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The work, Helicopters: (Calculation and
Design) is published in the three following
books.

Book One - Aerodynamics;

Book Two - Vibrations and dynamic stability;

Book Three - Design.

In this second book there are discussed
certain questions of the theory of vibrations and
methods of calculation of stresses appearing
during these vibrations in the construction of a
helicopter in flight and, in particular, In the
blade of the main rotor.

Methods are given of the calculation of the
structural service life and there are olzr 7ethodz
of calculating vibrations of the helicopter, which
allow the determination of the amplitude of these
vibrations and the comparison of them with comfort
norms. For the first time in Soviet literature
there is examined the problem of combined vibra-
tions of the rotor and fuselage.

The theory of self-excited oscillations of
special type, bearing the name "ground resonance,"
is discussed in detail. Peculiarities of the
appearance of such oscillations of the helicopter
on land, during takeoff and landing and under
flight conditions are examined.

In a separate chapter there are examined
special cases(touched upon little in general
literature) of the calculation of bearings oper-
ating in specific conditions of oscillatory
motion. Here there is also discussed the theory
and method of calculation of a new type of thrust
bearing of increased load capacity and also
bearings absorbing combined loads.

The book is intended for engineers of design
offices, scientists, graduate students and
instructors of higher edicational Institution:.
It can also be useful to engineers of helicopter
manufacturers and students who are engaged In
thorough study of vibrations and dynamic
stability of helicopters. Certain sections of
the book will also be useful to the flyinf and
technical personncl of helicopter flight units.

The book contains 35 tables, 246 Illustra-
tions, and 47 references.

IX I
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PREFACE

The first book of the work, Helicopters, (Calculation and

Design), published in 1966, was devoted to aerodynamics: theory

and methods of calculation of aerodynamic properties of the main

rotor and aerodynamic design of helicopters of different configurations

on the whole.

In the first book there is included an account of the theory of

flutter of the main rotor, which-is usually attributed to

aeroelasticity - the region bordering between aerodynamics and

stability.

The second book is a logical continuation of the first and deals

with vibrations and dynamic stability of helicopters.

Questions of static stability of helicopters in principle do

not contain anything new as compared to that known in aircraft

manufacturing. Regarding vibrations and dynamic stability,

helicopters have a number of peculiarities which were designated

from the first steps of helicopters as a new type of aircraft. These

prculiarities acquired great acuity in the process, if it can be so

expressed, of the "fight for existence" of these apparatuses in the

general system of airportless aviation transport means.

An account of problems of vibrations and dynamic stability of

the helicopter starts with a description ofmethods of calculation of (
elastic vibrations of the blade of its main rotor, which Lre close

FTD-MT-24-103- 6 8 xii



in fundamental equations and methods of solution to that utilized in

the theory of flutter but have different directivity, since in the

final analysis it leads mainly to the solution of strictly a

stability problem - to the determination of varying stresses effective

in the blade, and then with the use of data or, fatigue limit of

concrete construction, to the determination of the service life, i.e.,

cervice life of the blade.

Problems of vibrations in dynamic stabi:Ity are important not

only from the point of view of reliability of the apparatuses;

ind the solution to these problems governs the service life of the

machines, and this means their economy.

In the book, in particular, there are examined contemporry

methods of calculation of elastic vibrations of the blade carrI:ed

out on high-speed ccmputers, which makes it possible to deterrine

the varying stresses acting in the blade.

Investigations of vibrations of the "ground resonance" type,

just a: the study of construction vibrations strictly comprise the

main subject of the theory oA' vibratlons of the helicopter.

The elimination of vibrations of the "rround resonance" type,

leading in the case of their appearance and development to the-

destruction of the apparatus on land and in multirotor configurations

in air, was always ore of the main problems confronting designers.

'"he question of oscillations !vibrations) of parts of helicopter

is very important, which is examined from the point of view of

!omfort for the crew and passengers. It is easy to estimate the

acuteness of this problem if one were to imagine the power or the

vihratorg' constant source - a huge main rotor oneratln- In a

grecatly alternating velocity field.

The lant chapter of the booK !s devoted to the entculatlon of
special bearings necessary in the designing of many %nts of the

helicopter and thus 's the transition to the third bcc4 - Dejin.
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In the bLok Design there will be briefly examined basic question3;

of the layout of the helicopter selection of basic parameters of

helicopters, including having wings, and also auxiliary propulsive

systems - tractor propellers or additional Jet engines. There will

be also discussed considerations about the economy of aviation

materiel, which must be considered in designing.

Eixamined in this book will also be questions' of btilancing,

controllab.lity and statility from the point of view of selection

of parameters of the control system, and also questions of desirning--

of separate units of zhe nellcopter.

The second book Vibrations and Dynamic -Stability was written

by the following: Introduction - M. L. Mill; Chapter -

A. V. Nekrasov; Chapters II and III - L. N. Grodko; Chapter. IV-

'A. A. L~eykand. 5 11 of Chapter I was written by A. V. 'Nekrasov

.joint~ly with engineer Z. Ye. Shnurov.

In preparation of the manuscript the author- received mruch- hein

from engineers F. L. Zarzhevskiya, V. M. Kostromin and 1. V. ?:urov.

In the book there are results of calculations, carried out

hY enigineerz Yu. A. !4yagkov, 0. P. flakhov, V. P. Khvov1tov,

S.'~ hevnyak-ova, N. M4. Kiseleva, L. V. Artarnonova, V. F'. :t~

N. A. Patskevich, V. I. Kiryushk'.noy and A. G. O)rlova.

Many valuaboe instructions were made by critc R. A. Whott-,!Iv.

XII

bteFinaloig peation odf theomn-M.L. il'; fo ptr pb !cto w-- a.e1

engineer with enginerZ.Ye.Snrv

InpeaainoTtemnsrp he authors: received sincer grttuetoa'.tp,

from -2-036 Xnier 1. L azhskyv..Kotr•nd .V uo.:



INTRODUCTION

As soon as there was created a sufficiently powerful and light

aircraft engine and the helicopter flew for the first time, there

appeared the first problems related to balancing, controllability

and stability of this machine. These were basically aerodynamic

problems. If one were to consider as the beginning of flights on

rotorcraft the first flights of gyroplanes Cierva during 1925-26,

then it is possible to say that the given problem was basically

solved already in first decade (192C-1936) of their development. The

type of aircraft was thus cured of "children's diseases."

However, as soon as there appeared the first series of machines

and practical exploitation of them began, more serious deficiencies

of helicopters, such as, for example, fatigue connected with

insufficient dynamic stability of certain elements of the construction

were discovered.

With wider practical application of autogiros and especially

helicoptors, which were reactivated at the end of the 1930's ahd

beginning of the 1940's in a new improved technical basis, there

appeared new dynamic problems. These include, in the first place,

oscillations and ".-ibrations of separate elements of construction

or helicopter as a whole, which are dangerous in conditions of

appearing stresses or impermissible from the point of view of the

creation of necessary comfort for the crew and passengers, and also

the problem of service life, which is the Deriod of service of

elements of nstruction, opei~ating under iilgh varying stresses. The
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last of the problems - increase in service life - takes on even

greater importance at oresent, since the depreciation and overhaul

periods of service of the helicopter, determined by the service life

of its units, Lnfluence the economics of its application as a means of

transport. The service life in turn is determined mainly by the

level of varying stresses effective in the structure, and therefore

the accuracy with which they are calculated comprises one of the

basic problems of investigation of dynamic stability of helicopters.

The tractor propeller of an aircraft operates practically in

axial flow and Just as the engine does not create in the elements of

structure any noticeable varying stresses. Only takeoff, landing

and flight under conditions of atmospheric turbulence (and on a

combat aircraft, the maneuver) create in the structure of the aircraft

considerable dynamic loads but with a relatively small (of the order

of tens and hundreds of thousands of cycles) number of loading during

the period of service of the aircraft. In this case it is possible

to indicate recurring static loads.

There is quite another character of the load in a helicopter. Its

basic force elements are loaded dynamically, and the number of

loads frequently exceeds tens of millions of cycles during thd

service period. This is explained first of all by the asymmetric

flow of the main rotor, which rotates and simultaneously moves, forward.

The blade undergoes variable aerodynamic loads due to the Change in

relative flow rate and angles of attack of its sections. All forces

and moments having effect on the blade are transmitted to the hub

and control system by the main rotor. The forces and moments.arriving

from various blades are balanced mutually with the exceptlori of

loads effective at frequencies whose ratio to the number of

revolutions of the rotor is a multiple to the number of blades. These

loads are transmitted to the fuselage and irrotational parts of

the control system by the rotor and create in them also very

noticeable varying stresses.

Thus the problem of vibrations and dynamic stability in helicopter

construction is not only considerably more extensive than in aircraft

FTD-MT-24-103-
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construction, but in a whole number of cases it does not have a

direct analogy in aircraft construction.

Understanding of the importance of problems of dynamic stability

was not achieved at once. Thus, even causes of first accidents of

autogiros in 1936-37 during which autogiros flipped in air fr a

long time were attempted to be explained by insufficient dynamic

stability. In connection with this, in particular, there were

undertaken investigations of the dynamics of the main rotor with

hinged attachment of blades with curvilineRr motion of the apparatus

(see § 2 of Chapter II, Book One). This theory subsequently found

wide application during the during the development of problems of

dynamic stability and controllability of helicopters. However, it

did not uncover the real cause of the mrntioned accidents. As it

became apparent later, the cause of them was insufficient dynamic

stability of the main rotor blades.

These prcblems are perceived literally by groping. The first

experimental autogiros and helicopters had small dimensions arid, as

a result, quite high rigidity of construction. HKowever, the first

increase in dimensions immediately encountered great difficulties.

Thus on the autogiro A-4, having a diameter of a little larger than

Its predecessor, autogiro 2EA, seric4s difficulties because of

insufficient blade tor'sional rigidity appeared. Angle of incidence

of blades in the first flight was Increased so much because of

twisting st. in that autorotation was impossible, and the flight

nearly ended in an accident.

Investigation of this phenomenon was completed by publication

of a work on the dynamic blade twisting of a rotor in flight (see

[2]) in which for the first time recommendations of the necessity

of combining the center of gravity and center of oressure were given

and considerations of the influence of the blade profile on static

stability and controllability of the apparatus were examined. This

investigation led to the fact that in the practice of "eviet

helicopter construction there were accepted curved profiles, which

provide a greater reserve of autorotation. In the layout of the blade
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a set of different profiles was used. The recommendations made in

the mentioned work were so sufficient that the first Soviet

helicopters, which had a diameter of the rotor of about 14 m, did (
not experience flutter.

Development of Soviet helicopter construction is characcerized

by greater strides than that of foreign (this permitted our designers,

who started to construct helicopters later, to develop machines

considerably exceeding those of contemporary foreign in load

capacity and dimensions). Whereas after the first successful

helicopter, Sikorsky S-51, with a rotor diameter of 14 m, built in

1947, the Americans in 1950-51 proceeded to work on a machine with a

diameter of 15.5 m (S-55), after creation of the hj94copter Mi-l with

a 14-meter rotor in 1952 we built the helicopters Mi-4 and Yak-24

with rotors 21 m in diameter. It is not surprising that with such a

jump in dimensions there was revealed a new phenomenon not

encountered earlier - on both machines with the first flight

flutter of the rotor began. We coped with this problem practically

very ralpidly, but problems of the theory of flutter for a long time

still awaited their solution.

For the first time we encountered this new phenomenon when in

April 1952 the helicopter Mi-4 was ready for the first flight. After

the beginning of acceleration the blade started arbitrarily to flan,

sagging greater and greater and threatening to touch the structure.

The testers knew that they were dealing with a new phenomenon which

no one had observed before. This was the flutter of the rotor

blades. No one knew then that this was the very rotor flutter in

whose investigation many scientists in the UFSR Pnd abroad were

erigaged. According to all data existing at that time, flutter

was not expected, since it could not appear at the number of

-otor oevolutions of 100-110 per minute, as occurred on the helicopter

MI-14 in reality, but approximately at 500 revolutions. DeT, Ive

for the appeprance of flutter was In this case the fact that great

forces developed on a rotor of such a diameter caused con:,iderablc

deformation of the cý.clic ritch control, which is equivalent to the

lowering of twisting rigidity of the blades, and also the fact that
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then for these machines a large value of the coefficient of flap

control (close to unity) was selected; in early investigations of

flutter this factor was not taken into consideration, As a result

it was not a question on the helicopter flights, since flutter

started considerably earlier than the working number of rotor

revolutions were attained.

With observation of the pattern of flutter (flapping, bend and

torsion of blades) it became clear that this phenomenon could be

eliminated only by using torques from inertial forces appearing

in the process of the moving blade sections with its flapping.

Not associating rotor flutter with the flutter of wings, where, as

has long since been known, the main importance is the mutual location

of the center of gravity, axis of rigidity and center of pressure,

but simply by establishing the counterweights at several points

along the length of the blade, which during vibrations should have

created inertial moments of opposite sign, we repeated starting

of the rotor and understood that in cur hands there is reliable

means to stop the flutter.

Thus in a short time the given problem was solved practically,

and in May of 1952 the first flights of.4he helicopter Mi.-4 were

accomplished.

At the same time flutter appeared on the helicopter Yak-24,

which had the very same hub and cyclic pitch control mechanism as

those on the helicopterMi-4, but the blade was of quite di~ferent

design (with greater flexural and twisting rigidity). However,

due to the fact that with the appearance of flutter there is decisive

importance in the rigidity of the cyclic pitch control and parameters

of the flap control, on blades of the helicopter Yak-24 flutter

appeared of the very same form and at the same revolutions as that

on heli-copter Mi-4.

Thus during several weeks there was found practical solution

for elimination of flutter which was tsed up till now. However,

the scientific theory which would permit obtainini -r ;nn wer whether
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flutter will appear or not, and even if it appears, then at what

numbers of revolutions and what form, was created by us during the

subsequent four ye~ars.

It is necessary to say that the mist complex was included in

the fact that, having finished with flucter observed on earth (with

the he-p of displacement of centering of the blade forward it was

possible to "drive" it outside the limits of the working numbers of

revolutions and even above the maximum permissible number of engine

revolutions on earth), nevertheless there was not excluded the

possibility of its appearance in flight. This led tc unpleasant

consequences. In January of 1953 a helicopter Mi-4 had a flight

accident whose causes for almost three years were not sufficiently

and convincingly explained. During investigation traces of the

impact of blades against the cockpit were revealed. This was not

observed in any other cases. It is necessary to note that with

normal flapping motion the blade cannot touch the cabin, since for

this it is necessary that in air the lower limiters of overhang of it

were brought down.

It is possible to imagine how energetically we had to continue

to look for the cause of this event, if one were to remember that

after it there were stopped neither the flights nor the serial

production of these machines.

During 1954 many pilots observed in flight an unusual Phenomenon,

which received the name "Kalibernyy effect" (surname of the pilot

who first noticed it). Kalibernyy determined that in conditions of

motor reduction, approximately at an angle of setting of the bladenl

of 60-70, the blades begin to flap away from the cone of rotation

described by them. After a regrouping of the blades having a

somewhat different transverse centering this phenomenon was ceased.

Buut once, after two years during a checking in flbioht of' a net or

blades for the absence of the Kaliber'nyy effect, I.e., with

fulfillment in fllcht of motor reduction with the rt•.i, rtrirl or"
(,-7 0 01 this phenomenon appeared in such a degree wher,! th,. f'J •nrriv

of the blades were so strong that in the machine forced 1.htrmr-
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near land with transition to other conditions the flapping of the

blades ceased, and the machine behaved normally. With inspection

of the helicopter after the flight there were revealed broken

Sof the blades (they are thus called the movable connectionsfixings no

on the slit trailing edge of the blade) which indicated bending of

the blade in the plane of rotation. Everything remaining was in good

working order. It was decided to investigate in detail this

helicopter with the same set of blades. Flight tests were conducted

in order to repeat this phenomenon and study it.

Measurements of the blades showed that their centering appeared

to be approximately 1% of the chord inore to the rear than it was

when the blades were manufactured a': the plant. And this is

explicable, as the blades were covered with plywood. The center of

gravity of the plywood is approximately on half of the chord.

Therefore, with swelling apd loading of it from moisture, the center

of gravity of whole blade is displaced to its trailing edge. The

case with this helicopter occurred during a thaw when the humidity of

the air was high.

During these tests it was also finally established that the

charactor of the flappirg motion of blades and motion of the

control stick in flight on conditions of "Kalibernyy effect" are

absolutely analogous to the flapping motion and motion of the stick,

which were recorded on land during tests when the blades were

subjected to flutter by means of artificially cr!-,ted rear centering.

This complex means permitted setting that phenomenon appearing

in flifht identical with that which was noted on land. Thus it was

established that the "Kalibernyy effect" Is nothing else but the

beginning of flutter in flight. On the basis of this conclusion and

it, wns conjectured that the unexplained earlier fligtt accident with

blows of blades against the cockpit was also nothing else but the

flutter of blades in flight appearing at revolutions of the rotor,

at which on land it did not appear.
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With flutter vibrations of a hinged sealed blade, in contrast

to vibrations of a wing of an aircraft are similar to a flapping

motion whose amplitude increases until the blade hits against the

limiters of overhang and then knocking them against cabin.

The fact that this phenomenon was not discovered for a long

time is explained by the erroneous assumption resulting from model

testing that if flutter on land is eliminated then in air with forward

motion it is not able tc appear. But practice and then a more

strictly set experiment on the helicopter, and, finally, theory

showed that there are conditions of flight at which flutter during

rotor revolutions can occur in flight although it does not appear

on land.

It is necessary to say that as was established in the course

of investigations, the phenomenon of flutter appeared on helicopters

earlier. Even in 1949 on the helicopter Mi-l to increase the stall

reserve there was designed and built a main rotor with wider blades.

This rotor in flight caused shaking which was never possible to

eliminate. When there was developed the theory of flutter and all

peculiarities of this phenomenon were explained, it became possible

not only to explain the cause of shaking on the Mi-l helicopter with

wide blades, induced by proximity of conditions to flutter, but

also without a single difficulty to design and construct even in

1956 a 35-meter rotor for helicopters Mi-6 and Mi-10. Perf-ction of

this rotor is confirmed by the fact that in a week after first

flight the new heavy helicopter Mi-6 could accomplish fl'1s.ht for

training for participation in an air show on an aviation holiday In

Tushino. There was no longer any unpleasant phenomena connected

with flutter on these machines neither then nor fat'ýr. -uch i tJe

history of the problem of flutter.

No less important is the problem of the determin;ation of varyvnv

atresses In blades, which is solved by means of connI1l'ratlon of

their forced vibrations.
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During the first decade of their development main rotors of

helicopters were designed actually without preliminary calculation

of varying stresses which appear in flight. At that time this

*A, calculation was laborious and inaccurate, and not infrequently it

was finished only after the roll out of the machine onto the airfield.

Only the development of methods of calculation of varying stresses

allowing the use of high-speed digital computers permitted the

designing of blades with a conscious selection of the distribution

of their rigidities and masses in such a way so as to avoid dangerous

resonances, to lower the level of stresses and to provide long

service life and reliability of the blades.

It is necessary to note that a refinement of the method of

design of the blade for stability caused further deepening and

refinement of the aerodynamic theory. As was already shown in the

first book, refinement of calculation of flying data did not create

a great necessity in the development of a complex and laborious (for

calculations) vortex theory of the main rotor. However, only the

vortex theory permits determining the irregularity of the field of

induced velocities causing variable loads on the blade with

frequencies exciting flexural vibrations of the blades at the second,

third and higher tones. Therefore, only the vortex theory can give

in the calculation of stresses results close to those which are

observed in reality.

Another no less important problem was vibrations. This

problem was always one of the most difficult in the development of

rotorcraft. Dozens of constructions in the IjSSR and abroad,

interesting in design and flying-tactical data, did nct appear because

of the high level of vibrations.

Or aircraft there are not such powerful sources nf excitation

of vibrations as there are on helicopters. Furthermore, the engines

and propellers, which are on aircraft the basic excitcrs of vibrations,

can be sufficiently well insolated from the structure with the help

ok special shock absorption. Resonances with high frvquenclen from
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these exciters enough can be easily eliminated by means of

comparatively small changes ir. design. On the helicopter, besides

the fact that the actual disturbing forces from rotors are

considerably greater than those on aircraft, their frequencies from

the slowly revolving rotor are rather low and at coinclderne with

natural frequencies of vibrations of the fuselage, engine, wing

or empennage there appear resonances, which lead to considerable

vibrations with amplitude movenents attaining on the steady-state

operations of flight quantities of the order of 0.3-0.4 mm and on

short-term conditions before landing of tMe helicopter, even 1-2 mm..

in the crew's cabin.

To build up resonances with fundamental tones of natural

oscillations of the fuselage by the change in rigidity of design on

the constructed machine frequently appears practically impossible,

since this is equivalent to total alteration of the fuselage.

Therefore, it is important to be able correctly to estimate the

frequencies of natural oscillations of the fuselage and to calculate

the amplitude of vibrations in the process of designing of the

machine.

The basic attention in combatting vibrations is given to the

lowering of vLlues of variable forces arriving on the fuselage from

the rotor. These forces are caused by vibrations of the blades. In

turn vibrationas of the blades can be larger or smaller depending upon

the proximity of their natural frequencies of sourc¢•s of external

excitation.

In all cases the proximity to resonance causes an increase in

stresses in the blades. But if these oscillations occur with a

harmonic frequency of z + 1 or - 1 for osctllation3 in the plane

of rotation of the rotor or harmonic frequency z• for oscillations In

the plane of the stroke (where z. is the number or hlad,,.:), then the

forces a:e added and trans'nitted through hinges to the huh :ind

through it to the fuselage, thus causing its o3lýIllatlon:;.
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The most unpleasant vertical vibrations for a person to a

considerable degree are caused by forces effective in the plane of

rotation of the rotor, since these forces, being applied high above

the center of gravity of the helicopter, create considerable moments

exciting oscillations of the fuselage bend. It is natural that the

greatest amplitudes of vibrations (antinode) are reached on the ends

of fuselage and, consequently, also in the cockpit.

it appears that with Cetermination of frequencies of natural

oscillations of blades of the helicopter it is necessary to consider

the fact that the rotor hub during vibrations doee not remain

fixed, since it is fastened on an elastic fuselage. Thus with

determination of vibrations the helicopter should be examined as a

zingle dynamic system w~th elastic blades hinged suspended to the

hub, which is fastened to the elastic fuselage.

It is obvious that such a calculation scheme could appear and

te feasible for consideration only recently. As far as we know, this

book gives for the first time an account of the method of calculation

of vibrations of a helicopter during its designing.

Further in the book self-excited oscillations of a helicopter,

are examined, which usually bear the name "ground resonance."

For the first time designers encountered the phenomenon of

Fround resonarnce more than 30 years ago when on one of the first

.Iovlet autogiros A-6 (design of V. A. Kuznetsov) there were used

wheels with low-preszure tires appearing at that time. Ztrut-

! iving air-oil nhock absorption were removed from the helicopter.-

1.h the first starting unexpected oscillations appeared. The

.e.7copter rocked from wheel to wheel with ever Increasing amfnlitudes

.,itil it started to jump, detaching the wheels from land. Takeoff

was completed with a crash.

Owlng te the fact that these tests were photographed by a movie

camera it was possible to estaftlish that the blades accomplished

,rowing c-cia'1~nS around the vertical hir~es. These cscillations,
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occurring in the field of centrifugal forces, caused the periodic

displacement of the center of gravity of the whole lift system

relative to the center of the hub and thus excited oscillations of

the helicopter standing on land. It is clear that'if the frequency

of displacements of the center of gravity of the rotor coincides

with the frequency of natural oscillations of the helicopter on

pneumatic tires, then such oscillations can grow. Here one would

.think that the physical picture of the phenomenon is clear. The

energy which supplied these growing oscillations was either the

energy of the engine rotating the rotor or when the engine is included,

the kinetic energy of the rotating rotor.

However, for development of the theory of ground resonance and

study of its new manifestations, possibly in new fundamentally

different plans and'designs of helicopters, numerous investigations

were required, which continue even now.

The first theoretical works clearing up the nature of natural

oscillations of the ""round resonance" type were carried out in 1936

by I. P. Bratukhin and B. Ya. Zherebtsov. Results of investigations

conducted by them permitted the elimination, in particular, of! ground

resonance on the largest autogiro ever built in the world..the; A-15,

with a rotor with a diameter of 18 m, created in 1936 by the design

of V. A. Kuznetsov and M. L. Mil'. In the construction of the

hub of this autogiro there were used springs built into the limiters

of blade vibrations around the vertical hinge. The springs change

the natural frequency of oscillations of the blades in the pla~ne of

rotatiop, and thus ground resonance was eliminated.

There are no doubts in the fact that the phenomenon of ground

resonance was at that time well-known and somehow studied in the

West, inasmuch as already the first successful autogiros of Cierva,

for example, the S-19, had elastic couplings (shock absorbers)

included in the blades through frictional dampers.

However, many designers during a certain time period continued

to create autogiros without dampers in vertical hinges. A zample of
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such a machine was the autogiro A-7, created in 1937 by N. I. Kamov.
He successfully flew it wilthout having dampers on the rotor hub. The

secret of successful flights consisted in the fact that this was the

first machine with a tricycle landing gear providing oractically

vertical location of the axis of the main rotor during acceleration of

it before takeoff and with the stop after landing. This circumstance

conditioned the small magnitudes of initial disturbance due to deviation

of blades in the plane of rotation, inasmuch as the initial deviations

of the blades are caused by the projection of gravity on the plane

of rotation. On the other hand, frictional forces in the hinges were

also imporztaflt (at that time in the hinges there were bronze bushings),

which with considerable centrifugal forces cannot be disregarded; they

gave in this case sufficiently great damping. However, once pilot

S. A. Korzinshchikov after one of the flights immediately after

landing did not push the -ontrol stick forward and thereby did not

move the machine from a three-point position (skid and basic landing

gear) to a standing position (with support on the front leg), as

with subsequent drop in revolutions of the rotor because of a great

initial disturbance in deviations of blades in the plane of irdtation

(axis of rotation of the rotor was inclined to earth at an angle of

14 0 ) there appeared ground resonance - the blades broke anq damaged

the helicopter.

So from one experienced example to another all new aspects of

this problem appeared.

Inasmuch as accurate. calculation of necessary oscillation damping

of blades (and with oscillations of ground resonance there is equal
importakce in oscillation damping of the apparatus carried out by

the shock absorber of the landing gear) at that time did not exist,
designers tried to select the minimum value of the moment of friction
of the damper on the hub. This was dictated by a tendency to

decrease variable bending moments appearing in the presence of the
damper with forced oscillations of blades in flight.

With friction dampers, as is known, there appear oscillations

"with excitation threshold. If the excitation is small - the exciting
moment is less than the moment of friction - oscillations in general,

FTD-MT-24-103-68 xxvii



do not appear. Here on a safe helicopter with respect to ground

resonance, which Is already in operation, vibrations suddenly appear.

This is explained by the fact that in the given special case the

initial disturbances proved to be greater than usual. This case

occurred on the Mi-l helicopter when it overtaxied obliquely through

deep tracks from a motor vehicle. A random disturbance of the bank

Creatly rocked the machine on the pneumatic tires, and it acquired so

large amplitudes of oscillations that the available damping in

bushing was insufficient and ground resonance appeared. Pilot

G. A. Tlnuakov then coped with it very simply; he took off and the

vibrations ceased, since the elastic coupling connection with earth

was disturbed.

This case suggested the necessity of the application of viscous

friction, i.e., hydraulic oscillation dampers of blades in the hub

for which the moment of friction does not remain constant but grows

with the amplitude of oscillations.

However, subsequent practice constantly required the

imp~rovement and development of the theory in this region. It suffices

to re.rehber at least the appearance of ground resonance when the

helicopter operates on a tie.

Several cases of ground resonance occurred also at a time when

the helicopter, in taxiing during takeoff or landing, only weakly

touched land with its wheels, when the tractive force of the rc-ýr

becomes close to the weight of the apparatus and shock-absorber

struts with the usual preliminary tightening appeared completely

released. The difference between weight and tractive force oi the

apparatIs was absorbed only by the pnuematic tires; of the wheels.

It' is clear that not only are frequencies of oscillation of the

machine changed, but also damping of the struts is absent. Here then

ground !resonance appeared which on the helicopter not attached or not

taxiing with a very small load on the wheels never appeared.

In order to avoid such cases there began to be used the so-called1 -.-

dual chamber struts of the landing gear - shock-absorbing struts __
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llaving a second low-pressure chamber absorbing the energy of oscilla-

tions; of the apparatus when it touched land only by slightly pressed

pneumatic tires and the main struts did not operate.

There is special importance in questions of the theory of

ground res(ýiance on two-rotor configurations when the elastic system

conecting both rotors, be It thp fuselage with a longitudinal or

1-he wing with a transverse cc,7-11uration, has low frequencies of
natural oscillations. `'ith such oscillations there can appear

considerable movements of the rotor hub, which create the possibility
If energy exchange between oscillations of the blades and oscillations

* of the lifting structure. Oscillations of such type are possible

not only on land but also in flight.

A similar problem appears with the designing of tail rotors with

vertical hinges located on the elastic tail girder.

The creation of a harmonious and perfected machine is possible

only in the case when the designer is quite competent not only, in

the general problems of designing but also in special problems'

connected with the theory and design of its separate elements.

On the contemporary helicopter there is a large number of,

responsible high-loade&' mechanical units whose reliability and'

service life in many respects depend on the efficiency of their

bearing units. Therefore, designers of helicopters should be

familiar with the theory and design of anti-friction bearings. This

especially pertains to cases of operation of anti-friction bea rings

in 7omp~ex combinations of external loads and during oscillatdry

motion ýith small amplitudes.

Therefore, in this book there is included a chapter in which

the answer to questions of theory and design of bearing subassemblies

of bushings, cyclic pitch controls and other units can be found.

One of the most interesting questions described in Chpater IV is

the theory of special thrust roller bearings, in whIch owing to the

location of the rollers at an angle to the radial dir(-ction tne
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separator during oscillatory motion not only oscillates together

with the sliding ring but also continuously revolves in one direction.

This prevents local wear of the rocking paths and increases the

service life of the bearing.

It should be noted that the application of such bearings in

axial hinges of main rotor hubs provided a considerable increase in

their service life.

Helicopter construction requires a high general level of

theoretical and scientific training of the design engineer, since

dynamic problems for helicopters (aircrafts with revolving wings) are

of constderably greater importance than those for aircraft

(apparatuses having stationary wings, and even now and wings turning

and deflect back). This is confirmed by the fact that those few

designers who were able to give a considerable contribution to the

development of helicopter construction, and, even more, those who

had practical success, were at the same t:.me the great scientific

theoreticians. These were Academician B. N. Yur'yev, Professor

A. M. Cheremukhin and Professor I. P. Bratukhin - creators of first

Soviet helicopters of the 1930's from lEA to 1IEA; Professor Focke -

designer of helicopters FW-61 and FA-223 in Germany, one of pioneers

of aviation Lours Brequet and Professor Doran, who created the first

French helicopters, and others.

It should be noted that at present the theoretical training of

designers working in leading firms of the world in the field of

helicopter construction, as far as can be judged from literature, is

very high. Therefore, not only the design engineer but also the

designer working in helicopter construction should not have any

difficulties in mastering of the material discussed below.

The authors hope that tht.s second book of the given work will be

discovered by readers and will be useful.
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On the inserts there are photographs of basic Soviet helicopters

found in serial production. The first Soviet series of helicopters

with reciprocating engines, the Mi-i and Mi-4, were created in 1949

and 1)52. Built in great quantities, these are now some of the most

widespread types of helicopters.

Shown further is the helicopter Mi-6 with two turboprop engines,

developed in 1957, and helicopter Mi-10 (1962), a flying crane with

high landing gear adapted for transport of large-scale loads rigidly

secured under the fuselage. In 1965 it established the world record

for load capacity for helicopters when 25 tons were lifted to an

altitude of 2830 m.

Helicopters Mi-2 and Mi-8 are also shown, which are the second

generation of Soviet light and medium helicopters. The lifting systems

from Mi-i and Mi-4 were retained on them, but instead of having one

piston engine there are two turboprop engines.

Footnote

10n the helicopter Mi-4 flutter always appears primarily in these
conditions.

I1

I
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C CHAPTER I

ELASTIC OSCILLATIONS AND BLADE STRENGTH

The calculation of elastic oscillations is an obligatory

element in the process of the creation of new blade designs. It

enters as an inalienable part into the calculation of blade for

strength.

To create blades of a helicopter it is necessary to solve

much of the time very complex technological and design problems.

With their solution one should consider the most diverse requirements

and first of all the requirement of providing high fatigue strength

to the structure.

The work involved in the creation of blades includes usually the

following basic stages:

- Selection of materials for separate elements of the structure,

determination of optimum parameters and designing of the blade.

- Selection of the best technological processes providing the

highest fatigue strength of its basic force elements, and manufacture

of the blade.

lg Flight tests with the measurement of effective stresses in
flight.

- Dynamic tests and appraisal of the blade service life.
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- Carrying out of a complex of finishing works, including works

on the lowering of effective stresses and increase in fatigue

strength of the structure.

- Completing tests and starting construction in serial production.

- Analysis of the work of serial blades in different conditions

of mass and prolonged operation and the carrying out further

improvement of commercial construction according to the results of

this analysis. •

Calculations of elastic blade oscillations must be fulfilled in

many stages of this work but mostly in the most initial stage, which

is finished by designing of the blade.

In the selection of parameters of the blade and materials for

its manufacture, one of the basic criteria is the magnitude of

effective varying stresses in flight and the relationship between

these stresses and stresses characterizing fatigue strength of the

structure. It is possible to learn the magnitude of these stresses

and to give an appraisal of the structure with respect to its

strength in this stage only with the help of calculation. To

design a blade in the required, usually very short, periods the

designer should have at his disposal perfected methods and means of

fulfillment of the design, which allow giving a rapid answer to any

of the appearing questions.

Of no lesser importance is the calculation during finishing

works. As a rule, in newly created blades there appear too great

varying stresses, and the designer has the problem of reducing them.

For this it is first of all necessary to confirm by calculation the

regularity of the appearance of stresses measured in flight and

then to find the possibility by means of changing certain parameters

of the blade to decrease their magnitude. To find the solution of

this problem without calculation, as & rule, means to lose very much

time in checking incorrect proposals and to expend a great deal of

means in the manufacture of blades, which subsequently after a flyinF

check will be rejected.
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Reducing varying stresses is extremely important and permits

not only Increasing the reliability and service time of the blade

but also improving the technical flying characteristics of the

helicopter such as, for example, the speed of flight and load

capacity, since for contemporary helicopters they are frequently

limited in conditions of stability.

The solution to all these questions would not create considerable

difficulties if the calculation gave results, quite accurately coin-

ciding with the fact that it is observed in reality during measurement

of stresses in flight. Unfortunately, this is not quite so; not in

all cases does the calculation give satisfactory results for

practice.

The most reliable are calculations by determination of frequencies

of natural oscillations. Attained in them is an accuracy usually of

the order of ±2%. Therefore, all calctlations connected with the

exclusion of resonances provide a very high reliatility. Of

noticeably lesser reliability are calculations of varying stresses

at cruising and maximum speeds of flight. The stresses obtained

with these calculations usually prove to be 15-25% less than stresses

measured in flight. Therefore, the calculation of stresses in these

conditions does not always satisfy the designer. But it is necessary

to say that this error can to a certain degree be compensated, if

into the calculation there is introduced a correction which considers

the constantly observed divergence with the experiment.

Still a great error is possible during calculation of varying

stresses at low flight speeds.

From what nas been said it is obvious that the method of

calculation of varying stresses in the blade still requires further

development. Nonetheless, practice shows that the selection of

parameters and rinishing of blades without the use of even such

still not quite perfected methods of calculation proves to be very

Ineffective. Therefore, in this chapter there is given a sufficiently

detailed 1cc~ut of different methods of cal6ulation. This, as it
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seems to us, enables giving to the reader a concept about all

peculiarities of the load of the blade in flight, showing the possible

means of approach to its calculation, revealing and estimating the

advantages and deficiencies of different methods and, finally,

giving to engineers studying this problem the basis for further

deepening of investigations and improvement of methods of calculation.

Along with a description of different methods of calculation

of elastic oscillations of the blade, to which the basic attention

is given, in this chapter there are also discussed basic principles

on which are based calculations of blade for strength and determination

of its service life (0 11).

Regarding concrete data on the selection of parameters of the

blade, it is expedient for us to refer this question to the section
"Designing of the blade," which will be included in the third book.

1 1. Problems of Calculation. Basic Assumptions and
Derivation of Differential Equations

of Flexural Deformations
of the Blade

1. Finite Goal of the Calculation of Elastic
Oscillations of the Blade

The calculation of elastic oscillations of blade appears

necessary for the solution of a number of problems appearing in the

designing and finishing of a helicopter. The most important of them

is the problem of the determination of variable flexural stresses in

the blade. Determination of these stresses iL the main part of

calculation for strength. Therefore, the main task of this chapter

is to determine elastic oscillations of the blade for calculation of

its strength.
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Determination of oscillations of the blade appears necessary

and for the solution of many other problems. Without the calculation

of these oscillations it is impossible to find the loads, arriving

on the helicopter, its hub, control system and on the drive

transmission of the rotor. Determination of live loads arriving from

the rotor blades to the helicopter to a considerable degree solves

the problem of the determination of vibrations of a helicopter.

There is also interest in the question of the influence of

oscillations of the blade on the flying characteristics of the

helicopter. Limitations put on the flying ch&racteristics by

separation of flow from the rotor blades are determined previously

always by the permissible amplitude of oscillations of the blade.

With an increase in these amplitudes variable forces in the control

system and vibration of the helicopter are increased. Therefore,

the calculation of elastic oscillations of blades permits most

accurately estimating the borders of conditions permissible in

conditions of separation of flight of the helicopter.

To a certain degree the oscillations of the blade, and first
I

of all its torsional vibrations, affect the aerodynamic properties

of the rotor with removal from conditions with the separation of

flow.

Let us discuss more specifically the first of the problems

stated here.

2. Calculation of Blade Strength

Calculation of blade for strength includes determination of

constant and varying stresses at all points of the blade structure

in different load conditions. The most dangerous of them are

separated as cases calculated for strength of the structure.

Usually with the creation of new blades, when the time assigned

for fulfillment of the calculation and their analysis is very

* greatly limited, the number of calculation cases is desirably reduced
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to a minimum. Experience shows that it is sufficient to examine one

case of the loading of blades under conditions of helicopter
operation on land and a number of flight cases on different flight

conditions.

The first case provides for the necessity of design of a blade

supported by a vertical hub limiter when the action of centrifugal

forces was ceased or almost was ceased. This occurs when the rotor

does not rotate or is in the initial stage of acceleration, or it

stops after the flight. In the absence of centrifugal forces the

forces of weight or inertial forces, appearing with a blow of the

blade against the limiter, cause in it considerable flexural stresses.
S~Especially difficult for the strength of the blade are compressive

stresses. Experiments show that separate overloads of the blade,

at which there appear considerable compressive stresses, can have

an effect on the fatigue strength of the structure and, consequently,

also on its service life. Usually static stresses from the bend of

the blade, under the action of its intrinsic weight, are limited to
2magnitudes aG = 25-28 kG/mm for a blade with a steel longeron and

O= 7.0-7.5 kG/mm2 for a blade with a longeron made of Duralumin.

From the point of view of calculation this case presents no

difficulties. Therefore, we will not discuss it in detail here.

Other cases pertain to different conditions of flight of the

helicopter, when to the constantly effective stresses from centrifugal

forces are added constant and varying stresses from bending of the

blade. This combination of loads proves to be very difficult for

fatigue strength of the blade construction.

3. Conditions of Flight Which are Dangerous for

Fatigue Strength of the Construction

DNeasurements of stresses in flight show that blades of the heli-

copter experience considerable live loads dangerous for strength of

construction in conditions of two different types.
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The first type of conditions pertain to conditions of flight at

low speeds when the speed of flight comprises 3-8% of the final

velocity of the blade (N - 0.03-0.08). In these conditions of flight

there is observed a sharp increase in amplitudes of flexural

vibrations of the blades, and varying stresses are increased

respectively.

The indicated speeds of flight is used by the helicopter with

acceleration, horizontal flight with stabilized low speed and in

conditions of deceleration. Usually the greatest varying stresses

appear in conditions of deceleration. Considerable stress can also

appear in conditions of steep descent with low horizontal speed.

In conditions of design load flights at low speeds are, as a

rule, short-term conditions of the flight, in any case for helicopters

conducting transport work. However, because of great stresses

frequently these conditions determine the service life of blade by

conditions of durability.

Flights at high speeds belong to the second type of conditions

dangerous for fatigue strength. These are first of all, flights at

cruising and maximum speeds. The flight at cruising speed is usually

the most continuous mode of flight and therefore introduces into the

design considerable fatigue damage.

The sharp increase in varying stresses at low speeds is

explained first of all by the considerable irregularity of the field

of inductive speeds appearing at these conditions in the flow flowing

through the rotor. Moreover, in its absolute magnitude inductive

speeds in these conditions reach the largest values aR compared to

all other conditions of flight. Therefore, their influence on the

magnitude stresses at low speeds of flight considerably increases.

The alternating field of inductive speeds leads to the appearance

of variable aerodynamic loads on the blade. Under the impact of

these loads the blade accomplishes rlexural vibrations, and this

is why in it there appear considerable varying stresses.

A. 13



Ae high speeds of flight variable aerodynamic loads appear

mainly due to the pulsation of relative flow rate and nhange In

angles of attack of blade sections along the azimuth of the rotor.
The alternating field of inductive speeds in these conditions weakly

affects the values of the aerodynamic load.

With calculation for strength it sometimes is also necessary to

examine the case of possible rotor Rcceleration in flight when

centrifugal forces considerably increase. Here the constant part of

effective stresses in the blade is increased.

4. Assumption of the Uniform Field of Induced Speeds

From what has been mentioned above, it is clear that the

calculation of variable aerodynamic loads on low speeds is impossible

without taking into account the alternating field of induced speeds.

With an increase in speed of the flight the absolute magnitude

of induced speeds drops. The influence of their irregularity on

magnitudes of aerodynamic loads decreases. Therefore, starting from

average speeds -f flight, when p > 0.2, with the calculation of

varying stresses in the blade it is possible approximately to consider

that the field of induced speeds is uniform, i.e., that the induced

speeds are constant along the disk of the rotor. This assur1aption

leads to very serious simplifications of all the computations and a

sharp reduction of duration of the calculation. Therefore, it is

widely used in practical calculations.

However, the accuracy of results obtained taking into account

this assumption frequently does not satisfy the designer. Therefore,

in many cases with the calculation of flight conditions with average

and great speed this assumption must be renounced.

5. Assumptions Utilized During Calculation of
Aerodynamic Loads on the Blade Profile

In all methods of calculation discussed in this chapter, it

is assumed that the aerodynamic forces having an effect on the blade

profile can be (iotterIned b- -srg ae.rodynamllc coefficients referri-1*
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to stationary flowing around of an infinitely long wing in pl3ne-

parallel flow. The nonstationaryity of the flowing around is

considered only in values of angles of attack of the profile in which

inductive downwash is introduced.

Consequently, to determine forces having an effect on the

element of the profile, it is sufficient to determine its angle of

attack a and relative speed of flowing around its flow U. Then,

knowing a and Mach number Mu-L (here aw is the speed of sound),

along the polar of the profile one can determine coefficients cy

and c x and, consequently, also forces havinig an effect on the profile.

When necessary there is determined also coefficient mz.

If in examined flight conditions the angle of attack of the

profile does not exceed a e 90, and the Mach number is not more

than M " 0.5, then its influence can be disregarded, and we can assume

that

S(1.1)

where ca is the tangent of the angle of inclination of dependence
y

cy

This assumption is used during calculation of loads in

conditions sufficiently remote from separation in which, furthermore,

it is possible to disregard phenomena connected with the

compressibility of flow.

The possibility of application of certain assumptions with

respect to the method of determination of aerodynamic forces has

decisive importance in the selection of the method of calculation of

stresses, which in the examined case should be used. Due to this

In various conditions of flight the most expedient appears to be

the application of different methods of calculation. Therefore,

subsequently we will separate three types of conditions, which are

distinguished by the fact that in each of them best results can be



obtained by different methods of calculation. These are conditions

of low, average and high speeds.

.In conditions of low speeds it is impossible not to consider the

alternating-field of inductive speeds, but with moderate loads on

the~blade it is possible to use linear aerodynamics. At-average

flight speeds calculation of the alternating field of inductive

ppeeds appears necessary only with the solution of special problems

connected with.the necessity of separation of separate high harmonics

of aerodynamic loads. Calculation of nonlinear dependences in the

determination of aerodynamic~coefficients at these speeds is almost
always unhecessary. And, Iinally, in conditions of high speeds

lying near the border of separation, calculation of these nonlinear-

ities becomes obligatory, whereas the changeability of the field of

inductive speeds in the greater part of cases cannot be considered.

The enumerated considerations lead to the fact that separate

methods of calculation can be attached to definite conditions of

flight.

6. The Connection Between Deformations with Bend in
Two Mutually Perpendicular'Directions and

Assumptions in Calculations Taken
in Connection with This

Usually the blade of a helicopter is designed in such a way

that the main elastic moments of inertia of its sections are

essentially different in magnitude. Therefore, the blade is a rod

stretched by centrifugal forces whose every section possesses

different rigidity in two mutually perpendicular directions. In order

to characterize these directions through the axis of the rod in the

direction of principal axes of the section there are conducted planes

called planes of the greatest and least rigidity (Fig. 1.1).

Frequently for creation of aerodynamic blade twist not only

frame-forming its external surface twists, but also the blade

longeron. In this case directions of the main elastic axes of the

section are changed along the length of the blade, and geometrically (
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t•P~ ne• /Plane o1 6 Of- .....""drii, ty Fig. 1.1. Diagram of location of the

,a. • __ lon ger on in th e case w h en ge om e tr i c
Ka-,• m. of 'ýe 0*11"I' twist is carried out with the help of"

tufn of the frame with respect to the

rotaion f%.Fla~pping
it becomes a twisted rod .n other cases aerodynamic twist is

fulfilled only dua to the turn of the blade frame with respect to

the longeron.

boladerliy les is mankest poreat obeem of bdes bendin ave
* considerablY less than that for aircraft propellers and blades of

S' c o m p r e s s o r s a n d t u r b i n e s . . -A s d& f f e r e -n t a -p-p-_a r s a l s - s h o w , t h e '

influence of this twist on results of calculations is small.

Therefore, in all the methods of calculation given here we will

disregard twistness of elastic axes of the blade longeron and consider

that the direction of the plane of greatest and least blade rigidity

is constant along its length.

This assumption permits projecting all external forces on these

* planes and solving the two elastically unbound two-dimensional

f problems of blade bending in two mutually perpendicular directions.

Upon completion of the calculation for determination of stresses at

different points of the blade section, results of these two

calculations can be added.

, The profile of the blade section permits increasing dimensions

of the longeron in the chord plane, and limits them in a perpendicular

.N direction. Therefore, the plane of the greatest rigidity is usually

close to the plane'passing through the blade chord. This circumstance

17



and also the fact that in the chord plane the magnitude of aerodynamic
forces is usually less than that in the plane perpendicular to it

leads to the fact that the magnitude of flexural stresses is usually

larger with bending in the plane of least rigidity and less in the

plane of greatest rigidity. If one were to examine contemporary

* .designs of blades for which fatigue strength is approximately

identical with bending in all directions, then it will appear that

bending in the plane of least rigidity is considerably more dangerous.

In practice usually all difficulties appear in connection with the

necessity to provide strength with bending in this plane. Therefore,

in this chapter methods of calculation of blade oscillations only

in the plane of least-rigidity will be examined. With calculation

in this plane it is possible to apply the additional assumption about

the fact that the plane of least rigidity coincides with the plane

passing through the axis of the rotor. We will subsequently call

this plane the flapping plane.

7. Calculation of Torsional Deformations of the Blade
During Calculation of Flexural Oscillations

Twisting deformations change the angles of attack of the b!ade

sections of blade and, consequently, also the aerodynamic forces

having an effect on them. Therefore, they should be considered

during calculation of aerodynamic loads and oscillations of the blade.

However, calculation of torsional vibrations of the blade is consider-

ably difficult and greatly complicates the calculation.

At the same time in a whole series of cases it does not lead to

considerable refinement of the results. Therefore, calculation of

torsional deformations should be produced only if there is an

imperative necessity. For example, this is true in those cases when

flexural flutter, although such a position indicates insufficient

reserve prior to flutter and cannot be considered permissible.

To calculate torsional deformations it is necessary to solve

a system of differential equations of flexural-torsional vibrations

of the blade. The solution of this system is fulfilled with the

calculation of flutter. Therefore, such a-method of calculation,
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called the general method of calculation of flutter and flexural

- stresses in the blade, is referred in the first book (see § 7 of
Chapter IV).

In this chapter only methods of ciL-cuilaiton of free torsi-6nal

(9 5) and flexural-torsional vibrations (§ 6).

8. Two Stages of Calculations in the Designinglof
the Blade: Calculation of Frequencies of

Natural Oscillations and Calculation
of Stresses

If a newly created blade of a helicopter does not very greatly

differ in its geometric and mass characteristics from an already

made and proved blade, then it is possible to affirm that on identical

conditions of flight, the varying stresses acting in it will be

approximately the same as in the blade which is its prototype.

However, this position is disturbed'in those cases, when due to a

certain change in its parameters the blade appears in resonance with

some harmonic of external forces.

The practice of blade designing shows that sufficiently reliable

blades can be created only when none of the blade's natural

frequencies coincides with frequencies of external forces and is at

sufficient distance from them. This pertains to oscillations of

the blade both in the plane of the least and in the p!Rne of greatest

rigidity. It follows, of course, to stipulate that not all harmonics

of external forces are dangerous for strength but only those whose

magnitude is sufficient for creation of stresses considerable in

magnitude. In practice usually the absence of resonances should be

provided with harmonics no higher than the eighth to revolution of

the rotor, Higher harmonics of external forces are not substantial.

Thus, if a gross e'ior in the selection of characteristics of

the blade is not allowed, then for the limitation of varying stresses

in permissible limits, it appears sufficient only to provide the

absence of resonances. It is not necessary to produce calculation of

"values cf amplitudes of varying stresses in this case. Therefore,
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frequently an experienced designer can be limited only to the first

stage of design of a blade: determination of its frequencies of

natural oscillations and cons:ruction of a resonance diagram.

From what has been said it results that the calculation of

frequencies and forms of natui . oscillations of a blade is not

only an auxiliary stage for the calculation of stresses, but it has

an independent importance as a preliminary stage of calculation of

blade for strength.

9. Idealized Blade Models Used in the Calculation

With fulfillment of the calculation it is necessary to present

the blade in the form of a certain idealized mechanical model for

which there would be correct all the accepted initial assumptions,

so that subsequently in the process of calculations there would be no

need to use approximate mathematical operations.

During calculation on digital computers the problem should be

stated in such a way that its solution is possible with any accuracy

assigned in advance and accessible for the machin.

As experience has shown, the application of methods of calculation
using approximate mathematical operations very frequently leads to

different misunderstandings. In a number of cases, only because

of the inaccuracy with calculations, can it appear impossible to

bring the calculation to an end. Thus, for example, during

calculation of forms of natural oscillations by the method of

successive approximations, it is necessary to calculate a whole

series of integrals. Frequently this is done by the trapezoid method.

With the limited quantity of intervals of integration this method

gives so large an error that during calcualtion of forms of

oscillations of higher tones, the ordinate of which are calculated

in the form of small differences of large values, the method of

successive approximations ceases to converge.

This circumstance requires special caution during the use of

approximate methods of calculations. Therefore, it is more expedien
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to introduce a simplified idealized model of a blade which would be

convenient to calculate with an accuracy maximum permissible for the

machine.

Three different types of mechanical models which are frequently

used in calculations are well-known.

Beam model with continuously distributed parameters. In this

model the blade is represented in the form of a beam with continuously

dislributed rigidities EI, linear mass m and parameters determining

the magnitude of linear aerodynamic load.

Such a model is very convenient with the composition of initial

differential equations and application to them of well-known methods

of approximation of the solution, but it appears unsuitable for

complete numeripal calculation. Below we will frequently use such

a model for the derivation of calculation formulas in order in the

stage of numerical calculation to use formulas recorded by analogy and

which pertain to the model with discrete parameters. In these

formulas all the integrals of functions dependent on the radius of the

blade are replaced by sums of discrete quantities referring to a

series of fixed radii of the blade.

Beam model with concentrated loadc. In this model the blade is

represented in the form of a system of concentrated loads connected

with each other. The cQnnection between these loads is carried out

by means of weightless beams possessing constant (in length) bend

rigidity equal to the rigidity of corresponding sections of the blade.

With the determination of aerodynamic forces it is assumed that

to every load is fastened a separate flap whose area is equal to the

area of the corresponding blade section. Usually it is assumed that

the area is

(1.2)
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where .i-li and L1,1+l are lengths of adjacent sections into which

the blade is divided with calculation; bi - chord of blade in the

section between these sections.

This model most accurately reflects the properties of the

real blade. Therefore, in almost all cases during practical

calculation it will be used.

It is necessary, however, to note that the beam model possesses

these positive properties only at the number of sections z equal to

25-30 and more. With a decrease in the number of sections the form

of deformations of the beam model starts very greatly to differ from

the form of deformations of the blade. This circumstance will be

more specifically illustrated in § 10, No. 3. Furthermore, application

of the beam model leads in a number of cases to a very complex system

of formalas and sometimes even hampers fulfillment of the calculation.

In these cases the simpler hinged model of the blade can be used.

Hinged blade model. In this model the blade is represented in

the form of a multihinged link consisting of absolutely rigid

weightless sections with masses concentrated in the hinges. The

bending rigidity of the blade is simulated by elastic elements

concentrated in the hinges. Under the impact of external forces the

axis of such a chain will take the form of a broken line and not a

smooth one as in the model of the beam type. This circumstance, just

as the operation of the selection of rigidity of elastic elemenlts,

introduces a definite error with transition "'oom the blade to a

mechanical model.

At the same time the application of a hinged model creates so

considerable simplifications in the calculation formulas that sometimes

the application of improved methods of calculation which were

practically unrealizable in the use of the beam model is possible.

This compensates for deficiencies peculiar to this model.

It is still necessary to add that with a decrease in the number

of sections into which the blade in the calculation is divided,

22



I

properties of models start very greatly to differ from properties

of the real balde. But for the hinged model these errors increase

not as rapid as those for the beam model. Due to this the hinged

model can appear more profitable in the application of rough methods

of calculation when the blade is divided into a small number of

sections, let us say of the order of 10-12.

10. Derivation of the Differential Equation of Bend of
the Blade in the Field of Centrifugal Forces

with Oscillations in the Flapping Plane

Let us represent the blade in the form of a beam with contInuously

distributed parameters. Let us separate for consideration the

element of the beam with length dr. The forces having an effect on
this element are shown in Fig. 1.2.

Fig. 1.2. Diagram of
forces having an effect on
the element of the blade.

Let us compose the equations of equilibrium of this element,

being limited to quantities of only the first order of smallness.

Then thle sum of projections of forces on axis y can be recorded as

Wr+dQ-O.3)

and the sum of moments of all forces with respect to point A

QOe+dM'-Ndy-k (1.4)f - where W is the linear external load on the blade; Q - shear

j23



force in the blade section; M - bending moment; N - centrifugal foi.ce

in the blade section.

From equation (1.3) we will obtain

w--q-. (1.5)

Here and below the prime denotes differentiation with respect to

the radius of the blade.

Differentiating equation (1.4), we will obtain

Q'--M"+L g•j'. (1.6)

If we assume M + Ely" and substitute expression (1.6) into

equation (1.5), then we will obtain the well-known differential

equation of flexural deformations of the blade in field of centrifugal

forces:

EIi;tJ-[Ngu'l'-W. ( 1.7?)

Let us present the external load W, which consists of aerodynamic

and innertial loads:

W--T--mi, (1.8)

where T is the linear aerodynamic load; m - linear mass of the blade.

The two dots here denote differentiation with respect to time.

Substituting expression (1.8) into equation (1.7), we will obtain

the differential equation of blade oscillations:

LIdt~ITu'-•r+mm--r. ( 1.9 )

In a vacuum, when the aerodynamic load T is equal to zero,

equation (1.9) will describe free oscillations of the blade in the

field of centrifugal forces:
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IEP - u'-IH¢ -mmo. (1. 10)

Solution to this equation has well-known difficulties. Therefore,

in § 2 in the beginning its solution for the case N a 0 pertaining

to an irrotational blade will be examined.

11. Differential Equation of Blade Bending in the
Plane of Rotation of the Rotor

With bend of the blade of rotation, because of concentricity

of the field of centrifugal forces on the element of the blade, there

will act an additional force which did not enter into equations in the

flapping plane. Taking into account this circumstance, equation (1.8)

should be copied in the form

V-iemzm,(1i.i1)

where Q is the aerodynamic force in the plane of rotation; x is the

movement of blade elements in the plane of rotation.

Substituting (1.11) into the equation analogous (1.7) but

recorded for the plane of rot-atnion*,wc will obtain the differential

equation of bend of the blade in this plane:

[ZI'-[Rxl--wtx +,,fi-Q. ( 1.12 )

This equation differs from equation (1.9) only by the additional
2

term W mx.

§ 2. Free Oscillations of a Blade of an
Irrotational Rotor

1. Method of Calculation Leading to the
Solution of the Integral Equation of

Blade Oscillations

The calculation of forms and frequencies of natural oscillations

of a blade of an irrotational rotor is quite widely discussed in

literature (see, for example, [!]). In this paragraph only certain
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basic positions and somewhat refined formulas used during practical

calculations will be briefly repeated.

Let us consider the differential equation of oscillations

obtained for the blade model with continuously disturbed parameters.

If in equation (1.10) we assume N a 0, then it will take the form

I2IvI'+mi-no. (2.1)

Having assumed

=Iinjhlq p1 (2.2)

and substituting into (2.1), we will obtain

I•li/r-pT-- s--. (2.3)

With further calculations we will omit the dash above the y.

Let ui integrate equation (2.3',, taking _nto account boundary

conditions of the blade fastening. For simplicity we will Pxamine

the case of the blade rigidly sealed in the shank with these

boundary conditions:

- for r - 0; y - 0; y' = 0;

- for r - R; M - 0; Q = 0.

As a result of the fourfold integration, equation (2.3) will

be converted into an integral equation fo the form

Si~ SSjoff htv (2.4)

Equation (2.4) is solved usually by the method of successive

approximations. Having assigned the arbitrary form of y, standardized

by some manner, for example

26l1  (2.5)
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we will substitute it into the right-hand side of equation (2.4).

Fulfilling integration, we will obtain the function

u jiSIAgdF. (2.6)

such that y = p 2u.

Whence, using condition (2.5), we obtain

, .1. (2.7)

where uR is the value u for r = R.

Let us repeat the same operation, taking the nomw value

NPu. (2.8)

Fulfilling the above-described operation several times, one can

,be certain that the f:rn of oscillations y and frequency p converges

to defined values which are the solution of the integral equation

(2.4).

The thus used method of successive approximations results in

the fact that the determined form of y converges to the form of the

lowest tone of natural oscillations of the blade.

To determine the subsequent tones it is necessary still to

fulfill the condition of orthogonality of tones of natural

oscillations. This condition will be examined in No. 3.

With practical application of the method of zalculation

expounded here !t is very important to select a sufficiently accurate

method for calculation of the integral expression (2.6). If

parameters of the blade are assigned in the form of continuous

functions, then the simplest method of calculation of integrals (2.6)
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s the one usually used In i'rQ c±se.;, tne trapez>rim methou.

However, as was already noted aLove, wlth caiculation of higher tcone.-

of oscillations the error inserted by this operation leads to so

considerable errors that such a method carnot be used for practical

purposes. This deficiency vanishes if for the calculation of integrals

(2.6) we use the method resulting from examination of the mechanicali

model of the blade with discretely distributed parameters.

2. Calculation of Forms and Frequencies of Natural
Oscillations of the Blade Model with

Discretely Distributed Parameters

For the calculation let us use the model of the beam type with

concentrated loads (see S 1, No. 9). For this we will divide the

blade into z sections. Lengths of the separate sections can be

different. The weight of the blade will be concentrated along the

edges of these sections in the form of separate discrete loads with

mass mi. The flexural rigidity of the blade will be represented by

a step curve in such a way that for the extent of each section it

remains constant (Fig. 1.3).

11 a . 1

Fig. 1.3. Calculation model of the
blade.

In the same- way as in No. 1, we will examine in the
beginning the case of the blade sealed in shank. The operation
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detcm-:.'-d by eqataor. (.3) .. tniý :ase cur be carried out

absolutely accurately.

Actually, let us as3ign the arbitrary form of load movements

of the model yi. Here we call the form of movements the system of

discrete values y, (I - Q, 1, 2, 3, ... , z - ordinal number of

concentrated loads of the model). Thus, Just as above (see condition

2.5), let us assume that y a 1. If movements yl are known, one

can determine the inertial forces of the loads iwth their oscillations

at the frequency p a 1. They are determined by the expression

(2.9)

Knowing the inertial forces, one can determine all the bending

moments about the system of simple recurrence formulas of the form

Ali- k w Vj 0r-*,,AI.+s-h..,. (2.10)

where Li,,+l are the length of the blade section between the i-th

and I + l-th concentrated mass.

Coefficients ai and bI are determined by the formulas

Calculation of bending mome!.ts by the formulas (2.1-) should

be started from the end of bladt, assuming in the beginning that

I z - 1 and bending moments M and ?A are equal to zero.

After determination • the bending moments it Is easy ..o

determine deformations of the blade. Blade deformations with

oscillations at frequency p 1 1 will be, as above, designated by the

letter u.

The magnitude of these deformations is determined by tht recur-

rence formulas of the form:
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where

Here j-~j- +cMa+dMi+a. (2.12)Here

dum ' - (2.13)

e-s 2 (d,_, +dg).

Calculation deformation ui should be started from the shank of

the blade, assuming in accordance with boundary conditions accepted

here that u0 a 0. All quantities with negative indices should also

be assumed equal to zero.

Thus fulfillment of operations (2.10) and (2.11) in reference

to the beam model with discrete distribution of parameters leads

to the calculation of accurate values of ui.

2Determining p just as earlier [see (2.7)]

u (2.14)

and new values

*me . . (2.15)

we repeat all operations as many times as is necessary so that the

method of successive approximations agrees. Usually' the calculation

is considered finished when the difference of values yi in two

successive approximations appears less than the assigned accuracy e

3. Condition of Orthogonality aftd the Calculation of
Subsequent Tones of Natural Oscillations

The method of successive approximations stated above leads to

the determination of lowest tone of natural oscillations. With

determination of following tones it is necessary to still fulfill

conditions of inaependence of oscillations according to different tone•.-
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Let us imagine that free oscillations of the blade in a vacuum
(Q) (in)

occur simultaneously by two forms yJ) and ym) One can determine

the energy of oscillations according to each of the forms separately

by peak values of the kinetic energy:'

Ems, p.,,T (2.16)

On the other hand the total energy of the system, fluctuating

simultaneously by two forms, c, be determined by the peak value

of the total kinetic energy:

Ks im(;n, J)+p..sa). (2.17)
a]

The system possesses this kinetic energy at that moment of

time when the blade passes during oscillations through the neutral

position simultaneously by two forms y J and y. Because of the

distinction in values of frequencies of natural oscillations such a

position can appear relatively rarely, but can easily be created

artificially by means of assignment of corresponding phases of

oscillations at the initial instant.

If the amplitude with respect to each of the component forms

of oscillations does not change with the course of time, then their

energy, determined by formulas (2.16), remains constant.

Theltotal energy of the oscillations should always be equal to

the sum 6f energies of the ocmponent motions, i.e.,

KsmK,+K.. (2.18)

As follows from expression (2.17), this is possible onlj under
the condition if

ZMa.4J)--)USO. (2.19)
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f This 2ondition is called the condition of orthogonality of

tones of natural oscillations. A more strict derivation of this

condition will be given in § 2 of Chapter II.

With the calculation of any J-th tone, all preceding tones

to which indeX m - 0, 1, 2, ... , j - 1 corresponds, whould already

be calculated.

To fulfill the conditions of orthogonality with determination by

the method of successive approximations of the form of the j-th

tone, let us represent the unknown form y•J) as

" r rn-i-I
gj = "'u- c.,,2.20)

(in)

where yi are already defined forms of natural oscillation,.

Constants C are determined from the condition of orthogonality

(2.19) by formulas:

C..,,,,p (2.21)

The value of the frequency of the J-th tone is calculated by

the formula

rn-i-I (2.22)

i ~M-
A.-0

2
Knowing p , one can determine the form of oscillations by the

expression (2.20).

I4. Peculiarities of Calculation of Frcquencies and
Forms of Natural Oscillations of a

Hinged Sealed Blade

All the above-mentioned calculations referrin& to tha rigid

sealed blade, can easily be widespread for a blade with hinged sealirt,

in che shank.

