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ABSTRACT 

Coupling losses must be considered In ultrasonic measurements 
of small specimens of high Q materials.    In these measurements, the 
energy loss in the bonding material is often of the same magnitude 
or larger than the loss in the specimen.    This study is an 
investigation of the characteristics of coupling losses. 

The energy losses due to a coupling film or coupling by placing 
surfaces in optical contact were measured as a function of such 
varied parameters as frequency, bond thickness, bond composition, 
mechanical loading, surface conditions, relative alignment of 
transducer and specimen, and temperature •> JEhe equipment used in 
the measurements was designed so that the energy dissipation due to 
the mounting of the quartz crystal in order to measure its damping 
waa negligible. \ 

The experimental data obtained for small volumes of liquids, 
free films, and for loaded films were initially puzzling:    the 
magnitude of the losses was much larger than would be expected on 
the basis of the theory of longitudinal vibrations. An investigation 
of the vibratlonal modes for a disc according to the Aggarwal solution 
indicated that the resonant modes near the fundamental thickness 
resonance exhibited shear displacements at the surface of the disc 
which were comparable to the longitudinal displacement.   Such radial 
or shear motion of the disc-shaped vibrator leads to considerable 
losses when a liquid coupling film is used.   A liquid does not 
support a shear wave and the transverse component of the vibration 
in the film is rapidly damped out.    . 

The energy losses for a free film on the surface of a vibrator 
agree with the theory of shear losses.   Still higher accuracy could 
be obtained if a shear transducer were used with a suitable support 
arrangement.    The viscosity of films could then be determined 
accurately as a function of frequency. 

When the film was loaded, the energy dissipation increased much 
more than would be expected even when shear is taken into account. 
The vibratlonal modes of the system in a loaded condition are 
unknown, but even larger shear motions would not account for the 
magnitude of the energy losses. 

In order to account for the energy losses, it must be assumed 
that a component of the losses is due to surface imperfections such 
as microscopic surface cracks and surface dislocations, and that 
loading the crystal increases these losses.    The addition of a \/2t 
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Increased the losses for a glycerin film by approximately a factor 
of lO, while a \/k load increased the losses about a factor of ho 
relative to that of a free glycerin film.    Surface cracks and 
dislocations generate acoustic near fields and near field coupling 
nay account for another part of the loss.   Whereas for most of the 
investigated liquids, the loaded film measurements indicated that 
the energy losses were not directly proportional to the film 
thickness, some liquids like glycerin have a high bulk viscosity 
and the losses are then found to increase with the film thickness. 

Further indication of surface effects were noted when the 
losses due to a coupling film on a commercially obtained "ground 
finish" transducer increased as a function of an increase in the 
surface tension of the liquid.    In contrast to this, the damping 
of an optically polished crystal was not affected by the variation 
of the surface tension of the film. 

A study of the energy dissipation due to surfaces in optical 
contact was made.    Through variation of temperature and other 
relevant parameters, a temperature activated hysteresis was 
observed for many of the measurements.    According to the theory 
of temperature activated hysteresis, the loss is proportional to 
the number of dislocations; the surfaces in optical contact seemed 
to act like a plane of dislocations.    Energy losses due to optical 
contact also show dependency on the mode of vibration. 

With the knowledge derived, it ought now to be possible to 
proceed in a systematic manner and obtain detailed results.    It 
was only through these studies, however, that the significant 
properties involved in the acoustical behavior of thin films, 
bonded surfaces, and surfaces in optical contact could be made 
apparent.    Apart from deriving a method to measure viscosity in 
a wide frequency range, the study showed that acoustic measurements 
can give a considerable amount of infonnatlon about the mechanical 
behavior of surfaces of solids which cannot be obtained by other 
methods. 
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I.    INTRODUCTION 

Statement of the Problem 

The original task of the study described here was the measurement 

of the acoustic properties of small specimens,  such as liquid volumes 

of drop size,  single crystals, thin films, and small samples of random 

configuration.    There is a need for such measurements.    For example, 

medical analysis of small volumes of body fluids such as the fluid in 

the ventricles of the human brain would be useful.    Surface relaxation 

effects of liquids    could be studied by investigating the damping of 

drops of liquids.    Many materials are available in single crystal 

forms only in small quantities. 

Ultrasonic measurements are usually taken by employing a separate 

transducer with a coupling medium between the transducer and the material 

under investigation.    The coupled system of transducer-bond-saraple is 

excited to forced vibrations and the decay of the vibration is observed 

as a function of time.    The measurement gives the energy dissipation of 

the total system, consisting of the quartz crystal,  the bending, and the 

test piece.    In testing small samples, or materials with low loss fac- 

tors, the bonding losses cannot be neglected.    Because the characteris- 

tics of the bonding losses are not well known,  most experimenters try 

to reduce them to an acceptable level and then neglect them.    At a 

2 
recent lecture W. P. Mason    referred to bonding techniques as still 

one of the "black arts" with various experimenters devioing their own 

technique or ritual. 



In previous studiesj as well as in the present measurements, bonding 

and surface losses were found to be predominant in many small specimen 

measurements. In fact, these losses turned out to be so great that ac- 

curate measurements of small specimens possessing low loss factors could 

not be made; thus, there exists a need for a better understanding of the 

characteristics of a bond. The main emphasis of this study, therefore, 

was placed on the determination of the characteristics of ultrasonic 

coupling losses. Particular attention was paid to developing experi- 

mental techniques and to interpreting the experimental results. 

Experimental Methods and Equipment 

The measurements were performed by loading a vibrator with the 

samples to be tested and studying their effect on the decay of the 

resonant vibration after the power source had been disconnected. The 

amplitude of the vibrations were relatively small and wltnin the range 

of Hooke's law. Non-linear effects have been excluded. 

In general, the change of the loss factor (see next section) of the 

composite resonant system of transducer-bond-sample was determined as a 

function of the various parameters such as: frequency, bond thickness, 

bond composition, mechanical loading of the bond, surface conditions, 

relative alignment, and temperature. To obtain accurate results, the 

vibrator had to have a small energy dissipation so that the energy 

dissipation of the sample had a measurable effect on the decay time 

of the vibrator-sample system. 
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Quartz transducers were chosen because of their small internal 

energy dissipation. The crystals were manufactured by the Valpey 

3 
Corporation by the following process:  The raw material was cut with 

No. 100 abrasive. The first 0.038 cm stock was removed with 30 micron 

gritj the next 0.010 cm by 9 micron grit; another 0.010 cm was removed 

by 2 micron grit and the final polish was done with 1 micron grit, 

removing about 0.0010 cm of the material. The grinding and polishing 

grit was single crystal A102 {99% pure) of Moh hardness 9, and 

specific gravity 3.85. 

Studies of films of various bonding agents or special test 

solutions were performed at frequencies from 4-00 KHz to 5 MHz and 

from 30 MHz to 210 MHz. The crystal transducers were excited in 

their fundamental thickness resonance for frequencies up to 5 MHz. 

Their thickness is given by 

d (cm) = 2.85 x 10Vf , 1.1 

where f is the frequency of the fundamental thickness resonance. 

Crystal diameter was 2.936 cm for the lower frequency film measure- 

ments. The crystals used for studying the effect of optical contact 

and the higher frequency film measurements were optically polished 

0.952 cm diameter crystals and were driven in overtones (3  to 

21st harmonic). 

The quartz vibrator had to be supported in some way so that the 

measurements could be performed. It was necessary to support it in such 

a manner that the supports had as little effect on the measurement of 

the losses as possible. To determine the effect of the supports, the 

internal dissipation of the crystal for thickness vibration had to be 
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measured. Many papers have been published on the damping of shear modes 

of quartz, but very little is known about that for thickness vibrations. 

To measure the damping of a free quartz crystal, a free fall device 

was constructed. Figure 1 shows the top portion of the apparatus. The 

crystal is excited to a resonant mode of vibration and then dropped 

between the electrodes that are approximately 110 cm long. These 

electrodes sense the electric field due to the direct piezoelectric 

effect generated by the decaying vibration of the freely falling quartz 

crystal. The time of fall is about 0.5 second which would correspond 

to the time for the amplitude of the vibrations of a crystal with a Q 

of 800,000 to decay to l/e. 

Plating a crystal substantially increases the damping} therefore, 

most of the measurements in this study were made with unplated crystals. 

Unplated crystals also provided unobstructed surfaces on which to work 

and dispensed with the troublesome electrical connections. The elec- 

trodes were stiff plates that were approached to a distance of about 

0.015 cm to the surface of the crystal transducers.  The small air gaps 

between the vibrating surfaces of the crystal and the non-vibrating, 

relatively stiff electrodes acted like low loss compliances. Most of 

the radiation damping that would have occurred with plated crystals 

not placed in proximity of plane electrodes could thus be eliminated 

and measurements could be performed in air. However, the entire 

apparatus fitted into a desiccator vessel and the space around the 

crystal could be evacuated in order to eliminate losses due to 



Figure 1. Apparatus to Measure the Quality Factor of a Crystal 
in Free Fall 
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radiation and the air film between crystal and electrode. This was 

done whenever the energy losses of the composite system were small. 

The measurement of the vibration amplitude usually absorbs a 

certain power which must be furnished by the vibrating system. This 

extraction of power has the same effect as an additional damping ap- 

plied to the system and the decay time is shortened because of the 

measurement. To reduce this damping, which is coupled into the 

mechanical system, the coupling capacitors to the electrodes of the 

quartz vibrators were made as small as possible, and the output coupled 

to a cathode follower of high impedance. Figure 2 shows the electronic 

arrangement. 

Considerable effort was spent on developing a holder that would not 

increase the damping of the crystal. The initial holders employed 

radial steel points such as phonograph needles to hold the crystal. 

These holders were not satisfactory because of crystal-support inter- 

action and crystal fracture at the point of contact.  Initially it was 

assumed that the central plane of the disc shaped crystal was a nodal 

plane for thickness vibrations. However, vibration studies showed that 

for a quartz crystal vibrating in a thickness mode there is a con- 

siderable radial component of motion at its central plane (Figure 2A). 

It was necessary, therefore, to employ supports that were compliant 

enough to allow for this radial component of the vibration. 

Figure 3 shows the crystal support arrangements  In Figure 3a 

the crystal is held by circumferential spring steel points, in Figure 

3b by thin spring steel supports fitted with sapphire phonograph needles 
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Figure 3. Crystal Support Arrangement (a) Crystal Held by Circum-
ferential Spring Steel Supports (bj Crystal Held by Spring Steel 
Supports Fitted with Sapphire Phonograph Needles 
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that fit into slits lapped along the circumference of the crystal In 

its central plane.    Both types of support were sufficiently compliant 

so that they exerted little radial force on the crystal;  t.;'us,  the 

crystal was essentially suspended freely in space.    A rack-differential 

screw arrangement allowed easy and accurate repeated insertion of the 

crystal into the holder.    The crystal holders fit into an adjustable 

stand, as shown in Figure 4-»    Two electrodes at a small distance from 

the crystal serve to drive it through the external electric field 

created by application of a suitable drive voltage. 

For a given energy of the vibration, the vibration amplitudes 

decrease Inversely proportioned to the square of the frequency.    The 

vibration amplitudes are,  therefore, very small at high frequencies; 

dust particles and surface roughnesses, as they occur on non-optically 

flat surfaces, usually lead to complete isolation between two surfaces. 

It was found that at frequencies greater than about 10 MHz the 

coupling between the crystal and the electrode was small and that the 

microscopic air film because of room dust and surface roughnesses was 

sufficient to decouple the crystal and electrodes.    The simple holder 

shown in Figure 5 thus proved practical; the holder was small enough 

to be immersed in a dewar,   so that measurements could be made at low 

temperatures.    The electronic setup for a frequency range 30 to 210 

MHz  is shown in Figure 6a.     For 10 MHz measurements arrangement shown 

in Figure 6b was used. 
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Figure 5. High Frequency Crystal Holder 
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The first series of investigations was devoted to a study of drops 

and small volumes of liquids placed on the surface of a resonating 

quartz crystal.    Later in the program,  test pieces such as discs of 

various metals or quartz were placed on the quartz vibrator to measure 

their acoustic properties.    Because of the great effect of the contact 

between vibrator and test pieces on the experimental results, a 

thorough study of the acoustical behavior of films and of surfaces 

in optical contact was initiated. 

