 
0:251 
0~99484 

I 
‘S 040129 

e O.OQ680 
OVOI 19 
0,00551 

0,0112 0.0107 0.0102 
OtOO468 0.00412 0,00366 

I I, 
- 

I.' j I2 1 13 I4 

Yi -73+3ar 4,194 

y ci:;. IO' 
0,398 
6,33 

p E ,1 ,-3x 0 I 99562 

;q.p (74 

X'. 
S 

- e 

4,017 5.418 5.097 
0,339 0.806 0,699 

12.6 0.0229 0.116 
0199565 0.99598 0,9Ni28 

----- 
I- I I 

rl I 16 17 18 

5.952 
0,984 
0,00121 
0,99652 

3.438 
0,146 

13.2 
0 I 09349 

5,007 
O,GG9 
0,180 
0.39382 

0.00812 0.01OG O,OllG 
0,00218 o,oOn5 0.00291 

0,0114 
0,00258 

3.387 
0. I29 

109 
0.99475 
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Then 

IT --- 
2 dR. (15) 

3 

And the most significant part (1) is calculated analytically 
here, while the less substantial part is calculated by means of 
statistical tests, with this being done even at the cost of in- 
troducing additional assumptions (the upper integration limit is 
assumed to be equal to 6 instead of =), 

The results of the calculations carried out in this manner 
are presented in Table 2.4.2, The random numbers are the same as 
in Table 2.1.2. 

Since here the integration interval is from 3 to 6, the ran- 
dom numbers ai obtained from the interval O-l must be transformed 
Into yi distributed in the interval 3-6: 

yi=3+3at. (161 

The calculation is then carried out in the conventional se- 
quence, the only difference being that in calculating the inte- 
gral the mathematical expectation of the Integrand is multiplied 
by the integration interval (In the given case, by 3). 

We see from the data of the table that this method was very 
effective. The error amounts only to O.52%, the root mean square 
deviation amounts only to 0.25X, i.e., considerably less than in 
previous cases. When calculating by the conventional method, we 
find that the root mean square error amounts to 13%. 

0. Use of Significant Selections 

With this method we will begin discussion of special selec- 
tion forms. It -involves derivation of selections from that 
prompted by the problem itself, and multiplication of the final 
result by a standardizing factor - a correction factor - which 
offsets utilization of an incorrect distribution. 

The essence of this method reduces to the carrying out of a 
large number of samples in the regions of greatest interest, f.e., 
in those regions producing the most significant results. For ex- 
ample, if we are interested in evaluating the effect of an oppo- 
nent's missiles on some structure, we must examine cases in which 
the missiles strike close to this structure; however, cases yf 
great deviation need not be considered, although in this case we 
do neglect small cases of destruction. 

If we are interested in evaluating the work of a complex 
queueing system [mass service engineering], this Is best accom- 
plished with the most intensive flow of requisitions. Evaluation 
of a system of antitank defense is best carried out with a mass 
armored attack,.since in this case all its weak aspects are most 
clearly revealed. Again, in this case no constderation (or a 
limited degree of consideration) is given to cases of attack by 
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weak forces, but these prove not to be decisive. 

Let us examine this method more specifically on an example 
of integral calculation. Given the requirement to calculate 

(17) 
Let E be d random quantity whose probability 

sponds to two c!onditions: p(x) > 0; when a < x < b 
density corre- 

I b 

s (1 
p x dx=l. 

0 

We can write the obvious equality 

(18) 

(19) 
Let us consideriwhat the mathematical expectation f(E)&(c) will 
equal: 

iI1 [$]z+#,,,,=,. (20) 
(1 

Consequently, as an evaluation of the sought integral we can as- 
sume 

The dispersion df the quantity f(&)/p(E) will be equal to 

D has a minimum bhen , 

/I, b)" .b If (41 

( s If (XII dx ' 
I a 

The substitution! of (23) into (22) then yields 

(21) 

(23) 

(24) 

This means that if the integrand does not change sign, 
persion is equalIt zero. 

the dis- 
Utilization of 'Formula (23) directly 

prior to the start of the calculation is impossible, since for 
calculation withithis formula it Is necessary to know the sought 
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integral. However, it is extremely important, since, first of 
all, it provides an indication of the fact that the distribution 
of the random quantity E must be selected in a manner such that 
the largest number.of points falls within those regions in which 
the values of the integrand are maximum and, secondly, it may be 
used in calculations in which the integral is determined accord- 
ing to a limited selection which also provides information as to 
the form of the function f(x). 

As an example 

assuming 

g= 6 ’ RAiR. 
P(R) = kR. (25) 

The calculations are carried out for the same integral in 
order t,o compare the effectiveness of various means of reducing 
dispersion. Here K is the coefficient correcting the "incorrect 
distrlbutfon." It is determined from the condition 

Thus calculation of the integral is carried out according to the 
formula 

(27) 

where the numbers "i 
ity (25). 

are distributed with the density of Probabil- 

These,can be calculated by means of the formula 

E, -- Y’G, (28) 

where Ai are numbers distributed according to the law of equal 
probability in the Interval O-1. Derivation of this formula is 
shown in $2.2. 

Calculation with Formula (28) when n = 20 yielded the fal- 
lowing results: 3~=0,3852, S=O,O529. Thus, the error in the determina- 
tion of the integral amounted to 1.98%; the root mean square error 
according to Formula (2.3.81, amounted to 3%, i.e., a significant 
Improvement In accuracy takes place here as well. 

E. Selection by Groups 

Assume that we are required to calculate the probability of 
target damage by bombing from bombers In any weather, One of the 
logical methods of solving this problem is solution of the problem 
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/ 
by ,groups: each group for a different kind of weather, but iden- 
tical weather within the,group, with subsequent aver@ng of the 
derived result'with consideration of the probability of a,given 
kind of weather. In final analysis, such a problem reduces to 
seeking an integral. However, the integral can also be calculated 
with respect to m groupie 

(29) 

If each of the integrals in the sum is calculated by the sim- 
plest method oT statistical tests, then 

where 

I ih 

(31) 

(32) 

If we estbblish the total number N of tests, it is not dif- 
ficult to demonstrate that for minimum D it 1s necessary to se- 
lect nk proporpional to :.lkv/DL. In this case 

(33) 

However, the vplues of Dk at the beginning of the calculation 
are unknown. 
lk' 

Ih this case we generally assume nk proportional to 
In this case 

(34) 

However I 
, ia successive method may be employed to determine, 

on the basis o,f a limited number of samplings, the dispersions 
in accordance klth which the remaining samplings are divided. 

Let us consider the problem of the effect of the number of 
groups on the 'accuracy of calculating the integral when Zk and 

nks as well as’ Dk, are equal to each other. In this case 
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i.e., the dispersion of the integral is a functLon of the number 
of groups only fn terms of the qu.antity Dk. For a qualItat$ve 
evaluation of the effect'of the number of groups on Dk 
consider the case 

let us 

Then, in each group 
(36) 

(37) 

(38) 

where Af, is the increment of the function in the group 

and is dependent on the 
in Fig. 2.4.3. 

form of the function. Its form is shown 

i.e., 
Thus, the smaller the increment of the function in the group, 

the smaller the group, the smaller the dispersion. At the 
limit we come to the groups consisting of a single point. This 
selection is known as 8~8hma+io. 

-2-s -- 
0 1 2 J z--z7 

Fig. 2.4.3 

TABLE 2.4.3 

B on4240 7,!J 9.4 
0.4140 5.3 5,2 

2: 0.3931 0.4030 0,03 2.6 02::* 

I . I 
I .Tsl-lt.t1v41y, proccetlInR from 

ForrnUlP (sa). 
1 

As an example we have calculated the integral 
.r Rem’- dR 

for various numbers of groups and a total number of'realizations 
equal to 20. 
2.4.3. 

The results of these calculations are shown in Table 
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. 

We see from the t'abie that this method may be very effec- 
tlvf? . ';'bc: root mean square errors are approximately inversely 
pvor~c~r’t; i.!>r~al.. tr-, the number of groups , which follows r'rom FormLila 
(30). I I 

F. The Utiliratio'n of Dependent Quantjties 
,I 

Let it be'rehuired that a comparison be carried out of the 
firing accuracy off two rockets (Sl and Sz), guided only during 
the powered phase, with the automatic range controls designed 
variously, 

The' range deviation for each or the rockets can be deter- 
mined in the folllowing manner: 

(40) 

where x and x a1 are the deviations of the powered phase, i.e., 
a2l errors due to'the automatic range unit; 

31 andx 72 1 n 21 are deviations of the unpowered phase. 

Let 3. x,1, 52 1, ~~o,.==O,~~x,~,~ax F 1. To calculate SJ, and S2 by the I 4 
method of statist&Cal tests, we have to determine the random re- 
alizations Xn,t X0,' X,,,W~ X,, and then 21 and x2 by means of Formulas 

(4) and (41). 

If we carry lout the calculations of xII,,-~xd,, xlllend xn., and con- 
sequently, of x1 land x2, proceeding from the inde endent, quan- 
tit lees ) we derivy the following picture (Tabl? 2. -4). f 

I 
TABLti 2.4.4 

- 

I i ! I 
’ I *rr 0!13;0,07 1.57 --0.67~On74 1.25 1,51 0,GR --0.92 - 

x1 -l,,r2io,do 
SI - lo,04 

2,42 -0,70 2.30-0.37 l,SG -0.96 1.09 -- 
1.41 

SI -7 j 1.00 
0.85 0,93 0.93 0.96 0.99 0.92 0,I)H 
2olG I,80 1.90 1.73 I,65 1.61 I,53 1,Il 

_-.._J ’ --.- ---- 

tie see from~the table that the S obtained in the second case 
are considerably ilarger than in the first case, and it is thus 
impossible in 9 tests to select the best rocket (an incorrect 
selection may be @lade). It is possible to make this problem ea- 
sier by using dependent random quantities (in the given case, 
identical quantities are best of all) to calculate znl and xnz. 
In this case we Hi.11 have the following situation (Table 2.4.5). 



TABLE 2.4.5 

n I 2 3 
True 

4 5 0 7 u 9 

II 1 

value 
of 

l,i I I I I I 

f; O/f 
s, I- 

-0.84 0.07 0.76 I,57 -0.67 -0.73 
0.04 0,35 0,93 

s, - 1,02 0,89 0,85 

0.74 1.25 
0,53 1.35 
On93 0.96 

,0,78 0.88 
I 

1.51 0.68 -0.92 
2.05 0.51 -0.84 

0,99 0.92 1.05 0,98 E? , 
I,41 
1.11 

Selection of the best rocket In the given case from 9 tests 
is also impossible, but no basic error is assumed here. On the 
basis of the calculational result, the rockets are equal. More- 
over, fewer random quantities were needed in this case. 

This example has no practical signlflcance, since it was 
clear without calculation which of the rockets was better. Its 
only purpose was to show the essence of the method. 

However, the basic idea of this example is of practical sig- 
nificance. Let the points of incidence for two types of rockets 
be determined experimentally and given that we know nothing in 
advance as to the scattering of each rocket type. If we test the 
rockets under various weather conditions (this corresponds to the 
selectio? of Independent random numbers to determine x 

nl and x 
n2 

>, 
we obtain the picture presented in Table 2.4.4. If'the tests of 
each pair of rockets for both types are carried out under iden- 
tical weather conditions (which corresponds to the case of iden- 
tical random numbers for the calculation of xCnl and zZ2), we ob- 
tain the situation shown In Table '2.4.5, and can solve the problem 
of selecting the best rockets with a limited number of tests. 

An analogous situation may be encountered in testing the 
mathematical model, when the result is obtained by calculation 
with.a rather complex system of equations which cannot be ana- 
lyzed, and where it becomes necessary to compare two relatively 
large fluctuating quantities to calculate a small quantity. 

In this case the comparison Is best carried out, all other 
conditions being equal, by using dependent (or even identical) 
quantities. In this case, of course, a sufficiently large range 
of changes in conditions must be encompassed, because the variant 
suitable under certain conditions may prove to be less suitable 
under other conditions. One of the expressions of this method is 
the requirement to remove everything extraneous from the model. 

Earlier we cited a case involving the utilization of de- 
pendent quantities for comparison of the root mean square devia- 
tions. This case may be used with equal success ,to compare mathe- 
matical expectations , probabilities and integral calculations. 

The utilization of dependent.quantities may prove to be ex- 
tremely effective in comparing results of exact and applied the- 
ory. 
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In conclusion, let us present an example of the application 
of dependent qu:antit'ies for the calculation of the integral. Let 
there be a requirement for the calculation 

W’) 

Since the iintegrand in the subject Interval Increases mono- 
tonically, withy a large number of points falling on the initial 
part of the int'erval,we obtain a reduced value for the integral; 
in the opposite case, the integral value is exaggerated. To avoid 
this situation,~ we will use the dependent quantities. Having ob- 
tained the random number oli, we will determine the number 1 - ci. 
This also achievl:s uniform distribution of the numbers over the 
integration int~erval. We calcuUtte the integral with the formula 

I 

(431 

This method i.s 'occasionally referred to as the sgmmo6risation of 
the integrand. ~ 

Calculation with this method for 20 realizationsleadsto an 
error of 6.9% $n the integral, and the root mean square error 
amounts to 3.2%. This is a significant improvement in the accu- 
racy of the met!h~.~d. 
separation intc 

Combination of the symmetric selection with 
5 groups permitted reduction of the error in the 

Integral to 0.3% for a root mean square error of 0.35%. 
I 

With respect to more complex models, thls method may In- 
valve, for example, the calculation of the realizations for the 
subject process in the case of symmetric devfations from the mean 
statistical te4perature value. 

I 
G. Additional i\emarks 

Above we iresented certain methods permitting significant 
reduction in dispersion. In certain cases this reduction in dis- 
persion may amount to 10" times. A characteristic circumstance in 
thl.s case is the f‘act that with utilization of these methods the 
laws of "conservation of value" are not observed, if we can ex- 
press ourselves in this way, In other words, it is possible to 
achieve a significant reduction in dispersion either entirely 
without increa&inc the scope of the calculation, or with a mini- 
mum increase in this scope, involving absolutely no comparison 
with the reduction in dispersion achieved. As a rule, this is not 
the case in cotventional numerlcal analysis. 

Of course; the cited formulas can rarely be used directly. 
'It is more impcrtant and Bdvisable to employ these methods and 
'combinations o 

f 
them. The most effective may be those methods 

based on the u ilization of specific features of the problem, as 
can be seen from the example of the transformation 
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3 RI 6 R# 

s 
@ -TdRs 1 -’ ‘Re 

I 

-- 
2 dR, 

i 

(44) 

in which it was possible to reduce dispersion by a factor of 2700. 
The cited methods by no means exhaust the possibilities of re- 
ducing dispersion. 

One of the means of significantly reducing the amount of 
calculational work is the application of two-, three-stage selec- 
tion and, finally, a method of sequential statistical analysis, 
with the scope of the book not permitting a detailed examination 
of these methods. 

Another interesting way is the use of nonrandom numbers. We 
dwelt on the application of correlated quantities, as well as on 

'the nonrandom division of the integration interval. Both lead to 
nonrandom numbers withln limits. In calculating the integrals, 
instead of uniformly dlstributed random numbers, we can use the 
Kholton Csicl sequence Cl21 which for sufficiently smooth func- 
tions ensures the proportionality of the root mean square devia- 
tion of the qllantity Inn N/N instead of l/(N)-2 for the use of 
random numbers (where n is the multiplicity of the integral and 
N is the number of tests), i.e., higher accuracy (when n = 1, 
N= 10 root mean square deviations are prpportional to 0.230 and 
0.320, respectively; when N = 100 the root mean square deviations 
are proportional to 0.046 and 0.100, respectively). 

TABLE 2.4.6 
- 

1 

2 

3 

4 

5 

G 
7 

i 

- 

I 

i 

- 

C~lculetion Method 

I IT 
Re-VdR=; .:.... 

~nrlant No. 1 in analysis of 
rcsulls during the cowBe of 
the wolizations . . . . . . . 

Significant selection . . . 
By 2 groups . . . . . * . 
By 5 gmups . - . . . . . 
By 20 groups - * * * * . - 
Symmetrization - * - * * - - 
Division into 5 goupa and sym 

27.5 

27.5 

9.9 

11.8 

I - 

1 

1 

9 

5 

60 

ii 
160 

3000 
70 

6000 

- 153 - 



‘In conclusion, we will present certain summary results, ad- 
mitte3ly, without evaluation of the calculation time which for 
such simple examples is tionditional. In all cases we consider the 
probability of target damage for P = Q and 20 tests. 

The above table shows that the various methods of reducing 
dispersion, and~the combinations of these methods even more so, 
may yield a significant effect. Of course, under various condi- 
tions differentmethods may prove to be more effective and the 
table ,cannot therefore be regarded as a characteristic of the 
methods that is :valid in all cases. 

$2.5. APPLICATION OF THE METHOD OF STATISTICAL TESTS TO DETERMINE 
FIRING ACCURACY 

A. Features of !he Problem 

As indicatkd in Chapter 1, firing accuracy is generally de- 
termined experimentally. However, the expense ofteststo determine 
firing accuracy,, the need to carry out a large number of such 
tests for reliable determination of firing accuracy under various 
conditions, etc., forces us to seek theoretical methods of deter- 
mining firing accuracy. One such objective method is statistical 
modeling of misiile flight with consideration of perturbations 
affecting same [35]. It is this method that is discussed below 
as an example 03 the application of the method of statistical 
tests to determine armament characteristics. 

In this caste ehc problem is divided into 4 stages: determina- 
tion of perturb&ions; determination of the system of equations 
describing the p~rocess of missile motion; statistical tests, each 
of which determ+es the deviation of the missile from the target; 
statistical processing of resulting data and evaluation of the 
accuracy of the ~results derived. 

Among the p~erturbations affecting a missile we should inciude: 

WI-lather dis~turbancea; 

pcrturbatio,ns associated with target maneuvering; 

perturbatio:ns associated with fabrication inaccuracies and 
inaccuracies of ;unit operation; 

electrical iinterference. 
I 

§8.2. 
The probiel,! of weather disturbances will be considered in 

I 

The problem of possible target maneuvers is rather indeter- 
minate. In the g~encral case target motion may be described by 
the coordinates ~of its center of mass, which are random func- 
t.i.03:: of time . 
quirtis analysis 

Dietermination of the form of these functions re- 
iof the tactics involved in the utilization of 

corresponding facilities and their maneuvering potentials. 

Pc:bturbatiokls associated with inaccuracies of fsbricatio;L 
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and operation or deviation from rated characteristics; 

aerodynamic characteristics (the axial force factor CT, the 
normal force factor C , the coefficients for the stabilizing and 
damping moments, the zppearance of aerodynamic eccentricity ccL2); 

engine characteristics (thrust,*: engine operating time tk, 
per-second flow rate G,,k, 
a& 

appearance of gasdynamic eccentricity 

weight and dimension characteristics of the rocket (rocket 
weight ~g, inertial moments of the rocket, distance from the cen- 
ter 05 mass to the point of control-force application, midsection 
area, etc.); 

parameters of the control system, for example, the control- 
system gain, the servomechanism time constant, etc. 

The number and nature of these parameters depend in great 
measure on the design of the system. 

B. A System of Equations for Solutions on a Computer 

The system of equations describing the motion of a guided 
missile can be divided into the following groups of equations: 

1. The equations of target motion 

Inthe special case in which the target is stationary, these 
equations degenerate into target coordinates. 

2. Equations of preparation of initial conditions. This 
group must define those initial conditions under which launch is 
accomplished and the conditions for the installation of corre- 
sponding devices in the missile. In particular, for guided "air- 
to-ground" missiles an important initial condition is the angle 
of the velocity vector. An error in the initial direction of the 
missile requires additional acceleration to guide the missile to 
the target. 

3. Equations of motion of the center of mass and the axes of 
the missile. These are ordinary equations of motion for a solid 
body under the action of a reaction force, for aerodynamic forces 
and the forces of gravity in a perturbed atmosphere. 

4. Equat-Lons of the guidance system are determined‘entirely 
by the basic scheme and design of the guidance system, differing 
significantly for the cases of remote control, autonomous control 
and homing. The equations of this-group must make it possible to 
determine commands to the cont;ols as a function of the mutual 
locations of rocket and target. 

5. Equations of device operation which make it posslSle to 
determine the instant of warhead detonation. 
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The method 'of carrying out the statistical tests to deter- 
mine firing accuracy is basically no dffferent from that employed 
in other cases. For each test we determine the weather condition, 
the characteristics of the rocket assemblies; initial conditions 
are prepared and,by integration of the system of equations de- 
scribing missilemmotion, we determine the missile miss distance 
at the instant that the detonating devices are actuated. 

Thus, in statistLca1 modeling it is necessary to test a 
rather large number of mis'slles "in flight." For each circumstance 
and for each set'of missile parameters we have to make a large 
number of decisions in order to take into consideratZon the 
changes in statistical quantities from flight to flight. The ac- 
curacy of the derived results is determined in the manner demon- 
strated in $2.3. 

We note that rocket flight can be modeled by means of elec- 
tronic digital computers and by means of electronic models (ana- 
log computers). There is no need in this case to speak of manual 
calculation because of the complexity of the systems of differen- 

t i a l  equations describing missile motion. 

Existing electronic models do not require great expenditure 
of machine time, and they are more easily readied for operation. 
Their drawback is the lower accuracy (requiring transformation of 
the equations into different equations) and the-limitations on 
probXem complexity with respect to nonlinear terms. 

Fig. 2.5.1 
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Digital computers are highly accurate and exhibit extensive 
potentials for the solution of complex systems of equations, and 
these are limited primarily by expenditures of machine time and 
the time spent on programing. 

In principle a combination of digital and analog computers 
is possible. As an example, let us consider the modeling of the 
firing of an "air-to-ground" missile. Let the missile be launched 
from a specific.point in space, and further, let the missile be 
guided by means of a passive Infrared homing system to 'the ground 
target. For simplicity, we will consider the plane problem, i.e., 
assume that the missile is moving in the vertical plane passing 
through the launch point and the target. 

A simplified diagram is shown in Fig. 2.5.1. First of all, 
let us examine the system of equations for solution on a digital 
computer, The equations of perturbed missile motion may be written 
in the following form (we are considering the problem of plane 
motion): 

dv 9p - Xrnp - X, -(Y, + Y,,,,,) a 
nt=- Ill - - -g sin 0. (2) 

d9 ---= tgn-XYnp’-.Jyl)c Y + Yylilj gCOS0 
df mu +- --_ _.I) 

r/w u 
(3) 

(4) 

(5) 

$+vcos9, (6) 

a=B-0, _ (7) 

,=,--&$g-, . (8) 
t 

- 
zI=u--ww,coso. M=+ (9) 

111) 

xyq, = / (6) for any surfaces. 

Y Y,,Y = / (8) for any surfaces, 
. 