3 2



For this case the integral equation (2.4) takes the following

form:

- [ jjii*+c'r (2,.23)

where the constant C0 is determined from the condition of equality to

zero of the sum of moments of all inertial forces with respect to

the hinge. For the model with discrete distribution of parameters

this condition can be thus recorded

0. (2.24)

It is easy to note that this condition coincides with the

condition of orthogonality to the form of oscillations which we will

conditionally call the form of zero tone oscillations. If this form

is standardized in accordance with condition (2.5), then it can be

recorded as

SMe='-" .(2.25)

Thus with calculation of the hinged sealed blade one should

consider that the form of its zero tone is known beforehand and is
assigned by formula (2.25), and with calculation of all subsequent

tones, starting from the first, it follows to fulfill the condition

of orthogonality to the zero tone (2.24). It is possible to determine

function ui by the same formulas which are given in No. 2.

5. Calculation of Forms and Frequencies of Natural
Oscillations of the Blade as a Free Beam

in the whole series of cases it appears necessary to calculate

the frequency of joint oscillations of the blade and fuselage of the

helicopter. The rotor hub, which is the fastening point of the blade,

can move itself together with the fuselage of the helicopter.

Calculations of such oscillations are very easy to fulfill if one

were to use the blade model constituting the free beam. Then in the

determination of joint oscillations of the rotor and fuselage, it
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is sufficient to calculate mass of fuselage m 0 reduced to the rotor

(see Fig. 1.3) and to produce calculation of frequencies of natural

oscillations of the blade.

Calculation of the blade as a free beam can be carried out by

the formulas of No. 2, only all forms of the natural oscillations

should be additionally orthogonalized to the form of the second zero

tone:

r'.- or U3con, (2.26),

which is equivalent to the fulfillment of the condition of

equality to zero of the sum of all inertial forces effective with the

oscillations.

This method of calculation with small further improvements can

be used during calculations of forms and frequencies of natural

oscillations of the fuselage, which will be discussed in Chapter II.

§ 3. Approximate Method of Determination of
Frequencies of Natural Oscillations

of the Blade in the Field of
Centrifugal Forces

1. Application of the Method of B. G. Galerkin
for Determination of Frequencies of
Natural Oscillations of the Blade

The method of B. G. Galerkin is very widely used to solve

different problems about elastic blade oscillations.

The idea of the B. G. Galerkin method and its application to the

solution of differential equations is discussed sufficiently in

detail in literature (see for example, the reference book

Mashinostroyeniye ("Machine Building," Vol. 1, Book One, Mashgiz,

1947).

Here we will not repeat the derivations which can be found in

other sources, but will illustrate the application of this method in

a number of simple examples.
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In No. 10, § 1, of this chapter the differential equation of

oscillations of the blade in the field of centrifugal forces was

deduced. If one were to substitute into it y in the form of (2.2),

then this equation will take the following form (the dash above y is

rejected here):

Let us assume that the forms of natural oscillations of the blade

in the field of centrifugal forces do not differ from corresponding

forms calculated for the case N - 0. Then, considering that the
Q')forms of oscillations y are known, we will substitute any one form

y(J•into equation (3.1), and, multiplying all terms of the equation

by this form y WJ we will integrate the obtained expressions along

the length of the blade.

After certain transformations the obtained equation can be

represented in the form

* II a

El [(tIf 'dr+ jN [(&J)yj~dr- pX.j n(yPdr- 0. (3.2)

The integrals entering into this equation

R

El-• I/|rI'd, (3.3)

N#'I N I(#yO)' dr (3.4i)

have fully defined physical meaning, namely:

CEI is the elastic potential energy stored by the blade when in

the process of flexural oscillations by the form of J-th tone it

attains extreme deviations from the position of equilibrium;' CN is the

potential energy accumulated by the blade during its bend in the field
of centrifugal forces. Here, Just as in expression (3.3), different

tones of natural oscillationna.an be examined.
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The full potential energy accumulated by the blade during its
(a)bend in the field of centrif. _'_ -orces can by formula y be

recorded as

Ca,-c+CN.. (3.5)

With flexural oscillations, when the blade passes through the

position of equilibrium, the speed of movement of its poitns attain

the largest values:

(3.6)

The kinetic energy of the blade can be defined by the formula

Ke-P2 mg [yufl',dr. (3.7)

In the process of free oscillations the potential energy

accumulated by the blade during its bend by form y(a) is turned into

kinetic energy when the blade passes the position of equilibrium.

The equality of peak values of potential and kinetic energy of the
blade is expressed by equation (3.2).

From equation (3.2) one-can determine the frequency of the J-th

tone of natural oscillations of the blade in the field of centrifugal
forces. This frequency ib ýetermined by the formula

where PJ is the frequency of natural oscillations of the blade,

neglecting of centrifugal forces; Kj is the coefficient considering the

influence cf centrifugal forces.

Here
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El ft ir
S~(3.9)

Xf (3.10)

In expression (3.10) N is the centrifugal force in the section

of blade at w - 1.

Expression (3.9) for frequency of natural oscillations, neglect-
ing the centrifugal forces, can be obtained if in this way one were
to use the B. G. Galerkin method to equation (2.3).

The expressions obtained here for frequencies of natural

oscillations of the blade in the field of centrifugal forces are

approximate. However, calculations show that in the whole series

of cases these expressions give fully satisfactory accuracy for
practical purposes. A more detailed appraisal of the accuracy of

results of these calculations will be given in 1 4.

2. Resonance Diagram of Blade Oscillations

It was already noted above that in the process of designing a

blade it is necessary to conduct calculations for the purpose of

eliminating possible resonances of frequencies of natural oscillations

of the blade with those harmonics of external forces which may
cause varying stresses considerable in magnitude. As was already

said, the harmonic components of aerodynamic forces having an effect

on the blade in flight are Qf considerable importance to harmonics

not higher than the eighth. Higher harmonics of aerodunaiic forces

are so small in magnitude that they cannot be taken into account.

Frequencies of forced oscillations, which one should fear with

calculation of the blade, can be determined by the formula

.ma (3.11)
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where n 1, 2, 3, ... , 8.

Equation (3.8) permits constructing the dependence of frequencies t
of natural oscillations of different tones from the angular velocity

of the rotor rotation. Plotted Jointly on one graph, the dependences

(3.8) and (3.11) are usually called resonance diagram of the blade.

Figures 1.4 and 1.5 g4ve resonance diagrams plotted for blades with

different parameters encountered in practice. These diagrams are

plotted in relative values. The frequencies of natural oscillations

p and numbers of turns of the rotor are referred to a defined working

value of the number of turns Wp.

Fig. 1.4. Resonance diagramsz
of different types of blades

l in the flapping plane.

4C

0

&• IQ as 48 . - /,e

The resonance diagram permits in •--aphlc form to trace In what

direction one should change the blade pra'meters in order to exclude

resonances in the whole r.•,n- of working w,umbers of rotor revolution3•.



II
0 Fig. 1.5. Resonance diagrams

1 of different types of blades
S in the plane of rotation.

-C7\

3. Selection of Blade Parameters for Exclusion of
Resonances with Oscillations In the

Flapping Plane

If one were to examine the resonance diagrams, constructed for

blades most. diverse in design,then it turns out that they do not

greatly dif'er from each other. This distinction is most frequently

explained by the aifference in rigidities of the blade to bending.

* Rarer, and to a lesser degree, it is caused by deviations in riss

enaracteristics of the blade. This circumstance is explained very

simply.' The fact is that in desipning the designer should follow

by a set of dirferent requirements liraitlng the:possibilities of

variation or blade par'4eters and leading in the end to the creation

cf blades which are very C2)se In their characteristics.

A wide change in blade parameters is prevented, mainly, by

the followinA conditions:
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1. Spar depth is limitea by the profile of the blade and cannot

be considerably increased, since with an increase in relative

'hickness of the profile the lift-drag ra j of the rotor worsens.

This circumstance limits the magnitude rigidity of the blade to

hending from above.

J 2. The sag of the blade under the impact of its weight should

not be very great, since this causes difficulty in the layout of the

helicopter. Flexural stresses in the longeron, appearing from

intrinsic weight, also should rot exceed the known values selected

from conditions of strength, taking into account possible dynamic

overloads. These considerations limit the possibilities of lowering

the *lade rigidity.

3. The weight of the blade appears concluded in even closer

borders. A tendency to the increase of loading factor of the

helicopter forces the designer to give a maximum weight reduction

of the blade. But this leads to an increase in varying stresses frou.

rending, which act in the blade in flight, and, consequently, to a

lowering of service life. Therefore, usually the blade weight

decreases as long as the lo,•geron endures increasing varying stressez.

As a result the blade weight is rigidly connected with dimensivns

of the rotor and strength characteristics of the material from which

its longeron is prepared.

As a result, resonance diagrams of different blades are changed

in practice withir: limitF which are limited on the one handi by tie

possibility of creation of a very rigid tladc, and on the other, Luy

the possibility of providing satisfactory service life of 11lades

having snall rigidity.

At the assigned total weight of design the maximur. rigid blade

!s obtained if the materlai of Itz icngeron Is disposed on the

contour of the profile, i.e., to Inscribe the longeron Into the

profile of the blade. With thl: a great percent of the blade wetint

can be Incloned In Its force eenent, - the longeron. Such bladez



are usually the most profitable from the point of view of the value of
effective stresses, but it is difficult to make them. Simpler in

production were blades with a free form of sections of the longeron

(for example, in the form of a pipe) not inscribed into profile

of the blade. Such blades possess small bending strength and give the

least successful resonance diagram during oscillations in the flapping

plane.

According to dynamic characteristics in the plane of stroke', 4 t

is possible to distinguish the following types of blades:

Blades with low rigidity In the plane of stroke. Such blades

are usually obtained in a construction based on a tubular steel

longeron with a frame ncnoperating during bending. On Fig. 1.4 the

dotted line denotes the resonance diagram for a blade whose rigidity

in the flapping plane is on the lower limit rigidities encounterexd

in practice. With such parameters the blade falls into resonance of

the second tone with the 4th harmonic and third tone with the 6th

harmonic of exciting forces, which is why in it there appear

considerable stresses with these frequencies (see also Fig. 1.66).

These resonances appear especially sharply in conditions of low

speeds, where for blades of this type tne stresses appear even higher

than at the maximum speed (Fig. 1.64I). Therefore, their service life,

as a rule, is limited by stay in conditions of low speeds.

Blades with low rigidity are usually a failure in strength and

service life, but are often ised, since their manufacture proves to

be the simplest.

ai~aes with average rigidity in the flapping plane. With an

increase In rigidity the frequencies of natural oscillations of the

blade depart from these resonances. In this case it is possible to

develop a fulr successful blade. Figure 1.4 shows the resonance

diagram or such a blade by a solid line. As follows from this diagram,

the second tone of oscillations of such a blade still did not approach

the 5th hart'onlc, and the third tone appeared somewhere between the

7th and 6th harminics. Constructively these are usually blades with
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j contour (or close to this formx- i'iongrorn inscribed into the

;;ciof 1.. Tht longeron can be both st and md Duralumin.

Without an iicrease in weight of the blade it is Impossible to

increase rigidity more. Moreover an insignificant increasc of

rigidity can leaa t. lpeEsonance of second tone with the 5th harmonic

of' external force,,. Therefore the following in order of increase in

rigidity can be only weighted blades with greatly increased rigidity,

Weighted blades witn great rigidity in the flapping plane. if

one were to increase the weight of the blade,putting this weight into

the construction of the longeron, then it is possible to increase

its rigidity so much that the frequency of the second tone will

appear higher than the 5th harmonic. In this case Lhe resonance

diagrari shown in Fig. 1.4 by a dot-dashed line is possible. In the

blade longeron with such a resonan.ce diagram even smaller varying

-ixesses will occur, but the blades appear somewhat heavier as

,,crnpared to blades of average rig~dity. However, for small

:Ielicopters for which the relatie weight of the rotor is small, such

loadirg of blades is possible.

Ut is neces.,ary to note that with an appraisal of the dynamic

characteristics of different blades in the flapping plane there was

absolutely not taken into account the location of the first tone

of oscillations of the blade. Usually the first tone lies between

the 2nd and 3rd harmonics and it is possible to change its location

considerably only in designs distinguished by some peculiarities,

for example, for jet rotors with engines on the ends of blades or

for rotors with nonhinged fitting of the blades. The insignificant

displacement of frequency of natural oscillations of the first tone,

observed for stanaard rotors, as a rule, essentially does not have

an effect on the magnitude of effective varying stresses.

4. Selection of Blade Parameters for Elimination of
Resonances in the Plane of Rotation

in the designing of a blade it appears necessary to ensure

the? absence of resonances In the plane of the greatest rigidity of
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the blade, which can approximately be considered as coinciding with

the plane of rotor rotation. The plane of the greatest rigidity of

the blade usually coincides with the plane of the chords. Therefore,

rigidity characteristics of the blade in this plane can be changed

in wider limits than in the flapping plane. Starting from the round

pipe, the section of the longeron can be increased up to dimensions

occupying practically the whole profile from the leading to trailing

edge. However, there are definite limitations in this plane. Thus

the increase in width of the longeron chordwise certainly leads to a

shift in the centering of the blade to the trailing edge, which is

usually impermissible from the point of view of requirements

presented for elimination of flutter. Furthermore, the increase

in width of the longeron can be accompanied by an increase in varying

stresses in it. With the lowering of rigidity of the longeron by

means of decreasing of its width the torsional rigidity of the blade

simultaneously drops. This circumstance is one of factors preventing

development of blades with very low rigidity in the plane of rotation.

With an estimate )f resonance characteristics in the plane of

rotation, one should examine, mainly, the first tone and in separate

cases also the second tone of oscillations of the blade. The

excitation of oscillations according to higher tones appears weak.

According to their dynamic characteristics in the plane of the

greatest rigidity the blades can be divided into the following

types:

Blades with lowest possible rigidity in the plane of rotation.

This type of blade usually includes blades with a tubular longeron

and a frame nonope.ating during bending. Frequencies of natural

oscillations of this type of blades in the plane of rotation appear

to be approximately the same as those in the plane of thrust or even

somewhat lower due to the fact that the value of coefficient I [ser

formula (3.8)] in the examined plane is somewhat lower (this will

still be discussed in § 4, No. 4). The first tone of oscillations

in this case appears to be, as a rule. nevertheless somewhat higher
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tdar the 2nd harmonic of external forces, and serious troubles from r

this resonance usually do not occur. It is a worse matter with the

:econd tone. It can fall into the resonance with the 4th harmonic

of external forces. This usually leads to considerable increase in

stresses from this frequency in the plane of rotation. On Fig. 1.5

the das ed line shows the resonance diagram for a blade whose

rigidity in the plane of rotation lies on the lower border of

rigidities encountered in practice. This blade is close to the

resonance of the second tone with the 4th harmonic of external forces.

Blades with low rigidity in the plane of rotation. If the

rigidity of the blade in the plane of rotation is somewhat increased

in such a way that its first tone remains between the 2nd and 3rd

harmonics, and the second tone emerges from resonance with the 4th

harmonic, then there will be obtained a blade fully satisfactory with

respect to stresses in the plane of rotation. It is necessary to

note that with an increase in rigidity one should fear resonance of

the second tone with the 5th harmonic to the number of turns of the

rotor. Practice shows that with this resonance stresses in the plane

of rotation are rather greatly increased, which can even have an

effect on their service life. The resonance diagram of blades with

low rigidity in the plane of rotation, for which the second tone

is located between the 5th and 6th harmonics, is shown on Fig.

1.5 by solid lines.

Blades with low rigidity in the plane of rotation are used

widely in practice and, as a rule, cause no troubles connected with

oscillations in this plane. However, frequently according to their

rigidity characteristics in the flapping plane they approximate blades

with low rigidity in the flapping plane which are distinguished by

increased stresses at low speeds. With an increase in rigidity of

the blade in the flapping plane rigidity in the plane of

rotation is frequently simultaneously increased. This circumstance

forces us to use the blade with even higher rigidity in the plane of

rotation.
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Blades with average and high rigidity in the plane of rotation.

The blades with average rigidity in the plane of rotation usually

include blades whose first tone lies between the 3rd and 4th

harmonics of external forces, and the second tone emerges into the

region of frequencies with so weak an excitation that it is of little

interest to us. On Fig. 1.5 the frequency of the first tone of

these blades is shown by a double line.

Blades with high rigidity in the plane of rotation include

blades whose frequency of the first tone lies higher than the 4th

harmonic of external forces (dot-dashed line on Fig. 1.5).

Blades with average and high rigidity in the plane of rotation

can be carried out with fully moderate stresses. However,

frequently with the use of such blades there are difficulties connected

with the drop in frequencies of the blade due to the elasticity of

the sealing of the rotor on the fuselage. This circumstance should

certainly be considered in the designing of blades of this type.
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§ 4. Calculation of Lorms and Frequencies of Natural

Oscillations of the Blade in the Field
of Centrif ugal Forcsrces

1. Purposes and Problems cf Calculation

Above in § 1, No. 8, it was already noted that the necessity

Lin the determination of forms and frequencies of natural oscillations

",f the blade appears with the solution of two types of technical

problems presenting different requirements to the method of

calculation.

The first type includes problems in which the calculation of

forms and frequencies is produced for selection of parameters of
the blade, which exclude the possibility of the'appearance of

resonances. Calculation in this case is finished by construction

of a resonance diagram, and forms of natural oscillations play the

role of only intermediate results and subsequently are not used.

Therefore, in widespread calculations of this type the form of

natural oscillations of the blade in the field of centrifugal forces

is considered coinciding with the form of an irrotational blade.

The influence of centrifugal forces is considered only in values of

frequencies which are calculated from power ratios determined by

equation (3.8). Such a rather simple method of calculation fully

satisfies purposes of problems of this type.

The second type pertains to problems in which forms and fre-

quency of natural oscillations are used for calculation of forced

oscillations with the determination of varying stresses effective

in the blade design. To obtain results in this case there is much

importance in calculation of those peculiarities which introouce

tensile centrifugal forces into the form of oscillations.

Ir. this paragraph it will be shown that centrifugal forces

considerably change the form of natural oscillations of the blade.

An especially great influence of centrifugal forces appears in the

form of distribution of tne curvature of the elastic line alonv the

length of the blade and to a lesser degree in the form of movements
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of the blade's elements. The change in form of' distribution of the

curvature naturally leads to the redistribution of flexural stresses

along the blade. The influence of centrifugal forces on the

distribution of stresses along the length of the blade has the

greatest effect in places of a sharp drop in flexural rigidity and

bracing of the concentrated load.

It is necessary to note that in the determinat.on of torms of

natural oscillations, taking into account centrifugal forces,
definite difficulties are encountered which should be examined in

greater detail.

2. Limits of Applicability of Methods of Calculation
Reduced to the Solution of the Integral

Equation Blade Vibrations

To calculate free oscillations of the blade in the field -f

centrifugal forces it would be very convenient to use the same methord

as is used for the blade of an irrotational rotor. However, it

appears that the method of successive approximations (see § 2)

occurring in the solution of integral equation (2.1) cannot be used

in all cases for the solution of equation (3.1), which describes

natural oscillations of the blade in the field of centrifugal forces.

In § 2, No. 1, it was shown that with fourfold integration cf

equation (2.1) the problem is reduced to the solution of integral

equation (2.4). This integral equation can be recorded in somewhat

different form:

w•ere M OW is the bending moment from inertial forces

appearing with oscillations of the blade with a frequency p - 1.

Analogously with integration of equation (3.1) the problem is

reduced to the solution of an equation of the following form:
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:,," M is the bendir* -omrert: , c:iritiuiral forces at the
,;r,..ular vc:locity of rotor rotation wI. =

(4-5)

If the method of successive approximations applied to equation

(4..l) gives good convergence in all cases pertaining to design of
the rotors, then in the application to equation (4.3) it converges

,,nly in a certain region of values of the parameter Y.

p csc'ln 't1h harmonic 05th harmonic

- - - - - - -- - - - - - - 5t

Sem

;0000

l: : "•4h h"a~rmo rd,

g -_ &4 )o hrm-onic

•.lotn roowrl

Mdlh tartor*

Fig. 1.6. Resonance diiagram of nelcopter blade In
the thrust plane plotted b; the method of successive
app'•ox L tions.



Figure 1.6 gives a resonance diagram for the standard blade

of the helicopter with hinged fitting to the hub. Plotted along

the axis of the abscissas on this graph are numbers of turns of the

rotor and along the axis of the ordinates, the frequency of natural

oscillations.

Values of frequencies of natural oscillations, obtained as a

result of solution of equation (4.3) by the method of successive

approximations, are noted on Fig. 1.6 by dots. Opposite every dot

is the corresponding value of parameter Y and the quantity of

approximations s necessary for achievement of the necessary accuracy

equal Lo 0.0'1. From th2 graph it is clear that at certain y the

value s starts rapidly to be increased, and the method of successive

approximations ceases to converge.

From Fig. 1.6 it follows that in the range of operating nunlb.ers

of revolutions for blades of helicopters such a method permits

determining the frequencies of natural oscillations of third and

higher tones and only in the case when all tones of oscillations

are determined for a constant value of parameter y, which corresponds

only approximately to conditic-ý of the stated physical problem.

If in the process of successive approximations parameter -Y is refined

under the assigned value of angular velocity a, then the method

will converge only in the range of numbers of revolutions considerably

smalle:- than the operating ones.

This circumstance creates the need for the application of other

methods which enable obtaining a reliable result in the whole r•muce

of numbers of rotor revolutions.

* 3. Possible Methods of the Calculation of Free
Oscillations of the Blade in the Field

of Centrifugal Forces

To calculate frequencies and forms of natural oscillations

in the field of centrifugal forces different methods of calculation

can be used. Of the works published concerning this question, it

is possible to indicate works (4], (8], and [10]. Of foreign works

I

S149



ciwr f14] are well-known. ,n ,o,,•, [551 arid [341 an accour.,

given of a very bulky methol, which gives not very hnin accur&:y

[m the final results, in spite of the fact that the calculation

•:hould be conducted with an accuracy of not less than 10-12 decimal

places.

Here there will be discussed the method which from our point

of view is the most convenient for :alculation of frequencies of

natural oscillations of the blade in the field of centrifugal forces.

It is based on the use of the method of three moments, which was

used by T. Morris and W. Tye [-P] for calculation of flexural stresses

in a blade stretched by centxiiXfg2. "orces. The method of T. Morris

and W. Tye is also discussed in work [12].

The method of three moments. used to calculate stretched

centrifugal forces of the blade, has a number of considerable

alvantages. Among them the main one is the fact that it does not

require high accuracy in the process of calculation. Calculations

can be produced even on the standard slide rule.

The method of three moments for the calculation of natural

frequencies has been used for a long time. It is prngrammed on the

computers Strela and M-20. Calculation on the machine Strela of

the first eight tones of natural blade vibrations only ,akes about

three minutes. There is made a very large number of tnt most

diverse calculations. Their results indicate the considerible

conveniences and great reliability of this method.

It is necessary to note that with a program of such calculation
there is no need to turn to any simplified methods of calculation

as, for example, those which were discussed in § 3.

4. Method of Three Moments for tne Calculation of Forms
and Frequencies of Natural Blade Vibrations

in the Field of Centrifugal Forces

To derive the calculation formulas we use the beam model of

the blade with concentrated loads, which was already used in • 2,
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No. 2. Just as earlier, the blade flexural rigidity will be

represented in the form of a step curve in such a way that it

remains constant for the extent of each section (see Fig. 1.3).

The centrifugal force will be considered applied only to loads.

Therefore, for the extent of each section its magnitude will not

be changed. We will also consider that the centrifugal force is

absorbed by a special bracing of zero load, which nonetheless can

move freely along the vertical.

It is obvious that such an idealized calculation diagram :sn

be reliably used if the number of sections z is sufficiently lp-ge.

Ucually the blade is divided into not less than 25-30 sections.

The method subsequently proposed consists in the determinaionr

of frequencies and forms of natural oscillations of sth an ideelized

diagram without any additional assumptions.

Let us consider two adjacent sections of the blade deflected

under the action of inertial forces from the plane of rotaticn af

the rotor (Fig. 1.7). As usual, we will examine only small

deflect ions.

Fig. 1.7. Diagram
At of forces acting

A on two adjacent
A6 •blade elements.

The equation of equilibrium of each of the sections under the

action of forces external with respect to the given section can

be recorded in the form of an equality to zero of the sum of moments

I51
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. t'nege forces one should include both the snear force Q and ber.ny1,

.oment M effective in the section.

Then the sum of momenfs of forces acting on the blade section

~-1 with reference to a point 0 can be recorded as

M,-Mr-N;. (i-,i) + Qoiu-O. (4.6)

The sum of mcoments of forces acting on sections 1-2 with
r,.ference to point 1 is:

M-M,-Na,(,-1,) +Q*11-O. (4.-7)

.:.ere:

e

Dividing equations (4.6) and (4.7) respectively by IOIN0 1

snd 112N12 and adding them, we obtain the following equation of
equilibrium:

Sc(4 .3)

Designations introduced here and also in equations (4.12),

(4.13), (4.14), and (-4.15), are copied below (see expressions
.•.S-4, ?5).

Analogous to equation (4.8) equations of equilibrium and for
all other sections of the blade cai, be written.

Examining as before only small movements of elements of the
blade, let us determine the deformation of section 1-2. The equatic,n

of deformations of element 1-2 can be recorded as usual [see equati(:.
(3.1)3

IEIWrr-Ww-rumo

"T"e Inertial term Is absent here, inasmuch as inertial torces
ar'e applied only on borders of the section. Considering that on
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the length of the section El = const 9nd N = const, and also that

EKy" = M, we will obtain

PRM p'MO. -9)

where

flm

Solution of the equation (4.9) can be recorded in terms •
hyperbolic functions in the following way:

M,-Ashr +Bg (+ .10)

Coefficients A and B are found from the following boundary

conditions:

- for x = 0, M M

- for x = 1 121 Mx = M2

Whence

A-.-AL AL

5--N,.

where al = "it12"

Substituting these values into equation (4.10), we get

Integrating equation (4.11) twice, assuming tnat for x
Y1 W A' y - Y1, and for x - 12 y' - 82P y y2, we obtain e¶tV.er

cr - ,Af-.,+f

The equation of deformations for the section 0-1 can be

recorded by analogy with the second equation (4.12):

h•u-• --. Mr•, .- +p, (4.-13•)
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Changing in equation (k.•, signs to the opposite and

adding with the first equation of (4.12), we obtain:

(4.14\

Substituting into the equation of equilibrium of elements (4.8)

the left side expressed in terms of bending moments from equation

(4.14), we will obtain the following equation:

~ (4.15)

Repeating the made calculations for other sections of the blade,

we wLll obtain system copied below of differential equations relative

to unknown functions of time Yi and Mi.

This system, recorded in the form of tables, consists of two

families of equations (4.16) and (4.17), each of which includes the

z + 1 equation. I

Any of the equations occupying one line in Table 1.1 constitutes

a polynomial whose coefficients are copied in the squares of the

table. All components of the polynomial are products of a certain

coefficient determined by the formulas (4.18), (4.21), (4.23), and

(4.24)-(4.27) on unknown functions Mi and Yi or on a second time

derivative Yi"

In the squares of Table 1.1 there are written only coefficients

at these functions, and the very function entering simultaneously

into several equations are carried out vertically in a special line

placed at the top of the tables.

Included in the described system of equations are also equations

of type (4.12), which pertain only to the shank and end section of

the blade and contain boundary values 80 and Bz. These equations

are necessary for calculation of boundary conditions of the problem.

The obtainea system of equations has the following form:
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Table 1.1.[ '& !"N, 4f1 @ I.-!@-IoM1.g,,,I, l 5 .9 9 ., I-1,,[

,l, O. le , , * . ,. .,,.
a ta, .I, tif '•,, (4.16)

Go*' *soI see' of- 000 0*iI~

1 A -z[M .., IN& I lye Ii ,h

ii

deinain aretacepted

b# , al bi-, - i 4 -

1 - 0, a. b,, I,

: d, J% 0, " e -as-:.j

--- (4.20)
O - O - o eO n, a-o a-o a -i ,__

S,6 a. 1 (4 .-, , -,,21)-

With the composition or the equations copied above the following

designations are accepted:

, at

,aN (4 .1)

M %nO4--0, .. 2

•,.m,(x_ •s_\.(4.20)

•,mO.
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a.--O. I

, -=,,_,+ 'a; (4.23)

h.-d-au..j

A•-d,-m; (4.24)

t,--€aM,-., (4.25)

In following expressions (4.26) and (4.27) mi is the mass of

the i-th load.

==1- (4.26)

(4.27)

is. . -- S a "77

Here the subscript k denotes the number of the line in Table 1.1.

To solve the system of equations recorded in Table 1.1, it is

convenient to use the method of successive approximations. In

reference to this system of equations it consists in the following.

Let us present the time functions yi(t), Mi(t), and Bi(t) entering
into the system (4.16) and (4.17) in the following form:

i. #•~N (O)-- ,ustn ;

Sp, (M= M, sin p*,
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where letters Yi' Mio and S. denote now only peak values of these

functions.

Then, considering that UJ(t)--p•ygsinpi. and cancelling by sin pt,

we will obtain a system of algebraic equations analogous to the system

of (4.16) and (4.17). Only in the right sides of the family of

equations analogous (4.16) values p2 will appear.

The method of successive approximations will be started from

the fact that as the zero approximation we will assign a certain

function Yi. The second subscript here denotes the number of the
0

approximation. The function y. taken as the zero approximation
0

should be standardized in any form, for example,

Fui-I. (4.28)

2 If function Yi is known, then correct to a constant factor

p inertial forces entering into the right side of equations of

(4.16) can be determined.

Let us assume temporarily that p2  1 1. Then from equations

(4.16) one can determine values of bending moments Mi and the angle

of rotation of the blade in the butt 50. After which according to

already known values Mi and B0 from equations (4.17) movements of
the blade axis can be determined at deformations which for the ca':e

p2 = 1 we will designate by ui in such a way that

.. JN PINI.(4.29)

After determination of movements ui the frequency of natur&l

oscillations can be determined. Its value is obtained on the basis

of expressions (4.28) and (4.29) in the following way:

85 8(

After which in accordance with expression (4.29) there is

determined and refined after the first approximation the function
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Then the whole process i- repeated until the required accuracy
will be attained.

The method of successive approximations used permits that the

determined form y. converges to the form of lowest tone of natural

oscillations of the blade.

I!
In the determination of subsequent tones the condition of

orthogonality should be observed. Operations resulting from obser-

vance of the condition of orthogonality remain the same as those
for the blade of an irrotational rotor (see No. 3 of § 2).

The equations copied above in an equal degree apply for the

calculation of frequencies of natural oscillations both in the

flapping plane and in the plane of the rotor rotation. Qnly with

calculation in the plane of rotation obtained should the values of

frequencies obtained above be corrected by the formula

(14.32)

where w is the angular velocity of rotation of the rotor.

The method of calculation of forms of natural oscillations does
not change from that in which plane the calculation is produced.

Let us consider more specifically certain operations in the
fulfillment of one approximation.

5.. Determination of Bending Moments
According to Known Forces

Let us start from the determination of bending moments accorditrv

to known inertial forces entering into the right side of eraation

(4.16), which we determine in each approximation by assigning in
the beginning the value p = 1.

Having assigned some form of oscillations yi, we can determine

coefficients of the right side of equations (4.16), which here we

will designate by Fk.
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Coefficients F can be defined by fo 'mulaj

(4.33)
two+$

or better

, rPA.-• (_u•4.34)

where Qa.s.ai.

Then the system of equations (4.16) can be copied in the

following form (Table 1.2):

Table 1.?.

0 I. # N, I , . I M-. I,.. -
I 'u 1, ha

1 Is Ag
---0--.... ... .. (4J .35)

OR,.W Ell!l,,- . . . ... . . . .- ., - -'

For a solution to this system it is necessary to know two more

additional equations considering the boundary conditions. These

equations can be the following:

- with rigid sealing of shank of the hlade

- with rigid sealing of the blade tip

With hinged fastening of the blade tips or with completel,

free ends M - 0 and M. n 0.

Subsequently we will examine only the two most predominant

cases, when the blade tip is free (M. - 0), and in the shank there

is either a hinged holder (M0 0 O) or rigid sealing (O • 0).
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Let us consider in the be.innrini the first case when the blade
is hinged fastened, i.e., M0  0. In this case to determine the
bending moments we use only those equations which in system (4.35)

are outlined by a heavy line, after which from the first equation

the value of the angle of rotation of the blade in the hinge B0

can be determined. From the last equation of system (4.35) it would

have been possible to determine the value 8z. However, we will not

need this value for further solution. The equation itself is used

only in a case rarely encountered in practice when 0z 0.

With the solution of system (4.35) there can be selected the

unsuccessful means leading to the appearance in the solution process

of small differences of great magnitudes, which in certain cases

can absolutely spoil the result even with the use of a machine

provide an accuracy up to nine decimal places.

Here we propose repeatedly a proven means which permits producing

calculation even on the common slide rule.

Let us divide the first equation of the system (4.35), written

in reference to hinged bracing of the blade, by g, and the second

equation by h. :

MA + AL gLs (4.36)

M1+ 61M3+M.!. (4.37)

Subtracting equation (4.36) from equation (4.37) and Introducing

the following designations

hwo

we will ottain an equation anale-gous to equation (.4
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In combination with the following equation of system (4.._)

this equation will form a system of two equations analogous to
equations (4.36) and (4.37). Repeating the described operations
certain number of times, we will finally obtain one equation cf the

following form:

After determination of the moment Mz_1 moment Mz-2 is

determined, etc., up to moment Mi. In other words, moment Mi iL

determined every time when moment Mi+1 is already determined. The

formula for determination of moment Mi can be recorded on the basis

of equations (4.36) and (4.38) in the following way:

S(4.40)

After determination of bending moments the angle of rote tut,

of the blade in the butt hinge 80 is determined by the formula

P#-FO--6g,. (4.41)

The second stage of the method of successive approximatioa6

consists in the determination of deformations of the blade by the

already known values of bending moments Mi and the angle of rotation

of the blade in the hinge 8O.

6. Determination of Movements by the
Known Bending Moments

Blade movements with its deformations, which here in accordance

with that said above we designate uI, can be determined from system

(4.17). However, it is possible to show that equations of systttem

(4.17) are insufficient for determination of all values of uI.

Indeed, to letermine the positions of the curve with a knoin

distribution of curvature along the length, which is assigned t,,

values Mi, and with a known value of the angle of rotation at ome

point S., one more additional condition superimposed on values of

novemernts is necessary. The last equation of system (4.17), includlng

the value cf tn-e nr~le of rotation In. the other point ez, is actually
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identical to the first equation anci is written by us especially by

analogy with system (4.16). (

Such an additional condition is either the condition

if in the shank of the blade there is a holder, or the condition

m~E,-o, (4.43)

if the blade is examined as free on two sides of the beam. Condition

(4.43) coincides with the expression emanating from the condition of

orthogonality with a zero tone of oscillations

Having calculated the coefficients which include the already

defined values Mi and 8 and leaving only the first of the two

identity equations, we will obtain the following system of equations,

which in combinati.n with equations (4.42) and (4.43) permits

determining all values of ui (see Table 1.3).

Table 1.3.

Upg Uf UZ Uj *oe 1  U:

b,•
" " (4.44)

bZ I,- b ,. 03,I ••T
CZ1 = S..

S'2__ =, I=i

Here we introduced the following designations

Dj-dm.,Ml-,+C•lM+drMI+,. (14.45)

where in this formula for I = -1 instead of the value M-1 one should
put O, and the value d 1 shcld be considered equal to unity

(dt 1 a 1).
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Under condition (4.42) solution to the system (4.44) is reduced

to the determination of values ui from simple recurrence formulas

of the form

?I
~~ I -s IDS.-$..wg-s.gg..1 (i4.46)

In solving system (4.44) with condition (4.43) value uj car, be

represented as

ugmw+i.. (4.47)

where U0 = 0, and -u can be determined by formulas (4.46), after

ii
which the value u 0 can be defined by formula

'-a
a. ~ (4.148)

Af

Further course of successive approximations has already beezn

mentioned above.

In the examined case of hjuiged fitting of the blade in the

butt, the method of successive approximations will lead in the begin-
ning to the determination of the forn of zero tone, which with

coincidence of the blade hinge with the axis of rotation of the
rotor will coincide with a straight line. It is natural that iL

this special case the calculation should be started directly from

determination of the first tone, conducting in each approximation

orthogonalization to the zero tone, considering it coinciding with

a straight line.

Most frequently the shank hinge of the blade of a helicopter

is ascribed from the axis of rotation of the rotor on a certain

* value r., which can comprise approximately A-10% of the radius

of the blade. The presence of this distance leads to the fact ',?SZt

the form of the zero tone of the hinged suspended blade can somewhat

differ from a straight line, and the frequency of natural

oscillations becomes noticeably different from the value equal ti

the number of revolutions of the rotor. Below (see Fig. 1.14) for



illustration of this effect .• dive a graph of the form of zero tone

with very greatly increased distance from the axis of rotor rotation

to the butt hinge..(9

7. Case of a Blade Rigidly Fastened in the Shank

Calculation of forms of natural oscillations for a blade rigidly
sealed in the shank differs very little from the case of the hinged
fitting examined above.

The first stage of calculation involving the determination of
bending moments Mi is conducted in the manner as was described

above, but here the system circled in (4.35) by a line is solved.

This system includes one equation more, in which in virtue of

boundary conditions it is assumed B = 0.

The same condition is used and in the solution of system
(4.44), in which the coefficient D is calculated by the formula

D,-cOMO+doMj.

8. Possible Simplifications in the Calculation
of Coefficients

Let us still note that in those cases when the bladc is divided

into quite a large number of sections in such a way that the value
of coefficients a, in formulas (4.20) is less than 0.05-0.08.
formulas (4.21) and (41.22) can be simplified by replacing the

hyperbolic functions entering into them by first terms of their

expansion in series.

Actually, let us assume in formulas (4.21) and (4.22) that

a3 5 03sha=a+ - +T?+... a+ ;
31 1•

and let us disregard values a as compared to unity. Then

cofficients di and ei can be calculated by the approximate formulas
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These simplifications somewhat decrease the laboriousness of

calculation, which is inportant in its manual fulfillment.

9. Certain Results of the Calculation of Forms
and Frequencies of Natural Oscillations

of the Blade

Here we separate two questions, which represent from our

point of view the greatest interest.

The first question will touch upon those more precise definitions

wt,:,ch are introduced by calculation of frequencies and forms of

natural oscillations of the blade in the field of centrifugal foces

in final results as compared to the approximation of calculation

expounded in § 3. Then we will discuss the consideration of cazes

of the appearance of sharp bends of the blade under the impact nf

local peculiarities in the distribution of rigidity and mass parara,-

eters along the length of the blade. The appearance of these bends

is characteristic for beams stretched by centrifugal forces, and

without extension centrifugal forces are not observed.

Let us start with the first question. In No. 1 of § 3 we already

noted that the approximation method of calculation of frequencies

of natural oscillations of blades in the field of centrifugal forces,

qs a basis of which there is assumed the assumption about the fact

that the form of natural oscillations in the presence and absence

of centrifugal forces are not distinguished, gives quite satisfactory

results in values of frequencies.

For confirmation of this position let us give values of fre-

quencies of natural oscillations of the first three tones of blades

hinged suspended and rigidly sealed in the shank of one of the heli-

copters in the field of centrifugal forces. Values of frequencies

"4 calculated by the approximate power method (see § 3) are placed in

the second column of Table 1.4. In the third column there are
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Tabie ,.

Tone of oscillati(,i. Frequency of natural
oscillations

method of exact
approxi- method
mation

Blade hingud suspended
in the shank

First ................ 405.3 404.3

Second ............... 708.5 705.9

Third ................ 1069.7 1069.o

Blade rigidly sealed in
the butt

First ................ 212.1 194.7

Second .............. 463.7 61

Third ................ 821.5 817.5

placed for comparison accurate values of frequencies calculated

according to the method discussed in this paragraph.

A comparison of values of frequencies given in Table 1.4 shows

that with a hinged suspension of the blade the distinction in their

values is very insignificant. With rigid sealing it is somewhat

more but also small. Therefore, as was already noted above, for

calculations whose purpose is exclusion of the possibility of appear-

ance of resonances, the method gives fully satisfactory results.

The influence of centrifugal forces has a greater effect on

forms of natural. oscillations and, especially, on the distribution

of bending moments and curvature of elastic line along the length

of the blade.

Figure 1.8 shows hinged forrs of the first five tones (excluding

the zero tone) for the same blade as in Table 1.4, and on Fig. 1.9

distributior of bending moments corresponding to these forms is

given. Solid lines on Figs. . anw 1.9 (just as on Figs. 1.10,
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Fig. 1.8. Forms of first five tones of
the blade in the field of ccntrifugal
forces and at n 0.

1.11, and 1.12) indicate the form of natural oscillations in the

field of centrifugal forces and dashed lines, the same form for an

irrotational blade.

Figure 1.10 gives the forr cf naturrl oscillations and bending

moments corresponding to them for the first two tones of the blade

sealed in the shank.
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Fig. 1.9. Distribu-
tion of bending moment2-

Fourtr, tone along the blade duc.Ling
SD~a oscillations in forms

f7Sr/min of the first five
III I tonies in -the field

I I of centrifugal forces
-- and at n 0.
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greatly appears inodiaglams osbegdingsmoments and, conseqentlyga

also in the dist'ribiillon of flexural stresses along the length of the

blaý-e. The creator the inf'1,1- . t-, o lower the tone of natural

oscillat Lun:;.ý.6
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Distribution of beniin.: fomenrnt:; along the blade length with

its oscillations in the field of centrifugal forces is characterized

by an increase in bending moments on certain sections of the blade

owing to their decrease in adjacent sections. Such a local increase

in bending moments will be called the concentration of bending

moments. The appearance of concentrations of bending moments is

connected with the presence in the design of the blade of large

concentrated loads and sharp drops in bend rigidity.

Concentrations of bending moments lead to the appearance on

a series of sections of the blade of increased flexural stresses,

which is caused by sharp bends in the blade on these sections.

This circumstance is of considerable interest for practice

and therefore should be examined in more detail.

The character of blade oscillations in the field of centrifugal

forces to a great degree is determined by the relationship between

values of elastic and centrifugal forces. If the bending rigidity

of the blade is sufficiently great (as this frequently happens,

especially in the plane of rotation of the rotor), and the centrifugal

forces are insignificant (small rotor revolutions), then the form of

oscillations differs little from the form of oscillations of an

irrotational blade.

If, however, conversely, the bending rigidity of the blade is

small, and centrifugal forces are considerable, then the form of

deformations of the blade is determined basically by inertial and

centrifugal forces and depends little on elastic properties of the

blade. In this case the form of deformations of the blade with

oscillations differs very slightly from the form of deformations of

an absolutely flexible heavy line stretched by centrifugal forces.

Such a position, as a rule, is observed with oscillations in the

thrust plane for blades of contemporary helicopters.

Quantitatively the relationship between elastic and centrifugal

forces can be estimated with the help of coefficient q, which is
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tnc ratio of the elastic potential energy to potential energy

accumulated by the blade due to bending in the field of rcttigal

forces:

C
am

Values CEI and CN are depicted in formulas (3.3) and (3.-4).

For a > 1 the influence of elastic properties of the blade is

greater than the influences of centrifugal forces. For a < -.

opposite picture is observed.

Table 1.5.

Tone of Coefficient a with
oscilla-
tions deforma- deforma-

tion in in the
the flap- plane of
ping rotation
plane

First ..... o.083 2.2
Second.... 0.332 3.7

Third..... o.629 7.7

Fourth.... 1.116

Table 1.5 gives values of coefficients a for a hinged suspended

blade whose forms of oscillations are shown on Figs. 1.8 and 1.9.

This blade can be examined as a typical helicopter blade.

Values of coefficients a given in Table 1.5 confirm the position

that the helicopter blade by its characteristics in the flapping

plane approaches an absolutely flexible heavy line stretched by

centrifugal forces for which a = 0.

The greater the properties of the blade and torsion fiber
approach, the lower the tone of natural oscillations.
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The basic peculiarity o" nn ritsolutely stretched torsion fiber

is the fact that its axis underCoes C'ractures at points of appli-

cation of concentrated transverse forces and in places of the

connection of the line with rigid elements. Such a fracture, as

a rule, appears at the place of sealing of the line. If into the

torsion line there is inserted a rigid section, then along the edges

of this section the same fractures will appear. Therefore, in those

cases when properties of the blade and the stretched torsion fiber
approach, these peculiarities appear with deformations of the blade.

Of course, the elastic blade, no matter how low its flexural rigidity

is, cannot undergo such fractures. Nevertheless, fractures peculiar

to an absolutely torsion fiber are transmitted to the blade and appear

in the form of sharp bends of its axis. These bends are accompanied

by the appearance of concentrations of bending moments and the

increase in flexural stresses at places of the bend.

Let us consider several examples confirming this position.

Figure 1.11 gives the distribution of bending moments along the

length of the blade corresponding to forms of natural oscillations

of the first and second tone with a load almost equal to the weight

of the blade and placed on the relative radius r = 0.48.

At the point of bracing of the load there is observed a sharp

concentration of the bending moment, which leads to an increase in

stresses almost twice as compared to an irrotational blade. Intro-

duction into the blade of the section with increased rigidity leads

to the appearance of the concentration of bending moment in the

region of this section (Fig. 1.12). But inasmuch as the Increnze

in flexural rigidity leads to an increase in the drag torque on the

length of the rigid section, then the greatest stres:.es appear alonv

the ediges of the section, i.e., thert where the absolutely torsion

fiber would undergo fractures.

By the manifestation of the same properties of absolutely

stretched torsion fiber there is explained the appearance of Jharp
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concentration in bending moment in the case of rigid blade sealing,

since the torsion line would have at the sealing site the same

fracture as that of a hinged-mounted blade.

The increase in bending moment corresponding to the first tone

with rigid sealing of the blade in the shank occurs almost six times

(see Fig. 1.10) as compared to the moment of an irrotational blade.
Such a sharp concentration in bending moment has a noticeable

influence even on values of frequencies of natural oscillations

(see Table 1.4). This considerably lowers the possibilities of the

method of approximation (see § 3) in the application to calculation

of a blade with rigid sealing in the shank.

In a number of cases in practice it appears necessary to

introduce into the rotor blade additional hinges or to displace the

position of those hinges which are already in the construction of

the hub. The need to create additional hinges can be connected with

the necessity to lower the flexural stresses on some section of the

blade or with the change in frequencies of its natural oscillaticns.

Let us see how the introduction into it of an additional hinge

has an effect on flexural deformations of the blade. It was said

earlier that the blade of a helicopter is similar in its charac-

teristics to a stretched torsion fiber. The stretched chain with

hinges continuously distributed along the length behaves just as

the torsion fiber. Therefore, one can assume that the blade of a

helicopter takes during deformations approximately the same form as
a stretched multilinked chain. It is natural therefore that the

introduction into the blade of an additional hinge cannot con-

siderably affect the form of its deformations. This circumstance

is illustrated In Fig. 1.13, where the form of the first tone n f

natural oscillations of the blade is shown with an additional hinge

introduced into it and without it. From Fig. 1.13 also it Is clear

that the influence of an additional hinge noticeably has an effect

on the form of bending moment only on the small section close to

the hinge. On sectionr far from the hinge its influence is small.
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- - -- Fig. 1.13. Form of the
first tone of natural
oscillations of a

S- - -blade with an additional
hinge and without it:

S-r -- &a and b) forms of first
. tone in the field of

centrifugal forces
"-- - - -without a hinge (a) and

C with a hinge (b); c) form
&W. k of firs. tone of irrota-

-- --- tional blades with a
-- - -d - hinge; d and e) form of

bending moment in first
tone in the field of

. centrifugal forces without
- i a hinge (d) and with a

• --i hinge (e).

a 4z V9 4i 4a

It is necessary to note especially that in the examined case

when the blade has two hinges, forms of its oscIllations in the fielIJ

of centrifugal forces very greatly differ from forms of oscillations

of an irrotational blade. During oscillations in the first tone the

irrotational blade is not at all deformed. Therefore, in the given

special case the approximate power method of calculation of frequen-

cies in such a form is expounded in § 3 will simply not be used.

It is also impossible to disregard the field of centrifugal

forces in examining deformations of the blade in rotor of the

Derschmidt type with a hinge greatly remote from the axiZ of rotaticn.

The form of oscillations of the lowest tone of the blade of this

rotor and the bending moment corresponding to It are showi or-,

Fig. 1.14. Neglecting the centrifugal forceL the form of blale wou!i

coincide with a straight line, andi the magnitude of the Lendjir

moment s.!own on Fig. 1.14, whl•, for this rotor in very great 3nj

actually ,cetermines tne ponsibility of its application, would "e

impossible to find.
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Fig. 1.14. Form of lowest toneI I -/of natural oscillations of a
b¶1 1  I blade with a hinge ascribed from

!6 Ithe axis of rotation and bending
-6 moment corresponding to this form

S]- (with oscillations in the flapping
41- •plane Pin = 1.35, with oscilla-

F,.I ax1-• tions in plane of rotation
' 4 ,? u - p0in = 0.91).

The examples given show that in a whole series of cases the

forms of natural oscillations in the field of centrifugal forces
considerably differ from corresponding forms of an irrotational

blade. This circumstance certainly should be considered in the

designing of the blade. Therefore, in work in the design office,

when all calculations are conducted on electronic computers and the

degree of complexity of the method remains simply unnoticed, there

is no sense in reverting to the methods of approximation.

§ 5. Torsional Blade Vibrations

1. Problems Solvable in the Calculation
of Torsional Vibrations

Above in §§ 1 and 4 it was noted that the calculation of forms

and frequencies of natural flexural oscillations of the blade has

together with an auxiliary importance (for calculation of stresses)
also an indepenrent importance as a method for selecting parameters

cf the blade which exclude the pussibility of flexural resonan'cca.

This problem does not exist for calculation of free torsional

vibrations, sino'e in practice oscillations considerable in amplItu6e

vihich were caused by twisting resonance were never observed. As

P rule, considerable torsional vibrations appear only with fNiitf',

"cr during forcei oscillations under conditions of proximity of the

flutter. Ther-'fore, the magn• ude of frequency of' natural torsionsi

v!bratlon& itself is of no practical interest (if one were not to

t:xamine it as a parameter characterizing the torsional rigidity of

the blade), and results of the calculation of forms ani frequencies

of natur7,i o.cil-ation:; have only an auxiliary as i;wner.t for .-a!-

zuistion of rw.clter or of flexural stresse5, w%!. re cae
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takinr into accouznt tor.;ioric.. J-:'c1':r, ations of tre blade. The otter

problem of calculation of fre.: torsional vibrations of the blade

i3 not raised.

There are basically two problems of the calculation of forced

torsional vibrations. The first is the determination of elastic

deformations of the blade the calculation of which is necessary for

calculation of flexural stresses, and the second is the de~ermina-

tion of values of hinged moments necessary for calculation of' the

rotor control system.

2. Differential Equation of Torsional Blade Vibrations

Let us represent the blale in the form of a cantilever recti-

linear rod with torsional rigidity variable in length GTs. We will

consider the mass moment of inertia of the rod sections relative to

its axis Im, Just as the torsional rigidity, as a continuous function

variable in length of the rod, the centers of gravity of all sectionz

c'f the rod - as lying on the rod's axis, and sealing of the rod -

elastic on torsion.

It is natural that reduction of the problem on oscillations

of the blade to the calculation of sucti a model presupposes the

application of a whole series of simplifying assumptions. We will

consider that the axis of rigidity of the blade 1z rectilinear and

coincides with the axis of axial hinge of t he rotor hub. We will

assume the flapping compensator x equal to nero.

Calculation of the shift in :.-nters of zrevity and a detern.it'a-

tio of the influence of the flappinr compensetor on frejuencle:; of

natural oscillatPon- will be exminiled in .

Application of the enumeratel alsumptionzr permits scrvlnr$ "te

problem on torstonol vlbretions of the btaie atsolutŽly inJepen-ent._y,

not connecting them with its flexural vibrattions.

Let us comr>ose the 1dfforentiai equatinr oW" torslonpl vt~rptlrcnr

cf the t' lae Tr-ju4- in:'>½fL' t~~~r. 4- Tt 4 r;. r. e



from the differential equation:

where T I- the linear torque of external and inertial forces having

an effect on the element of the blade.

Under the impact of torque every element of the blade twists

at the angle:

= dr, (5.2)

where T is the elastic angle of rotation of the blade section.

The value of torque, obtained from (5.2), will be substit':ted

into (5.1). Then the differential equation of twisting deformations

of the blade can be recorded in the form

IGT,,'I'+ V =0. (5.3)

Let us examine the torsional vibrations of the rotor blade

revolving in a vacuum. The linear torque in this case will be equal

to:

Mt I.; - 1 VA,- &,.(5.4)

where I and Ix are mass moments of inertia of the blade section

relative to its principal axes of inertia.

If the extent of the profile along the x axis is considerably

larger than along the y axis, and this usually occurs, then it is

possible approximately to. assume that

where I is the linear mass moment of inertia of the blade section

with respect to the axis passing through the axis of rigidity.

Substituting expression (5.4), taking into account (5.5), into

equation (5.3), we will obtain the differential equation of torsional

Svibrations of the rotor blade revolving in the field of centrifugal

forces:
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(5.6)

The model of the blade examined here has the following boundary

conditions:

for r = 0:

fcr r = R: [GT,, 1 (5.7)

where e... is the rigidity of the rotor ccntrol system reduced to

the ax.al hinge of the hub (rigidity of control determines the magni-

tude of rigidity of elastic sealing of the blade in the shank); C0 --

rotation of blade in axial hinge due to deformations of rotor control

system.

3. Determip:ation of Forms and Frequencies of Natural
Oscillations of the Torsional Blade

Here we will use the same method of solution which was discussed

in No. 1 of § 2 for determination of forms and frequencies of

flexural vibrations. Let us assume that

M( sinW. (5.8)

Substituting expression (5.8) into equation (5,6), we will

obtain

?' + (I-- 0A)/I.'? =0. (5.9)

From this equation it immediately follows that forms of natural

torsional oscillations of a rotational and irrotational blade are

identical, and the frequencies are connected by a simple relation

of the form

I •=,+•.(5.10)

where v is the frequency of natural oscillations in the ficeid of

centrifugal forces; vo is the frequency of natural oscillations of

the blade of an irroLdtional rotor.

TntegraLing equation (5.9), taking into account boun/Jari

conditions (5.7) for the case w u 0, we will obtain

ldr(.
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iHere and below the index at v, which denotes, that the frequency

*-.f r.n9ta.urel ,-ý,illations is determired for W = .0, will be omitted.

Equation (5.11) is solved by the method of successive approxi-

mations, Just as this was carried out in the solution of equations

(2.4) in § 2.

Let us assign the arbitrary form of oscillations cp. This form

should be in some way standardized, for example

Y' (5.12)

wherE PR is the elastic angle of twist of the blade tip.

Then, fulfilling the operations assigned by expression (5..1),

we will determine the function

I.d+ I.dr. (5.135)

The frequency of natural torsional oscillations of the blade

can be determined from the condition of standardization (5.12)

V (5.14)

where is the value of function $ at r =R.

Assigning a new value of function

and performing operations (5.13) and (5.14) still as many times

as it is necessary to provide the necessary accuracy, we will obtin

the final value$ v and p. As with the determination of forms and

"frequencies of natural flexural oscillations, such a method of

successive approximations leads to the determination of the lowest

tone of natural torsional oscillations. In the determination of

subsequent tones it is necessary to fulfill the condition of

orthogonality

Ia?"7dr9O. ( 16)
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Here the index j denotes tne form of the sought tone of

oscillations and index m the form of the already determined lowest

tones. Assuming

Oru (5.17)

we will obtain from condition (5.16) expressions for constant
coefficients cM:

C . (5.18)

Frequencies of natural oscillations of subsequent tones are

determined with each approximation by the formula

--- •. (5.19)

Upon completion of the determination of all forms and frequencies

of natural oscillations necessary for further calculations it is

necessary to correct the frequencies by the formula (5.10), con-

sidering the influence of centrifugal forces.

Calculations of forms and frequencies of natural torsional

oscillations of a blade for real helicopters show that of decisive

importance in the determination of values of frequencies of the

lowest tone of oscillations is the rigidity of the rotor control

system. Almost always the torsional rigidity of the blade proves

to be considerably higher than the rigidity of the control system.

Figure 1.15 gives forms of the first tone of natural torsional

vibrations of blades of different helicopters found in mass

exploitation.

According to the relationship between twisting strains of the

blade and rotor control system with oscillations in the first tone,

it is possible to judge the magnitude of twisting rigidity of the

blade as compared to rlgidity of the control system. The relationship
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Fig. 1.15. Forms of natural torsional oscil-
lations of the blade with different relation-
ships of rigidity of the blade and control
system.

between these rigidities is estimated by the coefficient a (see

Fig. 1.15). This coefficient itself determines part of the tnt:l

angle of rotation of the blade tip due to deformations of only the

blade.

The described peculiarity in the relationship of rigidities of

the blade and control permits in certain calculations using the

assumption of the fact that twisting deformaticns of the blade are

small as compared to deformations of control and introducing into

the calculations only the twist of the blade due to the control

deformation. This assumption is frequently used during calculation

of flutter (see Chapter IV of Book One).

Results of the calculation by the expounded method permit

Judging the character of location of frequencies of natural torstoioal

oscillations of blade with respect to harionic components of

aerodynamic forces. Figure 1.16 gives a resonance diagram of

torsional vibrations of a blade, Dlotted for one of the existing

helicopters, and Fig. 1.17 gives forms of the first three tones.

In No. 1 of this paragraph it was already noted that variable

external forces twisting the blade are small, and therefore even with

resonance of the amplitude of torsional vibrations they do not become

darwerc.4 for the blade strength. In view of this there is usually
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____ 0

Fig. 1.16. Resonance
iý diagram of torsional• Z/ /•:o bldeoscillations of the

0ý blade.

Fig. 1.17. Forms of'
first three tones of
torsional vibrations of

o blade.

"44It--T-,

no attempt to avoid twisting resonances, arid the resonance diagram

shown in Fig. 1.16 is given only for an estimate of the absolute

magnitude of frequencies of torsional vibrations.

From Fig. 1.16 it follows that even the second tone of torsional

vibrations proves to be in operating revolutions npa6 higher than the

fift, cnth harmonic to tlhe number of revolutions of the rotor.
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Frequencies of subsequent tones appear even above. Therefore,

probably only the frequency of the first tone of natural torsional

oscillations of the blade can be of practical interest.

All the above-mentioned considerations pertained to torsional

vibrations of the rotor blade examined separately neglecting those

connections which are superimposed on oscillations of construction

of the blade fastening on the hub. It appears that the connection

between torsional vibrations of separate blades of the rotor through

the control system can considerably change the whole picture of

oscillations.

4. Determination of Forms and Frequencies of Natural

Oscillations of the Rotor as a Whole

Figure 1.18 gives a diagram of the contrcl system of the angle

of setting of blades used on the majority of contemporary helicopters.

Fig. 1.18. Diagram
of cyclic pitch con-
trol: 1 - lever of
blade turn; 2 - hori-
zontal hinge; 3 -
vertical hinge; 4 -

two -blade; 5 - disk of
cyclic pitch control;
6 - slider.

Constructively this system is carried out in such a way that the

-loading of a certlain control circuit depends on what combination of

forces nrrives on the disk of the cyclic pitch control from the

b1Ldes. The forrn of this combination droends on the form of vibra-

tions of' the rotor, i.e., on the distribution of phases of vibrations

by the b.andes. Thus, for example, in the case when all blades

v virate with an tdentical phase, only the control circuit. is loaded

bj collective pitch. When oppositely located blades vibrate in a
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reverse phase, circuits of transverse and longitudinal control

are loaded. Finally, if the number of blades in the rotor is larger

than three, then such forms of oscillations are possible when all

forces arriving from the blades are locked on the disk of the cyclic

pitch control.

The variable forces appearing during blade vibrations cause

deformations of those control circuits which are loaded by these

forces. With deformations of separate control circuits the disk of

the cyclic pitch control oscillates, and vibrations of the disk

tie fully defined phases to vibrations of the blades. Thus, for

example, with vertical vibrations of the disk, appearing in the
deformation of the control circuit by collective pitch, vibrations

of the rotor of such form are excited at which phase of all blades
are identical.

When the disk of the cyclic pitch control during vibrations is

inclined, the oppositely located blades are excited in a reversed

phase. Thus the disk of the cyclic pitch control connects vibrations

of' separ&te blades in the rotor. As a result it turns out that

vibrations of blades can occur only with fully defined forms of

vibrations of the entire rotor as a whole, and the number of such

forms coincides with the number of blades in the rotor. With this

each form of vibrations corresponds to its value of rigidity of

control reduced to the axial hinge of the blade which depends on the

rigidity of that control circuit which with this form is loaded.

Accordingly, inherent to each form of vibrations of the rotor is its

value of frequency of natural torsional oscillations of the blade.

Consequently, for a rotor with the number of blades z. there

is z different frequencies of natural oscillations, which corresponrc

to each tone of torsional oscillations of the blade. Inherent to

each frequency of natural oscillations is its aefinite form of

distribution of angles of twist along the length of' the blade, but

qualitatively all forms corresponding to a definite tone of

oscillations are not distinguished, and thus, for example, they

have an ider,tical number of nGdes of oscillations.
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As an example it is possible to cite values of frequencies of

natural oscillations of the first tone for a four-bladed rotor of

the helicopter Mi-4.

The lowest values of frequencies with loading of longitudinal

and lateral controls attributed to working numbers of revolutions

of the rotor are ._-_ = 3.4-3.5. With loading of the circuit ofnpaG

the collective pitch this values takes the value ' _ 4.6 ane

when all forces from the rotor are locked on the disk of the cyclic

pitch control, " = 6.6."RP&

A very important circumstance is the fact that within fre-

quencies of oscillations corresponding to harmonics to the number of

revolutions of the rotor on which external forces have a noticeable

magnitude lies only the first tone of natural torsional oscillations

of blade. All subsequent tones of oscillations lie above and there-

fore are of no practical interest.

§ 6. Joint Flexural-Torsional Vibrations of the Blade

1. The Connection Between Flexural and
Torsional Vibrations

Above free flexural and torsional vibrations of the blade as

two independent problems not connected between themselves were

examined, In a real blade torsional and flexural oscillations are

always connected. How great this connection proves to be will be

shown below. We will examine vibrations of the blade in a vacuum

when the connection between torsional and flexural oscillations ±-

carried out only owing to the shift in centers of gravity of sections

with respect to the axis of rigidity of the blade and due to the

nonholonomic constraint through the flapping balance. Let us use

the method of calculation constructed on the basis of the method of

three moments, described in § 4, in reference to calculation of

flexural vibrations.

The possibility of fulfillment of the calculation of frequencies

of1 natural flexural-torsional vibrations can be useful to the designer

in the solut Lc, :f a whole series c# concrete -rc-tial rrotle::.z.
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Thus, for example, the necessity of fulfillment of such a

calculation appears in those cases when to eliminate resonance it

is proposed to instal] extension talancers on the blade. Here there

are considered those relatively rare cases when arrangement of bal-

ancers is proposed not to eliminate flutter but to change the

frequencies of natural oscillations.

The desire to consider the connection between flexural and

torsional vibrations can appear for the designer also in the case

when the calculation of frequencies of natural oscillations of the

blade for some reason does not coincide with the experiment. Here in

a number of cases it can appear that this distinction is explained

by a disregard of this connection. It is possible to hope that

results of calculations mentioned below will facilitate permission

of tho.e doubts.

It is necessary, however, to note that the calculation of fre-

quencies of natural oscillations in a vacuum cannot give an answer

to many questions appearing in practice in connection with the

appearance in the blade of increased varying stresses with any

frequency and estimated as resonances, since aerodynamic forces can

introduce in many cases very substantial corrections into the pattern

of the phenomenon.

2. Method of Calculation of' Joint Vibrations

Fulfillment of the calculation of formns and frequencies of

natural flexural-torsional vIbrations is considerably simplified i"

one were to examine th.e blades of only the definite most widespread

type, during the calculation of which the following assumptions car.

be used:

1. The axis of "i ":idit. Y is a strailt line colnci•inI

'ith the axis of ax . .

In principl> -. :;od of calculation will rnot • c•.r,,e w

these axes wll t.. ,cide. Only it will he necessary to Irtrodicc

into tle u1rur , norm ,a r. o fia or ef :ii ,,er•.i : ec,,s 1i,,r:.



the distance between these axes. For simplicity of computations

let us assume that the axis of rigidity passes through the axis of

rotation of the rotor.

2. The plane of least rigidity of the blade is considered

coinciding with the flapping plane.

3. The blade accomplishes torsional vibrations due to twistir.6

deformations of the actual blade, deformations of the control svqtem
by the blade angle end as a result of nonholonomic constraint through

the flapping balance with vibrations of the blade in the flapping

plane.

Fig. 1.19. Oal-
culation model

Axis of roei-ditv of the blade.
AxialCenter of gravitij

4x4'

T.i.ese assumptions permit representing the blade in the form. cf

a weightless free beam iivided into z sectiors, along the edges of

ovnich wit, a .:attain extension xc,, loads with mass mi are loea.Le.
(Fig. 1.16). Every load except mass mi, concentrated in the ce, rer

t" zra.itY of tthc corresponding element of the blade. possesses also
a rertain moment. (f inertia ',, with respect to the axLs 1asslt.ij

_.rou7t. Le cent, r of gravi ty of the load and parallel eiszZ't1C axis

,.r th, -lade.