Films were formed on the surface of a single quartz crystal by 

evaporation from a solution of the film material and a solvent. 

Glycerin and petroleum jelly formed a stable film for a wide range of 

thicknesses when the quartz surface had a ground finish (i.e., not 

polished).    It was also of interest to measure the effect of loaded 

filmsj i.e.,  of films sandwiched between two vibrating surfaces,   so 

that both film surfaces are under mechanical stress (see Theory 

section).    The films were of standard bonding materials such as 

glycerin, vaseline, vacuum grease, different silicone oils, Eastman 

910 cement,  or of solutions of sugar in water.    To load a free film, 

a mechanism was devised that dropped a metal disc or a second quartz 

crystal from a small distance above the film onto it.    The disc sup- 

ports could be drawn back rapidly by solenoids.     This arrangement is 

shown in Figure 7.    A quartz crystal or a disc of thickness X/2 (half 

a wavelength)  represented a small loading as far as longitudinal 

stresses are concerned;  one of a thickness of \/4., because it 

vibrates in anti-resonance, a very large loading  (see Theory section). 
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As the thickness of a film was reduced, its energy dissipation ap- 

proached that for optical contact. To obtain optical contact, the sur- 

faces had to be optically polished. Particular care had to be taken to 

eliminate room dust and other particles. Room dust in normal laboratory 

air is usually sufficient to spoil the optical contact between two 

optically flat surfaces. Several industrial models of air cleaners 

are available, but at rather high cost, so the laboratory model shown 

in Figure 8 was designed and constructed using American Air Filter com- 

ponents. The final filter was an 'Astrocel' which had a guaranteed ef- 

ficiency of 99'9%  on 0,3 micron particles. With the addition of an air 

flow stabilizing grid following the 'Astrocel1, the air flow was uni- 

form in the work area. This design was satisfactory for excluding at- 

mospheric contamination of the contact surfaces. 

The properties of optical contact were investigated in the fre- 

quency range from 30 MHz to 210 MHz and for temperatures between 90°K 

and 3700K. 

The results obtained for the energy damping of films and contact 

surfaces could not be easily interpreted. The mechanism of thermal 

damping, for instance, leads to loss factors that were 10 times smaller 

than those actually measured. More information was needed about the 

vibration pattern and in particular, about the transverse motion of a 

vibrating quartz crystal. Theoretical studies on the basis of a sim- 

plified theory were supplemented by measurements. To obtain informa- 

tion about the surface motion of a crystal vibrating at 4-00 KHz, a 
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Figure 8. Top and Side View of Laboratory Model of Clean Air 
Station 
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probe pickup was constructed. Figure 9 illustrates the pickup and the 

method used to measure the transverse component of the vibration of a 

crystal as a function of the polar angle. A multiple half-wavelength 

probe attached to a piezoelectric crystal sensed the radial component 

of the vibration at the cylindrical surface of the crystal as it was 

driven in a thickness mode. 

To determine the effect of the orientation of the crystallographlc 

axes on the contact loss between two crystals, the axes were determined 

as shown in Figure 10. The crystal was rotated about its X-axis until 

the rays of light formed the circular (bullseye) pattern characteristic 

of the Z (optic) axis. This arrangement was sufficient to locate the 

Z or optical axis and to determine the left- or right-handedness of a 

quartz crystal whose fundamental thickness resonance was not greater 

than 10 MHz. Higher frequency crystals were too thin to be investigated 

by this method. 



Figure 9. Probe Pickup to Measure the Transverse Component of 
Crystal Vibration 
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II.    THEORY 

Loss Factor and Energy Dissipation 

In acoustics it is  Standard practice to describe the internal dis- 

sipation of a material or system by a dimensionless constant such as 

the loss factor: 

_ energy dissipated per period _ ^E / E 21 
' =     2TT x energy of the system      '  at/ ^    ' 

where *r is the energy dissipation per unit time,   E is the total energy 
at 

of the system and UJ the angular frequency.    The loss factor thus defined 

is closely related to quantities that can be measured directly.    For 

instance,  the loss factor is equal to the relative bandwidth of a 

resonance curve 

T) = ujp/u)0 2,2 

where (Dai-3 the bandwidth at the half energy points, and yj is the 

resonant frequency. The loss factor can also be deduced from the time 

t for the amplitude of the vibration to decay to l/e of its initial 

value: 

e 

If the system consists of several separate parts, such as a quartz 

vibrator carrying a film and a disc that loads the film, the resultant 

loss factor, denoted as the system loss factor T] , is given by 
s 
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2.A 

where 

E    = 2 E 
t v 

is the total vibrational energy of the system and E    +he vibraticnal 

energy of its vth part.    If the quartz vibrator of mass M,   is coupled 

to a similar vibrator or to a disc of mass K2  that vibrates in a \/2 

or a x/4. thickness mode,  the space distribution of the vibration ampli- 

tude is sinusoidal, and the effective masses are half of the masses of 

the vibrator and the loading disc.     The mass of the film is negligibler 

The above expression then becomes 

MT M2 2    a^ j^  
71-711 M^Ma * ^ M,+K2 

+ ÜJV7 at    MT+MJ 2°5 

dEf 
where V is the maximum of the velocity amplitude and TT- the energy 

dissipation of the film per unit time.    The film has been assumed to 

vibrate with the velocity V and all its energy to be kinetic. 

Frequently, it is convenient to define a loss factor for the film 

alone and to refer this loss factor to the velocity amplitude of the 

film surface that is generated by the thickness vibration of the quartz 

crystal. 

„        l^f     _1  P , 
^f "<«ät    ' 1 2 

2 "f    o 

as if V0 were the velocity that determined the energy losses of  the 

film.    The film loss factor is that which the film would have to have 
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tc account for the change in the system loss factor when all the 

additional losses are ascribed to the film.     Actually,  the energy 

losses turn out to be predominantly due to  the shear motion of the 

quartz surface;  and the less factor as defined above will not only 

depend en the film,  but also on the amplitude pattern of the quartz 

vibrator.    However,   the above definition is useful as this less factor 

describes  uhe effect of the film on the particular vibrator which was 

used in the experiment.    The above equations show that the energy 

dissipation of the film increases the loss factor of the system by 

A71    _  2      ^f _±_ _      2        ^f 1      ^   üf p 7 
*\     u)   V 2  at   Mi+Ma      tu   V 2   at    M ~ ^f  M ' 

O       O CO 

where AT]    is the change in the system less factor because cf the film- 

For two crystals in contact,  the mass M - M1+M2  is proportional to the 

thickness of the system.    The thickness d of a quartz crystal is in- 

versely proportional to the resonant frequency  (see Eqn    1.1),   the 

mass is also inversely proportional to  the resonant frequency; 

OUQ - nc/d,  where c is  the sound velocity in quartz.    Then 

M = gpd = apcn/uj0 - constc/ou    = ct/u)    where  o is the cross section 

area and c:  is a constant as defined above.     We then have 

1          aEf U)          1     R V ^        _ 
A~    _      1        U. _o 1     c_   _ R 0 a 

's      uuV^ata       V        a a 
0      0 0 

where R is the equivalent dissipation resistance of the film per unit 

area and is defined by 
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—i = R V^2  . 2.9 at o 

The increase in loss factor of the system thus is prcporticnal to the 

effective dissipation resistance per unit area of the film referred 

to the surface velocity of the quartz vibration. 

Properties of Liquid Surfaces 

The nolecular force field in a liquid is greatly disturbed near and 

at its surface.    Klemm    has stated that surface relaxation  is to be ex- 

pected and that the surface layer can have a very high viscosity-     He 

estimates that for water,  the surface viscosity would be about 10,000 

times greater than the viscosity measured wi + iiin a liquid volume.    Thus, 

there is reason to expect  chat the properties of a film differ from 

those of the same liquid in bulk.    Also it is questionable if proper- 

ties such as viscosity are unchanged in the region of interaction of 

the liquid and the solid material.    No experimental results that verify 

or contradict Klemm's theory have yet been published. 

Energy Dissipation of Films Because of Heat Conduction 

The effect of heat conduction in the air gap of a condenser micro- 

phone on its damping has been studied by Pfriem.      Similar computations 

were performed for liquid films.    The computations are relatively lengthy 

with the result that heat effects are about 10 times  too   imall to account 

for the energy dissipation of thin films sandwiched between two heat 

conducting surfaces.    The energy dissipation is considerably smaller if 

one or more of the surfaces in question are of poor heat conductors such 

as quartz. 
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Thin Films and Optical Contact 

Jhen two crystals with optically flat .surfaces are brought to- 

gether, Van der Waals or London dispersion forces are generated. The 

o 
forces between surfaces for distances greater than 1000 A have been 

found to be proportional to 1/d^.  Optical contact is said to occur 

when the surfaces seize one another; the distance of separation is 

o 
about 200 A.  The molecular forces that act between the two surfaces 

then attain a strength of the order of 14 kg/cm2  whether the contact 

was made in air or in vacuum.  The true mechanism of optical contact 

bonding is not well understood. The bonding has been shown not to 

depend on the surface tension of a thin film of water on the surface 

of the crystal.  For thin films the interaction of the surfaces must 

be considered. As the thickness of the film goes to zero, the coupling 

must change to that of optical contact. 

Energy Dissipation in Films Because of Shear Waves in Liquids 

When this study was started, the transverse motion of the vibrating 

quartz was neglected and the loss due to a liquid film was computed as 

if it transmitted a simple standing wave pattern from which the energy 

densities and hence the loss factor could be determined. However, this 

theory could not explain the experimentally observed losses. The nore 

exact theory shows that a disc vibrator generates a considerable shear 

motion even when vibrating in a thickness mode. 

When shear is taken into account, an additional component of loss 

is generated due to the attenuation of the shear component in the 



25 

bonding film.    The longitudinal component of the motion is transmitted 

as is assumed in the elementary theory, however the transverse component 

is largely lost due to the inability of a fluid to support a shear wave. 

The shear attenuation leads to a loss factor much larger than that of 

the plane wave theory. 

7 
Lord Rayleigh    investigated the motion generated in a viscous medium 

by a plane moving parallel to itself with a velocity V0, The displace- 

ment of the fluid is parallel to the plate and varies with the distance 

x from it.    The equation of motion is 

Pdt=^ 2'10 

where p is the density and p, the viscosity of the fluid.    For harmonic 

motion, the solution is 

v = A (e-jkx + Rejkx) eju,t 2.11 

where A and R are constants, 

k = t (1-j) 7 f = ^ f d-J) - t d-J) ko, and 

k o 
- Im 
"V 2^ • 

The solution represents two waves, one propagating in the positive X 

direction, the other in the negative X direction. The wave number is 

complex and its real part is equal to the imaginary part, like that 

for heat waves. The shear motion propagates in the viscous liquid 

in the form of heavily damped waves} their amplitude decreases by a 
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factor e" T7 = 1/520 per wavelength.    The wavelength is given by 

As     k       v        ou o 

The preceding formula shows that the shear wave wavelength \ in a 

viöcous liquid is extremely short. For example, for water at 500 KHz 

\ = 5 lO-4 cm. s 

In studying the propagation of shear waves in a viscous liquid, 

R in Eq. 2.11 is the amplitude reflection coefficient. Reflection at 

the opposite face can thus be neglected and R = 0 if the thickness of 

the film is greater than about 1/3 the shear wavelength \ . The solu- 
s 

tion then simplified to 

-k x 
v = V e 0 cos («Jt-k x) . 2,12 o v   o ' 

The viscous force acting on the plate is given by 

i£)y=0 = -\x (^)  = ix k0
Vo(cos u,t'sin mt)  = ^ koVo ^~  cos (out + ? ' 

2.13 

The energy dissipation dE/dt (i.e., the work performed by the plate on 

the viscous film) is 

o  " dt 

T 
= llm I  \  f-v dt = ^k    J2Y*  I 

T-co TJ0 ^ovoT0o 

x=0 

cos (Wt cos  («it + nA)  dt = 

k V 2 

\i      2 4.14 
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and the change of the observed system loss factor because of the presence 

of a viscous film becomes 

dE / p _ AT,   _        2^oo  _ t.   o 
dt/ ** " A,|s " T   ^ M,   .   T        2 ' u) M,   .   T   (1 + R2j 

1 /   total     y \.. total ' 
2 ^     2   " x Vtotal J tu 

uj M,  +  T   (1 + R2)      M, +  1   (1 + R2j total '        total 

where V^.,  = V.2 + V,„_ ,      R2 - -jpj^ 2 15 
o 

2 2 V. 

total        o long ' V ^ 

and M.  is the total mass of the system.  It has been assumed that the 

amplitude distribution over the thickness of the vibrator is sinusoidal 

so that the mode mass is half the total mass. 