(12) 

(13) 

(14) 
(15) 

(16) 

i 
I 

(17) 



r,b-ta==K,(~+a$-~+rl)=-K,(p-1-~), (18) 
=L”. (19) 

This system must be integrated for the initial condition 
(t = 0): 

v = v,, (211 
B “8,, (22) 
e do, 
x 0’ =X Isi; 
Y/‘Yo* (25) 
8 = 8,. (26) 

Depending on the conditions of the problem, these quantities 
either be fixed :or random. For example, if we are considering 

may 

target damage probability under any conditions possible in com- 
bat, ,prellminary analysis of the nature of the combat and the 
launch conditions, we have to determine the statistical charac- 
teristics of the quantities ~~,~~,ol~, +,,,Q,&~ and regard them as 
random quantities. 

If we consider target damage probability,from a given point, 
the random quantities will be ~0, 80, 30 and a~', since they are 
functions of the, descent of the missiles, and the quantities Z:O 
and ZJO must be assumed to be constant. 

If we assume that the subject missile is fitted out with a 
contact fuze, for the boundary conditfon we may assume 

y=o (27) 

and under these 'conditions determine the coordinate x 
incidence point 'and the miss distance P of the 

8X=+--&. (281 

If i;he f'uze'is of the noncontact variety, instead of the 
-  e 

condition y = 0 we must write the equation for fuze operation. 

The following denotations have been adopted in the system 
of equations cited above: 

11 1 - 

u- 

t1- 
331 - 

X 
wr &Y upri- 

velocity of the center of missile mass rela- 
tive to a nonmoving atmosphere; 
velocity of center of missile mass relative 
to the actual atmosphere (with consideration 
of wind speed); 
time, argument; 
reaction engine thrust, a random function of 
time; 
projection ofcontrol force (gas or aerodynamic 
control surfaces, rotating engine,, etc.), ran- 
dom functions of the angle of ,control rotation; 
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Xl.and Y1 - 

a- 
;Ti- 

I?- 
0 - 
m- 
g- 

LYZ - 

M; - 
M; - 

a- 

a - a 

% - 
say - 

iT- 
a- 
K- 
R- 
T- 

P- ho - 
sm - _,- C,(M) - 

c; (ST) - 

6 - 
c: (xi) - 

C,(M) - 

z- 
Tl - 

-L 
Kl - 

II - 

wx: - 

axial and normal projections of the force of 
air resistance; 
angle of attack; 
angle of attack with consideration of wind 
speed; 
angle of missile axis with the horizon; 
angle of velocity vector with the horizon; 
mass of the rocket; a random function of time; 
acceleration of the force of gravity, constant 
for a given latitude and a variable, if we con- 
sider a large range of various latitudes; 
inertial moment of the rocket, a random function 
of time; 
derivative of the damping moment; 
derivative of the stabilizing moment; 
distance from center of mass to point of con- 
trol-force application, a random function of 
time; 
angle of aerodynamic eccentricity, a random 
quantity; 
angle of gasdynamic eccentricity, a random quan- 
tity; 
coordinates of the missile center of mass; 
Mach number with consideration of wind speed; 
speed of sound; 
adiabatic exponent of the atmosphere; 
atmospheric gas constant; 
air temperature, a random function of the coor- 
dinates; 
air density; 
ground air pressure, a random quantity; 
cross sectional area of the midsection, a ran- 
dom quantity; 
coefficient of axial aerodynamic force, a ran- 
dom function of M; 
coefficient of normal aerodynamic force, a ran- 
dom function of k; 
angle of control unit rotation; 
coefficient of stabilizing moment, a random 
function of Ei; 
coerricient of damping moment, a random function 
of M; 
characteristic longitudinal missile dimension; 
servomechanism constant, a random quantity; 
gain, a random quantity; 
angular error in determination of missile-target 
line, a random function of time; 
horizontal projection of wind, a random function 
of the coordinates and of time. 

Thus, for each test we must have 13 realizations of random 
functions, w'hich requires about 200 random numbers. This example 
clearly shows the importance of the simple derivation of random 
numbers. 
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Integratiori of the system of equations written out also 
consumes considerable time because of its complexity and the.prob- 
1erri 5 f a.pplyLny this method may therefore frequently be gcverr.eti 
?J] ca:hIrr-. ':ix. 

C. Features in the Solution of Problems on Electronic Models 

It is considerably simpler but less exact for the subject 
problem to be solved on electronic models. For this, first of 
all, the system of differential equations describing the motion 
of the missile must be slmplifled, 

We assume the missile velocity and air density to be constant 
and we select new coordinate axes zls' 01, 31, for which the o,z- 
axis is directed from the launch point at the target. Moreover, 
we will assume the rocket mass’to be constant and the angles 801 to 
be small, and also that Wz = 0. 

In this case the system ,of equations describing' the motion of 
the rockets is considerably slmpllfied,8 

In Eq. (2)~we can neglect (Yl + Y upr )a! when, considering 
that au/at = 0:' 

6-xX)np-XXI 
m tigsin9. 

Substituting (2q) into Eq. (31, we obtain 

We see from thi& equatlon that the first term is small in compari- 
son with the second. Consequently, it can be neglected. However, 
the second term~is also s.mall in comparison with the third. The 
quantity Yupll is generally smaller than Yl by an order and it may 
therefore be neglected. Then 

On the basis of,Fig. 2.5.1 we can write 

111 g$! T’- ---g/n cos 9a + (Y, + Yy,& cos y. 

Hence, neglecting Y 
uPr 

day, ~AL,C; (M) cos y.a 
--_ = 
dfa 20% -g cos UO’ 

or considering (32), 

I 

~ 
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(32) 

(33) 

(34) 



We now transform Eq. (10, considering (7) and assuming 

YVnp = K$, 

Jz g+Jz g+M: -$-+M:++ 

+M;a=cK$-MM,, (35) 
where I 

M,~M:rr,+h'a* (36) I-' - 
', die 1 da 

m=K,dl* (37) 

Substltutlng the values from (31) and (37) into (35), we obtain 

whcrc 

(38) 

(39) 

(40) 

CS* K-T; Xl--- (41) L 
M,+ (42) I 

Thus, the following system of equations has been determined: 

d7 -z-4 
-at K". * 

d'lll dy -dip =: v --y- cos y - g cos a,, 

to which we have to add the obvious equalities 

(32) 

(34) 

a 7 -D-i+ ) x, = vt. 

integration of the system must be carried out through xl = D. The 
initial conditions are (21)-(26). 



1 The block,diagram for the mathematical modeling of this 
py-,bl~rn is showti IF. 3ig;. 2.5.2. In this case the process of sta- 
tl::2;lcai modelinK consists in the following: 

1. The random realizations of the following random quanti- 
ties are determined: IC,, T, u, C, Jzr K,, m, P, S,, ~1 (Ml, hi:. illIP h: Since 
a constant velocity, density and mass have been assumed all random functions (except T)> degenerated into random qua;tities 
Scattering of the mean rocket velocity must be calculated in ad- 
vance, proceedivg from the scattering of the rocket and atmos- 
phere characteristics, 

i.e., 
2. We calculate the coefficients contained in the equations 

I(z,KS,Ks,Kg,M, 
zation. 

from the appropriate formulas for each reali: 

3. We carry out the modeling as a result of which we deter- 
mine the miss distance 61~1 which, according to the formula 6y = 
= byl/sin u 
surface. 

0 Is ;converted into the miss distance at the ground 

Fig. 2.5.2 

4. We carry~ out the statistical processing of the results 
and evaluate their accuracy. 

‘In :;peakingi of an evaluation of accuracy, we 
mind that in thid; should bear in 

I 
case there is a methodological error which may 
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attain significant magnitudes. It consists of two- components. 
The first is a result of the limited accuracy of the electronic 
models. In practical terms, it can be determined by multiple re- 
petition of the modeling under completely identical conditions, 
with subsequent statistical processing of the results. 

The second component is a result of the simplification of 
the system of equations, i.e., of the assumptions adopted. It can 
be evaluated by comparing the results of modeling on an elec- 
tronic model with the results from the modeling on a digital com- 
puter. 

A third method of modeling is possible and consists of a 
combination of mathematical and physical modeling. Its essence 
calls for the entire rocket to be included in the modeling con- 
tour. The angle of rotation for its control surfaces is picked 
up by means of special devices and included in the mathematical 
model at the output of which we obtain the angle u which enters 
a special simulator which moves a mock-up of the target in front 
of the head. This modeling makes possible exact consideration of 
all features invclved in the operation of the internal rocket 
contour, but to obtain objective data many rockets have to be 
tested in order to be able to take into consideration the effect 
of the scattering of their characteristics. 

Manu- 
script 
Page 
No. 

102 

102 

155 

Manu- 
script 
Page 
No. 

124 

124 

128 

128 

Footnotes 

$We proceed in this manner because b - a in the given 
case is equal to 1 and y is taken as equal to 1. Other- 
wise, we would have to calculate c1 
% = y62,y 

i = (b - a)61,i and 

2We proceed in this way because b - a = 1 and y = 1. 

3Mx,~efib is taken from the Dutch "middel" - the middle 
and widest portion of a vessel. 

Transliterated Symbols 

CM = si = statisticheskiye ispitaniya = statistical 
tests 

M=m= metodicheskiy = method(ica1) 

.B = v = verkhnyy = upper 

H = n = nizhnyy = lower 
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129 

155 

155 

155 

157 

157 

158 

158 

159 

c> = ‘sr = sredniy = average [mean] 

ceIc = sek = sekundnyy = per second 

r = =T= gazodinamicheskiy = gasdynamic 

qem = tseli = tseli = target 

yi7p =: upr = upravlyayushchiy = controlling 

JJOII = ~ dop = dopolnltellnyy = additional 

n = pi= padeniya = incidence 

4 = t$ = tsel! = target 
I 

M - m = mIdelI = midsection 
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I  

Chapter 3 

EVALUATION OF FIRING EFFECTIVENESS FOR A 
SINGLE WEAPON FORM 

03.0. INTRODUCTION 

This chapter deals with various cases of evaluating the fir- 
ing effectiveness of a single weapon at one or more targets. The 
term weapon is understood to refer to firearms, artillery and 
rocket installations of various de.signations. 

The first three sections are devoted to an evaluation of ef- 
fectiveness for a single shot and for various forms of the damage 
probability. In $3.4 we have an evaluation of firing effectiveness 
in the case of an arbitrary, number of independent shots at a tar- 
get and for an expon.ential damage probability. Here we present 
the necessary expressions to calculate the damage probability of 
a target. In $3.5 we consider an evaluation of firing effectiveness 
for dependent shots. We deal with the relationship between shots 
in the presence of individual errors and errors in the preparation 
of initial firing data (in a scheme of two firing error groups). 

The following section (3.6) is also devoted to an evaluation 
of firing effectiveness for the case of dependent shots. However, 
here the relationship between the shots is considered not from the 
standpoint of the presence of firing errors., but from the stand- 
point of weapon (launching installation) unreliability. The ex- 
pressions presented in this section permit consideration of weapon 
reliability characteristics in the evaluation of weapon effective- 
ness. 

The last section (3.7) is devoted to an evaluation of the 
effectiveness of a single weapon in the combat situation in which 
it becomes necessary to take into consideration not only individ- 

~ ual random factors, but also the simultaneous action of all of 
these factors (accuracy, reliability, 
survivability, etc.). 

scanning characteristics, 

The effectiveness of a single weapon in a combat situation 
is evaluated by means of the total target damage probability (El) 
for a single shot or for n shots (En>. 

Unlike the total target damage probability in §§3.1-3.6 we 
consider the conditional target damage probability (RL) for a sin- 
gle shot and for n shots (R,) (for the condition that the target 
has been detected and that the system functions reliably. 
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53.1. EVALUATION OF EFFECTIVENESS IN IMPACT FIRING 

A. Analytical Methods 

Impact projectile firing is used extensively to destroy 
ground targets, as well as aerial targets. The use of a given 
projectile forifiring operations is governed by target type and 
projectile power, 

In this section we will deal with an evaluation of firing 
effectiveness in the simplest case 
projectile at 4 single target. 

- a single shot of an impact 

The probability of target damage with a single shot is a 
comple,x event and analytically may be expressed as the product of 
the probabilities of two random events: hitting the target and 
damaging the t4rget when hit 

where RI is the: conditional probability of target damage under 
the condition that the target has been detected and that 
the sy'stem functions reliably; 

P1 is the! probability of hitting the target with a single 
shot; ~ 

G is thei probability of damaging the target under the con- 
dition of the projectile hitting the target. 

I 
The damages probability G was dealt with in Chapter 1. 

We dwell ih greater detail on calculating the probability of 
hitting the target. The probability P1 of hitting the target is 

I a ,function of target dimension and shape, 
of the location of the. mean flight path, 
the magnitudes of scattering and firing 
direction [lo, 241. 

Target dimensions may exceed the di- 
mensions of the scattering ellipse with 
semiaxes along 3ux and 30~' where bX and 
CT s are the standard deviations of the pro- 
jectile with respect to range and in the 
lateral direction. In this case the pro- 
bability of hitting the target will be 
affected most decisively by the position 
of the mean flight path relative to the 
target center. 

Fig. 3.1.1 : 
When the mean trajectory 

coincides with the center of the target, 
the hit probability will be close to uni- 
ty (100X), while with deviation of the 

I 
mean trajectory by 3u, or 3u, over the 
dimensions of the target, this probabil- 

ity will be close to zero. 

The probability of hitting a band of infinite length with a 
single shot is given by the formula 

I - 166 - 



where 

0= v ai cosp 0 + a; sin’ a; (3) . 
A1 is the distance from the center of projectile scattering 

to the nearest boundary of the band (Fig. 3.1.1); 

A2 

A2 is the same for the farthest boundary of the bud; 
- A1 is the width of the band. 

Expression (2) may be written differently in'the following 
manner [lo]: 

PI = F, (I%) -F, (it), (4) 

where Ifi+; pi-+; and Fe(p) Is a tabulated function (see Table 3 of 
the appendix). 

When firing at a target In the, form of a rectangle we deter- 
mine the hit probability'in two mutually perpendicular bands [see 
(411, and then these probabilities are multiplied 

P, = P, - P,. (5) 
In actual practice, the calculation of the hit probability 

in a rectangle or in a band finds extensive application, for ex- 
ample: in calculating P when firing at dugouts, trenches, barbed 
wire barriers, e-ec. If the damage probability G or the mean num- 
ber w of required hits are known for each of these targets, the 
probability of target damage with a single shot is determined 
from Formulas (1) or (6>, where instead of G we have l/w: 

There is no-exact analytical expression to calculate the 
probability of hitting a target of complex configuration. Various 
approximation methods are therefore employed. Without dwelling on 
a detailed discussion, we will enumerate these. 

To calcula'te the hit probability with a single shot for a 
target of arbitrary shape,we can use a graphical method in con- 
junction with a probability grid or use an approximate method of 
comparing the areas of the target and of a rectangle whose sides 
are parallel to the directions (I 5 and ua. Occasionally, we use 
the so-called coefficient of target configuration, representing 
the ratio of target area to the area of the described rectangle. 
The probability of hitting the target is then defined as the prod- 
uct of the probability of hitting the rectangle by that coeffi- 
cient. 

At the present time, for the solution of this type of prob- 
iem we can employ the method of statistical tests (see Chapter 
2). 



B. The Method of Statistical Tests 

Let us ex?mine the sequence for the calculation of the dam- 
age probability for an airplane with a single shot by the method 

of statistical tests, if the mean re- 
quired number of hits is w = 2, and if 
the firing errors are distributed nor- 
mally (mz = mB = 0, cz = 25 m and cz = 
= 17 m). The area for the projection 
of the target onto the xa plane per- 
pendicular to the relative trajectory 
Is shown in Fig. 3.1.2. 

The calculation sequence is the 
following: 

Fig. 3.1.5' 

I 

1. Plot the area of the target 
projection onto a graph, causing the 
coordinate origin to coincide with the 
aiming point. 

2 : 
2. Determine the coordinates of the projectile hit point xn, 

n 
x,=~A.~, 
Z,=%&*rl, (7) 

where dl,nJ , E21n are random numbers distributed normally over the 
standard deviations equal to unity and a mathe- 
matical expectation equal to zero (see Table 1 
of the appendix); 

in is the realization number. 

3. Plot the coordinates of the hit point on the graph on 
which the target projection has been plotted and evaluate the hit. 

If the hit polnt with the coordinates x~, an falls within 
the projection~area, a hit has occurred; 
area of the projection, there is no hit. 

if it goes beyond the 

4. Calculate the conditional probability of target damage 
(or hit, in which case, without w) from the ‘formula 

where m is the/number of projectile hits in the area of the tar- 
get projection; 

nl is the 'number of realizations; 
w is the mean required number of hits. 

This method of calculating the hit probability for a target 
of complex configuration may be employed in manual calculation as 
well. In this (ase, the random numbers 6. 
table of random numbers, and the resultszL! 

are taken from the 

sunmarisd in d table. Table 3.i.l shows 
the calculatTan are 

the calc\ilLtlonal rre- 
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sulks for a number of values of ,nl. 

Tk.BLE 3.1.1 

I 11, / 10 1 20 30 1 40 1 50 70 1 90 j 100 

In 1 1 1 1 2 4 6 6 

P 0. IO 0,050 0,033 0.025’ 0804 0.057 0,066 0,06 

In the table m Is the number of hits for XI shots; p is the 
hit frequency which with nl 170 Is close to the hit probability, 

We see from Table 3.1.1 that the hit frequency with respect 
to an aircraft is p = 
va1ue Pmln 

0.06 (for 100 realizations). The minimum 
= 0.025 was obtained for n = 40, while the maximum 

value Pmax = 0.1 was obtained for n = 10.. It is obvious that p = 
= 0.06 will be the more exact value, since this value was obtained 
from 3 large number of realizations and corresponds to the middle 
of the range with variations in p from the minimum to the maximum 
vaSue. If we assume conditionally that w = 2, from Formula (6) 
we find the probability of target damage with a single shot 

R, 2+0,03. 

$3.2. EVALUATION OF EFFECTIVENESS IN THE CASE OF LONGRANGE FIRING 

A. Exact Methods 

Unlike impact firing, longrange firing is characterized by 
the fact that the target need not be hit directly to achieve tar- 
get damage, and that in addition to the scattering of the hit 
points In the horizontal plane the explosions are scattered in the 

vertical plane as well. Thus, in the 
Y 

J-7 
,B 
I k; " 

% 

case of longrange firing we have three- 
dimensional scattering of the explo- 
sions in space. This scattering is 
subject, as a rule, to normal distrib- 

IQ ution. If all of the explosions in a 
0 '\ 

-. 
plane have been distributed. withfn an 

-. ellfpse, in space the scattering of 
be the explosion points will be ellip- 

soidal. The explosion ellipsoid cen- 
Fig. 3.2.1 ter Is known as the oenter of esplo- 

sion auattering. I 
In actual practice we frequently 

consider only two-dimensional scatter- 
ing of the explosion points in the firing direction and vertically. 
In this case, all explosions occurring within the ellipsoid are 
projected onto the target plane. The distribution pattern for the 
explosion points in the target plane that is produced In this 
case is conditionally referred to as the region of possible expZo- 
sion [lo]. It may be assumed that in firing with longrange projec- 
tiles we will have two-dimensional scattering of the explosions, 
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since in this case the scattering in the lateral direction is 
considerably smaller than the longitudinal and vertical scatter- 
ing, and in a number of problems.this scattering may be neglected 
(when the width dimensions of the target exceed the scattering in 
the lateral direction or when the damage zone for the explosion 
of a single projectile exceeds the lateral scattering). 

The principal sources of errors resulting in the scattering 
of explosions +n the verticalplane are errors in determination 
of the angle of departure Br6, of the initial velocity BrV and 
of the fuze actuation time Brt. These errors yield an elliptical 
error whose center is at the point CO (FLg. 3.2.1). In Fig. 3.2.1 
we have denoted: 

CO is theicenter of explosion scattering; 
B rd is- the'mean deviation of the explosions with respect to 

range;: 
B rv is the,mean deviation of the explosions with respect to 

altitude; 
a is the~semimajor axis of the ellipse; 
b is the:semiminor axis of the ellipse; 
cr 1s the~angle defining the direction of the semimajor axis. 

The elliptical error can be characterized by the semimajor 
and semiminor axes. However, in actual practice, it is more con- 
venient to use the probable deviations caused by ,the unit ellip- 
ticalerrors Brd and Brv which are given in firing tables. Having 
determined Brdiand Brv by means of the firing tables, we can con- 
struct a unit explosion scattering ellipse in the vertical plane. 
To construct the region of possible explosions we must increase 
the unit ellip$e by a factor of 4. 

After we have determinedtheregion of possible explosions 
we can take into consideration other factors affecting the pro: 
bability of target damage. These factors include: 

a) errors fin determining initial data for firing; 

b) the raddom nature of target damage under the condition of 
projectile explosion 1.n the region of possible explosions with a 
deviation of r ~from the target. 

Both of these factors are random. Each of these is therefore 
taken into consideration in calculating the damage probability 
with the corresponding probability. 

The probabilfty of target damage in firing longrange projec- 
tiles,with consideration of these probabilities and the above as- 
sumptions to the effect that the three-dimensional scattering re- 
duces to two-dimensional Is determined from the formula 

+W 

R, = .j { G (x, Y) P N, y) dx dy, 
--oD 

(1) 

where Rl is the conditional probability of target damage under 
the c ndition t;hat the target 1qas bez.:;: Letected and ci 
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Y 
,‘I 

given assumpt;on that all elements of the sys- 
ten are, functioning reliably; 

Hx,yldx dy is the probability of hitting in the region dxdy; 
G(xy) is the probability of target damage under the condi- 

tion that the projectile has exploded at a point 
having the coordinates 2, y. 

This formula is also valid for Ionly a single shot. 
( 

If we cause the coordinate origin to coincide with the scat- 
terlng center and if we direct the coordinate axes in the direc- 
tion of the principal semiaxes, 
tions c 

from the given standard devia- 
and c of the explosion ellipse we can find the proba- 

bility zf the p:ojectile hitting the region dxdy (with respect to the center of exploslon scattering) from the expression 

where 1c and y are the distances of the explosion from the scat- 
tering center along the directions z, and $, respectively. 

. : Let the probability of target damage for the condition of 
an explosion at some specific point ,(~,y> be equal to G(z:,y); the 
conditional probability of target damage for a projectile hit in 
the region dxdy is then determined f,rom the formula 

(3) 
Having integrated the last expression for all points of the 

explosion ellipse, we can find the probability of target damage 
for a single shot with consideration of the explosion scattering 
(for the condition that the target has been detected and with 
reliable operation of the system) ~ 

(4) 

We should take ,r;oi,e of the fact that the analytical calcula- 
tion of 81 is cumbernome and it is therefore frequently carried 
out by means of a col;lputer or resort is made to the utilization 
of various approximate calculation methods. 

In firing at area targets, 
the number (the relative number, 

the mathematical expectation of 
percentage) of damaged targets 

(or target elements) is taken as the effectiveness criterion. 