Flexural an] torsional ri.lJitles w'411 be presentel in the for:.

cf step curvez in such a way that they rr.air. constant for the extent
cf e~c• .iectior,.



The presence of a flapping baiance leads to nonholonomic

constraint between flexural and torsional vibrations, which can be

expressed by formula

S.(6.1)

where q0 is the angle of rotation of the blade in the axial hinge;

%P0 - torque relative to the axial hinge; cynP - rigidity of blade
0

angle control system reduced to the axial hinge; x - flapping
balance; 0 - angle of rotation of the blade relative to the

horizontal hinge.

Furthermore, boundary conditions in the shank of the hinge-

mounted blade during its oscillations in the thrust plane somewhat

change. In the presence of a flapping balance these conditions can

be recorded as:

Me-a((.2)

where M0 is the bending moaent and %PO the torque in the blade shtenr.

With the composition of differential equations of vibrations

of the blade in the flapping plane we will use the methoi c.0 three

moments in that form which was discussed in § 4. 7he application

of this method to the calculation case examined here leads to t•.e

following equations:

d.M6 +,,+d.M,.,-.,..,,+J, ++*,.

le re

=.,j(rim 1-o. .2.....

- vertical movements co points of elastic axIs of '.e lI.'r

(see Fir. 1A.19); y! - vertical movements acf !ernters r" ,r•,.: ,V
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Expressions for constant coefficients ai, bi, ci, hi, and gi,

are given in § 4, see formulas (4.18)-(4.25).

MovemenLs in elastic axis fi and centers of gravity of elerments

of the blade yi are connected by the relationship

11mgy, +.,Y (6.5)

where qi are angles of rotation of elements of the blade around
its elastic axis.

To determine the forms and frequencies of flexural-torsional
vibrations of the blade one should add the equations of torsional

vibrations to equations (6.3).

If the torque can be considered constant in magnitude for the

extent of each section of the blade, it can be determined as

Af ,_. ,,- L,?P X " X " (6.6)"I- +mx., ,yi+IIX4.
I I i I

In magnitude of torque torsional deformations of the blade

can be determined thus

0

where GTwvw is the torsional rigidity of the section of the blade

along a length equal to - and (0 is determined by the formula
(6.1).

In the use of the method of three moments boundary conditions

otf the problem are considered in coefficients of equations of the

:;y tcen. Thus, in toe case examined here the boundRjry condLtion

(6.2) lends to ;i r:hange in coefficients of the fir:;t I;wo equnJtiort.

of system (6.3). For a blade with hinged fitting in the shank these

equations can be recorded in the following way:

- the first eauation of system (6.3) from which tYre value

S3 :is determined:
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P+ .- T •(6.8)

- the second equation of system (6.3):

V N(6.9)

Thus the system of equations, including equations (6.3), (6.5),

(6.6), and (6.7), constitutes a system of differential equations of

flexural-torsional vibrations of the blade. The solution of this

system permits determining the form and frequency of natural flexural-

torsional vibrations of the blade, which enters into the problem of

the calculation.

if one were to assume that the variables entering into differen-

tial equations (6.3), (6.5), (6.6), and (6.7) are changed according

to the sinusoidal law of the form

y, (4)=y, smn pl,

then these equations can be converted into a system of algebraic

equations relative to unknowns, which are peak value of former

variables. Only into certain coefficients of these equations will
2 w2 2

parameters p2 and y-- enter by cofactors. If we assume p = 1,

then these equations can be copied in the form

""jhM .i-1g + (6.1i0 )

d5.,M,..-,+ c,,M,+ d,M,+,= b1. 1,_,,_,+ a~u1 + b, u÷,1;

, V) i +-,,,+' ",x..,,r',;- ZMx',, ",; (6.11)

a a )
..., OTI-.

7aUj = -- X i. (6.13)

where

Ig
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The quantities entering into these equations are subordinated

to the following relations:

K [
2V.

1 (6.14)

It is convenient to solve the system of equations (6.10), (6.11),

(6.12), and (6.13) by the method of successive approximations. Tn

every approximation there-should be fulfilled a more precise definition
of parameter y under the angular velocity of rotation of rotor W

assigned in the calculation.

Fulfillment of successive approximations is produced in the

following order.

Let us assign a certain value of parameter y and arbitrary

form of zero approximation of functions yj and .

The functions taken as the zero approximation should be

standardized, for example,

AfLer that by formula (6.5) there can be obtained function f

Then by equation (6.11) quantity Mp, which is necessary for solution

of the system of equations (6.10) can be determined. Simultaneously

•X-_.O is determined.

After solving the system of equations (6.10) and determining

ui from the first equation of this system, 50 is determined:

% (6.15)
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Then by equatlun j k2 .Ueruiied, and by equation
(6.13) values of vi, which, furthermore, shc"ld satisfy the

condition ins•,m-O are determined.
S

The frequency of natural oscillations is determined from the

condition of standardization on the basis of the first relation of

(6.14) thus:

pl.!.. (6.16)

After that from relations (6.14) functions Yi and •i can be

determined, which are used for the following approximation fulfilled

in the same order. Simultaneously there is refined parameter Y.

Such a method of successive approximations leads to the determi-

nation of the frequency and form of the lowest tone of natural

oscillations. To determine the following tones there is used the

condition of orthogonality, which for flexural-torsional vibrations

JI has the following form:

[mayli,101 + 0. (6.17)

Here index J denotes the form of the sought tone and index m,

the form of the already determined lowest tones.

Application of the expounded method of calculation gives results

quite satisfactory for practice.

It is necessary to note tha÷ in those cases when the frequency

of natural oscillations of two consecutive tones have sufficiently

close values, this method of calculation does not give a convergent

solution. Practically, however, this circumstance does not have

great significance, since this can be only in the case when the

connection between torsional and flexural vibrations is very weak,

and corresponding forms of vibrations can be determined separately

neglecting this connection.
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3 Influence of the Connection Between Bending

and Torsion on Frequency of
Natural Oscillations

Here we will examine how much the frequencies of natural K

flexural-torsional vibrations of the blade can differ from corre-

sponding partial frequencies, i.e., frequencies obtained neglecting

the connection between bending and torsion.

Calculations show that the connection between bending and torsion

has the greatest influence on frequencies of natural oscillations of

the blade in those regions where partial frequencies of bending and

torsion approach. Therefore, one should investigate only the given

regions. Outside these regions partial frequencies of the blade

and frequencies of the connected flexural-torsional vibrations

practically coincide.

It is known that partial frequencies of natural oscillations

of bending of a hinge-mounted blade for all contemporary helicopters

lie in very narrow, fully defined, zones, the location of which with

respect to harmonics of external excitation cannot be substantially

modified. On Fig. 1.20 these zones are plotted on the resonance

diagram of the blade. This diagram is constructed for a region of

frequencies including only a number of first harmonics to the number

of revolutions of the rotor, since external forces acting on the

blade with higher harmonics are insignificant in magnitude and cannot

cause any noticeable vibrations of blade. Falling into this region

are only the first three tones of partial frequencies of the bendingi blade. Practically only these tones must be of interest during the

designing of the blade. Frequencies of natural oscillations of

bending can fall out of shown zones only for rotors with an unusual

method of fastening of the blades on the hub, for example, for

rotors with rigid fastening of blades or with a hub on a Cardan

Joint.

Partial frequencies of natural torsional oscillations of the
blade can be changed in wider limits, basically due to the distinction

) in rigidities of the rotor control system whose construction can be
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Fig. 1.20. Regions of location on a resonance
diagram of frequencies of natural oscillations
of the first, second and third tone of bending
and first tone of torsion for blades of dif-
ferent helicopters.

very diverse. Nonetheless, with respect to values of partial fre-

quencies of natural torsional oscillations of the blade there can

be made a very important conclusion involving the following. Into

the region of frequencies interesting to us there can fall only the

first tone of torsional vibrations. The second tone of torsional

vibrations appears, as a rule, in the region not lower than the

15th harmonic to the number of revolutions of the rotor (see Fig.

1.16), i.e., beyond the borders of the region interesting for the

designer. Oscillations considerable in amplitude with such fre-

quencies usually do not appear. Therefore, of practical interest

from the point of view of the possibility of appearance of resonances

is only the first tone of natural torsional oscillations of the blade.

Here it stands to remember that the rotor blade of the helicopter W

can have several first tones of torsional vibrations with different
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frequencies lepenoing upon the form of oscillations of the rotor on

the whole and on what control circuit is loaded with this form of

oscillations. The distinction in frequencies of natural oz.illations

of these forms will be determined solely by the difference in rigidity

of loaded control circuits.

In flight every harmonic of external forces can exite only

onc fully defined form of oscillations. Therefore in the investigation

the possibility of the appearance of resonance, one should certainly

check whether the resonance is possible when the rigidity accepted

in calculation corresponds to that form. In this paragraph only

natural oscillations of the system are examined. Therefore, we

will not dwell un this question in detail.

Figure 1.20 shows a region in which usually frequencies of the

first tone of natural torsional oscillations of the blade lie for

those forms of oscillations of the rotor when circuits of cyclical

control and collective pitch control are loaded. For rotors with

the nt~mber of blades of more than three a form of oscillations is

possible at which all forces arriving from the blades are locked

on the disk of the cyclic pitch control. The rigidity of control

corresponqing to this form appears usually very high. On Fig. 1.20

the upper limits of the region of the location of torsional vibra-

tions in this case is noted by a dot-dashed line.

Let us consider the case most widespread in practice when partial

frequencies of the first tone of bending and first tone of torsion

coincide in magnitude in the zone of operating revolutions of the

rotor. Let us investigate two variants of the distribution of

centers of gravity of the bl&Je along its length.

In both variants in accordance with the assumptions accepted

above we will consider that the axis of rigidity of the blade is

rectilinear and coincides with the axis of axial hinge of the hub.

The distance to centers of gravity of the sections will be counted

off from the axis of rigidity to the chord of the blade in percent.

All investigations will be conducted in reference to the blade of
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10Fig. 1.21. Step
' centering of the blade

______.__, - with replacement of
the sign in the node

I A of the first tone of
7.1 natural flexural

i v oscillations.

the helco ... I

the helicopter with a Duralumin pressed longeron with a chord

constant along the length. Such a blade has approximately a constant

linear weight along the length. Its chord consists of about one-

twentieth of the radius of the rotor.

So that results of calculations are most obvious we will

consider that with changes of the centering of the blade mass

moments of inertia of its sections with respect to the axis passing

through the centers of gravity are not changed, i.e., there is

maintained the position

In the beginning let us examine the case when the centering of

sections of thp blade are constant along its length, i.e.,

where b is the chord of the blade.

T•his variant of the distribution of centerings should be

considered very widespread in practice. Furthermore, it permits

in very clear form tracing the influence of centering and estimating

its significance as factors of the connection between flexural and

torsional vibrations.

Figure 1.22 gives a resonance diagram of the blade for this

96

!1

-I



fth harmonic

loo-10

4th harmonto

see •p,-.,a I fr ,ojn
ciel of the firs
tone on torsionl

and bndin• 3rd harIonio
lOOP

19t harmonic.
han~e of orating

No.. of re0 lu-

50 9f 950 ID80f a r/min

Fig. 1.22. Resonance diagram of the blade
with shift (constant in length) in
centering of 10% of the chord.

case. Solid lines show partial frequencies of bending and'torsion

of the blade, and dashed lines, the frequencies of Joint flexural-

torsional vibrations, which are calculated for a shift in centerinw

with respect to the axis of rigidity equal to 10% of the chord of

the blade. Calculations are carried out for the case when x = 0.

Therefore, the sign of t'-- thift in centering has no importance.

Here and later we intentionally examine the very wide range

of the change in centerings so that in a clearer form we can tr-,.-:

its influence. In practice constructive possibilities and con-

ditions superimposed by flutter permit changing the centering in

very small limits. Usually for blades of rotors the centering -hanges

from 20% to 25% of the chord of the blade (here there are given

values counted off from the leading edge of the blade), L.e., the

whole range of the change in centering consists of only about 5%

of the chord of the blade. Therefore, from examining Fig. 1.22

the conclusion can be made that displacement of the centering,

constant along the length of the blade, has e very slight effect on

values of frequencies of natural oscillations.
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Fig. 1.23. Frequencies of natural flexural-
torsional vibrations of the blade with the
step law in the change of centering along
the length of the blade with a shift of 10%
and 20% chordwise from the axis of rigidity.

In the second case examined here the distribution of centering

is selected in a way at which its Influence appears the greatest

during oscillations witn a frequency close to the partial frequency

of bending of the first tone. The centering is taken as constant

along the length of the blade, but its sign Is changed in the node

Of the first tone of partial flexural form.

Step centering ra&n be created for the blade In those cases when

an antiflutter balancer is Introduced into the design not along the

whole lenivth but oinly on a small section on the blade tip. Results

of the calculAtion for this variant of the distribution of centeringv

are shown In Fig. 1.23. The inf'luerice or centering In this cast Is

rather great. Therefore, with such distribution of it along trne

length the connection between bfrn4rwn and torsion shou1l be con-

sidered1 during calc-a.itor of "-ei 7pe
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Fil. 1.24. Influence of shift chordwise by
10 and 20% of a load in 10 kg weight concen-
trated on the blade tip on magnitude of
frequencies of natural flexural-torsional
vibrations of the blade.

It is necessary to - imine still the influence of the conceri-

trated load transferel chordwise. We take the magnitude of load

equal to 8% of the weight of the blade. This Is prouably that
maximum magnitude of the load which i..an be practically secured on

the blade. The most efeective place of fixing such a load from *.-

point of view of the i-reatlon of great factors of the connection ot

flexural and torsiorna vibrations is that point of the blade where

movements in the thi,st plane are maximum. Therefore, we will

examine the case with fixing of the load on the blade tip.

Figure 1.24 shc-s results of the calculation for tris case.

The influence of the concentrated load on the frequenc, -f natural

oscillations with great limits of it can be ccnsidered ubstantial;

nowevcr, it is do.btfJzl whether the applicaticn of suc retns to
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eliminate resonance can be re:.:r!ned to the designer. Nonetheless,

installation of the load can be ernamined as a temporary means of

treatment of blades undergoing great varying stresses due to

resonance.

The last parameter, which should be examined as a factor of
the connection between bending and torsion, is the flapping balance.

To estimate its influence on the magnitude of frequencies of natural

flexural-torsional vibrations calculations with the flapping balance

x = 1.0 were made. This is the largest value of the flapping

balances ever used in practice. All the above-mentioned data were

obtained with x = 0.

Of the calculations made it follows that the influence of the
flapping balance is insignificant. However, calculation of the

flapping balance can in some imeasure be justified, inasmuch as it

introduces a certain refinement into the form of distribution of

the bending moment in the blade shank.
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§ 7. Forced Oscillations of the Blade

1. Application of the Method of B, G. GaJ.erkin for
Calzulation Deformaticns of the Blade.

Determination of Static Blade
Deformations

The problem of determining blade deformations whose derivation is

given in § I is reduced to the solution of the differential equation

(1.9) already described above.

~tut- [N 'l +,- mJm. (7.1)

where T is the linear external load on the blade distributed along the

radius and variable in time

Above in §§ 2, 5, and 4 -we examined the solution of the homogeneous

equation for T ! ), hj'hi2h descrtbes natural oscillations of the blade.

Here there will be examined forced oscillations of the blade when T is

a certain periodic function variable with frequency P.

In the speciaL case when v = -the problem is reduced to the

determination of static deformations of the blade from a load To

constant in time.

The simplest method of solution of equation (,7.1) is the method

of B. G. Galerkin.

To illustrate the application of the method of B. G. Galerkin for

determining deformations of the blade let us examine in the beginning

the static problem when the external load is not changed with time.

With this y o, and equation (7.1) can be written as

Let us represent deformations of the blade in the form

,-z8I,'J). (7.3)

where yj is the form of natural oscillations of the blade with respect

to the j-th tones; 6. - certain coefficients which we will subsequently

call coefficients of blade deformations. Coefficients of deformations
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in all furthEr calcu.iat.l-u.6 . ap~piicaticri of the method of B.

G. Galerkin will play the role of generalized coordinates of the systerr..

We will substitute expression (7.3) into equation (7.2), multiply

all terms of the equation successively by y(O), y (1), y2 , etc., and
will integrate them along the radius of blade.

In virtue of the orthogonality of y(J) functions the operation
made will convert the differential equation (7.2) to a series of
independent equations of the form

¢C-i,, A(7.4)

where

C, dl 'I~jdr+jNIV Idr.

Aj To Tdr. (7.5)

The quantity C will be called the generalized rigiaity of the
blade with deformations with respect to the form of the J-th tone in
the field of centrifugal forces. From consideration of formulas (7.5)

it follows that the generalized rigidity of the blado Cj is equal to
the doubled potential energy accumulated by the blade during its
elastic deformations in the "iel.d of ,en'rifugal forces with respect
to the standardized form of the j-th tone. Quantity A. will be called
Sthe generalized external force d'ýforring tha blade with respect to the
form of the J-th tone. The quontify ef generalized force A is equal
to the doubled work of exterra] bended for,-s TO on deformations of
the blade with respect to the standardized form of the J-th tone of
its natural oscillations.

From equation (7.4) coefficients of deformations of the blade 5,can be determined

&Po C. (7.6)

after which the form of static deformations of the blade is deteimined
from (7.3).
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The more tones we take in the calculation of forms of ndtuiai

oscillations, the more accurate the form of deformations is determined.

However, for purposes of practice it appears sufficient to boe i:mited

to the first four tones of oscillations of the blade.

If coefficients of deformations 51 are known, then it is easy to

determine the bending moments and flexural stresses in the blade.

They are determined by the formulas:

I
.=•W•.(7.7)

Here MO() and o(j) are forms of distribution of bending moments

and flexural stresses with stan2- rdized deformations of the blade with
respect to the j-th tone of its natural oscillations.

The quantities entering into formulas (7.7) obey these relation-
ships:

( . M• (7.8)

where W is the drag torque of sections of the blade.

2. Determination of Deformations of the Blade with
Periodic Application of the External Load

Let us examine the case when the external load is changed according

to the law:

T-nT, slo W. (7.9)

To solve this problem we will also use the method of B. G.

Galerkin. Representing the blade deformations in the form of (7.3),

we will substitute expressions (7.3) and (7.9) into equation (7.1),

multiply all terms of the obtained equation successively by y(J and

integrate along the length of the blade. In virtue of the orthogonality

of functions y(J), we will obtain a series of independent differential

equations of the form

RAI+C4 Ajstood. (7.10)
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where

(a 11)
Al a T40Udr.

Quanity mj will be called the equivalent mass of the blade with

its oscillations with respect to the form of the J-th tone. If forms

of oscillations y are standardized in such a way that yMIA-1, then

mj is the equivalent mass of the blade reduced to its end. From the

first formula of (7.11) it also follows that the equivalent imass of

the blade is equal to its doubled kinetic energy when elements of the

blade move at speed y(j).

To determine the steady motion let us assume that

Substituting this expression into equation (7.10) and reducing all

terms of the equation by the quantity sin vt, we will obtain the

equation

& (7.12)

whence the value of the amplitude of deformations of the blade appears

equal to

Cj(1- -CI) (7.13)

It is easy to note that the relation CA/mj is equal to theIi. frequency of natural oscillations of the J-th tone of the blade.
Actually, if one were to assume in equation (7.12) A1 = 0, then the

value of v in this case will determine the frequency of natural
oscillations of the blade and can be obtained from equation (7.12):

.p .(7.14)

In accordance with expression (7.6) the ratio A /C determines

the magnitude of deformations in the case if the load T would be

applied statically.
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It is convenient to represent expression (7.13) in form

f ! .15)m

where i' is the coefficient determining the magnitude of deformation
with a statically applied external force TV; subsequently this
coefficient will be called the coefficient of quasi-static deformations

of the blade; 1. - coefficient of dynamic increase in the amplitude of
oscillations.

For the examined case
L I "

(7.16)

From expression (7.16) it follows that with resonance, when the
"frequency of forced oscillations v is equal to the frequency of

natural oscillations pj, the coefficient of dynamic increase in

amplitude turns into infinity. This result is regular for problems in
which forced oscillations without damping are examined.

In reality the blade of the helicopter operating in an air medium
undergoes with oscillations considerable aerodynamic damping.

Aerodynamic damping limits the amplitude of oscillations of the blade
during resonance and cannot fail to be considered, if problem of
calculation includes the determination of oscillations of the blade
under conditions of resonance.

With the determination of oscillations of the blade of the

helicopter, when oscillations appear under the action of aerodynamic

forces, it is very difficult strictly to separate forces of
aerodynamic damping from aerodynamic forces causing oscillations of

the blade. Such a separation can be carried out only conditionally.
However, in a number of simplified methods of calculation such a
separation is used. Therefore, here we will reproduce such an

approach more specifically.

.0
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3. Simplified Approach to the Calculation

of Forced Oscillations of the Blade

Let us assume that the external aerodynamic loads having an effect (9
on the elastic blade in flVght can be divided into two parts: into

external loads having an effect on the blade and into forces of

aerodynamic damping. We will approximately assume that external loads

having an effect on an elastic blade coincide with loads having an

effect on an absolutely bending rigid blade. Then for execution of

the calculation it remains only to determine the forces of aerodynamic

damping.

Usually forces of aerodynamic damping are determined for conditions

with axial flowing around of the rotor, after which there is the

assumption that in all other conditions of flight with oblique flowing

around of the rotor the coefficients of aerodynamic damping are not

changed.

In conditions with axial flowing around of the rotor the force of
aerodynamic damping can be determined proceeding from the following.

During oscillations elements of the blade move with a speed of k.
Due to this angles of attack of all elements of the blade are changed
by the magnitude

Aa----JL.

With a change in angle of attack on elements of the blade,

additional forces of aerodynamic damping act

S( 7 .1 7

Let us assume that the aerodynamic load T can be represented as

consisting of two components:

where r. is the aerodynamic load acting on the rigid blade; and T..

is the additional load from aerodynamic damping appearing with elastic

oscillations of the blade.

Then equation (7.1) can be rewritten in the following form:

*106

So*



L1E1T" - [NiI'r +mi+- c;e - T.. (7.19)

Let us examine oscillations of the blade from the sinusoidal
component of the aerodynamic load, which is variable according to the

law

If we represent deformations of the blade in the form of (7.3)

and apply to equation (7.19) the method of B. G. Galerkin, then it is

possible to arrive at a system of ordinary differential equations

with respect to coefficients of deformations . Individual equations
J'

of this system will be connected with each other by terms into which

there enters the integral:

Djýbrythy(mdr,

where y(j) and y(m) are forms of natural oscillations corresponding to

different tones (j / n).

In simplified methods of calculation the integrals D are usuallyjm
assumed to be equal to 2.ero, although such an assumption in many cases

cannot be justified.

If, nevertheless, we take this assumption, then as a result

using the method of B. G. Galerkin we will obtain a number of
independent differential equations of form

a'jig+ + c•- •, . ((7.20)

where the coefficient determines the magnitude of aerodynamic

,lamping:

S(7.211

Divi1dnp all to-rms of equation (7.20) by mj, w, ,,brain the

equation of the form
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where

2al"

C,

Usually for the characteristic of the magnitude of damping there

is used the coefficient
- a,

eai-

Its magnitude in reference to aerodynamic damping of the blade

is calculated by the formula

a
.- ±.-- .± !br[ ju'dr. (7.23)

Solution of the equation (7.22) carried out in this way, as was
done above in the solution of equation (7.10), leads to the formula

where the coefficient of dynamic increase in the amplitude of

oscillations

Thus, the solution of the problem cxamined here is composed of

the determination of quasi-static coefficients of deformations & and

the.ir subsequert multiplication by the magnitude of coefficient of

dynamile ncrease in amplitude

Such an approach has certain dICerepaneies In virtuep ,f •t,f

artificial separation of aerodynamic forces Into two eofnpeir:#'!nt.: 6y
formula (7.18), the Insufficientl, founded assumptlon of . Cact

that Djm a 0 and the approximate d,,termination of coefficients cf
aerodynamic damping for conditions with axial flowing around of tne
rotor. Therefore, in SS 8 and 9 there will be discussed methods of

calculation in whic.- t.V-' -mplificatioru given here are not used.



However, such simplified approach describes very well the
qualitative pattern of phenomena observed during oscillations of the

blade.

4. Amplitude Diagram of Blade Oscillatione

Above in § i,, it was alreajy indicated that for an estimate of
the char-cter of blade oscillations a resonance diagram of the blade
Isz widely used. A resonance diagram permits estimating how much the

frequency of natural oscillations of the blade differ from frequencies

of excitation and there is no danger in the appearance of resonance
oscillations. However, in those cases when the frequency of natural

oscillations and frequencies of excitation do not differ greatly, it
is interesting to estimate to what amplitudes of oscillations of the
blade this can lead. Such an estimate can be made by using the

amplitude diagram of blade oscillations. This diagr'im, constructed

for a blade with standard mass and rigidity characteristics, is shown

in Fig. 1.25.

I,

I WFig. 1.25. Amplitude diagrar
,. - -Iof blade oszillations.

_ S.

S* t 1 3 3 a i

Plotted along the axis of abscissas on this diagram i1 the
frequency of exciltatl•• referred to the angular velocity of rotation

or the rotor,

(7 ;25)

)Ait('ed alrn"r t';, axis of ordinatez nr- ',.pf-riI#fln,. if dynamic:

;t, amp i i.-i,, or nsv-illation . The -i ai•prý, i" ron~ntnr't.drl
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only for the Cirst 7-,ree tones of elastic oscillations of the blade
w~th tlre- 1;se c-' 'P.r -n f' actn ty!'i• e • t'- ft .."'-la ,-. .

5. Calu:2.ti-n of Os'illaticrr in the Case when the
Phasiv of Application of .:xternal Load is
Var-able Along the Lengti of the Blade

In No. 3 of this section there were given formulas for the case
when the external lcEd is represented in the form

Such a form of recording of the load is possible only in tre case
when the phae of its application along the length of blade is ccnstant.
As a rule, such a pattern during oscillations of the blade of the
helicopter does not appear. The phase of the external load changes
along the length of the blade, and therefore the load should be
represented in form

26(7.)

where ccmponents of external load F. and YT. are changed along the

length of the blade according to various laws.

Substituting the expression (7.26) into equation (7.19) and

using the method of B. G. Galerkin, assuming that D = 0, we will

obtain

RA +I4+ CA -IC~, it +AsfuiY. (721

where

!et us assume that

g-ics+Iss.-.



Ttin
7 W'

• ,•.a rr's-*"+;-1 (7.29)

75 + I

where

(7.30)

are coefficients of cuasi-static deformations of the blade.

Formulas (7.29) permit determing dynamic coefficients of

deformations of the blade if quasi-static coefficients of deformations

obtained with respect to aerodynamic loads 7. and f. are known.

6. Aerodynamic Load on a Rigid Blade

In flight variable loads with frequencies multiple to revolutions

of the rotor act on the blade of the helicopter. As already was said,

the greatest varying stresses in the blade cause the first to eight

narmonics of aerodynamic load to revolutions of the rotor. Higher

harmonics appear usually so small that they do not cause any
noticeable stressec in the blade even with resonances.

"The calculition of variable aerodynamic loads on the blade

presentR well-ki-own difficulties. These difficu~ties are connected

first of all with the necessity to determine the alternating field

of induced speeds and to calculate the nonlinearity in the dependence

of' aerodyna.nic coefficients on the angle of attack of the profile, X

numer and cornection of loads with torsional vibrations of the blade.

An account of these peculiarities is examined in the appropriate

paragraphs. Here we wl.1 compose formulas for determining variable
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aerodynamic lca.d.. on a bendi7 an-. torsional rigid blade .w-It. E

following assumptions.

a) We will consider that the inflow angle to the profile of the

blade D (Fig. 1.26) is small, and therefore it is possible approximately

to assume that

iz sUs 
(7.31)

where r1 is the inflow angle; Ux and U are mutually perpendicular

components of the relative flow rate lying in a plane normal to the

axis of the blade (see Fig. 1.26). Here the speed UJ is parallel to

the plane of rotation of the rotor.

Plane of Axis of

t ' sh.t of
",plne Fig. 1.26. Diagram of flowing

V190 around of a bending and

-,, torsional'rigid blade.

Planeo n rnial Flapping
to the xis plane
of the blade

Assuming also that cosiD-I, we will consider that the sought load
T, effective in the flapping plane, does not differ from load T
perpendicular to flow flowing to the blade profile (Fig. 1.26).

b) We will assume that the quantity of relative flow rate U
flowing around the profile differs little from quantity Ux:

U.rU1 . (7.32)

c) We will consider that with the determination of loads in the

fltpping platle the drag of the profile can be disregarded, and we can

assume that c = 0.
x

The Coefficient of lift of the profile cy will be consideredr
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linearly dependent on the angle of attack of the profile a:

,,--,.L (7.33)

d) The induced flow rate v flowing through the rotor will be

considered constant along the entIre area outlined by the rotor:

a-Const (7.34)

With these assumptions only the constant part and first two

harmonics of aerodynamic forces appear considerable and then only at

i'verage and high speeds of flight of the helicopter. Higher harmonics

appear small, and their calculation with enumerated assumptions is of

ro interest.

Using these assumptions, the linear aerodynamic load on blade can

be determined by the formula

Tr= - e.-oebi. (7.35)

Let us assume further that the angle of attack of the profile

+ !,+ , (7.36)

whre (r is the angle of setting of the blade profile in the section

at a distance r from the axis of rotation.

Then formula (7.35) can be converted to the form

T=2--'b [y,UU. +-UIU'. (7.37)

For an absolutely bending rigid blade suspended to the hub with

the help of a flapping hinge, speeds entering into formula (7.37) can

be determined by the following formulas:

Ua,-,R(F+Ps ); _

Here - the flapping angle of the blade relative to the rlaPPJ)In

hi•n-ge; de:rivative of angle h with respect to time; ) -

relative flow rate through. the rotor;

A -Is tg'a,+ to,
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>:'.:r as 13 the angle of attacKý -' h, rotor in axes of the shaft

F, - induc.ed flow rate .constant alonz the disk of the rotor attribut?_0,1

to uR.

The blade angle can be recorded as

I,- eo+Ap-I sin •--02os-.(7. C9 )

where go is the blade angle on the relative radius F-0,7 or other

radius accepted for reading of eo when P6-0; Ap - geometric twist of

the blade; 6t and Is are angles of cyclic control of the blade assigned

by the cyclic pitch control.

If one were to .present flapping motion of the blade in the form

of series

P,=aq-, (a, cos a?+ b,,sln a+) (7.40)
a

and retain in it. only the first two harmonic components, inasmuch as

subsequent components under the accepted assumptions are small, then

the expression (7.137) can be converted to the form

T=j o' 2 P+LPeo ?I-Pesn z~ (7.41)
S a

where

47 2

fit [p-- ; ,+ 2p~ip+ ( P2 (+ 1 t O2)a + 2tr_%a2-p

Pumh 2 C+b;2ra2 2+ -2 P') b3

In the process of fulfillment of these transformations,

substitution allowing the carrying out of transition to the so-called

equivalent rotor was used.

An equivalent t'otor is calie<I a rotor wno.;e shaft we will mE.ntaliy
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turn relative to the real rotor at such an angle at which the same

angles of attack of sections of the blade are attained without cyclic

-ontro1. nf the blade angle. All formulas written for the cquivalent

rotor can be used without changes for the real rotor not having a

cyclic pitch control. The equivalent rotor is usually also given

properties of the rotor not having a flapping balance. In this case

the equivalence of formulas is observed only with correct to the first

harmonics of the flapping.

Transformation of formulas for aerodynamic loads in reference to

the equivalent rotor was performed with the application of the

follo',ling of substitutions:

+1
b- b, + (7.43)

where ipc, is the true blade angle taking into account the action vf'

the Plapping balance on that radius of which is accepted for reading

of this angle; a, b;, and - coefficients of flapping and the relative

rate for the equivalent rotor.

Higher harmonics of aerodynamic load will not be examined here.

Figure 1.27 shows the constant part and coslnusoidal and

sinusoidal components of the first two harmonics of aerodynamic load

..r the typical blade of a helicopter obtained by formulas (7.42) for

conditions of horizontal flight of the helicopter when p-0,28.

On Figs. 1.2' and 1.29 these loads are added, and there is shown

the relative aerodynamic load P havlng an effect on the blade In the

longitudinal plane. of the rotor when ?-O'and *-8O' (Fig. 1.2,1) and In

Sthe tran'overse plane when *-90 and *-2701 (Fig. 1.29).
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Fig. 1.27. Distribution of Fig. 1.29. Relative aerodynamic
harmonic components of aero- load having an effect on the blade
dynamic load along the radius in the longitudinal plane of the
of the blade for -0o2s. rotor.
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7. Determining Coefficients of Flapping of the Blade

To determine aerodynamic loads by formulas (7.42) it is nrcessary

to know the coefficients of flapping of the bending rigid blade.

Coefficients of flapping can be determined from the differential

equation (7.1) if one were to represent the solution of the equation

in the form

where y(0) is the form of oscillaticns of the olade .-iith respect to
the zero tone.

For the rigid blade this form of oscillations coincides wi.th a

straight line.

If the distance from the axis of rotation to the flapping hinge is

equal to zero (4.-O). then

(7.145)

which is correct both for a rigid and for an elastic blade (see § 4).

Assuming 1.mO. we will substitute expression (7.45) into the
differential equation (7.1) and apply to it the method of B. G.

Galerkin. This operation leads to the differential equation of

flapping oscillations of the blade

,O+Wi.hj T*. (7.46)

where I is the moment of inertia of the blade relative to the flapping

hinge.

Equation (7.46) can also be obtained from the condition of

equality to the zero of the moment of all forces relative to the

flapping, hinre.

:;.mbntit.ijtinir ,xpressions (7.40) and (7...±) Inte, equation (7.46)
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and equating coefficients with similar harmonic functions of the

azimuth, we will obtain the system of equations from which all

coefficients of flapping can be determined. This system of equations

"will be written in the form of a table (see Table 1.6).

Table 1.6. '#1" I _g, I, bil #
/ -A-jar'€ f- t

p g ~ .z ( ..fr ) ZA a -f C P

Every equation of the obtained system constitutes a sum of

products of certain coefficients recorded in the squares of Table 1.6

on the unknown coefficients of flapping of the blade, which enter

simultaneously into several equations and are carried out vertically

in a special line placed above the table. Well-known coefficients of

every equation occupy one line In Table 1.6. In the right side of

the table in a special column there are given the coefficients of 4,

which form the right side of equations. Unfilled squares of the

table correspond to coefficients equal to zero.

In the composition of the table the following designations are

used:

MIM 1(7.47)

'A1

c-&i

it "



A'=~br',dr;

S(7.4S)

The mass characteristic of the rigid blade Y is determined by the

following expression:

Q ==e6aR4 (7.49)

With the solution of this system of equations it appears that

coefficients a 2 and b2 are considerably less than coefficients as,

a and b•. Therefore, they can be disregarded in the determination

nf coefficients a 0 , bI, and a*. This assumption leads to simple

formulas for determining the coefficients of flapping of the blade

a, = y • [k +A 21
A-- 4

A+ ,2C (7.50)
4

. 8+6A24d[( 1 -a -,)2(2ACao+-3C"

18+8A,,, E, (-4Ao; ++ ..b)+,, - aoo3.

where

Sy (A +T•

8. Simplified Calculation of Elastic
Oscillations of the Blade

On ime basis of simplifying assumptions accepted in thi's

patragraph there can be constructed a calculation of ela.stic

o:;cillations and flexural stresses in the blade in conditions of

horizontal flight of the helicopter. Such a calcJilati:on nnatura.ly
cannot give positive results in the application to low flirht speds
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when tho ba;ic role is played by variable loads conne.cted1 with a

n(,nunlt'orm field of induced speeds, And high speeds when- Its

impossible nut to consider the nonlinearity of aercdynamic coefficients

depending .on the angle of attack and phenomena induced by the

compressibility of flow.

In accordance with the above-mentioned formulas it Is convenient

to produce calculation in axes of the equivalent rotor.

Calculation of elastic oscillations of the blade is fulfilled in

the following order:

1. First of all there are determined paramet'ers of conlItion- of

the flight in which calculation of stresses sr..ould be perfrrned.

These are the following parameters:

a) angle of attack of the rotor arm;

b) angular velocity of rotation of the rotor w;

c) height and speed of flight, which are represented in t?."

calculation by coefficients p and 4.

2.' There Is calculated -he relative rate of flow tr:rruih t~e

rotor acordIng to the formula

w:iere C. Is the thrust coefficient of the ro"4:r.

3. The blade angle in the control sect!-n r1"3'.;:, t- . Is

ansigned the geometric twist )f ttie blade Is .

Nfeglectlng fnor'es connectod witn the seo.'.r, : , -" 'r,

flapping moft Ion thlz; nnr•gmi, can br' determin'd i,/ ,

t. +

+ i

!+P



Here

D-(d (T753)

t - thrust coefficient;

o- rotor solidity.

4. By formulas (7.50) there are calculated coefficients of
flapping of the blade and by the formulas (7.41) anl (7.42), external
loads on the blade.

5. To determine flexural stresses it is necessary to calculate
the forms and frequencies of natural oscillations of the blade.

6. If such a calculation is performed, then according to
formulas (7.30) there can be determined quasi-static coefficients of
deformations with respect to different tones of oscillations of the
blade from the constant part of the first and second harmonics oft the

aerodynamic load.

Substituting expression (7.41) into formula (7.30), we will
obtain values of quasi-static coefficients of deformations with respect

to the J-th tone of oscillations of the blade.

148 • + -A7 -- +, plo)

4 f)-C$ + *A -+ +12 -1 ,,),] (7-54)
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!!Fri r, :• zi:;'rIpt at cceffic.I ents of quasi-static deformations

of thre blader corrrespondsi to the order of harmonic of aerodynamic

forces. The index j denotes coefficients referring to the j-th tone

of oscillation-Z of the blade; .Y is the mass characteristic of the

blade with deformations with respect to the j-th tone:

1/2e',( RC2(
it=- -. (755)

For integrals entering into formulas (7.54) there are accepted

the following designations:

A, i72yj') di; j

* (7.56)

A7 _
87 KrijI dr;z

t

where y7) is the form of oscillations of the blade with respect to
the J-th tone, standardized in s'-irh a way that for --1,-1.

7, Let us record deformations of the blade in the following form:

(e[ - c, coj - d2 sin #-- 3 cos 2,- d2 stn 2ý1 9,) +
+106o- e, cosý- A ,In # -e,,cos 2.-fA s I, #(2) +

+Io -- gl Co @ --*I s$in I-.,-g2 Cos 2M-- h$in Z y(')+... (7 57)

Here to determine deformations of the blade, besides the form of
the zero tone, which in the case r 0 = 0 coincides with a straight

line, there are used first three tones of natural oscillations of the

blade y(l)"), y (2) , and y(3), standardized in such a way that for

r-Ry l.mR. Then coefficients of deformations of the blade entering
into formula (7.57) can be determined in terms of quasi-static ( •
rcoef'r1crierit.e- of deformations in accordance with (7.29).
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As an example let us write tne formulas for determination of
ýoefficients of deformations with respect to the first tone.

4~-~w+ 4; [i +!rtt gill'

(7.58)

if dynamic coefficients of deformations are known, then there can
easily be determine any components of stresses effective in the blade.
This will be discussed in more detail in No. 17 of § 8 and in No. 8 of

In the simplified method of calculation discussed here, besides

tne initial assum~tions concerning physical properties of the model

ef the blade, accepted with derivation of equation (7.1) and with

calculation of the right side of this equation reduced to formula

(v. 35), there is used a multitude of additional assumptions of a
calculating character used on almost all stages of the calculation.

Aitho~igh all these simplifications make the method of calculation

S....lv useful f'or execution manually, they introduce a multitude of
Iniaccuracies whlch• yield badly to quantitative appraisal. Nevertne-

lesz, in spite of this deficiency, the described simplified method of

calculiati-en possesses a very important advanta~e - great clarity. In
- fact, all results of calculations obtained by other improved meth~ods

S•are estimated and enalyzed on the tasis of dependences represented

+ 4ij

S~here in simplified form.

SHowever, even with the application of all these s lmpliticationa

iilculation by this method manually requires the work of one ca'euiator

theor It less than a mtont contemporary rales of desioning of the
fbtadhbecan e provided when calculatig with such duration.

Therefore, the calculation of elastic oscillations of the blade,

utilized for selection ma it in the proiess of desai. ut, can he

",-arrld out only on hilgh-speed electronit computers. It is natural

.1 -. 123
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that in this case there is no need to use assumptions facilitating

the process of the calculations.

Therefore, in § 8 there will be discussed the method of calculation

founded on the same initial assumptions if one were not to consider the

calculation of variabie induced speeds but that fulfilled without any

assumptions of a calculating character.

§ 8. Calculation of Flexural Stre:ses in the
Blade at Low and Average Speeds of Flight

1. Peculiarities Distinguishing Conditions
of Flight at Low and Average Speeds

Low and average speeds of a helicopter are examined here as

conditions sufficiently remote from stall in whicn, furthermore, there

cannot be taken into account phenomena connected with the

compressibility of flow. Proceeding from this, during calculation of

aerodynamic loads it is approximately assumed that

This assumption considerably simplifies computations necessary

Li the composition of calculation formulas.

On the other hand conditions of flight at low speed can be

defined as conditions especially dangerous for fatigue strengtl, in

which the greatest variable flexural stresses in the blade frequently

appear.

These considerations justify the application of the method of

calculation useful only for low and average speeds of flight and not

useful for high speeds and those conditions in which phenomena

connected with the nonlinear character of the dependence c = f(a)y
and with the compressibility of flow become decisive.

It is necessary to note that assumption (8.1) does not always

appear correct for conditions of' flight at low speeds. In those

cases when on tpe blade of the rotor ther-. occurs an excessively

great load, caln-ulation snould be r;roduced taKirg into account the



nonlinear dependence of aerodynamic coefficients on the angle of

attack of the profile. The method of such a calculation will be

examined in §9.

The overload of blades can be judged according to the magnitude

of thrust coefficient of the rotor t. Calculations show that

assumption (8.1) can be used in conditions of low speeds without the

introduction of considerable errors into the results while t < 0.18.

In conditions with vertical overloads of such as, for example,

conditions of braking of the helicopter before landing, disturbance

of this inequality is possible for those rotors for which in a steady

state of flight it is observed. All these considerations should be

considered in the selection of the method for calculation.

2. The Method of Calculation of Stresses

Discussed in this paragraph is the most widespread method of

calculation of varying stresses, which is based on the application of

the method B. G. Galerkin with the expansion of coefficients of

deformations in Fourier series with respect to harmonics.

In connection with the possibility of the application of this

method for the calculation of conditions of low speeds, into all

cal'2ulation formulas there are introduced harmonic components of the

induced field, and the problem of deformations of the blade is

solved jointly with the problem of the determination of inductive

speeds.

However, such an approach is not an obligatory belonging cf the

proposed method here. With the calculatic'n of stresses at average

speeds of flignt, when variable induced speeds intrcduce not very

considerable refinements into the results, they cannot be considered.
In this case the method of calculation will be very greatly simpl.-ffid.

If one were to take the assumption (8.1), then the aerodynamic

load will appear to be the linear function of movements of elements

of the blade, and the problem of calculation of flexural deformations

will lead to the solution of the linear differential equation (1.9).
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To solve this equation the method of B. G. Galerkin is used.

Deformations of the blade are in the form of a series with respect to

eigenfunctions, and temporal coefficients of this series are expanded

in a Fourier series. Application of the B. G. Galerkin method

converts the differential equation of oscillations of the blade to a

system of algebraic equations relative to unknowm coefficients of

Fourier series, and the determination of flexural deformations of the

blade is reduced to the calculation of these unknown coefficients.

Such a method of calculation will be discussed here,

3. Assumptions in Determining Induced Sj~eds

In c:alculating flexural stresses at low flight speeds when their

magnttude is mainly determined by the degree of irregularity of

induced speeds, it is very important to know on the basis of what

aseumptions this field is determined.

In Book One (Chapter II, § 5) it was already stated that induced

speeds can be represented in the form of the sum of external and

natural induced speeds. This division is somewhat conditional but

appears very useful, since it permits giving an appraisal of the

influence of separate components of induced speeds by analogy with

the fact that it is already known for the wing of an aircraft and

therebZr justifies the acceptance of certain assumptions important for

the following presentation.

TIhe flow past a blade of a helicopter in the flow with a

nonuniform field of Induced speeds is analogous to the flowing around

of a wing of an aircraft during flight in erratic air, when the wing

continuously encounters air currents with different speed and

direction. With rotation of the rotor the blade also encounters on

its path a nonuniform field of speeds, but this field is caused not

ny acmospheric turbulence but by the induced influence of the whole

vortex system of the rotor. This field, by analogy with a wing, is

usually called the external field of induced speeds in contrast to

the field of speeds Induced in the region of the blade by its natural

vortices flowing from it in connection with t hange In eirculation

with respect to time and radius of' the blade. Those vwJrt ie-Z create
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considerable induced speeds at the blade only because they are at a

Svery close distance to it. With departure at a distance of 20-30O in

azimuth of the rotor, their influence on aerodynamic load cu the blade

vanishes. I °

Just as with calculation of a wing, in determining aerodynamic

loads on the blade it is possible to use the "hypothesis of

stationarity." By this hypothesis it is assumed that with nonstationary

flowing around of the profile the same loads act on it as if the

streamline flow appearing at the examined instant would remain constant

in time, In accordance from this hypothesis, with calculation of

aerodynamic loads on the wing there is considered a change in angle

of attack only from the external velocity field, and the influence of

natural induced speeds will be disreg< 'ed.

Let us use a similar approach to the blade. In the determination

of aerodynamic loads we will consider only the external field of

induced speeds.

During the calculation of this field certain additional

assumptions connected with peculiarities of the vortex system in

conditions of low speeds can be accepted.

Figure 1.30 shows the form in the plan on the system of free

vortices flowing from blade tips of. a five-blade rotor in conditions

of flight with a speed corresponding to 4 = 0.05. At this speed the

varying stresses in blades of the rotor reach maximum values.

•'"'',.K•' ~Fig. 1.30. Form 1n tne plan on
a system of' vortices flewinp

,I Ii , 0. 09.' '; n ' a t
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The picture shown in this figure is incomplete, since shown on
it are only free vortices descending from blade tips and not vortices
descending from all other radii of the blade. Radial (transverse)
vortices are also not shown. However, even from this picture it is
possible to form an idea as to how close vortices in conditions of
low speeds are located. This peculiarity of the vortex system permits
that induced influences of separate vortexes merge and appear in the
form of a general irregularity of the total velocity field. Sharp
peaks of induced speeds, which are characteristic for a vortex system
with rarely located vortices, do not appear. Therefore, at low speeds

I of flight, especially for rotors with a large number of blades,t induced speeds can be determined from the theory which examines the

configuration of the rotor with an infinite number of blades.

With an increase in the speed of flight the system of free
vortices starts to be extended and becomes more rare. In the same

direction the vortex system is changed with a decrease in the number
of blades in the rotor. Calculation with respect to a configuration
with an infinite number of blades becomes less accurate.

With transition from the rotor to a ýonfiguration with an
infinite numbqr.of blades, the local effect of vortices directly
adjoining to the blade is so greatly weakene~d that we can approximately
assume that this configuration does not consider the influence of
adjoining vortices, and, consequently, the velocity field determined
by it practically coincides with the field of external induced speeds.

The above-stated considerations lead to the conclusion that for

the calculation of elastic oscillations of the blade at low speeds cf

flight there can te used the vortex theory founded on the confim.uratlon

with an infinite number of blades.

In flight at low speeds there is usually mpasured varyinr stresz

in which a large part consists of high harmonics to thc number of

revolutions of th,! rotor lyinp usually in the range of the Lth to th'

6th. Therefore, the method of determlnation of induced speeds must
Include on(! more very impor'an rerruirement. This method sho'uld

determine the filu of Indicer, ::pedis At least ('orrect to ½te 1t.
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harmonic, which is possible only in the case when the values of

circulation are determined with correct to the same harmonic.

Consequently, all methods not satisfying this requirement drop out

and cannot be used in the calculation ,)f elastic oscillations.

It was already stated above that here there will be discussed

the method of calculation of stresses, in which all variables are

expanded in Fourier series with respect to the harmonics. Therefore,

it appears convenient to use the method of determination of the field

of induced speeds in which these speeds are determined also in the

form of expansion with respect to the harmonics.

These requirements are satisfied in the very best manner by the

V. E. Baskin theory (31 (see also § 5, Chapter II, Book One). There-
fore, this theory will be used in this paragraph during the calculation

of stresses.

4. Calculation Formulas for Determining

the Field of Induced Speeds

Let us consider the system of formulas proposed by V. E. Baskin

for calculation of the field of induced speeds in the plane of

rotation of the rotor.

Let us represent the field of these speeds in the form of the Eum

o:" its harmonic components. Here both the total flow rates and

harmonic components of this speed are attributed to the peripheral

speed of rotation of blade tips of, the rotor uR.

I -p%+ a+ V &t=jet asin ie). (p.2

Hiore A. is the total flow rate t'.rouah the rotor referred to w; • -

•instant. part of Irndured speed also referred to mP. k and -

harmonlc: co(mponents or Induced speed; * - azimuthal anvle of the ble.dp

'-ounted off from .,.. axib coincidinp In dlrectlon with tht, tail beam

of a single-r;Dtor helircopter;

wY.ere V Is the zpc-ed of flight of th icpr; a -- rle

attack of tne rct,"r in axes of tV-s .ihaft.
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The linear aerodynamic load which affects the blade will be
presented in the form

IPT--- ,• 'R•'. (8.3)

where c is the angle of inclination of the dependence cvmf(e), which
y

here is taken linear in the form of (8.1); p - air density; , -

value of chord of the blade on the relative radius T - 0.7.

The value P entering into this expression will subsequently be

called the relative aerodynamic load.

Let us represent value P in the form:

P.P.+ (P. cot P.,in m (e f
U

The harmonic components of speed )., are in the form of the sum
of the so-called partial induced speeds, each of wnich is induced

only by one harmonic of the aerodynamic load:

" ~(8.5)

In these expressions the complete total components of induced
speeds have one subsvript n and the partial - two Indices n and m.

Values of partial harmonic components of induced speeds are
determined according to the following expressions:

- for a--0
ism -- •-4,A.(- ,'(.

- for a**
%-j-ea.A-, I?'+ C- ,)m"'~J(,*) ( S.E)

TC power in whi1h r is raised Is negative (a-m<O). then in

formulas (1.6) on,- should assume t.!t •"--C--r- 4 .

: 4- . . .. . . ...
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Coefficients entering into formulas (8.6) have the followIng

values:

S(8.7)

ER,

where a is the rotor solidity and :j is the number of blades in the
rotor.

The value of flow rate As. average along the radius of the blade
is determined from the formula

To determine the functions $(P.) and $(11. entering into equations
('.6) from the theory of V. E. Baskin there follows the following
formu1la s:

"JP)J(" ~.)"(iI~a I
wý.'ere J$(,7) and j.(x are Bessel functions of the first kind with the

order n ana m, respectively; z - parameter of Integration.

Here in order to define more accurately according to what parameter
r.tegration is produced, a new designation for the relative radius of

the blade F is introduced. This designation will be used only in the
'alerulation or Interrals (•.9).

"TransformationRs of Caletulation
F wrmulas into Particular Casps

In particular cases expressions (3.6) are considerably simplified.
Fo In the case wton n -m 0

e0A.(o.10)
13



For subsequent computations the result obtained for the case
when n - m is especially important. It appeers that the coinciding

harmonics of the aerodynamic load and induced zpeed are uniquely

connected by expressions:..

where

Such a form of expressions makes separation of the components of

induced speeds into two types expedient. These include basic

components of induced speed induced by the same harmonic of aerodynamic

load as the harmonic of induced speed and side components, induced by

all remaining harmonics of the aerodynamic load.

This separation permits recording expressions (8.5) in the form

where basic components of the induced speed are defined by expressions

(6.11), and the sum of all side components the induced speeds are

introduced into equations with the help of new designations 1; and

Here 4 is t.he number of harmonic compcnenrts ,rf Indufe, rpeed=

considered in the calculation.

At n - 0 the first terms of tner:, txpre~i¢.1cr-;, t.U arsumed
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equal to zero, and at n-ai, the same should be done with the second

terms. In the formulation of equations for calculation of stresses

S- the induced speeds will be represented in the form of (8.13).

6. Numerical Determination of Values

of Integrals J(P.) and I(A.

When m # n, calculation of integrals (8.9) is associated with

well-known difficulties. To determine values of these integrals V. 9.

Baskin proposed a method in which components of the aerodynamic load

are approximated with the help of trigonometric polynomials. For
this it is necessary to determine values of P. on radii of the blade

assign•d beforehand not coinciding with those which are used in the
whole calculation. In reference to the method expounded here this is

not very convenient. Therefore, here there will be used another

method more suitable for the given case in which calculation of

integrals 1(P) and $(P.) is produced approximately according to the

same form in which integrals during calculation of stresses in the

blade are calculated. For this the blade is divided into separate

sections within limits of which the aerodynamic load is represented

in the form useful for integration. It is natural to divide the blade

into the same sections in all cases both with calculation of stresses

and with calqulation of integrals (q. 9 ). Let us present the load

P.(9) in such a way that on each section of integration it changes

according to Ithe law

Pb (3.15)

Here • is the rurrent value of the relative radius of the blade;
arter fulfillment of integration and substitution of limits the valuc

•o will not be encountered in the formulas without an index. a - the

;-ame value of relative radius but with index k denotes that the

vxamined radius cdrncides with the radius for which the relative

aerodynamic load P,(j.4ii. calculated.

Subsequently, as was already stated, we will distinguish the

relative radii ; on which there is taken the value of the aerodynamic

load from relative radii f for which the induced speed is calculated.
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This permits avoiding possible confusion.

We will consider that the rela-Ive aerodynamic load is changed

according to the law (8.15) for the extent of each section limited by

relative radii

Si-+e-:,+i) and

On Pig. 1.31 the solid step line shows the form of dlqtributior

of relative aerodynamic load along the length of' the blade in which it

is represented for calculation of induced speeds by expression (;.15)

in the case m - 0. Su n a form of presentation of aerodynamic load

can, of course, introduc;c certain errors into values of induced speeds.

D, -- pe,'pt

Fig. 1.31. Form of relative aero-
dynamic load accepted for calculation
of induced speeds.

However, calculations made for ,stimsting the maqnitud*1 of this error

showed that it Is small and carnot introduce ronsiderable ctiflgen into

rcr.ults of the calb-ulation.

TI" w, :the,::tl',f, tii value . re-,I•.ive rrnam-r- Ir.a. expres.','.

In• C'or• (~.i'•.1) Ir, t,. expresfiorn ,d" " irat,-.rar,,! rf #equaston (C °,)

ten the Internal litr.gral in tre rignt-riwid side' ,f this ePqjtit.n

can be represente: I nr.e fcrm A Pertain n%. r,' dir¶",trt

a-,



The definite integrals entering in this expression can be

calculated analytically [see 11]. Substituting into the obtained

expressions limits of integration, it is possible to write

where

Substituting the thus expressed value of the internal integral

Into equations (8.9), we will obtain

jm,)- J. (c). 1 a. .(z) d( ..-

As,•,• ,.. (.~j -0 )&,t.)
. 0

Or if we were to record In simpler form

J(•.)--Z ASjAF~ (3.19)
where

ddr

000

Integral (-¶.Z2O) is breaking Integral bearing the rame of" th~e

,f.trrai Weber and Shafkheytlin [111. Its analytic expr-ssion
!,rer•11rP upon the relationship between 71 and '&(•+•.s) •ar tho

C1-'ow.ing form:

X " +- X4-41)4

X ir'r(M+* 0+2-4
[; +(" . UR



If ¥(Q,4 ,÷)>,, th.en

a-r J.) + J 1), .2Ol dz=

(Qa+Q ,) ÷( ..--..- a)
+ r(" 1+ M+" 2)

2 . .r+ )r( 2 .
x p [m+2+n "-m " 2+;1-• •1

S2 ; " •,+i,, (8.22)

Here F is the gamma function with different arguments, and F is the

hypergeometric functior of arguments a, P Y. and z.

These arguments, as can be seen from expressions (8.21) and (8.22),

can have various values depending on the relationship between ri and

I (7Q+Q,+j). Thus, for example, in expression (8.21)
2

m+2+.
2

m -+2--" i
2

V--n+2.

With calculation on electronic digital computers these functions

are easily programmed. Therefore, their calculation presents no

difficulties.

7. Assumptions Accepted in the Determination

of Aerodynamic Forces

IFri liht Wteonnifirllo on of ac'rdyna.mic: loads, besides the assumptions

I) t,lIo ,e t r'o ti;1, :,"ame ar•ulnipt ions whi oh were used in the

(10Lernlinatlun of load2 on a riid blade (§ 7, No. 6) with the exception

of assumption (7.34).

1. We will consider that the inflow angle to blade profile 0

is small, and that therefore it is possible approximately to assurrm:

airctg i 'LL, (8.23)
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iI
where 4 is the inflow angle; Ux and U are mutually perpendicular

X ycomponents of relative flow rate lying in the plane normal to the
elastic axis of the blade (Fig. 1.32); here the speed U is parallelx

* •to the plane of rotation of the rotor.

2. We will consider that the quantity of relative flow rate U
flowing past the profile differs little from quantity U Therefore
we will assume that UmUI.

3. We will consider that with the determination of loads in the
flapping plane (the plane passing through the axis of rotation of the
rotor) the profile drag can be disregarded, and we can assume that

Cx = 0.

4. Assuming that cos 0 = 1 we will consider that the load in the
flapping plane does not differ from the load perpendicular to the flow
flowing to the profile of the blade (see Fig. 1.32).

PIne of f rotor

Y rotation =M1haf

Fig. 1.32. Diagram of flowing
- around of the blade accepted

in the calculation of stresses
at low flight speeds.

Plane perpendicul 7
to the elastic Flada F!pping.
of the blad e plane

8. Calculation Formulas

With the use of assumptions shown in No. 7 the value of relative
aerodynamic load P entering in equation (8.3) can be determined by the

formula:

S[-,r. + (8.24)

where b is the quantity of the chord of the blade on the examined
r

radius referred to the chord on radius r = 0.7; 'x and Uy - the same
components of relative flow rate wnich are in expression (8.23) but
referred to the peripheral velocity of the blade tips wR:
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U1
c(8--. (3.25)

Here X is the relative flow rate through the rotor; this speed is
"determined by expression (8.2); y - movements of elastic axis of the
blade in the plane perpendicular to the plane of rotation from which
these movements are reckoned; P=y' - angle of inclination of elastic

-axis of the blade.

The prime here denotes differentiation with respect to the radius
of the blade and the dot, with respect to time.

The blade angle can be recorded in the form

6=0 + l S- 6i.- Co. (8.26)

Here 00 is the blade angle orn the relative radius r = 0.7 or other
radius accepted for the reading of G when the angle of rotation of
the blade in the flapping hinge . is equal to zero; A? - geometric

twist~i oqua the bzdero;ad
twist of the blade; e1 and 62 angles cyclic control assigned by the
cyclic pitch control; v - flapping balance; P0 - angle of rotation of
the blade in the flapping hinge.,

Let us represent deformations of the blade in the form

where 6. are roefficients of deformation of the blade corresponding to
the J-th tone of its natural oscillations; these coefficients are
functions of time and therefore are also called temporal factors;
y(J) - forms of natural oscillations of the blade in a vacuum, whicl'
are standardized in such a way that 9V=R.

Let us expand the time factors b. in Fourier series with respect
to the harmonics. Then it will be possible to represent deformations

of the blade in the form:
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_L 12 =,'• Z (8 .30)

where

Ba I'

* , A(I ((8.31)J!4

+ CieA p1-(- )'b,(.

We will subsequently call values B, and ' equivalent chor'.s of

the blade, since in the calculation they play the same role as real

chords and are in formulas (8.30) at the same places where in formulas

(8.29) value3 'r are.

Thus the harmonic components of aerodynamic loads, taking into

account variable induced speeds, should be determined by introducing

into the formulas only side components of induced speeds and instead

of real chords - equivalent chords of the blade. Values of equivalent

chords of the'blade can be different'depending upon flight conditions
and the order of the determined harmonic of aerodynamic loads.

However, they appear to be less than theý real chords. Consequently,

all the harmonic components of aerodynamic loads appear less than

those values which they would have if' the basic components of induced

speeds would be equal to zero and as many times as the equivalent

chords are less than the real chords.. The introduction of equivalent

chords leads to a decrease in all components of aerodynamic load of
both exciting and damping oscillations of the blade. Therefore, the

values of relative coefficients of aerodynamic damping, which determine

the amplitudes of oscillations with resonances are decreaserl. This

leads to the fact that far fo cm resonance variable deformations of

the blade decrease and with resonance they remain approximatel!y the

saIe as with the calculation neglecting this effect.

Expressions of the type (8.30), copied for all harmonic components

of the aerodynamic load, appear interconnected through components of
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induced speeds. Consequently, they are a certain complex system of

equations of relatively unknown loads, which can be solved only in

the case when values •" and , are known. These values depend on the

value of coefficients of deformations of the blade. Therefore, to

solve this system of equations it is necessary to formulate an

equation for determination of coefficients of deformations. This will

be carried out below.

If one were to depict in detail values 1, and f entering into

equation (8.30), then expressions for harmonic components of the

aerodynamic load can be represented in the form of Table 1.7.

The expression for each harmonic component of the load P, and P
occupies one line in the table and constitutes a sum of products of

coefficients recorded in several expressions and carried out vertically

in a special line placed at the top of the table. These factors, as

was already stated above, will be called coefficients of deformations

of the blade. In the right side of the table there is copied a

number of terms f,6, and f., not connected with unknown

coefficients of the deformations.

In order to determine the values P, and •. the sum of products

of terms of each line by unknown coefficients of deformations formed

with terms not dependent on coefficients of deformations must still

be multiplied by values B, and B,. For memory these quantities are
popied in the left part of the table.

The number of' terms entering into expressions for P, and J.

depends on the number of harmonics and tones of natural oscillations

considered in the calculation. In Table 1.7 there are copied

expressions for the case when in the calculation only two tones and

four harmonics of variable forces are considered.

In programs which are used during calculations on electronic

digital computers there is usually considered four tones of natural

oscillations and six to eight harmonics of variable forces.
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Table 1.7. (Continued)

Terms not dependent on coef-
fticients of deformations
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9. Transition to the Equivalent Rotor

In orde. to show the possibility of transition to the equivalent
rotor in the compilation of Table 1.7 there is used the equality

which is correct only in the case when the distance from the axis of

rotation to the flapping hinge 4, is equal to zero.

If one were now to use well-known formulas for coefficients of

flapping motion and angle of attack of the equivalent rotor

then it will be possible somewhat to simplify expressions for P. and

P, by introducing in the first line values aI and b instead of a1
and bI. Here coefficients P will appear equal to zero, and values

of angles 21 and 62, in general, will not enter into the equations.

In other words, the well-known position about the fact that the loads

on the blade do not depend on the deflection of the disk of the cyclic

pitch control, when 1,.,-o is completely observed in expressions of

Table 1.7.

However, simplifications appearing with transition to the

equivalent rotor are so immaterial that they do not justify assumptions

about the fact that 4.--o. Therefore, we will subsequently examine

oscillations of the blade only in axes of the shaft, and the idea of

the equivalent rotor will not be used.

10. Basic Assumptions Utilized in the

Calculation of Flexural Stresses

In the calculation of flexural stresses in the blade let us use

all those assumptions which were accepted in the derivation of the

differential equation of oscillations of the blade in the thrust

plane (1.9). Let us represent the blade in the form of an elastic

beam stretched by centrifugal forces N. Parameters of this beam -

its llrnear mass m and flexural rigidity Er - will be considered

continult'usly distributed alone the length of the blade.

145



Furthermore, we will take tre fcllowing assumptions:

1. We will consider that the plane of least rigidity of the blade

coincides with the flapping plane, and therefore when bent in the
flapping plane the blade will be only under the imp',ct of forces acting

in this plane.

2. In the determination of loads in the flapping plane we will

not consider twisting deformations of the blade (for an account of
twisting deformations see § 7, Chapter TV, Book One).

3. We will examine the standard type of rotor with articulated

blades, and the distance from the axis of rotation to the flapping
hinge will not be disregarded, i.e., we will assume , We will not
consider also the frictional force in the suspension hinges of the
blade.

11. Differential Equation of Oscillation-

of the Blade and Its Solution

With the use of these assumptions calculation of flexural Etresses
will lead to the solution of the differential equation whose derivation

is given in S 1 of this chapter:

gEsfr- [NU7 +as.T 32 )

With the examined fastening of the blade boundary conditions carn
be thus recorded so:

IEC ) ( 3)

Entering into the right-hand sitde of equation (.3) tr vallo

of linear aerodynamic load is dettrmn,-ind by formtlas ( a.d) anl (d-.4;

and according to Table 1.7.

Substituting Into this eqtst !r.t: relution in the form of

(4.28) and applying to it te rt:--',1 ý< '. G. -alerkIn, w.' will obtair.
the system of algebraic equatlons relative tr unknown ccefficients of

deformations. This ,vstem of rqr.,- c,. r', preson*, I In t.•e fnrrt

of Table j*'*
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L
7.,h equation of the obtained ..ytm.. constitotes a sum of

products )f certain 2oefflctents, recorded in squares of the table, by

unknown coefficients of deformatios entering simultaneously into

several equations and carried out verticall in a special line placed
at the top of the table. The known coefficients of each equation

occupy one line in the table. On the right of the "able in a special
column there are copied coefficients 4, and i, which constitute the

right-hari side of the equations.