If the film is sandwiched between two vibrating discs of similar 

dimensions,  the longitudinal component of the vibration will be the 

same below and above the film.    The transverse velocities of the two 

surfaces will have the same magnitude but their phase will be opposite. 

If the thickness of the film is greater than about half a shear wave 

wavelength,  the two  shear components will not interact and the losses 

will be twice as great as that given by the above formula. 

For films that are sandwiched between two surfaces and are not 

thicker than half a shear wave wavelength, a more exact computation 

is needed.    If one of the two surfaces is at x - d moving with the 

velocity V    in its plane and the other is at x = 0    completely at 

rest,  the boundary conditions are 
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V = 0   at x = 0 

V = V   at x = d . 
o 

2.16 

The first condition yields 

0 = 1 + R . 

Consequently 

v = -2Aj sin kx 

and 

V = -2Aj sin kd . 
o 2.17 

Substituting A from the last equation into the preceding equation, we 

get 

V fin kx 
o  v = —I—n— • sin kd 

The force on the surface at x = d is given by 

2.18 

-V k cos kd 
o   

f  '^ C ax y,
x=d "   sin kd 

= - V k cot kd . 
o 2.19 

The component of the force in phase with V is given by the real part 

Re(f) = Re [|i V k (1-j) cot [k d (1-j)]] 
o o 

= M, V k Re {cot (tx-ja) - j cot (a-ja)] 
c o 

1 sin 2a ±  sinh 2a  ,, „ , — g      ii— • u v k 
2 cosh a - cos a     o o 

2.20 

where a = k d . o 
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The power dissipated per unit area of the film thus is given by 

u, V 2k „     o o sin 2a ±  sinh 2a _ „n N =  ; ,y    T^ . 2.21 o     U        cosh' a - cos'a 

Figure 11 shows the theoretical curve. 

When the film is thick, Eq. 2.21 reduces to Eq. 2.14, and the pre- 

ceding result is obtained. But when the film is very thin the equation 

predicts that the absorption becomes infinite.  However, the transmitted 

shear force then would be very large mid the second surface would not 

be at rest but would move transversely. The relative velocity and 

consequently also the loss would then be much smaller. The large values 

of 1 s factor thus cannot be realized in practice. 

We thus arrive at the conclusion that if the thickness of the film 

is reasonably great the viscosity dependent losses of the film correspond 

to those of an infinitely thick film. The losses may increase consider- 

ably when the film becomes thin and the test piece is forced to vibrate. 

Some of the measurements were performed with free films placed on 

the surface of a vibrating quartz crystal.  The boundary conditions then 

are 

v = V 
0 

at x = 0 

^ = 0 at x = d . 

We then have 

2.22 
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Figure 11.    Theoretical Loss Curve for Sandwiched Film 
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v = A(e'jk>:+ R eJ'kx)   , 

(v)x=0 = Vo = A (1 + R)   ,  and 

(g)       =0= jkA (-e-J-kd * Rejkd)   . 2.23 
x=d 

V 
Hence 1 + R = -7- , 

R = e-2Jkd , and 

A =  ^rrrr V    : 2.2A 
1 + e-2jkd   0 

the solution then reduces to 

V 
„ _        0  r -jkx  .     -2jkd    jkxn 0 -c V ^ 1 + e-2jkd ^ + e    «J     -e^     ] . 2.25 

The force that acts on the surface x = 0 of the film is given by 

^^-^O      1+ e-2jkd 

= - H v k [tan kd] 

= - ^Voko [(1-j) tan  (a-jo)] , 2.26 

where a = k d  .    The power dissipated is determined by the component 

of the force in phase with the velocity,  that is 

Re(f) = - ti V k    Re [tan  (a-ja)  - j tan (a-ja)]  . 2.27 

D .     .   /  .■<  1 fsin 2a - .i sinh 2a 1 n oö But     tan (a-cm = T L
   . j  •  i        J • 2.28 'J/  2  cosh^a - sm^a 

Hence 
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T  - a V k    [sin 2a - sinh 2a] 
D     f „•,       1 o o o  L J o  on Re  jf ] = -  rz r-5  2.29 1   '      2 cosh'n  - sin^a 

and the power dissipated per unit surface area is 

, |i V 2k    (sinh 2a  - sin 2a) 
N   = ± V    Rfc(f) =    0J

0
( 

0 ,2 r-TI • 2.30 
o      2    o ' U (cosh'a - sin^a) 

If a -» OBJ  cosha = sinh a = e /2    and 

^ V 2k 
N  =   0 a   a . 2.31 

The maximum is obtained for a ~ TT/2 = k d and its value is nearly 

equal to 

|i V  2  k 
1.1 x  1 2 . 2.32 

Figure 12 shows the theoretical curve. 

Elementary Theory of the Thickness Vibration of a 
Quartz Crystal 

Most books on acoustics derive the properties of quartz vibrators 

on the basis of some elementary theory. The transducer is approximated 

by a short rod free at both ends which is excited by a spatially con- 

stant force distribution, the vibre.tion is assumed to be one dimen- 

sional and displacements transverse to the axis of the quartz are 

neglected. 

The natural mode solution of a rod free at both ends is 

F = A cos k x . 2.33 
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Figure 12.    Theoretical Loss Curve for Free Film 
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The equation of motion is   ~f = T ""TT    •    For the rod free at both 

ends with a spatially constant driving force and the observation point 

at a free end we get the following solution 

| = E g   = Z [H   f /M    (OJ   - uu2)] 
v vOvv 

V V 

where H    = TM  f(x)  i (x)  dx 
v      f 0 J N 

and f    = J f (x^ ^ 5 

M    = M/2 , 2.34 
v 

f(x)  is the force distribution function which in this case is a constant. 

The excitation constant H    is 

-P /?    f H v/2 
 2i o  | cos  (\^Tx/t)|   _ 2 sin  (vnx/i)      1 

v vn/v g 

v - 0,2,4)6)   •«• 

v - 1)3)5,7,   ...    . 2.35 

The solution for the displacement at the free end thus becomes 

_        - f \ ^2    0  
§ "      i     §v '      L       vn (M^HUJ 

2V) 
V)Odd V)Odd v 

"v^o^           ^ 

2   sin  (vn/21      f 
VTT                                               \_ 

0 

2_ 
vn 

f 
-^  
VTTM  (t 

v,odd 
l        VTTM   (u,2-^)       * 2'3e 

This is the solution of displacement for the free-free rod with no loss 

and shows that only the odd multiples  of the fundamental frequency are 

excited and the excitation is inversely proportional to the ord^r v of 

,   .■ 
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the mode.    Losses are taken into account by making cu    complex 
v 

u» 2 = tu 2  (1 + JT))» then we have 
v v 

S(A)=     I A. o 

v,odd {\ "<"  > 

2.37 

Advanced Theory of the Thickness Vibration of a Quartz Crystal 

If we are interested in a more detailed description of the thick- 

ness vibration of a disc  the elementary theory is inadequate.    In fact, 

the thickness vibration of a quartz crystal or a disc  is of a complex 

8 9 
nature as shown by observers such as Osterberg,     and Dye,    and more 

recently by Shaw,        Arnold and Martner,        Midlin,        and    Gazis. 

Instead of identifying the transducer with a short rod we may identify 

it with a small plate.    Classical plate theory is applied primarily to 

plates of infinite or semi-infinite extension.    Because the transducer 

is finite,  edge effects must be expected.    A pure extensional wave in 

a plate does not satisfy the boundary conditions at the edges; Midlin 

12 et al      have shown that the edge effects are important for finite 

plates. 

One possibility to deal with the quartz vibrator is to assume it 

to be equivalent to a cylinder of short length.     Pochharamer-Chree 

derived mode solutions that satisfy the boundary conditions at the 

free cylindrical surface,  but do not contain enough free constants to 

satisfy end conditions.    Therefore,  these solutions apply only to the 

15 infinite cylinder.    McNiven      showed that even at low frequencies a 
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longitudinally propagating wave generates a distortion wave as it is 

reflected fr-jm a traction free end surface of a cylinder. The general 

solution for a finite cylinder is obtained by adding a finite number of 

Pochhairmer-Chree mode function with real, complex, and imaginary pro- 

pagation constants. 

An approximate solution for the vibration of a finite disc has 

been published by Aggarwal,  and this solution is confirmed by the 

mode studies of Shaw,  and Arnold and Martner.   Aggarwal's solu- 

tion applies to homogeneous, Isotropie discs, and represents the dual 

to the Pochhammer-Chree solution of the cylinder. In the Aggarwal 

solution the boundary conditions are satisfied on the flat surfaces 

of the disc but only for a small number of positions on its curved 

surfaces. By adding a number of modes a reasonably good approximation 

to the conditions at a cylindrical surface is obtained. As this solu- 

tion is important in transducer considerations its derivation will be 

outlined here. 

The equation of motion of an Isotropie solid is expressed by 

the vector equation 

a2s 17 

(X + li) grad div s + |x v2 s = p rrj . 
dt 

In cylindrical coordinates the radial and axial components are 

(A. + 2u.)       T~r +      T- - nr      +  u, TT +  U+2M.)   ? 5    =  o T77 L ör       r hr      r"1  J      ^ öz '■    r/  öroz       w ^f1 

^ La?7    ^J    u+2^ ä^+ {x**} TztTr + 7)= 'W    2-38 
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where X and M> are Lam^ constants, p is the density, the radial displace- 

ment: U-u exp(ipt), and the axial displacement: W = w exp(ipt). The 

Z axis is chosen to coincide with the disc axis and the origin to lie 

in the medial plane. It is then shown that the displacement functions U 

and W may be expressed in terms of potential functions f and cp, where 

and 

Introducing the potential functions i|( and cp ,   the differential equations 

become 

and 

dr*      r ör      äz 

or''      r or      bz* ^ 2.39 

using 

k2 = p2   p/ti      and      h2 = p2p/(\ + 2^)   . 2.^0 

The stress equations for the normal and tangential components are 

rr     r 
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The wave solution is obtained by separating the variables,  assuming 

that 

f = r f (r) F(z) and cp = r g(r) G(z)  . 2.^2 

Ruling out singularities at the origin sind keeping only the functions 

that correspond to symmetric vibrations it is shown  that the functions 

ty and cp can be written 

| = Ar -Mar)   sin   [(k2   - a2)* z] 

cp = D    Jo(ßrj   cos   [(h2   - ß2)2  .1 2.43 

where a  and ß are arbitrary constants to be determined.    Up to this 

point,  the solution follows closely the classical approach.    It is in 

the matching of the boundary conditions that the difference arises. 

The boundary conditions are: 

a    = 0 , a    = 0 
>• at z = * c and i- at r - a 2.44 

a     = 0 J a     = 0 J 

zr rz 

for a disc of thickness 2c and diameter 2a. 