If the mathematical expectation of the number of damaged 
targets on explosion of a longrange projectile at some specific 
point ‘(z, y) is equal to Mlx,yl, with ,consideration of the pro- 
bability o.f explosion in the region (x-!-~x)(Y i-dy) the mathematical 
expectation will be 
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Having integrated Eq. (5) over the entire region of possible 
explosions, we can find the Ml for a single shot under the condi- 
tions of target detection and reliable system operation. The equa- 
tion for the mathematical expectation of the number of damaged 
targets in this case will have the form 

Equation (6) is solved by means of a computer, both through di- 
rect integratiqn and by the method of statistical tests. 

Graphically it Is possible to find an approximate solution 
for Eq. (6). 

B. The Method o'f Reference Zones 

The graphical method and the method of reference zones are 
included among the approxlmate methods of calculating the proba- 
bility of target damage, if the damage probability and error func- 
tion are known. With the appearance of computers the graphical 
method lost its~ significance; however, the method of reference 
zones has founds extensive application. The essence of this method 
involves the faFt that the damage probability G(r) is used to 
determine the reference damage radius 

and.the hit probability for the reference area (volume) of a tar- 
get is then determined analytically. In the case of longrange 
firing, if the dimensions of the target are small in compariqon 
with the damage#radius, for the target reference volume wo we 
assume a hemisphere having the radius PO 

The probability of target damage is defined as the probabil- 
ity of' hitting a semicircle, where we do not take into considera- 
tion ground explosions, or the probability of hitting a circle, 
if we take ground explosions into consideration. 

The probability of hitting a circle is calculated in final 
analysis by making the center of explosion scattering coincide 
with the, targetand by assuming bS = CI~ = CJ. The probability of 
hitting a random point within a circleYin this case is equal to 
c241 I , 2 -- - 

P(r)=lye * o ) ( 1 
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where P is the circle radius. 

With consideration of ground explosions the probability of 
target damage with a single shot of a longrange projectile is de- 
termined with the formula 

-1 r.2 -- 
R,=l_e 2 ' , ( 1 (9) 

where 0 = u = d 
X Y' 

rg is the reference damage radius, determined from Fcrmula 
(7) l 

When using atomic weapons against ground'targets, an aerial 
f‘!xplosion is used. Let us assume that we are employing the coordi- 
nate damage probability G(r) (see $1.3). In this case, in evaluat- 
ing the damage probability, the method of reference zones yields 
satisfactory accuracy. The.probability of target damage is de- 
fined as the probability of causing an explosion within a circle 
having the reference damage radius. In this case the scattering 
with respect to altitude is neglected, 

In conclusion of this section we will consider two cases of 
the analytical calculation of R1 and we will provide an evalua- 
tion of the accuracy for the method of reference zones. If we de- 
note: 

0 as the target; 
z,y as the point of projectile [missile] explosion; 

XO,YO as the scattering center, 

then Eq. (4) may be written differently as follows: 

(10) 

+m 
ss G (x, y) dx dy --S, 
--m 

(11) 

G (x* !/) ------9(x, y), s . 
(12) 

where S is the reference damage zone. 

Having substituted (12) into (lo), we obtain 

li, :-.= s jTa (x -x0, y - go) (J (-1-s Y) dx dy = S/ @ov Y,). (13) 
-(D 

where flz~,y~l is the composition of the distributions 9 and 9. 

Approximately, 
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CASE 1. Cilrcular scattering. Stepped damage probability 
(see Fig. 3.‘3.1,). 

Let 

where r. is the, reference radius of the damage zone 

u2 F SW ci (r) + ss -$- y’dxd y. 
-w 

since the distr+butions of x and y are identical (x3-kyp=ro), so 
that 

(17) 

R, = sf @w YO) 

(19) 

(20) 

(21) 

where z-<K. i 



L,r: t ,  U S  'JC-n *c if-~ the accuracy of'Eq. (21) by TXSILS Of zq. (1:). 
T:TF~ rozuits of the calculation are shown in Table 3.2.1 for vari- 
5u:: values 5f 

We see from Table 3.2.1 that the approximate method of cal- 
culating the probability of target damage Is in good agreement 
with the method of reference zones when a < 1, i.e., when the re- 
ference radius for the damage zone does not exceed a' single stand- 
ard missile deviation. This condition is always satisfied when 
firing missiles with conventional warheads and In a number of 
cases when firing nuclear ammunition. 

TABLE 3.2.1 

0 0 0.1 0.005 X.005 
0,5 0,118 
0.8 

%i 

0: 393 
0,276 

2:o t"5 

0.400 

0.865 0.675 0,720 I,0 
3.0 0,99 1 

CASE 2. Circular scattering. Damage probability G(r) shown 
in Fig. 3.2.2: 

G(r)=1 when rsa, 
G(r)=A---Brwhsn bar>& 

Fig. 3.2.2 

We determine the reference damage zone S 
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We determine A and B from the condition 

A+Bb= 1, A-&---o, 
I B=’ A=&,. 

b-u ’ 

so = d + l;b (b + a) - $ 7t (a’ + a6 + 63 = + (u’+ab+b’), @?I 

From Eq. 416) we determine u 
I 9 

(23) 

The total,dispersion is determined from Eq. (15) 

while the prob$bility of target damage is determined from For- 
mula (18) I . I’ 0 -- 

R,=l-e 2a2 

(24) 

Having substituted (23) into (24), we obtain 

R,= 
aa+ab+ba 

------b’--aO’ (25) 
6~ +O+-a, 

In conclusion, let us examine the accuracy of the method.of 
reference zonei. 

For the mage probability G(r) shown in Fig. 3.2.2, it 
seems to be to obtain an exact solution for RI: 

iiaving Integrated Eq. (26)) we obtain 

(26) 
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b’ a’ 

R ,=I-e-P(A-Bb)+e-~(A-aB-l)- 
(27) 

-aBp5qF, (s)-F. ($)I. 

Having used Eq. (27), we evaluate the accuracy of the method of 
reference zones. 

Let b = 5~ (see Fig. 3.2.2). In thiscase we wili have 

ro - -a+b=&, B=.&, ‘A f, ‘I- 

Having substituted PO into Eq: 
method of reference zones 

(18), we obtain Rl for the 

4,6 
R,=I-7. (281 

where 

I z=+* 

Equation (27) under these conditions is simplified 

R,- 1 -q? [F, (g-F0 (i)]. (29) 

The calculational results for the various values of a: are 
presented in Table 3;2;2. 

We see from Table 3.2.2 that the method of reference zones 
ensures good accuracy, since the errors of the method of reference 

zones do not exceed 13%. In actual prac- 
TABLE 3.2.2 tice it therefore finds extensive appli- 

cation. 

~~00 
1.0 

0’989 
0.993 

0:865 
0.901 
0.766 

0,675 0.622 
0.388 0.395 
0;ISS 0.180 
0.045 I I 0.054 

Inevaluating the effectiveness of 
target damage with nuclear weapons, when 
0 r 0.7 a, we can use Eq. (25) if we 
re$ace the damage probability G(r) 
($1.3) by the component damage probabil- 
ity (see Fig. 3.2.2). With c < 0.7 a, 
Eq. (25) does not provide for the neces- 
sary accuracy and the calculation must 
therefore be carried out in accordance 
with Eq. (27). 

As a function of the stated gclal of 
the study, the evaluation of effective- 

ness for a single shot may be accomplished either by employing 
analytical calculation methods or by using the method of ztatis- 
tica tests. The accuracy and time required for calculation 
serve as the criteria for the selection of a particular method. 
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$3.3. EVALUATION OF EFFECTIVENESS IN FIRING AT A POINT TARGET 
WITH A PNROJECTILE [MISSILE] CARRYING A POWERFUL WARHEAD 

In this section we will consider the case of firing at a 
small-scale (point) target. Here we have in mind that the dimen- 
sions ofthe target are small in comparison with the missile's 
radius of damaging effect. We are called upon to determine the 
probability RIG of target damage with a single shot under the con- 
dition orthe normal functioning of the firing system. 

Let us examine this problem for the condition that the total 
firing errors are subject to circular normal distribution u with 
dispersion 02.( , 

Let P denote the random distance between the point of projec- 
tile explosionland the target. The firing error function in the 
absence of systematic errors is written in the following form: 

y(r)=$exp -$ 
( ) 

. 

0 

Fig. 3.3.2 

(1) 

Let Carl denote the damage probability, i.e the probabil- 
ity of target damage under the condition that the'missile has 
been detonated 'at a distance r from the target. The damage pro- 
bability of the; target of interest to us in this case for a sin- 
gle shot is the:n found from the equation 

K, := -p (r) G (r) d;. 
d; (2) 

The simplest damage probability has the form shown in Fig. 
3.3.1. tiere 

G(r):- 1 when otrga, 
O(r)=0 whunr)u. I (3) I 

In this cake, from Eqs. (l)-(3) aft 
we obtain 

er simple transformations 

R ,=l--exp 
( > 
--$- , 

(4) 
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the; probability of target damage is equal to the probabll- 
kti*ihat the projectile will hit a circle of radius a (see C821, 
pages 122 and 507). 

In actual practice the damage probability generally has the 
form shown in Fig. 3.3.2. At some distance a from the target the 
damage probability G(r) = 1, and then it diminishes to zero with 
an increase in r. The quantity a may here be referred to as the 
radius of continuous (100%) damage. 

The curve shown in Fig. 3.3.2 can be approximated by various 
analytical expressions. For brevity we will consider only one of 
these expressions, and namely 

G (r)= 1 whenr 4 a, 

1 

(5) 
G (r) = exp [- k (r’ - a’)] when r 3 a. 

From Eqs. (l), (2) and (5) after integration and simple 
transformations we obtain 

(6) 

We now examine the case in which there is a systematic firing 
error h. In this case, instead of Eq. (1) we will have 

where JO is the Bessel function (see [82l, page 123). 

We recall that we have the relationship 0 .s ‘P(r)&= 1. 

Hence, from Eq. (7) we obtain 

We introduce the denotations 

ok,=&. 

(8) we will have Then, from Eq, 
m 

. ‘Jo (/car) cxp (-- k,P) dr == -5;; exp 
s 0 

(8) 

(3) 

(10) 

(11) 

Let us also examine the integral 
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This integral represents the probability of hitting a circle 
of radius r (see Chapter 1). This probability can be found from 
Table 9 of the appendl.x. Using the denotations of (9) and (lo), 
we can rewrite Eq. (12) to the form 

(13) 

We now filnd the probability of target damage for the damage 
probability (5~) and the error function (7). Using Eqs. (2), (5) 
and (7), we fihd 

Let us first examine the first integral in the right-hand 
part of Eq. (14). Using Eq. (7), we obtain 

I OD s e -k W--an)lp fr) dr = -&exp(ka'--&)X 

(15) 

Here we iitroduce the denotations 

k,==&,+k. (16) 

k h a==z- (17) 

The Integral in the right-hand part of Eq. (15) then reduces 
to Expression (111) and we obtain 

We now examine the last integral in Eq. (14). Using Eq%. (73, 
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(131, (16) and (171, we obtain 

Finally, from Eqs. (14), (18) and (20) we find 

(21) 

Equation (21) and Table 9 of the appendix permit evaluation 
of the effect on firing effectiveness of the following factors: 
random and systematic errors (u and h) and the parameters of the 
damage probability (a and k). 

For greater clarity In Eq. (21) we replace the parameter 
k with another parameter of clearer physical significance. Into 
the consideration we now introduce the radius 2-0 on which the 
damage probability Glro) = 0.05 (i.e., so small that it can be 
neglected). From Eq. (5) we then find 

k (fi - an) = 3. (22) 

We introduce the denotation 

ro z=- a* 
From Eq. (22) we then obtain 

From Eqs. (19) and (24) we obtain 

(23) 

yS=l+&&. 

Equation (21) assumes the form 

(25) 

(26) 

We see from Eqs. (25) and (26) that R1 is a function bf 
three arguments: a/o, h/a and 8. Equation (26) is conveniently 
utilized when 



In the special case in which a = G, from Eq. iZZ> we obtain 

&=.L 
ro’ I ‘(27) 

and Eq. (21) assumes the form I I 
I I 

R,= " exP[';;:h;ul]* (28) r;+ 6~' 

When a # 0, x d 1, Eq. 
1 tern ~ .' 

(21) remains only with the single first 

(29) 

In the special case in which h '= 0, from Eq. (21) we obtain 
Eq. (6) which m ,ay be rewritten to the form 

*R ,=l- 601 
6e'+aq~*-l)~~~ (30) 

Equations 
the effect of 7 
a point t&rget, 

:26), (28) and (30) make it possible to analyze 
krious factors on the effectiveness of firing at 

r 
Fig. 3.3r3 

EXAMPLE. Given a = I, z = 2, h = 2. Find RI as a function of 
0. 

Solution. From Eqs. (25) and (26) we obtain 

Having asshmed various values of 0, by means of these equa- 
tions and Table~Y of the appendix we find RI as a fundtion of B 
as shown in Fig/ 3.3.3. We see from this fTgure that there exists 
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a value U (g I) which corresponds to the maximum of th.e damage 
.probability RI. 

Hence it follows that with systematic errors it occasionally 
'makes sense to introduce the artificial scattering which leads to 

an increase In the probability of target damage. Thus, if under 
the conditions of the subject example o = 0.5, to increase the 
probability of target damage u should be approximately doubled. 

$3.4. EVALUATION,OF FIRING EFFECTIVENESS IN THE CASE OF INDEPENU- 
ENT SHOTS 

A. Determination of Probability for at Least a Single Hit on the 
Target for n Independent Shots 

Let n independent shots be fired at a target, with the pro- 
bability of hitting the target for each of these shots being iden- 
tical and equal to p. In this case the probability of missing the 
target with a single shot will be 

q=‘l--p. (1) 

The probability that in n shots there will be not a single 
hit is equal to 

4” z= (1 - pp. (2) 
. 

Hence the probability of at least a single hit on the tar- 
get will be 

P’,= 1 - (1 --pp. (3) 

With large n utilization of Eq. (3) becomes inconvenient for 
calculations. In this case, Eq. (3) can be replaced by an approx- 
imate equation in the following manner - it may be rewritten to 
the form: 

Py&(l-F)‘. (4) 

lim I-+ “=ema, 
( > (5) n-too 

Eq. (4) may be written approximately as 

p', = I- e-*pa (6) 

The advantage of Eq. (6) over Eq. (3) is that for Eq. (3) we need 
a table with two inputs, while for Eq. (6) it is enough to have a 
table with azingle input. 

To evaluate the accuracy of Eq. (6) we find the.ratio 

km ~--(1-P)” --- 
- I-e-nP ’ 

(7) 

The larger n, the closer k to unity. We introduce the deno- 
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Table 10 off the appendix shows m as a function of n and np. 
We see from this table that with n > 30 the calculational errors 
due to Eq. (6) b o not exceed l%, since m does not exceed 10-11. 
With n > 50 the, errors in calculation due to Eq. (6) do not ex- 
ceed 0.5%. 

Table 10 also shows that when np < 0.10 the error in calcu- 
lation due to Eq, (6) does not exceed i%, as soon as n > 5. Thus, 
calculation with Eq. (6) exhibits rather high accuracy rn two 
cases: I 

1) for large n and any p; 

2) for small np and any n. 

From Eqs, ~(7) and (8) we have the formula 

P’,=(lf&)(l--e.nq. 

W!,th this formula it is possible to determine PA for any n and p 
by means of Table 10. 

B. Determinatioe of the Probabi,lity of a Specific Number of Hits 
with Independent Shots 

Let n independent shots be fired at a target, with the pro- 
.bability of hitting the target for each of these shots equal to p. 
In this case, the probability of obtaining exactly m hits will be 

-. (see WI, page~54) 
. ”  Pm-= Cz pmqn - m; (10) 

whkrc 

‘&=1-p. (11) 

C. The Number oi Shots Prior to Achieving a Single Hit on the 
Target 

Let us examine the case of firing separate independent shots 
with a constant ,probabilfty p of achieving a hit with a single 
sh,ot . Let the result of each shot be observed until the following 
shot is fired, with the firing stopped as soon as the first hit 
on the target is achieved. Under these conditions, the number N 
of shots prior to hitting the target is a random quantity. Let 
us find the distribution moments of this random quantity. Accord- 
ingto definition, for the mathematical expectation we have 

/ ,’ am-lP,+2P,+3P,+..., (12) 

where Pi is the probability of achieving a hit with the ith shot - 
under the condition that It has not been achieved in any of the 
previous shots. I 
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(13) 

From Eqs. (12) and (13) we find 

M(N)=p+zpq+3pq~+-...=. 
=P(1+2q+3q'+*:.j=P (1 -I,,, =$*. (14) 

D. The Number of Shots to Achieve a Given Probability for at 
L.east a Single, Hit on the Target 

Let single shots with the probability p of hitting the tar- 
get with a single shot be flred at a target individually. The 
probability of at least one hlt on the target is found from Eq. 
(3). 

Given the probability 01 for at least one hit on a target, 
Eq. (3) assumes the form 

a==l-(l-~)N~. 05) 

Hence the needed number lvc, of shots is found in the form 

N,== I;:; --;;. 

The approximate formula for Nc can be found from Eq. (6) 

(16) 

whence 

where 

C,=~'ln(l--a)]-‘ (191 

Below we give Cc as a function of c1 according to Eq. (19) 

a. "/o -50 60 70 80 90 95 99 

c, 0,69 0,92 I,20 1.61 2.30 3,00 4.61 

Equation (18), on the basis of Eq. (14), can be rewritten to 
the form 

N,=C,Ncp=CoM(N). 

E. Determination of Target Damage Probability 

(20) 

In the previous items of this section we spoke of the pro- 
bability of hitting a target, Here we will consider the problem 
of determining the unconditional probability of target damage, 
if we know the damage probability Gm. 

Let us consider the case in which n shots are fired at a 
target. Let Pm denote the probability of m hits occurring during 
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n 

R ,,=P,G,+PIG,+. ..+P,G,=y P,Gj. 
lzi 

(21) 

It is obvibus that with an increase in i the probabilities 
Pi diminish. On~the other hand, the probabilities Gi increase with 

I 
greater i, which calls for a sufficiently large number of terms 
for large n to be taken in Eq. (21). 
more convenient~ to transform Eq, 

With large n it is therefore 
(21) so that all terms in that 

equation d_'.minish with increasing i. 
I 

For this we will write the obvious equality 

l--iP(* 
1-o 

(22) 

Subtracting Eq. (21) from Eq. (22), we obtain 

(23) 

where for brevity we introduced the denotation 

In Eq. (23) with increasing i, the terms in the right-hand 
portion diminish, thus making it possible in the calculations to 
limit ourselves1 frequently to a small number of terms. Moreover, 
this equation Is of great fundamental significance - it demon- 
strates that the greatest role in damage probability Rn is played 
by the first probabilities of the damage probability. We clarify 
this with an ex@nple. 

EXAMPLE 1.~ Let the probability of hitting a target with a 
single shot be equal to 0.1. Up to 3 independent shots are fired 
at the target. The target damage probability is characterized by 
the probabilitylG1 = 0.5. The probabilities G2 and G3 are unknown. 
Evaluate the damage probability R3. 

Solution. $e find the probabilities of none, of one, of two 
and of three hits: 

P, -- (0,9)' - 0,729. 

PI = 3.0,1-(0,9)’ = 0.243, 

P , =3(0.1)~.0,9=0.027, 

P, -= (0.1 jl = 0,001. 

Let us examine three versions of tne damage probability. 
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1st version: Ct = Gs = I. With Eq. 12-3) we find - 

&o,j2g +0,243-0,6= 0.850. 

IIfi version: the damage probability is exponential. Then 

c?+(O,S)' +$25, 5;,y(0.S)a ~0,125 

and from Eq. (23) we flnd 

IIIrd version: G2 = Gs = 0.5. From Eq. (23) we find - 

ib=O.729+0.243~0,5+0.027.0.5+ 0.001.0,5=0,864. 

Hence we see how little the quantities GP and GS affect the 
damage probability Rs. We also note that versions I and III are 
the extreme possfble versions, whi.le the exponential damage pro- 
bability occupies an intermediate posltlon between the extreme 
possibilities. 

F. Calculation of Damage Probability for Independent Shots and an 
Exponential Target Damage Probability 

Let us consider the case of an exponential target damage pro- 
bability. In this case we have 

oi a;. 
From Eqs. (23), (24) and (10) we find 

(24) 

(25) 

In Eq. c25), having substituted 

we will obtain 

~~=[p(l--)+l-p]'=;l---)~, 
whence 

R n&(l-~)m* (26) 

Comparing Eq. (26) with Eq. (3) we see that with an exponen- 
tial damage probability the probability of damaging a given target 
with n shots is equal to the probability of at least one hit in 
the reference target for which the hit probability with a single 
shot is smaller by a factor of w than In the given target. 

From Eqs. (26) and (6) we obtain 

(27) 
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G. Calculating the Number of Shbts Required to Damage the Target 

First we will consfder the general case of the target dam- 
age probability. In this ca'se the average number of shots to tar- 
get damage will/be 

M(hr)=1P,+2P,+3P,-t-..., (28) 

where P i Is the~probability of damaging the target on the ith - 
shot given the bondition that the target was not damaged with any 

'shots. Obviously, of the previous 

where Ri Is the 

From Eqs. G 

/311-RRi-Ri-,, (29) 

probability of damaging the target with i shots. 

28) and (29) we obtain 

; M(N)= ~R,+~(R,--R,)+~(R,--R,)+...+ 
+~(Rrr--R,-,)+.*. (30) 

~ 
Since with n + 7 we have R, + 1, beginning with some value of n 
we can assume R ?I = 1 and Rn+l - Rn = 0. Equation (30) may then be 
written as follows: 

M(N)=iR,-RR,-.a.-RR,-,+n= 
==(I-R,)+(1-RR,)+:..+(l-R,,J, (31) 

whereR0 =O, 1 

The larger in in Eq. (311, the more exact this equation. In- 
stead of the app'roximate equation (31) we can therefore write 
the exact equation 

M (N) = 2 (1 -Ri). 
I=0 

(32) 

In the special case of the exponential target damage proba- 
bility we find from Eqs. (32) and (26), after simple transforma- 
tions I 

M(N) -NqA== -;* (33) 

Obviously , Eq. 
Eq. (331. 

(20) remains valid even if Nsr is determined from 

H. Calculation of the Mathematical Expectation for the Number of 
Damaged Targe;ts 

: 
I;et n shots~be fired at a group of k targets with the dam- 

age Frobabilfty kor the ith target during this firing equal to 
Ri. In this case, the numk of targets which are damaged during 
the firing operation is random. Let us find the fiaGhematica1 e:x- 
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pectation of that number, We introduce the random quantity X. 2 
which is equal to 1 for the damaging of the ith target and equal 
to zero if this target Is not damaged. The probability of the 
equality x; = 1 is Ri, while the probability of the equality xi = 
= 0 is equal to 1 - Ri. 