In Table 1.8, just as in Tables 1.7 and 1.9, there are unfilled

squares. This means that coefficients of equations for which these

squares are intended are equal to =ero.

12. Determination of Coefficients of the
Left Side of Equations cf Table 1.8

To determine coefficients of' the left-hand side of equations in

the program of calculation there should be created a special operator.

This operator should give values of all coefficients of any equation

of the system. In order to make nis operator as simple as possible

we will divide the whole table of coefficients into a series of zones

according to thn number of tones of natural oscillations utilized in

the calculation. We will unite by these zones into separate groups

those ccefficients wh have a similar means of formation in the

application of the B. G. Calerhin method and can be calculated by the

same formulas.

Transformation of differential eqLuation (8.32) with the help of

the B. G. Galerkin method to a system of algebraic equations of

Table 1.8 consists of the following operations:

1. Substituted into the differential equation (8.32) is a solution

in the form of (8,L8) into which different forms of natural oscillations

enter, if forms entering into the solution (8.28) -,re marked by index

J, then all terms of the equatinn obtained as a resu't of tjAs

operation can be divlded into several groups, each of which is

rflaracterized by th-, defined ind,]ox J.

2. . l..tua are -tutiplied sucressA xaely
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by the same forms of natural oscillations y(i). As a result of this
operation there will be formed a system of equations wnere every

equation of this system differs from others by the form of the tone of (
natural oscillations y(I) by which all terms of the equation were

multiplied. Therefore, the thus obtained equations are numbered by us
by values of the index I.

3. The following action of the B. G. Galerkin method is the

integration of all functions obtained as a result of preceding

operations along the length of the blade. As a result of this
operation all terms of equations, which were earlier functions of the

radius of the blade, become constant coefficients.

4. After that each thus obtained equation can be divided into a
whole series of simpler equations, if one were to equate between

themselves all coefficients standing at similar values cosn, and sinn,.

As a resul'. of this operation each equation with the number I will be
turned into a whole family of equations. Separate equations entering

in this family in Table 1.8 are coordinated by index i. Furthermore,

every pair of equations referring to similar harmonics is noted by

the index n, which is equal to an order of the appropriate harmonic.

Analyzing the thus obtained system of algebraic equations, it is
possible to note that all analogous coefficients of equations were

placed in Table 1.8 along the diagonals. Such location is repeated in

all zones corresponding to different indices of J and I. Here one

should stipulate that t!s rule has individual exceptions, which can

easily be noted in examining Table 1.8.

Using indices I, n, J, and I introduced above, it appears possible
to form general formulas for all coeffitients entering into the

left-hand side of equations of Table 1.8. In the forming of these

formulas we will also use special functions fl(a) and f 2 (a), which

takes the following values dependlnj upon parity and value of their

argument:
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l'at a even;
fl(a)ý 0 at a odd;

I at 4-0;,
0,a) at 4#0.

These formulas have the following form:

R nf1 (I +1) D,, + ps.,f, (0) B,;
S= -nf, (• D,, + ,&,f, (I + 1) Br;

2

T = [j(I + n) Fj,- G,; (13.3; 4)
2

A41 =IL0A (11lH.,,t-11,f, (i+.1) BI;4
I U==--L•f 10-A Y I) H.,,--px.,fl (i) B;

4

4
K=

4

Here =• J', where P is the angle of rotation in the flapping hinge

with oscillations according to the standardized form in accordance

with (3.27) of the j-th tone of natural oscillations; V, - mass

characteristic of' the blade with oscillations with respect To the

1-th tone:

_ = b07f(,7 .35)

- equtvalent mas.... of the blade with its •scilh.1t'loris with respect

to the form of the l-th tone:

m,9j-m -0nI'dr;

in the special case when I = 0 and it is possible to qssim(-

and the expression for yo coincides with the conventional Pxpression

(7.40) for mass characteristic of the rigid blade (7.4B9); p,- frequency

of natural oscillations of the blade with respect to the for:i. of the
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J-th tone; in the process of ti# fulfillment of computations the value
of the frequency is ascribed by expression

ff1IG0'?idr+ N IWV)'Ildr (.6

- angular velocity (or number of turns of the rotor depending upon

in what units pj is determined); the ratio p1w- should be a dimension-

less value.

Other quantities entering into formulas (8.34) have the following

values:

AIB

A, B; 8!'' 7'dr;

B,

Do,,- B");'d (8.37)

F,1-5 B") 7,Vdr;

H, / 1 BM" f4'dr.

Here B(i) is the equivalent chord of the blade determined by formulas

(8.31) and having, consequently, different values depending upon the

number of the equation:

B(')=. at i even;

B(')=.-I at i odd;

a nnd f -- torms of natural oscillations of the blade whose tone is

determined by vs1hje of indices J, and T.



Literal designations of these forms are noted above by a bar.

This means that they are standardized in such a way that h-l. At the

same time values of the first derivative of these forms in differenti-

ation with respect to the radius of the blade PJ are not noted by a
bar. This means that these derivatives are taken from forms of

oscillations yo, which are standardized in such a way that g•R.

Formulas (8.34) permit determining the line of coefficients K, L,

M, N, R, Q, S, T, U, L, K for any zone of Table 1.8, if coordinates

of this zone J and I and the number of equation in zone i are

prescribed. Thus assigning consecutively different values of J, I,

and i and turning to the operator, which includes actions provided

for by formulas (8.34), one can determine all coefficients of the

left side of equations of Table 1.8.

13. Determination of Coefficients of the
Right Side of the Equation of Table 1.8

To determine coefficients of the right side a, and •, in the

program of calculation there should be formed a special operator in

which these coefficients are determined according to the following

formulas:

a, +Ai',, + -LIX

4 2

01 (A +lBe -- 2, 0 2tg%,+2-LB

as jj2I#2, + ~

For harmonics higher than the trird (wihen n > 5)

Tn formiilas (..) new designations for a F,.ries of integrals

are used:

i+
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5= B(1) y,Nrj'd

(8.39)

I

Here

where

T, is the constant part of the blade angle counted off from the plane

of rotation of the rotor; over the radius of the blade this quantity

changes only owing to its geometric twist Aq).

Values t* are copied in the far right column of Table 1.7.

Thus, formulas (8.38) permit determining all coefficients of the

right side of equations if value I is assigned.

14. System of Equations After Substitution

of Formulas (8.34) and (8.38)

If values of coefficients determined by formulas (8.34) and

(8.39) are substituted into equations of Table 1.8, then the same

system of equations can be represented in the form of Table 1.9.

Here for simplicity we were lmitFd t(o the ease when calculation

is conducted correct to two tories of ov'-1llations and four harmonics

with respect to revolutions of tho rotor. However, the above-mentioned

enlilation formulas (R.3)4) and (t{.'i) are written in general form

and permit performing calculation with any accuracy.

By estimating the real nrkis of prqcti,,r, it is p,-sible In tr e

cnmposition of tie procFrram tt:(, -t O'i-uiat*Ofn of only fr'ar



tones of natural oscillations and six to eight harmonics to revolutions

The rotor.

15. General Scheme of Calculation

The system of algebraic equations copied in Table 1.8 constitutes

a certain complex system of equations which allows determining all

unknown quantities convergent in it. Determination of these unknown

quantities and, first of all, coefficients of deformations of the

blade, is the purpose of the riechod of calculation expounded here.

Above, in § 7, during calculation of bending stresses with the

use of the B. G. Galerkin method, there were used different

simplifications both in the derivations of equations given here and in

their solution. The application of digital computers permits without

special difficulty to solve this system of equations not introducing

into it any simplifications, which permits considerably increasing

tne reliability of the obtained results. In any case errors of the

calculation can be connected only with the initial assumptions.

Fiilfillment of all the required mathematical operations does not

introduce any errors and is produced with any accuracy assigned in

advance.

How do we solve this ,,ery complex system of equations ? The

simplest method here, without any doubt, appears to be the method of

successive approximations in the form in which here it will be

discussed below. This method was used in the forming of programs and

checked by a large quantity of calculations. The method very rapidly

coincides, anA to obtain an accuracy necessary for practice three to

four approximations appears sufficient.

In the use of method of successive approximations unknown

rcoefficients of deformations are determined successively in order of

increase in the index determining their belonging to the appropriate

harmonic. Therefore, before turning to a description of the order of

all operations in usinr; the method of successive approximations, it

"is necessary to discuss the determination of reffi'>1ents of
deformations.

1 L),



16. Determination of Coefficients of Deformations

In the determination of .'oefficients of deformations, in all cases -

there.- In used the same principle involving the followino-. 7cefficientsk)

if dei'forrnations are determined pairwise from two equations of the

system of Table 1.8, which pertain to cosinusoidal and sinusoidal

components of any harmonic. These equations are, first of all, formed

in the following way. The sum of products A4& and Ae. of coefficients

in Table 1.8 is determined by coefficients of deformations already

determined at the moment of fulfillment of this operation, with the

exception of those products into which enter coefficients enclosed in

Table 1.8 by a dashed line. These sums of products are transferred to

the right side of equations. After that coefficients of deformations

referring to analogous harmonics (true, only in the case when n > 1)

and forms of.deformations are determined from two algebraic equations

of the following form:

(8.40)

where

0aa0; =;.-• =

Coefficients an and bn here have a generalized character in the

sense that such an entry of equations is possible with coefficients

c n and dn, en and fn, and gn and hn

Coefficients Q, S, R, and ý entering into equations (P,.4o) are

determined by formulas (8.34) for the case when J = I. The value :1.

for the first equation is an even quantity and for the orceond equatton,

an odd quantity. Consequently, these coefficients in this special

case can be written in accordance with (8.34) in such a form:

$ -nDj;

R-nn~r.

In this case, when J = I,

0
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If in the first formula of (8.41) we disregard the second,'term

and approximately assume B,-.-,, then equation (8.40) can be converted

\ .1 to the form utilized in the simplified methods of calculation (see

§ 7).

Indeed, by producing these simplifications, we will multiply all

terms of (8.40) by Y . "-,

Let us introduce new designations. Quantity H1, determined by

expression

",-t-..D,. (8.42)

will be called the relative coefficient of aerodynamic damping.

Quantity v.-no) will be called the forced frequency of excitation

of oscillations.

Then equation (3.40) can be rewritten in the form utilized in

§7:
r Vn2

1P.F ,,(8.43)
-SI

2W +[)' ]bm-Y,08

From these equations the peak value of coefficients of

defCcr-ations, which corresponds to the J-th tone of natural

oscillations, can be determined as

where 1. is the coefficient of dynamic increase in amplitude; .1,1-

sag of the blade with respect to the form of the J-th tone with static
application of external forces.

SRAY + MY,(-)
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Thus the accepted form of determining coefficients of deformationsin principle coincides with the form which is used in problems of ..

mechanics in the determination of the amplitude of oscillations of a

system with damping and is described above in § 7.

It is necessary to note that in determining coefficients of
S deformations equations of the system (see Table 1.8) will be converted

to the form of (8.40) only in the case when n > 1. In the determination

of coefficients referring to the first harmonic, into the left side of

equations (8.40) even certain additional. coefficients K, L, and U will

enter, which, however, do not change the essence of the matter.

The determination of coefficients ao, cO, eo, and go, determining

the constant part of deformations, appear somewhat different. They

can be determined from one equation with the number i = 0. However,

in order not to disturb the community of approach, it is convenient
to determine them in the program also from two equations with numbers

i = 0 and i = 1, the coefficients of which are determined by the same

formulas (8.34). Here one should assume 0-0. Such an approach

permits somewhat simplifying the program of calculation.

17. Program of Calculation

In the composition of the program of calculation there is set

about the following sequence of fulfillment of necessary operations:

1. According to the separate program which is absolutely

necessary in the designing of blades and therefore should certainly be
formed, forms and frequencies of natural oscillations of the blade in

the thrust plane are determined. In the process of this calculation

there should be obtained the Collowing quantities: y' Y,.9. pi, and
m ,. Here a"' is the distribution of flexural stresses over the radiuz

of the blade with its oscillations with respect to the standardized

form of the J-th tone.

2. Parameters characterizing conditions of flight of the

helicopter are prescribed: P;Q.O.a.oT.6,,an Vlu and '2 Values . and

can be determined from the calculation if the necessary propulsive

15



force and thrust of the rotor are assigned. Angles of cyclical control

0 and 02 can be determined if from balancing conditions of the

helicopter there are determined the necessary moments M and Mz having

an effect on its hub on the side of the rotor blades. These operations

are usually included in the program of calculation.

3. In order to proceed to solving the system of equations, copied

in Taole 1.7 and 1.8, it is necessary still to determine coefficients

Y_ and xj. This system of equations is solved by the met-rod of

successive approximations, and in each approximation all unknown values

are determined in sequence, which is copied in Table 1.10. First there

are determined coefficients recorded in the first line, then those in

the second, and so on.

4. After determination of all values copied in Table 1.10, it

is possible to refine parameters of conditions of flight qXcT,a,.,O,

and •2 and to calculate all coefficients in the following to

approximation in the same order.

5. The sequence of operations copied in Table 1.10 is repeated

until the difference of analogous coefficients of deformations in two

successive approximations appears less than the assigned accuracy of

calculation E5 . Value F- can be taken equal to 1/1000 or a somewhat

smaller value.

6. Quantities of bending stresses in the blade on each azimuth

can be determined by the formula

where values 6 are determined by coefficients of deformations

aOa. b, ccc.cb, etc., Jn accordance with formulas (8.27) and (8.28).

This sequence of operations form the content of the method of

calculation discussed here. Fulfillment of calculation permits

obtaining the following:

- flexural stresses and form of deformations of the blade on
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each azimuth of the rotor; all harmonic components of these quantities
are determined simultaneously;

- field of axial induced speeds in the plane of the rotor and all

harmonic components of this field;

- angle of attack and angle of setting of blades of the rotor in
flight conditions with assigned values of propulsive force and thrust;

- angles of deflection of the disk of the cyclic pitch control,

necessary for creation of moments Mx and Mz necessary for balancing of

the helicopter.

18. Comparison of the Calculation with the
Experiment at Low Flight Speed

In flights at low speed the magnitude of varying stresses

measured in the blade usually has a very unstable character.

During the period of one flight condition assigned to pilot, the

amplitude of stresses can be changed in magnitude two-three times.

This is explained by the fact that the angle of attack of the rotor

and speed of flight in these conditions are very difficult to maintain
constant. Conditions of flight change continuously. However, the

designer is basically interested in values of maximum amplitudes of

varying stresses, since they, as a rule, introduce the greatest fatigue

damage into the construction.

Usually the maximum varying stresses in the blade appear in

conditions of flight with the largest angles of attack of the rotor.

These conditions include conditions of deceleration of the helicopter

and conditions steep descent at great vertical velocity.

For comparison of results of the calculation and experiment let
us proceed in the following way. Let us consider all conditions of

flight with sudden deceleration of the helicopter before landing in
which there was taken measurement of stresses in the blade. From each

flight we will select the value of maximum amplitude of stresses over
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the radius of the blade a~.rir•g the period of the entire
landing conditions. T!.e f! . f values of these stresses is shaded
on Fig. 1.3(

IMo S (stuep aesc ent)

Pield of maxijmun amplitudes or
1 - varYing strosses measured in

t ~r-

,o I 'iLLL_

_ _ I '

• - ---- ..

-< -r -. i t.. ..LI.f -'- i

Ti u e ..........- and. ... c_ i.,, __i •__D,)n o

r;hcrr with 4.hrf., zrver~irrv,•nl-.

{ii

Calculation of ý;t-Moens will- t<"ra(! f'?-r r~r,[;rn:w:•th vo l~
;peedc of flight and'wlt-h an Identical angle r.f".aack r, J hr fo r.

The rpeed flight in the condition;•- will be charac-terlzrý,r by quantity
Lo. Results of these valcilation are shown in tiv. 1.3. The solid

lines denote the depe•,deorces of maximum varr.r ne in the blade',
obtained from the calt.Lation on the speed of flight. With this there:

are examined conditions with the angle of attack a = 0 and a = 30,
which can be reached ir, conditions of sudden deceleration and with an (
angle of attack of a t -00, which is possible during steep descent
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with great vertical velocity. The dashed line shows the same

dependence for a = 0 and a =-60 but neglecting of the variable field
of induced speeds. In the fulfillment of these calculations there

were investigated conditions of flight without overload, when the

thrust of the rotor is equal to the weight.

From the calculations made it follows that the greatest increase

in variable stresses at low speeds is observed in those conditions of

flight at which the sheet of free vortices flowing from the blades

becomes flat. With departure of the sheet from the rotor plane the

varying stresses sharply decrease and approximate stresses calculated,

neglecting the alternating field of induced speeds.

With a comparison of conditions with identical angles of attack

a sharp increase in varying stresses is observed in a very narrow

speed range of the flight.

Results of the calculation to some degree reflect the pattern of

the phenomenon observed in flight. Thus, Just as in flight, the

computed values of varying stresses increase at low speeds and are

V increased with an increase in the angle of attack of the rotor.

However, considerable divergence is observed between calculation and

experiment.

1. In identical flight conditions the amplitudes of varying

stresses obtained in the calculation, appear less than tests

measured during flight.

2. Amplitudes of varying stresses, obtained In the calculation

and during the experiment, appear similar in a quantitative respect

if one were to compare the conditions with different angles of attack,

taking In the calculation an angle of attack of the rotor somewhat

larger than occurs in flight.

3. if one were to compare conditions of flight at which values

of stresses ottained in the calculation and during the experiment

J, coincide, then a considerable distinction in their harmonic

composition is obsprved. In stresses measured in flight the content
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of high harmonics is higher that that in the calculation. Thus in

stresses measured in conditions of sudden deceleration and shown in

Fig. 1.33 harmonics in the range of the fourth to the sixth predominate.~

At the same time in the composition of varying stresses obtained by

calctr1ation stresses with the first, third, and fifth harmonics

predominate. Here they are named in decreasing order of their

amplitude. As an example Fig. 1.34 shows the .iistribution of stresses

ovre.r the radius of the blade and their harmonic composition in

conditions of flight with a 500 and ýt 0.04i8.

2

Fig '.4. Distribution
of stresses over the
radius of the blade and

to their harmonic composition

in flight condition

0 --

ý-J-

It is necessary to note that in the calculation there was'

investigated a blade with charact~eristics providing the absence of

resonances in working revolutions. ItS, resonance diagram i.,; shown in

Fig. 1.35. The iorking revolutions accepted in the. calculation, are

riotcAý- on~ the re.-onance diagram by a vertical line.

nio dlata~ f i v(!T? thn fO ,hr then appl cat -on of' ftheý mthod of'

ip~latllon, t~akinfg Into account mea nuedsed wt h-

assurrptions which were described In No. 3, approaches- the re:sults- r),.

the Calculation and experiment at low speeds of flifrht,. Tiowcver, to
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o(tbLin resi.Ats a""eptable for practical purposes further refinements

are necessary.

Fi oac/m:r• -

• ' -/ ith ham•on.o

- - ' 1th harmonio

Zn /aoi

Ist ham.onlc

Fig. 1.35. Resonance diagram of the
blade.

19. Comparison of the Calculation with the
Experiment at Average Speeds of Flight

By average speeds of flight we here refer all speeds at which

there still is not affected nonlinearity in the dependence cy = f(C)
and phenomena connected with the compressibility of flow. In many
Cases, therefore, average speeds of flight can be the cruising speed

of a helicopter, whioh is especially interesting from the point rf

vlfvw of' fatigue s.,renrth, since at this speed the helicopter spends

the ireatest pereenta.rv of' time in operation.

mirijre I.Y, twvFs a ,romparison of amplitudles of varying stresses

and their first and :;econd harmonics to the number of revolutions

obtained by calculation with stresses measured in the blade at

cruJsing speed when k = 0.25. Stresses obtained in the flight are

shown by dots. Tne dashed line snows stresses calculated taking into

S"
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account the assumption of the fact that .=)ocp--const and solid lines,
taking into account that which --var. t 1

i kG/mmm2  e, kG/mm2

Amplitude of First h onicvarying Fi-st harmonic
stresses I L1

Awit

Lff kG ie e -d- _--

I t part
0' I%

.o •/ • . .. . . .i

4'/ Cntan par I Uyint6 2  T ort hamoi

of Thlexurald " l2" Second harmonic

JR-_LnJ

taking into account the variable field of induced speeds, withstresses measured in flight.

Prom this figure it follows that results of the calculation and
experiment at cruising speed are distinguished rather conoiderably.
The total amplitude of calculation stresses comprise-, not more than (
"80% of the values m .asured in Clight. This J/vcrfrenc7, occurt ar nic
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due to the diztn-tin in values of the second harmonic of stresses
to the number of revolutions of the rotor. Coincidence in the first

harmonic of stresses is quite good. Higher harmonics of stresses in
these conditions of flight are minute and do not have substantial

influence on the amplitude of the stresses.

Results shown in Fig. 1.36 are typical for conditions of flight

with t = 0.25 and are repeated almost on allhelicopters.

From Fig. 1.36 it is also clear that the calculation of variable

induced speeds does not give in these conditions noticeable refinements
in values of varying stresses. However, if one were to discuss only
any one harmonic, for example, the fourth, then it is clear that its
value considerably increases with calculation of the alternating field
of induced speeds. Therefore, if this harmonic is flow-passage and
determines the magnitude of forces arriving at the fuselage and causing
its vibrations, then this refinement appears very important.

Above nothing was said about the constant part of flexural stresses.
Usually their magnitude, obtained on the basis of calculation, appears
so accurate that its measurement in flight, as a rule, is not even
taken. Calculation in this case gives more reliable results.

20. Possible Means of Further Refinement
of Results of Calculation

As foliowc from the above-stated, calculation of varying stresses
in the blade still does not give results which would satisfy the

designer. If at average speeds of flight results of the calculation
more or less will satisfactorily agree with the expe-iment (although
further refinements of values of the second harmonic are extremely
desirable), then at low speeds of flight very remote coincidence is

observed.

In connecticn with this the direction In which searches are

conducted with respect to further refinement of results is very
important. It is poscible to propose the following means.



In the calculation ofi varyinf stresses at low speeds of flight

the most important refinements must be considered: (

- calculation of the influence of natural induced speeds

(rejection of the "hypothesis of stationarity");

- application of the vortex theory, considering deformations of

the system of free vortices (rejection of the assumption that vortices

depart from rotor at a constant speed equal to the average rate of

flow ).orp)

In the calculation of varying stresses at average speeds of

flight, where the basic divergence is observed in values of the second

harmonic of stresses, the most useful refinement would be the

application of the vortex theory with a finite number of blades and

introduction into calculation of the influence of both external and

natural induced speeds.

In those cases when the blade has low torsional rigidity or when

oxternal forces excite the form of vibrations of the rotor coinciding

with a form of flutter, and their frequency is close to the frequency

of the flutter, noticeable refinements can be given by the calculation

of torsional deformations of the blade. A method of similar

calculation was given in § 7 of Chapter IV in Book One.

In many eases with calculation of varying stresses at cruising

speed at the flight (just as at maximum speed) noticeable refinements

can be given by the calculation of nonlinear dependences cy r! f(c)

and compressibilities of flow, which will be discussed in the

following paragraph.
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S§ 3. 7 '•ia~ �ciof Fiexurai Stresses In the blade
:akin7 lnto Account the Nonlinear Dependence of

Aerodynamic Coefficients on the Angle
of Attack of the Profile and M Number

1. Examined Flight Conditions

Calculation or the nonlinear dependence of aerodynamic coefficients

on the angle of attack of the profile is necessary in those conditions

of flight when these angles reach so considerable magnitudes that it

is no longer allowed to use the linear dependence (8.1). To such

conditions pertain flights at speeds close to maximum, and those

conditions of flight at low speeds when due to a great load on the

blade and very great irregularity of the field of induced speeds on

ceparate sections of the area marked by the rotor the angles of

attack emerge into a nonlinear region of dependence cy U f(a). In

a number, cases calculation of these nonlinearities appears necessary

In other conditions, including conditions of flight at cruising speed.

Calculation of phenomena connected with the compressibility of

flow Is necessary, as a rule, at high speeds of flight for helicopters

having rotors with high peripheral velocities.

2. Determining Aerodynamic Loads

Above, In 6 8, it was assumeA '-.hat the In flow angle to the

profile of the blade # is a small magnitude, and therefore the approx-

imate formula (8.23) for determination of this angle was used. Here

let us assutme that the angle # ca. be Phanged within 3600, and its

magnituie will b, calculated by -he formula

W(9.1)

where values Ux and Uy are determined by the formulas

x y

u,#m6R +pdo*



Formulas (9.) c:)i:&cAde with formulas used in § 3. This means

that with their composition it was a:zsumed that movements of the blade

are small, av, therefore it is possible to assume that:

sin p •~; j (9.3)
CosI. IM

The value of angle 1, determined by formula (9.1), with calcula-

tions on a digital computer is given usually only in the range of -9Oo.

This should be considered in the calculation of the angle of attack

by the formula

(9.4)

Therefore, formula (9.1) can be used only when U > 0. If
x

Ux < 0, then, as follows from Fig. 1.37,

U, (9.5)* =n arctg•.(-.

The inflow angle, determined by formulas (9.1) and (9.5), is

changed in the range of -90' < ¢ < 2700.

If one were to assume that the angle of setting can be changed

from 4 = -15' to ¢ = 4450, then the aerodynamic coefficients should
be assigned within limits of the change in angle of attack from -1050

to +3150.

The M number necessary for determination of the aerodynamic

coefficients is calculated by the formula

S--(9.6)
age

Here a is the speed of sound:3B3

a,,= i/ , (9.7)

whet,. k ¶. thi• ,pr•i,] i heat rot to; p -atmo,;pherlc pr~eýsuru .
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,,Fig. 1.37. D~agram of the

i UI •for the determination of
i the Inflow angle 0.

-.-

'VV

22

The aerodynamic coefficients necestary for calculation are

determined as a result of circular blowing of the profile in a wind
tuniel. In calculations on a machine for determination of aerodynamic

coefficients it is convenient to use the program formed by Engineer
M. N. Tishchenko. In this program the influence of the M number on

Terodynamic coefficients 1i considered only in the angular region of

attack of the profile from a•=r -2b to g = +15t. In the other range

of the change in angles of attack aerodynamic coefficients are

con:;idered not dependent on the M number.

Figure 1.38, as an example, shows the dependence of the

coefficient of lift c accepted in one of variants of this program on
Ythe angle of attack o for the profile NACA-230.

If coefficients of lift cy and drag cx are known, then aerodynamic

forces effective in the flapping plane T and in the plane of rotation

Q can be determined by formulas

T -L(eo1 LJ +cej-,) QbU;2 (9.8)

(cUs - CPR))eW
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3. Metnod of Calculation of the Blade as a System
Whose Motion is Connected with Forms of
Oscillations Prescribed Beforehand

As above, in § 8, the calculation of elastic oscillations of the
blade is reduced to the solution of the differential equa¶ion

I
IEl'l-[Nu'l'+mu=T, (9.9)

where under the accepted assumptions the aerrdynamic force T is a
nonlinear function of movements of elementn of rhe blade y.

In this case to solve equation (9.9) it is convenient to use

method in which motion of the blade with respect to time is found

by numerical integration of ordinary differential equations obtained

from equation (9.9) with the help of the B. G. Galerkin method. With

such an approach to the problem these equations appear to he connected

only through aerodynamic forces. Therefor?, if at any arbitrary

instant the aerodynamic forces are possible to calculate, the deforma-

tions of the blade with respect to each assigned form of oscillations

are determined independently if these forms are orthogonal.

Let us represent the form of oscillations of the blade in the

form of a sum of a certain number of tones of natural oscillations of

the blade:

v-Z Sd', (9.10)

where J - 0, 1, 2, ... , as (J s the number of the highest tone of

I natural oscillations of the blade considered in the solution);

y•J)--form of the J-th tone of natural oscillations of the blade#(a)

standardized in such a way that for F = R y•J) = R; 6• -certain

coefficients determining the magnitude of deformations of the blade

with respect to the j-th tone.

Coefficients 6j, as above, will be called coefficients of de-

formations of the blade. Values 6 are time functions.

h Coefficients of deformation of the blade 6j; in the present
method calculation are accepted as the generalized coordinates of
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the system. Determination of ,t, aw of' their change with respect to

time comprises the contents of the calculation.

Differentiating expression (9.10) twice with respect to time, (
we obtain

s I (9.11)

If expression (9.10) and (9.11) are substituted into •equation

(9.9), and all terms of equation (9.9) are successively multiplied

by y•J" (where j - 0, 1, 2, ... , j B) and integrated over the-radius

of the blade, then in virtue of the orthogonality of forms of

natural oscillations equation (9.9) decomposes into j + 1 independent

equations of the form:

atl+C8 l (9.12)

Here

R R

=a LOP dr; (9.13)

A, -- Tygdr.

Above in Nos. 1 and 2 of § 7 it already was noted that quantities

entering into equation (9.12) have a fully defined physical meaning.

Quantity CP, called the generalized rigidity of the blade with

deformations in form of the J-th tone, is also the doubled potential

energy accumulated by the blade with bending in the field of centrifugal

forces with respect to the form of the same tone. Quantity m is

the equivalent mass of the olade reduced to its end. It is equal

also to the doubled kinetic energy of oscillations of the blade with

respect to the form of the J-th tone with frequency p = i. Integral

AP, standing in the right-hand side of equation (9.12), Js the

generalized force and is equal to the doubled work of aerodynamic

forces on movements induced by deformations of the blade with respect
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to the J-th tone.

It is known that the frequency of the J-th tone of natural

oscillations of the blade can be determined by the formula

Therefore, it is convenient to transform equation (9.12)

referring all terms-to values mi. Then they can be written as

or

where 6 is the coefficient of quasi-static deformations of the
CT

blade with respect to the form of the J-th tone from aerodynamic

forces T (see § 7, No. 7).

As follows from formulas (9.8) and (9.2), the magnitude of

aerodynamic force changes along the azimuth of the blade and dependz

on deformations of the blade or more accurately on values & and 8,

which determine the quantities of relative speed Uy. Therefore,
to calculate aerodynamic forces it is necessary preliminarily

to determine values # and 8 by formulas:

(9.1.6)

FI tip),

where 0(0) is the angle of rotation of the elastic axis of the blade

with respect to the plane of rotation corresponding to the standardized

form of natural oscillations of the i-th tone.

If the coefficients of deformations 6 and their first derivatives

pe-taining Lo any azimuthal position of the blade or any instant

t are known, then the calculation can be carried out in the following
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order.

In the beginning values y and 8 are detei-mined by formulas (9.16). -

After that by formulas (9.2) cooipanL-nts of relative flow rate U and

Ux and speed U can be determined:

u-yu:+uJ. (9.17)

It is true that for determination of speed U it is still

necessary to know the relative flow rate X, which in general is a
variable which changes over the radius and azimuth of the blade. The
determination of quantity X will be discussed in No. 5 of this

paragraph.

If speeds Uy and U x are known, then by formulas (9.1) and (9.5)

the inflow angle t can be determined and by formula (9.4), the angle

of attack of the profile a. The M number is determined by formula

(9.6). These data are sufficient to determine aerodynamic coefficlents

by circular blowing of the profile, and, consequently, aerodynamic

forces T.

Thus in the examined azimuth there appear the well-known

deformations of the blade, speeds of these deformations and aero-

dynamic forces T acting on the blade. Consequently, by using formula

(9.14), one can determine the coefficients 6 determining the

accelerations of elements of the blade:

Aj(9.18)

After this by means of numerical integration of equations (9.14)

with respect to time, one can determine new values of coefficients

of deformations of the blade 6 and their first derivatives 6 on

the following azimuth of the blade after a certain time At determined

by the integration step. Transition from instant t, on which

coefficients of deformations 6, and their first 6 and second 6a aj
derivatives are known, to the following instant t + At can be

performed with the: help :f a number of well-.riw:n method: Dal num!rica.

integration of equations.
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Here, only as an example, let us copy the formulas of such a

transition referring to the method called the Euler method:

f+h- 1+• I(9.19)

Below the peculiarities of different methods of numerical

integration will be examined in more detail. In particular, it will
be shown that the Euler method, represented by formulas (9.19), !s

not useful for calculation of elastic oscillations of the blade.

Application of numerical integration of equations (9.14) with

respect to time permits determining coefficients of deformations and

their first derivatives on a new azimuth of the blade. Then, by

determining at this azimuth new values of aerodynamic forces, one

can determine and the new coefficients of . This process can be

continued until values of coefficients of deformations are determined

on all azimuths of the blade during the period of one revolution of

the rotor.

If the initial value of coefficients 6 and is prescribed

arbitrarily, then after integration of equations during the period

of cne revolution of the rotor values 6 and ýj, obtained on the same

azimuth as a result of integration, will already appear different,

which are distinguished from values taken arbitrarily at the initial

instant. However, if motion of the blades is stable, then numerical

integration can be continued. Then after several revolutions of the

rotor the motion will be steady and repeated in each following

revolution of the rotor. This steady motion is the sought solution

of equation (9.9).

Thus the method of calcultion proposed here constitutes a

resol-ition of the Cauchy problem with integration of equations or

motion of the blade with respect to time under prescribed initial

conditions,
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4. Calculation Formulas for a Model of the Blade
with Discrete Parameters

Usually in practical calculations the blade of the rotor is

examined in the form of a weightless beam with concentrated loads

simulating it. mass fixed to it. It is also convenient to represent

aerodynamic forces acting on the blade in the form of a series of

concentrated forces. We will consider that aerodynamic forces are

applied at attachment, pAnts of concentrated loads, as if to every

load there is fastened a separate flap with a certain area SI (see

§ 1, No. 9). Then the aarndyn~mlc forces can be determined by

formulas analogous formulas (9.8):

Tia--) J; (9.20)

Qi-- (cU, -- Cu)SU,, (9.21)

where index i denotes all values referring to the section of the

blade with number i (see Fig. 1.51). The magnitude of area of

concentrated flaps Si is determined by formula (1.2).

For the blade of the rotor represented not in the form of a beam

with distrib'uted parameters and in the form of a model with a finite

number of concentrated masses elastically connected with each other,

equations Pnalogous to oquations (9.14) can be obtained. Only

quantittee mn and A, entering in equations will be determined h~ot as

Integrals but as th- ýwum of the form:

where mr is the value of concentrated masses of the •yatem; yi -

values determing the form of natural oscill:tlons of the 1-th tone;

the form of natural nscillbt"' ihoulc in this case be represented

by a series of discreta vail rJ -..r*i .ates ' which 4ete.ine

movements of the 1-th 'm:aes t th bl-Ae, 7. :' "

aerodynrmilc forr,:. .v, r ir.!n " ' I ti. u,.
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In everything else calculation of the model of the blade with

discrete parameters does not differ from calculation of the model
with parameters continuously distributed along the length of the

blade. However, with calculation on digital computers it is incompara-

bly more convenient to examine the model with discrete parameters.

5. Calculation of the Alternating Field
of Induced Speeds

4• Applicatlin of the method of calculation expounded here does

not exclude the possibility of calculation of the alternating field

of induced speeds represented by the relative coefficient of flow

in formula (9.2). LFk 6.I.!a the determInation of aerodynamic

forces acting on the blade at the examined Instant t, there should

be solved the intero-differential equation of vortex theory of the

rotor, (see formula (5.29) of 1 5, Chapter II, Look One).

Reduction of the problem on elastic oscillations of the blade

to the Cauchy problem with determination of motion of the blade,

starting from any initial instant, leads to considerable simplifications

in the solution of the Intigro-differentlal equation of vortex theory.

With turning of the rotor one pitch along the azimuth from the

blade vortices connected with changes in circulation flow only during

the period of this last pitch. All vortices descending from *he blade

at preceding instants only move in space, and their circulation no

longer changes. Therefore, in the solution of the Integro-dIfferentlal

equation, which v'efers to some definite instant, it Is necessary to

find the connection only between circulation of adjacent vortices

and vortices decending from the blade during the time of Its movement

only with the last step of integration. Quantities of circulations

of all remaining free vortices already a&pear to be known and defined

by the whole history of the process of motion.

To simplilry the problem a. *he initial instant there can bp

accepted any schematic model of the vortex system consisting, for

example, of onY rotor vortices descendin& from the end of the blDde

with constant circulation along the length. ,t Is Impossible tof rtume that toward the moment of the beginning of ca.'-latlon no
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free vortices exist, since the mean induced speed through the rotor

will appear equal to zero.

The method examined here permits attaining the highest possible

accuracy, which can only provide calculation of induced speeds

according to a rotor configuration with a finite number of blades.

Application of this configuration in other methods of calculation of

elastic oscillations of the blade leads to very serious complications.

The use of methods of calculation of induced speeds, founded on

the rot;r ýorfiguration with an inrinite number of blades, in reference

to the method of calculation examined in this paragraph Is associated

with many difficulties. Thus the method of successive approximations

usually seems to be the simplest. However, if one were to use the

method by which induced speeds are calculated upon completion cf

calculation of motion of the blad'ý for the period of each revolution

of the rotor (when values of aerodynamic forces T are known on all

azimuths and radii of the blade and, consequently, values of circula-

tion at the same points can be determined) and introduced these

speeds into the calculation of aerodynamic forces on the next

revolution of the rotor, then it appears that such a solution process

Joes nct converge. Therefore, it is necessary to use different

procedures to bypass these difficulties, which, as a rule, leads to

considerable complications which in the end can appear unjustified.

6. Peculiarities of Numerical Integration of Differential
Equations of Elastic Oscillations of the Blade

To successfully perform the ¢:ct'latlon of elastic osclilations

of the blade It is very important to select ta', most advantageous

method of numerical Integration possessing good aci-uracy with a minrimum

number of operations connected with the solution of the differential

equation of motion. This operation consists of the main 1:-* of the

machine time during the calculation, and the greatest pa-t of It is

expended to determine external forces. Therefore, the calculation

period is determened mainly by the number of transformation= to the

motion equation. This number is determined by the selected method amg

Integration step. ThC sma&Ir the zter, the *or^ prolonged the ýii.a-

tion.



An analysis shows that with the detecting of the periodic

resolution of the problem of elastic oscillations the necessary

integration step changes in very wide limits depending upon what

method of numerical integration is used. Very poor results are

given by ..,any widespread methods of numerical integration, such as

the already mentioned Euler method [see formula (9.19)]. Unzuipmble

also for the examined problem appeared to be the widely known method

of solution by means of the Taylor series. This method leads to the

following formulas of transition from instant t to the instant

t + At:

t,+A, X= to + ai LA,2 (9,.23)

Value Catf, (t,,,i, C,+,,) is determined from the differentia L
equation. Here At is the integration step.

More suitable to the given case but still insufficiently

cor:7enient are also the widely known methods of numerical integ)Taelon
of P'4nge-Kutta and Adams.

The best method of checking the applicability of the method of

numerical integration for resolution of the problem on oscilloti"

of the blade is the numerical solution of the equation

I + 2,ii + B ~sIn v1,(.2)

which describes oscillations of a certain mechanical model .on.t Itut Ing

a ma:; on a spring with a damper (see Fig. 1.39).

The rotor blade can be examined as the totality of a cerx

number of such models possessing various freptencies of naturn'

oscillations and various coefficients of damping corresponding ti

frequencies and damping factors of different tones of oscillations of

the blade.

-- ith relatively small steps of At the application of the Taylor
series for integration of equaticn (9.24) leads to the soluticn
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constitutlrg the oscillatory process whose amplitude approaches a

certain defin-ý.e value different from the accurate analytic value by

a value of errc-r of the calculation. With an increase in the integra-

tion step, at certain definite values of .it, tne solution disagrees.

If the solution does not disagree, the greatest error appears with

"resonance, i.e., when, v = 1. Therefore, we subsequently will estimate

the error by this most diff!3ult case.

Figure 1.39 sho,:s the change in peak values of the oscillatory

process, which is obtained as a result of numerical solution of

equation (9.24) with the help of the Taylor series. As inicial values

accurate analytic values 60 and 6c are taken. These are examined

cases with relative coefficients of damping equal to 2n = 0.1 and

2n 0.2 and different integration steps.

S[•l~z•-4 ; .- ,Ir I; A 113,FI-- •/---,4.-,, f l -I
'--,Fig. 119.- nfue•rne of

.Z .,;h .,/, . ,, relative Ante- ration step
in the ac uraCy --of th. --
solution.

! I .. 7/ j 144 217 •-0.2; A - ,, 1/7 -

r//Jfoscil at --n A- N in-this-perio and- ar eerdtote"ay

1. --• . .....- --.. .. ..
,,,-,.• ... -,-,,.w I 24-0.2; AT-"f/10

Maximum values of 6, obtained in the extent of the period of

In~egr~ation with the ordinal number N, are accepted as the amplitude

mf oscilliations A N in this period and are referred to the analytic °

value of the amplitude
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A--.1  (9.25)

From Fig. 1.39 it follows that in the process of numerical
integration the solution departs from the accurate analytic curve. The
steady oscillatory process has an amplitude always greater than that
of the accurate value. The greater the relative integration step
AT, the greater the error. The relative integration step here is the

quantity

A77 , (9.26)

where At is the integration time step; T - period of oscillations of
the model.

The quantity o" relative damping factor H also noticeably affects
the accuracy of the solution. From calculations it follows that to
obtain satisfactory accuracy the relative integration step should be

of the order of 1/200 of the period of oscillations or even less.

In the numerical integration of equations describing elastic
oscillations, it is Important not only to provide the required
accuracy but to use such an integration step at which there would not
be a divergent solution.

Determination of the maximum integration step at which the
sol4tion will still be stable can be carried out in the following way.

Equations (9.23) and (9.24) can be examined as a certain system
of difference equations. To determine the stability of the solution
-let us examine the uniform system of difference equations [without

* the right-hand side in equation (9.24)].

_ Let us write equations (9.23) in a somewhat more general form
introducing a certain constant coefficient K:

, 1 (9.27)
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When K - 0 these formulas coincide with Euler formulas (9.19)

and when K - -/2, with Taylor formulas (9.23).

From equation (9.24) for the case when sin vt = 0, let us

determine value 6t, and, substituting it into equations (9.27), we

will obtain the following system of difference equations:

S.,=(I -'•A ba+ (it- AMit; ) (9.28)
?h+& - s ++(I -2WAOt .

We will 3eek the solution of this system in the form:

S6j--'; a Aa(,+I) ;(9.29)

Substituting (9.29) Into the system of uniform difference-
equations (9.28), we will obtain the characteristic equation relative

to a. From this equation we will find a.

In order that value 6 does not tend to infinity, for n ÷ • theret
is necessary the condition:

At relatively small At and • the value a, as follows from

S equation (9.30), is the complex quantity.

Determining modulus a, we will obtain the condition of the

nondivergent solution:

•I+A--2At(•+. )<! (9.31)

or A-2Qi+wh*(O.(9.32)
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Whence

2n r~33)

If the integration step is referred to the period of oscillations

of system T equal for the examined simplified model 2w, then we 4il

obtain the condition of the nondivergent solution

Then for the Euler method at K = 0, we will obtain that the

solution is possible when

(9.35)
X

1
and for the Taylor method at K =

1T4_2i (9.36)
.X

Thus in order not to obtain a divergent solution, in the use of

the Euler method there is required a twice smaller step than that in

Taylor method. Both methods give a divergent solution no matter how

small is taken an integration step, if the relative damping fact,2rý

is equal to zero.

With an increase in n and At value a becomes a real number. Value

a can never be larger than unity but can appear as a negative v2>'t'

larger than unity in absolute value.

The condition that a < 1 is observed if

Whence the instability of the solution for the Euler method at

K = 0 approaches when AT>a•-It- and only if iT > 1, and for the
XTaylor method (c - in the case when -> . However, these

conditions are usually overlapped by a more rigid condition (9.36).
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If these results are transferred to a system which represents

the blade of the rotor, then the magnitude of relative step must be

selected proceeding from the period of the highest tone of oscillations

possible in the system, since this will lead to the least value of

necessary step at which numerical integration is pcssible.

Figure 1.40 shows the typical character of the change in the

period of natural oscillations of the blade T and relative coefficient

of aerodynamic damping n with respect to the number of the tone of

oscilla-,-ns J. The value of the period of oscillations is calculated

in degrees along the azimuth of the blade. Given on the same graph

is the dependence on the number of the tone; pj is the frequency

of the J-th tone of natural oscillations of the blade calculated in

oscillations per minute. In the region of lowest tones quantity pj

considprably changes with a change in the number of revolutions of

the rotor from n = 0 to working numbers of revolutions n = 'a6

T I I I --I F IT ,T

I ; - - .-_20 Fig. 1.40. Dependence of the period
A of oscillations T, of the relative7I 2~ I{ - - - coefficient of aerodynamic damping

S: n on the number of the tone of

4' 4r

the first four tonei of natural oscillations Including the zero, whicn

is usually sufficient for obtaining necessary accuracy In practice,

then the integration step will have to be selected proceeding from the
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period and coefficient of relative damping of the highest (for this

system) third tone of natural oscillations.

If one were to consider that the period of oscillations with

respect to the third tone cannot be less than 450 in azimuth of the

rotor, and the relative coefficient of aerodynamic damping is not

less than n a 0.07, then for obtaining only a nondivergent solution

the integration step in accordance with expressioi. (9.36), should be

less than 20 and in accordance with expression (9.35), less thar 10

in azimuth. To obtain a satisfactory accuracy (see Fig. 1.39) it

would be necessary to decrease the step even more.

This example shows that the application of shown methods of

integration to calculation of the blade leads to very unsatisfactory

results. Methods of Runge-Kutta and Adams permit for the same

example to use an integration step of the order of 30, but they

prove to be not very convenient because of the fact that storage in

the memory of the machine is required of too large variables

calculated for preceding instants.

Good results are achieved by the method of integration mentioned

in Book One (Chapter IV, § 7) with expansion of the solution in

Taylor series and with repeated scaling of each integration step.

This method Is recognized as being fully suitable In application to

the examined problem and is used at present in many programs of

calculation.

Transition from instant t to instant t + At is produced by this
method of numerical Integration in such a sequence:

First miscalculation:

II,.&•.I(5i,., i•.1) t; determined from the differential equation. Theni

CP 1., determined by formula
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,-- (,- ) (9.38)

2I

Repeated scaling:

+, +

i+J/(SoA,, Lb,+) is determined from the differential equation.

Values ,4+m, a,+&t and i,-a are considered final for the instant

t 4 At.

The change in variable 6 and Its first and second time derivative,

determined, in accordance with formulas (9.38), is shown on Fig. 1.41.

Fig. 1.41. Dependence of vari-
able 6 and its first and second
ti-me derivative.

Figure 1.42 gives the stabilized solution of equation (9.24),

obtained a3 a result of numerical integration by this metnlod. The

:;olutlon is given with various values of the integration step. The

heavy line shows the accurate analytic solution.

At the relative 3tep 1/72 and lezs, numerlral Integratton •jVe

:a 3olutlor• :lmr:t -,o-curately elinci•,tInI with th•v a nytc. At a

1..
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/r-,- - - - Fig. 1.42. Results of nuvrical
o-3.ution of equation (9.2F)

-- depending upon the relative
integration step.0 -

larger relative step there appears considerable distinction between

"the accurate and numerical solution, which can be seen in Fig. 1.42.

At the relative step

S,_-L (9.39 )

the 3olution dlvercez.

To exclude the pozsiblity of the appearance in the zystem of

djvergnt sn1htions the integration step should not be larger thin

approximately one-third of the period of the highest tone of os,.illa-

tions of the system having the smallest period. A very important

idvantave of this method Is the fact that the maximum integration

step practically does not depend on the value of the relative damping

Iactor.

For the blaiue with parameters shown on FAI. 1.40, Fig. l.*3

-lve-t- a compari:.ort of maximum steps A* .... for thq examir.ed mt'#.4.ods

"rof ntratrlon d.pendlng upon the number of hij'.h'eat tone J

naturi. o:-clllations of the system.

If one were to be limited to calculation or only the firzt four

tone.: of natural •c!Ulatlors, then In accordance with expression

(9.39) to obtain a noadivergent solution it Is sufficient to have an



integration step of about 15' In azlmuth of the blade, i.e.,

approximately 7 times larger than in the same without repeated zcaiing.

Results of the solution of equation (9.24) permit tentat'vely

determining the error in values of amplitudes corresponding to

diifferent tones of oscillations of the blade depending upon the

integration step used. By error we mean here the difference between

the exact analytic value of the amplitude of oscillations and the

value obtained as a result of numer'ical integration. WIth Integration

by means of Taylor series with repeated scaling, this difference is

always positive. This means that the numerical solutlon always leads

to an understating of the amplitude of oscillations.

Fig. !.43. Comparison of

maximum steps for two methods
of numerical integration:
---I maximum step during

_Integration with expansion of
S I I l the sclution In Taylor series,

i - 4 - maximum step during

S i ntegration with repeated•lil NIJ l i l I il iI l scaling by formalas (9.38).

ll1l K • Il i I f 1

Number of tone

Errors of calculztion in percent nf the exact vn u4 of the

amplitude for vsarouz toncs 1f oncillations C0" the bivic, w!"?h thr

usual parameter. depcntilng upon the "-tep durir,•g ntegration by near..n

of Taylor series with repeated 3caling, are given In Table 1.11.

The given data .how that the value of the' neweýsary Integratlon

step and, consequen.ly, the duration of calculation are determined

mainly by parameters of that system which represents the blade of the

rotor. The rrW'ýrr tno n-.:zte. h;,. 'iegre.; _ f,.i., t;, r

hWs ttrne:; of .natr,• othe e;; "' per:,' c' ,



Table 1.11.

Error or ocaiuatior. in % af the exact viaue or

"ALsr t nf c- e the mpli do wIV. inteno ltlar. soep In deoreed

0.3 11.0 2.5 r 19 30I
'fro <0.1% <0.1% <0.1% 0.3% 5% 25%

I v 0.1% (0.1% 0.4% 6%4 12% 30%
2 r-4 <0.1% 003% 5% 25% Qw,% on%
3 r4 <0.1% 0.4% U% • % 73%
5 th I0,% 2% 20% 70%

H1% I 30% 9ft
20 4, 40% ~ *l4j

rcf the highest tone and the less should be the integration step.

Therefore, the duration of calculation Is considerably reduced >'i one

w,:'e to decrease the number of degrees of freedom of the zyster. All

theze considerations appear expecially important in the ap".icatic.n

of direct methods of calculation not using limitations superimp-.;,d

on forms of oscillations of the blade. These methods will be

examined In S 10 this chapter.

7. Method of Numerical Integration Proposed by
L,. N. Grodko and 0. F. Bakhov

In the numerical integration of differential equations of elastic

oscillations or the blade by the method proposed by L. N. Grodkc ind

0ý. r. Bakhav, in fc.rnulas (9.27) the value of coefficient K Is taken

to be equal to unity,

The cond1t!or, )40 stablity (9.31) is simplilefiu and take, the
fr• rm

Consequently, at x a I a divergent solutton with the co-p•',

valje q is n--t p-i;ZIbie. From the conidition that o Is the complox

number, ccndlIicn. (9.40) Is correct only for values tt L 2 - 2i.

From conditln (9.37) we will obtain that the solution will not

be !lvergent while

t 1 ):



A4hence at K -I we will obtaii that

< V711-2 . (9.42)

T'lst as with Integration by means of the Taylor series with

double scaling, this method does nct give a divergent solution when

n a 0 and has approximately the sime value of the maximum step.

In reference to resolution sf problems of elastic oscillations,

Its accuracy Is no worse than that of the preceding method. The

volume of computing operations decreases almost twice. Therefore the

given method of numerical integration can te recommended for practical

application.

'q. 3equence of Operations in the Fulfillment of
the Calculation and a Practical Evaluation

of Different Integration Steps

On the whole the calculation of elistic osciliaticn. or the Lladi

Is conducted In suca a sequence:

1. Arbitrary Initial vah.-'a a nd f 6 t hi the lruu-h w - 0 are

prescribeýd.

ii- ~ r~rmul k 9.;CD). the.,r r:*trItr :~I~o c~y-v.

;7rc Tfor the ileter,1natl-nr h~~ :r~ervo!~ t:r r~~Ž.(r

Frn qi r 9 Atv I 4 .,p A.-

and ' entering In thi& equatLIn 3.-e chIC4atez t r.ia, aft

determinatccz, cf' Cor'o of natural -iotlonw of the ojade, ars zrt

riot changed ii proýtesx of cal :-Ii`¢c."



accordance with the selected method of numerical integration, :o.

example, by formulas (9.38)

2

sr.a.=s,+.i,+4-ai'i;" i

I
-II

Vz~ue ~ ~,and for the instant t + A~t are cor:-'ri&-'-.1

by t'tral. For transition to the following azimuth the whole cyc.i

is arairn repeated.

This method of Integration ^.an be recommended as being hiwhhP:

accurate and quite fully proved in practice In the calculation or'

elastic oscillations of the blade.

Nlumerical Integration Is fulfilled during the period of scvo-t-l

rw"'<.utioris of the ro~v3r, until all values 6 1In two consecutive

revolut ions will be d~istinguished by less than the prescribed acc-.ýracy

of the ealculattoi.. Tthe performed calculations show that any prescribed

iccuracy can be attained.

Prict IC~j Ily, howpver, it. 13 assumed thnt th- taicleuatt~r~ I-

7tjinr-i-ted when~ trie ;vc'ýuracy In the dieterm~natle-r. o~f :f!e ,

-3ernrrnatlons bec-.nP3 equal to i/U (ki - ridl~un if ttie tuej r;

nocsary thvre can be assigrted and high atc-iracy.

Values or felacural stresse3 on each axin~uth can, be determined

bv f ormu Ia
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where cy ar( standardized values of flexural stresses, i.e., bending

stresses of the blade according to the standardized form of" natural

oscillations of the J-th tone.

The duration of the period of the transition process to steady

motion very greatly depends on assigned initial values of coefficients

of deformations. At the correctly assigned initial values 6 and A
the calculation is finished after miscalculation of two revolutions

of the rotor. With unsuccessfully determined initial vlaues of 6

the 2alculacion can involve 8-10 revolutions.

In the program of calculation there should also be provided for

the possibility of the refinement parameters of conditions of flight

80, ctB, ), and Xocp after miscalculation of each revolution. These

parameters are refined in such a way that the rotor provides values

of thrust and propulsive force prescribed in initial data. It is

natural, therefore, that the duration of calculation is determined

also by the correctness of assignment of parameters of flight

conditions.

For d more precise definition of parameters of flight conditions

and also for the solution of other problems in the process of calcula-

tion different integral characteristics of the rotor, such as thrust

THB, longitudinal force H, torque M., etc., should be determined.

Proceedi'ng from practical needs, oscillations of the blade can

quite fully be represented with the help of four tones of natural

oscillations. In this case, even proceeding from-Table 1.11, where

the greatest errors appearing with resonance are given. good accuracy

can be obtained with the integration step A4 = 2.5'.

nowever, practically in those cases when clearly expressed

rsonances are absent, or in the system there are quite large damping

forces which provide a damping factor larger than 2n = 0.1, used in

the composition of Table 1.11, the accuracy of the -alculation actually

does nos drop at the step Aa = 50 and sometimes even at the step

Aý = 10". This circumztance Is of great importance for saving time

dur.ing, ealculition ur mputers with an average counting rate. Trh u
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with calcuiation on the computer' "Screla" to determine the motion of

L•the blade during the period of one revolution of the rotor about 6

minutes is required at the step of 100. With a decrease in the step

tne counting time is increased accordingly, and at the step of 2.50
the duration increases so much that fulfillment of calculation on

this computer becomes difficult. In the calculation on a more high-

speed computer M-20 these considerations lose their value.

Figure 1.44 gives as an example values of coefficients of

deformations calculated for one of the helicopters in flight conditions

at a speed corresponding to U = 0.3. These conditions for the examined

helicopter are far from stall, and therefore, the calculation is

performed in the linear setting under assumptions described in No. 3

of § 8. Under these assumptions the calculation was made with the

step of integration of 2.50, 50 and 100. Results of these calculations

shown on Fig. 1.44 by a solid line, practically completely coincide.

On the basis of these data the conclusion can be made that in

conditions of flight quite remote from stall, when there is used a

linear approach to resolution of the problem and in the solution low

tomes of oscillations prevail, and acting on the blade are considerable

forces of aerodynamic damping, without essential losses the calcula-

tion can be accurately fulfilled with the integration step of

Aý = 10'.

The pattern changes in examining conditons in which the beginning

of stall is noted. The stall leads to an increase in oscillations

with respect to higher tones and to a sharp decrease in coefficients

of aerodynamic damping. Due to this it is necessary to decrease

the integration step.

Figure 1.45 shows results of' calculation of coefficients of

deformation with the use of the step A* = 50 and A4 = 100 for the

same rotor which was examined above but in conditions with p = 0.4

with the stall which was begun. Calculation was performed taking into

account the nonlinear dependence of aerodynamic coefficients on the

"angle of attack of the profile a and the M number. The appearance

of stall leads to a sharp increase in amplitudes of oscillations

with respect to forms of highest tones, which, as is known, without
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stall have less values than do coefficients of aerodynamic damping.

Therefore, the lowering of aerodynamic damping with stall, first of

all, has an effect on amplitudes of oscillations with respect to

these forms. All of this led to the fact that the calculation with

step A* - 100 Introduced considerable errors into the calculation of

coefficients of deformations 62 and 6 In Fig. 1.45 this can be2 3.
seen from a comparison with the calculation where A: = 50. Therefore,

to reduce the error during calculation of deformations in conditions

with a stall which has begun, the integration step must be decreased

down to values of the order of Aý = (2.5-5)0.

9. Comparison of Results of the Calculation According
to the Method of Numerical Integration with the
Method of Calculation with Respect to Harmonics

Discussed above was the method of calculation of stresses with

respect to harmonics in a linear setting with assumptions enumerated

1. IFig. 1.44. Comparison of
coefficients of deformations
obtained as a result of

10 -- solution of equations
S- - - -14 -according to the method of

• B. G. Galerkin and numerical

A - - - integration when c = aIy y•" :801270 and ýi 0.3.

11,

, ] ,
0 ISOa
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in No. 3 of § 8. Such a method can be used with success for conditions

of flight quite remote from stall. It has a great number of advantages,

first of all, being a relatively small duration of calculations.

Figure 1.44, by a dashed line for a comparison, gives coefficients

of deformations calculated by the method of calculation with resepct

to harmonics discussed in 4 8 for the same conditions of flight at

= 0.3 with the linear dependence cy ca. The comparison of
y

methods of calculation indicates the good coincidence of results.

The small distinction can be explained by a certain difference in

initial parameters of conditions of flight.

10. Certain Results of Calculations

Let us give individual results characterizing those new possibil-

ities for theoretical researches which reveal the method of numerical

integration, taking into account the nonlinear dependence of aero-

dynamic coefficients with respect to the angle of attack a and M

number as compared to linear methods of calculation.

po Ao I

S" -- - -Fig. 1.45. Coefficients of defor-
405l - - - mations at the beginning of stall

-- -at u - 0.4.
90 f , rog 20o i...•

,90 l. 270r

h, i - lo .7
I~l0,- 0\ '0 9:_

-4 -XL -9
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One of the important advantages of the method of numerical

integration is the possibility to perform calculations of stresses

under conditions similar to stall conditions of flight.

Calculations show that with an approach to stall there is a

sharp decrease in aerodynamic oscillation damping of the blade and

an increase in amplitudes of oscillations with those harmonics

which are found in resonance or near resonance with frequencies of

natural oscillations of the blade. From the examination of deformation

ratios given in Fig. 1.45, it is clear that oscillations with respect

to the first tone occur basically with the second harmonic, oscilla-

tions with respect to the second tone - with the fourth harmonic,

and oscillations with respect to the third tone - with the sixth

harmonic to revolutions of the rotor, i.e., only frequencies close to

frequencies of natural oscillations of the examined blade. An

especially sharp increase in the amplitude of oscillations occurs with

respect to forms of relatively higher tones of oscillations, which on

Fig. 1.45 can be observed in the example of coefficients 62 and 63.

The appearance of stall is characterized by a sharp increase in

amplitudes of varying stresses in the blade. Figure 1.46 gives values

of maximum amplitudes of varying stresses over the radius of the blade

according to the speed of flight calculated taking into account the

linear and nonlinear dependence cy = f(a, M). The sharp increase in

stresses is a very convenient criterion in the determination of tie

a t _ _ _ _ _ _ _ _ _ _

C(',,iol -gar Fig. 1.46. Dependence of maximum
amplitude of varying ztrennez

V -e over the blade on the speed of'
-@A flight.
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beginning of stall it, the calculation of aerodynamic properties of

the rotor.

The harmonic composition of varying stresses acting with stall

and their distribution over the radius of the blade are shown in

Figs. 1.47 and 1.48.

It is necessary to pay attention also to the fact that a

substanital difference in results of linear and nonlinear calculation

is observed in conditions sufficiently remote from stall.

Figure 1.49 shows coefficients of deformations calculated for the

same helicopter at u a 0.3 with a linear and nonlinear dependence

Cy tf(, M), and Fig. 1.50 shows harmonic components of stresses

corresponding to them and their amplitudes aAs constructed nver the

radius of the blade. As can be seen from this figure, the results

are distinguished quite substantially.

SFig. 1.49. ComparI sor of
coeffil.'Aents of deformnations
calculated by calculati.on

Iof the linear and nonlinear
"I- dependence cy f(m, M) for

conditions D 0.3 far from
Sstall.
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-:or., , I FJg. 1.50. Distribution of the

_o- amplitude of varying stresses

j .... ~ ~ _ _ Iand first four harmonic
components over the radius of
the blade at P = 0.3.
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Thus even from those data which are given here by us, it is

clear that calculation of varying stresses in the blade taking into

account the nonlinear dependence c y f(a, M) permits revealing

a whole series of interesting peculiarities having considerable

influence on the strength of the rotor.

S1. 0. Caiculritlon of Flexural Oscillations with a Direct
lDrterrnlnatlon oft orje.t, rie: ,f the Motion

of Point..; of tlhe blade

1. Essence of the Method of Calculation

In paragraphs of § 7, 8, and 9 there were discussed methods of

calculation of flexural oscillations of the blade where the form of

its deformations was determined with the help of the B. G. Galerkin

method. For this deformations of the blade were expanded in series

with respect to known functions assigned beforehand. As these

-- functions it was proposed to use forms of natural flexural oncillations

of the blade in a vacuum. It was affirmed that for practical purpose:;

201



it sufficiently to be limited only to the first four tones of

natural oscillations.

Here methods will be examined which allow rejecting this assump-

tion and finding deformations of the blade by means of direct deter-
mination of. trajectories of the motion of a certain number of points

of the blade without decomposition of the form of oscillations with

respect to function3 assigned beforehand.

To determine the motion of separate points of the blade it is

convenient to use a model of the blade with discretely distributed

parameters. In thiscase the mass of the blade is simulated with the

help of a number of concentrated loads distributed along its length.

For such a mechanical model there can be written a system of

differential equations of the form:

mLI=CLT, (10.1)

where i = 0, 1, 2, ... , ; - second time derivative of movements

yi of the i-th concentrated load with mass mi; values yi are counted

off from the plane of rotation of the rotor; Ci - elastic force

affecting the i-th mass of mj from the side of adjacent sections of

the mechanical model of the blade; Ti - external aerodynamic force

affecting the i-th point of the blade where one of the concentrated

loads is located.

The system of equations (10.1) describes the motion of all masses
of the mechanical model of the blade. Therefore, it consists of such
a number of equations with variables yi, which is equal to the number

of masses of the examined mechanical model.

However, not all variables yi entering into system (10.1) are
independent, since the motion should satisfy the condition of

equilibrium of the whole system:
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it is most, convenient of all to,. considcr that the independent

variables are movements of all the masses bedsides the shank mass m

of ~ he ioepeoent0*Ther, motion of the shank mass, if we assume T 0, can be determined
in accordance with (10.1) as

where

Co. M]( , Y-/;)- (10- .3 )

This condition of equilibrium of f'r-c l, automatically ful'filled
with the use of formulas mentioned below.

Thus the examined system can be described by independent variables

v whose number per unit is less than the number of concentrated

maz~se3 of the mechanical model of the blade. Consequently, the number

of degrees of freedom which this system has is equal to the number

of sections of the calculation diagram and is less per unit than the

number of concentrated masses.

Solution of the system of equations (10.1) can 'e obtained with

the help of numerical integration with respect to time. For this at

each instant it is necessary to determine forces C and T Deter-

mination of forces TI can be carried out by formulas (9.20) whose

derivation of which is given in 5 9. Determination of elastic

forces has many peculiarities which should be discussed here.

2. Determination of Elastic Forces Applied to the
Examined Point of the Klride from the

Side of Adjacent Sections

Let us exnmine more specifically the mechanical model of the

blade accepted for calculation. In the bcglnning we will examinie the

model of the beam type. Let us represent the blade in the form of a

weightless free beam, subordinated to certain boundary conditions on

the ends and divided into z sections, along the edges of which

concentrated loads are located (Fig. 1.51). Lengths of the sections

) can be different.
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Fig. 1.51. Model of the
blade examined in the

calculation.