As it is impossible to satisfy all these conditions with a finite 

number of terms, we look for solutions that satisfy them approximately. 

Aggarwal choses to satisfy the boundary conditions on the flat surfaces 

exactly, but only approximately on the cylindrical surface. The 

conditions that are satisfied rigorously yield 



) 

Jl) 

rz 
= 0 at z = 1 c , 

2Da (h2 - a2)^ sin [(h2 - a2)* c] + A (2a2 - k2)  sin [(k2 - a2)2 c] = 0 

and from a     =0atz=tcwe get zz 
i i i 

D(2a2 - k2)  cos  [h2 - a2)7 c] - 2 Aa  (k2 - a2)7 cos  [(k2  - a2j7 c] = 0  . 

2.A5 

The last two equations lead to the frequency equation 

_ tan  [(k2  - a2)^ c] _ I a2   (h2 - a2)^ (k2  - a2)^" ^ 2 A6 

tan  [[h2  - a2}^ c] (k2 - 2a2)2 

Figure 13 shows a graphical solution of this equation.    For a value of 

kc < 2.765 there is only one real value of ac.    Aggarwal chose  to 

determine a by using a     =0atZ=tc,  r=a leading to the solu- 

tions aa = 2.05j  5,39»  8.57,   ....    If several values of a satisfy 

the above equation (for a given frequency) all these individual solu- 

tions are superimposed.    In the frequency vicinity of the first funda- 

mental thickness controlled mode,  three values are obtained for a  so 

that the complete solution can be built up by adding up three different 

functions | and cp with different multipliers.     In a rigorous computa- 

tion, also the complex roots would have to be takei into account. 

However,  the justification being the agreement with experiment, 

the three terms that correspond to real or imaginary values of a lead 

to a fairly good solution. 

Furthermore,  the Aggarwal theory leads to three modes of different 

resonant frequencies    near the frequency that corresponds to the 
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FUNDAMENTAL 'THICKNESS' 
RESONANCE  REGION 

0 I 
IMG. REAL 

4 
ac 

Figure 13.    Graphical Solution of Dispersion Relation,  Eq.  2.4-6, 
for a Disc of Diameter to Thickness Ratio 3.86 
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fundamental thlcJcness resonance of the elementary theory, and thus ex- 

plains the multiplicity of resonance peaks that will be discussed in 

connection with Figure 25. 

In the study reported here we were interested in the complex mo- 

tion of the transducer, i.e., both the axial and radial components, 

and thus it was necessary to derive also  the solutions of the radial 

displacements.    The first six modes have been studied;  the three low 

frequency 'radial' modes and the three modes in  the •thickness'  reso- 

nance region.    The computations for the first three modes are straight- 

forward.    With the first three values of a, u and v are given by 

u = A k J,   (a a Jj   ^ " ^    cc,      ' 1  - yj* kc] 

r     1 •§• w = - A k J0  (a a -} —r sin [(1-y)2 kc] 
a    2y* 

a2 

where ^ = k3" ' 2'^ 

For the thickness modes,  the three independent boundary conditions were 

chosen to be 

a     = 0 at r = a,  z = t c : rr ' ' 

a     =0atr=a, z=0: rr ' ' 

and a     = 0 at r = a,  z = t c . 2,4-8 rz ' 

For a given frequency the allowed values of a represent the solutions 

of the equations: 
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- \i,  [DiOi "♦■ D202 "♦■ D3a3] = 0 at r = a, z=±c 

- v.  [Dia4 + Dzas + ^306] = 0 at r = a, z = 0 

- \i.  [D107 + Daas + ^309] = 0 at r = a, z = t r •    2.49 

The resonant frequency may be identified with the frequency for which 

the determinant of the above equations vanishes. The expressions for 

the stresses are of the form, e.g., 

2* Frn  ,K n   J [C05 (1'y)i !ÜJ r (2E-1I . , , 

50 

With the solution of the resonant frequency,  the values of kc and ac 

were found and substituted into the above simultaneous equations;  the 

ratio of the constants  D,,  D2,  D3 were then computed.     The displacement 

functions u = u,  + uj + U3 and w = w, + w2 + W3 are given by: 

u,  sKn  D,  J^ajr)   ,      w,  = KTQ D,  Jola^} 

u2 = K21  D2  J^ajr)   ,       W2 = K^ Dj  Jo(a2r) 

U3 = K3,   D3 J1(a3r}   ,       W3 = K30  D3 Jo(a3r) 

and 

, D2   K21 D3   K3! 
u = D,   K,!   j J^a^) + — — J1(a2r)  ^ J" ~ Ji U^)\ 

f D2  K2o D3 K30 

w = D,  K}0  1 Jo(a1rj + jp ^— Jo(a2r} .+ 5~ ~ Jo(ci3r) j . 2.51 

The above equations were evaluated and plotted,  using the Perm State 

University IBM 7074- Computer.     The first six mode solutions,  normalized 

to maximum component of displacement -1,  are: 
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kc Mode functions 

0.897     w =    0.558 A Jo(2.05 r/a) 

u = -2.04.   A .1,(2.05 r/aj 

2,050     w =   0.75    A Jo(5.37 r/a) 

u = -0.2355 A J1(5.39 r/a) 

2.628     w =    0.563 A Jo(8.57 r/a) 

u =    0.2515 A .1,(8.57 r/a) 

2.897     w =    O.466I A [J0(10.42 r/a)  - G.^SlS Jo(1.10 r/a)   - 

0.8500 JQ(4.86 r/a)] 

u = -0.2447 A [J, (10.42 r/a)  - 1.122 .1,(1.10 r/a)   - 

3.490 J,(4.86 r/a)] 

3.061      w =    0.3887 A [Jo(11.36 r/a) + 0.4038 J0(5.6l r/a)   - 

0.0996 Io(0.46 r/a)J 

u = -0.2161 A [J,(11.36 r/a) + 2„296 J,(5.6l r/a)   - 

0.1744 I,   (O.46 r/a] 

3.231     w =   0.2776A [JQ(12.27 r/a) - 0,1004 Jo(6.19 r/a) + 

0.2068 J0  (0.82 r/a)] 

u = -0.1601 A [J, (12.27 r/a) - 0.8433 J, (6.19 r/a)  - 

0.5758 J1(0.82 r/a)] . 2-52 

The basic correctness of these solutions has been confirmed by the 

experimental data of Shaw  and that of Arnold and Martner.   The 

solutions are representei in Figures 14 through 19. The curves show 

that the axial displacement is not constant but varies greatly over 

the cross section and that the radial component of motion is significant. 
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Figure 14..    Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 0.897 

+ 

Figiire 15.    Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 2.050 
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r = a 

Figure 16.    Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 2.628 

+ 
r = a 

Figure 17.    Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 2.897 
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Figure 18. Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 3.061 

+ 
r=a 

Figure 19.    Displacement Amplitudes for Axial and Radial Component of 
Vibration for kc = 3.231 
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It is important to note the great change in amplitude distributions and 

relative amplitude distributions of axial and radial displacement from 

one mode to the next. 

Half Wavelength Load 

If a load has a thickness of half a wavelength,  or of an integer 

number of half wavelengths,  it vibrates in resonance and represents a 

purely resistive load.    If the load is a \/2 quartz crystal,  its reso- 

nant impedance per unit area is 

R^Tl^-Tl^ff    , 2.53 

where d is the thickness and c the propagation velocity for longitu- 

dinal waves in the material. If the surfaces in contact would intro- 

duce no energy loss, T) ~ 10~6 and 

R = IQ"6  pen = IQ"6 f^ P c    = 10-6 ( l^xlQ-6 ) n p c    ~ 1 
pcoo V       42        yooS'oo oo 

where    pc = 1.4,5 x 106 g/sec cm2 for quartz, p c - U2  g/sec cm2 

for air . 2,5U 

Thus loading a half wavelength quartz crystal by a second similar 

crystal represents a load that is small. It can be assumed that such 

a load does net increase significantly the normal stress at the surface 

of the crystal. However such a load introduces another surface that 

moves in its plane and generates a shear force that acts on the film 

and increases the energy losses. These losses decrease the Q of the 

resultant system by about a factor 100C, and the resultant Q is only 

»UvJW^wHt*^ 



A8 

about 1000. The normal loading effect of the \/2 quartz then is equiva- 

lent to a resistive load of about 1/300 of the pc of quartz or to about 

100 times that of the radiation damping in air. This load resistance 

is not negligible, but it is still relatively small. Thus, a x/2 disc 

represents essentially a shear load. 

« 

Quarter Wavelength Load 

If a vibrator is exactly one quarter wavelength thick, it repre- 

sents an infinite impedance and would act like a rigid clamping for the 

surface of the film with which it is in contact. But because of the 

clamping, the crystal would have a different resonant frequency. The 

fundamental resonant frequency should be smaller by 1/3, the second 

harmonic by l/3 higher than the fundamental of the half wave single 

crystal. 

However, because of the compressibility of the film and its rela- 

tively high energy dissipation, coupling is far from perfect and the 

resulting system represents two coupled circuits as shown in Figure 20. 

The \/4.-crystal that vibrates below its resonance then represents 

only a finite impedance that is in parallel with the impedance of the 

film. 

For instance, if a x/2  quartz resonating at 500 KHz is coupled 

by a film of thickness of 1.5 10"3 cm to a \A crystal, the funda- 

mental resonance of the system should be 333 KHz if the coupling were 

infinitely strong. The measured value is 410 KHz. However, coupling 
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Figure 20.    Coupled Circuit for \A Load 
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is strong enough to ensure that the coupled systems vibrate with the 

amplitude it would exhibit if coupling were perfect. 

Because of the energy dissipation in the film and in the load, a 

~ \/1+  crystal does not represent an infinite but only a finite load of 

magnitude u)MT]| an estimate based on the experimental results shows that 

its loading impedance is much greater than the pc of the quartz. A x/4 

disc represents a normal load and a shear load, both of considerable 

magnitude., 

Temperature Activated Hysteresis' 

A temperature activated hysteresis was reported by Cook and Brecken- 

ridge  and further documented and explained by Mason.   Some general 

20 comments on hysteresis are given by Mason:  The losses in solids and 

even in liquids for very high frequencies appear to be of the hysteresis 

type; the stress strain curve is not a straight line, but a hysteresis 

loop in which the strain is a double valued function of the stress, 

This type of hysteresis can be represented by giving the elastic con- 

stants an imaginary component whose magnitude represents the ratio of 

the breadth of the hysteresis loop to its length. Since the width will 

be proportional to the length, the total area is proportional to the 

square of the maximum strain and hence the loss factor generated by 

it is independent of the amplitude. 

The loss factor of a hysteresis type loss is also independent of 

the frequency in contrast to that resulting from relaxation losses. 

Relaxation mechanisms introduce loss factors that are proportional 
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to the frequency below the resonant frequency and inversely proportional 

to the frequency above the reponant frequency. The high temperature loss 

In quartz 1B attributed to the breakaway of dlalocations from their Im- 

purity pinning points and the increase In the loss factor follows the 

equation fiQ"1 = 7 10-* e"5000/kT.19 

21 
The theory of this type of loss has bean derived by Mason. " The 

pinning points can be momentarily torn loose from the dislocation and 

energy can thus be transmitted from one loop to another. All the loops 

undergo thermal vibration with a velocity that Is determined by the 

equation l/2{x.)  m = kT where m = npb*^ Is the mass of the loop, p Is 

the density of the medium, x. the thermal velocity as the loop crosses 

the equilibrium position, -t the length, and b the magnitude of Burgers 

vector. The particle motion u can add to or conteract the thermal 

motion If It Is In or out of phase; the thermal velocities are as 

likely to be opposite to the particle velocity as to be in the same 

direction. An energy u2m Is abstracted from the crystal vibration on 

the average for each unpinned impurity atom. As long as the loop is 

pinned on the ends the vibrations are coherent; the excess energy of 

the loop is returned to the crystal vibration and no loss is experienced. 