The number of targets damaged during the firing operation 
will be 

x=-G+&+. ..-/?A, 

and its mathematical expectation 

Thus the mathematical expectation of the number of damaged 
targets 3.s equal to the sum of the damage probabilities for these 
targets, We note that this Is valid for any relationship between 
the shots. 

Let us now consider the special case of independent shots 
and w = 1 (i.e., to damage the target, a single hit Is enough). 

Let there be k targets of identical area and let the proba- 
bility of hitting each of these targets with each shot be iden- 
tical and equal to p/k, where p is the probability of hitting the 
target with a single shot (regardless of which target). We denote 

as the average firing density, i.e., the number of shots fired 
during the firing operation at a single target. 

The probability Ri of damaging the Cth target is found to be - 
the probability of hitting this target at least once 

&-I- l-4 n. 
( 1 

Using Eq. (35), we can write 

We have approximately 

( > 
1 pk *=e-P, -- 

(36) 

(37) 

whencc 
Rr zr.Y= 1-e-Q. (39) 

According to Eq. (34) we find the mathematical expectation 
or the number of damaged targets 
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xc,-kkRi=k(l -e-=p). (40) 

Hence the mean 'number of damaged targets (in $) will be 

, x,po,o.&~~~ .- =lOO(l-e~"~). (41) 

“able 3.4.1 shows ap as a function of zsp% frorc Sq. (lil). 

TABLE 3.4.1 

5 0,051 60 0.916 
:: 0,223 0.105 2 1,204 

1,603 
30 0.357 90 
:: 0.51 0.693 I 3: 4:m 22':: 

EXAMPLE 2.~ Let firing be conducted at 50 targets under the 
condition that ~the probability of hittlng any of the targets is 
equal to 0.5 wiith a single shot. What number of shots in this 
firing operatidn corresponds to the mathematical expectation of 
damaging 50% oft the targets? 

Solution. ~From Table 3.4.1 we find ap = 0.693, whence a = 
= (0.693/0.5) =~ 1.38. Further, from Eq. (35) we find 

* 
n =ak = 1,38.50-=660. 

$3.5. f;U+;ATIO~N OF FIRING EFFECTIVENESS IN THE CASE OF DEPENDENT 
I 

(Then ua8e of a 8uhsms of two error groups) 

A. The Scheme off Two Firing Error Groups 
I 

The schemes of two error groups is extensively employed in 
practice. Moreoyer, the calculational formulas are simplified 

Fig. 3.5.~1 zontal axis (Fig. 3.5.1). 

Let the center of the target be 
situated at Doint 0. Let the tra.lec- 
tory for the-ith shot pass through 

the point Si (in = 1, 2, . . . . n), and let the center of the trajec- 
tory scattering~ for a group consisting of n shots be situated at 
polnt R. We denote the deviation of the ith trajectory from point 
R by Q: 

I Ei = RSi. (1) 
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The deviation of the point R from the center of the target 
is denoted 2: 

x--OR. 
(2) 

The deviation of the trajectory from the target will then be 

q=E(+x. (3) , 

The quantities Si are distributed normally with tile mathe- 
maticai expectation 0 and the standard deviation un which charac- 
terizes the technical scattering of the shots. The quantities 6; 
are obviously Independent of each other and are known as nonrecur- 
ring errors. 

The quantity x is constant for a group consisting of n shot-s 
but varies randomly with transition from one group to another, 
The distribution of the quantity 2 Is normal with the mathematical 
expectation x0 and with the standard deviation u , The quantity g 
og is the characteristic for,the scattering of gPoup recurring 
errors which in practice are generally errors in firing prepara- 
tion. It is obvious that these quantities x and 4, are independ- 
ent of each other. 

Let us examine the total firing errors zi. These are no 
longer independent. For these we have: 

ii.1 (Ti) = M (Si) + ilR (x) = 0 + ~0 = X0, (4) 

0' (Zi) = 3' (ii) + 0' (X) =a: + ", I . (5) 

Kij =M(z~z~)- M(~i)M(zj) = 
= M (EiEj +F~x+ EjX+ Xf)- Xf= 

I 
z= 0 +xoM (El)+ x,M (Ej)+ af=af* (6) 

The correlation factor between quantities z'i and aj is found 
from the equation 

2 2 
K~J ur or 

Tij = -,._.- = -- I 
a (Z,MZJ) 08 (zy- mt-’ (7) 

Equations (l)-(7) characterize the so-called scheme of two 
groups of firing errors (compare [82], page 168). 

B. Calculation of the Probability of Hitting a Target in the Case 
of a Scheme of Two Groups of Firing Errors with One-Dimensional 
Scattering 

Let us examine the case In which the target has a width 2a 
and in which its center coincides with the coordinate origin 
(F1.g. 3.5.1). 

The error distribution densities for the first and SL:cGriC; 
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where I 

’ I 
y,(f4)=&eefY. 

(8) 

(9) 

(10) 
With a fixed error x 

the target with a single 
the conditional probability of hitting 

error is equal tb x:> 
shot (under the condition that the group 

will be 

(11) 

where a(u) is the Laplace function., 

The unconditional probability of hitting the target with a 
single shot will be 

The second jntegral in‘Eq. (12) represents a composition of 
two normal distr;bution. As a result of this composition we ob- tain a normal distribution width the mathematical expectaiion zo 
and the dispersion 

I a; =?+a; (13) 
(see [82], page 6~8). Equation (12) may therefore be transformed 
in the following Fanner: 

Hence it follows that in a scheme of two error groups the 

~ 
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hi% probability with a single shot is determined in the same ~nan- 
ncr an In the c&se of a single error group, however, with Tc XF?,G.- 
X:~~~cGsr.+; of the technical scattering by the total scattering of the 
two error groups. 

shots 
The probability of at least,one hit on the target with PZ 

is found from the equation 

where P(x) -is found from Eq. (II). 

The integral in Eq. (15) is easily calculated by one of the 
methods of numerical integration (for example, by the Simpson 
method). 

If the target damage probability is exponential, from Eq. 
(15) we obtain the target damage probability in firing a group 
of n shots 

(16) 

C. Determination of Target Hit Probability for a Scheme of Two 
Firing Error Groups with Two-Dimensional Scattering 

For simplicity let us consider'the case of flrlng under the 
following conditions: 

a) the target is a square with a side 2a; 

b) the shot scattering is circular; 

c) there are no systematic firing errors. 

Let the coordinate origin coincide with the target center, 
We denote the errors of the first group (nonrecurring) by 5 and 

~ 0, and we denote the errors of the second group (recurring) by x 
and y. 

The probability density for the errors of the 1st and 2nd - 
groups will then be, respectively, - 

(17) 

With fixed magnitudes for the errors of the second group, 
the probability of hitting the target with a single shot will be 
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whence we find 

The conditional probability of achieving m hits in the target 
out of n shots (with fixed x and y) will be 

where d", is the/ number of combinations of n items taken m at a 
time. 

The unconditional probability of achieving m hits from n 
shots will be ~ 

+m +m P m.7, = ss Ptn,n (XP Y) 02 ‘PO ‘, ($) (~0 (+) dx&. -00 -m (.w 

Integral (~22) is simply calculated in the special case in 
which n = m = 1. In this case we obtain the probability of hit- 
ting the target, with a single shot, which, as follows from Eqs. 
(X2)-(14), can pe written in the following form: 

where u c is found from Eq. (13). 

When n > 1~ Integral (22) can be calculated by one of the meth- 
ods- of numerica'l integration. 
uct of two sing'le integrals, 

In this case it reduces to the prod- 
We will demonstrate how this is done 

in the special :case of n = 2. 

Let us first consider the probability P22. From Eqs. (221, 
(21) and (20) wo find 

In Eq. (24~) we obtained the product of two identical single 
integrals, each! of which we denote A. In view of the integrand 
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symmetry we can write the following expression for A: 

(25) 

In Eq. (25) we have substituted B = T/B and intrc'duced the 
denotation i3 

(26) 

We note that the magnitude of A is fully defined by two 
parameters: E and P11, 

Indeed, from Eqs. (26) and (13) we find 

whence 
a 

-==w+“* urn (28) 

If P11 and E are given, from Eq. (23) we.determine the ra- 
tio a/DC, while from Eq. (27) we determine the ratio a/on which 
Is included in Eq. (25) for A. 

We now examine the probability P12. From Eqs. (22), (21) and 
(20) we find 

I However, the integral in the right-hand portion of Eq. (29) 
is equal to Pll. We therefore obtain 

P,, = 2P,, - 2P,, = 2P,, - 2A’. (30) 

NOW It is not difficult to find the last of the probabilities 
P02 of interest to us. For this we have to use the fact that the 
sum of the probabilities Po2, P12 and P22 is equal to 1. From 
Eqs. (30) and (24) we then obtain 

P,, = 1 - 2P,, + A’. (13) 

We see from Eqs. (24), (30) and (31) that to calculate all 
three probabilities of Interest to us we need only one single in- 
tegration to calculate . . according to Eq. (25). 

EXAMPLE 1. Let us consider the case in which the tarset is b 
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square having a side 2a = 4 m, and the standard firi,ng errors for 
the two groups are identical: CT = ag = I m. Under these condi- 

n 
tions, let us find the probabrlltres Po2, P12 and P22. 

Solution. $rorn Eq. (251, by numerical integration, we find 
A = 0.732. From,Eq. (13) we obtatn 'Jo = (21m2, while from Eq. 
(23) we find Pp1 = 0.710. 

Further, from.Eqs. (241, (29) and (301, we obtain PIJ~ = 0.116, 
'Plz = 0.348, P2i = 0.936. 

We note that In the case of.independent shots with P11 = 
= 0.710 we will~have 

P~~=‘(l-P,,)~=0,084. 
P,,=2P,,.(l-P,l) -0,412, 

I'~~-P;~ =0,604. 

The result4 of 
3.5.1. I 

these calculations are summarized in Table 

TABLF 3.5.1 

Table 3.5.1 also shows the values of the probability P' for 
at least a single hit on the target 

I f’=k+P*P, 

as well as the values for the correlation coefficient 

(32) 

Moreover, Table 3.5.1 shows the probability values for E = 
= m (21 = 1). Here-the nonrecurring errors are so small that the 
technical scattering of the shots can be neglected and it may b,a 
assumed that all of the shots in one group hit one point. This 
means that if one shot hits the target, all of the remaining 
shots would also hit the target. In this case therefore P12 = 0, 
p22 = P11 and Pi2 = l- Pll. 

The quantitative relationships seen in an examination of 
Table 3.5.1 are~general. With an increase in E (when E * QI or r * 
* 1) the following quantitative relationships prevail for any 
values of ?a: 

1) the quantities P in, ‘2nJ l ‘.’ ‘n-i,n 
tend toward G; 



9) tne quantity Pn ~ tends toward Pll; 
1 

3) the quantity POvr tends toward 1 - P~I; 

4) the probability PI of at least one hit tends toward P11. 

We also note that when 'e&l r<f 
( > the probability character- 

istics do not significantly ,differ from those which correspond 
to independent shots. 

0. Determination of Target Damage Probability for the Case of a 
Scheme of Two Error Groups 

For conciseness in the discussion we will limit ourselves 
here to the case in which the number of shots in the group is 
equal to 2. 

In this case, according to Eq. (3.4.21), the probability of 
target damage will be 

R 0 = PI&, + P&m (33) 

where the probabilities P 
(3O)J 

12 and P22 are found from Eqs.(24) and 
while the probabilities Gl and G2 are defined by the dam- 

age probability. 

We will illustrate Eq. (33) by means of an example. 

EXAMPLE 2. Find the -target damage probabi lity under the con- 
ditions of EXAMPLE I for three versions of the damage probability: 

a) GI = 0.5. 
b) &=0,5, 

)G#=oo5. 
,G, =0,75, 

C)G,=0,5, ,a* = 1. 

(here, case b) corresponds to an exponential damage probabiiityl. 

Solution. Under the conditions of EXAMPLE I we had P12 = 
= 0.348 and P22 = 0.536. 

From Eq. (33) we determine the values of R2 shown in Table 
3.5.2. 

TABLE 3.5.2 

zity 1 R, 

a 0.442 
b 0,576 
c 0.710 

We see from this table that the exponential damage probabil- 
ity occupies an intermediate position (with respect to RPI be- 
tween the other cases considered. 
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E. Application of the Method of Statistical Modeling to Deter- 
mine a Target Damage' Probability 

We limited ourselves above to an examinationof several'spe- 
cial cases and to several examples for the determination of the 
target damage probability. We did this because in the more gen- 
eral cases we obtain extremely cumbersome analytical expressions 
which are of little use in calculation. 

The methodmof statistical modeling makes it possible with a 
single simple g&era1 scheme to determine the target damage pro- 
bability for the most general conditions: 

an arbitrary target shape; 

an arbitrary number of shots in the group; 

noncircular technical scattering with arbitrary direction 
for‘the scattering axes relative to the target; 

noncircular scattering of recurring errors with arbitrary 
direction for the scattering axes relative to the target; 

there may be systematfc.errorS; 

the relationship between the,errors of successive shots is 
arbitrary (not necessarily reducing to the scheme of two error 
groups);, 

the targetdamage probability is arbitrary. 

The scheme~for the application of the method of statistical 
tests to determfne the target damage probability by a group con- 
sisting of y1 shots involves the following: 

1) One group of n shots is modeled. By means of random-num- 
ber sensors we determine the recurring and nonrecurring errors 
and for each shot we detemnine whether it is a hSt or a miss. 
We calculate the number of hits. By means of the random-number 
sensor and the damage probability we determine whether the given 
group has damaged or failed to damage the target. 

I 2) Modeling of the shot group is repeated N times. As a re- 
sult we have that the target was damaged Iv1 times, while failure 
to damage the target occurred N - NI times. 

3) We findithe target damage probability from the frequency 

p+. (34) 

4), We calculate the accuracy of the solution according to 
Eq., (,34) by mearis of the method discussed in $2.3. If the accu- 
racy is inadequtite, 
curacy is achieved. 

the modeling is continued until the given ac- 



$3.6. ;;$IDERATION OF RELIABILITY IN EVALUATING FIRING EFFECTIVE- 

A. Formulation of the Problem 

Let us examine the case of firing n shots at a single tar- 
get under the following conditions. 

1. The probability characteristics of the projectile [mis- 
sile] remain unchanged from shot to shot (the probabiiity tif hit-- 
ting the target, the probability of on-board facility failure, 
@lx,). 

2. The probability of no weapon (launch installation) fail- 
ure with n shots fs written in the form 

P(n) -Pt. (1) 

where PI is the probability of no failure with 
, if there were no malfunctions prior to that shot. 

3. In evaluating the target damage probability we can ne- 
glect the accumulation of damage due to the previous shots (if 
the target was not damaged by these shots). 

Under these assumptions we can write the following expres- 
sion for the unconditional target damage probability with a single 
shot: 

where R1 Is the conditional probability of target damage with a 
single shot, determined for the condition that the weapon did not 
fail on that shot. 

Let us now examine the following problem: the firing instal- 
lation has at its disposal n projectiles, the firing is being 
carried out against a single target, the results of the firing 
are under observation and the firing is stopped when the zargct 

~ Is damaged. We are required to determine the probability Rn of 
target damage. 

In analogy with $3.4.1, for the case of independent shoCs, 
this problem has the following solution [see Eq. (3.4.26)l: 

I@,= 1 -(l -R,)% (3) 

However, under these conditions Eq. (3) is not valid, since 
the possibility of weapon failure makes the shots dependent. In- 
deed, if the weapon failed on some shot, the target damage proba- 
bility for all of the subsequent shots Is equal to zero. 

8. Basic Equations 

Let Qk denote the probability of the following event: the 
target has not been damaged by shots with numbers from 1 to k - 1; 
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on the kth shots the target was damaged. - I 
The quantity Qk is easily defined as the product of three 

factors: I 

the probability of proper weapon function for k shots is P:; 

the probability of target nondanfage with k - 1 shots is (1 - 
- Rl)k-l; 

~ 
the probability of target damage on the kt& shot is RI, i.e., 

I QL-PfR,(l -RJk-l- P,R,zR+, (4) 

where for brevity we have introduced the denotation 

z=P,(l-RR,).. (5) 

We can now write the following obvious equations: 

I 
(6) 

(7) 

where Mn is the1 mathematical expectation of the number of shots. 

Using Eq. 
I( 
1 4) and the relationship 

from Eq. (6) wee obtain 

(8) 

This equation is valid when the weapon (launch installation) 
is clearly functioning properly at the beginning of the firing 
operation. If ib is not known In advance whether or not the we&- 
pon (launch installation) is functioning properly, Eq. (9) should 
be wrltten in tpe followiing form: \ * 

where K is then coefficient of weapon (launch installation) readi- ' 
ness (s:e §1.9>!. 

.Equation (7') can be rewritten to the form 
n 

M,=P,R, 
FJ 

k$-’ = P,R, -& 8 zk. 
k=I k=I 

(10) 

~ 
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After a number of transformations, from Eqs. (3) and (10) we ob- 
tain 

With n + - from Eqs. (9).and (11) we obtain 

(11) 

(12) 

(13) 

C. Analysis of Derived Equations 

Let us first consider the special case of P1 = 1. In this 
case from Eqs. (51, (91, (12) and (13) we find 

R n= 1 - (1 -R,)“, (14) 

(15) 

(16) 

i.e., we derive the well known equations fdr the case of independ- 
ent shots. 

Let us now consider the case of Pl # 1, while Rl = 1. In 
this case, from Eqs. (51, (91, (12) and (13) we obtain 

RN =p,, (17) 

M ,=P,, 0.8) 

i.e., the results are independent of n. This is physically evident, 
since when RI = 1 the target will either be damaged with the first 
shot or the weapon will fail on that shot and the firing operation 
will be curtailed. 

In the subject case we have derived Eq. (18) for Mn from 
which it follows that Ma 2 1, which is in agreement with the phys- 
ical sense of the quantity Mn - the average consumption of projec- 
tiles fired from a single weapon. 

We are frequently interested in the average consumption M' of 
projectiles per single damaged target. For this average consump~ 
tion the following equation is obviously valid: 

(19) 

From Eqs. (9) and (11) we have 

-(r&$-l)%” +1 M',= ~;_z~~l~z~~ l (20) 
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With n + m, we thus find 

In conclusion, let us examine a numerical example,. 

EXAMPLE I. 
of the launching 

The probabi Ilty P1 = 0.9 of faultfree operation 
installatton during the shot and the conditional 

probabf 11-l-y RI 7 0.7 of target damage with a single shot are 
known..Let us determine zhe limit values of the conditional tar- 
get damage probability (R=) and the mathematical expectation of 

the shots for ta;rget damage (Mm and Mfm 1 with an Infinite in- 

crease In the nu,mber n of mlsslles available to the weapon. 

Solution. From Eqs. 151, (121, (13) and (21) we find zib.37. 
,gm-O;8G, Al,= 1.18, +t’@= 1,37, 

It Is interesting to note that with tndependent shots go0 = I. 

Here the quantit,y E, < 1 be.cause of the low reliabflity of the 
launching instalIlation. 

With indepe,ndent shots the average number of shots for one 
target damage width n -t m w I I I be I/R1 = I/O.7 = 1.43. Here MfoIl = 

= 1.37 =C 1.43. T:his Is explained by the fact that it Is impos- 
sible to fire a ‘large number of shots at a single target because 
of the low relialbi Iity of the launch’lng instal latlon (the aver- 
age number of shpts from a single launching installation Is Mm = 
= 1.18). 1 

8. Firing at Sev,eral Targets 

Let us consider the case in which the gunner has at his dis- 
posal n projectiles [missiles] for the weapon. The firing is 
being conducted against one target until it is damaged, and fire 
is then transferred to the next target, etc. We are required to 
determine the maphematical expectation MUn of the number of tar- 
gets damaged by fire from a single weapon. 

It is easy to see that this problem is equivalent to the 
following: thereiare n targets and a single shot from the given 
weapon is fired at each of these. 

In this case the probability of damaging the first target 
with the first shot will be PlRl. The probability of proper weA- 
pon operation during the second shot will be P:, while the .pro-l- 
bability of damaging the second target will be P~RI. Analogously, 
for the third target we will have PIR,, etc. 

The sought mathematical expectation is found as the sum OF 
the probabilitief 

~ 
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M "n=P,R,+P~R,+P:R,+...+P:Ra= 

Hence, as n + w, we have 

(22) 

This equation is not suitable for the case PI = 1. In this 
case from Eq. (22) we have 

M" ,,=nR, (24) 
and 

M", =DD. 

EXAMPLE 2. Find Ml', for the conditions of EXAMPLE I. 

Solution. From Eq. (23) for values of P1 = 0.9 and RI = 0.7 
we have M", = 6.3. This means that with an unlimited number of 

shots per weapon on the average a single weapon will damage only 
6.3 targets (u‘ntil the weapon fai,ls). It is assumed here that the 

weapon that fails is not repaired during the course of the firing 
operation. 

$3.7. EVALUATION OF EFFECTIVENESS IN CERTAIN COMBAT SITUATIONS 

A. Evaluation of Firing Effectiveness for a Single Weapon Firing 
a Single Shot 

Let us consider the case in which the firing operation is 
being carried out with a single weapon which has traveled a con- 
siderable distance prior to opening fire.' The system is given 
the command to open fire at a target whose stay time T in the 
fire zone is limited. As a rule, this may involve an unp,lanned 
target (gathering of people and equipment, rocket launch instal- 
lations, etc.). 

This assignment can be carried out only by a complex system 
equipped with reconnaissance facil'ities. For example, an airplane, 
a light bomber, an artillery or rocket system with nuclear capaci- 
ty and with reconnaissance facilities. 

The effectiveness of such systems can be compared in terms 
of target damage prbbability. The damaging of a target with a sin- 
gle shot under these conditions will be a complex event consisting 
of a number of random events. 

1. A random event involving the detection of the target by 
the system. This event is evaluated by the detection probability 

: P obn"o)' 
3 A random event involving the fact that at the instant of 

\'> 

t%me iti = 0 (tne instant at which the command to open fire is re- 
CZiVeti) the syster will be ready for 0peratioK. Yriis ev25*; i5 
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evaluated by the probability that at the instant of time tk = 0 
the system will be in an operational state K . 

g 

3. A randomievent involving the fact that the system will 
function faultletisly for the given time tp which is evaluated by 
the probability of faultless operation P(tp) during the time t 
(preparation and,launch of rocket). P 

4. A random'event consisting of the fact that the target 
will not leave the fire zone (if it 1s a moving target) or will 
not leave its starting position. This event is evaluated by the 
probability of the target staying in the firing zone (at its 
starting positio+) P(*r). 

5. A random~event consisting of the fact that our system 
will not be destroyed during the time t p by fire from the enemy. 
This event is evaluated by the probability of nondamage from ene- 
my fire (1 - Q). 