1A xis of
flappinp hinge

11 1t Z i3 4i 5 -Zz7-Z -
M- I, m M• 2 M m4 M• Mr M t.! M Z.1 MZ

S"J, SS £s s 52 3 -1 Sz- I

The flexural rigidity of the blade, as earlier, will be represented

in the form of a step curve in such a way that it remains constant

in the extent of each section. We will consider the centrifugal force

as being applied only to the loads. Therefore, in the extent of each

section the magnitude of it will not be changed. We will also

consider that aerodynamic forces are applied only at attachment
points of loads as if to each load a separate flap with an area Si is

attached.

To create conditions of sealing of the blade in the shank we

will consider that the centrifugal force is received by special

attaching of the shank mass m0 , which can freely move vertically.

With solution of the present problem the creation of the freedom of

motion of the shank mass vertically is not obligatory. However,

in other problems connected with the determination of Joint forms of

oscillations of the blade and fuselage, this condition appears

necessary. When oscillations of the fuselage are not considered and

the blade is considered fastened to the hub as on a rir-id base,

conditions of shank sealing in the calculation are created by means

of assignment of a necessary, usually quite large mass mi0 .

it is natural that the nearer such an idealized diagram will

describe the true picture of oscillations of the blade, the larger the

number of sections the blade will have. Practically quite accurate

the blade can be rcpr(r';entcd' by a configuration in tho form of a
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N12 zFig. i.52. Diagram of forces
X- Mzaffecting adjacent elements

of the blade.

beam consisting of 25-30 sections and of such number of concentrated

m ae e.

To determine elastic forces C1 we will formulate equations of

deformations of the blade. Figure 1.52 shows forces affecting two

adjacent seconds of the deformed blade. Let us write out equations

of deformations of these sections.

Inasmuch as the inertial and aerodynamic forces for the examined

mechanical model of the blade are applied only along edges of the

seconds, deformations of each section can be determined by the

equation

[Eruir - [No'I'.- (10.4)

The magnitude of flexural rigidity EI and centrifugal force N

does not change in the extent of each section. Therefore, they can be

carried out beyond the sign of differentiation. Then equation (10.4)

can be copied in the form

M---'M=O. (10.5)

where M =EIy" Is the bending moment in the section of the blade, and
2 N
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The solution of equation (10.5) can be recorded as

f,- .4 shAx+ B h x. (10.6)

where coefficients A and B can be obtained from boundary conditions.

Thus for the section 1-2 at x = 0 Mx = M19 and x= L12 Mx M2.

Substituting these conditons into (10.6), we will obtain:

.h a, th CI (10.7)

•B=hM,. J

Here a,==:,,'1 2, a Pj= An.

Taking into account (10.7) and the fact that M= EII2y

equation (10.6) can be recorded in the form:

M - I shix+,,ch••,x. (10.8)

Integrating equation (10.8) twice and considering that at

x = 0 y' =0; y -YI and at x =12 y' = 2; y = Y2 we will obtain:

b, (y = dts- + , + Pi ((10 .9)

or

b, (.y2 y -eM 2 - d,M,+. (10.10)

Here:

d,-,(I- a,-);

IWV12 A s a,e, = (i--t-- 1).
1^2t• th 61

The equation of deformations for section 0-1. can be recorded b:y

analogy with equation (10.10):

boy, 0-. - , ,-,oo + P,-.i- )
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Changing in equaticn (10.11) all signs to the opposite and

adding with equation (10.9), we will obta 4 n:

dMo+ctiMI +d2-dM 3 A,, (10.12)

;here

c,=e .- e';

Performing the same operation for other adjacent sections, we

will obtain the system z of equations of the following form:

Tfable 1.12.

'A g- - a

- . C1  d',I Air

I O se... .....

14- t m&zd.r Ax-

This system of equations is recorded here by us in form of a

table. Any oi the equations of the system constitutes a sum of

products of coefficients occupying in the rectangular Table 1.12 one

line by unknown functions Mi, which enter simultaneously into several

equations and carried out vertically in a special line placed from

at the top of the Table 1.12. In this line there is recorded the

unknown function 80 entering only in first equation. Right sides of

equations Ai are placed in a special column.

The system of equations of Table l.1? is solved by the elimination

of unknowns. This method was already described in No. 5 of § 4.

Thus the system of equations written above permits determining

values of the angle of rotation of the blade in the shank and all
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valu.es of bending moments M if tce f'rm of deformations of the blade

as a totality of values y, is known.

To determine the elastic force C it is necessary to fulfill a

number Of consecutive operations, the first of which consists in the

solutlor of the system represented by Table 1.12. In this sequence

of operations it is expedient to include the determination of

aerodynamic forces of angles of turn by the elastic axis of the blade

a subsequently necessary for calculation:

•=bj(yl-y•_)--e,,M,.4-•-,M -,.(10.13)

According to known values Mi from the condition of equilibrium of

elements, one can determine the shear fofce Qi i+l' constant in the

extent of each section of the blade. Actually, equating to zero of

the sum of moments of all forces acting on the section i, i + I., we

will obtain the equation

Q,. +I,. ÷ = ,. +,(Y + " Y, n mA--M, .( 10.14 )

from which the value Q

Knowing the values of shear forces along the length of the blade,

one can determine the elastic force Ci applies to the mass mi from

the side of the adjacent sections:

LI. CaQ,.,÷- Q,-.,. (10.-15)

The given calculations permit determining all values of elastic

forces Ci acting from the side of adjacent sections on the given mass

m the form of deformation yi is known.

3. Peculiarities of Numerical Integration
of Equations (10.1)

Above in § 9, there were already described the basic peculiarities

of the application of numerical integration to the solution of

differential equations of elastic oscillations of the blade. It was
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;hown that the success of numerical integration to a considerable

degree is determined by the magnitude of maximum step, which is

1I-ectly connected with the least period of oscillations of the mechan-

ical model examined as an analog of the blade. The maximum step of

integration~should not be too small, since the calculation in this

ýase will be excessively extended in time.

A peculiarity of the model examined here is the fact that it

has as many tones of natural oscillations as there are sections along

',,e length of the blade. As was noted above, to decrease the errors

with transition from the blade to the analog of the mechanical mc. el

it is necessary to represent the blade by means of not less than 25-30

sections with the same quantity of concentrated masses. Therefore,

in the determination of the maximum step of integration in this case

it is necessary to proceed from the period of the highest - thirtieth

tone of natural oscillations of the model.

Figure 1.40 shows the dependence of the frequency and period of

natural oscillations of the standard blade of a helicopter with respect

to the number of the tone. From this figure it follows that the

period of thirtieth tone of natural oscillations consists of about one

degree in azimuth of the rotor. Above it was already stated that in

the use of the most profitable method of numerical integration for

obtaining a nondivergent solution the step of integration'should be

less than one-third of the period of the highest tone. Consequently,

for the method of calculation examined here the step of integration

should be less than 0.30 in azimuth of the rotor. In this case the

solution will be stable, and the considerable error appearing in the

determination of amplitudes corresponding to high tones of oscillations

cannot be taken into account, since their values are usually small

and stresses in the blade are determined basically by several first

tones of natural oscillations. The amplitude of oscillations with

respect to these tones will be determined with good accuracy.

From the given considerations it becomes clear that for the use

of the method of calculation with a direct determination of trajectories

of motion of points of the blade it is profitable to use a model with

the minimum number of concentrated loads. It is desirable to be
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- u1j-deli 2.72, Fig. 1.53. Bending moments

- - -" with respect to the first

Be-,,°am model - tone of natural oscillations
-- 1- _ -'- calculated with a different

B ami= model- -- number of masses.a -12 - -

limited to models with a number of loads of the order of not more

than 12-15. It is necessary to note that at such a small number of

sections the beam model of the blade examined above begins to introduce

into the calculation errors connected wito peculiarities of this model.

For an illustration of these peculiarities Fig. 1.53 gives the form

of the bending moment, which corresponds to the first tone of natural

oscillations of the blade calculated for z - 28 (solid line) and

z - 12 (dashed line). From Fig. 1.53 it follows that with a small

number of sections the bending moment in the beam model begins to

reveal peculiarities characteristic for very flexible beams loaded by

shearing forces In the field of centrifugal forces, i.e., at location

places of the masses concentrations of the bending moment appear.

This peculiarity was already discussel1 in S 4, No. 9. The appearance

of these concentrations considerably reduces the accuracy of the

calculation. Therefore, application of beam models with a number

of se-tions less than 25 (z = 25) Is not recommended. At a small

number of masses errors of such kind do not appear in the use of a

multihinged segmented model, although forms of oscillations of higher

tones will be quite greatly distorted. On Fig. 1.53 the bending moment,

calculated for the inultihinged model with the number sections z =12,

is shown by a dot-dashed line.

On the basis of these considerations, let us examine more specif-

ically th,% methcd txpounded here In reference to the multihinged

model. Furthermore, in Nio. 6 of this par'agraph it will be L2howr; that
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tLe multihinged model allows application of the method of calculation
of elastic oscillations with the use of the method of numerical
Integration with the reverse order of determination oi variables, which

Is excluded practically in the beam model.

4. Equations of Motion in Examining a Multihinged
Articulated Model of the Blade

Let us present the blade in the form of a chain consisting of
'thsolutely rigid weightless sections united with each other with the
"'p of hinges. The weight of the blade will be concentrated in
,lngesof this chain in the form of separate loads with mass mi. The

bending rigidity of the blade will also be concentrated in the hinges,
presenting that in each hinge as if it is built-in spring with rigidity
ci', preventing fracture of the blade in this hinge (Fig. 1.54).

Y1 H AO

Al,

Fig. 1.54I. Diagram of a multihinged articulated
model of blade.

Let us write the system of differential equations of oscillations
referring to thin model of the blade, starting from the equation
describing the equilibrium of the load with the ordinal number i a 2.
Then by analogy lot us formulate all remaining equations of the system.
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The equation of equilibrium of the load with mass in2 can be

written in form:

jný2 =IC, Ts.(10.16)

Elastic force C2 , acting on mass m2 from the side of the adjacent

sections of the model, is determined by the formula:

C,=QU-Q,,, (10.17)

where Q12 and Q23 are shear forces on sections of the blade model

adjacent with the load.

To determine magnitudes of shear forces Q and Q we will

write equations of the equality to zero of the sum of moments of all

forces with respect to the point of location of the load with mass

m2 (point A) for both sections of the model adjacent with this load.

These equations have the following form:

Q.,-ArN,,•,- YJ+ M,- M,=0; (10.18)

QU--N-(, 3 -gt+M--M,-0.

Determining hence Q and Q and substituting them into formula

(10.17), we will obtain:

C,:QU-Qn-

-(+(,+ ,-
N Nw • .1_L I U. 19)+NL ,-V .- ,- ,,),,,, 1, Ms.•

The bending moments entering into this equation carn be expressed

in terms of movements of elements of the blade by the formulas:

Ao--enC-u- + Yn +'EL Y3;
M, ~I 7 , .-),-- I ts

tSC~nW ý MC2L+• 1 (10.20)

In 73)-+ \I- Y3
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CS dd'.+elb I4

where

di -- ;

to to ei +i-)

Its3 1 In 32$ ,, e + 4:

J, ,-.u I.ng, g=

If analogously we depict all the remaining values CI and to set

them In (10.16), then the system of differential equations of

oscillations of the blade can be represented in the form of Table 1.13.,

Table 1.13.

O ,1, :, V, , )I .

df e, e, t dij

"........ ..... .... .... ,

Each equation of the obtained system occupying one line in 1.13

constitutes the sum of products of known coefficients di, e1 , and f,

by variables ", which enter simultaneously Into several equations.
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Variables Y, are c01iri1d ou•4 '.,I.,:i,,• -, in a special line placed in

the upper part of, '7ablo 1.1)'. The r, ; of equation,, which i-

the sum of inertial and aerodynamic forces, is placed in a special

column In the right part of Table 1.13.

This system of equations connects deformations of the blade with

forces acting on It directly without an intermediate connection

through the bending moments, as this took place In analogous equations

referring to the beam model described above in N,. 3 this paragraph

and In equations used earlier for calculation of free oscillationi of

the blade in § 4.

Such a form of differential equations considerably simplifies

calculatlons in the determination of elastic deformations of the blade,

but it has definite deficiencies. The first of them, as was already

noted, should be considered the fact that the elastic axis of the blade

Is in the form of not a smooth but a broken line. Also represented

in the form of a broken line Is the form of distribution of the bending

mcment along the length of the blade. The second deficiency should

be recognized as the well-known arbitrariness in the selection of

hinged rigidities Ci.

Let us give one of the methods of determination of these

rigilities. For this we will examine two adjacent sections of mhe

blade. The value of the hinged rigidity c, will be J2terminea from

the condition that angles of rotation of ends of the adjacent sections

a0 and 82 of the equivalent beam configuration coincide with angles

601 and 812 for the hinged dirgram (i. 1.55)

ir in the comparlzon .-f the:;, an.Ies we iL3re,-rd thy Inf.luence.

of centrl'i'ug.0 fnr':ea• and n. 1* "'',,na t ,,e L.:,,i :•,. r.1,t- ' . t h,:

extent of thene two sections :". conctarnt (' A " 4 - ,:nt),

thpn from condltlon f1&.j3) ft.r dettrminin t-.,' hinged .I+Ity tU.or',

can be obtained thc ror-tula:



+ .iL4 2L (10. 24)
C, Eta 81a

In practice these assumptions can be observed only approximately.

This creates known errors in the application of such a calculation

diagram.

s Fig. 1.55. Determination of

_hinged rigidity.

5. Sequence or Operation During the Calculation

of Elastic Oscillations by the Method
of Numerical Integration

On the whole calculation of the blade by the method discussed

Is produced In the following sequence. At the initial instant, which

is usually connected with azimuth 0 - 0, there Is prescribed an

a-bltrary form of deformations of the blade y1 and velocity distribution

.4f movements of masses y1 " If all values of y, are known, then by the

formulas discussed in Nos. 2 and 4 of this paragraph, elastic forces

can be determined. Simultaneously angles of rotati,,n of the

elastic axis of the blade 8I should be calculated. For the beam

* odel they are determined by the formula (10.13). For the articulated

model they can be determined in the form of a half-sum or angles of

turn of two point of sections of the model adjacent with the examined

point:

SI•
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If values ai and yi are known, then by the formulas (9.20) (.

aerodynamic forces Ti can be obtained. These data are sufficient

so that by the formulas (10.1) values Yi are determined.

Further transition to the following azimuth of the blade is

f1 ifilled by formulas analogous to (9.43):

Y 2. =, + ti + 2-

;1+Ut4A1 (10.25)

Y111 at 4y + A++ &t~iP,;

-it + 141p;

--- (CH+.61+ T.1,1

M

Value £d!..u, q and Mi'"' for the instant t + At are considered

final. Index 1, pertaining to the number of the concentrated load,

is omitted i, formulas (10.25) in order not to excessively complicate

the expressions.

For a transition to a new azimuth all operations are again

repeated. This process continues for several revolutions of the rotor

until the motion of the blade becomes steady. Calculation is finisherl

on that turn when the solution converges to a steady one wirh the

assigned accuracy. The accuracy of the solution is determined by the

difference in the ordinates of movement of masses during calculation

of motion in two consecutive turns of the rotor.

Evaluation of results of the calculation can be carried out in

any form depending upon the purpose of calculation. To solve

problems determining the strength of the blade we usually engage in

deriving in auxiliary storage values of bending moments M1 through

100 In azimuth of the rotor. Upon completion of the calculation with
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respect to values Mi and drag torques of sections of the blade,

values of stresses and their amplitude are determined

(10.26)

ond decomposition of stresses with respect to harmonics is produced.

Calculation of elastic oscillations by the method discussed

-onstitutes a continuous repetition of the same operations which are

r'educed to the determination of forces Ci and Ti and the solution of

equation (10.1). Therefore, the duration of the calculation, first of

all, will depend on the number of these repetitions. This number is

determined only by two factors. The first is the duration of the

period of transition to a steady process, which depends only on the

correspondence of initial conditions to steady motion and on physical

p*roperties of the rotor and does not depend on the method of calculation.

The second fact, which was already discussed above, is the necessary

step of integration.

6. Method of Calculation with a Reverse Order of
Determination of Variables During

Numerical Integration

Above, in § 9 and in this paragraph, direct methods of numerical

integration of differential equations were examined. When in the transi-

tion to a new instant in the begining variable y and its first

Sderivative y are determined, and then form the differential equation

the second derivative y is determined. Here we will examine the

method of calculation proposed by V. E. Baskin when these values are

determined in reverse order.

Let us consider successively three instants: the instant at

which it is necessary to determine deformations of the blade tn and

two instants. twn e ton - At and tn-2 = tn - 2At preceding it.

If one were to assume that the second derivative Y is preserved

constant In the extent of each section of integration, as is shown in

Fig. 1.56c, then value Yn-l can be expressed in terms of Yn-2 and

Yn-l2
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-10.27)

If one were to assume now that the first derivative y is also

maintained constant in the extent of the section of integration, as

Y.

Fig. 1.56. Change of variable
9-Y y and its time derivatives

a)• during numerical integration.

b) t

! 1 _ _.•17 I IYn

c)

Is shown on Fig. 1.56b b/ a dashed line, then values yn-1 and Yn-2

"-n be determined by the formulas:

Ad (10.28)

At

Substituting (10.28) into (10.27), we will obtain the expression

fcr' n-IA

n- .
Y.,-I = (Y.--2Y;•- + Y.-2)- (10 . 290)

LV the intejratlon tstep ii taken culte 7mnall, then it is poslsible

:tppr-Ox tma0.(.]y to :tz;:urn( that

.2]8
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U.-s •,-(10-30)

Ar:d to write expression (10.29) in the form

2y.-, +(1-0.-31)ý

Substituting values Y into the system of differential equations

,'epresented by Table 1.13, we will obtain a system of algebraic

¢.-.uations relative to unknowns yn" As above, this system will be

it: tten in the form of Table 1.14.

For variables y entering into Table 1.14, the index determining

the instant is written above, and below, as- earlier, there is placed
tne index referring to the rumber of the concentrated load of the

-odeI.

In the composition of Table 1.14 there is accepted also the

assumption of the fact that aerodynamic forces calculated for
instantnl can: be approximately assumed equal to these forces for •

"t~he mo*mepnt t.

Table 1.14.

:1. j1_____

MI d, SN* ID,

S- -- ____________
e - e, - "z 4WO--.,, ,I,,

a, el 11-0 e: dj e e•e

* . .t ... *.. , -.

1 ~Assumption (10.30) permits expressing the acceleration Yn at the

! ' * iistant tn in terms of deformations Yn-2' Yn-I. and Yn By determining

Sthe inertial forces as a product cf m.sses mi by the corresponding
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accelerations aznd adding them with aerodynamic forces, the total

i external forces acting on the blade can be obtained. T'hen deformations

n are determined as in an ordinary static problem. This is done as-

a result of solution of the system of equaticns recorded in Table 1.14.

The only peculiarity of these equations is the fact that components

j of inertial forces, expressed in terms of not yet calculated values

Yn, are transferred to the left part and are determined simultaneously

with solution of the system of equations.I
Thus determination of different parameters of motion of the blade

Is produced by this method in an unusual order. In the beginning it

is as if accelerations are determined and then deformations. Therefore,

this method of solution is called by us here the reverse method of

numerical integration. Frequently it is also called the implicit

method.

The method of calculation with the application of the reverse

method of numerical integration does not lead to a divergent solution

even with a quite large integration step. Therefore, the magnitude

of the necessary step of integration should be determined only on the

basis of the magnitude of errors which appear in the application of

this method. The magnitude of error can be estimattd if one were

to use the reverse method of numerical integration to solve the

equation (9.24). Results of such a calculation are shown in Fig. 1.57.

From these calculations it follows that for the achievement of

satisfactory accuracy In values of deformations corresponding to

frequencies equal to the number of revolutions of the rotor the

inteFratlon step should be less than 11 in azimuth of the rotor
(A•= L/i360).

In the process of calculation with the appli::ation of the method

with reverse order, of the determination of variables, the :uolution of*

the system of equations recorued in Table 1.14 is fulfilled
n-2 n-1

successively on each azimuth with the use of values Yo and y

already earl)ier defined. At the initial instant these values car, be

taken arbitrarily.



The method of calculation discussed is distinguished by greater

laboriousness as compared to methods using the decomposition of the

-lution according to forms of oscillations assigned beforehand, and

1t requires, therefore, during calculations on digital computers a

very great expenditure of time. However, such a method has serious

advantages in those cases when it is necessary to estimate the

Influence of different concentrated effects on the blade, for example,

with the evaluation of effects on the side of dampers in hinges, and

Ln all those cases when the solution cannot be sufficiently accurately

r:presented with the help of a limited number of form oscillations

assigned beforehand.

Y VJ 0
0k - I/. so Iution. Fig. 1.57. Results of numerical

solution of equation (9.26) by
5• Ithe "reverse method of integration"

-5 -4t depending upon the relative-5 -• .9J"F i•[eo b' _7"Zi' - - integration step.

7. Comparative Evaluation of Different Methods of
Ca?.culation of Flexural Oscillations of the Blade

Discussed in this chapter was a great number of different methods

of calculation of flexural oscillations of the blade and, naturally,

the question can arise what sort of method should be selected for

practical use, and on the basis of what criteria should this selection

be realized. The answer to this question is very simple. For practical

purposes the best will always be that method which most fully and

accurately considers all peculiarities of operation of the rotor,

including the variable field of induced speeds and the nonlinear

character of the dependence of aerodynamic coefficients on the angle

of attack and Mach number. But it appears impossible to reject the

available limitations consisting in the fact that the fuller and more

accurate the method calculation, the greater the time of calculations

It. requires in calculation on digital computers. Therefore, in the

* selection of the best method of calculation the main criterion appear:;
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to be the possibilities of' the machine which limit the application of

the most improved methods of calculation.

In order to select the most suitable method of calculation, let

us cite the Table 1.15 with an indication of the necessary speed of

calculations in the application of different methods of calculation.

This table gives the basic characteristics of different methods of

calculation.

Here we give tentative values of the necessary speed of operations

in one second V for execution of the calculation in 5-10 minutes.
rroqrp

The necessary speed is given for all methods of calculation in four

variants of the assumptions used, In Table 1.15 there is not estimated

the necessary volume of memory of the machine, since for contemporary

machines it usually does not hamper the calculator.

From the examination of data of Table 1.15 it follows that for

a machine with a low counting rate (of th.e order of 5000 operations

per second) only one method, called the method of calculation with

respect to the harmonics, can be widely used. In this method the

solution is decomposed with respect to eigenfunctions. Tempnrary

factors with these functions are represented in the form of Fourier

series with respect to harmonics. Coefficients this series are

determined from the system of algebraic equations obtained from the

differential equation with help of the Tý. G. Galerkin method. This

method is discussed in § 8.

On machines with a low counting rate this method can be used

only with the assumption of equal distribution of induced speeds

S= const. For calculation of the nonlinear dependence of aerodynamic

coefficients on the angle of attack of the profile and Mach number

this method Is not vs ,ful practically. Calculation of these nependence;

with sucd a method can be carried out only with very serious assump-

tions. But ever. 1,•th such an approach the 1aborlousres of

computations necc .sary for formulation of calcuIlation formilas i.

-o vrra; that prIttaliy It is simply unreallzab>.
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For machines with an average counting rate (of the order of

20,000-50,000 operations per second) the most convenient is the

method of calculation with decomposition of the solution with respect

to eigenfunctions and by the determination of temporal factors with

these functions by means of numerical integration. This method is
discussed in § 9. It is very convenient for calculation of nonlinear

dependence of aerodynamic coefficients on the angle of attack of the

profile and Mach number.

With the necessity of calculation of the alternating field of

induced speeds, application of this method is possible only on machines

at a high counting rate. If in the determination of induced speeds

we are limited by the number of calculation points along the radius

and azimuth of the rotor, then calculation can be carried out on

machines with an average counting rate.

The method of calculation with direct determination of trajectories

of motion of separate points of the blade (§ 10) can be used only on

machines with a counting rate of greater than V > 100,000 operations

per second. Calculation of the alternating field of induced speeds

and nonlinear dependences of aerodynamic coefficients on the angle of

attack of the profile and Mach number increases even more the necessary

counting rate with this method. In the last column of Table 1.15

only the method with reverse method of numerical integration of

equations is examined. In the case of application of the direct

method of numerical. integration, the necessary counting rate for the

method with direct determination of trajectories of motion of separate

points of the blade can increase even greater.

The necessary counting rates given in Table 1.15 are obtained for

the case when calculation continues for 5-10 minutes. With such a

duration it is possible to carry out different investigations requirea

in the process of designing of the blade with a variation in parameters

of the rotor and flight conditions.

If one were to be limited to calculation for only one variant

of the parameters, then it is possible to use a long counting duration.( i

In this case the necessary counting rates given in Table 1.1.5 can be



S 11. Fatigue Strength and Service Life of the Blade

1. Tests of the Construction for Determinationof Its Service Life

The service life of the construction is established usually on

the basis of results of its dynamic tests.

Depending upon the degree of responsibility of the construction

for flight safety tests of-one or several specimens of this construc-

tion are conducted. Frequently tests are conducted only on separate

parts of the construction, the strength of which is decisive for the

entire unit checked as a whole.

In the determination of the blade service life there are

usually conducted tests of samples of separate sections of the spar

with parts of frame creating concentrations of stresses in the spar.

Samples of not less than three different sections of the spar are

tested. This, as a rule, is the section including the shank joint

and two sections along the length of the spar. Sometimes it is

necessary to subject to tests additional samples for checking design

features of the spar (for example, transition places of sections of

the spar).

Tests of samples of the blade are almost always conducted on

resonance stands with excitation from mechanical vibrators. The

length of the sample is selected in such a way that its frequency of

natural bending oscillations fits into the working range of the

vibrator. Usually the tests are conducted at a frequency of 1500

to 2500 oscillations per minute. The lengths of the samples are on

the order of 3-4 m. Besides varying bending stresses the sample is

necessarily stretched by longitudihal forces, which create a constant

static loading close to that which the blade undergoes in flight from

the action of centrifugal forces. Figure 1.58 shows a test stand for

testing samples of the blade of a helicopter with a centrifugal force

of the order of 100 tf.

-'-I:r. '- .



for tests of blade samples."•... Fig. 1. 58. Test stand

GRAP:IIC NOT
"REPRI"OiUCIBLE

Tests of the blade as a whole, and not of separate short samples,
as a rule, are not conducted in view of the too great complexity of
test stands, which are required for this, and the considerable
duration of the tests, since the frequency of oscillations in this
cage cannot be more than a 300-400 oscillations per minute.

2. Scattering of Strength Characteristics
During Fatigue Tests

In carrying out fatigue tests of a certain number of samples
made under identical conditions, considerable scattering of results
,f test.: is revealed. Destruction of the samples, tested under the

:iarn ievel of stresses, occurs with a different number cycles N,
:-quertiy the rat<.l of the greatest number cycles to the least
reaches 20-40.

The scatterlng of characteristics of fatigue strength is explained
Ly raetciw-genelty (,f the structure of the material, dlstinctlon in
.frd'itions off manufacture and treatment of samples. Des"tructin of
ample.r of a contr:ictlon always starts from small defects in the

rtvz-rul and on thv surface of the sample. In an overwhelming r-auor'ty
hf dh( c&ss destr..4ctl'n start 5 from a defect located on the .urface.

-,z t: charact,+.rlstlcs of strength of samples are determined by
th, char"ter an]! magrnitude of these defects.



The scattering of service life during tests of samples is
characterized usually by the distribution function of numbers of cycles
N prior to the destruction of the samples. Analysis of results of
tests shows that the distribution of logarithms of numbers of cycles
lgNprior to destruction quite well obeys the normal law of distribu-
tion almost with all mean values of probability of destruction,
starting approximately from the probability equal to 0.01-0.02.

Figure 1.59 shows the probability distribution of destruction
P and probability density 0, which correspond to real characteristics
of service life of the construction (solid curves) and determined
by the normal law of distribution (dashed curves):

,p (!g N-)¢x e 2 $1. Ny~l1) (tN- 1 (.)

P(Ig N S= 1, (Q dE. (11.2)

Here •(pgN) - density of probability distribution of destruction of
the construction; P(IgN) - probability of destruction of construction
with the number of loads smaller than N; j-IgN. - value of logarithm
of number cycles prior to destruction of the construction; SIgN
root-mean-square deviation of the distribution of logarithms of
numbers of cycles prior to destruction of the construction; migA'-
mathematical expectation of the distribution logarithms of numbers

of cycles.

Pg Fig. 1.59. D istribuio-n

curves of service life
.. during tests and crrre-

sponding to tthe nor:ha

) law.
Lg01L;



In the region of small probabilities of destruction the
distribution function usually deviates from the normal law (Fig. J..59).

SThis is connected with the very important peculiarity of characteris-

tics of service life. The fact is that fatigue breakdown can occur

only after some cycles of loading No and never occurs earlier. This

peculiarity of characteristics of service life leads to the concept

of dead zone with respect to N, in which the probability of destruction

of the construction is equal to zero (P - 0). Hence, in particular,

there follows the very important conclusion concerning the possibility
of assignment of service life of operating the construction with

respect 1o conditions of endurance with the probability of destruction

equal to zero even at quite high varying stresses.

Unfortunately, determination of the threshold of sensitivity

N0 with any satisfactory accuracy appears practically impossible.

Therefore, in the determination of the service life of construction

the law of distribution of service life is taken usually to be normal,

and the requirement P = 0 is replaced by the requirement of a very

small probability of destruction.

Deviation of values of logarithms of numbers of cycles from the

normal law should be observed alpo in the region of. great probabil-

ities of destruction. With the relatively low level of varying

stresses this is connected with the fact that almost always there is

some number of samples which are not destroyed even at a very large

number cycles of loading.

3. Basi'c Characteristics of Fatigue Strength

of a Construction

SFatigue strength of construction is usually characterized by

the number cycles N, which maintains prior to destruction at the

assigned-amplitude of varying stresses a. The larger the amplitude

of varying stresses a, the smaller the number cycles of loading the

construction maintains.

The curve characterizing the numter cycles N prior to destruction,

depending on the amplitude of varying stresses a, is called the

W6hler curve.



The W6hler curve can be des(:ribed upproximately by the equation:

ON-const for c>a, arid N<N.; (11.3)
0=0,-const for N>N..

Here a is the largest amplitude of stresses at which the construction

can sustain any large number cycles of load N without destruction;

this amplitude is usually called fatigue limit; N - minimum numberw
cycles of loading corresponding to the fatigue limit; m - certain

exponent value of which is determined according to the results of

tests.

The W6hler curve can be plotted for different values of the

probability of destruction. For this it is nenessary to divide the

batch of samples into several groups and test them at different

amplitudes of varying stresses.

Constructing the distribution functions of service life at

various levels of varying stresses (Fig. 1.60) and connecting the

points with identical probability of destruction, W8hler curves

corresponding to a different probability of destruction can be

obtained. Usually it appears that the less the scattering of charac-

teristics of service life, the higher the level of varying stresses,

and the threshold of sensitivity N is more clearly marked at smaller

stresses. At small stresses the threshold of sensitivity is observed

at relatively great probabilities P, and at great stresses it moves

at so small probabilities that it usually cannot be noted

Results of tests almost always confirm the presence of fatigue

limit Ow. At the assigned stress o some number of samples is usually

not destroyed even at a very large number of cycles of loading.

The existence of fatigue limit also undergoes operational experience

of different machines and mechanisms. There is known a multitude set

of different components, a very large number of which constantly

operates under considerable varying stresses and is not destroyed at
8the number cycles of loading of 10 and more. There are individual

exceptions to this general rule. It is noted that for certain

structural elemento -)f aluminum alaoys the fatigue curve continues to

(2.30



Fig. 1.60. Distribu-
L tion of service life

at a different level90.• of varying stresses.
50 M _ _ =10-

10,

0.00? 7 A

decend at service lives of the order of 108-101 cycles. However,
This lowering is so insignificant that in this case the Wbhler curve

can be approximately represented in the form of (11.3). In any case

in referenqe to the basic units of the helicopter, calculation of this

lowering does not lead to any considerable refinements.

In values of fatigue limits definite scattering is also observed.

For their distribution the presence of the threshold of sensitivity

with respect to the amplitude of stresses is characteristical. This

threshold of sensitivity will subsequently be called the minimum

fatigue limit .Wmin. At stresses smaller than awmin not one sample

is deoroyed oven 94 a vpw•': Targe number of cyelEp of loading. In

accordance with the enumerated peculiarities of characteristics of
fatigue, Wbhler curves should have the form depicted on Fig. 1.61.

Fig. 1.61. Wbhler curves
corresponding to various

-1 '- probability of destruction.

20 .421
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If curves corresponding to various probability of destruction ;re

replaced by the approximate analytic dependence (1-.3), then in 4

logarithmic scale the Wbhler curves will have the form depicted on

Fig. 1.62. The dead zone corresponding to zero probability of

I, __,__

Fig. 1.62. W3hler curves
corresponding to various

P0SO% probability of destruction
in logarithmic scale.

destruction is shaded on this chart. With such an image of the

W6hler curves the number cycles N corresponding to the fatiguew
limit and exponents m appear different for curves corresponding to

various probabilities of destruction.

It should be noted that the plotting of W6hler curves in the

form as they are depicted on Figs. 1.61 and 1.62 is practically

possible only with tests of small laboratory samples, since for

this it appears necessary to have a very large number of them.

In the evaluation of strength of onstruc!Lion the plotting of

such curves is practically impossible, since it is necessary to be

limited to a test of a very small number of samples. Frequently this

number does not exceed n = 3-5 (where n is the number tests of the

samples). Here to evaluate strength the tests give only n values of

the numbers of cycles prior to destruction at the given magnitude

of loads. According to such a limited number of results it is

possible to formulate a concept on the fatigue characteristics of the

construction only on the basis of definite assumptions with respect

I "'-hT> curv( •.
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The value of the amplitude of varying stresses at which the

,nstruction maintains the assigned number cycles of load N prior

,l detructlor; depends also on the value of the constant part of

strezses of the cycle am (static loading). The greater the static

loading, the less the amplitude of stresses at which the construction
oIintains the assigned number of cycles. This dependence is usually

characterized by the Hay diagram. As an example Fig. 1.63 shows the

approximate form of such a diagram.

-Fig. 1.63. Hay Diagramfor samples of spar ducts

of the blade.

-80 -40 0 40 8• 64 /62
Compression Tension

2
For steel spar ducts at am = 20-30 kG/mm the increase in static

loading by the quantity Acm leads to a lowering of the fatigue limit

by the value Aa.w0,4Aa.. For Duralumin spars at am 6-8 kG/mm2

the quantity Avx*0,3 Aa

It is necessary to pay attention to the fact that in the region

of constant compressive stresses fatigue limits increase considerably.

This circumstanc'e is used in the hardening of structural parts by cold

hardening (see Nos. 16 and 17).

11. Stresses, Effective in the Construction
of a Blade in Flight

In § 1 of this chapter (No. 3) it was already said that in

flight under the action of aerodynamic forces blades of a helicopter

undergo considerable live loads in conditions of two different types,

* which are called by us conditions of low and high speeds.

Figure 1.64 shows the approximate character of the change in

amplitudes of varying stresses with respect to the speed of flight

for two blade designs: steel and Duralumin spars. As can be seen
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'Fig. 1.64. Character of the
DeneCera-d" change in amplitudes of vary-
tion C ing stresscs with respect to

the flight speed in blades
with small (steel duct) and

I Duct Laverage (Duralumin spar)
-I- - , urigidity in the flapping

plane.

from this figure, the maximum varying stresses can appear-at low

speeds (conditions of deceleration) and at a maximum flight speed.

As was already shown, the blades accomplish fiexural oscillations

so that at each point of the spar stresses are changed according to

the periodic law, being repeated for each revolution of rotor.

Figure 1.65 gives as an example the recording of stresses, obtained

in sections of the blade on relative radii F-=0.73 and F=O,8 in
conditions of level flight at a relatively high speed. The same
figure gives the harmonic composition of stresses acting in these

sections of the blade.

Recordinig of stresses:

&got

I re Lor

revolu- Fig. 1.65. Recording of
tion

tion stresses in two sections
W* 4 of the blade of a heli-
ii copter in conditions of

level speed (P - 0.3) and
j P.473 their harmonic composition.

S 4 7 %iinber

of harmonic
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Usually in level flighc at & 0.2-0.4 the greatest values are

reached by the first harmonic component of the stresses. The

u cond harmonic is "Less in amplitude and comprises usually 30-70%

of the first harmonic. The first and second harmonic in sum,

as a rule, determine 70-90% of the value of total varying stresses

in these conditions in the blade, since higher harmonics usually

appear small. Their value almost always decreases with an increase

in the order of the harmonic. Such a character of change in value
.f the harmonics is connected with a decrease in the value of

narmonic components of aerodynamic forces with transition to

higher harmonics.

There are recurrent (for all blades) exceptions to this

goneral rule which are connected with the appearance of resonances

-ir proximity to them.

In conditions of low speeds the harmonic composition of effec-

tive stresses appears different. Here the predominate become higner

harmonics where in the first place there are distinguished harmonics

close in frequencies to the frequency of natural oscillations of the

second and third tones. An especially great increase in varying

stresses in these conditions of flight (see Fig. 1.64) occurs for

blades with low rigidity in the flapping plane (see § 3, No. 3).

For such blades the greatest of all appear to be stresse3 with

fourth and sixth harmonics (Fig. 1.66). Conditions of low speeds

give for such blades the basic defectibility of design (see

Table 1.21).

For blades with average rigidity in the flapping plane the

increase in varying stresses at low speeds proves to be considerably

less (see Fig. 1.64), and the predominance of higher harmonics is not

observed so sharply (Fig. 1.67). For such blades (Just as for blades

w'th great rigidity) the basic defectibility is given by conditions

of flight at high speed.

) Along with varying stresses from flexural oscillations, the

spar of the blade will stretch and bend by constant (in magnitude)
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Fig. 1.66. Oscillogram of the recording of varying

stresses in a blade with a steel tublar spar, having low

rigidity in the flapping plane in the process of decel-

eration, and their harmonic composition.

97 9 •Fig. 1.67. Harmonic compo-

P-0 'sition of varying stresses
in a blade of average rigid-

•\•2 ity with a pressed Duralumin
spar in conditions of decel-

A eration.

Number of ,

centrifugal forces and constant part of aerodynamic forces.

Therefore, the material of the spar works at varying stresses

with great static loading. Static loading greatly reduces the

fatigue strength of the opar.

5. llypothesis of Linear Summation of Defectibilities

and Average Equivalent Amplitude of

Varying Stresses

In different flight conditions the most diverse varying

stresses act in the construction. The duration of Individual flight

conditions can be considerably diverse. Thus the most continuous (

operation of flight is usually a flight at cruising speed. For

3 6
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helicopters utilized for carrying transport, these conditions occupy

60-70% of the service life. The maximum speed of flight of transport

helicopters used in the national economy is almost never used. Of

very short duration for these helicopters are also conditions of

flight at low speeds, which are usually only passage in acceleration

and deceleration.

However, helicopters can be used in the most diverse forms

of' operations where the duration of individual flight conditions

appears different. As an example Table 1.21 gives values of the

relative duration of different conditions ai, accepted for one of

the military transport helicopters.

The service life of the construction should be determined

taking into account the temporal composition of the stay of the

helicopter in conditions with a diverse level of varying stresses,

and therefore introducing into the construction a different portion

of fatigue defectibility. For an account of this circumstance it is

convenient to use the hypothesis of the linear summation of defecti-

bilities. This hypothesis assumes the possibility of summation of

separate portions of defectibility introduced by different levels

of stresses and says that destruction of construction approaches when

Ra m,-.

where " (11.4)
wnere Ni the numbr cycle

where Ni is the number cycles prior to destruction with continuous

maintaining of the level of loading with the amplitude ai; ANi -

number cycles of loading with amplitude oa, tested by the construction

in the i-th conditions of flight.

The, relation aP,-Nv is usually called the defectibility of
N,

corai..ruction In ,.onrltion3 with the amplitude of iLrei;;es ai, and

&Vg - is the total defectibility.

In certain works it is proved that with definite alternating

of conditions of loading, destruction of the construction can



approach, when

ARNA< 1.

However, the cases examined in these works basically do not
correspond to conditions of loading of units of a helicopter. There-

fore, almost always during the calculations it is possible to use
formula (11.4).

Due to the scattering of cnaracterist 2s of service life, the
defectibility of separate copies of the construction even at ide.,tical
(in duration) composition of levels of loading proves to be different.
The greatest defectibility is in constructions with the least
values of service life. Therefore, it is possible to indicate the
defectibility corresponding to a definite probability of the destruc-

tion.

If in formula (11.4) we assign values Ni corresponding to the
assigned probability of destruction P~aA' then AVj-j the probability
of destruction will also be equal to P..... Hence there can be obtained

the formula for calculation of the safe number cycles of loads N6.,
with the assigned probability of destruction P38• determining the
service life of constructions according to conditions of endurance:

(11.5)

Here %1w,&-I Is the relative duration of condltions with the

stress a,; Nw. is the number cycles of loadIng for service life of

ccnstruction in the determination :,f relative duration of' separate
cotadltioni or fligt u" (In general, any arbitrary Interval of time'

trf 'pejation Of the 1illccptor taken with the number cycles Ni is

tit '',','iMv1"y ,pqwi t.o the number cycle, of loading for tne
c.at,:|tii het1d :t-irviot- lift of onstructioi, N.m ); N1 Is the number

eyries or loadi*,E with the amplit.idt oa at which the probability or

destruction is equal !.o asalinc'd (?3AA).

.1



If effective stresses are lower than the minimum fatigue limit,

then Jefectibility Is not introduced into the construction. In this

ease the number cycles Ni in formula (11.5) must be assumed equal to I

.:nfinity.

It is po3sible to introduce the concept about the relative

iuration of conditions c introducing defectihility Into the construc-

i.ion:

where N noD is the number of cycles of loading for the service life

of construction introducing defectibility.

Thur 'uring the time of service life R the construction is
damaged only during the time equal to cR.

Frequently for giving to calculations greater clarity it

uppears convenient to introduce the concept of the average equivalent

amplitude of varying stresses.

The average equivalent amplitude of stresses consists of

such an amplitude constant in time and effective during the part

of service life equal to cR, which Introduces into tie construction

-a defectibility equal tc the defectibility introduced by amplitudes

of varying stresses different in magnitud'9 in ail coniitiors of

"light encountered during operat',n of the helicopter.

With the introduction of this concept It is assumed that at

stresses greater than the lLnit the durability of the constructIon

can te determined an

N~mN.(YT.("A,.6)

Then, substituting (11.6) into ;1i.4), we will obtain

%(A1 O#met.,



where summation is produced only with respect to those conditions

which introduce defectibility into the construction.

If one were to introduce one equivalent level of stresses with

the amplitude %3KB and the number cycles determined from the condition

that stresses act aSKB act continuously during part of the service

life eR, i.e., that N1 w,-eAm0 , then it is possible to write

]• ANa"pec,. (11.8)

Consequently:

As an example later at point 12, see also Table 1.21, there is

given the calculation of equivalent stresses for the blade of one

of the helicopters in the most stressed section on the relative

radius r = 0.74. The spar of this blade is a steel tube pressed
"On an ellipse along the whole length, starting fp'om the radius

i = 0.3. The minimum fatigue limit of the tube of the blade in

this section, according to results of dynamic tests, can be accepted
2

asequalto=a 13 kG/mmw min

Measurement of stresses in the blade with a spar of steel

tube is usually produced in two planes: in the plane of least (a y)

;½Td in the plane of the greatest rigidity ( x). With this it can

appear that at some point of the perimeter of the spar section the

amplitude of varying stresses attains the magnitude +

greater than that of the amplitude a

However, usually because of the distinction in phases of

effective stresses in these two planes such a magnitude of varying

stresses is almost never attained. Therefore, with calculation of

service life of the blade it is possible to use the approximate

formula:
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Coefficient E can be calculated if there is simultaneous recording

of stresses a and u if there are no data for the determination

of 4, then practically quite reliable results can be obtained if we

assume • - 0.5.

6. Scattering of Amplitudes of Varying Stresses
in Assigned Flight Conditions

With the measurement of varying stresses in flight it is

revealed that in the assigned conditions of flight valut.s of

stresses appear different during the period of conditions of the

flight and in various flights. Therefore, it is necessary to

introduce its average-equivalent amplitude of varying stresses in

all conditions of the flight.

To determine this amp]it:'de it is possible to use special

decoders of oscillograms, which allow derminlng the number of

amplitudes of stresses n k lying in the range

where G k and rkl - levels of amplitudes of varying stresses selected

for the calculation.

Then the average-equivalent amplitude of varying stresses in the

examined conditions can be determined by the formula analogous to

((11.9),

Here n k is the relative number cycles with amplitude k

where n k is the number cycles with amplitude ak) and n is the

ictal number of cycles recorded by the decoder; £i is the relative

number cycles with stresses greater than the minimum fatigue irmit

Jn I-th flight conditions.,

2 4 1



Summing with respect to k i, .... duc'r only for those intervals

of time in i-th conditions where the amplitude of stresses ak is larger'

than the minimum fatigue limit Oa

In the determination of the average-equivalent amplitude for

the whole service life of the helicopter by formula (11.9) the

amplitude in each flight condition should be calculated by the

formula (11.10) and the relative duration of conditions introducing

defectibility into the construction, by the formula:

In practice for simplification of deciphering we often determine

in each condition not the average-equivalent amplitude but the

maximum one that enters into the safety margin, but this leads to

a decrease in the service life of the construction.

7. Method of Calculation of Service Life
with the Use of Safety Factors

The problem of determining service life of the construction is

reduced to the finding of such a safe number of cycles of loading with

operation of N6e3 at which the probability of destructio!o of the

construction is very small and equal to the assigned. 12 it were

possible to test a sufficiently large number of samples. then, by

determining the characteriotic of distrilutior. of JAelr service life

(Fig. 1.68), it would be easy to find N Oe. Laseu on such approach

are many methods of calculation -f seýrvicr_ lifj 'see, for example,

4[i3 ]). However, usually the service llfY of the construction must

be determined on the basis of results of dynamic tests of some small

number of samples of the construction n, when the law of distribution

of service life is impossible to determine with the necessary

accuracy. Therefore, in practice there is wide spread use in the

method of calculation of' service life of the construction fou.ideH on

the introduction of definite safety mar'gins by the number of cycles

of n and amplitude of varying stresses n
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Fig. 1.68. Determination of the safe
number cycles by the distribution curve
of service life.

To calculate the service life by this method it is necessary

to take the measurement of stresses in the construction on different

conditions of flight, determine the equivalent value of stresses

and conduct dynamic tests of one or several specimens of the construc-

tion during stresses

The reserve no here is introduced for calculation of the

possible distinction in values of varying stresses in analogous units

of different helicopters.

By conducting tests of samples and obtaining the minimum value

Sf the number cycles prior to destruction Nmin we determine the bafe

number cycles of loading in the operation by formula:

Nml

N u, a (11.12)

The safety margin nN is introduced for the calculation of

scattering of cnaracteristics of service life.

Then the service life of the construction in hours can be

determined by the rormula
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where f is the frequency of loading of the blade in operation (9
(oscillations per minute).

In certain cases the service life of the construction appears

dependenr on the frequency of the load. Therefore, if dynamic tests

are conducted at a frequency of greater than the frequency of loading

in flight, then it is necessary to introduce still an additional

reserve on the frequency of loading nf.f This reserve is introduced

basically for components made of Duralumin and when tests are

conducted at a frequency 5-10 times greater than the frequency of

loading in flight. in this case it is taken equal to 71f 1.5-2.0.

Tn the calculation of these reserves the formula for determining

service life can be written in the form:

N.r= (11.13)

If one were to assume that the distribution of characteristics

of service life obeys the normal law and that parameters of this

law are well-known, then, as was already stated, values of necessary

safety margins with respect to the nwuber cycles nN and amplitude

of varying stresses n0 woild have been possible to determine by

calculation means having assigned the determined quite small

probability of destruction of the construction in the operation.

However, such calculations cannot claim to be of high accuracy.

Therefore, by the same right the method of assignment of values of

these coefficients can be used on tht basis of operational experience

of helicopters.

Proceeding from this experiment, the safety factor with respect

to the amplitude of varying stresses na can be accepted as equal to

1.2 and the reserve with respect to the number cycles of loading

TN as different depending upon the number of tested samples and

degree of responsibility of the unit for flight safety.

With respect to the degree of rezpinsI1illt.y for flight safety .

all unIts and com;)rrnts of the helicopter can be divided into
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four groups:

Group I- units whose destruction leads to immediate and full
disturbance of the efficiency and safety with the difficultly

revealed beginning of the appearance of a fatigue crack. This group

can include blades whose spar is covered by the housing and does

not permit inspecting it after a flight, a series of components

closed for inspection of the hub and control system of the main

and tail rotor, shaft of the rotor, etc.
I

Group II - units whose destruction could lead to immediate and
full disturbance of the efficiency of construction and flight safety,

but there is a possibili';y of early detection of the appearance of

a fatigue crack. This group can include blades with a reliably
operating system of signalling of the appearance of cracks and all

remaining units attributed to group I, if the appearance of

fatigue crack in them can be revealed in preflight inspection.

Group III - units whose destruction leads to a partial loss in
efficiency, threatens the flight safety, but permits accomplishing

a forced landing without a crash of the helicopter. This group can

include many elements of the fuselage, even the reduction gear frame

if it is carried out in a statically indeterminate configuration.

Group IV - units whose destruction creates partial loss of

efficiency, permits continuing the flight, does not involve rapid

des~ruction of other units and permits revealing destruction during

ground inspection. This can include many elements of the fuselage,

stabilizer of the helicopter and a series of analogous elements of

the donstruction.

The more important the unit, the larger the value of margin
with respect to the number of cycles should be taken. The following

values of these reserves can be proposed (Table 1.16).
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Table 1.16. Safety margins with respect to the number
cycles.1

I Safety factor n

Number of I I
tested II III IV
samples Group Group Group Group

1 12 6.0 6 2.5

2 8 4.o 4 2.0
3 6 3.0 3 1.5

6 4 2.5 2 1.0

'Margins nN given for group I of units are

twice larger than well-known values, since included
in them are also margins nZ, introduced frequently

into the inaccuracy of hypothesis of linear summa-
tion of defectibilities.

To realize margins with respect to the number cycles required

for groups I and II of units of the helicopter in practice proves to

be possible only at very low frequency of the change in loads in

the f•ight. In the establishment of the service life with such

great margins for all basic units of the helicopter, it would be

necessary to conduct tests up to a very large number cycles consid-

erably larger than 107 cycles. It would be necessary to spend very

much time on this. Therefore, even greater widespread use is

achieved in the accelerate-1 method of dynamic tests with a margin

with respect to the number cycles nN 1 1 or even smaller than unity.

In this case safeguard of the required reliability is attained by

neans of introducing only a margin with respect to stresses. For

conversion of margins TN into margin with respect to n we usually

use formula (11.3) with the exponent m a 6. With such approach the

necessary margin with respect to amplitude of varying btresses

appears different depending upon the number of tested samples and

large for Duralumin, for which it appears necessary to introduce an

additional margin into the difference in frequency during tests and

in flight.
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Taking into account everything that has been said, for group I

of units of the helicopter it is possible to take margins with respect

to the amplitude of varying stresses, shown in Table 1.17.

Table 1.17.
-- ol)

Number oftestes Bsteel !Dura-

samples ni jiumin

1 1,8 2.0
2 1,7 1,9
3 1.6 1.8
6 1,5 1.7

Under dynamic tests with such margins n0 a safe number of cycles

is determined according to the minimum number of cycles of loading

of the sample prior to destruction NGumr-•a.

Tt is necessary, however, to consider that the carrying out of

tests with such large margins with respect to the amplitude of live
loads possibly only in those cases when with an increase in load

the character of the distribution of stresses according to different

structural parts is essentially not changed. When with an increase

in loads redistribution of stresses occurs due to, let us say, the

opening of a Joint, the appearance of mutual movements of adjoining

components operating under working loads without such movements or

for other similar reasons, the application of such a method of tests

is inexpedient.

8. Method of A. F. Selikhov for Calculating the
Necessary Safety Margin with Respect

to the Number Cycles nN

Above, in No. 2, it was already indicated that the servicc ]:4c

of the construction has a threphold of sensitivity with respect to

the number cycles No, and therefore the distribution function In

the region of small probabilities of destruction deviates from the

normal law. In principle, it would have been possible to select

such a safety margin with respect to the number of cycles 'N that the

probability of destruction of the construction would be equal to zero.
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But, as is shown in work [44], for a sufficiently accurate determin-

ation of the threshold of sensitivity there is required a large

quantity of samples, so that it is mostly impossible to determine (..
its value for the construction. Therefore we usually assume that

logarithms of numbers of cycles prior to destruction lg N are

distributed according to the normal law, and the assignment of

service life of the construction is produced based on the condition

that the probability of destruction P - 0 and on the condition that

this probability is quite small, let us say, equal to P a 1

If in reality the threshold of sensitivity takes place, then the

requirement of such a small probability of destruction, calculated

from the normal law of distribution, appears more rigid than the

requirement P a 0, which would have been possible to impose, if the

value No proved to be possible to calculate. Therefore, it is

possible to consider fully permissible the determination of safety

margins on the basis of somewhat greater probability of destruction,

let us say P Il and even P= 1

To determine the necessary safety margins with respect to the

number cycles the method proposed by A. F. Seiikhov can be used.

This method consists in the following.

If ore were to assume that the distribution of logarithms of

numbers of cycles prior to destruction of the construction obeys

the normel law

Q9 -N-d

yp(IgN)aa. (L-

then the distribution of minimum valuei of service life of i certain.

group of samples of this construction car. be lefined by formula

where n is the number oi te3t-I sampler; 0(4) - Laplace function

s
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The character of distribution min (lg N) for values Slg N* 0.15
and n - 5, 10 and 100 is shown on Fig. 1.69. Values of mathematical

expectations and root-mean-square deviations of this distribution

depending upon Slg N and n can be found by curves shown in Fig. 1.70

and 1.71.

T - -_ , - "
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Pig. 1.69. Distribu-
tion of miiaimum values
of service life with a
different volume of
the sample.

42 44 0 41 *NU P

II

! i! - Ii1!11
' I I !1111

- J ILI
"l•,• i jjj@it~ilil Illml

,I i l]

Fig. 1.70. Change in Pig. 1.71. Dependence of
magnitude or mathemati- -oot-mean-square deviations
cal expectation of mini- of minimum values of service
mum values of service life ,.' the number of tested
life from .ne# number of sampleu,.
Stested .zmp li.



The mathematical expectation of the minimum value of service life

can be determined by the formula:

Mfg Nl.a Sm,,N AmIg N.

Value Amlg N is determined depending upon the root-mean-square

deviation S and number of tested samples by the curve on Fig. 1.70.
lg N

The root-mean-square deviation of the minimum value of service

life Slg Nmin, referred to Slg N' is shcwn in Fig. 1.71.

Thus, if characteristics of the distribution of service life

of the construction are known, then by formula (11.15) one can

determine the distribution of minimum values of service life during

tests of a small number of samples n. Knowing this distribution,

one can determine the probability of destruction of the construction

with the number cycles of the load

Ns,• ,, (11.16)

where n is the safety factor of reliability with respect to the

number cycles; Nmin - minimum value of the number cycles prior to

destruction of the construction during tests.

Having taken the logarithm of expression (-1.16), we obtain

t - i (11.17)

where EagN8 1 .

If dynamic tests of natural samples are conducted under loads

equivalent to loads acting in the examined construction in flight,

then it is possible to consider that the distribution of service life

during dynamic tests and under operational conditions is equal.

A certain distinction in these distributions can appear only due to

errors durirg dynamic tezts and the scale effect in those cases whert

the volume of loaded material in the construction appears larger than
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Ohat in the sample, i.e., for example, wnen onl a sample cut from a
blade, only its central part appears loaded during tests. If dynamic

Ltests are conducted under loads different from those effective
1n flight, then characteristics of the distribution of service life
in the operation prove to be essentially different from those obtained

during tests and can be determined only approximately by means of
cvunversion founded on definite assumptions with respect to the Wbhler
ý.iirve.

If the distribution of service life under conditions of operhtion
.0c is determined, then the conditional probability of destruction of
one arbitrarily taken copy of the construction, In operation with the
given outcome of dynamic tests E2, can be determined by the expression

•# (11.18)

Py"

The total probability of destruction of this copy of the
,:cnstruction in operation will be equal to th• sum of conditional
probabilities multiplied by the absolute probability of each result

Omin (2 d&2 :

PlumS . ](11.19)

Having calculated the magnitude of this integral, It is possible
to plot the dependence of probability of destruction of the construe-
tIon P orn the accepted value of safety margin with respect to the
number cycles nN*

In the case when the distribution of serv!-e life ir operat'nn

and during tests Is equal

the probability P appears dependent only on two quantities: on the
number of tested samples n dnd Gn£ the relation of the ogar~th= cff
safety margin 1g - the root-mean-square deviatior ct c-gart~hrn or
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l r~t:;i o ' • , c•"; •,1" ' . . u :.'.)r . destruction of samples

Fig. 1.72. Diagram for the
-relecticn of the magnitude

00 of safety margin with respect
,ato the number cycles of the

VOO .. . l oa d .

Thus to determine the necessary safety margin with respect to

the number cycles it is necessary to conduct dynamic tests of n samples

*-f construction, determine the root-mean-zquare devi-htion SlNg N
and N and, having assigned a cevtnin probability P38A, determine

min
n) by curves of Fig. 1.72. After t. at the safe number of cycles

prior to destruction can be determined by formula (11.12).

Such an approa'ch is possible also when tests are conducted on

a small number of samples. The value S.1 N can be taken according

to results of other tests of similar constructions .

If we assume beforehand that Sig N = 0.2 (this value is close

"r, the minimum root-mean-square deviations observed for the majority

oP units cf a helicopter and to assign probabilities of destruction

shown in Table 1.18, then values of margins close to those which are

givea in Table 1.16 n:an be obtained. Usually the quantity Slg N

appears higher. Therefore margins obtained by this method are higher

than those which are given in Table 1.16.
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Table 1.18.

ýrc-.) if ;i*I WIth Pro o ±i 1 v uf
dIfferert importa-ice destruction of VG
for safety. :oIstr -':!on

Igroup 5-

II group
I

Inl group

10iV group 10O

The basic question wnich arises with the use of the method

given here is the question of what probability of destruction of

u~he construction should one assign during the calculation of servicL

life. Frequently values of probabilities recommended by different

sources can differ by 3-4 orders (see, for example, [43]). The

values of this probability proposed here (in Table 1.18) are selected

from the consideration that they to a great or lesser degree of

reliability should correspond to numbers of cycles smaller than the

threshold of sensitivity NO. Therefore, these probabilities should

be examined as certain conditional values referring to the normal

law of distribution. Real. values are considerably less or even simply

equal to zero,

9. Determination of Slg N with the Assigned

Confidence Probability

As follows from the preceding point, the logarithm of safety

margin with respect to the number cycles lg n N necessary to provide

the assigned probability of destruction appears directly proportional

to the root-mean-square deviation in the distribution of logarithms

of numbers of cycles prior to destruction of the construction Slg N

The larger Ig S N' the greater should be taken the margin .N. There-

fore, the reliability of determining the service life of construction,

depending on admissibility of the many accepted assumptions, to a

considerable degree Is connected with the accuracy of determination

of Slg N'
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Usually to determine the service life of a construction tests

of three-five samples of the construction are conducted. In many

cases it is considered sufficient to carry out tests with even one

sample. There are no doubts in the fact that with such a small

number of' tested constructions there is no possibility for a

sufficiently accurate determination of S Therefore, in the
lg N

method which is proposed by A. F. Selikhov (see No. 8) it is assumped

that S3g N cannot be determined in all cases. With a small number

of tested samples it is possible to take Slg N according to the results

of tests of analogous samples of another earlier tested construction.

Such an approach very greatly simplifies the process of establishing

the service life and appears extradordinarily useful in practice.

Determination of Slg N with sufficient reliability is possible

with tests of not less than ten samples of the construction. To

evaluate this reliability we frequently use the concept of confidence

probability of the determination of Sl N'

The confidence probability 6 is usually selected so that it

would be possible to consider practically reliable that the value

Slg T lies in the interval:

- SaN <S XN <qS,1gNs

where S1 g N is the estimate of Slg N obtained according to a limited

number of results of tests; q - coefficient in magnitude, larger than

unity.

From what has been said it follows that the sought value S g N

can lie in the cofidence interval with probability B. Consequently,

t: carl appear eqt;t I to q3lg N" In this case the logarithm of the

oafety margin with respect to the number cycle,- Ig n N In accor(Jnrcoe

with that expounded in No. 8 by the method will be increased propor-

tional to quantity q, and this is why the computed value of service

life decreases.
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The value of coefficient q, depending on the number of tested

samples, appears to be the accepted value of the confidence prob-

ability B.

In Table 1.19 there are given values of coefficients q and values

of the confidence probability S corresponding to them taken by

us from the book of Ye. 5. Ventsel' Probqbility Theory.

Table 1.1ý.

Va: Z *p1 c:n' W r;c protrw. . L

S1.o06 1.1 11._1 1,20_ 1.25 1.3
n=5 14,6 24.1 35,5 46.1 155.6 63,7

n=10 20,8 34 49 72,2 79.7
n5 14!211, 4.1 62,
n=25 32,7 51,8 70,6 83 2 90,5 94.4
n=50 46.2 68.2 86 94 "97,4 98,8

As follows from Table 1.19, during tests, for example, twenty-

five samples and a confidence probability of not less than 70%, the

value Slg N obtained accordIng to the experiment appears necessary

with the calculation of service life still to be increased 1.15 times.

With the assignment of the confidence probabli'ty "ne should

consider, however, that reliability of the determination of I"•lg N
should not exceed the reliability of the determination of all other

parameters entering into the calculation of service life. This

pertains, first of all, to parameters determining the law of distri-

bution of service life in the region of small probabilities of the

distruction, such as, the threshold q of sensitivity >,, and to the

character of the very law of distribution, which only approximately

can be accepted as logarithmically normal.

Therefore, the confidence probabil2ity B cnar .ternzing the

reliability of determination of' S Ig N can o *,.,lr.Aby lowered to

values at whicr, coefrtiient q will not be o:l . arger than

"unity.



On the basis of these considerations, with tfle determination of

margins nN w frequently assume q = 1 and use the value S)g and

not that value which corresponds to the upper limit of the confidence

interval at sufficiently high 8.

10. Scattering in Levels of Loading of Different Copies

of the Construction and the Safety Margin with Respect
to the Amplitude of Varying Stresses no

Values of amplitudes of varying stresses, effective in flight

in separate copies of units of the helicopter identical in construction

pi .*'• to be different.

Measurements show that in identical conditions of flight

amplitudes of varying stresses are distinguished both for blades of

one rotor and between blades of different rotors. This is explained

by the scattering of parameters of blades, manufactured serially

due to the distinction in their geometric dimensions, and, conse-

quently, in their weight. There are usually always deviations from

the contour of the profile and distinctions in the geometric twist

of the blade. Furthermore, with the installation of blades on the

helicopter and adjustment of coconicity of the rotor distinctions

in angles of setting of the blades appear. All of this eventually

leads to a certain distinction under conditions of operation of

separate blades and, as a result, to the scattering in values of

amplitudes of variable stresses acting in identical conditions of

flight.

There is also a distinction in parameters of 'l'r[nt conditions

connected with the manner of piloting by individuai pliots.

A no smaller or even considerably greater •41,tincl.lon Is observed

in valuez of ampitudes of stresses and in all other unrits of the

helicopter. The scattering in amplitudes of stre:ssez c:; 3 speciaily

great in those components where live loads from separate blades with
summation should be equal to zero (if the blades are Ileally lientcal)

for all harmonics with the exception of harmonics multi';e sf

number of blades. Tf, h nowever, parameters of tne •''vez 4
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different, and thus practically this always occurs, then in these

"units besides small live loads with frequencies of harmonics multiple

of the number of blades there appear considerable (in magnitude)

loads with other harmonics, and their magnitude appears proportional

to the magnitude of distinction in parameters of the blades. The

Sscattering in values of varying stresses in such units can appear

very great. Usually these are the following units: the pitch

control, components of the rotor control system and fuselage, and

primarily its reduction gear frame, which is espe,4ally greatly

loaded by live loads.

For an account of all enumerated factors during calculation

service life the safety factor with respect to the amplitude of

varying stresses na is introduced. This factor should provide

reliability of operation of any copy of the construction in a

fleet of helicopters taking into account the available scattering

in values of varying stresses.

Usually to measure the varying stresses in the construction

there is arbitrarily selected a certain copy of the helicopter.

Varying stresses a.3. obtained during its tests are used for carrying

out dynamic tests. With this tests are conducted with stresses

(ouc--A(.1.8. Therefore, above-stated (see No. 8) method of determina-

tion of safety margin nN and safe period of service gives results

which can be used only for that copy of construction in which stresses

equal to a act. For all other copies of this construction the

service life will appear greater, if stresses acting in them *es,,<Otw

and less, if **f,>Omes.