If a pinning point is momentarily- lost, energy can feed from one loop 

to another and the vibrations are no longer coherent. In this case 

the average amount of energy that is returned to the crystal vibrations 

Is zero and energy of the amount u2m is consumed by each unpinned im- 

purity atom for each vibration. 
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The equations of motion of a dislocation in its potential well Is 

nb2 p-t 0 ^TT To td = 0 2.55 

where F = 2n T^ ^td is the restoring force and m is the mass if the dis- 

m 
22 

location as given above.   For simple harmonic motion the frequency is 

1 / *A13 \ 
v = p!^ (   )   znäi  *0 *bis order of accuracy the frequency is in- 

2_T 

P 

dependent of the loop length. To calculate the acoustic loss because 

of this source let us consider the distribution of shear strain shown 

in Figure 21. 

The particle displacement is zero at x = 0 and u at x = ^ for 

t = 0. After an interval of time dt the same shape will be present 

at a distance V dt where V is the shear velocity. The velocity u 
5 S 

that a given particle will have is considered constant over the time 

of the wave (small loss theory assumption).    The loss from one un- 

pinned vibration per interval of time dt is the loss per dislocation 

vibration multiplied by the number of vibrations or frequency times 

the time, 

2T,«    ^ 

u2mv dt = u2  (n p b2 I) ^ f ^   dt = 
13 

P 

u2bt(^|-2)tdt . 2.56 

From Boltzmann's principle the number of unpinned atoms per cm3 will 

-Il/kT 
be N0 e   ' . The volume of the disturbance is Vs dt per unit cross 

section. Hence the total loss per interval of time dt is 
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Figure 21. Model of Shear Waved used In Dislocation Energy- 
Loss Theory 
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Total input energy for the wave in the interval of time dt is 

W   = ua pc dt = ua(|ipr dt (this equation defines n).     2.58 

The energy transmission for the fi::st time interval dt takes the 

form 

W = Wo {1- [2 Wn) b V8 Nt e-U/kT]/2} dt . 2.59 

This is the first term of the expansion of the equation 

S     O 
W = W0 exp | ^  t j 

= W exp (-6t) where 6 is the decrement . 2.60 

The decrement 6 = n T] » thus we have finally 

1 = S = [ C Tl3/0 b Vs (No^ e"ü/kT V^1 n *     2-61 

19 Mason  gives the following data for quartz: 

(T^/V) = 8.8 ICT8, b = 4.5 IQ"8, Not ~ 600 .        2.62 

Impurity binding energy is 2 to 5 kilocalories per mole. Thus 

_  3 10'*  A.5 10-a 3.L 1Q5  600 -U/kT 
^ ~     1.4. 3.14 e 

7) ~ 6.3 10'^ e"U/kT for bulk quartz. 2.63 
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III. EXPERIMENTAL RESULTS 

Free Fall Measurements of a Quartz Crystal In Vacuum 

To determine the Q of the quartz crystals used in the experiments 

and to evaluate the effect of the supports on the Q of a quartz crystal, 

a quartz crystal was dropped in vacuum between two electrodes. A time 

exposure photograph of the decay of the vibration of a free falling 

quartz crystal vibrating at ^00 KHz Is shown In Figure 22. Evaluation 

of this curve leads to a loss factor of 3.0 x 10"6. The quartz crystals 

that were available at the time of the measurement had defects and small 

parts chipped off. This measurement would have to be repeated with un- 

damaged polished crystals if a more accurate determination of Intrinsic 

quartz loss in a dllatatlonal mode were desired. The method, however, 

is one of the most accurate measuring techniques possible to obtain the 

damping of a quartz crystal. Comparison of the free fall results with 

those obtained for the crystal In its mounts showed that the support 

loss was at most of the same order of magnitude as that of the quartz 

transducer in vacuum. 

Velocity Distribution and Mode Pattern of a Quartz 

Crystal Vibrating In a Thickness Mode 

For an understanding of the energy dissipation of bonded surfaces 

and surfaces in optical contact It is necessary to obtain a knowledge 

of the longitudinal and transverse velocity distribution of a quartz 

crystal in a thickness mode. It has already been shown in the theory 
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Figure 22. Time Exposure Photograph of the Decay of the Vibration of 
a 400 KHz Quartz Crystal in Free Fall 
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section that the motion of a quartz crystal that vibrates in a thickness 

mode is very complex. The quality factor Q of quartz is a complex func- 

tion of the frequency and the temperature. Figure 23 shows the Q of 

various crystals as a function of frequency at room temperature. The 

situation can be expected to be considerably more complex when the tem- 

perature is also varied, and when the system is made up of two quartz 

crystals in optical contact with each other. 

When the crystals were excited in overtones most of the measurements 

could be made in air. The limit of their Q (without taking into account 

the improvement because of the shielding effect of the rigid electrode) 

because of air damping then would be 28 x 103 n, where n is the number 

of the harmonic that has been excited. The Q valuer actually measured 

were much lower and most of the measurements shown in Figure 23 could be 

made in air. The curves show that in general the Q increases with the 

thickness of the crystal. The 400 KHz crystal, for instance, when ex- 

cited at a frequency of 70 MHz has a Q that is about 30 times as great 

as that of a 10 MHz crystal excited in its seventh overtone. This shows, 

as is already known, that most of the energy losses in a quartz crystal 

are  generated at or near its surface. This is the reason that surface 

treatment, etching, and grinding are important if high Q, high frequency 

vibrators are desired. Similar results had already been obtained by 

23 
B. Droney,  who found that for aluminum and other substances (if the 

effect of scattering is eliminated) at frequencies about 20 MHz most of 

the energy losses occur at or near the surface of the test piece. 
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Figure 23.    The Quality Factor of Various Quartz Crystals Plotted as 
a Function of Frequency 
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To see the effect of the anisotropy of quartz on the vibration 

pattern, the transverse amplitude at the edge of a longitudinally 

vibrating free crystal was recorded with a small vibration pickup. 

Figure 24 shows some measurements of the edge vibration of a free 

crystal in a thickness mode as measured with a small crystal probe. 

The angles are measured from an arbitrary point and are not referred 

to the axes of the crystal.    The curve shows a strong sensitivity of 

the edge vibration on the orientation; this fact indicates that the 

anisotropy of quartz has an important effect on the vibration, and 

that more exact theories would have to take account of it. 

To gain insight into the mode structure of quartz the electric 

field along the Y direction can be monitored a^ the crystal is driven 

by an electric field in the direction of the X axis.    For quartz, an 

electric field in the X direction excites the stresses X , Y , and Y 
x' y'    z 

as shown in Appendix A. The Y axis electric field is generated by 

the stresses Z and Y , This field does not measure the Y axis x    y 

mechanical response of the crystal, but measures the magnitude of the 

above shear deformation that accompany the complex vibration of the 

crystal; there is no direct coupling between these two sets of stresses. 

To find the Y axis, the electrodes (Figure 7 inset) were rotated until 

the voltage was a maximum; for the Z axis this voltage was a minimum. 

Figure 25 shows the frequency response of the X and Y electric field 

when the crystal is excited at and near its fundamental tMckness 

frequency. Instead of exhibiting a single thickness resonance as the 

elementary theory predicts, the crystal vibrator exhibits a whole series 
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RELATIVE AMPLITUDE  VS   RELATIVE ANGLE 

Figure 24-.    Response of the Edge Vibration of a Free Crystal 
in a Thickness Mode as Measured with a Small Crystal Probe 
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of resonances in a narrow frequency range near the frequency which the 

elementary theory would specify as the fundamental thickness resonance. 

It Is not possible to decide which of the many neighbored peaks Is the 

true thickness resonance, because at all of these resonances longitudinal 

and transverse displacement are of the same order of magnitude. The 

amplitude distribution differs considerably if the frequency is changed 

from that of one mode to that of the next one. The amplitude to which 

modes of similar frequency are excited by the electrostatic field is 

almost the same if the crystal is not loaded. The amplitudes of the 

field in the Y direction illuetrates the intensities of the shear de- 

formations that accompany each longitudinal mode. 

Photographs of the decay of the electric field along the X and Y 

axes, Figure 26, show that the decaying vibration of a quartz crystal 

that was excited in thickness resonance was made up of several modes 

which appear as the peaks in the frequency response curves of Figure 

25« The crystal has no memory built in, and at the instant of dis- 

connecting the driving voltage only reacts to its instantaneous ampli- 

tude and velocity. Its decay Is exclusively determined by these two 

quantities regardless of the frequency at which it was axcited. 

Because the modes all have a strong longitudinal component they appear 

with about the same amplitude in decaying vibration. However, when 

the quartz crystal was loaded the elastically coupled shear modes 

seemed to be suppressed; this followed from comparison of the X and 

Y axis electric field response of a free and loaded crystal that is 
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u 
shown in Figure 27. At first sight, this would indicate a nonlinear 

mode structure or a dependency of the relative shear and distortion 

on the boundary conditions. However, loading the crystal cannot have 

a great effect on the internal amplitude distribution. It will still 

take many hundred refelectiohs of the various wave trainä until their 

decay becomes noticeable. Because coupling between shear and dilata- 

tion is always strong in solids it is unlikely that the slight absorp- 

tion at the boundary will change the equilibrium between shear and 

dilatation to any great extent. A second explanation seems to be more 

likely: If a crystal is excited in a mode for which the transverse 

displacements are significant, loading it with a film will reduce its 

amplitude considerably. The observer will believe that the mass load 

effects changed the resonant frequency, and will retune the crystal to 

the resonant frequency of an adjacent mode whose transverse component 

is smaller and the vibration amplitude will be great again. This did 

not correct for the load but tuned to a different mode of vibration. 

If, on the other hand, the initial mode was one of small transverse 

motion the film will have little effect on the vibration amplitude» 

Liquid Drops 

When a drop of fluid was placed on the flat surface of a disc 

shaped quartz crystal vibrating in a thickness mode, the decay time 

of the crystal decreased considerably. The attenuating effect of the 

drop was much larger than would be expected from the bulk loss factor 

of the liquid. The Interaction of the liquid drop and the crystal 
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produced a complicated response that depended on the drop volume, 

configuration, and surface contact area as well as the material In the 

drop. Surface tension phenomena and surface viscosity have been shown 

to exhibit a strong relaxation effect at higher frequencies which would 

Increase attenuation. That the surface tension was not the cause of 

the Increased damping In the fluids Investigated during this study was 

shown by Increasing the voluiie of a drop while keeping the contact area 

with the crystal the same. The decay time was fo^nd  to be unaffected 

by this change. Figure 28a illustrates the variability of liquid drop 

measurements. The damping is seen to scatter by as much as a factor of 

3 between different series of measurements. However, the results ob- 

tained for drops from various liquids differ by far more. Figure 28b 

illustrates results for different liquids. Detailed investigations 

showed that the area of contact between the liquid and crystal was the 

major variable associated with the added loss to the system. 

The high absorption of water drops and its dependence on the con- 

tact area and not on the surface area of the drop was surprising. The 

results obtained during later tests showed that the vibrating quartz 

crystal excites shear waves at the contact surface. These waves decay 

over a distance that Is an order of magnitude smaller than the thick- 

ness of the drop. Such shear waves cannot be excited at the free sur- 

face of the drop. This result seems to bear out Klemms prediction 

that the surface layer of free water would have a viscosity consider- 

ably greater (according to Klemm greater by a factor 10*} than the 

regular viscosity of water. 
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DISTILLED WATER    500kHz 
CODE 

RUN#  

2  
3  

4  
5  

500 KHz 

VISCOSITY 

UTILITY OIL ~I20 
DISTILLED WATER 1.0 
OOWSILICONEOIL       50 
G.E. SILICONE OIL    ~l 
BENZENE 0.6 
CONTACT AREA  (RELATIVE) 
FOR DISTILLED WATER 
(CONTACT AREA FOR ONE 
0ROP~O.32cm2) 

(D) 

12     3     4       5 
NQ OF DROPS 

Figure 28.    Attenuation Measurements of Small Volumes of Various 
Liquids Placed on the Surface of a Quartz Vibrator    (a)  Change in the 
System Loss Factor Plotted as a function of the Number of Drops 
(b)  Change in the System Loss Factor for Various Liquids Plotted as a 
Function of the Number of Drops 
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Free Films 

Free films were generated by evaporating the filui material onto a 

free surface of a single crystal. Figure 29 shows the film loss factor 

plotted vs film thickness of a free glycerin film and a free petroleum 

jelly film plotted cs a function of film thickness. When these curves 

were measured the energy losses were assumed to be due to a relaxation 

phenomena. However, as the later results showed, the loss was due to 

shear waves set up between the two surfaces of the film. Energy losses 

due to the shear waves would be proportional to the surface area of the 

film. The bell shape of th3 curves is simply a consequence of the method 

of plotting the data and not of the physical background of the phenomenon. 