6. A random'event consisting of the fact that the miss dis- 
tance r on launch of the rocket will be less than the reference 
radius PO of the~damage zone. This event is evaluated by the pro- 
bability P1 of h+tting a circle with radius PO. 

7. A randomievent consisting of the damage of a target on 
launch with a miss distance r. This event is evaluated by the 
conditional probability of target damage G(r) under the condition 
that the misslle~explodes with a miss distance r. 

The total target damage probability kl with a single shot, 
with consideration given to all of these random events, is evalu- 
ated as the product of the probabilities of all of these events: 

K (0 = Pm (0 KJ’ (In) P (4 (1 - Q) R,, (1) 

where RI = PlGfrl and is calculated with Eqs. (3.1.1), (3.1.6) or 
(3.2.1)-(3.2.29)~as a function of the type of ammunition. System 
reliability P(t D was considered in Chapter 1 and in the previous 
section. Let us'examine in greater detail the probability P(T) of 
the target remaining in the firing zone, the readiness factor Kg 
and the detection probability. 

If fire is being conducted at a launching position, the time 
that the target stays in the fire zone is defined by the time re- 
quired to prepare ror firing. The usual preparation time ~~ Is 
characterfzed by! the average preparation time. However, we will 
always have a ra‘)-ldom target stay time 'c in the fire zone, since 
random target detection may occur at the instant that it occupies 
its launch position at r P 

= 0 and at any other instant T 5 up. 
Ne may therefore, assume an exponential law for the distribution 
or" the target stay time 't at the launch position and calculate 
the probability that the target will not leave its launch posi- 
tion during the time 'I with the equation 

I 
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‘xl P (7 > fn) --‘ e ‘“, (2) 

where T b 0; 
~0-i~ the average target stay time in the fire zone from 

the instant of its detection. 

At any instant of time, begiynning with the instant of de- 
tection, the target may leave the launch position. Here the prc- 
bability of the target staying in the fire zone is a function 
exclusively of 'c and Is independent of the position of the reck- 
onlng origin. 

The probability of detecting moving targets was considered 
in §1.6. For nonmoving targets the detection probability PO,,(t) 
is a function of the reconnaissance rate Xr and the time t'spent 
on reconnaissance. The reconnaissance rate Xr will be understood 
to refer to the number of targets spotted per unit time: 

P 0611 = 1 -e--y 

The readiness factor Kg must be taken into consideration in those 
cases in which the period of preparation does not allow enough 
time to permit a technical inspection of the various system ele- 
ments and to carry out repairs or substitution of system element: 
that have broken down. Should there be enough time $0 check the 
equipment and to repair it in the case of failure, the readiness 
factor will be equal to unity. 

EXAMPLE I. Evaluate the firing effectiveness of a rocket 
system en route with a single launch of a rocket, if it is knnwn 
that the conditional probability of target damage is RI = 0.5, 
that the effectiveness of the return ffre is Q = 0.#5, ,that the 
ti’me required to ready the launch is tp = 0.5 hr, that the aver- 

age time of faultless system operation is 2 = 50 hr, that the 
average repair time isl’ V 

= 2 hr, that the average target stay 

tlme in the fire zone Is fg = 2 hr, that the reconnaissance rate 
is xr = 0.5 targets per hour and that the reconnaissance time is 

t = IO hr from the instant that the system gets under way. 

i ous Solution I. From Eq. (3) we determlne PO,,($) for vat- 
val.ues .of the reconnaissance time 

1. hr 0 2 4 6 0 10 

P”Oll(O 0 O.G35' 0.865 0.950 0.982 0.933 

2. The readiness factor 

50 
Kr==50+2 -=0,373. 



the equation 
*tI 

I P (f,) = e- 7= 0,990,. 

4. The pro~abillty of the target staying in the fire zone 
is found from Eq. (2) (we neglect the time spent on the proces- 
sing of the rec$nnalssance results and target Indication) 

*n 
P(z > I,)=/<=0,775. 

5. The effbctiveness of the system firing at a launch posi- 
tton as a func’tion of the reconnaissance time t Is determlned 
from Eq. (I) as~Rtlt) = 0,635.0.973*0.990*0.775 (I - 0.5140.9 = 
= 0.213, etc. ~ _- -. 

i. hr 0 2 I e 8 10 

~ RI 0 0.213 b.290 0.319 0,330 0,333 

Hence we chn see that the firing effectiveness of the system 
does not exceed: 33$, whereas the conditional probability of target 
damage RI = 0.9. The bas’ic factor reducing firing effectiveness 
in this example8is th6 effectiveness Q = 0.5 of the countermeas- 
ures. 

B. Evaluation ok Firing Effectiveness with Several Shots 

With sever?1 shots under complex combat conditions the same 
random factors which we considered in the previous Item will af- 
fect the firing'effectiveness of the system. Moreover, we will 
also find a relqtionship between the shots. However, the rela- 
tionship between the shots may occur either at a hi h firing rate 
or with a low reliability of system operation (see !z 3.6). With 
high system reliability and a low firing rate we can neglect the 
fact of the relAtionship and calculate effectivenesss with the 
equation I 

&,(tp-- ~oa~(t)~~'(i)p(q{l --[I -p@,) WI (1 -.-Q)s (4) 

where P(t) is the probability of the system functioning fault- 
kdy during time i?; 

Pltol is tQe probability of the rocket functioning fault- 
less+y during the flight time to; 

~1 is the number of rockets launched at a single target; 
t is the time that the system is in operation against a 

single target. 

The remaining parameters have the same si;;nificance ac in 
the previous it&m. We can use Eq. (4) to calculate the firing z.f- 
fectiveLess of an antiaircraft system or of an ATGM [antitank 
t:uided rnlssile] (I-ITYPC). The detection probability in this case 
is calculated with Eqs, (1.6.2) and (1.6.18). 
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Transliterated Symbols 

I? 
=r= razryv = explosion 

Pa = rd = razryv po dal*nosti = explosion, distance 

PB = rv = razryv po vysote = explosion, altitude 

CP = sr = srednly = average, mean 

H =n = normal'nyy = normal 

r =g= gruwa = group 

I?= g = gotovnostf = readiness 

O~H = obn = obnaruzheniye = detection 

o=o= obnaruzhenlye = detection 

K= k = komanda = command 

n=p = podgotovka = greparatiofi [training] 

P =r = razvedka = reconnaissance 

B =v = vosstanovleniye = recovery [repair] 
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Chapter 4 

; 

APPLICAT~ION OF THE METHODS FROM THE THEORY OF MASS 
SERVICEI ENGINEERING [QUEUEING] FOR THE SOLUTION 

bF PROBLEMS IN OPERATIONS RESEARCH 
s4.0. INTRODUCT~ION 

At the present time the ideas and methods of the theory of 
queuelng are finding increasing acceptance throughout in prac- 
tice, includinglin operations research. This chapter provides a 
brief discussion of certain results and methods from the theory 
of queueing whi'ch may be applied to the solution of military prob- 
lems. They are 811 reduced to calculational relationships. 

The chapter demonstrates the approaches and methods of for- 
mulating and solving certain military engineering problems asso- 
ciated bith them theory of queueing, and these are all illustrated 
with appropriate examples. In the last section we present the 
fundamental principles for the solution of more complex problems 
on a computer bb the method of statistical tests (the Monte Carlo 
method). At the'end of the book and in this chapter, during the 
course of the discussion of the material, we provide references 
to available Russian literature on the problems of the theory of 
queueing touched upon here, The reader may refer to these cita- 
tions if he desires a more extensive and more thorough familiari- 
zation with theimethods and results of this theory. 

§4.1. FUNDAMENTPL CONCEPTS OF THE THEORY OF QUEUEING 

The theory~ of queueing was developed only recently. Its de- i 
velopment was brought about initially by the urgent needs of 
telephone communications, and then in physics, efficient servicing 
of the populatibn (stores, cashiers offices, airports, etc.), re- 
pair and servicing of machine tools, etc. 

In military affairs the methods of the theory of queueing 
may be employed~ to evaluate the effectiveness of an antiaircraft 
defense AAD [n.BO] system for various sites on the basis of which 
requirements are worked out with respect to antiaircraft weapons, 
reliability of aerial reconnaissance, to study the firing effcc- 
tiveness of antitank facilities, the transmission capacity and 
the quality of barious forms of guidance systems, for the deter- 
mination of opt'imum organization in the repair of combat equip- 
ment and systems for the supply to troops of ammunition and other 
forms of combat; equipment, the forecasting of peak loads at evacu- 
ation centers, hospitals, decontamination Centers, etc. [66j. 



As we can see from this brief listing, the range of problems 
of applied military nature which may be solved by means of the 
methods of queueing is rather extensive. 

Before turning to the direct application of the results and 
the methods of the theory of queueing and examples of its military 
application, we must become familiar with its fundamental con- 
cepts and terminology. 

In solving the above-enumerated applied military croblems 
we define the term "queueing" to include the firing at aerial tar- 
gets by an antiaircraft defense system, the observation of ground 
targets by aerial reconnaissance facilities, the repulsion of an 
armored attack by a system of antitank facilities, the processing 
of reconnaissance and similar data by a control system, the re- , 
pair of military hardware, etc. 

The queueing system includes devices (lines, flows, etc.) to 
provide service. If we again turn to examples from the area of 
military affairs, these include antiaircraft defense systems, 
aerial reconnaissance facilities, antitank weapons, industrial 
assembly lines [flows] or weapon repair shops, etc. 

The function of any queueing procedure is the satisfaction 
of imposed requirements (requisitions). In military affairs these 
requirements (requisitions) for service include aerial targets in 
the antiaircraft defense zone, tanks in the operating zone ef 
antitank facilities, targets for aerial reconnaissance, weapons 
requiring repair, etc. These requirements (requisitions) are in- 
troduced into the system to form a certain time sequence of events 
which will be referred to as a flow. 

Those requirements which are imposed on the system form the 
input flow. However, all requirements are not serviced by the sys- 
tern. Some of these, rejected for certain reasons, are removed 
from the system without service. For example, when An enemy force1 
of aircraft attacks a site, the antiaircraft systems are not al- 1 
ways capable of firing at these aircraft. Some of these aircraft 
penetrate to the target, forming an output flow of aircraft which~ 
have not been fired upon (unserviced requirements). I 

The output flow may also consist of serviced requirements 
(aircraft and tanks against which fire has been directed, repaired 
weapons, etc.). 

A. Classification of Queueing 

All queueing systems can be divided into two major troupe: 
uniform and nonuniform. The former consists of uniform servicing 
dcv-ices, while the latter consists of nonuniform devices. For e’x- 
9:.1p le , if an antitank defense system consists of uniform antitank 

'facilities, it will be a uniform queueing system. 

The ;;ervice process itself may consist of a number ol' suces- 
s.lve phases. In tlilS event, if there are several such Fhasee, 
oLueueing syirl;tems are known as muitiphase systems. Yqr example, 
an antiairci-aft defense system may be regarded as c;onsist,ing of 
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a guidance system and a fire control system. Targets appearing 
in an antiaircraft defense zone are initially detected and dis- 
tributed by the guidance system among the antiaircraft fire sys- 
tems (the first phase) and then fired upon by these (the second 
phase). 

The operational feature of multiphase systems involves the 
fact that the servicing facilities of each subsequent phase be- 
come operational only when the requirement (requisition) of the 
previous phase has been satlsfied. 

In terms of the time for which a requirement remains in ef- 
fect in the servicing sphere, all systems can be divided into 
three major groups: 

systems with failure; 

systems wi!h limited expectation time; 

systems with unlimited expectation time. 

Systems uihh faiZure are those in which any new input req,ui,re- 
ment for service, on finding all facilities occupied, leaves the 
system. An examfile- of such a system is an antiaircraft defense 
system in which~the stay time for a target in the firing zone is 
small and commensurate with the time required to carry out the 
firing operation. In this case, the enemy aircraft {or some other 
aerial attacking device), finding the antiafrcraft systems en- 
gaged in firings at other aircraft , passes through the antiaircraft 
defense zone unharmed. 

The opposite of the above system is a qtisueing system with 
an unlimited ti?e of expeotation for requ<rements (requisitions) 
in sequetioe la system with expectation). The operational feature 
of such a sys'te? involves the fact that an input requirement, 
finding all service facilities occupied, must await its turn un- 
til some of the'servicing units are freed. As an example of such 
a system we can cite a control system processing reconnaissance 
results and data on the position and status of friendly forces, 
repair workshops, etc. In the latter case, weapons coming in for 
repair, if flows engaged in the repair of earlier arrived equip- 
ment are occupibd, must await their turn and weapons thus are 

accumulated in large quantities. 

FinaZZy, sy8tem8 with a limited expectation time occupy an 
intermediate po+ition. Requirements entering such a system, on 
finding all devices occupied, take their turn. However, the re- 
quirements rema:n in this system for a limited time, after which, 
unable to await sexvic~, they leave the system. The fundamental rela- 
tfonshlps derived for these systems to describe thetr function 
may be used to ,obtain similar relationships for the earlier con- 
sidered systems,. As an example of such a system we can cite the 
grouping of an&tank facilities with rather great Tiring range. 
The time in whi~ch an enemy's tanks remain in the firing zone is 
rather great, but limited. For systems with failure the time of 

-requirement exp~ectation on an In-turn basis is equal to tozh = 0. 
I 



Each of the systems may vary with respect to the nature of 
the requirement to be serviced: 

the devices are connected for servicing in rigorous sequence 
(for example, in numerical order). This occurs when the system 
consists of various types of uniform weapons with various advan- 
tageous characteristics of their combat application; 

the devices begin to service new input requisit'cns 9s thpv 
become free (for example, industrial repair assembly lines); 

the devices are actuated in liandom order (for example, anti- 
aircraft systems in firing at targets in the case of a strong 
attack from the air). 

In systems with expectation and limited expectation time we 
can determine the variations from the sequence with which the re- 
quirements are accepted for servicing: 

requirements for servicing are accepted in the sequence of 
their input into the system (arrival of a malfunctioning weapon 
for repair); 

preference for service is given to those requirements which 
have minimum time to failure (in the firing zone for antitank fa- 
cilities it is advisable, first of all, to fire at those tanks 
which,are closest to the antitank facilities and capable most ra- 
pidly of penetrating the defense perimeter); 

requirements for service are accepted in random order (as an 
example we can cite the antiaircraft defense system for a site,in 
repelling an enemy aerial attack). 

A general feature of all problems associated with queueing 
is the random nature of the studied phenomena. The number of re- 
quirements for service and the magnitudes of the time intervals 
between these on input into the system are random. The servicing 
time, and in certain systems with limited expectation time, the 
expectation time as well, are also subject to random fluctuations, 
with these random fluctuations, however, not in the nature of 
small perturbations. Quite the opposite, this basic feature of 
the subject processes imposes a specific mark on the properties 
of the derived relationships. 

B. Characteristics of Requirement Flow 

In practical terms, virtually all problems pertaining to 
the theory of queueing have been reduced to final calculational 
formulas and these, having found practical application, proceed 
from the position that the input flow is the simplest (Poisson). 
The simplest flow exhibits three basic properties: steadiness, 
uniqueness and an absence of aftereffects. A random fiow is re- 
ferred to as a steady fZow if its probability regime does not 
vary with time. 

If we plot equal but nonlnte?setting time i;ltzrvals T (Fig. 
4.12) on the tirde axis, the probability of t?ie eveLit - t?le a>- 
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pearance during these intervals of a specific number of require- 
ments - depends for the given flow on the magnitude of 'I: and is 
independent of the position of this interval on the time axis 
(from the instants of time tl,.t2, ts, etc.). 

tr $2 tJ 

I II- I I 1 I 

T ‘c 2 

~ 
Fig, 4.1.1 

For the simplest flow the probability of the appearance 
within a time interval of duration 'c of precisely k requirements 
is determined with the Poisson formula 

where X > 0 is .+ constant number whose significance will be clari- 
fied below. 

I 
Absence of~aftiersffects involves the fact that the probabil- 

ity of the appearance of a specific number of requirements within 
the time segment f is independent of the number of requirements 
that have already arrived in the system earlier and is independ- 
ent of the previous history of the subject phenomenon. The ab- 
sence of aftereffects assumes the mutual independence of the pro- 
gress of the fldw in nonoverlapping time interval. Uniqueness of 
the requirement ~flow indicates the practical impossibility of the 
appearance of tdo or more requirements at a single instant of 
time. If we dendte the probability of the appearance of more than 
one requirement~during the time At by P,l(At), the uniqueness 
condition is written as follows: 

The simplest flow is thus a steady flow, one that is unique with- 
out aftereffects. The derivation of the equations for the sim- 
plest flow is d@monstrated extensively in availabie literature 
on the theory of queueing and the reader may find this material 
in Reference [8Ql. 

An important characteristic of the flow is its rate, which 
is defined as the mathematical expectation of the number of re- 
quirements per unit time. For the simplest flow, the average 
number of requirements arriving during the time t is equal to 

' where g(t) Is the flow rate; 
h is the flow parameter. 
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The flow parameter in the theory of queueing is defined as 
the limit of the ratio for the probability of the appearance rl(til 
during the time At of at least one requirement to the time At 

For the simplest flow the rate is equal to its parameter. For 
other steady flows we always have the inequality v # ?.. T-lo sirr 
plest flows differ from each other only in their parameters. Thus 
to assume a simplest flow it is enough only to assume its para- 
meter X. 

Graphically, the simplest flow, as well as other forms of 
flow, can be presented in the form of a curve of random functions 
having discrete whole nonnegative values (Fig. 4.1.2). The height 
of each step in this graph Is equal to unity (the appearance of a 
requirement), and the length of the step defines the time inter- 
val between two successive requirements. The magnitudes of these 
Intervals are random quantities with an exponential distribution 
law having the parameter A. 

Fig. 4.1.2 

An exponential distribution exhibits one interesting proper- 
‘tY - the distribution of the duration for the remaining part of 
the time prior to the onset of the subsequent event is independ- 
ent of the amount of time that has passed since the Instant of 
the previous event. This property enhanced extensive application 
of the exponential distribution ,in the theory of 
of this property may be found fin References [80, 2 

ueueing. Proof 
61.1 

Particular attention is being devoted to th.e simplest flow 
because it has found overwhelming use in various applications. 
However, experience in the study of real flows demonstrates that 
these may not always be presented in the form of the!simplest. 
Indeed, we should expect certain aftereffects, nonuniqueness and 
nonsteadiness in the flow, and these cannot always be neglected. 

The appearance of requirement flows with limited aftereffects 
will be examined on the example of the antiaircraft defense of a 
major target. According to data from [62] the antiaircraft defense 
system of such a target, as a rule, consists of several echelons. 
Let the simplest fiow of targets approach the first echelon of 
the antiaircraft defense system. All of the targets will not be 
damaged as they pass through the first echelon. The output flow 
Of targets will now be a flow with limited Lftereffects ia Palm 
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flow). If a Poisson flow of targets approaches the first echelon, 
as it passes through the antiaircraft defense elements an increas- 
ing number of voids will be formed within the flow, The farther 
the flow of targets passes through the echelons of the antiair- 
craft defense, the larger the number of voids and accumulations 
will form. This ;is the meaning of aftereffect. 

Nonsteadiness of the flow with respect to time appears par- 
ticularly strongly when it is considered over the course of a 
large period of,time. As the time segment is reduced the nonstead- 
iness of the flow, as a rule, weakens. 

Deearture from uniqueness may be demonstrated on the same 
example of antiaircraft defense. Indeed, under practical condi- 
tions, two or more aircraft may simultaneously enter the anti- 
aircraft defense zone. 

However, the simplest flow continues to be used for a number 
of circumstances: 

1. For other forms of flow we have not as yet derived simple 
formula relationships for a quantitative evaluation of the func- 
tioning quality~of queueing systems. 

I 
2. It is more difficult to adapt queueing systems to the 

simplest flow. Therefore in designing servicing facilities in 
this case we figure on their operation under the most difficult 
of conditions, If the servicing facilities are designed for this 
most disadvantageous case, the servicing by the system of other 
random requirement flows at the same rate will be more reliable. 
This was the conclusion of I.N. Kovalenkq [121]. 

3. The simplest flow .in the theory of queueing plays the 
same role as the normal distribution function for random quan- 
tities in the theory of probabilities. In combining several ran- 
dom flows we form a total flow which, in terms of its character- 
istics J approaches the simplest flow (see [121]>. 

However, in actual practice there may arise a need to study 
the work of queueing systems-which receive requirement flows sub- 
stantially different from the simplest, and also other flows which 
have been sufficiently well studied. In this case the operation of 
the queueing system may be analyzed by means of the method of 
statistlcal tests (the Monte Carlo method) in whfch it is fre- 
quently advantageous to use digital computers (see Chapter 2). 

I 
C. Servicing Tihe 

Servicing time is the most important characteristic of any 
apparatus (lfne~) for the servicing of a system and defines its 
transmission capacity. Servicing time is a random quantity. This 
is, 3 result of the instability of servicing facility operation 
(particularly w+th participation of a human being or a staff of 
peopiej and because of the nonidentity of the requirements coming 
into the system'. For example, in repulsing an enemy aerial attack 
by the antiaircraft defense system of a target the servicing time 
is the time required for each antiaircraft system TV fire at the 
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aerial targets. Naturally, the time from each firing operation 
at each new target by the system will vary for a variety of rea- 
sons. With respect to an antiaircraft artillery system the scat- 
tering in the time required to fire at aerial targets will be 
governed by changes in.'range and ,firing parameters such as veloc- 
ity and target maneuvering, variations in the time required for 
preparation for firing, reloading time, the time required forthe 
transfer of fire, etc. 

The magnitude of the servicing time tabs therefore should be 
assumed to be a random quantity whose total characteristic Is the 
distribution function 

where PCtobs < t] Is the probability of the event that the ser- 

viclng time tabs will not exceed a certain quantity t. 

From physical considerations the servicing time may not be 
a negative quantity, i.e., when tabs 5 0 we have F(6) = 0. The 
servicing time distribution,function is determined experimentally 
by statistical methods of analyzing the numerical values of the 
servicing time for actual systems. The distribution functions may 
be of the most varied kind. 

However, both in theoretical applications, and particularly 
in practical applications, the exponential law has gained exten- 
sive acceptance. With an exponential distribution function all 
results are considerably simplifed, whereas development of meth- 
ods for the solution of queueing problems with an arbitrary dis- 
tribution function for the servicing time encounters tremendous 
difficulties. The exponential distribution function has the form 

F(t)= 1 -e+, W 

where JI = l/zobs is a positive constant quantity. The. quantity 

'ohs is equal to the mathematical expectation of the serv.icing 
'time. 

The exponential distribution function of the servicing time 
assumes that a significant fraction of the requirements will al- 
ways be serviced rapidly, which is not always in agreement with 
actual practice. 'A.K. Erlandtherefore proposed the assumption of 
a distribution density for the servicing time with the formula 

It can be demonstrated that pk(t) represents the distribu- 
tion density of the sum of k independent random quantities with 
an exponential distribution funct,ion. The form of the function 
vkCt) is shown in Fig. 4.1.3. This distributlcn o-,f the servicing 

- 215 - 



time is closer to the actual distribution. Queueing systems with 
an exponential distribution function exhibit an important prop- 
erty which must be borne in mind in evaluating armament effective- 
ness. 