Let us determine the value of the safety factor n f-om the

condition of the fact that the probability of destruction of tne

examined unit of the helicopter P,, taking into account the available

scattering in values of amplitudes of varying stresses, is equal to

the assigned probability Pa. Usually this value Is taken to be

the same as the probability of destruction PO of that unit in which

varying stresses amen, accepted during dynamic tests, act.
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Thus if value n is selected from t.( condition thaL the

probability of destruction of the copy of the construction with

stresses amol, is equal to PO= 3 ag, then the probability of destruc-

tion of other~copies of this construction can be determined by formula:

P.-- dl d) •(11.20)

Here Pca is the probability of destruction of that unit of the heli-

copter in which stresses equal to a act. The distribution of service

life ýSx0, entering into formula (11.20), which is determined on the

basis of dynamic tests for a certain selected level of equivalen.

stresses should be recalculated taking into account the fact that in

different copies of the construction different equivalent stresses

act.

If one were to assume that the service life is changed in

accordance with the law

.N-mcou, (11.21)

then characteristics of the distribution 3xc(O) can be assumed equal

to:

(Sig (11.22)

% MI,.S +u= a.heh. (11.23)

where ( is the root-mean-square deviation of distribution of

wghNa
logarithms of numbers of cycles with stresses GuefctB, different from

those at which dynamic tests are produced; (ml N~O - mathematical

expectation of this distribution; 0an. - stresses during tests;

OAelcTB - stresses acting in some copy of the helicopter.

Let us assume that the distribution of amplitudes of acting

varying stresses with respect to different cnpies of the constructior

can be accepted as logarithmically normal. Then the probability of

destruction of the examined u~nit-c of the hel .copter will be equal to:
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where *lg c B is the law of distribution of effective amplitudes

of varying stresses (Fig. 1.73)

-" -" / - Fig. 1.73. Character of
j ~ ~./ - distribution #l . and

'A a P at various oxCn n -q o

/ I - a

Here one should consider that value OaCns accepted for dynamic

tests, is selected accidentally according to the results of measure-

ment of stresses on one arbitrarily taken helicopter or on several

helicopters. Therefore, the probability distribution of the destruc-

tion P0 with respect to units with different acting stresses will
be displaced along the axis lg a (see Fig. 1.73) depending on the

accepted value oen•, thus, In order that at 0feleD'" %ocn the

probability of destruction Pa is equal to P3aA* since from this

condition the value nN was selected. Hence it is clear that value

P•MS will depend on value a

Consequently, the probability P.3. is the conditional probabillte

with the definite, accidentally selected, value oxen. The total

probability cf destruction, arbitrarily taken from a fleet or

helicopters of unit P., can be obtained as the sum or conditional

probabilities P,3W, multiplied by the probability of appearance in

this unit of stresses taken as the basis with dynamic testsam,46
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P._. d ~dig@. (11i.25 )

If measurement of stresses is taken on one helicopter, then
one may assume that

If measurement Is produced on several copies of the construction,

and with dynamic tests there are assigned stresses

where GNSUop is the average amplitude of varying stresses measured

Qn several copies of the construction, then parameters of distribution

cj,,, should be determined as parameters of the distribution of mean

values of varying stresses

From expression (11.25) it follows that the total probability

of destruction P appears dependent on quantity na. The•-fore, by

assigning PF I a38x, one can determine the necessary valut na. It

is obvious that the necessary value na proves to be dependent on the

law of distribution of varyl"g stresses with respect to differe:nt

copies of similar units of the helicopter *0 1O~tce"- To determire

characteristics of this law of dintribution there can be use'd data ur

different measurements of stre3ses carried out rrequentlAy on the same

units of the helicopter in tests conducted for different purposes.

It is natural that the scattering of value- or :,verrsc eqr i -&1'.

varylng stresses can be different for different units.

The root-mean-.quare de-v1:tLr 1r, in, the 11•tr~bit1•r, ni vr-

3tresses with re;pect to life.erert blades 6f the ret• ,-'it.y .e

2(0
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in the range:

If one were to take, as is frequently done, the normal law of

distribution of amplitudes of varying stresses, then to these

values of Slg a will corresp9nd the values:

y•-- "mO"G--0.O-0S, (11.26)96

where S( is the root-mean-square deviation in the distrioution of

amplitudes of varying stresses with respect to different blades; I
Iýo Is the mathematical expectation of this distribution, i.e.,

average stress in these tlades.

At small ya it is possible to assume Slg a y YO lg e.

For units whcse load depends on the quality of control of the

rotor, such as the cyclic pitch i.ontrol, reduction gear frame and

others, the eoefflcient ya appears somewhat larger.

From the structure of formula (11.25) it follows that the total

probability of de3truction P• depends basically on two parameters:

where m is the exponent or the Wdhler curve.

The total probability of destruction P• al3o depends on the

probability of destruction PO accepted in calculation of that copy

of construction In which stresses oICr.

Figure 1.74 elves calculations Qt the totai prolabllity I# for

different values a, b and P0 according to rumu 6 . In the case

when measurement or stresses only in one copy of cýnstructlon of the

helicopter Is carried out. Calculations were also ivnducted for
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different values of tne number ,:,f tested samples, but it appeared

that the total prxbability of' destruction does not greatly depend on

their number. Figure 1.74 shows by dashed lines the curves for

5 and by solid lines, for n 6 F- 20.

___ Fig. 1.74. Results of
calculation of the prob-

44 ability of destruction
t .taking into account

scattering in values of
stresses acting in dif-
ferent copies of the
construction.

I 4'e70  }

If one were to require that P E P0 P*,,, ttren final graphs

can be obtained, by which it is easy to determine the necessary

margin n., if values S1. os SI r. and ?,$A are known. These graphs

are shown in Fig. 1.75. Just as in Fig. 1.74, the dashed lines

pertain to the case n.),..- r. and solid lines to the case n•. * 20.

As at; example it-t us find the necessary marrin frr the bU-,i,,

• thte netlco l" io"t It Is known that yo -0.06 (Si*. -0035). 7,,

Let us determ:ne the value or coerficiett a:
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T 1•i Then, by assigning va1~e PZ= I' by curves or Fig. 1.75

we obtain:

,--I, 2(at *,-5);

whence

IS q- 1.280.035,- 0.0448.
and

si,- !,11.

In those cases when the law of distribution * is unknown,

.-:e 6jually take n 1.2. This value n., as was already noted in

N o. 7, is frequently used In practical calculations.

""its I / .,
Pei zm /P*/

Pig. 1.75. Diagram for selection of the
safety martin n

11. Method of Determination of Safety Margin no

Proposed by A. F. Selikhov

Tn our account certain procedures and reasonings somewhat differ

her#. from those which were proposed by A. P. Selikhov, but the basic

principle of approftch to resolving the problem is borrowed from the

author.

In this method for determining the margin n the same tethod

is used which was 1.scribed In No. 8, but In characterist|cs of the
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distrIbution of service life the scattering in valves of amplitudes

of stresses acting in flight is considered.

If, as earlier, we consider that with a change in the amplitude

of stresses the service life under conditions of operation is

changed in accordance with law (11.21), i.e., that

Ig N. = gN.,.-+m ga...- g ) (11.27)

then one can dptermine the characteristics of distribution of service

life in the operation taking into account scattering in values of

amplitudes of acting stresses.

The mathematical expectation of this distribut-on will he equal

to:

m:= m 8 f ., N.C. +m (ig C.,. - rn,5  (11.28)

where m is the mathematical expectation of the distribution

of amplit'.des of stresses in different copies of the investigated

construction (mean value of amplitudes of varying stresses in different

copies of the construction).

If tests are conducted with stresses

then assuming

MiS 'eAJkikT "g m.CPl

we obtain

Mi n mig N.C. + -M Ig n,.

The root-mean-square deviation in values of logarithms of number.L.;

uf cycles prior to destruction under operating conditions can be

determined by the formula

:•V) 9

V1 ¾ (14



If dynamic tests are conducted with the amplitude of stresses

a,,, % O CFCp (where acp is the average amplitude measured in flight

on different copies of the construction), then the scattering of

chal'acteristics of service life with tests will appear dependent on

the scattering in acting stresses on different copies of helicopters.

The amplitude established during t-sts proves to be the value of

the accidental measurement of stresses dependent on the results. As

earlier (see No. 8), we are interested in characteristics of the

distribution of logarithms of minimum numbers of cycles prior to

destruction.

Let us assume thaL values of minimum numbers of cycles up to

destruction obey the law

Ig N,----Ig N 1,. + m Jig a.,. -- Ig (1€),(1I.3 0 )

where N2 is the minimum number of cycles prior to destruction of the

construction taking into account the fact that the amplitude of

tests can be established different depending upon results of the

measurement of th. average amplitude of stresses acv; Nmin Is the

minimum number of cycles prior to destruction of the construction at

a definite fixed value of the amplitude of stresses during'tests

of UUen.

Then

M2 /nt,,V,,,+ n(19 Ia-g T1. M Igac (11.31)

if

then
Jg g, =n + Ig 1m%.,

Let us assume that
Igm. Mp~

Then m2 -m•.8N,, and the value of the root-mean-square deviation of

logarithms of numhers of cycles during tests is
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V~I-PIS +m(Si,4 C, (11.32)

where (S13.)., is the root-mean-square deviation in values of the mean
logarithm of amplitude of stresses, measured in different copies of
the construction.

This value depends on the number of measurement no%:

($ . site (11 .33)

With one measurement (nm=-l)

(11-. 34)

Taking into account the relation (11.33), the root-mean-square
deviation in the distribution of service life during tests can be
determined by formula

i . ,,s.,. +L.-
.2 'R~ (11.35)

Using the same reasoning as above (see No. 8), we will attribute
to the fact that the probability of destruction in this case can be
determined by the expression analogous to (11.19):

If the distribution of logarithms of the minimum number of' cycce.;

prior to destruction during tests can be approximately representud
by the normal law of distribution, then expression (11.36) can be
copied in the form:

__ 2321 41 d266 d•, d. (lI.37
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If one were to introduce new variables

St .a, (11.38)

then expression (01.37) will be converted to the form:

P1LS 4 r (11.39)

where the upper limit f(I&) is determined by expression

S',,+N . (11.40)
S,

Substituting here values m1 and mi2 , we will obtain:

l( =S2 4+ M Ig n + Ig^ qX + In 19Ar.- IR Ig Xdo (11.41)
S, (1

From this expression it follows that the probability of

destruction Pc Ean be determined for each n., if there is known

these values

Si, S2, nN and Am~g=miI,--m,N.,

It is possible to propose the following method of determination

of the necessary margin n . Let us construct the dependences SIS

on - g'+1g1+Am'rN for assigned values of P (see Fig. 1.76). Then,

by determining S1 and S 2 by formulas (11.29) and (11.35), it is

possible according to Fig. 1.76 for assigned value P3" to determine

"a Igs 6 + Ig 4 + A( .42)

S1

whence, knowing viNAmigN (see Fig. 1.70) and S1, it is easy to

determine n0 .

The method expounded here is rather simple, although it requires

in the detrirminat!on of service life several more complex calculations

as compared to the method expounded in No. 10 where margins n0
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are calculated from values taken directly from the graph.

48 -V-- Fig. 1.76. Graph.for deter-

1 mination Mlt%+lgqM+AMlj

Al L A Stj49 ---- in the function S 1/S2 at
- - -- different assigned probabil-

-4 ities of destruction.

From the formulas given it follows that with the assumptions

accepted here safety margins nN and n a can be united into one criter-
ion q-mqmq. or we can replace one safety margin by another. This

appears convenient in the fulfillment of calculations and carrying
out of dynamic tests, which has already been discussed in No. 7
but does not give any alleviations in the selection of margins nN

and n., since their values are determined from various conditions.

12. Example of the Calculation of Service Life

As an example let us give calculation of service life for the
blade of a heavy helicopter with a spar in the form of a steel tube.

In determining service life of a blade the calculation should
be carried out for sections located 3n different relative radii, after

which servLce life of the whole blade obtained for the weakest

section is established.

Let us assume that the weakest proved to be the section on the

relative radius F-0.74.

We will assume that results of dynamic test% of five spar

samples with the amplitude of varying stresses of t15 kG/mm2 consist

in the following (Table 1.20).

-) . •



Table 1.20.

No. or N•ber of cycles Results or 11?du
sample of loadigng

9M I ,8.106 Seple *:. destroyed
J62 0-10
A13 20401 Swale* were miOt

JO 4 20.10, destroyed

365 20-100

From results of tests let us draw the conclusion that fatigue
2

limits a of samples Nos. 2, 3, 4 and 5 appeared above a - 15 kG/mm

Consequently, probabilit*, P of the fact that the fatigue limit a

is lower than 15 kG/mm2 can be accepted equal to 0.2.

Assuming Si., is equal to 0.07 (see No. 13), we will obtain that

the probability of 5% corresponds to fatigue limit a,-13 kG/mn 2 .

This fatigue limit will oe considered minimum.

The margin according to the number cycles can be accepted either

on the basis of the practical experience of assignment of service

life in accordance with Table 1.16 or by the method of A. F. Selikhov

(see No. 8). On the basis of Table 1.16 for group II of units

(the blade has a device indicating spar damage) and n - 5, the

safety margin nN can be accepted equal approximately to 2.7.

In tne second case it is necessary to know S1 g " It is

obvious that according to the results of the given tests it is

Impossible to determIne the value S 8g N' However, it is possible to

assign the definite value Si N on the basis of results of tests of

analogous samples.

Let us assume that S1 8 N " 0.4. Then, by assigning the value

! (group II of the units), from Fig. 1.72 we will obtain

ig nN - 2.3 x Slg NO i.e., nN - 8.3. Thus, the required safety margin

with respect to the number of cycles nN by the method of A. P. Sellkhov

appear considerably larger than that which could be taken on the
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basis of experience of the service life assignment. This distinction

in many cases is compensated partially by introduction into the

calculation of the concept of fatigue limits and by refinement of the

necessary safety margins nc.

As was already said above in the assignment of service life with

the use of safety factors selected on the basis of practical experience,

value n was taken always equal to 1.2. However, this coefficient

can be refined in accordance with the method expounded in Nos. 10 and

11. But for this it is necessary to have more complete data on scat-

ttring of amplitudes of varying stresses with respect to different

copies of the construction.

Let us assume that measurement of stresses is taken only in

one copy of ;he construction. However, on the basis of the experience

of measurements in similar units of other helicopters it is possible

to consider that y0 a 0.08, and consequently S g 0 C 0.035. Then

by methods expounded in Nos. 10 and 11, we will obtain that n 1.11.

Nevertheless we will take na C 1.2.

The minimum value Nmin from five tested samples (n - 5) with the

amplitude of varying stresses a-I15 kG/mm2 consists of Nmin = 9.8 x

x 106 cycles.

The number cycles corresponding to the minimum fatigue limit

will be determined by the formula

and value N, by the formula

% (Was5

During calculation of service life we will consider that It,

those conditions where erfective atres3ea are lowebr than the mir•1,mum

value of fatigue limit, defectibility Is not lntrriu,#:,J Irit,, t',,

construction.
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Equivalent stresses in separate conditions of flight will not

be calculated, and we will take them to be equal to the maximum
measured amplitudes of stresses. In this case the value e will only

be equal either to zero or unity.

The calculation of equivalent stresses will be reduced in

Table 1.21.

Table 1.21. Example of calculation of service life
of a blade by section on the relative radius 7=4;

j.. -MS8 kG/lm 2  e o•I-OA .*S$.-A4; u-M v (...- --I

nl~t Cw,.law ON 089

we 1-• inI 0.03 7.2 10.6 11.6 153, 1H01 00...
V.,1040 m 1 0.02 10.3 13.2 1.0 . WIP 0N6."

_V- ,.-h 1 0.06 12.4 12.I U.,5 18.06 I.3 O. r0 . .

A ccelorastton 1, 0.4 9.& 12.4 14.0 16.8 0.8-10 0,e4.10"W4Climb 0 0.06 6.0 S.6 6.7 1.26 0
LCro.w • spe ed 0 0.s 8.0 9.0 10.3 12.0 s 0

lTim,,-speed 1 0.10 8.0 10.5 11.6 13.3i 2,4.106 0.0G .10"4

VGlide 0 0,0 10. 1.2 15.8 10, s.,1 0

V OIst Sta'm I O.M 123. 18.4 21.11 16.35 3.•.lot 0,.02.1-4
%, LaeiSLNa. I O.W0 10.64 12.4 14.09 17.06 0.43.10M 0,016..-4
3r4 st"9tvv~rj*• g 0 0.0615.0 5.O O .O 2 11.0 00 O

i, ir one were to assume that the service life obeys the law (11 21)
a evel8 of varying stresses and the 0atigue l0m5t does not exist

(in this case o-I in all conditions), then all flight cond0tions

are equivalent In der~ectibtllty to conditions with the amplitude ofstresses one a 11.5 ka/m acting during the whole service 7 7 .e or

the blade. In this case
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-16.2-10L9

SR-, .271' h.

If we assume that the minimum fatigue limit *. = 13 kG/mm 2,

then one condition (see formula (11.9)] with amplitude a... a 13.6 kG/mm2

will be equivalent to all conditions of the flight, The duration of
this condition, as follows from Table 1.21, will make up about 23%
of the service lire or the blade (c a 0.229).

Then service life can be determined in the following way:

N. ta .O,7O. 10';-

R-J -429 h.

The same result can be o; tamned with respect to total defect-
Ibility without the use of the concept of equivalent stresses (see
formula (11.5)):

R--'--29-h.

The results given show that with the introduction of the concept
of fatigue lilt the service life of the blade by calculation appears
greater.

It Is nece.a•ry, however, to consider thht u-,rr.!n:; with .- r:.
to the cycles given In Table 1.16 werr Introt.u4kit@ Ir, ,N., .
not assuming existences or the fatigue AlmIt. Therefcre, In C.4.,-

tions with fatigue ltidt they shouJui no. be u.iel.
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13. Possible Means of Determining the Minimum
Fatigue Limit of the Construction

From the above-mentioned example It is clear that during

calculation with the use of the concept of minimum fatigue limit

considerably large values of service life of the construction
can be obtained. Therefore, the determination of its values in

many cases appears extremely necessary.

The detecting of values v.iw according to results of tests

with quite good accuracy proves to be a practically unrealizable

problem. It is only possible to calculate a very Ientative deter-

mination of this value. But even for this a considerable increase

In the numtser of test samples is required. Nonetheless, the use in

calculating service life of even tentative values of fatigue

limits substantially approaches results of calculations to reality

and opens up the possibility for the acceptance of more competent

t.echnical solutions. Therefore, it is recommended In all cases to

arrive at the determination of fatigue limits by using for this both

the tentative and even simple formal methods of calculation.
I

First of all one should try to determine parameterx; of the law

of distribution of fatigue limits. For this it Is necessary to

conduct fatigue tests of samples on several levels of varying stresses

lyirng In the region of the distribution of fatigue lIMits. Tests
shc:.d be conducted on a quite large base with respect to the number

cycles. With the selection of the base of tests we usually consider

*.hat for steel samples the base can bt set somewhat greater than 10

-'y'les (for example 2 x 10T cycles) and for Duralumin samples,
- )-what larger than ? 107 cycles (frequently a base of 5 x 107

Zycles Is taken).

The probablilty c•i the fact that the fatigue limit is higher

than the assigned .evel of varying stresses Is ietermlnel as a ratio

of numbers of samples which underwent tests in the ass&gned base

without destructIon of 4 to the total number of n saples tested

In this level and -e smaller In 3tres3es.



The thus obtained distzibution of fatigue limits can coincide

with the normal law only on the small section corresponding to mean 19
values of probability (Fig. 1.77). At small probabilities the

distribution of fatigue limits deviates from the normal law and has

a certain threshold of sensitivity o. At large probabilities,

starting from some stresses ep,, all samples are destroyed and do not

undergo the assigned base of tests.

Fig. 1.77.

* - __--•s. * -•"IAl
95 - - I , =

N- - - 2 - -~- .

* ~I I___,

1. 4S ~ 4 4# fe
Fig. 1.77. Distribution of fatigue limits.

The distribution of fatigue limits with mean values of the

probability of destruction is best represented with the help of the

logarithmically normal law of distribution. it can be used for the

determination of minimum values of fatigue limits.

Available results of tests of samples of the blade show tiat

fxr thI3 law there can be accepted values Sig.,. equal appruximately
to

where Sia,, Is the root-mean-3quarc dev'.t!on :n tne dsi;ributIor, ofr

logarithms or fatigue iltRits.



1I l i;ipc,.1bLe to propose a sufficiently reliable method F

for determination f f . Therefore, only an especially formal

method can be recommended, which, however, in practice gives quite

Cood results. One can assume that the minimum fatigue limit coincides

with value a., which corresponds to 5% of the probability and

logarithmically normal law of distribution of fatigue limits. j
If one were to take such an approach, then for a refinement of 4

values a. there can be used the method founded on the carrying out ,I

PIC ratigue tests for two levels of varying stresses close in amplitude.

The test samples, which should not be less than 15-20, are divided
Into two groups.

The first group is tested during maximum varying stresses, which

supposedly do not exceed the minimum fatigue limit, and therefore it

1:; desirable that not one of them be destroyed at the number cycles

corresponding to the selected base of tests. Results of tests of

this group serve as confirmation of the fact that the minimum

fatigue limit can Indeed correspond to their level of tests.

The second group of samples is tested at greater varying stresves

In sict a way that some part of them is destroyed, not operating

tr,rugh an established number of cycles. Determining the probability

of the fact that the fatigue limit is lower than the amplitude of

ttc second level of tests and assigning some value of Sg,. we calculate

the Value a corresponding to the probability of 5%. If data of test3

Qi" the rirst group do not contradict this result, then the thus

obtained value a,% can be accepted for the minimum fatigue limit. #A.

:ometimes for ureater reliability we consider that the minimu.m

firtri'e limit corresponds to smaller values of probability, let us

:;-,y he probbblilty It is apparently Inexpedient to take even

lower vilucs or th13 probability.

it sI necessary to note that in many cases for the characteristic

-ýr ratigue limit there Is used the conditional concept which would

give bven pOssltA t2 call the given fatigue llmlt.
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The given fatigue limit is determined by conversion of results

of tests by formula (11.3) to the conditional base ta-,zn usually

equal to N68, 1 l7 cycles for steel a::d N6 ., = 2 x 107 cycles for

Duralumin:

where o. is the amplitude of varying stresses during the tests;

N - number of cycles up to destruction corresponding to the probabil-
p

ity of destruction equal to P; m - exponent of Wbhler curve, it is

usually taken that m = 6.

If one were to take Np which corresponds to the probability

of destruction, equal to 5%, then value oa.. gives the tentative concept

of the value of minimum fatigue limit. Frequently for the character-

istic of fatigue strength, instead of p there is taken the minimum
p

value of the number cycles up to destruction of the construction

Nmin. It must be stressed that the given fatigue limit, no matter

how it is determined, does not correspond to the concept of fatigue

limit in the sense in which it was used above in this paragraph.

Important also is the fact that the distribution of the given

fatigue limits has a root-mean-square deviation equal to

SIC' ,

which is almost always larger than value Sigw..

14. Advantages and Deficiencies of Different Approaches
in the Determination of Necessary Safety Margins and

the Approximate Evaluation of The~ir Accuracy

The simplest approach, as was already shown above (see No. 7),

should be considered the calculation of service life with the use

of coefficients n and n0 accepted on the basiz of practical

experience of the assignment of service lire. Tiese coefficients

%re checked on a large number of helicopters, and many hundreds c

units successfully produced the service life thu:, eztablished. It,

.In neccssary, however, to corizider the fact t.hat ;r& rAlicatisr -,"
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coefficienits nand Othus taken Is confirmed by practice only

in combination witn a definite method of calculating service life,

which differs, in particular, by the following assumptions:

1. The fatigue limit does not exist and the W6hler curve is

described by formula (11.21). Coefficients c and ei are respectively

taken equal to unity.

2. In each condition of flight the amplitude of stresses ir

considered equal to the maximum measured value of it in this condi t ion.

However, such an approach to the calculation of service life has

considerable deficiencies:

I. In the determination of service life there is not considered

a distinction in the scattering of characteristics of service life,

which can appear unequal for units of various construction distin-

guished furthermore, by the application of different materials and

different technology of manufacture. Not considered also is the

value of scattering of stresses acting in different copies of the

construction.

2. The rejection of the concept of fatigue limit and the use

in calculation of only maximum amplitudes of stresses acting in each

flight condition lead to incorrect concepts on the portion of

defectibility introduced by different conditions of flight.

Therefore, the tendency to use more improved nethods with the

attracting of basic positions of the theory of probability is quit?

regular. One of the possible variants of such an approach is given

in Nos. 8, 10 and 11.

It should be noted that in the form in which this method is

expounded here, it gives quite satisfactory values of service lives

rather ,lose to those which are obtained by the preceding method.

It is true that in values of safety factors a certain redistribution

occurs. The margin nN appears considerably large but then the
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reserve n 0 is decreased. Furthermore, in the calculation there should

be used the concept of minimum fatigue limit; otherwise service lives

appear understated.

In the use of such a method there is frequently doubt in the
I

application of so great probabilities of destruction equal to ! and

even greater. Actually, this means that one unit in a thousand

certainly should be destroyed during service life. Therefore, here

one should once again stress that the shown values of probabilities

are purely conditional values which correspond to the normal law of

distribution of service life. In reality, in the region of small

values of the probability of destruction, this law deviates from the

normal, and in characteristics of service life the threshold of

sensitivity iLs observed. Its values lie in the region of probabilities
I

equal approximately to - or somewhat differing from this value.

Consequently, assignment of the conditional probability Y- in reality

is equivalent to the requirement of a very small or even zero prob-

ability. Therefore, it is impossible tc agree with those authors who

consider it possible to present a requirement on providing a

probability of the order of 10-6 or even 10-7 with the use of the

normal law of distribution of service life. Such requirements do

not have sufficient bases.

For each one who studies the above-stated method there is

usually also objections in the possibility of rejecting the

refinement of values of root-mean-square deviations LIgN obtained by

experiment with respect to the usually quite high values of

confidence probability accepted in practice of the application of

methods of the probability theory. If one were to accomplish this

refinement, then in the calculation it would be necessary to use
value SigA, increased in q times (see No. 9), which would lead

to an increase in the required margin nN and, accordingly, to the

lowering of service life.

Besides those considerations which were already given previou zL

(see No. 9), here one should note that in the proposed method Qf.

calculation there ex1sts another Inaccuracy. In."teard of equivalent

stresses acting in different conditions (if flignt, usually their
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ma.0l mtIj.n Iops •,rf takern, which lead, t' -n .Laing of the tervice

life. These two inaccuracies mutually compensate one another, and a

rejection of one of them should certainly be accompanied by a rejection I

of the other. In this case values of service lives obtained by

calculation essentially will not be changed.

There are no doubts that in the course of time with the

appearance of new experimental daq in the method of calculation of

s.ervice life it will appear necessary to introduce more substantial

refinements. Operational experience of helicopters and the ever

larger number of results of dynamic tebts will also probably revel

such a necessity.

15. Requirements for Strength of the Blade
in the Selection of Its Design

The helicopter blade operates in conditions very difficult for

its strength. During the service life~it undergoes very great constant

and live loads. This peculiarity of conditions of blade operation

has extraordinarily stringent requirements on its design and, first

of all, fatigue strength of its basic supporting member to the

iongeron. Therefore, the blade spar should be made only from materials

possessing very high characteristics of fatigue strength.

The most widespread at present are constructions of the blade

with spars in the form of a steel tube and pressed Duralumin spar.

Very good results can be expected with the manufacture of spars

from different synthetic materials. Constructions of blades with a

fiberglass spar are known. However, sufficiently serious operational

experience of such blades is still not available. Therefore, we will

not stop and dwell on their strength.

The most important requirement for blades with steel and

Puralumin spars appears to be the requirement of maximum elimination

of some concentrators of stresses lowering their fatigue strength.

In the construction of blades application of bolt and rivet fittings

is impermissible. The frame of blade is fitted to the spar only

with the help of adhesive connections.
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The application of fittings with large concentrators of

stresses is allowed only on sections with small varying stresses, fcr

example, the shanks of the blade near hinges of the hub. Here,

in spite of the small varying stresses, the section of the longeron

in the region of the shank joint must be increased 3-4 times. Only

a very great lowering of varying stresses permits using fittings with

concentrators.

Small technological defects, which are also concentrators of

stresses sharply lower the fatigue strength. Therefore, in the

manufacture of spars of blades there is used only such technology which

leads to total elemination of all visible defects of the spar.

To exclude the possibilities of the passing of some defects the

spars should pass careful control with the application of all

contemporary means of such control.

Let us consider more specifically the strength properties of

blades with steel and Duralumin spars.

16. Strength of the Blade with a Steel Tubular Spar

For the spar of the blade there is usually used a cold-rolled

tube of high-alloy steel of the type 30KhGSA or 40KhNMA, hardened

and tempered to a strength b = 110-130 kG/mm2

After hot and cold rolling, embossing and hardening the external

and internal surfaces of the tube are polished. Recently an

obligatory operation after polishing was also work hardening of the

spars.

A thus made spar without cold hardening can have a minimum fati,YUf-
2strength of the order of a = 12-13 kG/mm2 with an average

wmin
2component of cycle am M 20-25 kG/mm2. However, its strength can

decrease considerably, if in the manufacture of the spar there will
be allowed different technological defects and misnalculations.
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1~ ,:&ct urigcicu6 :',, them can be Lhe foilowing.

Tears and laps. In the process of hot rolling plastic deforma-

t.ons can be accompanied by a partial break in the material. This
occurs usually with a decrease in the temperature of rolled blank,

'and also as a result of the contamination of the steel by nonmetel2.c

rd gas pockets, formation of seams, high porosity, liquation and

other metallurgic defects. The breaks forming are directed into the

VDdy of the blank at an acute angle, and therefore the trace of tear
','rging to the surface is often poorly seen.

With further cold rolling the degree of deformation is increased
and the tear is rolled into the wall of the tube at an ever smaller
angle to its surface. Usually there is observed a series of such
tears. Their dimensions are small: depth, 0.1-1.0 mm, and width

-i0 amm.

Laps appear with cold rolling on the external surface. They
rccur due to the great unevenness of the external surface after hot

rolling. Subsequent plastic cold deformation leads to a nonuniform

motion of the material at which there can be formed defects called
laps. Laps can also be formed as a result of the flow of metal into
the clearance between gauges of rollers and the appearance of burr

and lap of it with subsequent deformation.

Both defects can be revealed with magnetic control on the
polished surface. Figure 1.78 shows the characteristic tears on the
internal surface of a spar. The photograph was made with magnetic
control. The fatigue limit of the tube with tears and laps drops aown

2too = 5-7 kG/mmWmin

SFig. 1.78. Tears on the
! internal surface of a steel

S.spa r .

"I-J GRAP NOTSCIBLE
* 4f. 

t. 

'A
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"Fine" on the internal surface. After hot rolling on the surface

of the tube there remains a layer of scale which has gre~ter hardness

than that of metal. After each transition with cold rnlling annealing

is produced. Although annealing is produced in an inert atmosphere,

nonetheless on the surface Thin films of scale appear owing to the

oxygen of the metal. If the scale is not completely eliminated, then

with rolling it is crushed and enters into the metal, forming a

so-called "fine." On the open external surface of the spar tube the

"fine" is easily removed by machining. On the internal surface of

the tube, the treatment of which is more complex and possible only

by means of ribbon grinding or hydropolishing, the "fine" cannot

be completely eliminated. Therefore, the small but sharp notches,

with dimensions not exceeding 0.1-0.05 mm, and difficult to distinguish

with inspection, can remain even after grinding. Fatigue strength
2of the surface descends to a m 10-12 kG/mmWmn

A "fine" can be removed by boring and grinding of the surface

of blank up to complete removal of the scale after hot rolling and

by sand chipping after anneallng before each transition of cold

rolling.

For complete removal of tears, laps, "fines" and other surface

defects, longitudinal grinding of the external and internal surface

of the tube is Very effective after the final cold rolling prior to

its profiling (embossing).

Lowering of fatigue strength from tube dressing. After hardening

and tempering the spar tubes appear somewhat distorted. Therefore,

before assembly of the tube blade it is frequently necessary to

V• straighten it. In the material of the tube residual stresses appear.

Usually with correction there are introduced limiters, which do not

allow increasing the residual stresses of extension in the tube of
more 10-20 kG/mm2 . These stresses increase the average component of

the cycle and lead to a decrease in fatigue limit of 20-25%. Even

greater losses in strength can occur with incorrect dressing. In

order to exclude the necessity of correction there should be tempering 4
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of the hardened tubes in special attachments, which remove deformations

"appearing in the process of hardening.

In evaluating fatigue strength of spars special attention

should be payed to the possibility of the appearance of frictional

corrosion. Frictional corrosion appears an almost obligatory process

of cyclical load of blades and leads to considerable lowering of

fatigue strength. It appears usually in places of contact with

the spar parts attached to it, if among these parts and the spar

there are relative microshifts. Usual place of the appearance of

frictional corrosion on a steel spar are places of setting of collars

for attachment of the frame of the blade.

Figure 1.79 gives a photography of a destroyed spar. The

beginning of the fatigue crack coincides with the spot of frictional

corrosion.

".. Fig. 1.79. Place of

, .the beginning of
fatigue failure from

S-. , frictional corrosion.

GRAPHIC NOT
REPRODUCIBLE

A sharp Increase in dynamic strength of steel spars occurs in

the use of mechanical hardening of their surface usually called cold

hairdening.

At present cold hardening of spars have become almost an

obligatory operation in the manufacture of blades. In helicopter

con..tructlon the most widespread are three methods of mechanical

hardening: the dynamic method of M. I. Kuz'min, vibration shock

'method of S. V. "-hagov and the shot-blasting method. The 3election

of some method uuually depends on peculiarities of the hardenab'e
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structural part and industrial possibilities. In those cases when

for hardening of the external surface of a spar there is used the

dynamic method, its internal surface is strengthened by the shot-

blasting method. With the creation of complex installations for the

vibration shock method one should usually consider that it is

expedient to treat by this method simultaneously both the external

and internal surface of the spar.

An increase in fatigue strength is observed in the application

of all methods of cold hardening. The best method giving the stablest

results with treatment of the external surface of the steel spar

should be considered the dynamic method of M. I. Kuz'min.

The increase in fatigue strength from cold hardening is explained

basically by two causes. The external surface of a hardenable

component most sensitive in the beginning of fatigue failure becomes,

first, smoother (Fig. 1.80), and secondly, in it are created residual

stresses of compression, which in accordance with the Hay diagram

(see Pig. 1.63) leads to an increaite in fatigue strength of surface

layer of the component.

SFig. 1.80. Profilegram of
the surface of a spar pressed

, •from aluminum alloy after

a) machining (a) and after cold
hardening (b).

b)

Figure 1.81 shows the distribution of Internal stresses in the

material of a steel spar obtained as a result of dynamic cold haz ienliTý

and blowolr by metallic sand. Bloworf by metallic sand gives almost

the :;imo rvz•ti¶:al strz:ises as thaft of the shot-blasting method cr

cold h:ardenrine.
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* kG/mm
2

J-l 91 Fig. 1.81. Distribution ofinternal stresses from cold
!i hardening with respect to

I I the thickness of the wall
! !of a steel tubular spar:

- -cold hardening accord-
ing to the method of M. I.

- - Kuz'min; ----- triple blow-
L - { I off by metallic sand.

Especially great is the increase in fatigue strength from

ccli harder.ing in the presence of frictional corrosion. Apparently,

c¢mpression stresses prevent propagation of corrosion In depth of

the material. Figure 1.82 gives results of tests of steel spars

with riveted and unriveted 3urfaces, operating under conditions of

the appearance of frictional corrosion.

U
I t 111b Iiif il 1

V, to J? A1,l ,, S .14 4l • G/ ;jn2

Fig. 1.82. Distribution of given fatigue
limits of steel tubular spars under the
int'luence or frictional corrosion:
a) surface is polished and sand chipped;
b) surface is polished and sand chipped;
three times by metallic sand; c) surface
is riveted according to the method of
SM.I. Kuz'min.

The fatigue strength of steel apar with the application jr
rmechanica: harlen'ng can be Increased 1.5-2 times ttil In the presence

of fricticn'.. corroslin, 2.5-3 tl.nez.
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2 2
28-30 kG/mm with am w 20-25 kG/mm2. Therefore, cold hardening

appeared the most active means of increasing the reliability and
service life of blades.

17. Strength of a Blade with a Duralumin Spar

The most important problem in the creation of blades of such
constructinn is the providing of st'fficiently high fatigue strength

of the spar. Attachment of frame to the spar is accomplished, as a

rule, by glue and does not create in the spar any substantial

concentrators of stresses. Concentrations of stresses in tho spar

appear basically from small defects allowed In its manufacture.

The basic role in decreasing fatigue strength of the spar is

played by the state of its surface. The milled and sand chipped spar

from alloy AVT-l, without treatment of the internal surface, can

have a fatigue limit of the order of a Wmn 3.84.2 kG/mm with the

2average component of the cycle am 6 kG/mm

The fatigue strength of the spar can descend as a result of
defects appearing In the process of pressing of the spar and during

its machining.

Frequently the Internal channel of the spar Is not treated after
pressing. Therefore, on the internal surface defects of the procesz
of pressing can remain: longitudinal scratches, gas holes (Fig. 1.8')
and, finally, a macrocrystalline ferrule. These defects can lower
the fatigue strength down to values aWmin * 2.5-3.0 kG/mm2 (0 -

6 KGI'mm'). Therefore. the Internal surface cf sr~rs a , tl~ade3 w1ith

relatively high ztresses shouid be certainly a-bJected to nachininr

arter pressing.



7 GRAPHIC NOT

REPRDbUCIBLE o
Fig. 1.83 Mi, ,setin1o

-,~. the section of spar web
_. , through the gas hole formed

. •in the process of pressing.

f. L- A

Considerable lowering of fatigue strength occurs also from

nonmetallic and gas inclusions. To eliminate the inclusions there

should be used special technology of smelting (sediment of metal,

overflow of it from definite levels, filtration through screen

filters, etc.). The most qualitative metal is obtained with melt

in electrical induction furnaces with the holding of smelted

metal in electrtCal heatable settling tanks (mixers).

To eliminate -ne possibility of the pasXnv -f nonmetallic and

gas inclusions each spar should obligator, pass the checking with

the help of ultrasonics.

Of no less importance is the exclusion of the possibility of

corrosional damage of pressed spar in the process of production (Just

as under conditions of operation). Experience shows that external

anj Intercrystalline corrosion with a dopth to 0.1-0.15 min can sharply

1ewer the fatigue limit. Therefore, for spars of blades there should

be selected a metal with high corrosion resistance, but In production

special measures with respect to the protection of spars from

corrosion are accepted with the application of galvdnic platings

after Intermediate operations of its treatment Ifor example, anodizing).
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A sharp increase in fatigi.-e Strength of spar,, from aluminum

alloys can be attained by the appllicatir'n of mechanical hardening

of' the spars. Figure 1.84 give-- re~vlts of fatigue tests of strength-

ened spars in comparison unstrengt~hened ones. Here the~ Uistrlbution

Of` internal stresses from cold hardening is shown. Fatigue strength

of strerigthenei spars can be reduced to values 1 5.5-6.0 k3/mm2

(am =6.0 kG/nun2).

LTkG/M 2

6C -

40 :7-

a) b

Fig. 1.84. Distribution of given
fatigue strengths 'ýto base of 10~
cycles) of pressed spars from alloy
A"!T-l with polished (circles) and
rivete_ý (small crosses) surfaces
(a), and the distribution of compres.-
slon stresses with respect to thick-
-ness of the -. web from cold harden~-
ing by ,;he v-uration shock met'hod of
S. V, Ochagov (b).

It is neces~ary to pay attention to the fact, that the strenrr;n

of riveted Duralumin spars can be sharply d-ec-2eased, i`f with gluingF

of the frame the spa-' will be heated to a temperature of E-1out 2000

4 mc more. Therefore, the temperature with g-luing should be thoru~gh-l~y

-hecked.

1?. Influeýncc :)f Conditions of Operatlion

on Fatigue Strength of Spars

The ýibove-mentioned method of determination of fatigue strenrlJh

and service life can be used o~ily in the case when in the prr ce;Ls of

operation the conrstructioni does not undergo any mechanical and corro-

5 iu!al d 1reOre . %)thernouiSC thc.-p to (ie' erririint ion of ~rIG

I-Iftj s;houi tIA L ccc let eiy mod i fieu~ andi reduý!(,d to) the _tu'J 5 ol' 1Ac'

inf c.une of th e L du mg e s. Y,'o.:! tflte!ýe 0ti htne aeý3igns o



all blades should be divided into two types: blades with

shielded and open spar.

In the construction of a blade based on a steel tube the spar

usually is completely shielded by the frame and cannot be mechanically

damaged in operation. The greatest danger for such a construction

is corrosion, and therefore the period of service of such blades is

determined by the quality of anticorrosive coverings of the spar.

In constructions of blades for which the spar forms the contour

of the nose part of the profile, special attention must be given to

its protection from mechanical damages. If this protection is weak,

then the service life sharply drops and appears dependent on the

magnitude of damages inflicted to the spar. Usually in these cases

there is established a permissible magnitude of damages controlled

with preflight inspection of blades.

To estimate the influence of damages of the spar in the operation

there are usually conducted dynamic tests of samples cut from blades,

which spent a definite number of hours in different conditions of

operation, and there is estimated the possibility of preservation of

service life set by it with respect to conditions of strength of

samples unimpaired in operation. With substantial lowering of fatigue

strength measures for improvement of shielding of the spar are

started.

Footnotes

'Here and further in values of kinetic and potential energy of
oscillations, for ;Amplicity the constant coefficient 1/2 is omitted.

2Thi7 is correct with an accuracy to the constant factor equal
to 1/2, which in expressions(3.3), (3.4) and (3.7) is omitted.

3Such a method for calculation of the blade of the helicopter
was first used by R. M. Zanozina.

4 An analogous approach in reference to the calculation of aircraft
constructions was proposed by V. L. Raykher.
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CHAPTER II

VIBRATIONS OF THE HELICOPTER

§ 1. Forces Creating Vibrations of the Helicopter

1. Frequencies of Excitation

Since with the forward flight of a helicopter blades of the

rotor, found under the action of aerodynamic forces variable in time

accomplish vibrations and both in the plane of thrust of the rotor

and in the plane of rotation, then forces of reaction acting on the

blade in hinges of the hub are also variable with time. Accordingly,

on the hub of the rotor there act variable force equal in magnitude

to these forces of reaction.

Variable force, acting on the hub of the rotor on the

side of the vibrating blades, can be assigned in the form of three

forces X(t), Y(t), Z(t) and three moments with respect to coordinate

axes Mx (t), My (t), M z(t) (Fig. 2.1). If for a helicopter there is a

Fig. 2.1. Forcez arid
moments acting on the
helicopter fr'om the
rotor.

tail (antitorque) rotor, then on thý side of blades of this rotor

acting on the helicopter are an_1- 3orces veriabio in tIme of the •anc:
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origin, which are also convenient to assign in the form of three

variable forces and three moments.

Variable forces acting on the helicopter on the side of vibrating

blades of the rotors are the main source of vibrations of the fuselage.

Vibrations of fuselage can also be caused directly by aerodynamic

forces acting on the fuselage on the side of the pulsating flow of

air repulsed by the rotor. Thus, the flow rate repulsed by the rotor

in the region of the fuselage is increased when any of the blades of

the rotor passes above the fuselage. However, numerous calculations

and measurements of pulsations of pressure on the fuselage show that

these variable aerodynamic forces considerably less than the variable

forces acting on the hub of the rotor on the side of the vibrating

blades. For example, for the Mi-4 helicopter the variable force

acting on the fuselage from pulsations of flow repulsed by the

rotor in the most unfavorable conditions of flight (deceleration

before landing) consists of a value of the order of ±10-15 kG, while

variable forces acting on the rotor hub in different conditions of

flight have the order of ±(200-600) kG. Therefore, during the

analysis of vibrations of the helicopter it follows, first of all,

to be interested in the variable forces applied to the rotor hub.

These forces can, in general, be determined as dynamic reactions

with forced oscillations of blades in flight the methods of

calculation of which are discussed in Chapter I. Here one should

stipulate that variable forces with such calculation are determined

very inaccurately. The reason for this is that during the calculation

of vibrations of the blade satisfactorily only the lowest harmonics

of load.3 are determined, and errors of calculation increase with a

growth in the number of harmcnics. Meanwhile, as will be shown

below, for the calculation of vibrations a decisive importance

L; the high harmonics of excitation. In this consists the cause

of the fact that all methods of analysis of vibrations expounded in

this chapter bear, mainly, a qualitative character.

An accurato calculation of vibrations with help of methods

expounded in this chapter is possible only in certain special cases.
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The most important of these r'ases is the designing of a new fuselage

of the helicopter or even a helicopter of another configuration

(for example, transverse or longitudinal instead of single-rotor),

on which there will be installed earlier used rotors for which

variable forces were determined by experimental means (for example,

measurement of stresses in the rotor shaft or in a subreduction frame).

It is necessary to note that qualitative methods of evaluating

vibrations permit making many highly useful conclusions in the

designing of helicopters and with their finishing during flight tests.

Thus, for example, it is possible to judge the influence on vibration

of the form of a resonance diagram of the blade and resonance diagram

of the fuselage and to determine the thus directed changes of design

parameters for decreasing vibrations and sometimes estimate the degree

of decrease in vibrations.

In order to make certain general conclusions about the character

of the change (with time) of forces X(t), Y(t) and Z(t) and moments

iix (t), My (t) and I z(t), let us turn to Fig. 2.2, on which thiere is

depicted a five-blade rotor rotating evenly at angular velocity w in

3 Fig. 2.2. Rotor rotating in
an incident air flow.

;j flow of air incident on it at constant speed V. Let us assume that

at certain instant t the blades of the rotor occupy a position shown

on the figure, andi let us assume that at this instant force X has a

certain value X(t). in a time interval equal to 1/5 of the time of

a complete rotor revolution the rotor will turn 1/5 of a full

revolution. Blade I will occupy the position of blade 2, blade 2 -

position of blade 3, etc. Tt Is clear that in this new pozItion,
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provided all blades of the rotor are absolutely identical, the

entire streamline flow, and also, consequently, all forces acting

on the blade, will be precisely the same as at the first instant t.

In particular, the value of force X will be the same. It is obvious

that with a subsequent turn of the rotor 1/5 of the revolution the

situation will again be repeated. Consequently, function X(t) is

a periodic function of time with the period equal to 1/5 of the time

of a full revolution of the rotor. Figure 2.3 shows one of the

possible forms of the graph of dependence X = X(t).

/XXMe Fig. 2.3. Possible

form of the depen-
dence of longitudi-
nal force with time.

L-cr.o revolution of "otor-

Thus force X will change with time at an angular frequency of

5w, while variable forces, acting on the blade of the rotor, change

with the frequency w (once per revolution of the rotor).

Function X(t), as any periodic function, can be expanded in

Fourier series. With this the lowest harmonic in expansion will

be the harmonic 5w, so that the expansion will have the form

X (1)= X0+X 0 cos 5")1+X. sill 54++X,, cos lOwtd-X+.sil 04+

+X cos 15W +Xsflnsi 15w+....

that is, the main frequency p = 5w, multiple frequencies 2p = 10w,

3p = 15w, 4p = 20w, etc.

Obviously, precisely the same conclusion can be made with

vespect to functlons Y(t), Z(t), M (t), M (t) and M (t).
X y

In general, for a rotor with the number of blades equal to z,

all forces and moments acting on the helicopter periodically change

in time with a frequency of the so-called basic harmonic of the

rotor p = zw. The expansion of these forces and moments in Fourier

series has the form
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X (Oa=Xo+ X. cos pi+X, sin p1+ X.. cos 2pi +
+Xhs'n2pt-+Xd,.cos3pt+Xb.sln3pP-+...; I

M,,()--M..+M.,cosp,+Mz.sInpin-M p COSP+ 1 (1.1) +

wheresn2# M-9 cos3pi+Mz sin3pt+. . .
where

'p*zin. (1.2)

Thus on a helicopter with the number of blades z the excitation

of vibrations i, possible only with frequencies zw, 2zw, 3zw, etc.

Let us note that this conclusion is maintained in the case when

examining pulsating aerodynamic forces acting directly on the

fuselage on the side of flow repulsed by the rotor.

If on the helicopter there is also a tail (antitorque) rotor

having z•, blades and revolving at an angular velocity wp.,. then on

the fuselage there will also act exciting forces containing harmonics

pp.*-Zp.,(p.a. 2p..,, 3pp., , etc.

All these conclusions are correct only under the condition that

the olades oP the rotor are ideally identical. Tf this condition is

not carried out, then low frequencies of excitation w, 2w, 3w, etc.,

can appear. However, numerous experimental data - results of the

measurement of vibrations and stresses in elements of construction

of fuselages of different helicopters - show that the content of the

lowest harmonics is always so insignificant that they should be

disregarded both during the. analysis of vibrations of the helicopter

and in evaluating the strength of elements of construction of the

fuselage. This indicates the fact that the existing level of

production and requirements presented to the construction of blades

provide quite small deviations in individua, qualities of separate

blades.

Lct u:s noteý t.ii•tt all tne above-men-tone1 rea::oning crljlrd h,.ave

also been repeated by examining variable force ;vi'ting on the dis/.

the cyýýlio pitch control on the sid,? of bladc• (f tie rototr. nr

spite of the fact that the rriý,Ti:it of force• :,:...-rev c:. "x blade

relative to the ax ,t L . n,-e (n, na-cd momen.,,t) •". . .. "
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basic frequency zw. Therefore, variable forces, acting in control
circuits by collective and cyclical propeller pitch, change with

the basic frequency p = zw, and also contain harmonics 2p, 3P, 4p,

etc. The lowest harmonics of excitation can appear also only in the

case of deviations in individual properties of separable blades.

2. Dependence of the Spectrum Exciting Forces on the

Harmonic Composition of Oscillations of the Blade

Thus we clarified on the basis of the most general considerations

that variable forces and moments X, Y, Z, MI, My, and Mz, which act

on the rotor hub on the side of the vibrating blades, change in time

with the frequency of the basic harmonic zw of the rotor and contain

also harmonics 2zw, 3zw, etc., multiple of it, while blades of the

rotor and, consequently, forces acting on the hub on the side of each

blade, accomplish oscillations with a main frequency W and contain

multiple harmonic 2w, 3w, 4w, etc., among which there are harmonics

zw, 2zw, etc. This suggests the idea that certain harmonic components

of variable forces, applied to the rotor on the side of each blade,

are balanced on the housing of the hub, and some are summed up. Let

us show that this is indeed true. Let us turn to Fig. 2.4, on

which schematically depicted is the housing of the hub with hinged

blades attached to it.

YA
Fig. 2.4. Diagram of
forces applied to
rotor hub from the#, b lade

The rorce app]ld to the housing of the hub on the side of the

k-th blade can be separated into three components: Ni, directed over

the radius of the blade, Pk' parallel to the axis of the shaft of the

rotor, arnd Qk' per'peridicular to the first two.
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Each of these components is a periodic function of time with

basic frequency w. It is obvious that in a steady state of flight

functions Nk(t), Pk(t) and. Qk(t) are identical, for all blades but

shift in phase for each blade relative to the adjacent one by a
certain value corresponding to the time of turn of the rotor at angle

2w/z. This gives the basis to write expansions of these functions in

'Fourier series in the form

P.--PG+P., cos (-t+ .J+Pb ,sin + (+ .+ (1.3)

P..cos 2(,+n?,•+ P,. sin 2 (,i+?,)+...- (1.3)

where

2K= -- k (k 1, 2, 3 ... z),

or shorter

Ps=PO+ V IP. Cosfn(wt+w,)+P, sln,(,t+•)1. (n (4)

Analogously we have

Qk-=Q0 + [ ,,Cos. nt+ + Q,,sin n (•t + tp,)1](1.;

Qb,,Q+~ Q Ncosin (wi+ ,)+N,,. sin, n (wj+ ?,)l. (1.6 )
a.-I

Let us now state the following problem: knowing values of

coefficients of Fourier series expansion of functions Pk(t), Qk (t)

and Nk(t), or, in other words, knowing the harmonic components of

forces Pk' Qk' and 'lk' to find variable forces X, Y, and Z and

moments M , M and M_ (more accurately harmonic components) in order

to trace the dependence of force.; creating vibrations on different

harmonic component forces acting on the hub on the side of a Separate

blade.

Summing the forces acting on the hub on the side of each blade,

we obtain the following formulas:
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* ,

Ad (1.7)

Xmv5- iQhsnA; ~ gJ (19

5- (1.8)
Zn- Z [Qacos,,a+Nssnst' 51;

a, - 19

- Phsin,.,
h-S (1.10)

M.--I Phh Cos.•

where is the azimuthal angle of the k-th blade:

A.-• ,- l- ; (1i.11i)ka
2ig

ih -distance from the axis of rotation to the combined horizontal

flapping and vertical hinges.

If the hub has nonintegrated hinges, then in formula (1.9) it

is necessary to take h-l.m, and in formulas (1.10), h-lr...

Let us examine in detail expression (1.7) for determination of

variable force Y. Substituting into it expression (1.3) for force

Pk we arrive at the necessity of calculation of sums of the form

ZCosA(44'f-) and 2sInn(W1+'p1 ),

where n consists of integers (n 1 1, 2, 3, ... ).

Let us show that trigonometric sums of such a form possess the

following remarkable property: at any n not multiple to the number

of blades z both these sums are equal to zero at any t; at n multiple

to z, i.e., if n = sz (s 1 1, 2, 3, ... ), then
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- cos Sz (4.j + •,) z cos (Sz,.t);

• • V (1.12)• • ~~sin sz (d •-? -- z s In (Sz-0.

Thus, for example, for a rotor with five blades (z = 5)

5 5

SCos t W.y Q = ~Cos (w+?).-

Further

$ S

= Ecos3(.d+pt) E cos4(wt+Q)=o

-I

but

E COS 10(of+ n?J)-,SCOS(IOwt), etc.

It is possible to prove correctness of formulas (1.12) by

S~different methods. Let us use for this the very convenient method

propo-,ed by H. A. Milkheyev and founded on the application of the

well-known Euler formula, which expresses the connection between

-trigonometric functions and exponential functions with the imaginary

argument. Let us prove the correctness of only the first of formulas3

(1.12). We have

O S 5

2 o6a+)~cs(+)
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Therefore

SCOSfl n'k
h-2

=1- i ,. T+c!a

- -I IIL

Let us examine separately the sum

. r.

'a~i

This geometric progression with denominator e .

Using the well-known formula for the sum of the geometric

progression, we obtain

,'" '= " " - 5I"t)

Since n is an integer, then the numerator of this expression i:1

always eaual to zero, because e -I (n = 1, 2, 3, .

The denominator of this expression can turn into zero only if

(n/z) is an integer, I.e., if n is a multiple of the number of blade-,

z. Thus, the examined sum is equal to zero at any n, with the

exception of n multiples to the number z. in this last naze the valn..'

of the sum becomes indefinite (0/0). This uncertainty can be revcaWc.

with the help of the well-known 2'%pital rule. Let us anssme that r,

changes continuously, approaching to a certain value .'z (s- any into-

ger; s = 1, 2, 3, ... ). Differentiating the numerator anW rienominatar

with respect to n and passing to the limit n -z, we have

R -- l=m e '11m -- Z.

£ -91 i1m 1 2.i lts c l

i _t is also possible to show accurately th-t
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amI °. if n is riot a multiple of z;

{:. .if n = sz, where s = 1, 2, 3,

As a result we arrive at the conclusion that if n is not a

multiple of z, then

scm,,MU-O.

If, however, n is a multiple of z (n = sz; s = 1, 2, 3, ... ),

then

E osn•-L (0(efi-+ e"s9= z cos n•=z Ccos (szwo.

Analogously, it is possible to show the correctness of the

second of formulas (1.12).

The indicated property of trigonometric sums is conveniently

recorded in the form

Cos m4X" . O, if n is not a multiple of z;
z cos nwt, if n,- sz; s - 1, 2, 3,

a (1.13)
sm 0, if n is not a multiple of z;

z sin nwt, if n = sz; s = 1, 2, 3,

Let us return now to the expression for force Y from formula

(1.7), into which the value of force Pk from formula (1.4) is

substituted

- .IP.+P.. cosIA+P.,s l,, +... cos 2 ,+

+P,.sIfnl2 ý+...+ P.,cosi' +P+,. ,S, nD+. .i

On the basis of the established property of trigonometric sums

(1.13) it is possible to affirm that with the summation of different

harmonies, in this expression all harmonics not multiple. to the

number of blades z will vanish. Harmonics multiple of z are
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1 o J, 11 ace i ith forrufa: (1. 13)m, uo that finally we

w.1. (-b tai n

Y =:Po. zP,,coszwt+zP,,sinzut+zP,48) cos2zed+zP) sin 2zwl+... (i. 14)

Thus all harmonic component forces Pk(t) not multiple to the

iiumber of blades :are balanced on the rotor hub and do not create

vibrations of the fuselage of ýhe helicopter. As a result the

variable force Y changes with time with the basic harmonic p = zw

of thc -'otor and also contains multiple harmonics 2p, 3P, etc. This

comple',,ly confirms the basic conclusion of the preceding point of thi3

rpa2agxz_,h and also gives additional information in this part,

indicating exactly what harmonic component forces Pk are dangerous

from the point of view of vibrations.

Fo.- an illustration let us examine an example. Let us assume that

for a certain rotor there is resonance of the second tone of

oscillations of the blade in the flapping plane with the 5th harmonic

ct' the o'otor (5w). In the resolution of forces Pk for such a rotor

the harmonic component corresponding to the 5th harmonic (P and P )

will be great. 5

If the rotor has five blades the indicated resonance will lead to

great vibrations of the helicopter.

If, however, the rotor has four blade7, this resonance will in

no way manifest itself in vibrations of the helicopter, since

harmonic component forces P corresponding to this resonance will bek
balanced on the hub. As one will see subsequently, considerable

variable moments M and Mz on the hub can appear; however, practicallyx z
vibrations of the helicopter are determined mainly by variable forces

X, Y, and Z. Sometimes we erroneously consider that vibrations of

the helicopter are less, the more the blades of the rotor. However

in t]iis.example it is clear that. in reality such is not so simple,

and in this case, conversely, a decrease in the number of blades leads

to a dccrease of vibrations.



43 "
I G--ei•tOf helicopter Fig. 2.5. Dependence of the

amplitude of vibrations in the
cockpit of a single-rotor heli-
copter on the speed of flight.

0 U og 0S v Ia

Let us consider one more example. Figure 2.5 shows results of

experimental measurements of vibration in the cockpit of a single-rotor

helicopter, which was tested with two rotors using three and

four blades. The rotors had absolutely identical blades and differed

only in hubs. Depicted on the graphs are dependences of amplitude

ay of vertical vibrations in the cockpit on speed of flight V for

both rotors.

As calculations conducted for these rotors showed, the blade oP

the rotor had resonance of the second tone of oscillations in the

flapping plane with the 4th harmonic of the rotor in operating

revolutions. As a result vibrations of a helicopter with a four-blade

rotor in the greater part of the speed range appeared considerably

higher (at V = 40-50 km/h more than three times) than vibrations

of a helicopter with a three-blade rotor. However, at great speed

of flight vibrations of a helicopter with a four-blade rotor appeared

less than that of a helicopter with a three-blade rotor. This is

explained by the fact that at a low speed oi flight there is a large

harmonic component of aerodynamic forces, which corresponds to the

4th harmonic and is conditioned by the great irregularity of the.

field of induced speeds of the rotor at a low speed of flight. With

an increase in speed of flight there occurs a levelling off of the

field of flow rates (see Chapter I, § 8) through the rotor, and the

excitation of oscillations of the blade with respect to the 4th

harmonic decreases accordingly, while the 3rd harmonic decreases with

an increase in speed not so rapidly or even does not decrease at

all. The relatively large value of the 4th harmonic in the field of

302



penot r i r , i~ n Y r o

Let us return now to the determination of other forces and

moment3 having an effect on the helicopter. Formula (1.9) for

moment M is absolutely analogous to formula (1.7).
y

Repeating all reasonings, as in the derivation of formula (1.1 4 )

for force Y, we will obtain the following expression:

M, =zh [Qo + Q,, cos zwt + Q, sin zwt-+

+Q* (24 cos 2zwi + Qt (,) sin 2zWe ... ].' (1.15)

The variable moment M i6 rnangerous tiot only from the point o1'Y
view of vibrations of the helicopter (in § 3, No. 1 it will be

shown that this moment creates only lateral vibrations of the fuselage).

This moment is one of the sources of torsional vibrations in the

tra:.smhssion system of the helicopter.

As can be seen from formula (1.15), the variable part of this

moment is determined solely by harmonic components of force Q't),

which are multiples to the number of blades.

Let us turn further to the first of formulas (1.8). Substituting

into it expressions for Qk(t) and N (t) [formulas (1.5) and (1.6)],

we will obtain

z a

X = . (Qo sin'•,- No cos ý + + IQ,, cos', + Qo, sin '' sin ' -

it-1 k-1

I a- • jNo, cosv+ J b, sin ' cos .- .+ • C,, os..,+

a-i1

"+ Q&. sin n',1 sin Cos n' ,-C N., sin n.l-? Cos -

LL, first term of this •unm i2 equal to zero i., ac'or .... .e

formua.; ýI. 13), since

S • • -r - i..... .. nm~mmqum m er nmmmpmnumlm mllm uumm( a n * immnun||



JQo sn,,-N -co, N =o s sI,0,-n ;€o C, Cos .=o.

h-I b i-I a-,I

For counting the remaining components let us examine the

expression

S1a-I

which constitutes a part of force X conditioned by tht n-th harmonic

of force Q.

I

Here we are encountered with sums of the form Ecosn'•sin•'j and

snln&.,,siln. These sums are also easily calculated with the help of
h-I

formulas (1.13). Really

cOS n-',•sln'•,j== sin (n + 1).•- sin (n -- 1)N

Co (n + Cos (n--]'jh-I h-! a-I

On the basis of formulas (1.13) it is possible to affirm that

these sums will be different from zero only if one of the numbers

(n + 1) or (n - 1) is multiple to the number of blades. Let us

assume that (n + 1) ; sz (s = 1, 2, 3, ... ), and, consequently,

n = sz - 1. Then

Scos a.•k sin, -- s sIn (szW);

In ir, sin coos(szu).

Further, if (n - 1) = sz; n = sz + 1, then

cas ie*sni sin (nooW;
2

,In kinm.--
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?:.;sf , tr the part of

fo:'2 X , n , tJ ntiff fr om -a.] .ronic components of force Q:

X+ =Z iq'* -1 ) 5 ,Q.(5+1 ) z -. (g-.4" Q* (5+n2) cos 2zt+

2 2

Dor the part of force X conditioned by harmonic components of

force N(t), there is analogously obtained expression of the form

X,=Z ief. 1 ) +N,($+1)_cos zt+ N (8, (&+1) sisnzv --

Co •-": + 2 slOl2z•"+... (1.17)

Force X can be determined by formula

X=XQ+ XN.

if the expression for force X(t) is written in the form (1.1),

then there are obtained the following formulas for its harmonic

components:

X41,i N~ - N0 (g.4)+;Me

X0a =--IQ&[. (1) --Q4 (-•+0 - N. (8+,) - Nb (S_1)];

Components corresponding to harmonics multiple of the basic,

Xa2  Xb2, and so on, are obtained from these formulas, if instead of

index z we take, respectively, index 2z, 3z, etc.

Thus the variable part of force X(t) is determined by the

harmonic components of forces Q(t) and N(t) combinational with

rer-pect to the basic harmcnic of the rotor (z - 1; z + 1) or to lts

mult'ple hartnonics (2z - 2; 2z + 1), etc.

Thus, for example, for a rotor with three blades (z = 3) the

basic harmonic of force X (frequency 3ut) will be determined oy the
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2nd and 4th hurmor•ics of forces Q(t) and N(t), the 2nd harmonic ol

force (frequency 6wt) will be determined by the 5th and 7th harmoni(-

of forces Q(t) and N(t) and so on.

Absolutely analogous formulas are obtained for harmonic components

of forces Z(t):

a +N(1.19)
Z'- • [( 5 ÷) + Qb (g._ + N. •.:,i - N.

_,)+N&(,Zi- -NoC1+)];

Just as in formulas (1.18), to obtain multiples of harmonics

Z a 2  Zb , Za and Zb in these formulas instead of index z, it is

necessary to put indices 2z, 3z, etc., respectively.

Analogously expressions for harmonic components of moments

Mx and Mz are obtained from formulas (1.10):

As .!#A [PMsJe • •"'r$(.-) • # (+l)I;1

(1.20)

M m- [ -P,(.÷.- P, .4)l;1

,g. ,A._p •(1.21)

2-

Let us note still the following circumstance, which sometimes

can facilitate the qualitative analysis of vibrations. If the

variable force in the rotor plane (X or Z) or the moment (Mx, mz)

is determined by any one harmonic component of force acting from tht

side of the blade, then as a result there Is obtained a vector cf

constant length, which evenly revolves in the rotor plane :0. awigula.

velocity zw (or szw). The direction of rotation ts 1o.;'t:,1ne,! r,',::i: "

the rotation of the rotor, If this vector Is obtatr,:d I'rom the h~rr,;rai,

component z + 1 (or sz + 1) and in the direction of the rotor rotation,

if this vector is obtained from the harmonic component z - 1 (or

sz-1).
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x- t" " fvee b oafde
ý, 5), a there ixainL- of the moment on the hub

;-ith components M ar,. a, wh-c, are obtained from the harmonic

component (z - 1):

P= Pa, cos 4,ut+ Ph. sin 4w,.