The ordinate represents the film loss factor (see Eq. 2,6)  which refers 

to the energy loss of the volume of the film. Equation 2.7 shows that 

this volume loss factor is approximately equal to the increase of the 

loss factor of the system divided by the film thickness d. 

The curves shown in Figure 30 are more proper. They represent the 

film losses per unit contact area. The losses caused by the film are 

negligible when the film is thin. They increase to a maximum when the 

film attains the thickness of a quarter of the shear wavelength, and then 

change little as the film thickness is increased further (see Theory 

Section). However, the plot of the data in Figure 29 is valuable from 

the point of experimental evaluation. The peak is sharp regardless 

of the viscosity; and the maximum which occurs at a wave number that 

is given by 
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2.8r 
500 kHz 

PETROLEUM JELLY 

FILM THICKNESS (cmxIO3) 

Figure 29. Film Loss Factor of a Free Glycerin Film and a 
Free Petroleum Jelly Film Plotted as a Function of the Film 
Thickness 
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PETROLEUM JELLY 

FILM THICKNESS (cmxIO3) 

Figure 30.    Change in the System Loss Factor for a Free Film 
of Glycerin and a Free Film of Petroleum Jelly Plotted as a 
Function of the Film Thickness 
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the thickness for which the peak occurs, measures the viscosity of the 

fluid. Thus, such measurements can be used to determine the viscosity 

of fluids in a wide frequency range. Data on the change of viscosity 

with frequency are not available. Viscosity measurements would best 

be performed with crystals vibrating in a shear mode. The height of 

the peak would determine the viscosity, so that a knowledge of the film 

thickness would be unnecessary. 

The aata for glycerin lead to a viscosity of 650 centistokes at 

500 KHz. The value listed in the AIP Handbook is about 1.100  centi- 

stokes for pure glycerin at room temperature. However, glycerin is 

hygroscopic and its viscosity is a function of the water content. The 

viscosity of the glycerin sample was measured with a Brookfield viscome- 

ter and found to be 550 centistokes at 200C. This indicates about a 5% 

water content. The measurements on glycerin were taken in a vacuum 

so that the water content was probably less than 5$, and the measured 

value of viscosity should have been between 500 and 1200 centistokes. 

The measured value of 650 centistokes would indicate a water content 

of about /tf,.    The height of the peak indicates that about 8/10 of the 

vibrational energy of the longitudinally excited crystals was shear 

energy (see Theory Section).  The solid vaseline has a shear rigidity 

and is viscous in addition. The measurements lead to a viscosity for 

vaseline at 700F of about 3050 centistokes. 
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The free film measurements shown in Figure 31 for sugar solutions 

show an increase of the loss factor with viscosity that is somewhat less 

than the square root relationship predicted by Eq. 2.15. Such solutions 

are likely to exhibit non-Newtonian behavior at high frequencies, the 

(dynamic) viscosity being smaller than the (static) viscosity as the 

sugar concentration becomes high. 

Loaded Films (between two surfaces) 

The film was generated between the contact surfaces of two crystals 

or a crystal and a metal disc; the second crystal or metal disc having a 

thickness of either \/A or x/2. Figure 32 shows the loss factor of 

various liquids as a function of the thickness of the liquid between 

two \/2  crystals as the distance between the crystals was decreased. For 

these particular liquids the loss factor of the system decreased slightly 

as the sample thickness was increased. 

A free film of water increased the loss factor of a single quartz 

crystal to 2 x 10"5 (see Figure 31). Loading the film even with such 

a light load as a X/2 crystal increased the damping of a water film by 

a factor of about 50. For a frequency of 500 KHz, k is about 2 x 10A 

for water and for a film that is 2.5 x 10~A  cm thick, such a film al- 

ready acts as if it were infinitely thick for shear waves. If viscous 

forces were the only forces present, a further increase in the film 

thickness should not affect the damping. But the curves show that for 

water, benzene, and various silicone oils losses decrease by a factor 

of two to four as the film thickness is increased from 2.5 x 10~3 to 

2.5 x lO"2 cm. 
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Figure 31.  Change in the System Loss Factor for Free Films 
of a Sugar Solution Plotted as a Function of the Viscosity of 
the Solution 
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Figure 33 shows the loss of a glycerin film under various loading 

conditions such as a free film, a film loaded with ;1 half a wavelength 

thickness disc and a film loaded with a quarter wavelength thickness 

disc. The quarter wavelength loaded system resonated at 410 KHz. The 

surfaces in contact with each other were flat to the order of a few 

light fringes and when coupled to the crystal the loaded composite 

system behaved like a simple lumped system. 

Glycerin is a highly viscous fluid. When a thin film is loaded 

with a X/2 quartz, the difference of the transverse velocities of two 

contact surfaces is doubled. The system loss factor should therefore 

be increased by a factor of 2. The measurements indicate that the 

loss factor of glycerin is increased by this loading by a factor of 

about eight. When the film is loaded with a k/A-  disc, the losses 

would be expected to increase further. The measurements indicate an 

increase of about 4,0 compared to the unloaded films. For glycerin the 

loss factor for a \/2 load increased with the film thickness, in con- 

trast to the results obtained for other fluids as shown in Figure 32. 

Glycerin has a high bulk viscosity that increases the damping 

by a factor of about two at 260C over that expected for the shear 

viscosity.   Using Litovitz' value of a = 18.4, (cm-1 j, a = cu7L/2C, 

and A71s = 7).^ M^/Hj. we get AT) =1.4-5 10~3 for a film thickness of 

1.5 x 10  cm. The change in the system loss factor is proportional 

to the volume of the film for a volume type loss (see Eq. 2,7), thus 

the change in the system loss factor will increase as the film 



* ► 

76 

IO-V 

< 

i 
V) 

10" 

: -O-O-O-O- X/4 LOAD 

■ 

Xk/2 LOAD 

- 

■ D        FREE FILM 

nA^U           D 

- 

/ 

i 1                                  500 kHz 
1 

io- lO"5 

FILM THICKNESS (cm) 
10 -2 

Figure 33. Change in the System Loss Factor for a Glycerin Film with 
Various Mechanical Loads Plotted as a Function of the Film Thickness 



www 

77 

thickness Increases. However, for most liquids the Increase in loss 

because of sandwiching a film is even greater than would be expected 

on the basis of the bulk viscosity. 

There seems to be a second possibility to generate losses. The 

normal components of the surface stress are coupled because of the 

dilatatlonal pressure field in the film. Surface dislocations give 

rise to microscopic scattering centers that generate near fields. 

These near fields interact, the interaction increasing for decreasing 

film thickness. 

Figure 3A  shows the result of altering an aqueous solution of sugar 

(sucrose) to obtain a range of viscosities. The change in surface ten- 

sion and density is also given. These readings were taken for a fixed 

film thickness of 1.5 x 10~3 cm with a \/2  and \/A load as the per- 

centage by weight of sugar was changed. The losses observed here were 

similar to those of a sandwiched glycerin film. 

A x/2 load is in resonance and represents a small normal loading 

(see Theory section). For a thickess of \/2, the loading crystal is 

equivalent to a resistance of 

7) «« M « T) 2n • ^rp • d p - 2 x 106 T] p ^ 400 p grams/sec cm2   , 

where T] = 2 x lü~4 has been assumed as the loss factor of a quartz 

crystal with a thick unloaded film; then, loading the film is equivalent 

to introducing a resistive load of about 15 times the wave impedance 

of air. Loading even by a \/Z  crystal will increase the film losses 

-'/■»^»....ij*, 
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oonBiderably because of the increase of the surface losses with loading 

as has already been pointed out in connection with Figure 32. 

Furthermore, the loading crystal vibrates in antiphase to the ex- 

cited crystal and increases the relative shear motion between the two 

surfaces of the film.    If the crystals were Isotropie, loading would 

increase the loss factor of the system by an additional factor of two; 

it would double the relative transverse velocity, thus increasing the 

energy loss by a factor of four, but would also increase the energy of 

the system by a factor of two.    A \/4 load acts like a rigid clamping 

(see Theory section).    The quartz crystal then is heavily loaded, and 

the mass impedance of the film is negligible compared to that of the 

\/U load.    The loss factor then does not depend on the film thickness. 

Figure 35 shows the data for a methyl alcohol - H20 solution which 

gave a surface tension range of 70 to 20 dynes/cm.    The load was a disc 

and the film thickness was 1.5 x 10~3 cm.    Two different crystals were 

used.    The ^00 KHz crystal was optically polished, the 500 KHz crystal 

was not polished.    These measurements also indicate that a surface ef- 

fect must be present.    When the surface tension is high, both crystals 

lead to the same result.    But if the surface tension is small,  the 

rough surface crystal (not polished)  has the smaller loss.    The shear 

stress is responsible for much of the loss, and as the shear wavelength 

is short (~ 30 pj, coupling between film and surface will depend on 

the microscopic structure of the surface.    For an optically flat sur- 

face, coupling seems to be good and the film losses go up.    For a 
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ground surface, the surface tension is not enough to drag the water into 

the surface cracks and surface dislocations because of the trapped air 

pockets. Coupling between film and crystal surface may therefore be ex- 

pected to be disturbed by microscopic and rubmicroscopic air spaces. 

As the surface tension is increased the air spaces are partially elimi- 

nated because of the better wetting and the losses go up. The above is 

offered as an explanation; other factors may be involved which would 

lead to a different explanation. 

All the preceding measurements were taken with the relative posi- 

tions of the driving crystal and the loading crystal or disc fixed. A 

series of measurements were taken for a given film thickness as the 

X/2 loading crystal was rotated about its axis and the bottom \/2 

crystal was held stationary. Figure 36 represents the results of these 

measurements; they show that the coupling loss may be changed by a fac- 

tor of ten for this series of arbitrary rotations of the top crystal. 

A detailed series of measurements with a precision arrangement to hold 

and also rotate the crystals would undoubtedly lead to a larger varia- 

tion. For the measurements shown in Figv re 36 k d was about 30. The 

shear wave that is generated at the surface of the film is completely 

damped out before it reaches the other surface. 

The coupling losses described here lead to energy losses large 

in comparison to the intrinsic losses of the quartz crystals or the^ 

losses of the materials used for the \/2 or \/U loads. This was the 

situation that led to the investigation of coupling losses. 
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As far as the standard pulse echo technique Is concerned, the 

situation Is usually unencumbered by the previously described compli- 

cations. The specimens are relatively long and the mass of the specimen 

large in comparison to that of the bond so that the attenuation in the 

specimen is large in comparison to the dissipation of energy by the 

bonding. If the increase in the loss factor by the bonding of two 

\/2 quartz crystals is ^T); 2TT AT] is the relative energy loss per cycle, 

i.e. per reflection. Such a bond would reduce the amplitude of a pulse 

by a factor e"  ' ~ (1 - 2TT hT\)  which for the usual case is small. 

It is only when the energy dissipation of the specimen is small and 

the energy of the specimen vibration also relatively small that bonding 

loss considerations become important. 