Let a requirement enter a queueing system consisting of n 
various units. The servicing time for the requirement by each 
of the devices is subject to an exponential law with the para- 
meter p. The servicing is concluded as soon as one of the devices 
has completed its servicing task. It can be demonstrated (see 
[121)) that for this case the servicing function by each of the 
devices will also be exponential 

(7) 
‘with the parameter 

P” cl+ (8) I+1 

If all of the devices have identical productivity, u = npi. This 
means that wlth.the simultaneous servicing of the requirement by 
several devicesthe average servicing time diminishes by a factor 
of n in comparison with the servicing time of a single device. It 
should be noted~that the dispersion in this case diminishes by a 
factor of n2. This property can be illustrated by examples from 
military activities. 

Fig. 4.1.3 I ~ 

Such situations arise in firing at a single aircraft by sev- 
eral antiaircraft systems, in the simultaneous bombing of a vessel 
or a similar target by several bombers, in firing at a tank by 
several antitank facilities, etc. [121]. In all of these cases 
the servicing of the requirement (firing, bombing) is carried out 
until the attack target is damaged. This is seen in the extensive 
use in combat of massed combined strikes at an enemy. 

§4.2. EVALUATION OF THE EFFECTIVENESS OF ANTIAIRCRAFT DEFENSE 
WHERE THE,TARGET REMAINS IN THE FIRING ZONE FOR A LIMITED 
PERIOD OFiTIME 

Let us congider the antiaircraft defense system of an objective, 
consisting of antiaircraft weapons for which the target stay time 
in ihe firing zbne is commensurate with tine time required for FE- 
liable ob5ective &age (66, 1~1~ This aituatio'r: may be governed by 
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a combination of target velocity,, flight and altitude parameters 
with the tactical-technical characteristics of the antiaircraft 
weapon. 

Formulation of the problem. The antiaircraft system consists 
of n uniform antiaircraft units, each of which can simultaneously 
fire only at a single target. The enemy has attacked the antiair- 
craft and the site which. it is protecting at a rate ;A. We are 
required to solve the following important problems: 

evaluate the anticipated number of aerial targets downed by 
the antiaircraft system in repulsing the attack; 

determine the anticipated quantity of aerial targets capable 
of penetrating the antiaircraft system to the site and deter- 
mine the combat assignment; 

evaluate the basic tactical-technical characteristics of the 
antiaircraft weapon from the standpoint of the possible improve- 
ment in the effectiveness of the antiaircraft system; 

evaluate the combat potentials of the attacking facilities 
with respect to penetrating the antiaircraft defense system; 

determine the necessary composition of the antiaircraft de- 
fense facilities with the required tactical-technical character- 
istics , prclceeding from the standpoint of the required effective- 
ness. 

We assume that the flow of targets in the attack is of the 
simplest kind. Adoption of this assumption is based on the fol- 
lowing points: 

despite the need to maintain distance and intervals in the 
attack, their magnitudes exhibit random deviations from those re- 
quired; 

under the action of the fire from the antiaircraft defense 
facilities, the combat formations of the attacking aircraft are 
disrupTed; 

if the enemy attacks the protected site from several di- 
rections, the total flow of attacking aircraft is-close to a 
Poisson flow., 

As mentioned earlier, the simplest flow of attacking targets 
is the most difficult from the standpoint of repulsing the attack 
by an antiaircraft defense system. This makes it possible to eval- 
uate the effectiveness of the antiaircraft defense for a site 
under ;r,ore difficult conditions. In solving this problem we give 
no consideration to the return fire of the enemy. 

Each target appearing in the antiaircraft defense ZG:-LC is 
immediately fired upon by one of the systems. If all of the SYE- 
terns are already firing at targets, aircraft newly appeared ilz 
the firing zone will penetrate to the protec*;ed object:ve. 
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We assume that the time required to fire at an aircraft by 
an antiaircraft system is a random quantity and is subject to 
the exponential distribution function having the parameter v. 
Therefore, the probability that the tfme required to fire at the 
target will not'exceed $ is determined from the expression 

P (f) = I - em”‘- 

The probability iof the opposite event is equal to g(f)=e-'f. The 
antiaircraft defense system may be found in the following situa- 
tions: 

Ak 
A0 denotes 'all systems not engaged in firing operation; 

- k systems are firing, with the remaining open k = 1, 2, 3, 
. . . , (72 ,- 1); 

An denotes Iall systems firing. 

Let us derive the differential equations of these conditions 
for an antiaircraft defense system. 

Let At denote a very small time interval, We derive the 
equation of state for Ao. 
multaneous cases~: 

It is possible In the following nonsf- 

at the instant of time ~5 all systems are not firing. During 
the time At not a single enemy aircraft has appeared in the anti- 
aircraft defense' zone. The probability of this event Is equal to 

P  o ( f )  I P A t ;  (1) 
at the instgnt of time t one of the systems is engaged in 

firing, During the time At no new targets appeared in the anti- 
aircraft defense: zone, and the system has concluded firing opera- 
tion against then target. 
to 

The probability of thfs event Is equal 

P,(d)@ - e-;y eLIAl, 
.(2 > 

where Pl(t1 Is the probability of the case that a single system 
is firing. ~ 

Since the subject events are nonsimultaneous, 
the equation of state for A0 

P, (C + At):. Po(t)eeAAf + P, ([)(I - e-'A')e"XAf, 

we can derive 

(3) 

where P,(f+Af)is~the probability of not a single one of the sys- 
tems firing during the time (t + At); 

Poftl is~the probability of finding the antiaircraft de- 
.--Ant fense system in state Ao; 

is the probability of not a single target appearing 
inithe firing zone during At; 

1 -- I;--*A' is~the probability that one of the systems will con- 
clude its firing operations against a target during 
the time At. 

The quantit;; e -yt can be presented in the form of a series 
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while 

-% 1-aAt+...., e 

i -ee-yue vAt+.... 

Considering the smallness of the quantity At, we can present 
Eq. (3) in the' form 

-P,(t+At)=P,(t)(l - IAt)+P,(t) vAt( 1 - aht) (4) 

We divide both parts of the equation by At and, passing to the 
limit, we obtain 

Pb u + AU - PO (f) 
At =XP, (1) + VP, (t); 

P’, (t) = - I-4 (0 + @I (Q e (5) 

Let us examine state Ak. 
taneous cases: 

It Is possible In three nonsimul- 

at the instant t we have k sys'tems engaged in firing, and 
not a single enemy aircraft entered the firing zone of the anti- 
aircraft defense system during the time At nor did any of the sys- 
tems conclude firing operations: 

Pk (t) (1 - AAt) (1 - kvAt); 

at the instant t the antiaircraft defense system was in state 
Ak-1. One more target entered the f+ring zone during time At, but 
none of the systems concluded firin'g operations against its tar- 
get: 

Pk-, (f) IAf (I~-‘- kvAl); 

at the instant t the system was in state Ak+l. One of the 
systems became free during time At, 
in the firing zone: 

and no new targets #appeared 

Then 

P,+,(t) (1 -- AAt) (k + 1) VAt. 

P~(t+At)==P,(t)X(l---At)(l -64vAt)+ - 
+~,+,(t) (1 -hAf)IAt+ &+J)(l --A&t) (R+ 1) vu. 

After analogous transformatlons we obtain 

P’k (f) =+= - (~+kv)P4(~)+~Pk-r(~)+PR+I~~)(k3-1) v. 

This equation is valid for the case 

Let us examine the extreme state An. It is possible in the 
foll.owinhT nonslmultaneous ca6es : 

(6) 

(7) 
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at the instant of time t the antiaircraft defense system was 
in state An. Not a single weapons unit became free during the time 
At 

P,, (t) (1 --Nat); 

at the instant of time t the system was in state Ak-l. One 
more aircraft appeared in the antiaircraft defense zone during 
the time Ai? and none of the weapons unit, became free 

P,- ,(l)(l--rzvAt) IAt. 

After appropriat~e transformations and passing to the limit as 
At + 0, we ob.tain 

P’,, - -- nvP, (t) + w,, 1 (I). (8) 

All of these equations together have come to be known as the Er- 
Zang system of equations. 

Determination of the Steady Solution 

The steady ‘soZution is understood to refer to that solution 
which corresponds to a formulated and steady process in the ab- 
sence of any kind of transient phenomena characteristic of the 
start of servicing. 

In determining the steady solution we proceed from the steady- 
sta'ie process, i.e., the state of the system as t + -. 

Let us examine the functioning of an antiaircraft defense 
system in the re,pulsion of a prolonged attack. In this case 

Pk(t)+Pk=const, P’&)+O, k=O, 1, 2, . . . . n. 

The system of differential equations 

P’, (i) -z - AP, (i) + VP, (t), 
P!,, (1) --(a + kv) Pk (I) + Wk -1(t) + P/i+1 (0 @+I) v 
d.................. 
rl’, (f) = - n VP n (f) + IP,- 1 (1) 

(9) 

is then transformed into the system of algebraic equations 
* 
--w,+vP,=o, 

. . . . 
_..~;ikv)P~fRPR-I+(k+l)vPe+,--O. (10) 

. . . . . . . ...* 
~.-~YP,+wn,l--. 

As demonstrated lin [121, 801, from this system we can determine 
', the probabilltieis of the various,states. 

T';?e probability of state Pk (k units are firing) is deter- 
Mned from the. formula 



A 
1x=--’ 

Y ’ 

h is the average number of targets entering the antiaircraft de- 
fense zone per unit time 

Iv- 
I 

--; 
t 060 

'ohs is the average time required by the weapons unit to fire at 
the target. 

The characteristic of the antiaircraft defense system re- 
presented by the probability of all weapons units being slmul- 
taneously engaged in firing at targets may be of interest. This 
probability may be referred to as the probability of the anti- 
aircraft defense system permitting the passage of unharmed tar- 
gets 

P 
n! 

IIUOII 
z- n . 

rJ 
sk (12) 
IT 

kdl 

Formula (12) has been derived in the assumption that the servicing 
time is subject to an exponential distribution function. 

B.A. Sevost'yanov [12] proved a more general result accord- 
ing to which the Erlang formula remains valid for an arbitrary 
servicing time distribution function (see [121]). Tables (11.5) 
have been compiled for Formulas (11) and (12). The probability 
that each target will have been fired upon is equal to 

and the probahllity that the target will 
from the formula 

(13) 

be downed is determined 

(14) 

where P is the probability of the weapons unit damaging each tar- 
get as it fires at that target. 

The mathematical expectation of the number of downed targets 
during the attack is equal to 
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The mathemtitical expectation of the number of aircraft per- 
mitted to pass t~hrough the covered target without harm is equal 
to 

M npon=wl -&b). (16) 

The mathemtitical expectation of the number of weapons unit 
engaged in firing is equal to 

07) 

The avera@ load of each weapons unit during an attack is 

Earlier we~presented Formulas (15) and (16) which were de- 
rived for the steady solution, i.e., for an attack of great dura- 
tion. Formulas (15) and (16) are therefore approximate. These 
relationships may be used for pr'actical purposes, if the attack 
time trial is gr+ater by a factor of 2-3 than the average time 
required by the~unit to fire at a single target. 

From the results of the calculations carried gut by the meth- 
od of statistic$l tests we have that when trial > 2tobs the non- 
steadiness of the subject process has no significant effect on 
the results andi depending on the relationship between the quan- 
tities X and v,~ 
ceed 5-10%. 

the calculationa, errors Msb and Mprop do not ex- 

The utilizition of the derived relationships will be exam- 
ined through examples. 

I 
EXAMPLE. 'A site protected by antiaircraft defense is at- 

tacked by an enemy fro,m the air at an average rate of X = 4 air- 
craft/min. In the attack area the site is protected by 6 units 
(n : 6) with aniaverage time for firing at a single target givan 
as t 

obs 
= 0.5 miin. The attack is carried ou,t by 24 aircraft (N = 

= 24). We are required to evaluate the effectiveness of the anti- 
aircraft protection system for the site when P = 0.7. 

in solving~ the problem we proceed from the assumption thaT 
the aircraft atracking the site represent a Poisson flow. We 
f ind the auxiliary parameter 

I 
To d'etermi~ne the probabilities of various Stztr;5 for tho 

antiaircraft de~fense system we use the formula 
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while the results of the calculations are presented in Table 
,4.2.l. 

TABLE 4.2.1 
Number of unltm 

ensa~ad In Ph 

firing I I 

I 

PO 
‘h 

0 

5 
6 

1 

f 
1,333 
0,666 
0.267 
0,088 

kP, 

0 
0,272 

I Total 17.3531, 1 ) 1,975 

Using the results shown in Table 4.2.1, we obtain the fol- 
lowing characteristics for the system providing antiaircraft pro- 
tection to the site In the attack a-rea: 

the probability of permlttlng the unharmed passage of tar- 
gets to the site 

the probability of directi?g fire at each target participat- 
ing in the raid 

the probab 
raid 

pating in the 

P coa~‘l-P,=0.99; 

i lity of downing a target pat-tic i 

Pel=Polo- PLO,99 - 0,7-0,7; 

the mathematical expectation of the number 
ticipatfng in the raid that are fired upon 

Al o~c=NPooc= 21. o,gg=21 Slrcfdt; 

the mathematical expectation of the number 
ticipating in the raid that are downed 

.v,~=P,a * N-0,7. 24 = 16,8 eircruf~ 

of targets par- 

of targets par- 

the mathematical expectation of the number of aircraft pen- 
etrat i ng to fhe objective 

the mathematicji expectation of the number of w~apr,n= urlit: 
angaged in firing during the course of the raid 

This means that auring the attack e:ich r:eap~n\ ilrli+ 
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Mll 1.!)8 
ATO/o 3 -y---- -= 33% of the time. 

G 

will be engaged in firing. The remaining time may be used to re- 
load or for other purposes 

N T,=---‘6 min, 
A 

each of the weapons units will fire at 

N* PO60 24.0.99 
no60 = n - =D - =4 tergete, 6 

spending on then average tabs = 5 min on each of these targets. 

The remaining time of approximately 4 min may be used to reload 
or to fire at other targets. 

Let us consider the effect of the number of weapons units 
in the antiaircraft defense system on the nature of its opera- 
tion. Table 4.2~.2 shows for purposes of comparison the probabil- 
ities of each target being fired upon and the mathematical expec- 
tation of the number of weapons units engaged In firing during 
the course of the raid. 

It follows~ from the tabular data that a reduction in the 
number of weapons units from six to five has an insignificant ef- 
fect on the effectiveness of the antiaircraft defense system. 
With a further reduction in the number of weapons units the ef- 
fectiveness of the antiaircraft defense system diminishes more 
markedly. At first glance it may seem to be an unexpectedly small 
number of weapons units that are engaged in firing at targets 
during the raid;. This is explained by the fact that new targets 
may, appear in the 'antiaircraft defense zone while these weapons 
are firing and these new targets will thus pass through that zone 
without harm. On the other hand, because of the nonuniform load 
of the ,unlts and the nonuniform appearance of targets In the fir- 
ing zone some units may stand idle. However, as follows from 
Table 4.2.2, with a reduction in the number of weapons units, the 
percentage of their firing load during the course of the attack 
inc-eases. 

TABLE 4.2.2 TABLE 4.2.3 
tAsrhomntlce1 expectation of the 
number of downed urrcrtlh fi!,,j 

-.--- 
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Within the framework of the example, let us analyze the neec?. 
and feasibility of concentrating the fire of several units at a 
7 ingle target . Let the fire of two or three fi?ing unrits be COE- 
centrated at each aircraft. The average time of fire at an air- 
craft with this procedure is reduced in comparison ,with the time 
TOP a. sinr;le unit by a factor of two or three (Irefer to,??"! prop- 
erty of the exnonential servicing function in sil.l), i.e.? t20h,:: = 
='0.25 min, Z30bs = 0.167 min. The auxiliary parameter will then 

be equal to cl2 ='l aircraft, olg = 0.67 aircraft. The remaining 
conditions of the example remain unchanged. For these conditions ~ 
Table 4.2.3 shows the mathematical expectations or the number 
% of downed aircraft, when the probdbilitie? of downing 2.1? air- 
craft with the firing of a single unit are equal to P = 0.1 and 
0.0. 

Analysis of the results presented in Table 4.2.3 shows that 
wit? small values for the probabilities of downing a target with 
the fire of a single unit any concentration of fire markedly in- 
creases the effectiveness of the antiaircraft defense sy'stem. 
Xith high values for the same prob,abilities, this will either 
yield no perceptible increase in the number of downed targets in 
the raid (with m = 2), or it becomes unfeasible (with m = 3). 

§4.'3, EFFECTIVENESS OF AN ANTIAIRCRAFT DEFENSE SYSTEM SET UP IN 
ECHELONS CONSISTING OF SIMILAR WEAPONS UNITS 

The antiaircraft defense system for a major site may be 
set up in the form of successive zones or echelons (Fig. 4.3.1). 
This is referred to as the echelon defense system. In this case 
the enemy aircraft, before reaching the attack objective, a,re con- 
pelled successively to overcome all of the echelons of the anti- 
aircraft defense. There may be various numbers of antiaircraft 
facilities in each antiaircraft defense zone. 

Fig. 4.3.1 

.Let us evaluate the effectiveness of such an antiaircraft 
defense system, consisting of uniform antiaircraft facilities. 
As was done earlier, we will assume that the enemy aircraft, car- 
rying out the attack, form a simple flow with the parameter A. 
Let us consider the case in ,which the time required by a unit to 
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fire at the target is -a random quantity wfth an exponential dis- 
tribution function having the parameter v. Each of the units can 
fire simultaneously only at a single target. 

In the solution of the problem we do not take into considera- 
tion the return fire of the enemy. For the enemy aircraft to over- 
come the first defense area (the first echelon of the antiaircraft 
protection) all of the antiaircraft facilities must be engaged in 
firing, The probability of this event for the case in which the 
target stay time'in the damage zone of the unit is small (system 
wi.th failures) is determined by means of Formula (4.2.12) . 

an 
P 

nil 
--• a - n, 

FJ 
u’ 
7x 

LsO 

For the aircraft to pass through the second echelon the anti- 
aircraft facilities of both echelons must be engaged in firing. 
The probability of this event is equal to 

where nl is the number of antiaircraft facilities in the first 
echelon; 

?22 is the same number for the second echelon. 

If there are i such echelons, the probability of a target 
passing through to the defended site is equal to 

kc0 

EXAMPLE. An aeri,al attack Is betng carri’ed out against a 
si’te with an echelon anti,aIrcraft defense system consi’stlng of 
three defense zones. There are two antiaTrcraft weapons units in 
the ff‘rst antiaircraft defense zone, there are three such units 
t’n the second zone and one unl’t In the third zone. All of the 
weapons units are similar. The time required to fire at a target 
by each of the antiaircraft facilittes is random and has an ex- 
ponentlal distribution law and the parameter v = I aircraft/min. 
The rate of the attacking aerial targets is X = 2 aircraft-mln. 
The probability of downing a target with firing from a unit is 
close to unity 7; :: I. Evaluate the effectiventss of the ant:air- 
craft defense system for the obJective and for each of its eche- 
lons. 

The probabl’llty of the enemy alrcraft penetrating through 
the first zone i.$ equal to 
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.h 5i 
pn, = 2, ~0,4. 

‘+2+x 

This indicates that 60% of th.e enemy at'rcraft will be destroyed. 
The probability of the passage df the targets through the second 
zone Is equal to 

“1 
2'. 

h=S 

;r: 

2h 
xi 

R=‘O 

=b.037. 

and the probability of penetration through the entire antiaircraft 
defense system Is 

2’ .. 
61 

pn. -=~SO,OOl 

E 

p. - 
-iii 

k=O 

This result indicates that of a thousand attackf?g aircraft, 
on the average ohly a single alrcraft wIII reach Its ?bJective. 

$4.4. ECHELON ANTIAIRCRAFT DEFENSE SYSTEM CONSISTrNG OF UNIlS OF 
DIFFERENT TYPES 

We will consider the evaluation of the effectiveness for 
such an antiaircraft defense system through the example of an 
objective whose antiaircraft protection consists of two echelons 
C621. The mathematical apparatus developed for this purpose per- 
mits optimum distribution of the antiaircraft facilities into 
echelons, depending on the characteristics. 

Let an attack be carried out against the objective in a 
rather narrow band in such a manner that the attacking aircraft 
may be fired upon as they move toward the target by one of the 
units in each echelon. We are required to evaluate the effective- 
ness of the antiaircraft defense system of the objective and to 
select an efficient method of distributing the antiaircraft fa- 
cilities among the echelons. 

Let us analyze the antiaircraft facilities with damage zones 
fn which the target stay times are barely adequate for reliable dam- 
age. The time during which a target is fired upon by each of the 
antiaircraft facilities is a random quantity is eubject to the 
exponential function having the parameters ~1 and p2,'respectively, 
for the first and second types of antiaircraft weapons. The enemy 
aircraft carry out the attack at a rate X and form the simplest 
flow (see $4.4.1). We denote the probabilities of the state for 
the antiaircraft defense system in repelling the attack as fol- 
lows : 

POO is the probability that neither the first nor the second 
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units are firing; 

P10 is the probability that the first unit Is firing and 
that the second unit is free; 

Pal is the probability that the first unit is free and that 
the'second unit is firing; 

P11 is the probability that both units are firing. 

A target entering an antiaircraft defense zone is first 
fired upon by the first unit. If that unit is already engaged in 
firing, any new 'target will fly deeper and enter the firing zone 
of the second unit. If the Target is fired upon by the first unit 
and is not damaged, the second unit will no longer be able to 
fire on that target. The [new] target will now be fired upon by 
the second unit, If that unit is already engaged in firing at the 
previous target, the new target will pass unharmed through the 
antiaircraft defense zone. I 

We denote the states of.the system as AOO, Alo, A01 and AlI. 
Tc determine the,probabilities of the states we compile a system 
ol" differential'equations. 