Then (see 1.20 and 1.21)

aMir2 [P. COS 5Q -P., sin 5W;

--- [- P&. s In 5wt- P. cos 5w].

Here, as one can see from these formulas, the vector

constitutes a vector of constant length

"~.;rxi'h evenly revolves in the rotor plane at angular velocity 5w in a

direction coinciding with the direction of the rotor rotation.

Thus, the analysis conducted above shows that the rotor is a

kind of filter, which of all the harmonic components of forces on

vibrating blades passes to the fuselage only certain ones corresponding

to the basic harmonic of the rotor, its combinational harmonics

(z - 1)w and z + l),A, and also harmonics multiple or the baZic 2zw,

3z.w, etc., and combinational harmonics (2z - 1w, (2z + i)w,

(3z - i)•, (3z + .)w, etc.

The greatest danger, both from the point of view of the level of

vibrations• and from the point of view of dynamic strength of elements

of the fuselage, is represented, as a rule, by the lowest harmonics

zw, (z + 1)w and (z - 1)w.

From harmonics which are the result of oscillations of the

_ blade in the flapping plane (force Pk' see Fig. 2.4), harmonic z-
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(and multiple., of ,t) leads to the appearance of a vertical variab e

force on the rotur, and harmon'c:; (7 - 2) and (z + 2) (and aiso

2z - 1, 2z + 1, etc.) lead to the appearance of variable moment,; on

the hub with respect to axes Ox and Oz.

From harmonics which are the result of oscillations of blade

'in the plane of rotation (forces Qk and Nk' see Fig. 2.4), the

harmonic zw (and multiples of it) leads to t'ie appearance of variable

torque on the rotor shaft and, harmonics (z - l)w and (z + 1)w (and

also 2z - 1, 2z + 1, etc.) - to the appearance of variable forces

(longitudinal and transverse) in the plane of rotation of the rotor.

Let us note in conclusion that with summation of forces acting

from the side of the blades on the disk of the cyclic pitch control

there are obtained precisely the same formulas for the calculation

of harmonic components of vertical force Y and moments M and M

applied to the disk. Here it is nossible to use directly formulas

(1.14), (1.20) and (1.21), understanding by force

8-3

the force acting in the link controlling the *:-th blade (hinged

moment divided by the corresponding arm) and by quantity h - radius

of the dilk of the cyclic pitch control.

Thus, by knowing the harmonic composition of the hinged :ioment,

it Is not difficult to calculate the variable force acting in the

circuits controlling the collective and cyclical rotor pitch.

6 2. Plexural Vibrations of the
Fusel•Te as an Elastic Beam

If variable forces applied ,o the fuselage from rotors are
known, then the cal-ulation of vibrations at different points of the

fuselage can be carried out by the standard methods used during

calculation of forced oscillations of an elastic team of variable

cross section. Of course, the fuselage of a real helicopter only

In first approximation can be exaeined as a than elastic flexural
beam.
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cannot b. . -ii I. to T on•ituiinal.,Furtber-

-,ore, the f -z2 ciage u or" ecter of sinvie-rotor configuration can

have "fractures" in tho region of the tall bea•i, sharp drops in

rigidity along the length and other peculiarities. These peculiarities

arnd their account with the calculation cf oscillations are examined

in § 3. Here we will examine methods of calculation of oscillations

of the elastic beam, since they are fundamental. Furthermore, in

this paragraph oscillations of a system consisting of two elastic

* beams forming a "cross" will be examined. Such a system is a

fuselage with a wing.

1. Calculation of Forced Oscillations of an Elastic
Beam by the Method of Expansion by Own Forms

Let us assume that to an elastic flexural ideal beam (Fig. 2.6)

deprived of damping, found in a free state under the action of a

Fig. 2.6. Diagrams of a
free elastic beam with a
distributed load applied
to it.

balanced system of time-independent forces (tractive force of the

rotor balances the gravity), there is applied load q distributed

along the length of the beam variable in time, which is variable

by the harmonic law

q (x, -q (x) cos pl. ( 2.1 )

The equation oI' lateral bending oscillations of such a beam has

the form

(E)" •y= q (x, t) (2.2)

This partial differential equation is derived in No. 10, § 1,

• ) Chapter i for an elastic beam in the field of centrifugal forces.
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In the case of their absence (N 0 0) the equation takes the form of

(2.2).

To find the motion of the beam means to find function y - y(x, t)

satisfying equation (2.2) and also boundary conditions, which in the

case of a beam wiL.1 free ends have the form

when J=0, M-EilrO; Q--(EIf/'=O;
when x=1; ,M==EIfj O; Q==(EIIp")'==O. (2.3)

Function y(x, t), which satisfies the homogeneous equation

(without the right-hand side)

(Elyg)T'•mjs•0 (2.44)

and boundary conditions (2.3), correspond to natural oscillations of

the beam. The solution of equation (2.4) is sought in the form

p(X-t0 f (x)Cosp1. (2.5)

After substitution into equation (2.4) this expression leads to

the ordinary differential equation with parameter p for determination

of functiop y(x):

(Eiy)y- oPiy= . ( 2.6 )

The last equation has solutions different from zero only with

defined values of parameter p: p = p0; p = P2; p = p 3, etc.

To each value p = pk (k = 0, 1, 2, 3, ... ) corresponds the defined

function Yk(X), which satisfies equation (2.6) at p - so that

(Erlr--pImj,=O; (k=1, 2, 3,...). (2.7)

Numbers Pk (k = 0, 1, 2, 3, ... ) are called frequencies of

natural oscillations of the beam and functions Yk(X) - corresponding

forms of natural oscillations.

0

Motion of the beam according to the law
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O~,0--ak (.n.) Cos PA4(2.

where ak is constant, is called natural oscillations of the beam with

respect to the k-th tone.

The general solution of the homogeneous equation (2.4) has the

form

Y(x, t)=uYA (x)) os (+ 1 ), (2.9)

where ard 0k are arbitrary constants.

Th,_s natura2 oscillation of the Ieam constitute motion obtained

as a result of the superposition cf oscillations of different tones.

Meikods of findings 'reque .ýIes of natural oscillations Pk and
corresponding forms •(X) for uhe beam with the assigned law of the

change *n rigidity EI(x) and Inear mass m(x) are discussed in § 2

of Chaofer I.

Pirez 7ero fom P- 'r -A

LILLU Fig. 2.7. Characteris-
tic forms of natural

•ccor fooscillations of the
_ _ __ fuselage as a free

LN Certer-of t•vity • beam (p*, p*, etc., are

?irst elastic form _frequencies of oscil-So p'p', ['1 lations of the flrst,
T second, etc., elastic

tones; in general, one
-•ooc clsti. for P-PI should consider that

PC, 0; p 1i = 0; p~. p.
Sp *, etc.).

Wli.ure 2.7 shows characterist~c forms of natural oscillations

of a free beam. Two forms correspond to oscillations of the beam as
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a solid and have frequencies of natural oscillations equal to zero.

The first of :,hese forms corresponds to forward movements of the

beam and the second to the angular displacement of the beam relative k
to its center of gravity.

'I

All formulas which are derived in this paragraph are equally

useful for the calculation of oscillations of an elastic beam with

any conditions of fastening of the ends. However, in the case of

application of these formulas to oscillations of the free beam and,

in particular, the fuselage, it is necessary to remember that to the

number of frequencies Pk and forms ik(x) natural oscillations should

be certainly included the two lowest forms which correspond to zero

frequencies. So we must assume in all formulas p 0 = 0 and p1 = 0 and

consider that the corresponding standardized forms have the form

where x is the coordinate of the center of gravity of the beam.Fc
In case the mentioned forms will not be considered during

calculation of vibrations of the fuselage, the calculation of?

vibrationr will be carried out neglectinC oscillations of the fuselage

as solid, and this will lead to considerable errors ir iragritude

of the vibrations.

Let us consider the problem of forced oscillations' of the beam

under the action of a "purely" harmonic load [see formula (2.1)].

In this case equation (2.2) takes the form

.,-q (x)m p1. (2.10)

We will look for the particular solution of this equation

corresponding to the stabilized forced oscillations of `he beam with

frequency p in the form

SM PC. (2.11) !
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6ubstitutlng thii express.Lon into equation (2.10), we will

arrive at the ordinary differential equation for determining function

y(x), which is natural tCo call the form of forced oscillations:

We will look for the solution of this equation in the form of

-xpansion with respect to natural forms:

E' Ca.i, (X). (2.13)

A

If in this sum we take a limited number of terms, then it is

possible, in determining values of coefficients ck, to obtain only

approximate solutions of equation (2.12). However, it is possible to

prove that with the method shown below of the determination of

coefficierts ck the approximate solution with a quite large number

of terms in series (2.13) will be as accurate as possible.

For finding coefficients ck let us substitute expression (2.13)

into equation (2.12) and, multiplying both sides of equation (2.12)

by yn(X), we will integrate them from 0 to 2. Then we will obtain

the equation

!(EIYjdx-p 2 7 e mjyydx= qy~dx. (2.14)

Integrals, standing in the first component of the left-hand side

of this equation can be simplified using integration by parts:

(Ely;*Yd yd (,El-) = ('

but

since function:; y(x) satisfy conditions (2.3).

Further:
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In virtue o~f conditions (2.3) (

so that as a result there is obtained

8

Since all functions Yk(X) (k , 2, 3, ... ) satisfy equation
(2.7), it is possible to write

(Erixy- mj=

(EryaY- amiO

Multiplying the first of these equations by y and the second
n

by Yk' we will then subtract one from the other and integrate the

obtained expression from 0 to L. We obtain

I .A

(Z4jd -(Ei' Yjdc=W. - e.jmijdv.

But the left part of this equation is equal to zero in virtue

of condition (2.15). Therefore, provided Pk P Pn' then

4jiadx--• (#-H). (2.16)

This is the so-called condition of orthogonality of forms of

natural oscillations (see also Chapter I, § 2, No. 3).

Further, multiplying both sides of equation (2.7) by yn and

integrating from 0 to L, we obtain:

Hence it may be concluded that if n Pi k, then
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f, howe~ver', n = k, then we oIbtain the expression for frequency

Pn of the n-th tone of os'cillations in terms of its form y (x):

I

a, •(2.18)

frn?,dx

This is the well-known Rayleigh formula.

On the basis of conditions (2.16) and (2.17), it is possible

to affirm that in expression (2.14) all components for which k # n

will t'An Into zero. Considering this, and also using formula (2.15),

let us copy equation (2.14) in the form

I ,qydx.

Dividing both sides of the last equation by in,,2. dx, :;olving it

relative to cn and using the Rayleigh formula (2.18), we will find
na

C4 = -2'p2 I . (2.19)

Lot, us introduce notatior1m:d

A,=.qy.dx; (2. o)

K..j ny.dx. (..;)

Quantity A, -onttltutqS wr'k cf the excltiring load q(x ) n ! the

form of the n-th ,,on( of oscil ,±tions and quantity K, - the largest

(for the period) value of ilinetlc energy of .he given "on, of

oscillationj ret'erred to quantit' P; Thus

SA,.€" 7,-pK.



Considering expressions (2.13) and (2.11), we obtain the

following solution of equation (2.10):

N CC. 0m-- i cos P!. (2.23)

From this expression certain very important conclusions can be

made.

Flrst of all it is clear that if the frequency of the change In

exciting load p approaches one of frequencies Pk of natural

oscillations, then the amplitude of oscillations of any point of the

beam increases without limit. This is the phenomenon of resonance

of the exciting load with the k-th tone of natural oscillations of

the beam. Since here we did not consider the influence of damping

forces (this will be done later), then the amplitude of oscillations

with resonances is unlimited.

Further, if quantity p is close to the frequency pn of the n-th

tone of oscillations, then the term with number n in the sum (2.23)

becomes considerably larger than the remaining terms. Therefore,

it is approximately possible to consider near resonance (p = pn) that

IA,
g~~~x'4 i.-7~ w3 X Cos P1 4,.(W Cos P1,

i.e., near resonance with some tone of natural oscillations the form

of forced oscillations diffei: little from the form of oscillations

of the given tone.

Finally, with transition of the value of p from a quantity

somewhat smaller than Pn to a quantity somewhat lareer than pn, the

quantity in brackets of formula (2.23) changes slIn. Therefore, if

one were to construct a graph of the dependence of amplitude YO of

some point of the beam on the frequency of excitation p (at

constant q(x)], then this graph will have the form depicted in

Fig. 2.8. The curve of the graph has infinite discontinuities at

points p p pI. p P2s p U P 3 ' etc.
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7e
Fig. 2.8. Dependence of the
amplitude of oscillations of
any point of the fuselage on
the frequency of excitation.

OPe Z Po PZ

2. Dynamic Rigidity of the Beam. Resonance

and Antiresonance

The case examined in the preceding point of forced oscillations

of the beam under the action of an exciting load distributed along

its length, which is variable with time with respect to the harmonic

law (2.1), and the derived formulas remain in force under any law

of the change in load along the length of the beam, i.e., at any

form of function q(x). Therefore, from these formulas it is easy

to obtain formulas for determining forced oscillations of the beam

createable by the concentrated exciting force

F-Fo cos p1, (2.24)

applied at certain point x = x0 (Fig. 2.9).

e Co PFig. 2.9. Analysis of
"forced oscillations of
the free beam from

- concentrated force.

Really, let us assume that load q(x) is applied to the beam only

on some small section along length Ax in environment of point x = x0 .

Here formulas (2.22), (2.20) and (2.21) will remain in force, but

in formula (2.20) the corresponding integral must he taken not along

the entire length of the beam Z but only on section Ax, i.e.,
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At small value of Ax this integral can be approximately replaced

by the quantity

L d~"FaX) (2.25)

where

Fe I LfLdX (2.26)

Formula (2.25) becomes accurate at infinitesimal Ax, i.e., in the

case of the concentrated exciting force.

Thus we arrive at the following conclusion: if oscillations of

the beam are caused by the concentrated force (2.24) applied at

point x - x0 , motion of the beam is described as before by expression

(2.23) in which qvantity Ak is determined by the formula

A& w F,(,. (2.27)

i.e., quantity Ak constitutes work of the exciting load "on the form

of the k-th tone of oscillations."

Let us note that suqoh a method of finding forced oscillations

iemains in force in tne case when oscillations are caused by the

concentrated beridine m-.ment (variable with respect to the harmonic

law)

-M-,oap., (2.28)

applied at point x - xO. In this case quar.tity Ak should 4e determined

by formula

A eM;jg(&J
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whereYk'(x is the angle of rotation of the elastic line at point
x =x0 which corresponds to the form of the k-th tone.

In the case when oscillations of the beam are caused by the

longitudinal force

X-XoCOspf, (2.30)

applied on a certain arm h (Fig. 2.10), all the given formulas also

remain in force, since in this case force X can be transferred

from point A to the corresponding point B of the beam, adding then the

couple with the moment equal to M0 = X h.

a X-X0cOSpt Fig. 2.20. Diagram of
action of longitudinal
force from the rotor on
an elastic fuselage.

The longitudinal variable force applied at point B can cause

only longitudinal (axial) oscillations of the beam, and lateral

oscillations of the beam from the harmonic moment M are determined

a.• was Indicated above.

In examining tra.nzverse Forced oscillations of the beam from

t!,e conntrted force 0= 0 co3 pt, it is convenient to introduce

the concept; of dynamic rigidity of' the beam at point x = Y of the

application of' force.

Let us call the dynamic rigidity D(p) of' the beam at point x =x

the ratio of the largest value (amplitude) of exciting force F0 to

the amplitude y. = 7(xo) of forced oscillations of the beam at the

point of application of force, so that

S4(2.31)
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It is considered that with a change in force with respect to

the harmonic law F a F0 cos pt, the point of its application

accomplishes stabilized forced oscillations according to the law (
Sa 

Y-O coo pt.

Thus dynamic rigidity of the beam is a function of frequency

oscillations, and It Is considered positive if the force and movement

change with time "in one phade" and negative if the force and

movement change in "opposite phase."

The amplitude of oscillations of point x - x0 of the application

of force zaa 4e determined with help of formula (2.23):

7a~t.).(2.32)

If one were to construct a graph of the change In quantity y0

with respect to frequency p at constant value Pop then there will be

obtained a curve analogous to the one depicted In Fig. 2.8. Therefore,

if one were to construct a graph of the dependence of dynamic

rigidity D(p) at a given point of the beam on frequency of oscillations,

then this graph will have the form depicted in Fig. 2.11.

?ig. 2. 11. Graph ofdynamic rigidity.

*. \

Dynamic rlglt4ty 0(p) becomes zero at re~onance3 p - p1, p P

etc., and becomes Infinite at those values of frejuency p (p a pI 2 ,
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P

= p2 3 , p P etc.) at which the amplitude of oscillations of
the point of application of force becomes zero. These values of

frequency p are called frequencies of antiresonances and are equal to

frequencies of corresponding tones of natural oscillations of the

beam with hinge support at the point of application of force F.

Really, we will imagine that at the point of application of

force F the beam has a support with the hinge (the beam at this point

is not intersected), so that this point of the beam remains fixed

during the oscillations. Such a beam has its frequencies and forms

of natural oscillations. With natural oscillations of a certain tone

of such a beam in the support (x = x0 ) there will appear the dynamic

reaction, variable in time with respect to the harmonic law with the

frequency of this tone. The amplitude (the greatest value) of this

force of reaction will depend on the amplitude (of any point, for

example, the end) of natural oscillations of the beam, which can have

any value (depending upon initial conditions). Therefore, Jt is

always possible thus to select an amplitude of oscillations of the

beam so that the amplitude of force of reaction has the given value

F0 . If now mentally we remove the support, continuing to apply to

the beam at this point forCe F, which changes according to the

harmonic law with the same frequency, then the free beam will continue

oscillations with respect to the same form with the same amplitude.

However, these oscillations can be examined as forced oscillations of

the free beam under the action of perturbing force F. With such

forced oscillation3 the point of application of the perturbing force

is stationary, and therefore the dynamic rigidity of the beam, which

corresponds to such conditions, is in.. .te. This is called

antiresonance.

On the graph of dynamic rigidity (Fig. 2.11) points of resonance
-(n) = 0 and antiresonance D(p) = alternate. It can be shown that

i-r an elastic beam this is always the case.

Thus at a certain frequency of ezcitation the point of application

of the exciting force stops, and at this point a node of the form, of

forced oscillations is obtained. This phen,.menon is called



antiresonanca. The frequency of every antiresonance always is located

between two neighboring frequencies of natural oscillations of the

free beam.

The phenomenon of antiresonance in "pure form" can take place

only in ideal oscillatory systems deprived of damping. In the

presence of damping, the 7ir:plitude of oscillations of the point of

application of force with antiresonance does not turn into ze.o.

This amplitude will be less, the less the damping (see, for example,

[19] -Dynamic Absorber of Vibrations).

3. Application of the Method of Dynamic Rigidity to
the Calculation of Oscillations of a

Helicopter of Transverse
Configuration

The concept of dynamic rigidity appears very convenient in the

calculation of such oscillatory systems, which can be divided into

two or more parts such that for each of them separately the

oscillations are easily found.

Let us consider an oscillatory sy tein consisting of two cross

e.lastic beams 1 and 2 depicted on Fig. 2.12. Such a system entails

a fuselage with an elastic wing characteristic for helicopters of

transverse configuration.

Fig. 2.12. Diagram of
Fr-4Coptý an oscillatory system

from two cross beams.

Let us assume that it is required to calculate forced

oscillations of such a system induced by variable force F, changing

with respect to the law and applied at point A of the coupling of

beam5 1 and 2 (later the method of calculation for the case when

exciting forces are applied at any points will be shown). With the

help of the method expounded in Nos. I and 2, it is possible to

calculate forced oscillations of each of the beams separately from
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"-ertain forces F 1 ana F2 applied to each of them at point A. The

-iyramic rigidity of each of the beams at point A can be found. Let

-is assume that 1'iese dynamic rigidities will be DI(p) and D2 (P).

It is noc difficult to show that the dynamic rigidity D(p) of
the whole system is e qual to the sum off dynamic rigidities of both

beams:

D(p) --D, (p) +Da(p). (2.33)

indeed, force F F0 cos pt, acting on the system on the whole,

will Lt- equal to the sum of forces F1 F0] cos pt and F2 = F cos pt0 02
acting on each of the beams. But

Fol=D, (p)yo;
F03= D2(p) yo,

-;nere Y0 is the amplitude of oscillations of point A identical for

both beams.

Consequently,

F0o= Fi+Fo+02 [DI (P) + A2 (P)1 L2 = D (p) -yo.

Thus the dynamic rigidity of the system is easily found. by

formula (2.33) if the dynamic rigidities of beams 1 and 2 are known.

The graph of dynamic rigidity D(p) can be obtained by simple addition

of ordinates of graphs DI(p) and D2 (p). Values of frequency p, at

which D(p) = 0, will give values of frequencies of natural oscillations

of the system from two beams. There results from this the following

convenient method of determining frequencies of natural oscillations

of the system. Since these frequencies are roots of the equat1on

D(p) -D,(p) +D2(p) -0,

then they can be found from the condition

D, () -- D32(p).
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It is convenient to sclve the last equation graphically by

superposition of graphs DI(p) and -D2 (p), as is shown on Fig. 2.13.

Fig. 2.13. Determination of
frequencies of natural oscillations
of the system by the method of
dynamic rigidity.

Abscissas pI' P2, etc., of points of crossing of graphs DI(p) and
-D2 (p) will give values of frequencies of natural oscillations of the

system.

With such a method of calculation forms of patural oscillations

of the system are simultaneously determined. The form of natural

oscillations of the system corresponding to a certain frequency
Pk (k a 1, 2, ... ) will consist of forms of forced oscillations
of each of the beams with this frequency from forces F and F

01 o 2'
Since with natural oscillations

F,-F., +F=-O,

then

Fo, - -FO,

i.e., force F01 , applied to beam 1, is equal in value and opposite

in sign to force F0 2 applied to beam 2.

Forms of natural oscillations of such a system can be standardized

by selecting the appropriate scale. For example, it is possible to

select the scale in such a manner that form of oscillations of ,eam 1
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would have an amplitude equal to unity on its end (x k £). The

scale of the form of oscillations of beam 2 connected with it should

be selected from a condition of' amplitude of oscillations identical

with beam 1 at the point of conjugation.

Disposing by standardized ±orms of natural oscillations of the

system, it is possible to calculate its forced oscillations from

harmonic forces applied in any points by the method of expansion with

respect to natural forms analogous to that as was done in the case

of one isolated beam. Here oscillations of both beams are sought in

the form

y(X. 1) Y--- W ,). (2.35)

where Yk(x) is the form of oscillation.1 of the given beam •orresponding

to the standardized form of the k-th tone of oscillations of the

system (Joint oscillations of both beams).

Coefficients c k as before are determined by formula (2.22):

Ca t(2.36)

where nk is the frequency of Joint oscillations of the k-th tone

of the system.

Joefficients Ak and Kk are cItcrrined by the following formulas:

A.-F•,(z. (hl.= 2. 3....) (2.37)

This coefficient constitutcs the work of an exciting load on

the form of the k-th tone of natural o3cillatlons of the system.
Quantity yk(xo) is the amplitude of the standardize-: form of

oscillations of the k-th tone of the system at the point of apT~lication

of the force, irrespective of that to which one of the beams io a1pplldei

excitation [,(Xo) - it is taken with the "plus" ,,ign if' the rJ :tir,n

of the force and deflections coincide and with tL," 7,-n., if

the direction of' the force and deflections ncr, - 'e•

i ~325,
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Kju =fmjdx + (2.36)
On lot boom On 2nd bem

If oscillations of the system are excited not by one but

several harmonic forces applied at different points, then the forced

oscillations are found as a result of the addition of oscillations

induced by each of the forces separately.

Here one should discuss one peculiarity of the excitation frcm

r-t'nrs of helicopters of multirotor configurations. Depending upon

how kinematic rotors (by a system of transmission) are connected with

each other it can appear that variable exciting forces from different

rotors change with time in one phase or in opposite phases. Thus,

for example, if for a helicopter of transverse configuration the

rotors are connected so that the blades of both rotors simultaneously

occupy similar positions (for example, extreme front, as is shown

on diagram A Fig. 2.14), then forces on both rotors simultaneously

attain the largest and least value - they change in one phase. If,

however, the rotors are connected as is shown on diagram B, then,

Fig. 2.14. Analysis of vibrations
of a helicopter of transverse
configuration.

conversely, the exciting loads from both rotors change in opposite

phases. This leads to the fact that in case A exciting loads from

both rotors can create only symmetric forms of Joint oscillations of
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the fuselage - wing system and in case B - only skew-symmetric

(Fig. 2.15). Since during oscillations of skew-symmetric forms vertical

vibrations of points of the fuselage are absent, then for helicopters

of a transverse configuration it is desirable to connect the rotors

as is shown on diagram B (Fig. 2.14). Similar considerations can be

expressed with respect to tandem-rotor helicopters.

S kew-symetric Symnotrlo
forms fo~ms

IFig. 2.15. Forms of
natural oscillations

Sof th. wing with the
fusze-age of a helicopter
of transverse configura-
tion.

Of course, in solving the question of the most profitable

mutual location of rotors, it is necessary also to consider concrete

values of frequencies of natural oscillations of different tones of

the fuselage and also to examine along with oscillations of the

fuselage in the plane of symmetry lateral oscillation, which iill

be discussed in § 3.

4. Method of Additional !.Iass

To determine the dynamic rigidity according to the method

expounded irk No. 2, it is necessary to have results of the

calculation of natural oscillations of the fuselage. In this case

the amplitude of forced oscillations of the point of npplication of

the force, necessary for the determination •f dynamic rigidity, is

determined by formula (2.32) in the form of expansion wih respect

to natural forms. However, in the case when there is a program of

calculation of natural frequencies on an electronic computer an-( the

calculation of' n;ttural oscillations occupies little tl.me, It Iz

possible to recommend for determination of dynamir: rieial"y *,f the

ruselage at a grivn point the so-called method of miIt~o, " as-.

With such a method calculation is produced of nat;ra-' o1 .at~ ons

of the fuselage w!th additional mass Am, strengtvhen, '., in .hat point

at which it Is necessary to calculate the dyn-riv - .:....
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Calcu)at',n 1.; r-r,'Juced at d/i Lferent values "m, and f'r':', -Its rezu

.r -fr*aph Lre(p) ,f t.e dependence Am on frequency of ratura. ,,;et Llat Io:.

of different tones is constructed.

Figure 2.16 shows an example of such a graph for a single-rotor

helicopter. Plotted on this graph along the axis of the ordinates

V.,are values of the weight of additional load AG = gAm.

, X I Ici.i.

Fig. 2.16. Typical dependence of
additional mass of an elastic fuselage

(or dynamic rigidity) at the point of'
rotor attachment on the frequency of

It is not difficult to show that such a graph can in a certain

sense completely replace the graph D(p) shown on Fig. 2.11. Hea±ily,

with natural oscillations of the beam with additional mass Am with

frequency p this beam is loaded by the corresponding adaitional

force of inertia whose amplitude is

Fe (2.39)

where Is the amplitude of oscillations at the aita'i-r.- point of

the additional mass.
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"'ihc force of inertia F0 at the time of the greatest deviation

from the position of equilibrium is directed in that same side as

that of deviation y0. Negative values of Am physically correspond

to the spring fastened to beam with rigidity Icl- ~-ip2I, giving a

force proportional to deviation y 0 and directed opposite to the

deviation.

It is natural that it is poss'ble to obtain precisely the same

oscIllations cf the beam without the additional mass but forced

from the action of harmonic force with the same amplitude F0

changing with the same frequency p.

Dynamic rigidity of the beam is determined by the formii]R

D(p) KA .

Comparing this expression with expression (2.39), we find

D~a)--•'•@)•( 2.40 )

Using this formula, it is easy to construct a graph of the

dependence D(p), disposing by dependence Am(p). However, this

cannot be done, but we can use directly graph Lm(p) or AG("i,. ThAs,

for example, fur detecting frequencoes of natural oscillations of the

fuselage of transverse confiZuration It is possible instead of points

-f Intersection on graphs D i(p) and -D2(p) (see Fig. 2.13) to detect

the point of intersection of graph LG. (p) and -AG 2 (p).

5. Effect of 'ampinn " or,'er "cillatlons
with Resonance

Th,: :±c:t:-;¶.at.>J ?heory and methc-is of )acult1ti-n res'.ltlrirg

1rr-ita rjQ It:-Are f the av.-umption th:at the beam Is Iucal;y e :iaztI-

and daml.-if, fore,:.: ra-re absent. As for "tny other oac.Aiiatcry :;'.e',

In, exam' nlnj v. :1! iationc, tf t.-e beam far frcv.. renor,. . , d,

fcr,.es ca:, be d.ý: '-egarded, ar,nd "h•.i +,,eS n!t .e;d to jreat error..
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however, in examining oscillations of the beam near resonance

or directly in resonance, it is necessary to take into account forces

of damping, since the amplitude of oscillations with resonance

is determined exclusively by the presence of damping and assuming

that damping is absent, the amplitude with resonance is obtqir:ed

unlimited.

Damping forces with oscillations of the elastic beam appear

mainly due to the friction between elements of constructior. of %he

beam during its deformations and also due to the so-called internal

friction in the material of the beam, which for a beam of compound

construction, as a rule, is negligible as compared to the friction

between elements of nonstruction [16).

The equation c. r-sil.4aons of bending of the beam in t he

presence of dampig can. he derived, assuming that the tending moment

M in the section of the beam is proportional to its curvature '-r
ass

(in accordance with the Hooke law) and also the speed of change

of curvature with time, so that it is possible to write

where n Is a certain coefficient characterizing damping properties -,f

the beam in a given cross section, which is assumed the assigned

function of coordinate x.

Using further the well-known relations

where q#(x, t) is the Intensity of the transverse 1oad applied to

the beam, and considering that this load Is added with osctliations

from the external -erturbing load q(x, t) and load from fcrces cf
inertla,, so trhat
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using equation (2.41), we obtain the following partial differential

equation, which describes lateral oscillation of the beam with

damping:

This equation differs from equation (2.2) only by the presence

of the term with factor n and at n = 0 coincides with (2.2).

In the case if q(x, t) = 0 there is obtained an equation

describing natural oscillations of the beam with damping:

,2)n' (El' )m!=O. (2.43)

An accurate solution of this equation is rather complicated.

However, with relatively small damping it is possible to use a simple

approximate solution. The approximate solution of this equation

corresponding to natural oscillations of the beam with respect to the

k-th tone can be detected, assuming

Y=yh- (x) , (2.44)

where Y k(X) is form of natura] oscillations of the k-th tone of the

beam in the absence of damping.

Substituting this solution into equation (2.43) and reducing

the factor e1O , multiplying by yk(x) and integrating the equation

within limits from 0 to 9k, and also considering formulas (2.17) anrd

(2.18), we will obtain the following equation for determining X.
K

+' 2n k).,, + pi -o, ( e2.45)

where

dn ~ x. (2.46)

Roots of this equation will be
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XkIn (2.47)

where

PO (2.48)

Accordingly, expression (2.44) can be written in the form

F-Zh,)-46' Cos (P'+?). (2. 49)

i.e., quantity nk C•,nritutes the attenuation factor of ozcillations
of the k-th tone, and p9 is the frequency of natural oscillations of
the k-th tone in the presence of damping.

It is possible to show that the less such an approximatre solution
of equation (2.43) differs from exact, the less as compared to unity
Is the dimensionless attenuation factor of the k-th tone, determined

by formula

(2.50)

This coefficient is the most important character!stic of

oscillations of the given tone and can be determined experimentally,
either by analysls of the oscillogram of attenuated oscillations of
the given tone or according to the results of measuring the amplitude

of forced oscillations of the beam under the action of the vibrator
(this will be discussed later).

For a fuselage of the conventional type (riveted fu=ilae with
Duralumin sheathing) &ttenuation factors nk of dlff'erent tones
lie wtthiri limits of 0.02 to 0.05. These are minute values r.

attenuation factor, at which the frequency of oscillations of the
k-th tone can be considered equal to the frequency calculated
rneglecting damping, since p#- wV'K1, Ulth the shown values of

nk tils correutior, Is Insignificant.
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With the calculation of forced oscillations of the bea- Ith

damping described by equation (2.42), inasmuch as the damping is

small it is also e-.prxndlient to use the method of approximation founded

-n tL'- f-°c that far from the resonances the damping, in general, is

rot considered, and near the resonances there is the approximate

solution obtained on the assumption that the form of forced oscilla-

tions near resonance of the k-th tone, just as in the case of the

absence of damping, Is close to the form of natural oscillations

of given tone.

In the presence of damping the equati.or, of forced oscillations

of the beam under the action of the harmonic load

q (x, t) = q (x€) cos pt ( 2.51 )

is conveniently written in the complex form

0~r (El 2J± 'n- 4 (.Pu !L1)+ m Uq (x) elPt. (2.52)

Since the real part of the right-hand side of this equation

coincides with expression (2.51.), then the real motion of the beam

will be described in virtue of the linearity of the equation of

the real. part of the complex solution of equation (2.52). Near

resonance with the k-th tone of natural oscillations it is expedient

to seek the solution of this equatLon in arcordance with the

expounded conr-.iderationo in the form

S(X, 1) = r,,- (x) ell" , _5

where 7k(x) as before is the form of the k-th tone of o.cillationz

in the absence of damping.

Let us substitute this expression into equatifon (2.52). Then

we will multiply both parts of equation (2.52. _ -. (x) and integrate

from 0 to L. Transforming the obtained integ.Jl and considering

relations (2.17) and (2.18), and also (2.1j6), we will obtain the

followi, g equation for determining coeffticient c
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Ca(Pi+Imn*P-p')--•,

where Ak and Kk are determined as before by formulas (2.20) and

(2.21). Hence

cam I A&

P&2-I +fink 44(2-54)

The modulus of the complex quantity ck determines the amplitude
of oscillations

S! A•(2.55)

j/(pjý..p2)2 + U4p2 ~2 5.

and the argument ck:

arlfC&a=arc(-,2
2"' -) (2.56)

- the phase of forced oscillations with respect to the exciting

load (2.51). With resonance the value ck [see expression (2.54)]

becomes purely imaginary:

eAt (when p = pk)L

This means that with resonance the phase angle between the

exciting load and oscillations of' the beam is equal to x/2. As

this is easy to check by direct substitution into the equation,

oscillations will occur according to the law

S(X. )-=,,(x) s In pl. ( 2.57ý

where

it-, (2.58)

Thus the amplitude of oscillations with resonance is completely

determined by the value nk of the dimensionless attenuation factor

of the k-th tone. This can be used for experimental determination

of nk. If one were to excite oscillations of the beam with the help

of the vibrator, i.e., the assigned concentrated force P = cos pt,
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applied at the fixed point x x., and with resonance (p =Pk) to

measure the amplitude yo of oscillations at the point of application

of the force, then it is easily possible to find quantity nk. With

this Ak will be determined by formula (2.27) and quantity yo by

formula

Therefore, considering expression (2.58), we find

or

2i k (2.59)

where quantity mk, which can be called the mass of the k-th tone,

reduced to point x = xO, is determined by formula

ma my2 dx. (2.60)

Here

(2.61)
Vh,(to)

The value of the reduced mass Trk with sufficient accUracy

is determined by calculation, but it can also be determined

experimentally by means of measurement of the form of forced

oscillations of the beam during resonance with the k-th tone.

In those cases when it is necessary to estimate beforehand the

amplitude during resonance of the fuselage, which is in the

designing stage and still not made, it i. possible to use formula

(2.58), taking values of n k known for another fuselage of similar

design, since vaJues of ni for Limllar designs are distinguished

little.
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§ 3. Calculation of Vibrations Taking into Account
Peculiarities of the Fuselage

1. Peculiarities of the Fuselage. Transverse and
Vertical Vibrations

In the preceding paragraph methods were discussed of the

calculation of vibrations of a fuselage as an elastic beam (or

system of two cross beams for a helicopter of transverse configuration)%

for which dimensions of cross sections are small as compared to the

length. In many cases such a method of calculation gives fully

satisfactory results. However, in certain cases when the fuselage

of the helicopter possesses peculiarities greatly distinguishing it

from the model of an elastic beam, it is necessary to examine more

complex calculation diagrams. Constructive configurations of fuselages

of helicopters of different types (single-rotor, transverse

configuration, longitudinal (tandem-rotor) configuration) are very

diverse. Therefore, it would be difficult to Indicate some general

method of calculation which in all cases would allow quite accurately

calculating vibrations of the fuselage from assigned forces.

Every new constructive configuration of a fuselage can require

considerable changes in the method of calculation of vibrations.

This problem can sometimes appear quite complex. However, in all

cases the method of calculation should be based on the general

principles of the theory of oscillations of elastic systems. The

engineer-designer who must analyze vibrations of a future helicopter

of new design should possess these general methods so as to be able

to modify the calculation diagram in reference to each new problem.

Therefore, the account of the material of this chapter is put together

in such a way to show the essence of the most important procedures

used in the calculation of vibrations. Thus the method of expansion

with respect to natural forms, the method of dynamic rigidity and the

concept of resonance and antiresonance can be applied not only to an

elastic beam or system of two cross beams, but also to any other

more complex oscillatory system. These methods were discussed in

reference to the beam, since, on the one hand, in this example they

can be most easily shown, and, on the other hand, by itself the
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method of calculation of oscillations of the beam can in many cases

be used for the calculation of vibrations of the fuselage without

any changes.

For an illustration of certain peculiarities of the real

fuselage let us turn to Fig. 2.17, on which there is schematically

Fig. 2.17. Reduction of the
problem of vibrations of an
elastic fuselage to the problem

Sof vibrations of an elastic beam.

S•/ "Axis of rigiditY .

depicted the fuselage of a single-rotor helicopter. The peculiarity

of such a fuselage consists in the fact that its axis of rigidity

constitutes a broken line, the centers of gravity of sections of the

fuselage do not lie on the axis of rigidity, and each section of the

fuselage is a body for which all measurements are of one order, and

with calculation of oscillations it is necessary to take into account

not only the mass of the seciton but also the moments of inertia

of it relative to all three axes. Calculations show that with

determination of the lowest tone of oscillations of bending of such

a fuselage, both in plane xOy (vertical oscillations) and in plane

xOz (lateral oscillation) there can be obtained quite satisfactory

results, calculating the fuselage as elastic thin beam with a

rectilinear axis.

If during the calculation of the vibrations it is possible to

be limited by consideration of vibrations of the fuselage as a

solid and to consider only lowest elastic tone (first three forms on

Fig. 2.7), then the calculation of vibrations of the fuselage as

a thin beam with a rectilinear axis will lead to satisfactory results.

However, if the second elastic tone of oscillations has a frequenc:/

close to the frequency of the basic harmonic of the rotor zw (and

this frequently happens), then sUCh a calculation can lead to certain

Serrors. With the calculation of vibrations in the cockpit (In the
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nose part of the fuselage) the error can be insignificant, but

amplitudes of vibrations in the region of tail beam can very greatly

differ from the real. To increase the accuracy of the calculation i -

it is required to determine vibrations taking into account a large

number of elastic tones (second and third tone). But already the
determination of the second elastic tone with sufficient accuracy will

require complication of the calculation model.

Considerable refinement in the results of the calculation can

be obtained with the use of the calculation model depicted in

Fig. 2.18. The fuselage here is replaced by an elastic beam with a

rectilinear axis to which are fastened separate loads 1, 2, 3, etc.

Fig. 2.18. Calculation model for
c the calculation of vibrations of

• • an elastic fuselage.

i&i

The center of gravity of each load will be from axis of the beam

at a certain distance hk. For each load there is assigned its mass

mk and moments of inertia I and I with respect to axes parallel,

respectively, to axes Ox and Oz and passing through the center of

gravity of the load. For each section of the elastic beam located

between loads k and k + 1 there are assigned bending rigidities EIk
k

and EIy in both planes xOz and xOy and torsional rigidity GIk.
k k

For such a calculation model the lateral oscillations (in plane

xOz) are Joint flexural-torsional vibrations. Frequencies and forms

of natural flexural-torsional vibrations of such a system can be

calculated with the help of the method expounded in § 6 of Chapter I

(see Fig. 1.19), in reference to the blade of the rotor. Here we

must assume that the centrifugal force N = 0, rigidity of the control

link c•.,,-O OEly"(O)=0 and (El_")' o This corresponds to the fact that

the left end of the beam is not secured. Instead of value x i, in the

calculation of the blade one should substitute values of .taggerz h •
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With the calculation of furoed lateral oscillations of such a

system it is possible to use the method of expansion with respect

to natural forms (flexural-torsional). Hrre it is possible to use

all formulas of § 2 of this chapter, in which by quantity Ak we mean

the work of the exciting load on the standardized form of the given

tone and by quantity Kk, the kinetic energy of the given tone
2referred to the square of its frequency pk" Figure 2.19 shows the

characteristic forms of natural lateral flexural-torsional. vibrations

of a single-rotor helicopter.

-aro tone; p:-O7 - eond tone;,p .I 40 cal/min

SV 2~

Firzt tone; p"-786cel/n Third tone;pj-SS2c•alAnin

- 4I r"zt t ' __

Fig. 2.19. Forms of natural oscillations of
an elastic fuselage of a single-rotor heli-
copter in the plane of symmetry.

Absolutely the same method of calculation and model shown on
Fig. 2.18 can be used for the calculation of vertical flexural-

torsional vibrations of the wing of a helicopter of transverse

configuration with pods on the tips (Fig. 2.20). If the centers of
gravity of pods have large extensions h, then with the calculation

of vibrations of such a wing it is impossible to examine the isolated

oscillations of bending in a vertical plane, but it is necessary to
examine the joint flexural-torsional vibrations. To calculate the

joint vibrations of the fuselagc-wing, sy,.tem in this case- it is

necessary to use the method of dynamic rigidity.

The greatest calculation model simulating a real fuselage of a
) helicopter should, apparently, be considered the model depicted on
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r JWX Fig. 2.20. Diagram of pod with
great stagger.

Fig. 2.21. Calculation model
for the calculation of vibra-
tions of an elastic fuselage
with a broken axis of
rigidity.

Fig. 2.21. Here the axis of rigidity of the beam is given as a

certain broken line. The angle of inclination of the k-th section

of the broken line is given by angle ak* Such a calculation model

reflects well the properties of any fuselage which has the plane of

symmetry xOy. For a fuselage which has the plane of symmetry xOy,

it is possible to calculate separately vertical oscillations of

bending (or oscillations in the plane of symmetry) and transverse

flexural-torsional vibrations.

In the calculation of vertical oscillations for every load it

is necessary to oonsider three degrees of freedom:

- displacement of the center of gravity of the load along axiz

Ox;

- displacement of the center of gravity of load along axiz Oy;

- turn of load with respect to axis Oz.

In the calculation of transverse flexural-torziornal vibrations

for every load It also is necessary to consider these three Jegrees
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of freedom:

"- displacement of the center of gravity of the load along axis Oz;

- turn around axis Ox;

- turn around axis Oy.

The calculation of vertical oscillations of such a system is

examined in the following point of this paragraph. Here there is

illustrated the application of the so-called method of remainder for

the calculation of oscillations, which often appears very convenient.

The calculation of lateral oscillations of such a system in

general is not examined here, since for the calculation of transverse

flexural-torsional vibrations quite good results are given by using

the calculation model depicted on Fig. 2.18. Let us only note that

for the system depicted on Fig. 2.21 the calculation of transverse

"flexural-torsional vibrations could have also been conducted by the

remainder method.

2. Calculation of Oscillations of the Fuselage in the
Plane of Symmetry by the Remainder Method

Let us assume that the plane elastic system depicted on Fig. 2.21

accomplishes stabllized forced oscillations in its plane xoy under

the action of a harmonic exciting load consisting of forces and

moments

PA =P*, cos p1;

P,,=P'• cospf,; (3.)

applied to each load(Fig. 2.22).

With steady-state oscillations all points of the system will

accomplish harmonic oscillations with a frequency of excItati"n n

so that il one were to designate by z, y and $, . ....
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.9 r

!•Fig. 2.22. Diagram of forces acting
Son a section of elastic model of the

S~fuselage.

• ,displacements of the center of gravity c load along axes Ox and Oy

and angle of rotation of the load relative to its center of gravity,

then for the k-th load it is possible to write

X-X'*CO$Pi;
M.-•,COS pj; (k= 1, 2, 3,.. (3.2 )

t- jCos Pi.

Let us establish dependences connecting forces applied to loads

with deformations of sections of the beam. We will examine forces

and deformation only for the position of the system corresponding

Sto the greatczt deflection from the position of equilibrium (i.e.,

Swe will examine only the amplitude of forces and deformation.;). Le 1;

~~i uz formulate the equation of equilibrium for the k-th 1o•Jr).,A.;3

STo the load there are applied the following:

-etrafocsP0 xp 0 yM 0 (applied at point A);
-- xtrnl frcs kx ky k

-- forces of inertia of the load -tgpZ,; mo!ý11; /,Pke (applied at

point C) ;
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I Fig. 2.23. Diagram of forces
applied to the k-th element
of the elastic model of the
fuselage.

Ig " p "!PX

- forces acting on the load from the side of the left section

of the beam adjoining to it: Xk-l' Yk-l' Mk-1;

- forces acting on the load from the side of the right section

of the beam adjoining to it: Xk' Uk' Mk"

Equations of equilibrium of the load will be written in the

form

XI0--X&_,+MAP ? 'ip-.•.1F t (3.3)
r.,- r,--, + mm'.pl + my, ( 3. 4 )

M,--A~tp •d ,- , j•- 8ilkp7-,- Po,,e,-- Mob. (3.5 )

Positive directions of forces and displacements are shown on

Figs. 2.22; 2.23; 2.24. Quantity rk constitutes the distance from

the point of application of external exciting forces P to the point

of attachment ofr the load to the elazi;Jc beam.

From conditions of equilibrium of a erctlorj of' the beamrr

(Fig. 2.211) we have

M=M1 +Yricos at Xth4 sin a,. ( 6



Y' Fig. 2.24. Diagram of forces
• A(,Z' •. applied to the section of the

elastic model of the fuselage.

Yii

For an examination of the deformations let us turn to Fig. 2. 2 4 ,

on which there is depicted the k-th section of the elastic beam

AkBk in the position of equilibrium and the same section in the
k k

displaced position AkB'. Let us assume that quantities xk, Yk' xk+Ik kkY '1
and Yk+l are displacements of points Ak and Bk -- ends of the section,

and Sk and Sk+l are angles of rotation of the tangent to the elastic

axis on the left and right ends. Let us assume that further 6k is the

sag of the beam on the k-th section, i.e., the displacement of the

right end of the beam -point Bk ir a direction perpendicualr to A kB

relative to the tangent to the elastic axis on the left and -at point

Ak. Then it is possible to write

xa,+t x.-- (9,+ bik) sin a..

where Lk and ak are the length and angle of inclination, rcspe:tiveiy,

of the k-th section of the beam (Fig. 2.24).

Using the usual procedures of the strength of materials, ie;

us find the following equations connecting forces and deformation.:

+Z-' h-f+ A + .;
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:Displacements of points of the beam xk and yk are connected

with displacements of centers of gravity of loads by evident fo..mulas:

- (3.11)

Recurrence formulas (3.3), (3.4), (3.5) and (3.7) together with

expressions (3.8), (3.9), (3.10) and (3.11) allow, by knowing forces

and displacements of the k-th load, to determine forces and displace-

ments of the (k + l)-th load. Using these formulas, it is possible

to solve the problem by the "chain method," namely: assigning

amplitudes x0 y0 and ý0 on the left end of the beam, it is possible,

consecutively, passing from section to section, to determine

amplitudes and forces on the extreme right end of the beam, expressing

them by quantities x0 , Y0 and $ 0 If the beam has n loads, then it

is thus possible to determine quantities Xn, Yn and Mn on the right
end or "remainder." But since the right end of the beam is free, then

the "remainder" should be equal to zero, i.e., on the right end of

the beam there should be fulfilled these conditions:

X.- - M. = O.

These conditions constitute a system of three equations for the
determination of unknowns x0 , Y0 , and ý0, in terms of which

amplitudes of oscillations and forces on all loads of the beam are

already expressed.

Such a method of calculation of iorced oscillations of the

;ystr-rn .,'. 2.21) is absolutely analogous to the well-known

"remainfaer" method - the Tolle methodi, ued for the calculation

torsional vibrationsu of a multiple-disk system [20]. An analogouz

method is used for the calculation of oscillations of bending of

elastic balls, in American and English works such a method is called

the McIlstead method [33], [34]. It permits finding the curve of

dynamic rigidity (Fig. 2.11) of the system at any point and in any

direction by means of calculation of oscillations at different

values of p, and also, of the frequency and form of natural oscillation-

of the syStem from an examination of forced oscillatinS of the Syst,"a
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near resonances when amnplltudes of fo:-2ed oscillations increase

without limit.

This method is especially oonvenient when using electronic

computers, without which at present the carrying out in necessary

quantity of all dynamic calculations is impossible.

For a practical application of this method it is convenient to

express magnitudes of forces arid U:isplacements on the k-th section in

terms of values x0 , Y0 and 0 in the form

=t AS+ + + Cx, DY6 0;
£,= A, ± Bx* Cyo +D1.6;
Y& = Ar + Bx + CkyO+ Dr #0;

k k

for appropriýýte coefficients. With this the following formulas are

obtained.

For coefficients A, B0, C' and DO:
k' k k

A, .T a-i A•_, 2 A1_1 cog G- , 21-1 On (3.
AFor-qu -a_ ttis A _ Axad"_1 2E.'p-I A -" (3

For quantities Bk, Ck and Dk analogous formulas are obtained by

replacement of quantity A respectively by B, C and D. The same
pertains to subsequent formulas (3.I4) and (3.15).

x x x x
fPor coefficients Ak, Bk, Ck and Dk:
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St•sin G't€oa a*
A-' A 2 AA- SI , A?+

h+ a 2,EIa a--Gelb---~

+ A A--tsinAX. (3.14)
GEIa ,

For coefficients Py, By, Ca Dk
~k k' ka k

-Am ý*--A +a
+I, A+-2E--, k 6

is. cos Qk sin ak
6E, Ax+IjcosauA. (3.15)

x X X
For coefficients A, B C ard D

k k k

Ax'=A_,+ mxp2A -- ,,,p'hxA; P,; (3.16)
Bx ±_-p2 Ax - mnxhB

Ck= C,_Imkp2 C,--mlP~haCI.; (3.17)
Dx, DL,÷m' 2- ,,t,

For coefficients Ak, bkb Ck and D.

AY=-A-- +mp 2 Ar-P,; (3.18)

B,-- Bn,,_ + m p OA,,;

C== C,_, + map 2 Cz; 1 (3.19)

rA M M ~M
And, finaily, for coefficients AM, Bk, Ck and DM:

At-A_,+ A cos.., COS - AxI_,._. sin a,,_ + r.zap 2A -k

"* -p((m,•± '+)A)-Mo+P -,W; (3. 20)

B-,= BII + BY t.-I cos ;,_, - BxI,-,_ sin u,_ +

+ m,,p 2 B- p (m•, +I,)3. (+ ./)

M M
Formulas for C and D k are obtained from the last replacement

of quantities B respectiv-ýly by quantities C and D.
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The formulas given permit determining the values of coefficierts

on the following section according to their known values on the
preceding section. Thus, moving from section to section from left ýof

right, we will determine values of coefficients on the right end of'

the beam. On right free end (k = n) there should be fulfilled these

conditions:

X.- A A + Bsxxo + Cxy, + Dx. t -0
Y.- A.Y+ Br.xo C.yo+D.o---O; (3.221
M. -A:+ B-.* + C V9+ D.6o=-0.

Solving this system, let us find the values interesting us x0 ,

Y0 and $0:

"(3.23)

where A is the determinant of the system (3.22); A,..1,*.. are
determinants obtained from the determinant A by means of replacement

cf the corresponding column by free terms of the equations.

Knowledge of quantities x 0 , Y0 and 0 permits by formulas (3.12)

finding the movement and forces acting in every section of the beam.

Figure 2.25 shows the form of forced oscillations of a single-

rotor helicopter determined by the indicated method. The form of

oscillations in this case should be represented by the three graphs:

xk(x), y (x) and O,(X).

Table 2.1 gives initial data for the calculation conducted.

For-ed oscillations were calculated from the following forces

applied to the rotor hub (load No. 3)

Psm 0,05, ; P,=o0,o3G; M 8=o0, I
where G is the weight of the helicopter.
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'Pm

-402 - Fig. 2.25. Form of forced
oscillations of an elastic

-404 - -fuselage of a single-rotor41 helicopter obtained by the
-406 - - remainder method.

-4,21 zzz

Table 2. _.

op0ber •of I2 3 4 It 7 I I 10
sectio: I I I 

I-

"k (N) 1 0 1. 7 A o. ° . 1. 7.2- 9.• 1 12.4 13.7 o ,I .,•1 . 18.2

0 . . 0.021 °0.025l 0.l8 0.3 0 0 0

/it (A,) .cOasa5 0.0066 0.0068 0.207 0.0033 0000#7 5OO

One of the merits zof such a method of calcuiation consists in

the facu t-hat for the calculatlion of forced oscillations it is not
required to conduct a pre-iminary calculation of frequencies and forms

of natural oscillations of' the system. Furthermore, in con~ucting

such a calculation for different values of frequencies p, It is

possible to construct a graph of the dynamic rigidity of sy:3temn D(p)

at any point and also to find all frequencies and forms of natural

oscillations. Figure 2.26 gives results of the calcuiat.Lo.n of the

graph of dynamic rigidity for the same system asslgrieu by '?able 2.1

for force P 0 V'tlu-s of p. at which D(p) = 0 rive frequen..•es
ky

of natural. osctilationrý, of 1the system, and the form. of forcer,
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pk (k - 1, 2, 3, ... ) of natural oscillations, gives with any degree

of accuracy the form of natural oscillations of this tone. Forms

of the first three tones for the examined system, obtained in such

a way, are shown on Fig. 2.27.

Fig. 2.26. Curve of dynamic
-• rigidity of the fuselage obtained
- •by the remainder method.

: In

XiA.,;-2 o al /min

I Third elaatic tone

IC--

0 X f!'
Oenter. of gravity

Seocn l+pllio•nFg 2.27. Forms of
J ~~delastic tone /y natural oscillations of

"I ij. the three lowest tones of
S•i the fuselage of a single-

€ • rotor helicopter obtained
n by the remainder method.

Let us note in conclusion that the "remainder" method given here
requires fulfillment of the calculation with very great accuracy (not

less than four-five significant diL'~ts). This makes the indicated
ni.t~hvd ra�t�~.ialIy unfit for manual calculation. However, as was

:t~i'eady lI't3.iatcd, esictulations of oscillations in the necessary

volume, in general, can be conducted only with the application of high-

speed computing machines, for which the Indicated accuracy is uzual.
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3. Calculation of Influence of Shearino Strains

All the examined methods of the calculation of oscillatio'ns of

the fuselage were based on the use of the usual relationsý!.• n

strength of materials for bending of a thin beam. These relationships

are considered only tensile strains and compressions of fibers of
:r!ateria] of the beam and do not cons-'der shearing strains. Meanwhile

the calculation of these deformations introduces certain corrections

nto reo3ultr. of the calculation, and these corrections are obtained

very inrsignificant for the first tone of oscillations (lowering of

the frequency by 5-7%), for the second tone of correction they are

obtained somewhat more (lowering of the frequency by 10-15%), for

the third tone even more (20-30'), etc. Therefore, if with the

calculation of vibrations it iz necessary to consider high tones of

the oscillations, the oscillations should be calculated taking into

account shearing strains caused by tangential stresses in the

:heathing of the fu.:elage. This can be fulfilled in the following way.

Tf calculation is produced for the model depicted on Fig. 2.21, then

-.;. p..ossible to use all formulas of the "remainder" method, with

tnie exception of formula (3.8), which in this case should be written

.n the form

-"D (3.2 )
Eli, 3\

-,,:h ere 6' is the additional sag of" the k-th section from shear force

Q*=X sfna. -Y- Ycos a,. (3.25

The additicn~al. 2.ag 6., can be determined by the formia (se,

"7r example [2IJ)

*GFa

w.here F. iz the area of the cross s-ction of the fuseKage on t.h'• k-th

C ction, and K is a certain dimeizion]ess coefficient cetermrinerbe,;

"o rmu 1 a
)
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- 21(4 ) ' (3.27)

where Ik is the moment of inertia of the cross section with respect

to the neutral line; Sk(z) is the static moment with respect to the

neutral line of the part of the cross section located higher than

tthe straight line parallel to the neutral line and remote from it at

distance z; 6(z) - thickness of the sheathing of the fuselage at

distance z from the neutral line.

The integral in formula (3.27) is taken over the whole cross

section F of the fuselage.

In conformity with the correction in formula (3.8) it is necessary

to introduce corrections into recurrence formulas for coefficients
X Ak A$, etc.
Ak k' k

§ 4. Joint Oscillations of the Fuselage-Rotor System

1. Oscillations of the Fuselage-Rotor System

Methods of calculation of oscillations of elastic blades, which

were discussed in Chapter I, assume that the blade is hinged fastened

to the hub, which is attached to a fixed support. In fact the hub

is attached to the elastic fuselage and with oscillations of the

blades there are forces causing its movement so that in reality during

oscillations of the blade a sag in the hinge of the hub is equal

not to zero but to a corresponding sag in the fuselage.

Results of flight tests in many cases showed that caleulatrLonz

of frequencies of natural oscillations of blades, carried out

neglecting the elasticity of the fuselage, can lead to considerable

errors. In connection with this M. L. Mil' formulated and stated

the problem of the calculation of Joint vibrations of the fuselnpe-

rotor system as a single vibrational system. Basic resuits of

investigations which were conducted in this direction are given below.
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Frequencies and forms of natural joint oscillations of the

fuselage-rotor system can be found with the help of the method of

dynamic rigidity, the essence of which is discussed in Nos. 2, 3, and

4 of 5 2.

However, the carrying out of such calculations is connected wfth

a great quantity of calculating work. This especially pertains t@

the determination of frequencies of transverse natural oscillations

of the fuselage-rotor system when it is necessary to determine dynamic

rigidity of the rotor in the plane of rotation. Furthermore, the

calculations conducted show that the connection of vibrations of the

fuselage and blades is, as a rule, weak, and frequencies of natural

oscillations of the fuselage-rotor system can always be divided into

two such groups which frequencies of the first group are very

close to frequencies of natural oscillations of the isolated fuselage,

during the calculation of which the mass of the blades is considered

concentrated in the center of the rotor, and frequencies of the

second group are quite close to frequencies of natural oscillations

of blades calculated on the assumption that the blades are mounted

on an absolutely rigid and infinitely heavy fuselage.

In those cases when attachment of the hub to the fuselage is

nt.ot rigid enough (elastic shaft of the rotor, elastic sub-reduction

rgear frame, crankcase of reduction gear), it can appear that some

of the frequencies of oscillations of the second group noticeably

change as compared to frequencies of blades calculated by the usual

.me thod.

Therefore, as a rule, frequencies of natural oscillations of

the first group can be determined with the help of methods discussed

in this chapter as frequencies of the fuselage, not taking into

account elasticity of the blades. The exception can be special

cases when, for example, rotors are attached to light and elastic

wings on a helicopter of transverse configuration. in these cases it

is necessary to Palculate frequencienz of joint oscillations of the

fuselage-rotor system by the mentioned method of dynamic rigidity.

3
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Regarding, however, frequencies of natural oscillations of

blades, it is apparently necessary always to estimate the possible

change of some of these frequencies conditioned by local elasticity

of attachment of the rotor to the fuselage.

Thus, to account for the connection between vibrations of the

fuselage and blades it is practically enough to estimate only the

change in frequencies of natural oscillations of blades, which is

conditioned by the local elasticity of the blade attachment.

In the following point of this paragraph there is discussed the

method of sucei calculation for determining frequencies of natural

oscillations of blades in the plane of rotation taking into account

bending elasticity of the rotor shaft. This case is praotically the

most important.

The elasticity of other elements of rotor fastening (reduction

gear frame, housings of the reduction gear frame, etc.) can always be

Joined to the elasticity of the rotor shaft. Let us indicate here

certain important fundamental considerations from which it becomes

clear that only certain of the frequencies of natural oscillations of

the blades can be changed as a result of the effect of the rotor's

fastening elasticity.

In § 1 of this chapter it was shown that not ali harmonic

components of forces from vibrating blades "pass" to the fuselag-e,

since many of their components are balanced on the body of the rotor

hub.

Thus, for example, with vibrations of the tlades of a flve-blade

rotor In the flappings plane, the first four harmonic crr pc4',%n%.. -.f

forces applied to the hub rrom the blades (w, 2w, 3w, 4w) are b:.-,•c•f
on the hub, and only the fifth harmonic component L transf-rr(- t,,

the fuselage.

Hence it Is clear when calculating forced osci'A1atzr.; *f tladies

from forces corresponding to harmonics w, 2w, 3w, and 4w, It is
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necessary to examine forms and fre.:enicies of natural oscillations of

the blades (with the method of expansion with respect to natural forms)

calculated for the usual boundary conditions when the blade is assumed

to be hinged supported on the fixed hub.

As regards the forced oscillations with respect to the fifth

harmonic, it is necessary here to take into consideration the

presence of joint vibrations of the blade and fuselage.

The physical essence of this phenomenon is that the forms of

natural oscil-latlns of the rotor with elastic blades can be

divided into two groups:

1) forms of oscillations of the rotor at which forces from

separate blades are balanced on th,! housing of the hub;

2) forms of oscillations of the rotor at ,..hich forces from

separate blades are summed on the housing of the hub and are

transmitted to the fuselage.

i'Igure 2.28, for example, shows two such forms of oscillations

for a rotor with four blades, since for such a rotor the clearest

picture is obtained. Both forms of oscillations A and B correspond

to the frecoency p! of' oscillations of a mononodal tone of an

Isolated blade in the flapping plane and differ from one another

only in the distribution of the phase of oscillations with respect

to separate blades. The form of oscillations A corresponds to a

situation when pairs of opposite blades vibrate in oppos-ite pha:;es.

flere forces P P2' P3 and PV, acting on the rotor hub, are mutually

balanced at every instant and are not transmitted to the fuselage.

The form of oscillations B corresponds to a situation when all four

blades vibrate in one phase. Here forces P1, P2, P, and P4 are
summed on the hub and give a certain force acting on the fuselage

and changing in time with frequency p1 .

Ir the rotor huib is mounted on an absolutely rigid support, the

) r',.,,ite,.l•,.f,': 1-th, i Vorms of oscillations A and B of the rotor are
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Fig. 2.28. Forms of oscillations
* of a rotor with elastic blades.

identical and equal to frequency p, of natural osclliatiors of the

Mtrst tone of one isolated blade with a hinged attached shank end.

e', however, the lhib Is mounted on a certain elastic support witI

vertical rigidity c, the frequency of the form of oscillations A will

not be changed and will remain equal to pI, and tne frequency of form
5 will drop more, the less the rigidity c.

It is possible to show that forms of the two Indicated typen

exist for a rotor with any number of blades z. These forms of

oscillations can be characterized by a certain formula. Thus, for

example, all forms of oscillations of a z-blade rotor, wh!ic ccrrespons'

to the k-th tnne of oscillations of the Isolatud blade, are :hari:ter-

Ized by the following law of oscillations of the tladen:

where y (X, t " the deflection of the point with coordinate x

to5long to the n-th tlade; cos n - characterizes the law '-

11istribution of phines of osclllat~ons with respe:t to septr,.!'.-

blades, I.e., characterlze3 the form. of osci~lations of the rotor

aa whole; 3 - iiy Uiteger which car be called the order of theh

given form of n.1ations or toe rotor (3nteger

Quantitlez in'v determined by the formula
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It can be easily shown by using formulas (1.13) of 5 1 that

forms of oscillations of the order s = l, 2, 3, ... , z - 1

correspond to the situation at which forces from separate blades are

balanced on the hub, and only the form of the order s = z corresponds

to the situati6n when forces from separate blades are summed and

transmitted to the fuselage.

Forms A and B, shown in Fig. 2.28, are forms of the second and

fourth orders for a four-blade rotor. From what has been said it

is clear that frequencies of natural oscillations of the rotor,

which correspond to forms of oscillations of all orders with the

exception of s = z, do not depend on the elasticity of attachment of
the hub, and only frequencies corresponding to the form of oscillations
of the rotor of the order of s = z depend on the elasticity of

attachment of the hub.

It is possible to show further that all harmonics of forces

exciting oscillations of blades in the flapping.plane with the

exception of' "passage" harmonics zw, 2-zw, 3zw, etc., excite only those

forms of oscillations of the rotor at which forces from blades are

balanced on the hub, and only harmonic components of exciting forces

corresponding to "passage" harmonics excite forms of oscillations of
the rotor with which forces from the blades are summed and transmitted

to the hub.

Hence a useful practical conclusion can be made. If there is

constructed the standard resonance diagram of the blade (see Fig. 1.6,

Chapter I) in the flapping plane calculated neglecting the elasticity

of attaching the rotor to the fuselage, then resonances with all

harmonics except for resonances with harmonics zw, 2zw, etc.,

correspond to actuality. Resonances with harmonics zw, 2zw, etc.,

must be additionally examined by taking into account the elasticity of

attaching the rotor hub and refining values of corresponding natural

frequencies.
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I
It Is necezsary, however, to note that In examining vibrations

of blades in the flapping plane usually Cor these narmonics it is

possible not to consider the elacticcty of the hub attachment, since

the rigidity of the hub attachment in a vertical direction, ds a

rule, is great and has little effect on frequencies of natural

oscillations of the blades (an exception j.s the case of rotor attach-

ment of a helicopter of transverse configuration having -ght and

flexible wings).