Optical Contact 

Figure 37 shows the variation of TL  of 10 MHz quartz crystals as 

tho coupling film thickness is decreased. The right-hand curve is that 

of a single, optically polished, 0.95 cm diameter, X-cut quartz crys- 

tal.. The left-hand curve is that of two 10 MHz crystals in optical con- 

tact. The set of curves between these two represent the measurements 

taken for two crystals coupled by a water film as the thickness of 

the film is varied from about 2.5 x 10'5 to 2.5 x 10"3 cm; the highest 

damping was noted for a film of about 2.5 x 10~5 cm. The transverse 

velocity gradient across the film increases and the losses increase 

correspondingly (see Figure 11). For very thin films the transverse 

motion of the film surfaces are tightly coupled and the behavior of 

the film approaches that of optical contact. 
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Quartz transducers can be placed in optical contact with polished 

crystalline surfaces.    Figure 38 shows data obtained for commercial 

glass and also for fused quartz.    The energy dissipation of glass is 

seen to be relatively independent of temperature and frequency.    The 

fused quartz data show a low temperature relaxation.    These two types 

of loss are characteristic of silica; a third type,  temperature acti- 

vated hysteresis, will be shown later. 

To investigate optical contact losses measurements were taken 

using optically polished crystalline quartz transducers     Optically 

polished quartz crystals of frequency 10 MHz or greater could be easily 

placed in optical contact.    The data represented in Figures 33 through 

4.9 were taken as a function of frequency as the temperature was slowly 

varied.    For instance, for a temperature of 900K,  the crystals were 

measured at 30 MHz,  60 MHz,  70 MHz,  etc.    Usually the temperature would 

vary several degrees during the measurements and an average value would 

be chosen to represent the series of measurements plotted in a curve. 

Due to the large number of temperature points,   the data were 

plotted initially as loss factor vs temperature for each resonant fre- 

cuency; in the perspective format the same procedure was followed. 

In viewing the composite graphs it must be remembered that as far as 

a given set of data for a particular measurement is concerned,  each 

curve would run from left to right angles to  the given curves.    Thus, 

the jumps between frequency curves cannoJ: be attributed to changes 

in the system between different groups of measurements.    The data for 

^MmmamttatKmwam^mmtmammmi 
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10 MHz have been left out of these graphs as it could not be measured 

with the same electronic components. 

Figure 39 shows the loss factor of two single 10 MHz X-cut, 

quartz crystals plotted as a function of temperature and frequency. 

Both crystals show a small temperature activated hysteresis which fol- 

lows the general form of T). = 1.0 x 10~A  exp(-l600/2T) for frequencies 

up to about 10 MHz. 

Figure 4.0 shows the loss due to two 10 MHz crystals in optical 

contact (abbreviated as 10X-10X;, compared to the preceding figures, 

a loss factor scale has been increased by a factor of 5. For fre- 

quencies less than 150 MHz the loss factor was approximately T] = 1,6 

x 10"3 exp [-2000/2T]. Bond breakage was effectively eliminated by 

exciting the system during heating and cooling cycles. A repetition 

of the measurements at the higher temperatures lead to a somewhat 

different result because of the variability of the crystal-crystal 

interaction. However, the fundamental shape of the curves was still 

the same. 

Figure 41 shows a similar measurement when a 10 MHz X-cut crystal 

was placed in contact to a 20 MHz X-cut crystal (abbreviated as 

10X-20X^. The frequency curves are of interest as they exhibit 

coupled circuit behavior. The 10 MHz coupled crystal system resonated 

at multiples of the individual crystal frequency and also at the 

frequency corresponding to the total thickness. 
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Figure ,39.    Loss Factor of Single 10 MHz X-cut Quartz Crystals 
Plotted as a Function of Temperature and Frequency 
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Figure ^O.    Loss Factor of Two 10 MHz X-cut Quartz Crystals in 
Optical Contact Plotted as a Function of Temperature and Frequency 
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Figure 41«    Loss Factor of 10 MHz X-cut Quartz Crystal in Optical 
Contact with a 20 MHz X-cut Quartz Crystal Plotted as a Function of 
Temperature and Frequency 
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For crys'-J-s of unequal fundamental frequency,  the crystals inter- 

acted as a composite and as loaded individual crystals as follows from 

Figure 42.    The behavior of the coupled system can be explained by 

the superposition of modes whose frequencies are that of the coupled 

composite,  that of a frequency shifted 10 MHz  crystal radiating into a 

quarter wavelength sample,  and a 20 MHz crystal not frequency shifted 

and radiating into a multiple half wavelength sample-    The results show 

that optical contact losses are small at high frequencies and low tem- 

peratures.  Because of their high acoustic transmission the optically 

flat contact surfaces are particularly useful at the ultra high fre- 

quencies where bonding problems are critical. 

Figure 4.3 shows a contour representation of the data of Figures 

O and U.    The general characteristic of the 10X-10X and the 10X-20X 

crystals in optical contact is that of a hysteresis  (independent of 

frequency]   for the frequency range of 20 MHz  to about 100 MHz. 

The Effect of Crystal Alignment en Contact Losses 

To determine the effect of crystal alignment on the contact losses, 

a series of relative measurements were made.     The aligned coupled 

crystals had a broad response between 25 and 40 MHz}  they did not 

vibrate at many of the higher frequencies where the nonaligned crystals 

previously resonated.     The aligned crystals in optical contact were a 

completely new and different system with a different set of resonant 

modes.    It was observed that a small frequency shift could induce a 

large change in the loss factor.    As this coupled system exhibited a 
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new set of characteristics, the correlation between these measurements 

and those previously obtained was poor. 

The measureincats showed that testing the effect of the alignment 

or misalignment of the axes of two crystals in contact on the damping 

is difficult and would require special equipment such as very stable 

oscillators and means of measuring the vibration patterns of the quartz 

vibrators. 

The Effect of Different Loading on Contact Losses 

If an AC-cut 15 MHz quartz crystal and an X-cut 15 MHz quartz 

crystal were placed in optical contact with each other,  the loss in- 

creased in some cases an order of magnitude.    Figures LA and 4-5 show 

experimental results.    The 15 MHz AC-cut crystal showed temperature 

activated hysteresis in its fundamental mode of vibration, and the 

loss factor was given by Tl,s = 1.2 10"2 exp[-1700/2T].    The 15 MHz X-cut 

crystal showed limited temperature activated hysteresis in its funda- 

mental mode, but exhibited greater damping in the 100 MHz region; 

\,^ - 3.3 lO"2  exp  [-2200/2T].    The coupled (15 AC - 15X),    Figure 45, 

system exhibited strong temperature activated for the lower frequency 

modes 7),   =4.5 IG'2 exp [-2100/2T], 

Carrying the mismatch one step further, an 15 MHz AC-cut crystal 

was placed in contact with a 30 MHz X-cut crystal.     The results are 

represented in Figure 4.6.    For the first three modes the loss factor 

was of the form T^ = 3.1 lO-3 exp[-1300/2T] up to a temperature of 

about 23Ü0K. 
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Figure 44. Loss Factor of a 15 MHz AC-cut Quartz Crystal and a 15 MHz 
X-cut Quartz Crystal Plotted as a Function of Temperature and Frequency 
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Figure 4-5.    Loss Factor of a 15 MHz AC-cut Quartz Crystal in Optical 
Contact with a 15 MHz X-cut Quartz Crystal. Plotted as a Function of 
Temperature and Frequency 
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Figure 4-6.    Loss Factor of a 15 MHz AC-cut Quartz Crystal in Optical 
Contact with a 30 MHz X-cut Quartz Crystal Plotted as a Function of 
Temperature and Frequency 
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The Effect of Etching on Optical Contact Losses 

The surface of quartz can be altered by HF acid etching. Figure 

47 shows that the temperature activated hysteresis of a single free 

crystal had been largely removed by having etched the crystal; 

as a consequence of the etching the losses increased considerably at 

the lower temperaxures. To substantiate the above findings, two new 

10 MHz X-cut quartz crystals \vere measured in the following three con- 

ditions:  (1) the single crystals, (2j the single crystals after 

etching them, (3) the etched crystals placed in optical contact. Figures 

48 and 49 show the results; the crystals in optical contact system are 

now tightly coupled since they uo not resonate at multiples of the 

crystal frequency. Fewer temperature points were taken as only the 

general trends and characteristics were of interest now. The single 

crystals showed again a slight temperature activated hysteresis, etch- 

ing eliminated much of the temperature activated hysteresis but in- 

creased the losses at low temperatures, this has bier pointed out 

in findings connected with the preceding measurements. The coupled 

crystals showed temperature activated hysteresis for lower frequency 

modes of the form T) = 5.3 10'3 exp[-2000/2T] up to about 2400Ko For 

higher temperatures 7L = 18 exp[-6000/2T]. For frequencies of 55 MHz 

and above the loss factor was greater at the lower temperatures than 

that for the two lower frequency modes. 

It is convenient to divide optical contact losses into three 

types: 
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Figure 47.    Loss Factor of 10 MHz X-cut Quartz Crystal After 
Etching in Hydrofluoric Acid. 



m*i*tm 

98 

100     30   ^ FREQUENCY mHz 

AFTER 
ETCHING 

%*    220- 

FREQUENCY mHz 

Figure -48.    Loss Factor of Two Single 10 MHz X-cut Quartz Crystals 
Before and After Etching in Hydrofluoric Acid Plotted as a Function of 
Temperature and Frequency 
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Contact, after Etching, Plotted as a Function of Temperature and 
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1. Teruperature activated hysteresis; the loss factor increases 

exponentially with the temperature. If the hysteresis is of the ideal 

type the loss factor will be frequency independent, 

2. A loss similar to that of glass for which the loss factor is 

relatively high and independent of tempprature (and of frequency). 

3. A loss similar to that of fused quartz which exhibits a relaxa- 

tion.  Combinations of these types of loss were observed but the most 

significant loss was the temperature activated hysteresis type of loss 

which was usually restricted to the first few resonant modes. 

The following is a summary of the loss for quartz and the measured 

losses observed for the different systems in optical contact with the 

abbreviations used above in this section. 

crystal arrangement T],s = const. exp[-ACT/RT] 

single 10X Ug = 1.1 lO-4 exp[-l600/RT] 

coupled 10X-10X TU, = 1.6 lO"3 expC- 2100/RT] 

single 15  AC ^ = 1.1 lO"2 exp[-l800/RT] 

single 15X TL, = 3.3 10"2 exp[-2200/RT] 

coupled 15AC-15X Tfe = 4.5 10"2 exp[-2100/RT] 

coupled 15AC-30X T),E = 3.1 10~
3 exp[-1400/RT] 

coupled (etched) 10X-10X \ =  5.3 lO"3 exp[-2200/RT] 

ACT = activation constant which according to Mason varies between 

2 and 5 kilocalories per mole; this is the binding energy of impurity 

atoms. From the work of Cook and Breckenridge, Mason derives the 

equation 
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Tl = 7 10~4 exp[-5000/RT] . 

19 
If we interpret these equations and their constants  (see Mason's 

theory of temperature activated hysteresis in Theory Section), we find 

that generally the activation constant is smaller and the leading co- 

efficient is of comparable magnitude or larger than his constants for 

bulk quartz. This appears reasonable as it indicates that there are 

more defects in the surface of quartz than in the bulk and that the 

activation of surface defects takes less energy than for those in bulk 

The surface energy of quartz, say X-face, should be in excess of 1000 

/ 2 25 
ergs/cm    and in light of the physical disruption of the crystal 

structure it appears reasonable that the binding energies of the sur~ 

face dislocations and pinning points would be less than those in bulk. 