State A00 is possible in the following nonsimultaneous cases: 

during the ~time t the system was in state Aoo. During the 
time interval At not a single target appeared in the antiaircraft 
defense system ~ 

P,, (f) (1 - W; 

during the time t the antiaircraft 
state Alo. During the time At an aerial 
the first unit 

defense system was in 
target was fired upon by 

during time ti the antiaircraft defense system was in state 
Aol. During the'time At the second unit completed firing at a 
target 

The differential equation for state A00 is then written in the 
following form:1 

)Jo, (t -+ Ai) Fz PO, (t, (1 - W + P,, (0 14 + f',, (4 P&- 

After transformation and passing to the limit At * 0 we obtain 

P’,, (0 = - PO, (0 A+ p,, 0) PI + PO, (4 Pa- (1) 

We examines state Aol. It,is possible in the following non- 
simultaneous cases: 

the antiaircraft defense system during time 6 is in state 
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Aol. Curing the At no new targets entered the firing zme ani 
;',%t- ::esr,n4 urLt did not comple+e its Xring 

P,, (tj (1 - aAt) (1 - p$f); 

at the instant of time t both units were firing at targets. 
During time At the first unit completed firing at its target 

Hence the equation of state 

In deriving the differential equation of state Alo we must 
proceed from the fact that this state for the antiaircraft de- 
fense system Is possible under the following nonsimultaneous con- 
ditions: 

at the instant of time t the system was in state Alo. During 
time At no new targets appeared and the first unit did not com- 
plete its firing operation 

P,, (t) (1 - AAt) (1 - W); 

at the instant of time e there were no targets in the firing 
zone. During the time At a target appeared over the first unit 
and it begin to fire at that target 

at the instant of time t both units were firing. During the 
time At the second unit completed its firing operation 

Hence the equation of state 

Finally, the last state of the antiaircraft defense system 
is possible in the following nonsimultaneous cases: 

at time t the system was in state A01 or AIO. During the 
time At new targets appeared 

PO, (0 + p,, (01 a 

at the instant of time t both units were already conducting 
fire, During the time At neither of the units had concluded its 
firing operation against the targets 

(1 -WI (1 - tl&) Pi, (4. 

Hence 
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The general system of equations descrDhi,ng the various pos- 
sible states of, the antiafrcraft defense system Is presented in 
the following form: 

I PO0 Pi'= ii Pb, (d a+ i,PIO (0 + I-P,, (G 
P',, (f) = - PO, (4 (a+ I4 + p,, 0) Prs 
PlO (t) = - PI, (0 (a + I%) + PO, (0 ~+~tlv)PLp* t-5 > 
P',, w = w, (4 + w, (0 - (PI + Pa) p,, m 

For a steady so~lution the following conditions are satisfied: 

I t4bQ, P’tj (t) 3 0, Pij (t) * P~j=COflSt 

and the system iOf dlfferentlal equations Is transformed into an 
algebrai’c systep 

P,J = PA + PaL 
PO, @ + I%) = Pd%* 

(6) 

In the solution of this system we determine: 

the probab'ility of an aerial target passing through the anti- 
aircraft defens,e system without harm 

the probab,lllty that all units are not firing 

PO, = x&,, pn. 
From the s!ystem of equations (6) it is easy to derive the 

probabilities for the remaining states of the system. 

EXAMPLE. tie-t us analyze the effectiveness of the antlaircraft 
defense system ~shown in Fig. 4.4.1. 

I Fig. 4.4.1 
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Let V1 = 2 aircraft/mtn, 1.12 P 4 aircraft/mi:n and ?, = 2 air- 
craft/min. The probability of 'a target penetrating to the obJec- 
tfve unharmed is equal to 

Pi, = 2’ 
=0,137. 

2z+2(2+4)+2+4 -+2.2+2+4) 

Let us distribute the antiaircraft facliltles differently. 
A unit [system] with the characteristic u - 4 alrcra,fti'rilTfr i's 
positioned in the first echelon, while one wlth the characteris- 
tic u = 2 aircraft/mtn 1s posltioned in the second. The probabil- 
ity of an enemy aeri'al ta.rget penetrating to the obJecti,ve being 
defended by the antfafrcraft defense system will be dlfferent: 

P,, ;= 
21 

-0.111. 
2+2(4+2)+2+2 , -=(2.2+4+2) 

As we can see from the example, for proper positioning of antl- 
aircraft facrlttles by echelons it ts possible to raise the ef- 
fectiveness of the anttatrcraft defense system. 

$4.5. ~$L;TION OF THE EFFECTIVENESS OF THE GUIDANCE [CONTROL] 

Let us examine a system consisting of reconnaissance facil- 
ities and fire control facilities for "ground-to-ground" units 
converting the reconnaissance Information. The reconnaissance 
system, possessing certain technical facilities, detects fire 
facilities, command centers, troop concentrations, etc., in the 
enemy positions, 
c1301. 

and we will refer i!o these simply as targets 

Let the reconnaissance possess all manner of facilities 
which permit it to detect ~1 targets per unit time. It is natural 
to assume that the time intervals between the instant's of target 
detection are random quantities. With time the detected targets 
form a flow which is very close to the simplest flow. The recon- 
naissance data on the detected target enter the system processing 
reconnaissance data and the fire control system (we refer to this 
simply as, the control system) which exhibits a limited transmis- 
sion capacity for the processing of the input information per 
unit time. We denote the transmission capacity of the control 
system by ~2. The time for the processing of the reconnaissance 
data for each target is a random quantity. The target data proc- 
essed in the control system are distributed among the "ground-to- 
ground" firing units for target destruction. 

Let us consider the case in which the target stay time at 
a single point is extremely limited and commensurate with the time 
needed for its detection, the processing of the initial data and 
the opening of fire at that target. This complex system, in First, 
approximation, may therefore be regarded as a system with fall- 
ures: 

We denote the probabilities of system state aE: 
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PO0 denotes that the reconnaissance and control sys.tems- are 
free; 

PIO denotesmthat the reconnaissance system is occupied with 
the input of information about one of the detected targets, while 
the control system is free; 

Pal denotes~that the reconnaissance system is free while 
the control system is engaged in processing target information; 

P11 denotesthat both systems are occupied. 

Let us derive the differential equations of state for the' 
control system, 
Alo, All. 

and these may-be denoted, respectively, AOO, AOI, 
I 

System state Aoo is possible in the following nonsimultane- 
ous cases: 

the reconnaissance and control systems are free at time t. 
During the interval At not a single target has been detected 

@,, 0) (1 - W; 

the entire hystem at time t was in state Aol. During the 
time At data on the target were transmitted to the “ground-to- 
ground” unZt to open fire 

I PO, (0 PrAf. 

The general equation of state 

P,, V + At) = P,, (4 (1 -’ W + P,, (0 W. 

After passing to~the iimit as At + 0 we obtain 

P',, (4 = - PO0 (t) 1+ PO, 0) Pr Cl) 

We have the’ state A01 for the system. It;is possible in the 
fo1'1owlng nonsimultaneous cases: 

the system 1s in state Aol. Duririg the time At no tiew tar- 
gets have been detected and the control system is processing no 
data on any target 

P,, (1) (I- IAt) (I- 14th 

the system is in state Alo. During the time At the reconnais- 
sance system detected and transmitted data on a target to the 
control system Y 

at time t the system was in state All. During the time At 
the reconnaissan’ce system detected and transmitted data oti a tar- 
get to the contr~ol system, but the latter did not accept this 
information since it was engaged in the proceAsing of data on 2 



prevL0u.s target ,, T..., '%P input data w.e.re therefore PretrievabQ- lost 
because of.the brief‘ duratfon of the time that the target s>er?.d_s 
in a single position 

Hence the equation of state is written after the appropriate 
transformation 

Let us consider the system state Alo. It is goss:ble in the 
following cases: 

at time t the system was in state AOO- During time At a tar- 
get is detected 

em (f) m 

at time t the system is in state Alo. During the time At the 
reconnaissance system was processing no data on the target and 
none were transmitted to the control system 

at time t the system was in state All. During time Ati the 
control system transmitted data for firing at the target 

pi, (4 w. 

The equation of state 

P',, (f) = w,, (0 - Id?o (0 -t PP11 (0. ~ (3) 

And the last state is All. It is possible in the following 
nonsimultaneous cases: 

the system is in state Aol. 
are received 

During,time bt new target data 

at time t the system was in state All. During time At no 
target data were processed by the reconnaissance and control sys- 
tems 
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(5) 

In the steady solut$on, i.e., as I? + 03, p' 
= const”,. 

@l + 0, P..(t) + P. * = , 7. J 
the differkntial equations are transformed IiEo alg,eSrn:!c 

equations: 

Solvfnp; Eqs. (61, wd can determine the probabilities 
ious states of the 4ontrol system: 

for the var- 

where X is the rate ~of the appearance of new targets in the ef- 
fective zone of the ,subject system. 

The probability, that the target will remain Andetected and 
not fired upon and will carry out its combat assignment is equal c- 

EXAMPLE. On the; average let two targets per unit time tX = 
= 2 targets/unit t1.m~e) appea’; In the effecttvs band of the recon- 
nalssance system and, of the ftre control system for “ground-to- 
ground” units. The r,econnaissance system exhibits technical fa- 
cilities which make it possible In the given area, 
veloplng combat situ~ation, 

with the de- 

per unit time (VI = 
on the average to detect two targets 

2 targets/unit time). The control system can 
process and plan the; firing of the factlltles at four targets, 
on the average, per ,unlt ttme (p2 = 4 targets/untt time). 

Determine the effectiveness of the system - the probabilftt,! 
of firing being condpcted at each target at It appears 

Let us examine The 
gets/unit tIme. Theni 

less perfect control system ~2 = 2 tar- 
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The calculati'ons that have been carrred out, with consideration 
of the economy indices, make l't possEble to select the optimum 
parameters for the.contraI and reconnaTssance systems and to im- 
pose reasonable tactical-technical requtremehts on these. 

$4.6. EFFECTIVENESS. OF FIRING AT TARGETS AS THEY APPEAR i 

We will examine the utilization of the apparatus of 'the the- 
ory of queueing with respect to systems exhibiting limited expec- 
tation tlme on the kxample of a problem Involving the determina- 
tion of the effectiveness of weapons by means of which battle is 
joined with appearing targets. These targets are understood to 
refer to fire positions and similar enemy objectives which, on 
detection, remain in their positions for a limited time. ,To de- 
tect targets the opposing sides make use of a developed recon- 
naissance system. However, this system is incapable of providing 
information about all objectives which represent important targets 
for the attacking side. If we also take into consideration that 
these objectives maneuver in their positions, and make attempt 
at camouflage, the fact of the random nature of target detection 
becoMes understandable [130]. 

In the examination during the course of enemy target detec- 
tion process by the reconnaissance system of the attacking force 
(for simplicity we will refer to the other side as the defenders) 
we can note the absence of a relationship between the fa&t of the 
detection of a given object and the number and type of tvgets 
which had been detected earlier. We can also agree with the con- 
tention that at a given instant of time only a single important 
target will be detected, rather than several targets, and that 
during a specific time interval, given the work imposed, !in first 
approximation, the reconnaissance system exhibits a certain aver- 
age "productivity," i.'e., a capacity to detect a specific number 
of targets per unit time. 

On the basis of these assumptions it may be held thdt the 
detected targets form a flow which exhibits the properties of 
the simplest flow with a certain parameter X. The magnittide of 
the parameter X will apparently be a function of the technical 
equipment of the reconnaissance facilities of the attacking force, 
the number of enemy objectives in the operating zone of the re- 
connaissance facilities, the extent of their camouflage, etc. 

The time that targets spend in their areas is limited, but 
not to such an extent that it need not be taken into considera- 
tion. The stay times are random quantities. To derive the cal- 
culatlonal formulas the target stay time distribution function 
for-the detection zone is assumed to be exponential with the par- 
ameter V, i.e., 

h(1)dC"@>O), 

where v = l/z ozh' -- 
t ozh is the average time that 8 target spend:, in 

posftion after detection. 
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Under actual combat. ,conditions the distribution function for 
the target stay time J;n position after detection may- differ from 
the exponential. However, experience in carrying out a large num- 
ber of calculat,ions by the method of statistical tests has demon- 
strated that the basic characteristfcs of operation for a servic- 
ing system (the, probability of passing a requisition unserviced, 
the mathematica!l expectation of the number of serviced targets) 
for a steady so:lution are virtually identical for various distrib- 
ution functions~ of the stay time of a requisitton (requirement) 
in the servicing zone, 

The time required to fire at each target is also a random 
quantity. Let us 'assume that it is distributed exponentially with 
the parameter ~8, i.e., 

’ / (f) = pe-@ (f > 0); 
where u - l/x -ohs' 

t ohs is the average time required to fire at a tar- 
) get. 

Losses of heapon facilities by the attacking side due to 
the defenders' (fire are not taken into consideration. Methods to 
account for ansvering fire are presented in Chapter 7. 

As soon a&a target is (targets are) detected fire is di- 
rected at that target immediately by the attacking'side. After 
damage of the target, 
targets, 

fire is immediately transferred to other 
if such are available. If the attacking side Is unable 

to fire at newly appeared targets because it is engaged in firing 
at targets that~have appeared earlier, these targets can remain 
in the position!at which they were detected for a limlted time, 
after which they disappear. Thus, the armament of the attacking 
side with its re 
defending side I! 
tion time. 

The system 
states: 

connaissance facilities and the armament of the 
e'present a queueing system with limited expecta- 

considered above may be found in the following 

A0 denotes 'that the attacking side is not firing; 

A1 denotes.that one of the weapons is firing, while the 
remaining weapons are not; 

I 
Ak denotes ~that, k weapons are firing; 

An denotes ,that all n weapons are firing at their targets; 

A n+s denotes that all n weapons are firing, but that 6 de- 
tected target5 are not being fired upon. 

'The number h may be very large and depends on the number of 
objectives of th'e defending side that may be located in the sphere 
of the attacking1 side's ffre effect. We will not dwell on the de- 
rivation of the pquations of state and their solutions. The reader 
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can find this in [17]. Ne ~211 write. the formulas. for the proba- 
bilitPes of the system states- derived for steady- condZtions: 

For state AO 

for state Ak 

for state A,+B 

where a==*; p=j. 

A particularly important index of the weapon effectiveness 
df the attacking side is the probability that each objective of 
the enemy, detected by his reconnaissance system, Is fired upon: 

Hence the probability of destroying each detected objective is 
equal to- 

w-= POCC’P, 

where P is the probability of damaging the objective when it is 
fired upon. 

To determine Pobs = 1 - Potk, where Potk is the probability 
that the target will not be fired upon, we can 1;s~ t?::cz tabie (zee 
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Table 11 of the appendix] which w,aa.prepared hy Q.,A, Novikov. To 
Illustrate the ut~~l%~zatien of thi'e' derived-relationships, let us 
konsider an example.' 

EXAMPLE. The attacking stde .has two weapons. To fire at an 
objective an average of 2 mtn is required. The probablltty of dam- 
aging the objectfve with fire Is equal to p = 0.8. The attacking 
side has at its disposal a reconnaissance system makfng possible, 
on the average, the detectton of one target per mt’nute (X = I tar- 
get/mini. The average ttme that the target spends in position 
after detection i’s equal to 4 mln (toth = 4 min). Determine the 

effectiveness of,the weapon used by the attacking side. 

To determlne Pobs W& calcula,te the parameters: 

1 tu#st I 1 rorgrts 
P*” I--0,6 - t 060 mir: ’ 

Y r-=0,26 - t . 01 mln 
h 

as-a2, ll* 
P 

With Table II (sea the appendix) when n = 2, a = 2, f3 = 0.5, we 
obtain 

P oTll ~'0,225. 

The effectiveness of the armament of the attacking side Is equal 
to 

w-P(l- po,,) = 0,8 (1 - 0,225) =.0,62. 

Varying the fundamental characteristics of the armament (rate of 
f i.re, probability of target damage), we can evaluate the effect 
of these parameters on the effectiveness of the armament used by 
the attacking side. The method considered above may be employed 
in evaluating the effectiveness of antiaircraft defense and sim- 
i lar problems. ~ 

$4.7. FEATURES IN THE EVALUATION OF THE EFFECTIVENESS OF ANTI- 
AIRCRAFT ARMAMENT AGAINST THE ATTACK OF GROUPED TARGETS 

A. The Case in Which the Stay Time for the Target in the Firing 
Zone is Small, 

In the previous sections we considered the utilization of 
the mathematical! apparatus of the theory of queueing, developed 
with respect to bnique requirement flows. However, in actual 
practice there can be cases in which requirements for servicing 
enter the system1 in rigorously defined groups - pairs, triplets, 
etc. On arriving~ in the queueing system, each of the requirement 
groups is either, serviced or rejected, depending on the extent to 
which the operator is occupied. As an example of this we can cite 
the arrival of pairs, flights, etc., of enemy aircraft in an anti-- 
aircraft defensei system [133]. Each of the enemy aircraft in the 
area of the antiaircraft defense system protecting an objective 
will be fired upon by the antiaircraft units. We are confronted 
with the problcm~ of how to evaluate, under these conditions, the 
effectiveness ofi the antiaircraft defense system for the objective I 
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wi.th. res.pect to .rep.elling the :aerk.al .att.ack.. 

In solvtng this problem we make the followfng assumpttons: 

1. The flow of aircraft groups(pairs, flights) is a Poisson 
flow. There are m aircraft in each group. 

2. The time for firing at each aircraft by the antiaircraft 
unit is random and subject to an exponential function. , 

3. Selection of target by each unit Is accomplished randomly. 

4. The antiaircraft defense system for the objective consists 
of n antiaircraft units. As soon as.the targets appear in the 
antiaircraft defense zone, they areiimmediately fired upon.- If the 
antiaircraft units are already engaged in firing, the newly ap- 
peared target will penetrate the antiaircraft defense zone un- 
harmed, because the target stay time in this zone is small and 
Commensurate with the time required for it to be fired upon. 

5. Consideration of the enemy counteraction Is omitted. The 
antiaircraft defense system may be In various states which we de- 
note: 

AO, which denotes that all antiaircraft units are free; 

Aks which denotes that k units~are engaged in firing; 

A n, which denotes that all units are firing. 

The probabilities of these states are, respectively, de- 
noted PO(f), Pk(l), P,,(t). The flow of incoming aircraft groups is as- 
sumed to be a Poisson flow and the time required to fire at each 
target is distributed exponentially; the subject process is there- 
fore a Markov process. 

To determine the probabilities of the states PO(t), Pk(t) 

and P,(t), let us derive a system of differential equations. We 
will derive the equations by the same method as in $4.2; we will 
therefore not dwell on the intermediate calculations. 

State Ao may occur in the following nonsimultaneous cases: 

1. At the instant & all units are free. During the time At 
not a single group of aircraft arrived. 

2. At the instant of time t one of the units was engaged in 
firing. During time At thisunit concluded firing at the target, 
but there were no new groups entering the antiaircraft defense 
zone. Then 

P’, (0 = ---APO (0 + 9, (0, 

where X is the density of the groups (pairs, flights) in the at- 
tack on the objective defended by the antfalrcraft system 
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To& is the average time required by the antiaircraft unit to 
fire at 9 single target. 

State Ak may occur in the following nonsimultaneous cases: 

1. The antiaircraft defense. system at time t was in state 
Ak, During time ‘At not one of the units stopped firing and no 
new enemy aircrqft groups appeared in the antiaircraft defense 
zone. 

2. At time :t the antiaircraft defense system was in state 
Ak+l. During time At-no new targets appeared, but one of the 
units concluded ifiring. The equation of state is then written as 
follows: 

Let us consider state Ak when & zrn. In this case, in com- 
narison with the/ previous case, we add yet another possible var- 
iant of the state of the system. 

At the instant of time t the antiaircraft defense system was 
in state Akbm. During time At a new group of aircraft appeared in 
the antiaircraft; defense zone. None of the units had concluded 
firing. The equation of state is then written as follows: 

Finally, it'is advisable to consider state An, i.e., the 
state in which all units are engaged in firing, which may occur 
through several nonsimultaneous ways: 

1, At time k the system is in state An. During the time in- 
terval At none of the units disengaged and no new targets ap- 
peared. 

2. At time t the system was in state An m. During time At 
none of the channels became free and one group of targets arrived. 
The equation of the last state is 

is’,, (t) :.-II. _I- lJ/LPn (1) + P, s-11, (1) 1. 

In conclusion, we derive the following, system of differen- 
tial equations: 
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{“k (t) = - [x + Pk] ph (f) + ph+ L (/I @ -i- 1) p + 

+Pk-m(t)k wtten Ram, 
*....*...*,,.........*.*. 

- pnPn (4 + Pn’-,la (0 2. 

(1) 

Let us consider the steady case in which t + m. In this case 
P'(t) -t 0, Pp + Pk k and the solution of the problem reduces to 
a solution of the system of algebraic equations 

aP o=p,* 

(l-j- a) P, = 2P,, 
.  .  .  .  .  .  .  l .  :  .  

(k+~)P,,=(kj-l)Pk+l when k<m, 

(;z 1;~; i,,*i ik’q i) P;,:+aP,-,,, wtwn k 3 m, (2) 
.*..*.............. 

@+a) Pn=aPn-m,*hen a=+. 
n 

To this system we add one more obvious condition c Pk=Iq The 
last expression can be presented in the form .R=O 

C.fk (4 
k=O 

The quantity $fR@) can be derived from the recurrence formulas 
k=O 

I of the system of algebraic equations (2). 

EXAMPLE. Let us examine the effectiveness of an antiaircraft 
system defending a certain typical objective, and let this defense 
be accomplished by four similar antiaircraft units In = 4). The 
objective is being attacked by enemy aircraft. For purposes of 
comparison let us evaluate the effectiveness of the antiaircraft 
system when there may be, in each group, m = I, 2, 3 and 4 air- 
craft, with a constant attack density of X = 4 aircraft/min. The 
cjntiaircraft units exhibit speclflc combat characteristics per- 
m’itting the aerial targets at a specific altitude, with considera- 
?ion of reloading, to be f I red upon at an average rate of fire 
of p = I/t 

ObS 
= 2 alrcraft/min. The probability of downing a tar- 

,ge? with the fire from one of the units is equal to P = 0.8. The 
number of targets participating In the raid is equal to N = 20. 
Let US determine the parameter a = Xtobs = 2. We derive the re- 
currence formulas for m = 2: 
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P, = 2P,, 
P,?.lfl(l 4-u) P,. 
PI = 113 (1 + 2-q P, - 2P,, 
P 4= l/4(1 +3u) P,-2P,. 

After substltutlon of the values of CL we obtain 

P # = iP,, 
P, = 3P@, 
P, = 10/3P,, 
P, = 19/6P,. 

Let us determine the magnl,tude of PO: 

c ph = 75/6P, = 1, PO - s/25, 
k=O 

The probabllity~of all unfts bel!g engaged, I.e., the unharmed 
passage of th& target Is then equal to 

n 

P OTW= I’- 
L=O 

hn =’ 

8. The Case in Which the Target Stay Time in the Firing Zone Is 
Great 

Unlike the ~previous case, in the problem under consideration 
we must take into consideration the target stay time in the dam- 
age zone of the antiaircraft unit. We will assume that the target ' stay time in the, antiaircraft defense zone is a random quantity 
subject to an exponential distribution function having the para- 
meter w. In selecting the distribution function for the target 
stay time in the, antiaircraft defense zone we can be guided by 
the considerations expressed in, §4.6. 

We will also assume that the,,aerial targets group entering 
the antiaircraft, defense zone forms aPoisson flow with the para- 
meter X. The time required to fire at a target by the antiaircraft 
unit is a random quantity and is subject to the exponential func- 
tion with the parameter u. 