In general the interpretation of the coupled crystals in optical 

contact would follow similar reasoning. The loss here is comparable 

or larger than that of the individual components, the contacted sur- 

faces interacting similar to a surface of dislocations which are 

pinned by the peaks of the surface irregularities. To explain the 

experimental data the activation of the hysteresis loss must be 

possible by either temperature changes or by stress for certain 

specific modes, or a combination of the two working together. This 

is seen in the data where for low frequency and temperature there is 

small loss up to a certain frequency and then the loss factor changes 

to a value several times higher.  Examples of this are the contacted 

10X-20X, the aligned 10X-10X, the etched 10X-10X, the single 15X 

crystal, and the single etched 10X crystals. 
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The rapid increase of loss with temperature noted on the contacted, 

etched 10X-10X crystals and the contacted 15AC-30X crystals followed 

the form T] = 18 exp[-6000/2T] and T\ = 31  exp[-5ÜOO/2T] respectively. 

This is similar to the form of the background loss observed in metals 

19 such as copper,  aluminum,  Mg,  etc.        An explanation either for the 

metals or the contacted quartz crystals is net evident. 

As hysteresis is a mechanical type loss a simple model can be used 

to  compare crystal contacts to velocity independent friction.     The opti- 

cal contact surface would be in many respects like  two pieces of fine 

sandpaper pressed together.    The structure of the two sheets would fit 

together in an infinite number of stable configurations.    Any relative 

motion between the two would produce a loss as work would be expended 

going through the vibration cycle.    If the sheets were subjected to 

stress patterns similar to  those experienced by the  crystals there 

would be a tendency for relative motion which would increase as the 

pressure forcing the sheets together is reduced.     Relatively high 

force would correspond to low temperature for the contacted crystals. 

Relative motion and thus loss would increase with  the number of pinning 

points torn loose during  the cycle.    After a certain number of pinning 

points have been torn loose the surfaces could move relatively un- 

restricted,   this would correspond to decreasing the pressure on  the 

sandpaper sheets to the point that they ^ould be  slid over one another» 

This model would explain the tendency for the loss  factor to increase 

to a certain value and then level off-    Each mode of vibration with 

its stress distribution would work in  conjunction with the temperature 

activation to produce the final resultant loss, 
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The model used here and the processes of the loss mechanism is 

largely speculation, but it appears that there is room for a reasonable 

explanation along these lines and there are enough variable parameters 

on hand to fit the data. Poss,ibly it is just as important to simply 

note that these losses exist and in ultrasonic measurements they should 

be avoided or eliminated if possible or their value ascertained and 

taken into account. 
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IV.    SUMMARY AND CONCLUSIONS 

Procedure and Measurements 

The original problem of this Investigation was to measure the 

acoustic properties of small specimens.    The measurements were to be 

taken by coupling the specimen to a high Q resonant vibrator,   such as 

a quartz crystal,  and then to observe the additional damping of the 

coupled system due to  the specimen.    However,   it was found that energy 

losses due to  the coupling were so large that measurements were not 

possible for small,   high Q specimens.    The main emphasis of the  study 

was then shifted to  the investigation of the characteristics of ultra- 

sonic coupling losses. 

The energy losses due to a coupling film or coupling by placing 

surfaces in optical  contact were measured as a function of such varied 

parameters as frequency,  bond thickness,  bond  composition,  mechanical 

loading,   surface conditions,  relative alignment of transducer and 

specimen,  and temperature.    The equipment used  in the measurements was 

designed so that the energy dissipation due to  the mounting of the 

quartz crystal in order to measure its damping was negligible. 

The experimental data obtained for small volumes of liquids,   free 

films,  and for loaded  films was initially puzzling:    the magnitude of 

the losses was much larger than would be expected on the basis of  the 

theory of longitudinal vibrations»    An investigation of the vibrational 

modes for a disc according to  the Aggarwal  solution indicated that  the 

resonant modes near  the fundamental thickness rescnance exhibited  shear 
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displacements at the surface of the disc which were comparable to the 

longitudinal displacement. Such radial or shear motion of the disc 

shaped vibrator leads to considerable losses when a liquid ccapling 

film is used. A liquid does not support a shear wave and the transverse 

component of the vibration in the film is rapidly damped out. 

The energy losses for a free film on the surface of a vibrator 

agree with the theory of shear losses. Still higher accuracy oould be 

obtained if a shear transducer were used with a suitable support ar- 

rangement. The viscosity of films could then be determined accurately 

as a function of frequency. 

When the film was loaded the energy dissipation increased much 

more than would be expected even when shear is taken into account. The 

vibrational modes of the system in a loaded condition are unknown, but 

even large shear motions would not account for the magnitude of the 

energy losses. 

In order to account for the energy losses it must be assumed that 

a component of the losses is due to surface imperfections such as 

microscopic surface cracks and surface dislocations, and that loading 

the crystal increases these losses. The addition of a \/2 load in- 

creased the losses for a glycerin film by approximately a factor of 

10, while a \/U load increased the losses about a factor of 4-0 rela- 

tive to that of a free glycerin film. Surface cracks and dislocations 

generate acoustic near fields and near field coupling may account for 

another part of the loss. Whereas for most of the investigated liquids 
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the loaded film measurements indicated that the energy losses were not 

directly proportional to the film thickness,  some liquids like glycerin 

have a high bulk viscosity and the losses are then found to increase 

with the film thickness. 

Further indication of surface effects were noted when the losses 

due to a coupling film on a commercially obtained "ground finish" 

transducer increased as a function of an increase in the surface ten- 

sion of the liquid.    In contrast to this,  the damping of an optically 

polished crystal was not affected by the variation of the surface ten- 

sion of the film. 

A study of the energy dissipation due to surfaces in optical con- 

tact was made.     Through variation of temperature and other relevant 

parameters a temperature activated hysteresis was observed for many 

of the measurements.    According to the theory of temperature activated 

hysteresis the loss is proportional to the number of dislocations; 

the surfaces in optical contact seemed to act like a plane of dis- 

locations.    Energy losses due to optical contact also show dependency 

on the mode of vibration. 

Suggestions for Future Research 

In order to determine more accurately the physical causes of the 

losses,  further studies would have to be made of the transverse and 

longitudinal velocity distribution of a vibrating quartz crystal. 

Surface treatment of the transducer and specimen would have to be 

rigidly controlled.    The detailed effect of mechanically loading the 
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vibrator would have to be investigated in greater detail in order to 

determine the various interacting effects. 

The transducer loss might be reduced with further preparation of 

the surface. The final polish of the crystals used in this investiga- 

tion was with one micron grit. It may be necessary to use the process 

of Smagin  to reduce surface losses. In this lengthy process the 

final surface polishing is with 0.1 micron grit. Crystals polished 

o 
in this manner are claimed to have surface damage of less than 100 A 

and to have high Q, usually in excess of 106, 

With the knowledge derived it ought now to be possible to proceed 

in a systematic manner and obtain detailed results. It was only 

through these studies, however, that the significant properties in- 

volved in the acoustical behavior of thin films, bonded surfaces, and 

surfaces in optical contact could be made apparent. Apart from de- 

riving a method to measure viscosity in a wide frequency range the 

study showed that acoustic measurements can give a considerable amount 

of information about the mechanical behavior of surfaces of solids 

which cannot be obtained by other methods. 
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APPENDIX A 

27 
Quartz Crystallographic Axes 

A cartesian coordinate system is used to designate the crystallo- 

graphic axes of quartz. Figure 50a shows a natural, right-hand, 

alpha-quartz crystal with its axes designated by X, Y, and Z. The 

X axis (electric axis) passes through a vertex of the hexagonal crys- 

tal, the Y axis (mechanical axis) is perpendicular to an edge of the 

crystal, and the Z axis (optic axis) is the principal axis of the 

crystal and completes the cartesian coordinate system determined by 

the X and Y axes. The Z axis is of the type called a "screw axis"; 

the Si02 groups occupy positions that wind themselves progressively 

about the axis. Figure 50b shows an X-cut crystal and its relation 

to the crystallographic axes. The X-cut crystal is perpendicular 

to the X axis and thus the plane of the crystal contains the Y and 

Z axes. 

27 
Quartz Structure 

Quartz is a natural piezoelectric material that is widely used 

for transducers.    The structure of quartz,  or more specifically a 

quartz,  is class 18,  trigonal holoxial.    A simple explanation of this 

structure is that of Gibbs where he starts with the hexagonal symmetry 

of ß  quartz and rotates adjacent projections of the silicon atoms 

about 3 degrees. Figure 50.    ß  quartz structure is shown because of 

its  simplicity and ease of representation.    The low symmetry of a 

quartz is typical of piezoelectric substances which must have a 
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♦Y 

— Y 

Figure 50.    Quartz  Crystallographic Axes    (a)   Natural,  Right-Hand, 
Alpha-Quartz Crystal     (bj  X-cut Crystal 
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/3 QUARTZ a QUARTZ 

STRUCTURE OF Z FACE 

STRUCTURE OF Y FACE 

SILICON  ATOMS ARE 
SHOWN,  SHADING SHOWS 
LEVEL ALONG Z  AXIS 

STRUCTURE OF X FACE 

AY 

ß QUARTZ 

Figure 51.    Crystal Lattice Structure for a and ß  Quartz 
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natural structural bias, or in other words, a non-centrosymmetric 

structure. 

The low symmetry of a quartz necessitates the tensorial notation 

to express stress, strain, Poisson ratio, and piezoelectricity. Thus, 

a general solution of the vibration problem for a quartz crystal would 

be very involved and we must work either with partial solutions or de- 

vise a simple model. The stress-strain relations are expressed by the 

set of equations: 

Xx = C11 xx "^ C12 yy + C13 zz ^ ^ yz 

Y = C12 x + C11 y + c  z - c  y 
y   12x   lwy   ,32   T^Z 

ZZ=   C13XX
+C

13   yy+C33   \ 

Yz = Cu xx - c1Ayy + c^ yz 

Z
x = +   ^^A   zx  +   ciA   Xy 

X   = + c14  zx + i fc,,-0,2)   xy 

and the piezoelectric relationships are given by the phenomenological 

equations: 

X   =    e,,   E x 1'     x 

Y = -e,,  E y 11    x 

Z   =    0 z 

Y =    e14 E z 1A    x 

Z   = - e^ Er x y 

X   = - ei 1   E    . 
y 11   y 

These equations apply directly to the X-cut crystal as its axes co- 

incide with the crystallographic axes.    A crystal driven by an E 



112 

field does not only excite the thickness mode through the X   stress 

but also excites the other modes through the Yv and Y2 stresses which 

are coupled through both  the elastic and the piezoelectric constants. 

Quartz - Poisson's Ratio 

Poisson's ratio for quartz is interesting as it gives some in- 

27 sight into the complexity of the vibration pattern.    Cady     defines 

Poisson's ratio as 0. .    = shiyskk'    Fig111'6 51 shows this ratio for X- 

cut quartz in the Y-Z plane. 

Quartz - Surface Structure 

X-ray studies of the surface structure of quartz have established 

additional characteristics.    The surface structure of quartz is dif- 

ferent than the bulk structure whether the surface is treated by 

28 29 either mechanical or chemical means.    '        Some investigators claim 

a surface poly-crystalline layer is formed by grinding and even by 

etching.        X-ray measurements      taken at the Bell Laboratories show 

that there is a relatively large amount of quartz misorientation by 

less than a minute and a smaller amount of misorientation by larger 

angles up to three or four degrees. 

Quartz - Dislocations 

Quartz in bulk has been shown to have a considerable number of 

imperfections and dislocations.    Measurements of shear crystals by 

31 > Bommel,  et al      indicated that the limiting Q was due to dislocation 

relaxations.    The following values were estimated: 
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Figure 52.    Poisson's Ratio for Quartz in the Y-Z Plane 



1U 

N dislocations/cm2 loop length (cmj 

Metal 105 to 106 u io'4 

Quartz 103 2 icr3 . 

Characteristic quartz losses are explained in  terms of dislocations, 

imperfections,  and impurities.    At low temperatures a relaxation loss 

similar to that of fused silica is observed.     This loss is attributed 

to the impurity distortion of the lattice and to a dislocation re- 

31 laxation similar to  that found in metals. Another dislocation loss 

at higher temperature is attributed to the breakaway of dislocations 

from their impurity pinning points. The theory of this loss is dis- 

cussed in the Theory Section. 
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