As before, we denote the number of units in the antiaircraft 
defense zone by n and the number of targets in each group by m; 
.the states of the antiaircraft defense system for the objective 
are as follows: / 

A0 denotes that all units are free; 

Ak denotes.that k units are firing; 

An denotes that all units are engaged in firing at targets; 

A n+s denotes that all units are firing and s new targets 
have entered then antiaircraft defense zone, but they are not fired 
upon because themunits are engaged. 
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The probabilities of each of these states are, respectively, 
denoted by Pa(t),, Pk(t), P,(t), Pi+s(i). Let us determine the probability 
of state Ao. It is possible in the following nonsimultaneous 
cases: 

1. At instant t all units are free. During time At not a 
single enemy group of aircraft appeared. 

2. At instant t one of the units was firing, and it: con- 
cluded firing during At. Since the events are nonsimultaneous 
[incompatible], when At + 0 we obtain 

(3) 

Let us examine the state A,,(OGRGm). It is possible in the 
following nonsimultaneous cases: 

1. At the instant of time t the antiaircraft defense system 
was in state Ak. During the time At no new targets appeared in 
the antiaircraft defense zone and none of the units disengaged. 

2. At the instant of time t the system was in state Ak+l. 
During the time At no new targets appeared in the antiaircraft 
defense zone, but one of the units finished firing. The differen- 
tial equation of state is written as follows: 

PA (f) = - (A+ kP) Pk (4 + (k + 1) P&+1 (0 
vlbn O<kdm. (4) 

Let us examine state Ak for n > k > 0. It will differ from - - 
the previous state in terms of what may occur in the third non- 
simultaneous case, and namely: at the instant t the antiaircraft 
defense system was in state Ak m. During the time At one more 
group of targets appeared in the antiaircraft defense zone, but 
none-of the units became free. The differential equation of state 
A,,(113 k 3 rrt) is written as follows: 

f'k (I)- p + I+) Ph(f)+PA+,(~)(k + 1)P -,J- 13,r-,,, (0 v* (5) 

We have n units at our disposal. It is therefore expedient 
to regard the state An when (n i m). This state is possible under 
the following conditions: 

at the instant t the antiaircraft defense system was ir, state 
An’ During the subsequent time interval At not a single' one of 
the units became free and no new targets appeared; 

at the instant t the antiaircraft defense system was in 
state An m. During the time At a group of targets entered the 
zone, but none of the units became free; 

at the- instant of time t the antiaircraft defe;is? system 
was in state An+l. &ring the time At no new tar‘+:e a$peared, 
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but either one of the units became free, or one of the aircraft 
departed unharmed from the zone. The equation of state is then 

Let us examine state Att+B in detail, this state being pos- 
sible in the following cases: 

at the instant i3 the antiaircraft defense system was in 
state An+s. No new targets appeared in the zone during time At, 
none of the targets escaped without being fired upon, &.nd none 
of the units became free; 

at the instant t the antiaircraft defense system was in 
state A,+8 m. A new group of targets appeared in the zone during 
the time At, not one of the enemy aircraft escaped the zone with- 
out3having been fired upon and none of the units disengaged from 
firing; 

at the Instant of time t the antiaircraft defense system was 
in state An+s+l. No new targets appeared during the time A*, but 
either one air&aft escaped the zone unharmed, or one of the units 
disengaged from~ firing. The equation of this state is as follows: 

1 Pnse(i)4P ,+,-,,(1)--P,,+,(~)(~+ny.+s~~)~ 
+p n+s+1(4 b + b -t 1) VI. (7) 

Let us consider the steady solution for which we assume 
that when 

t-b 03 P&)3 O,~dPjJt)+Pk-conSf, 

where k = 1, 2,~ . . . , ns . ..) (n + 8). 

In this case we obtain a system of algebraic equations 
IP, = pP,, 

(~+P)pl=2paP, 
. . . . . . . ...* 

(A + LS.~) PrIi := (m + 1) pP,,+, + P $ when k=m, 
. . . . . . ...* 

’ (i&) Pk (k+ 1) pP,,+, -+ P,,,J when kamn, 
. . . . . . . ..I..... 

(a+ w) Pn = (np + v) P*+, + pn-rn& 
..*...*........ 

(~+n~+sv)Pn+~~tn~+(s+l)vlPn+s+l+ 
+ap ,+,,,tinlGs(w. 

(8) 

We denote X/p =,u and v/u m f3. Equation (8) then is simplified 
somewhat 



UP, = PI, 
(a + 1) @,=2P,, 
. . ...!.... 

(u+m)P,,,=(m+l)P,,+,+aP, when k=me 
. 

‘(ti$k;Pkl=i(h$ ljPk;l’+uP~-m whnkam, 
. . . . . . . . . . 

(attajPn =!~+~)P,+,+@,-tt~ +-n>m* 
. ..*.* 

~(a+n+BB;~n~l~“;n+(~+l)B1pn+s+~+ 
+up ,,+**,,, when lGs<m; 

Hence 
ph= P,fh(% PI A)# 

where f, (CC, a; m) 3 a; fP (a, p, nt) =a a (a 4-l) etc. 

(9) 

The sum of the probabilities for all possible states of the 
system is equal to 

00 

c 
ph= t. 

kc0 

This sum can be presented as follows: 

k=O 

The quantity ?' fk(a,F,/?L> can be derived from the 
I 

ky0 re~currence 
formulas of the system of equations (9). 

Let us determine the average number of targets situated in 
the antiaircraft defense zone that have not been fired upon 

The probability of an enemy aircraft passing through the antiair- 
craft defense zone without having been fired upon is equal to 

px kP* 

P 1 
k=O 

OTH = _ ---- . 
Am 

(14) 

EXAMPLE. The antiaircraft defense system of the objective 
ccnsists of 5 antiaircraft UniSs. Each of these spends, on i-no 



stay time in the antiaircraft defense zone is equal to toth = I 

mfn. 
= 2). 

The enemy aircraft are attacking the objective in pairs (m = 
The attacking rate of paired targets is equal to X = 2 tar- 

get pai rs/mi n. Evaluate the effectiveness of the antiaircraft de- 
fense system If ‘we assume that each of the units can fire simul- 
taneously only ant a single one of the enemy aircraft. The number 
of targets in the raid is 20. 

:Solution. L:et us determine the auxi I iary parameters: 

Edrcroft 
P- l/to6,=1 min I 

altcraft 
Y =i l/tom = 1 mln ’ 

). 
a-----= 2, 

F 

We derive the .sy,stem of algebraic equations 

(2 + 1) PI = wr. 
(2+2)f+3P1+2pe.. 

* (2+3)b,=4P,+2& 
’ (2f4) Pa=5Po+2P,, 

(2+5)PI=GP,+2P. 
(2 + 5 + 1) P, = (5 + 2-l) P, + 2P,, 
(2+5+2)P,=(5+3~1)P,+2P~, 
(2 + 5 + 3) P, = (5 + 4.1) P, + 2Ps, 
(2 + 5 + 4) P, m (5 + 5: 1) PI0 + 2P,, 
. . . . . *.*.*...*.**- 

Neglectfng the small values of P12 and the probabilities of 
higher sequential numbers, we obtain 

20 
I* FJ Pr = 19Po, 

k=l 

The probability of an enemy aIrcraft passing through the antiai r- 
craft defense zone without having been fired upon is equa I to 

-I- 
1 (I.0,105+2.0,15J+3~0,175+4~0,1G5+5.0,13J~046 

. 2-2 --I. 

$4.8. IJETERMINATiON OF THE TRANSMISSION CAPACITY AND LOADS OF 
REPAIR WORKSHOPS 

Repair workshops frequently service units and subunits slt- 
uated at considerable distances from each other. To provide im- 
mcdiace repalr ok malfunctioning equipment, it would be possible 

~ 
I 
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tc have repair workshops attached to each subuilit. Howcver, this 
?.s not always feasible, since the personnel of such workshops may 
exceed the repair requirements of such a subunIt. It is therefore 
advantageous for the repair of specific forms of combat equipment, 
consisting of the armament of many subunits, to employ a number 
of specialized workshops. The number of such workshops is deter- 
mined from the calculation that they should not remain idle and 
without work, while at the same time not forming a bottleneck in 
the flow of requisitions for repair. 

It is extremely difficult to solve such a problem by quali- 
tative considerations without a quantitative evaluation. In peace- 
time the required number of such workshops can be determfned by a 
sampling method. For this we can attach a specific number of re- 
pair workshops to several subunits. Experience In their operation 
over a.specific period of time will show the validity of the 
adopted decision. However, with the passage of time the equipment 
will change, particularly military equipment, and new and more 
advanced forms of armament will appear. At the same time the re- 
pair of equipment does not remain at the same level; experimental 
determination of the required number of repair workshops and their 
personnel may therefore require such a long period of time that it 
will have an unfavorable effect on the utilization of the armament 
by the troops. There is no doubt that such an experiment would be 
Intolerable during combat operations. 

To solve this problem we have to use quantitative methods of 
analysis by means of which it can be properly solved for a sig- 
nificantly smaller required number of statistical data. In this 
case it is advisable to use the apparatus of the theory of queue- 
ix, developed in connection with systems with expectation for a 
limited number of servicing units [66]. As was mentioned earlier, 
before proceeding with the solution of the stated problem, we 
must have a specific quantity of statistical data. Among these 
data we should include: 

the average time required to detect faults; 

the average t'ime required to carry out basic operations in 
the technological process of armament repair; 

the time required for the requisition and arrival of a mo- 
bile repair workshop at the subunit (for semfstationary workshops 
- the time required to deliver the armament to the repair station), 
etc.; 

the frequency of armament breakdown. 

After the statistical processing of the derllved data we can 
obtain the basic parameters characterizing the armament repair 
system. 

These include: 

the density of the armament breakdown flow (the repair PC-- 
quisition flow) h; 

~ 
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thezaverage time re.qUired to requisition the workshop and to 
carry out the repair. 

Determination of the assumed equipment breakdown flow under 
combat conditions must be accomplished by means of various fore- 
casting methods,, with consideration given to. the nature of the 
combat operations; we will not dwell on this point at this time. 
With the required statistical data available, we can proceed to 
the solution of the problem. 

A. Statement of the Problem 
: 

Let there be n repair workshops for a specific form of ar- 
mament, which are distributed among vaAous units and subunits. 
Combat equipment that has broken down is repaired by one of the 
repair workshops. The servicing may be organized for accomplish- 
ment by the personnel of mobile workshops which may be directed 
at any time.to the subunit where repair requirements exist. 

The repair operation may be organized at large workshops 
with a well organized technological flow to which malfunctioning 
equipment will be sent. 

In either @se, the time required for the repair of the mal- 
functioning armament will be composed differently. In the first 
case it will consist of the time required to call for the work- 
shop, its movement to the repair position and the time required 
to set up the workshop there, and the time required to carry out' 
determination of the malfunction and the actual repair. In the 
second case, it will be determined by the time required to deliver 
the malfunctioning armament to the rear repair workshop, to in- 
spect that armament for defects and to carry out the repairs. In 
the subject cases the corresponding servicing time components 
will vary. Let us assume that the servicing time is a 
tity with an exponential distribution function having 
meter v, where ~ 

'def - 
'dvm - 

"razv' 'sv - 

'rem - 
zr - 

random quan- 
the para- 

th'e average time to call for the workshop; 

the average time to determine the malfunction; 
the average time for the movement of the workshop 
to! the repair location; 
the average time to set up and dismantle the work- 
shop; 
the average time for repair; 

the average time to repair the malfunctioning ar- 
mahent. 

We determine i, for semistationary repair workshops in an anal- 
ogous manner. I 

I 
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The flow of incoming repair requisitions is 13+mit~+d tzy the 
number of subunits being serviced for repair of combat equipment, 
and this flow is assumed to be the simplest. This assumption is 
valid for the following reasons: 

1. The instants of armament breakdown and entry into the 
repair sphere are independent events occurring at nonIntersectinG 
time Intervals. 

2. The breakdown of a given weapon is independent 'Jf the 
number of such weapons that broke down earlier. 

3. The number of incoming repair requisitions depends on 
the density, i.e., on the average anticipated number of requisi- 
tions X per unit time, We assume that if a requisition has come 
to the repair sphere, the workshop is immediately assigned to the 
corresponding subunit. If all workshops are engaged, the weapon 
that has broken down will wait its turn for the completion of the 
repair. 

B. Basic Indicators for a Repair Servicing System 

For a quantitative evaluation of an armament repair servic- 
ing system we can use the following relationships [66]: 

1. The probability that all workshops are not engaged in re- 
pair 

PO= n 1 m , 
x 

m!ah ml a* 

k! (m--k)1 + 
I: nii(rn 

k=O Rxlfl 

(1) 

where 01 = h/v; 
X is the parameter for the flow of incoming repair requisi- 

tions; 
v = 1/t,; 

tr is the average time required to repair the malfunctioning 
equipment; 

m is the number of weapons In the units and subunits being 
serviced with repair; 

n is the number of repair workshops (technological repair 
flows). 

2. The probability 
of combat equipment: 

that k workshops are engaged in the repair 

Pk= rn!dP P- ' 
n!(m--k)! 

w~nl<k</Z. (2) 

3. The same probability for the condition k > n 

Py= ml ah PO 
n* -n nl(m - k)l' 

4. The probability that all workshops are engaged ,Cn the re- 
pair of armament, or the probability of rejection of irxAediate 
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repair 

5. The average number of armamerit items being 
awaiting repair: 

(41 

repaired and 

(5) 

6. The average number of weapons which will await repair 
(the average waiting turn) because the workshops are occupied:’ 

M n= 
rJ 

In J&--n)mlar par 
w - WI (m - k)l 

R=nSI 

7. The average percentage of armament awaiting repair: 

8. The average number of workshops not engaged in repaar 

n M,= (n - k) ml a' p 
&I (m --k)l 0' 

k=O . 

(8) 

9. The percentage of idle workshops 

Let us consider the examples. Th.ere'are threemobile work- 
shops (n = 3) to~repair 10 weapons (m = 10). Experience in the 
operation of these has demonstrated that on the average each of 
the weapons will~break down once a month, i.e., A = 1 weapons/ 
/month. To call a workshop and to repair the equipment an aver- 
age of about six days is required for w = 5 weapons/month. We are 
required to determine the basic characteristics for the organiza- 
tion of an armament repair system, 

First of all, let us determine the probability that all of 
the workshops are not engaged in repair. For this we determine 
the quantity c1 = X/w = 
lations. 

0.2 and compile Table 4.8.1 of the calcu- 

It follows from Table 8.4.1 that the probability that all of 
the workshops will not be engaged in repair is equal to 

.Po=O,155. 

That means that on 4-5 days of the month all of the workshops 
will be free, and their technical personnel may rest. 

I 
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TABLE 4.8.1 

k p4 
Pp 

6 0.056 

87 0,012 
0.0025 

190 0.0004 
0 

I I: = 6.4579 

- 
1 

-- 
I 
- 

p4 I kPh (k--n) P, 

- 
- 

0.0693 

:z56: 
Oh72 
0,002o 

o*ro6 

Mp=O.l60E 

However, this does not indicate that there will no "Une" 
of defective armament requiring repair. The "length" of this line, 
of course, will vary in.various periods. On the average, the num- 
ber of weapons expecting repair will be equal (see the sum of the 
fifth column in Table 4.8.1) to 

Mz=0,16 weapnrs. 

Hence the average percentage of armament expecting repair is equal 
to 

K, =+100+1,6Q/,. 

Let us see the extent to which the workshops are efficiently 
employed. The average number of workshops not engaged in repair 
is equal to (see the 6th column in Table 4.8.1) 

and the idleness factor is equal to 

i.e., very high. 

Let us determine the average number of weapons whicti are 
either in repair or awaiting repair, or more precisely, the aver- 
age number of weapons not suitable for combat: 

M,= 1.79 wee-. 

Hence the average percentage of weapons not suitable for combat 
is equal to 

This is a very high percentage of unsuitability for combat and it 
iS determined primarily by the time that the weapon is in repa;r 
(the percentage of weapons "expecting" repair is small: k = 1.0%). 
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Let US consider anather example for the same armament oper- 
ating conditions, but with the repair operation organized differ- 
ently. Instead of three mobile workshops to service the weapons, 
one semistationary repair workshop,has been set up with three 
well organized technological flows. However, in this case the 
average time required to deliver the malfunctioning weapon to the 
workshop Is several times greater than the time required to call 
for the workshop and for the arrival of the mobile repair workshop 
in the subunit. land despite the reduction in the duration of the 
actual'repair, the total time that the weapon spends in the repair 
sphere is increased by a factor of 2.5. Then v = 2 weapons/month, 
a = 0.5. 

As before,'the required calculations are presented in the 
form of a t able. 

TABLE 4.8.2 

~ 17.5 17,47 
6 ~ 14.56 

ifi ~ 
9i7 
4,s 

1: 0,28 I,58 

X=98, F 

Y 

Ph 

8~X~~ 
O:Ol6 
0.003 

L'=1,00: 

4 

M,=4.403 

i ‘.“’ 

(b--n) P, 

- 

@& 
01447 
0,396 
0,250 

XE 
-- 
Ma= 1,744 

0,030 
xn t:t 
0’ 

- 

U, =0,247 

The results of the calculations are expediently summarized 
in the single Table 4.8.3 for purposes of comparison. 

TABLE 4.8.3 

Moblly workshops ~0,155~0,16~ 1,6 1 1.36 1 46 1 1.79 ( 17.9 1 m 

It follows~from the tabular data that in connection with the 
general reduction in the transmission capacity of the repair fa- 
cilities there is a pronounced increase in their work load for a 
constant density of incoming requirements for weapons repair: the 
probablllty of idleness without repair for all workshops (tech- 
nological flows) PO diminished by a factor of ~16, the number of 
workshops not engaged in repair (technological flows) MS was re- 
duced by a factor of 5. However, the average number of weapons 
not suitable for combat increased from K1 = 17.9% to K1 = 44%. 
IJndcr combat application conditions there is a pronounced in- 
crca:;e I.n the rate of weapons breakdown, With respect to the case 
or providing refiair services with mobile workshops we assume that 
the flow of rep?ir requirements increased by a. Factor of 5. We 
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offer 8 table of comparative results. 

TABLE 4.8.4 

Value of I. 

Et2 0.155 0,0005 coo.16 4.02 40.2 1.6 0,012 I:36 0464 1.793 7,00 17.98 70 

As follows from the data of the table, the work load of the 
workshops Increased markedly (we compare Ma, Kas PO). In the last 
case the engineers and 'technicians will have virtually no free 
time. However, despite this, the percentage of weapons not fit 
for combat increased markedly from 18 to 70%. It is obvious that 
in the last case the available number of workshops is clearly in- 
adequate to provide for armament repair. 

This method may be used to evaluate the effects on the trans- 
mission capacity of repair-facilities produced by perfecting re- 
pair technology (reducing tdef zrem ), by improving workshops mo- 
bility tdvm, by improving the let-up time for repair and dis- 
mantling time after repair, and similar factors. On the basis of 
an economic evaluation we can find the optimum armament repair 
procedure and we can determine the most advantageous number of 
various forms of workshops and the suitability of introducing new 
repair methods, 

$4.9, THE SOLUTION OF MILITARY PROBLEMS ASSOCIATED WITH QUEUEING 
BY THE METHOD OF STATISTICAL TESTS 

In the previous sections we presented solutions for certain 
problems in queueing which were carried through to calculational 
formulas. This became possible through a number of significant 
assumptions: the steadiness and uniqueness of the requisition 
flows, the absence of aftereffects, the simplest distribution 
functions were taken for the operation of the servicing system 
elements, etc. These assumptions are not always in agreement with 
practice. Moreover, the operation of actual queueing systems is 
accompanied by the breakdown of servicing devices for various 
reasons, their repair, the presence of rejects in servicing (in -' 
military affairs, failure to damage target), etc. All of these 
difficulties can be overcome by employing the method of statis- 
tical tests [12]. In solving the problems of queueing by the meth- 
od of statistical tests we note several stages. 

The assignment of the requirements (requisitions) flow. In 
the modeling of a requisitions flow we find possible not only 
random sequences, but determined sequences. The features of the 
latter are determined by the nature of the enemy's use of combat 
units. For example, an enemy air force attack under certain condi- 
tions can be represented in the form of rather rigorously organized 
combat formations of air force facilities. The methods of assigning 
the various random sequences and of their realization in computers 
are shown in $2.2 of this book, as well as in [12, 131. 
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The time requlred for the servicing of each requisition, the 
time of arrival of each requisition in the servicing zone, etc., 
are random quantities with their own distrfbution functions. The 
methode of assigning random quantities are rather well worked out 
and discussed in 02.2 of this book. 

The most lx@ortant is the modeling of the actual servicing 
process whl&h 1s~ presented in the form of an ,algorithm - a col- 
lection of mathe;matic&l and logical rules and limitations: If the 
servicing p*ocess is not too complex, and the needed number of 
realizations Is lnot large, it can be calculated by hand on paper. 
Otherwise, we h&e to turn to the electronic computers (see $2.2). 
After the .calcuXations have been carried out and after we have, 
processed many uf the realizations of the process, we carry out 
the statistlcal’processing of the results. As quantittes which 
are exponents of the servicing quality we can take those which 
have gained greatest acceptance [12, 663. 

For systems, with failure the average percentage of fai.lures 
In servicing during a specific time interval (to, t) 

where alto, t) is the average number of failures in the realiza- 
tions during the time to= 6; 

Uto, tl is the average number of requirements during this 
tiame tifie segmerit. 

For systems with expectation: Tozh(to, t)'fs the average 
# 
I i 
I I 

1 

-i I 

time of expectation for a requisition in line during the time in- 
terval (to, *I; ~M,(*o, t) Is the average length of the line during 
this same time segment. 

For systems with limited expectation time we can use all of 
the above described indicators, In solving military problems we 
have kb determirk other important indicators as well. These in- 
clude the consurhptlon of missiles, the consumption of rockets for 
each downed target, the distribution of downed targets over anti- 
aircraft defense zones, the possibilit$es of ammunition supplies, 
etc. 

Manu- 
script 
Page 
No. 

Transliterated Symbols 

210 

215 

221 

OX = ozh = ozhidaniye = expectation 

062 =~obs = obsluzhivaniye = servscing : 
Upon + prop = propushchennyy = passed [permitted to 

pass1 
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221 ~6 = sb = shit = downed 

222 warr = nal = nalet = attack [raid] 

224 H=n = nalet = attack [raid] 

234 OTK = otk = otkaz = failure 

248 Bb13 = vyz = vyzov = call I 

248 ne@ = def = defektatsiya = inspection 

248 ABM = dvm = dvizheniye masterskoy = workshop transfer 

248 paas = razv = tiazvertyvaniye = setting up 

248 CB = sv = svertyvaniye = packing up 

248 peM = rem = remont = repair [overhaul] 

248 p=r = remont = repair [overhaul] 

254 o= 0 = ochered' = line 