In examining the resonance diagram of the blade in the flapping

plane, it is certainly necessary tc take !nto account the influence

of elasticity of attachment of the rotor hub to the fuselage.

With respect to os-illations of blades in the flapping plane all

the above-stated considerations are also correct with the only

difference being that in this oase the "passage" harmonics are

(z - i)w, (z + 1)w, (2z - i)w, (2z + I)•, etc. Furthermnure, at

resonance with harmonlos zw, 2zw, etc., in the plane of rotation

one should consider Joint vibrations of the rotor with torsional

vibratiorns in the system of transmission (appropriate calculations

can be also carried out on the basis of the method of dynamic rigidity).
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2. Calculation of Frequencies of Natural Oscillations
of Blades of the Rotor in the Flapping Plane Taking

i into Account Elasticity of the Shaft of the
Rotor and Its Attachment to the Fuselage

Let us consider the problem of natural oscillations of blades

of the rotor attached to the elastic flexural shaft (Fig. 2.29).

Y• Fig. 2.29. Diagram
of a rotor on an
elastic shaft.

Let us assume that the ::igidity of the shaft with respect to force

P', applied to the shaft in the center of the hub and lying in the

plane of the rotor rotation, is equal to cO. Consequently,, force

P and displacement 6 of the end of the shaft which it causes, are

connected by the relation

P-c06. (4.2)

It ducs not matter whether displacement 5 occurs from bending of

thc shaft itself or is due to the elasticity of its attachment to

the fuselage.

Let us consider only the case when the indicated rigidity is

jdentical in all directiona in plane xOz, i.e., when the elastic

bWoe to which the rotor is fastcried is isotropic. In reality this

i not so, but usually rigiditico of attachment in rdircctions of

axes Ox and Oz are little distinquished, and it is possible to con-

zider the base to be isotropic, understanding by quantity c. to be

the arithmetic mean of rigidities cx and Cz:

c + e (4.3)
2
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Cos Pt Fig. 2.30. Diagram
of the calculation of
forced oscillations of
the blade for the
determination of dynamic
rigidity of the rotor.

The calculation of natural oscillations of the rotor on the

elastic base can be conducted on the basis of the method of dynamic

rigidity.

First of all let us introduce the concept of dynamic rigidity

of the blade in the plane of rotation. Let us assume that elastic

bending blade, which is found in the central field of centrifugal

forces, is fastened in the shank part by a hinge in such a way that

the hinge is able to move freely in a direction perpendicular to
the axis of undeformed blade (see Fig. 2.30).

Let us assume further that the blade accomplishes steady-state

forced oscillations under the action of a transverse exciting harmonic

force

F-FCospe

applied in hinge A. Here point A of the application of force will

also accomplish oscillations according to the law

We will call dynamic rigidity of blade the quantity

(4.4)

It is possible to determine dynamic rigidity of the bladc either

with the help of' the method expounded in No. 2 of § 2 or by the

method of additional mass (§ 2, No. 4). It is necessary to consider

that the blade is in the field of centrifugal forces and to solve

not the equation of the (2.2) type, as was done during calculation

of the fuselage, but the equation of oscillations of the blade in
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the plane of rotation (see Chapter I, § 1, No. 1.), which has the

form:

! i (n•S -(Na')' .-' Mi -,02st =,q (r, t). (4.5)

Here N is the centrifugal force in the section of the blade on

radius r.

With application of the method of additional mass one should

calculate the frequencies and forms of natural oscillations of the

blade in the plane of rotation with fastening with respect to the

scheme depicted in Fig. 2.30 with a different value of the additional

mass Am., at point A with the help of the method expounded in Chapter

I, § 2, No. 5.

According to the- results of such a calculation it is possible

to construct a graph Am.j=f(p). An example of such a graph is shown

in Fig. 2.32. Points of infinite discontinuities of function f(p)

give values of frequencies of natural oscillations of the blade with

- fixed hinge at point A, i.e., frequencies of natural oscillations

of the blade for the case when the rigidity of the rotor shaft is

infinitely great. Points at which Am.,-n give frequencies of

natural oscillations of the blade, freely fastened according to the

scheme depicted on Fig. 2.30.

The value of dynamic rigidity of the blade corresponding to

ttie given value p can be determined by formula

D. (p) =(pl +, A(p). (4.5)

The additional term w-2Am.,(p) appears in this formula from the

component centrifugal force of mass A;n... dir(cte'td e10onp the normal

to the blade.

Let us; :shoi further th•,t the dvnamic rirldity of the rotor on

tho whole can be found if the dynamic ri•.rhiA:, of •he bTlaie is

Arnown. Let u-1 turn to Fig. 2.•i on which the Cuni, in the plan of

tUo hub o1f the rotor with vertical hinires ntik the k-tr; elastic blade

t
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Fig. 2.31. Calculation of dynamic
rigidity of a rotor with elastic
blades.

is depicted. Let us assume that xOy is the system of coordinates

rotating together with the rotor with angular velocity w. Let us

assume that further the center of the rotor hub accomplishes the

prescribed harmonic oscillations in the plane of rotation according

to the law

X =. ZOCosp;
X~ sInr j. I(4.6)

Such oscillations of the hub create oscillations of elastic

blades in the plane of rotation, and the problem is to find the

forces by which the vibrating blades load the hub with its

movement.

Let us select an additional rectangular system of coordinates

nOr, rotating together with the rotor, for which the axis Or is

parallel to a straight line passing through tne center of the hub

and vertical hinge A of the k-th blade. Axis Or forms with axis

Ox a cei-tain angle 1 k" Let us designate by u1 and v. trc coordinmtei;e

of the center of the hub in the system nOr. Then, ohviou:.-/:

**= -XStl,•,+jUC•v%:
V0m xcsi. + sin .•.



Soscf-ilnations of the hub, according to the law (4.6)
coord1inazes u- eand v 0 will change with time according to the law:

ao 0=(-x0 sIn -) cos pi - (yo cos.) sin pl( 7
Wo=(xG cos ý) cos pt -V(yo sln e,) sin pt. (4.7)

Let us desitgate further by u the deviation of the point of

elastic axis of the blade on radius r from a straight line passing

through the vertical hinge A of the blade and parallel to axis Or.

With o:,cillations of the blade quantity u is a function of radius

r and time t so that u = u(r, t).

Let us assume that w is the -rector of full acceleration of the

point with radius r of elastic axis of the blade. Then

W==W-..+W.ep+1w..p,

where 0. is the vector with respect to acceleration of the point

from motion in the moving coordinate system nOr; Oup - vector of

translational acceleration from motion of the point together with

L-he system of coordinates nOr; OOp - vector of Coriolis acceleration.

Let us introduce unit vectors I and .J directed along axes r

and n respectively. Then it is possible to write:

*GT =7(vo) + 7(Uo -4, Z);

=,4 I =1"l- -A (--o).l +7' -O-'(uo- u)];
= T[- 2- ('o + i')1 + 7-(2,i.o1.

If we designate projections of the vector of full acceleration

on axes On and Or by wn and wr, then for them these expressions

are obtained:

W.( OU@) + (ai -.~u)- + 2wir0;(p)
I,,= (v - ,o)- - oAr - 2inuio -

I The equation of equilibrium of the beam in thc fP lol of

cr-ntrifuga.l forces has the form:

(E/"r' -- (N•')' =q, (4 .9)
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where a is the intensity of the transverse load applied to the beam.

With oscillations of the blade the transverse load from forces
of inertia can be written in the form:

q(r, = - mw.= - m [(Rio - A)( -2m) + 2-wo].

where m is the linear mass of the blade [m = m(r)].

Substituting this expression irnto equation (4.9), we will
obtain the following partial differential equation for determina-

tion of function u(r, t):

(Ela' - (Nu')' + mý - -Ou = q* (r, 1, (J4 . 10)

where

q" - ium 0 - w'u° +2 0vOl. (24. 11)

If the motion of the hub center is assigned by expressions
(4.-7), then load q*(r, t) is" the well-known time function.

Unknown function u(r, t) should satisfy equation (4.10) and

niso boundary conditions:

u (00 ,= u° (0 1) = 0; (4.12)
,"(Rf)=(Elu")',., ,=0O. (0.

Differentiating the expressions (4.7) and substituting them

into (4.11), we will find

q* r, ()=mAhcos pl- -mBh, sin pt, (24.13)

where constants Ak and Bk are determined by the formulas:

A,=- @(p?+- 2)xo+2-opy0, sin, 4,: .( 14
B,= -( ' + -,, Yo + 2-,pXoj c6s.,,.

The solution to equation (4.10), which correspondz to ztea'iy-

state forced oscillations from the load [see exprezsiori (n'.3)],

is sought in the form:

6 l. pt- -B sInptl.(
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:,- tit'tinu this exprcsszicn into (1.-0) with the right side

for o* from (4.13) we will find that function U(r) should satisfy

the ordinary differential equation

(E.;r--(Ni)' -- "+.)mr M. (4.16)

and also boundary conditions

2(o)= u'(o)=:o; }(4-17)

a" (R)=(ETzh")' ;., =0.

Let us note further that in the calculation of oscillations of
the blade, which are excited by the oscillation of hinge A according

to the scheme depicted in Fig. 2.30, it is necessary to solve the

equation of the formi:

(EIU") - (Nu')' - mi -- wOU = 0,

where u is the total displacement of the point of elastic axis of

the blade with radius r. Here function u(r, t) should satisfy

(conditions:

U,(0, )=uOcospt;
u"(0,t)=o. 0

ii* (Rt)==o;
(EIU)',. R =0 .

Searching for the solution of this equation in the form:

u = (uo + (r)] cos pt,

we arrive at the conclusion that function U(r) should satisfy

ecuattion

S(En -- (Na')' - (pl + w) mu =('± + 2) mu0 ,

which differs from ecuation (4.16) only by the constant factor

uo(p-+w'). Boundary conditions for function U(r) in this case

completely coincide with expressions (4.17).

Thus during, o cillitions of the blade according to the scheme

shown in Fir. 2.j0, f'unctlion U(r) is obtained in the same way as



in the problem interesting us [see expressions (4.16) and (4.17)],

if the anplitude u 0 is selected in such a manner that there is

fulfilled the condition

•( o)- .(4.18)(

Physically this means that the form of forced oscillations of

the blade in the problem interesting us coincides with the form of

oscillations of the blade excited according to scheme shown in

Fig. 2.30. Using this result, we will obtain one important formula.

For this let us note that during oscillations of the blade fastened

according to the scheme shown in Fig. 2.30, which are excited by

force F = F0 cos pt, the sum of projections of all transverse inertial

forces applied to the blade should be balanced by force F. Hence

we will find:

R
FO a m. (p) (pl +0•) "io =-(p7 + -1) S M ("o" fi•r---

-- (pl+U2)uOm.--(p 2 "+ W2 ) S mudr,

where m, _ the mass of the blade up to the vertical hinge

(mai SJmdr)

With fulfillment of condition (4.18) we hence obtain fornula:

mudr==- - + (4.19)p2 + &2'

i.e., the integral with respect to the blade from1r function mu [where

- L: the solution of equation (4.16)] is expressed in terrs of dynamic

ri.-idLty o[" the blade or which is the same, in terms o01 additional
mass Amea(p).

It is now easy to obtain expressions for forces acting on the

hub from the side of vibrating blades. Let us d-sirnotr b.. Qand r
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re.;pecti'.'el:,, prcjections on axes On and Or of the force applied

frc:r •,e side of the k-th blade to the vertical hinge of the hub.
Then:

3 W=,- ,,,dr= - 1 ,,auP,) dr -

i ~- (g -. ,wao+ 2 0or , .)m

N,- mwr= - m5 (. o-w•,~o- U)+ (4.20)

: R R

S+•a 5mrdr+2- rnudr.
S|ff. M

Substituting here expressions (4.15), (4.7), (4.14), and con-

oiderinC formula (41.19), we will find:

Q,0= ,,m,[(,p+ 0 2)x 0+ 2,,,pIo) sin ,, cosp I-

- [(p y,'Dyo + 22 pxol cos .;,, sin pt); (4.21)

t =No + ,m U + ).,,- ,. 2P .,,oIM (p) + -) 4p'w,,. 1 c':o-,-
[m.pI~~y0,I,2p,(0pm+a.A JPY

p+ - 4 P s0], ,jsi npt, (4.22)

where NA' 2 o r mrdr is the centrifugal force of the blade on the
'a. W

vertical hinge of the hub.

Designating by X and Y forces applied to the hub from the side

of the vibratinj blades, we obtain formulas:

X-I

" (Q Cos + N, sin I).
h--!

Sub-,tituting here expressions (4.21) and (4.22) and considering

properties of the trigonometric stuns, which were described in

No. 2 of § 1 of this chapter [formula (1.13)], we arrive at the

"'ollcwi.nC expressions:
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~AM.PW~i~~L±5'.P~u~ 4 ])CS$;(4. 21

I On the other hand, it is possible to formulate equations of

motion of the rotor hub on an elastic shaft which have the form:

i

,.,--'u+2e+.u-r.

where m6 is the mass of the housing of the hub; co - rigidity of

the shaft.

If motion of the hub occurs according to the law (4.6), th, en

the last equations will yield:

Y- ( .1 - 20 ye- + - co-r] + l dpl.

If one were to equate these e::pr.n: to (4.23) ani (4.24),

then we will obtain the system of two linear homogeneous equation-

for the determination of amplitudes x0 and yo:

Ag+oue +, (•,. ý-.0)
-I

where

a m i. n , 2., z (4.

EqAatinr" t it; 1•trrminant of this system to 7ero, a w!11 otbtair.

the charas.ter!L;t1c eouation for the determinatlon cfr nature! fre-

quencies p:



BABI= 2 8 (4.28)Swhence B A "

A -- B.

In the case A = -B [as can be seen from (4.25)] xO = YO. This

corresponds to the rotation of the center of the hub in the direction

of rotation of the rotor [see formula (4.6)].

In the case A = B there is obtained x 0 = -y 0 , which corresponds

to the rotation of the center of the rotor opposite the rotation of

the rotor.

It is pbossible to solve characteristic equation (4.28) with

respect to value Am,(p). Thus is obtained the following equation:

( p 2 + w,, ) ,L M + M DT t- o • 2 z p . 2 w.p , m,
A(p) (2 p + 2 . (4.29)

L.(p2 + w,2)+ 2p• +2 =:k 2n,,p
2p 2 +w 2 *n'

This equation can be solved graphically by superimposing on

the curve of additional mass of' the blade Am.=Amm(p) two curves,

which correspond to the right side of this expression, in which
there are taken either the upper signs (minus sign in the numerator

and plus sign in the denominator) or lower signs. Let us designate
the first of these quantities Am!(p) and the second, Am 2 (p).

Abscissas of points of intersection of curve Aml(p) with the

graph of additional mass Amn(p) of the blade will give frequencies

of natural oscillations of the rotor on an elastic shaft, which

correspond to such forms of oscillations at which the center of the

hub rotates in the direction of rotation of the rotor with angular

velocity p with rcspect to the system of coordinates xOy connected
with the rotor, and, consequently, with angular velocity p + w
relative to the fixed system of coordinates (housing of the heli-

copter). Such forms obviously can be excited only by harmonics
(z - 1)w, (2z - 1)a), etc. Abscissas of points of intersection of

curves Am2 (p) and Am,(p) will give frequencies of natural oscillations

of the rotor on the elastic shaft at which the center of the hub
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Fig. 2.32. Determination of frequencies

elastic shaft by the method of dynamic
rigidity.

rotates in a direction opposite the direction of rotation of the

rotor. Such forms of oscillations can be excited only by harmoni•s

(z + l)w, (2z + l)w, etc.

Figure 2.32 gives graphs of curves Ama(p),Am:(p) and Am2 (P),

plotted for the following initial data: c = 500 kG/mm; nz 5,=38
2 2

kG.s /m; m.* = 15 kG-s /m; W0 = 190 r/min; z = 5. The given graphs

show considerable distinctions in frequencies of natural oscillations

4 of the rotor on the elastic shaft from frequencies of natural oscil !a-

tions of the isolated blade. Thus, for example, the frequency of

mononodal tone of natural oscillations of the isolated blade of this

rotor (with a fixed bushing) corresponds to point H of infinite

discontinuity of curve Atn,(p). With this p = p1 = 640 o5c/rt.

Figure 2.33 gives the form of oscillations of this tone.

Fig. 2.33. Forms of
oscillations of the
blade: a) form of

P of rt oscillations of the
blade neglecting

a) elasticity of the shaft;
, 0b) form of oscillations

• .of blade taking into
b) account elasticity of

the shaft.
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icV Ie en l, 1, 1 ( .- ,- , Vc f_;; i .,; I, r,-,(I.~ Of

I iat un;,thýere a a a n,,reuni~ oi" osu-ilJa tions

c ,rr (2,; tr i t tL , poh1t:; A, n, C, •n o C) of the cros .nf, of curves

Am 1(p) arud Am2 (p) with curve /in_.,(p). Oscillations with forms

correspond inj to points A and D can be excited only by harmonics

- 1)'0, (2z - I)w, etc., (In this case 4 wm and 9oo. etc.). Oscilla-

tions corresponding to points C and B can be excited only by

harmonics (z + 1)0l, (2z + l)',D, etc., (in this case 6w, l1k, etc.).

These resonarnee curves are plotted for a helicopter which in

Uhe begtinning had a four-blade rotor, but then because of great

resornnce of the blade with the harmonic 3w in the flapping plane

(point A) the hub had to be altered and the rotor made five-bladed.

17Dure 2.3-3 gives forms of natural oscillations of the blade

in the plane of rotation taking into account elasticity of the shaft,

whi'n correspond to points A (pi =560 osc/min) and B (p" = 761
o.;c/ain).

In conclusion let us indicate that the method giver here for

finding frequencies of natural oscillations of the rotor in the plane
of rotation, Lakin;. into account elasticity of the shaft, is one of

the most complex examples of the application of the method of dynamic

rigidity, and therefore it was considered expedient to discuss it

!ere. Retarding/, however, the finding of frequencies of charac-

teristic blades in t]le flapping plane taking into account elasticity

o[ thp bhb fnstening an(d frequencies of osci 1 l.tions of blades in

the p±aic of rotation taking into account torsional elasticity of

the system of transmission (which are CeXciied by harmonics zw,

_ zW, 3zcn, etc.), then these calculation:. are considerably simpler

and can be completely carried out on the basis of principles

ex. pounded in 1.
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CHAPTER III

GROUND RESONANCE

It is accepted to call ground resonance spontaneously generated

oscillations (swaying) of the helicopter on land with growing ampli-

tude. This phenomenon began to appear after the construction of the

hub of the rotors of helicopters had a vertical hinge introduced,

allowing the blades to sway in the plane of rotation of the rotor.

In the history of helicopter cqnstruction there has been a great

deal of cases when the helicopter was destroyed from the formations of

such type of oscillations. Attempts to eliminate ground resonance on

a fabricated helicopter sometimes led to the necessity of great

alterations in the construction of the helicopter. These circumstances

forced engineers to work on the creation of a theory of ground

resonance and reliable methods of its calculation, which would allow

competently to select characteristics of elements of construction

determining the center of gravity margin of the helicopter on land.

At present there is theory of ground r-sonancr which explains

"* all the most important features of this phenomenon and permits calcu-

H• lating characteristics of construction on which ground resonance

depends. This theory appeared as a result of numerous theoretical

and experimental investigations of ground resonance, which were

conducted both by us in the Soviet Union and abroad. According to the

theory of ground resonance from Soviet works one should note in the

first place the works of B. Ya. Zherebtsov and A. I. Pozhalootin.

Investigations of ground resonance showed that the physical
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essence of this phenomenon consists In the following. With natural

oscillations of blades of the rotor in the plane of rotation

(with reference to vertical (drag) hinges), which can appear from any

shock (gust of wind, rough landing and so forth), inertial forces in

the plane of rotation of the rotor appear. Being transmitted to the

Vuselage of the helicopter, they create its oscillations on the elastic

chassis. Forces swaying helicopter change with a definite frequency

dependcnt on the frequency of natural oscillations of the blade in

the plane of rotation and angular velocity of the rotor's rotation.

A helicopter sways most easily when the frequency of the change in

exciting forces is close to the frequency of natural oscillations of

the helicopter on an elastic chassis. Simultaneously with oscillations

of the helicopter body forces appear which sway the blade in the plane

of rotation. The presence of such two-way connection between

oscillations of the helicopter and blades leads to the fact that at a

certain angular velocity of the rotor's roatation the helicopter can

becomre unstable, i.e., the oscillations of the helicopter which once

started (due to some shock) can appear not attenuated but growing.

The following are the main ways of combatting ground resonance:

1. Installation of special dampers on vertical hinges of the

blades of the rotor which damp oscillations of blades in the plane

of rotation.

2. Introduction of special damping elements into the construction

u shock absoroers of the chassis or tne correct selection of character-

istics of hydraulic drag of shock absorbers on the forward and recovery

stroke, and also characteristics of rigidity of shock absorbers and

tires.

The main purpose of calculation of the helicopter for ground

resonance is a correct selection of characteristics of dampers of

blades and characteristics of rigidity and damping of the chassis.

The theory of ground resonance, which will be discussed later i:

only for rotors with the number of bl-ies n £ 3.

m m • • • mm mmm •3 • •5



The theory of ground resonance of a two-blade rotor possesses

a number of peculiarities and is considerably more complicated [36].

§ 1. Stability of the Rotor on an Elastic Base

1. Formulation of the Problem and Equations of Motion

All the most important features of ground resonance of a helicopter

can be obtained from consideration of the motion of a certain idealized

mechanical system, which we will call the "rotor on an elastic base."
Such a system is depicted schematically 9n Fig. 3.1. The shaft of

the rotor with heavy and absolutely rigid blades 3, joined with the

rotor hub by means of vertical hinges 4, rotates in supports rigidly

joined with a certain heavy housing (body) 1, which is elastically

fastened to the fixed base 2 and ha4 only one degree of freedom -

forward displacement along axis Ox parallel to the plane of rotation

of the rotor. With displacement of body 1 along axis Ox there appears

an elastic restoring force from spring c and damping force from damper

•C. We will consider the elastic and damping characteristics of the

base linear, i.e., we will assume that force X, acting on oody 1 with

its displacement x(t), is expressed by the formula:

dx
X= -C-#X-x--

where c is the stiffness coefficient of the spring; x - damping factor.

E Fig. 3.1. Diagram of a rotor
on an elastic support: 1 -

body; 2 - base; 3 - blade;
• 4 - hinge.

We will call quantities c and K coefficients of rigidity and

damping of the elastic support. If m0 is the mass of body 1, and Px

is the projection on axis Ox of a force acting on the body from the

rotor, then the equation of motion of the body can be recorded in the
form:
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ax+ KxcP. (1.X2 )

Here and slu,, -equentiy the dots denote differentiation with respect

to time.

We will consider further that the rotor revolves evenly at angular

velocity w in a vacuum, i.e., we will not take into account aerodynamic

forces. The theory of ground resonance, not considering aerodynamic

forces, will quite well agree with the experiment. Thus only

inertial forces appearing during vibrations of blades in the plane of

rotation are taken into account.

To formulate equations of motion of the blade let us turn to

Figs. 3.1 and 3.2.

Let us ;,elect a fixed rectangular system of coordinates Oxyz. We

will direct axis Oy along the axis of the rotor shaft with the position

of the body 1 corresponding to the static equilibrium. The direction

of axis Ox will be selected so that the uniquely virtual displacement

of the body is directed along axis Ox.

2 - . Fig. 3.2. Derivation of
equa"ions of motion.

Let us assume that as before x is the displacement of the axis of

the rotor shoft torether with the body along axis Ox (Fig. 3.2). Let

u assume thit further ýk is the azimuthal angle of the k-th blade

of 'he rotor reckoned from the positive dir'ectton of' axis Ox.

ArwI e: z' di f' rreiit blado'.; of the rotor are determined by the
lI'qrglu ] :i
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where n is the number of blades of the rotor; k 1 1, 2, .,., n.

Let us designate by Z the distance AB (Fig. 3.2) from the axis
.OM

of rotation A up to the axis of the drag hinge B and by Ek' the angle

of deviation of the k-th blade with a turn of it relative to the drag

hinge, considering •k positive with deflection of the blade in direction

of rotation of the rotor.

Then coordinates x k and zk of the element of the k-th blade with

mass dm, which is at distance p from the axis of the drag hinge, will

be expressed by the following formulas:

xC-X+"=¢o+ , ÷ 1; (1.14)

Differentiating these expressions twice with respect to time, we

will obtain formula for determining components of acceleration of the

element of the blade:

*ainXU n N-Q(*+ýa)CO%+L +4Qosn(1.+W.*

With the formulation f -•uations of small oscillations of the
blade relative to the drag hinge it follows, as usual, to be limited

by smalls of the first order. Therefore, it is possible to consider

Thus with an accuracy of smalls of the second order, formulas for

accelerations Ik and Yk can be written in the form:

,O,•-, 37 + 26ý) r, W + ',,*+I1.
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i fit, motion of tlh :;ten in . r',•U. tni row.or blades at each

instant t are loaded only by inertial forces. Elementary inertial

forces, which act on the element of the blade, are expressed by

formulas:

dXl= - (1. 6)
SdZ,,- -- dm~za.

Let us assume that in drag hinges of the rotor hub there are

linear elastic and damping devices, which wi*.n rotation of the blade

relative to the drag hinge load by its moment

I- CAh - KAt (1.7)

dlrected to the side opposite the positive direction &k' We will call

c and X , respectively, coefficients of elasticity and damping of the

blade.

At every instant the moment from forces of inertia applied to the

biade relative to the drag hinge should be balanced by moment M.

Therefore, it is possible to write:

[-aQsin(,_.*)- zhocos(i'* -d. cA% + K.4,

,M -- .'

where integration is conducted 'i)ona the length of the blade 9.

From the last expression and formulas (1.5), after simple trans-

formations, the equation of motion of the k-th blade is obtained.
Since we are interested in equations of small oscillations of the

blade, we can be limited to only terms of the first order of smallnezs
with re~pect to quantities x, x, Ck and tk' rejecting termz containin,,:

squares and products of these quantities. Then it is possible to

assume:

Cos•,•I
sin E,, -z C1;
s In (9, + s)- I n• +, cc os

!;)• ~ ~Cos (., )•cos,;A, - E, sin÷,

3 77

COSE~ 1



After such simplificat.or.3 the equation of small oscLlations of

the k-th blade will take the following form:

~+2.4+(~.+.I)I.L~;,~(1.3)

Here the following designations are used:
saw& -- - relative damping factor of the blade; p',_•-_ frequency

of natural oscillations of Irrotational blade (at w - 0) relative to

the drag hinge; v 0 - dimensionless parameter of the blade determined

by formula

Ibm law M, (1.9)

where $,.--jodu is the static moment of the blade relative to the drag

hinge; 13 .- p'dm Is the moment of inertia of the blade relative to ths

drag hinge.

The right-hand side of equation (1.8) constitutes the moment from

inertial forces acting on the blade from displacement of the rotor

shaft (x). With a fixed shaft, when 9 - 0, equation (1.8) describes

the natural o3cillationp of the blade of an evenly rotating rotor In

the plane of rotation.

The general solution of equation (1.8) without Che right side

has the form:

where Ek and 4k are arbitrary constants, and quantity p Is determlnd

by formula

and constitutes the angular frequency of natu-al oscillations of the

blade in the plane of rotation.
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].ur:nhi: it is necessary to determine for• e P acting on the body
xx

:r:,z. thYe .;>I*rc oý thei rotor. rorce i constituites resultant forces
X

'4 Inertia of vibrating blades of the rotor, on the basis of the well-

krwin thrnrýrT. of the motion of the center of mass (center of. gravity)

!,f* , m(!charilcal ny.stem can be determined as the product of the mass

()f the ,;ystem of blades by the component of acceleration of the common

center of gravity of the system of the blades: along axis ox.

Let us formulate formulas for the deterrmination of coordinates

of the common center of gravity of the system of blades.

Let us assume that xk and z k are coordinates of the center of
c C

gravity of the k-th blade. Then coordinates xc and zc of the center

of gravity of' the system of blades can be calculated with the help

of expressions:
!A

S.-n (1.10)

Let us assume that further p c is the distance of the center of

gravity of the blade from the axis of the drag, hinge. Then, in

accordance with formulas (1.4), coordinates x,. and zc can be thus

determined:

X&O ==X+l..COS*-i-QeCOS (ý&+Yj;

Za, in4~S~yI,*+Qg

Substit~uting these expressios (1.10) and considering ,;hat at

n Ž.3 [see Chapter 1, 9 1, Po. 2, formulas (1.13)]

sin 0--- .



we will obtain the following simple expressions for coordinates of

the common center of gravity of the system of blades:

a

ah-1 (1.12)

Force Px, acting on the elastic support, can be determined by

formula

P.- -mz

Differentiating the first of expressions (1.12) twice, we will

obtain:

P, n-- m. +S•. N( [• - -o,)si,,.+2....cos.al

Substituting this expression into equation (1.2), we will finally

obtain the following equation of motion of the body:

h-I

It is convenient to write this equation in the form:

i ~a -x+2n~p~X 2~AL~ (~a w~)siri',, 2~cos~iI

where quantity

M-hh +nm. (1.13)

constitutes the general mass of the system, n i. the relative damping .

factor of the elastic support determined by formula
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and quantity pO constitutes the angular frequency of natural oscilla-

tions of a rigid rotor (without drag hinges) on the elastic support

and is determined by the formula

P02 (1.15)

Let us copy now together equations of motion of the rotor on an

clastic support, which consist of equations of motion of blades (1.8)

and equations of motion of the housing of the base:

i. + 2ni+ -,x =fvo-A)sIn+2cv

"sse (n(1 iea ifrnIal6where k w e 12n2, ... , n.

Thus equationsc of small oscillations of the rotor on an elastic

support constitute a uniform system (n + l)j linear differential

r:quatlons ,with pe-riodic coefficients for determination (n + 1) of

unknown Cunctions x(t), rk (t) (where k = 1, 2, ... n).

2. Analysis of Stability and Basic Results

]nvestigations conduct ed Coleman [35] and B. Ya. Zherebtsov
showed that for a rotor with the number of blades n > 3 this system

of equations can be reduced to a system of linear equations with

constant coefficients, if instead of W(t) there are introduced new
k

variables x (t) and z (t), which are coordinates of the center ofC c
gravity of the system of blades. In the caý.c of a two-blade rotor

equations (1.16) cannot bc reduced to equations with constant
coerfic"nts,, The analysis of the stability of motion of a two-blade

rotor on an elastic ?upport is very complicated. An account of It can

b(- found in work [361. B. Ya. Zher'ebtfov a,:;o i rveztt Iated the cae th

of a two-blade rotor on an isotropc c r..u.ort wh' theý' hou.ing

of base(_. h;aJs two degrees of freedom - in th': direction of axes Ox and

Oz (see Fig. 3.2), - and rigidity of the baz,; in both the.se direction.-

is identical. Tn this exceptional ca3se the problem is als-o easily

reduled to a system of equations with con..st'_%.t coefficientc.



Here there will be examined the analysis of the stability of

the rotor with the number of blades n k 3 having the greatest practical

importance.

In order to obtain equations of motion with constant coefficients,

let as transform equations (1.16) to new variables x(t), r(t), ý(t)

conr,)cted with the former formulas:

(117

C Ekcos V..
bI-

New quantities n and C, as one can see 1'.om formulas (1.12), with

an accuracy of the constant factor Pc/n are equal to coordinates of

the center of gravity of the system of blades in the moving coordinate

:;ystem x'Az', the axes of which are parallel to axes Ox and Oz of

the fixed system, and the origin of the coordinates A coincides with

the, center of the rotor (see Fi-. 3.2).

To formulate equations of motiorj •rn new v:iables we will multipy

all equations of motlon of blades (the first of equations (1.16) f'irs;t

by cos Ok and add their left and right sides from k = 1 to , = n andi

then by sin Pk and also add. With this let us note that for a rotor

with the number of blades n 1 3 in virture of formulas (1.13) of

Chapter Ii:

L sineacos 4.,=z0;

Furthermore,

(-1

h-, (Cos .



The last formulas are obtained by means of consecutive differen-

tial expressions (1.17).

As a result we will obtain the following system of equations:

i+ 2noi !P--q*D 0;

IM

n $ o • . . -( 1 . 2 0 )

2 1,.,
S+2n.t- [-1 (1 - ..- p7.l 0 .; . . o.;

Thus there is obtained a uniform system of three linear differen-

tial. second order equations with constant cccfficients relative to

the three unknown functions x(t), n(t) and C(t).

Now the analysis of stability of the system can be conducted by

the usual means.

Let us assume that:

where xO, n0 and C0 are certain constants.

.'•cstiting these expressions into equutions (i.20), we will

obtain a system of three algebraic linear hcmogeneous equations for

the determination of quantities xo, nO and ,0" Equating to zero the

determinant of this system, we will obtain the characteristic equation

for determination of X. Developing this equation in powers of X, we

will obtain:

+ -- + e). + fO, (1.21)

ilere and further the following, deigna-lons are introduced:

)



I

, , (2().22) (
K.- Pa,

b BO + 8101;
C=co+ C?;
d=D,+Dp + D2;;.

C. 2 [o + W, (2 - '],o

Bo-"

B,- [4-(2-g) ( )]
Cc - -•[.+ 2ý. +'(Wo + ) .]
c,-- , R. +•.] 0 + vo);

Do, ,-- [42. + ý4..+ 2(1 + 4%no;,) •,..'
D,- _-2[2.+(I+vl)( + 4ojj - -2.(1 ,.•]

F,, ~-'--L.E3 [4to- [.0: ,(+,.;)- 2?.% i-,]]

1•i-,'

Fe

Dimnensionless damping factor.ý -no0 (elazstic Support) arid F iri:are determined by Lforrnulao:
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A (1. 25)

I
, Dimensionless coefficient c is determined by formula:

2 1mM" (1.26)

It is easy to clarify the mechanical meaning of this important

coefficient. Quantities S and I can be written in the form:
B. U1 BIB. H

!, S* -m•.:

whence is the radius of gyration of the blade relative to

the drag hinge. Therefore, expression (1.26) can be copied in the

form:

- -- - •(1.27)

Quantity o e/p I depends on the law of distribution of mass along

the length of the blade and lies for different blades in the narrow
l]imits: P c/p, "',' 0.8-0.9.

Therefore, it is possible to consider approximately that quantity
3 is proportional to the ratio of general mass of the blades to the

mass of the whole system (mass of the body o:. the elastic support + m,ýs::

of the blades) and can be called the relative mass of the rotor.

A detailed analysis of the char'acteriztLc equation :;how:; that in
.he system only oscillJatory instability is possible, and aperiodic

instability Is 1.m[)osible ['35J. Borders of /ones of oscillatory

Instability (corresponding values of W) can be found by the following

method: on the border of the zone of instability there takes place

purely harmonic (not attenuating and not groAing) oscillations which

corresponds purely to an imaginary value of one of the roots of the



characteristic equation (1.21). Assuming in 'his equation X =

(where p is the real value) and equating to zero the real and imaginary

parts, we obtain the following equations: c
ap - ep2 + e = 0; (S~ (1.28)

Since coefficients a, b, c, d, e, and f are well-known functions
of' W [see formulas (1.23) and (1.24)], then equation (1.28) can be
examined as a system of two equations with two unknowns p and W.
Values W and p, being the solution of system (1.28), constitute the
dimensionless angular velocity i of rotation of the rotor, with which

harmonic oscillations of the system are possible, and a corresponding
dimensionless angular frequency p of the oscillations.

It is possible to solve system (1.28) using the fact that the
first of equations (1.28) is biquadratic with respect to 5. Prescribing
different values of w, it is possible from this equation to determine

p, after which we can compute the value of certain quantity D(•) equal
to the left part of the second of equations (1.28) with this value of

D•w-)-? 'b?+dO--f. (1.29)

According to the results of such a calculation it is possible to

construct a curve of the dependence of D on W. Values w at which D
turns into zero will be bordexzs of the zone of instability. It is
possible to show that values 9 at which D > 0 correspond to the stable
motion of the system and values w at which D < 0 to unstable motion.

Calculation of zones of instability is very laborious, and it
can be practically carried out only on digital computers. ligurez

3.3-3.12 shows certain results of such calculations carried out on
the digital computerTStrela" by engineer V. G. Pashkin. The graphs
on these figures permit determining the stability limits and damping
margins.

()
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Stability of the system is determined in general by the following

five parameters: v0 , E, pZ0, n., rý. The graphs are plotted for the
0

two most frequently encountered values v0- 0.25 and v0 = 0.3. The

value p = 0, i.e., there is examined a rotor on whose deag hinges

are only dampers. The elastic elements are absent, and the influence

oP" elastic elements will be clarified below. For each of values v

there yields a series of graphs corresponding to different values e.

Plotted along the axis of the abscissas on each graph are values of

the dimensionless angular velocity w, which corresponds to limits of

the zone of instability, and plotted along the axis of the ordinates

is the dimensionless coefficient n of damping of the blade with

which the given zone of instability is obtained. The graphs are

plotted for different values n0 of the dimensionless damping factor

of the elastic support.

As can be seen from these graphs, the zone width of instability

essentially depends on damping factors n and T 0 1 With an increase in
*a:Lmping (at fixed n0 ) the zone of instab~Jity narrows, and at a

; .rtaln critical value Fi the zone contracts into a point. At value

rn > n-* the zone of instability is absent at all values w. Thus,

for example, at c = 0.02, and v0 = 0.25 (see Fig. 3.3), if R = 0.06

the zone of instability contracts into a point at n = 0.128, and at

n > 0.1-28 the systems is stable at any w (In this case F*= 0.128).

425 -- -
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instability (c = 0.10; v0 = 0.30).

It is convenient to call the ratio 6=.++:.- the dam~ping margin in

/4-i

the case when it is larger than unity,.o

The value w at which the zone of instab-_lity is contracted into

a point is called critical and can be calcul-tea by the approximate

formula:

Below we will give a physically graphic explanation of this formula.

It is necessary to note that an increase in value n does not
always lead to an improvement in stability. At small values n (this

'-n be traced on the graphs) an increase in i3 can lead even to a

:mall movement In the lower limit of the zorki of instability ir. the

direction of smaller values of W. This carn Lead to the appearance of
instability at values w for which at -,maller n the motion was stable.

An increase in damping n0 of the e)astl support at -near,m•i•eo

01, of also le&ds to an i.mprovement in stabi ity; however, at minute

:i }31
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values of n an increase in n0 can lead to a c.isplacement of the

upper limit of the zone of instability to the right and, thereby,

to an expansion of the zone of instability.

An analysis of graphs permits making the following important

con.vlusioh: in those cases when quantities n.- and n0 are of one

order arnd are 1istinguished to a certain side by not more than 2-3

trimes, any increase in damping n or n lead& only to an increase in

-.tability. At such values of n and n the -reatest necessary damping--

is obtained approximately at

For this case very important for practice the simple approximate

formu-i. of B. Ya. Zherebtsov,' which shows that the damping margin is

proportional to the product of quantities n and n can be obtained.
_0

This formula gives the value of the product r]n 0 at which the zone of

intability is contracted into the point:

(I -V) (1.30)
ed 0

This approximate formula is true only when p 0; its

correctness can be traced by the graphs. i. the case when P,0 7 0

it is pos.ible to use another approximate formula:

-- _ I-V ,) (1.31)

where the dimensionless quantity A is deterr-.ned by formula

a---I+vo . (1.32)

Pl]Iure 1", .hows the dependence of A 0.1 p at v 0.25. From

I, ;t•iph Ii. I:. cLecr that the required damping can be considerably
(.(•r,:i• byi th. 1 nt 1 .•ductiorn of an elastic ,•lcment in the drag hinge

. t;:. l••b. Ar ln•prov(:ment in st-bila ty o" tne s yterr, with an in'ýrea:&e
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-I"I Fig. 3.13e Effect of elasticity

in the drag hinge on required
S.606(4) das.,ping.

-0 0,2 04 0,6 ,8 P,9

in P Ois iilustrated also by a series of graphs on Fig. 3.14.

However, with the introduction of an elastic element into the

construction of the drag hinge or the introduction of so-called elastic

interblade connections, it is necessary to remember that the bending

moment, acting on the shank part of the blade in flight, is conditioned

both by a d&mper and elastic element on the drag hinge. Therefore,

with at, increase in rigidity of the elastic element (with an increase

in ) simultaneously with a decrease in the necessary damping moment

there will be increased the moment acting on the blade from the side
of the elastic element (or interblade connection). The optimum value

Pi0 should-be considered such that with the bending moment, acting
0.

on the blades in flight, will be least at the constant damping margin

with respect to ground resonance. This optimum value p0 depends on
0

46

- --S Miloto- Fig. 3.14. Graphs illus-

f.f ,u02 trating the effect of
-fO, //f--. elasticity in a drag hinge

. I7, 4.- ,( 0.014; v = 0.366).
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n and should be specially selected for each helicopter. For a more

detailed description of this see § 6.

3. Physical Pattern of Behavior of the Rotor

with Ground Resonance

For a clarification of the physical pattern of the behavior of

the rotor with ground resonance let us examine the following problem.

Let us assume that the body of the elastic support (Fig. 3.1)

accomplishes harmonic oscillations with respect to the assigned law:

x=xosinpt, (1.33)

where x and p are the amplitude and frequency of oscillations of the

body.

We will examine forced oscillations of blades with such motion

ofC the body. Equation (1.8) of the motion of the k-th rotor blade

here will take the following form:

= v --j--' sin pi sinl" (1. 3 4 )

Considering that *i-wt+-•k (k=1,2, . . ,n) and presenting the right-
N

hand sideof this equation in the form of two harmonics, it is possible

to writc, the equation in the form:

4+2n,%, (p,+ taI'~

21...

r'I= j I;• the cnriventi ,ru , luatlor, of ;. c ,.:: r : ,.1 ,ri.: ,, the.

:;yntem with one degree of freedom.

The rirht-hand ::ide of equatiot, (1.35)) a'ri.tltutr• an excitlr1 $

f'orce which, In thi:; case, cnrsists of twr *±rt:'. Etch part corz titutes



respectively equal to (w p) or (w + p). in virture of the linearity

of' equation (1.35) oscillations of the blade from each of these

loads can be examined independently. Forced (stabilized) oscillations

of the blade will occur according to the law:

16(0-j ~COS[1(w +pAl +?1I+*;C0S[Wp+Yl (1.36)

where •, •, •, y are certain constants which can easily be determined

from equation (1.35).

Thus with oscillations of the body of the elastic support

acuo.,Kun to the simple harmonic law with frequency p of the rotor

blade, forced oscillations with two combination frequencies (w + p)

and (w - p) dependent on the angular velocity w of rotation of the

rotor will be accomplished.

The most intense oscillations of the blades will be obtained

with resonance when one of the frequencies of excitation (p + W)

or (p - w) will be close to the frequency of natural oscillations

of the blade pa-m1'p+vm2.

Let us exarjine first the case of resonance when

Y-74. T P (1.37)

In this case the quantity •i in expression (1.36) will be

considerably larger than quantity (2' and therefore the second term in

14,rrnuta (1. 16) cani be di(sregarded. With sucao. simplification and

uiih't C,11di-t.lor (t.rfl. the ]aw of motion o!' the blade will have the

t'orm:

where

J%--



Let us calculate further the force Px acting on the body of the
x|

elastic support from the inertia of thus vibrating rotor blades. For }

thlýý we will find the motion of the center of gravity of the system
ov blades by the formulas (1.12). Substituting into these formulas

the expression (1.38) for and considering that

k

h-I

and

sin [(2w-- p) +t;-k 0].OhI-

ufter ,Lrmple transformations we will obtain the following law of motion

nf thr confer of gravity of the sy,;ttvi of b1;Ades:

.,X+.e .% cos pA;

2 1(1.40)
ze= 2 to sin Pi

If one wece to consider that coordinatez of the center of gravity

in the coordinate system x'Az' connected with the body are expressed

by formulas x = - x and z'= 4c then the center of gravity of the

system of blades in this system of coordinao-s moves according to the

11w:

y 4 Co(s.41)

se, Qe!A sin P1.f

Thus, with resonance, when equality (1.17) is fulfilled, the

uniter of gravity of the system of blades de.:cribes In the system of1
crý,UPdlnrrtuen connected with the body a circleý with a radiu, to*

iore the angular velocity of Its rotation aout this 13 equal to

frpquen-y p of tht. ::isigned oscllations o, -he body.
I

'will eter,.,rje now forc~t i-A, :ctir,, n th,2 btj, fr',m Ut,.

"- V ~.AI';.; - -n".-,.x~ . 'ThP, ** " -,.'.r':;i r. w! i ' 1 . u tan'• n j. "

A

Al
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Substituting here the expression for C from (1.39), we will (
obtain:

P.Mrxnamjo [+._L VIPa (-To XCos pi. (1.42)

Thus with oscillations of the body according to the harmonic

law (1.33) and under the condition of resonance of the blade (1.37),

the force acting on the body from the side of vibrating blades is

changed with time also according to the harmonic law with the same

frequency p, with the phase of oscillations r/2 (with respect to

oscillations of the body), and is proportional to the amplitude x 0

of oscillations of the body.

Expression (1.42) can also be.presented in the form:

If one were to formulate the equation of oscillations of the

body (1.2) under the action of force Px assigned by such an expression,

then the following will be obtained:

Uain. the dealKnntions already accepten by , earlier, tohi•

equation can be written in the form:

If there can be round parameters of sy;.'em at which the law *f

motion of the body (1.33) satlsfles this eqý.tion, then thi3 mean3

that with such parameters of the 3ystem a p*.'ely harmonic motion

(sustained oscillhtion:) with fzrer;eney p ".. potnible. rb9titut~r,•

| .r . ....



expression (1.33) into equation (1.43), it is easy to see that this

iz obtained with the fulfillment of the following two conditions:

i,(N

Furthermore, it is necessary to remember that equation (1.43),
war- obtained under the condition of :osonance of the blade, i.e.,
under condition (1.37), which, considering that p0 o p. can be written

in the form:

(1.45)
'Fronm this equation one can determine the value of the critical

Srii:' I .I2ot. • of rotatlon of the rotor at which sustained

Io,.ilat ton-.~ n the system are pozsible.

Formula (1.44) gives the value of the praduct o at which
.:;itained ":;ciliatiort3 are possible, and, as we will now see, from

this formula and condition (1.45) there is obtained approximate

formula (1.31).

Thus .ustalned oscillations are possible only at such 4alue of
w when two resonances simultaneously take place: resonance of the
blade ,oon d ition (1.-5)] and resonance of tr.it elastic support p - P0.

At such value of w and with fulfillment of ccndl.tion (1.44), natural
E,:;,:iilhtion of the rotor on the elastic supp.rt can be sustained by

-u vtrlab!, ,txcItintv tI'rce *ippearnlng from viL.-ating blade", which

hc*rp are In a state of resonance.

In examlnIng equation (1.35), w', .-aw tt:.-.t reconance of blade In

pne43ible in two a , namely: when one of the combination frequencies
(P + w) or (P- w) coincides with thv natura: frequency of oscillations

of the b'ale, I.e.,

an

II



SOf these two cases we examined only the f7irst. In the second
--ase all the derived formulas will be obtainea by the same means, but

in all expressions instead of quantity w there will be quantity -w,

including in formulas (1.44). From this formula it is clear that at

pm= Ip + wj sustained oscillations are possible only under the

condition non• < 0, i.e., in this case one of the quantities n0 or n

should be negative. This means that ground resonance is possible

only when p = Ip - wl and is impossible when o = + Wf.

Let us consider further the resonance diagram (Fig. 3.15). On

this figure there is depicted the curve of the dependence of frequency

of natural oscillations of the blade p* on anfgular velocity w, and

straight lines p = p 0 + w and p = 1p0 -w are plotted. The diagram

is depicted for the case when p0 < P0.

As can be seen from the diagram, there are two values of w at

which the condition p• = 1p0 - wi corresponding to points A and B

is fulfilled. For point A conditon p = p0 - w takes place and for

point B, condition pi = - P0.

Fig. 3.5. Resonance diagram.

Thus in the first case w < p0, and in the second w > p.. Turninr

to the second of conditions (1.44), we see that it can be satisfied

(with positive values of n0 and %n) only if wi > p0. Consequently,

from the two possible values of w at which there can be resonance of

the blade only one (w > p0 ) can correspond io sustained oscillations

of the system.

We will. define this value w and call (A ) critical. SoIv Ir: f; }
equation (1.-45) with respect to w and rejecting one of' the obtained

'400)



values ('w <p), we find

,e + V .- 4

When p*.=ýO there is obtained the formula

c p (1.47)

Fubstituting value w from expression (1.46) into the second

,o)rdi tion (I .4), we wll. 11ind:

ii (t! -- o) A,
8Vo

"4 + 1+ +@

These formulas accurately coincide with the approximate formulas

(1.31) and (1.32).

The arguments, given here, together with the analysis of stability

1,.Iven in § 2, permit making the following conclusion: condition

(L A alway:; pr'ovide.- st;ibil ity with criti cal anfgular velocity8v0

r- rotorr rotation d r,-.m.ir i' ' by forrm ula (1, .t ( , ) . t1owr.'1C , a:. w-:1

rindicated durl, thenal. of graph-- on F.;rz. 3.3-3.12 this condil-

tion is true only when quant.ities T1 and n are of one order. This 1

means that the provision of stability at to-ca),, still noes not

certainly provide stability at any w.

4. Rotor on an Isotropic Elastic Base

The theory of stability of the rotor on an elastic base discussed

Sin this paragraph is correct only for the case when the number of
b]adoes oF the rotor' i., r, > 3 and when the e ist c tsupport hs on:, n one

. ,(Cr'•: •,' ,.- om, -- ;r~revem,,nt ai orn the axis; )7 ( Fir2. 3 . ).

,4 ('1



However, an analogous theory of stabilit;/ can be constructed

for a more general case when the elastic support has two degrees of

freedom: displacement along axes Ox and Oz. Calculations of stability ;

for more complex system are very bulky. On the other hand, in

practice almost in all cases it is possible to use formulas for the

case of an elastic support with one degree of' freedom. Thus this can

always be done when frequencies of natural longitudinal and lateral

oscillations of the helicopter on an elastic Thassis (see § 5) are

far from each other.

It is of interest to indicate certain simple results which are

obtained in the theory of stability of the rotor on an elastic

support with two degrees of freedom in the special case of the so-

called isotropic elastic support when rigidity and damping of elastic

bracing of the body of the base are identical In both directions

(Ox and Oz). in this case the elastic and damping properties of the

base are identical in all directions parallel to the plane xOz.

Therefore such a base is called isotropic.

Let us assume that the rigidity and dar.ing of the isotropic

base, identical in directions of axes Ox and Oz, are characterized

respectively by coefficients c and K so that forces Px' and Pz'

applied to the base, are connected with corresponding movements x and

z by formulas:

Pm -- -- ý--
doPS dx*1(. o8

It appears that in this case instability of the rotor on the

elastic support can also take place. Here the zone of instability i.,;

obtained near the same value of ww1wp, as earIier:

'+(l.'9

In the case •.6- 0, Just as earlier, there is obtained a zimplcr

4 02



formul a:

" -V (1.50)

Here quantities P.. p.,. and v0 are determined as before by

formuI a.3

I,,.

Anr.iogous formulas for the determination of required damping
alsc are obtained, but required damping in this case is twice greater.

The formula for required damping, at which the zone of instability

"contracted into a point, has the form:

n = -L. (1.52)
4vo

Quantities c and A are deterhinned as before by formulas (1.26)
mnd (1.3Ž)..

5 2. Tra-,'sverze Vibrations of a Sin,-Ie-Rotor Helecopter

1. Preliminary Remark-s

In the calculation of oscillations of a helicopter on an elastic
urndercarriage it is possible to examine the fuselago as a rigid body
ra;;tened to a fixed base (ground) with the help of a system of elastic

elements.

The calculation of ground resonance of a helicopter, as will be
:;nown below, can be reduced to the calculation of a rotor on an
elastic base which is examined In 5 1. Initial data for such a
calcuiation (characteristics of an elastic base) are -obtained from

:s eertori rprel minar:! calculation of natural osciilations" of a rigio
orai 03



fuselage on an elastic undercarriage.

The helicopter, examined as a solid body on an elastic under-

carriage, has 3ix degrees of freedom. However, since the fuselage

has, an a rule, a plane of symmetry, then longitudinal and lateral

natural oscillations of the helicupter can be examined independently

of each other.

For- a single-rotor helicopter having an extended fuselage,

calculations from the point of view of ground resonance are, as a

rule, lateral oscillations. With longitudinal oscillations the

damping margin for eliminating ground resonance is obtained consid-

erably larger. Therefore, to calculate ground resonance of a single-

rotor neliconter it is sufficient. to examine only lateral oscillations

(see also § 5).

In examining transverse vibrations it follows to consider three

degrees of freedom:

1) lateral displacement of the center of gravity of the

helicopter;

2) turn of the helicopter around the lc~ngitudinal axis(rolling);

3' turn of the helicopter around the verti-a] axis (yawing).

Oscillatio,,z of a helicopter corresponding to these three

deg;rees of freedom, in general, cannot be exn.minea as independent

osciJlations. Thus, for e.xample, with later-,l displacement of the

center of gravity of the helicoptev there ab4.ear forces causing

rolling, etc.

However, for a single-rotor helicopter, for wnlch the Longitudi nc1

iime,•sion of the fuselage is relatively grea* as compared to its

lateral dimensions (this is not possible, for example, for helicopter.,

of tandem and transverse configuration), oscillations of yawing appear

weakly connected with transverse oscillatiorn. of th" helicopter and

its rotation around the longitudinal axis. Therefcr-, in the first

404



approximation oscillations of yawing for a single-rotor helicopter
can be examined as independent. Furthermore, with oscillations of
yawing of the helicopter movements of the center of tho rotor in

the plane of rotation are relatively small (as compared to lateral

.oscillations), and therefore oscillations of yawing for a single_.
rotor helicopter, as a rule, present no danger in the part of ground

resonance. As we will further see (§ 5), such oscillations are
dangerous for helicopters of longitudinal and transverse configuration.

'Thus in examining lateral oscillations of a single-rotor

hcllcopter it is sufficient in the first approximation to examine the

fu:,elagae a:s a body having two degrees of freedom:

1) lateral displacement of the center cf gravity of the

helicopter;

2) turn of the helicopter around the longitudinal axis (rolling).

With such simplifications the problem of natural lateral oscilla-

tions of the helicopter can be reduced to the problem of natural

oscillations of a flat solid body elastically fastened in its plane

(Fig. 3.16).

2. Lateral and Angular Rigidity of the Undercarrage.
Center of Rigidity-

Let us assume that a rigid body A, simulating the fuselage of

nelicopter, is fastened to a fixed base with the help of a system of

.springs ( -11. 3.16). Let us select the fixec syztcm of coordinates

C 0Z, directing axis coy along the axis of symmetry of the body and

axis c 0 z - along the axis of the horizontal .prints c'.

Tf to body A there is zpplied force P,,, parallel to axis c 0 z at

dL;tarnc- y from point Co, then owing to the oieformation of the springs

tho budy A will move in its plane so that ic.. axis of symmetry will
()Oupy a certain pGo Ition cy'. Let us des-t .',nate by 0 the angle of

r: i tton of the ;,xl, of symmetry of the body (angle of bank) and

by v ',.C i[mp] ( ,.nt of' point .: segment C' )

IT "O



Fig. 3.16. Diagram of elastic
bracing of a helicopter.

Let us assume that the springs have linear characteristics. Then,

as is known, there is always found such a point of the application

of force on axis coy (or such value y) for which the angular dis-

placement * of the body will be equal to zero, i.e., with the applica-

tion of force P at this point the body will-obtain a purely forward

displacement (* = 0). Let us call such a point the center of rigidity

of the shock absorption system.

-If':to body A there is applied a pair of forces with moment M,

then the body will obtain only an angular displacement - turn around

the center of rigidity.

It is not difficult to see that for the simplest system of shock

absorption, depicted in Fig. 3.16, the center of rigidity will be at
point co. It is convenient to characterize the position of the center
of rigidity of the shock absorption system by the magnitude of distance

e from the center of gravity c body to the center of rigidity cO.

If to the body there is applied force ?,., directed along the axis

of symmetry coy, the body will obtain only forward displacement y

along axis coy. Since characteristics of a] elastic elements of the

shock absorption system are linear, then fcrces P and P and pairz y
moment M are linearly connected with corresronding dlsplaccments y,

z, and of body A.

4 O
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Let us assume that this dependence is expressed by formulas:

p , . . € , •( 2 . 2 )
S~(2.3)

We will call quantities Cy, cz and c, respectively coefficients

of vertical, lateral and angular rigidity of the shock absorption
system.

Elastic properties of the shock absorption system are completely

determined by these parameters: the position of the center of rigidity

(e) and coefficients of rigidity c , c and c .

For the simplest system of shock absorption depicted on Fig. 3.16,

stiffness coefficients of shock absorption can be determined by

formulas:

e,=2c;
c.=2 ;; (2.4)

C? 2cal

where c' and c' are stiffness coefficients of vertical and horizontal
y z

springs;

2a is the distance between axes of the vertical springs (wheel

track).

Undercarriage designs of helicopters aurc basically two types:

]) pyramildal unctercarriages;

;2) underiarriage with vertical 3trut:.

Diagrams of cla;stic shock absorptlon c. ,respond~ng to these two

types of landing gear are depicted in Fig. -. 17a and b.

I.I'
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a) b)

Fig. 3.17. Different undercarriage
configurations: a) pyramidal; b) with
vertical struts.

The tires in such a diagram can be considered absolutely rigid,

and their elasticity can be simulated by special springs with rigidity
nx nH

cy and cz , which are respectively equal to the vertical and lateral

rigidity of the pneumatic tire.

The coefficient of vertical rigidity ol the tire can be determined

by diagram of static tire pressing, which is always in the wheel

catalog and constitutes the ratio of the ma-nitude of force pressing

the tire to the support surface to the magnitude of the corresponding

tire pressing. Lateral rigidity of the tire, if there are no values

of it, can be determined experimentally. Thn value of late,'al

rigidity of the tire must also be known for ,:arrying out shimmy

calculation. Therefore, if for a given wheci. calcuhation of shimmy
was conducted, the value of lateral rigidity is known. For a tentatl.u
determination of lateral rigidity of a tire it is possible to use

Table 3.1 also.

The shock-absorber strut in Fl.? 3.17;, and b is alzo rcnla,:,fd by

a certain spring with rigidity ca. In reaolity the shock-absorber

strut is a nonlinear elastic element, and 11.n characteristic is

determined by the dlagram of t:.t-tAc prrSi:. cf t z trut, wh21Th ;)" i
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Table 3.1.

rH P 1-iType of pneu- c /C
matic tire z y

Arch 0.7-0.9

Medium-
pressure 0.4-0.64

High-
pressure 0.3-0.4

the dependence of force P acting on the strut on movement s of the

strut.

With the calculation of small oscillations the strut can be

replaced by an equivalent linear elastic eleeont (spring) whose

rigidity is determined by the formula:

cow= dP S1 " (2.5)

where s is the strut pressing of the shock absorber.

In a landing gear system with vertical struts (Fig. 3.17b) the

center of rigidity of the shock absorption i• always at point c 0

lying on the ground surface. Itiffness coefficients of such a landing

7ear are determined by formulas (2.4), in which cz and c are
z y

rc:;pectively equal to

- Ca(2.6)
C; - - AN,+ Co-- '--s

For aq pyramidal undercarriage (Fig. 3.ila) the center of rigidity

:: always higr-,her than the ground surface, anJ its position must be

r.alculated by special formulas, which we will give below.

A pyramidal unrdercarriage is a speclaa case of :. certain mro're
cu.p iundercaJrr'.1,, 1 " :;y:~in dev lpŽ' ] ~Eg i, h C• rrr f•;'istt ]icorrplr?x rle,,•t tolopet,; bylE,,i h r

tL 9i ;LrLd d91irt,' ( in . 'i' . , :r.tj:r . ,,,

)4 (.59



system differs from the pyramidal landing gear by the presence of a

rocker AB and special horizontal spring with rigidity c.p. In such

a system there is the possibility of changing the height of the (
position of the center of rigidity c0 (i.e., quantity e) by means of

selection of definite rigidity of the spring cp. In particular, by

selecting a certain value c it is possible to achieve a positionnp
at which the center of rigidity of the shock absorption system

coincides with the center of gravity of the helicopter. As it will

subsequently be seen, the connection between oscillations of rolling

and transverse oscillations of the helicopter is absent, which permits

obtaining gbod characteristics of the helicopter with respect to

ground resonance (see § 4, No. 3).

For a landing gear system depicted on FIg. 3.18, it is possible

to write the following formulas, which can easily be derived by the

usual methods of structural mechanics:

elf . (2.7)

+

e, ; (2.8)

211 hS4  o2/h0 _(29Ca 12 + _..L +*_. ._.hý2 ) _ I

!a

. ...... .... (2.10)a 2)
2 C..1 2  ~ ;C- j

where h 0 is the distance from the ground sur:'ace to point F of the

crossing of axes of the shock-absorbing struts (see Fig. 3.18);

S- distance from the axis of the shock absorber to point A; X1 -

distance between points F and A; £2 - distance from point F to the

center of gravity of the helicopter.

The given formulas contain as a special case f'orruia:; ror calcu;la-

ting the pyramidal landing gear (see Fig. 3.V17a). To obtain r for'rr, u a:

of a pyramidal lanilnrqr gear it follows in forrula. (2.7) and (2.8) t

take CU.
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Co Fig. 3.13. Undercarriagediagram of the "Bristol 192"i

helicopter.

3. Natural Transverse Oscillations cf the Helicopter

Let us turn to Fig. 3.16. During the st}dy of lateral oscillations

will examine for body A two degrees of freedom corresponding to

coordinates 0 and z. Let us put an additional limitation on the

motion of body A, namely, let us require that point 0k, belonging to

body A and at distance ak from the center oOf -ravity of the body,

woul'd remain fixed. Then body A will have o:;e degree of freedom -

turn arouna point Ok . The equation of natural oscillations of body

A., thus fa.tencd will have the form:

oi+ Co,? -o, (2.11)

where T iz the moment of inertia of' the bocy with rezpect to point

/0n "=/4-M-ral; ( 2.12 )

1 1:; the moment of inertia of tIhe body; with resrpect to the center

of* 1,ravl ty; m the, mas of" the body.

Cof ff'icienL 0 t; . the arifjui.r rigidit:y of the sy::1,e!m of :;hock
01

;:orT ,•.ior with the turn of Ibodi A wit:j res'' ct to a ,jolnt 0

;il



0uantity ck is easily determined if the position of the center of

rigidity co of the shock absorption system and also its angular c

and lateral cz rigidities are known.

With turn of the body at angle * with respect to point 0 k the

center of rigidity will be displaced by the magnitude

z-•(a&--e). (2.13)

Then to the body in the center of rigidity there will be applied
force Pz = cz z, directed to the left, and a pair of forces with

moment M = c¢, directed counterclockwise. The moment of these

forces with respect to point 0 is
k

M = P, (a, - e) + Cq = [c, + C, (a, - e)2] •.

Whence there is obtained following formula for angular rigidity

Ok

co,,-c, + e, (a,- e) . (2.14)

The frequency of natural oscillations of the body with the

secured point 0 k is

CO

or
e, + c, (Oh -- t)2

During oscillations of the system at point 0 . there wiA) appeark

a reaction R, depending on the position of point Ok. If it were

possible for us to select such a point of fastening 0k (such value ak)

for which R - 0, then this would mean that such a point 0, is the node

of natural oscillations of a free system with unfastened point 0 k,

and the corresponding frequency p k would be the frequency of natur'nl

oscillations of the free system.

The reaction R can be easily determineo. With oH:;icatlior, bolyjb

A n;; Ioderl by the ý'or*0 e ( of inertia F ,aprp ied in h,.. c'rLttr. of

f ruivlty arid parrai Ve] to the )7,

4 12



F*=-- -mz, -- - m,

and also by the pair of forces of inertia. Forces from shock

absorption, applied to body, also lead to the horizontal force

t P,,=c~z - c q,(ai--e)

arid pair of forces. Therefore, by projecting all forces applied to

the body on axis c z, we obtainI c

,R--P,+v..

If

=o cO Cos Ph,

then

R- [e. (a, - e) - mpa,l 9o cos pat.

Equating this expression to zero, we get

C,(O-e) -mp~a.=O.

Hence there is obtained the following fcrmula, which connects

the frequency of natural oscillations of the system with position ak
oF the node of oscillations:

(2.16)

whc-re

(2.17)

Excluding value Pk from equations (2.15-) and (2.16), we will

cbrain the quadratic equation ror determnir: n ruIrty ak. Th. r

qurr'ratic equation r;.lwayn, has two r'ai root.: bi ,S ri , wh -Th

(:Crrrr:pon( to two toriez oP natural" ,h: .) ... et. torn( there I obtalined a defrlnite frAer:.ency Pk r;f atural

"1 1% 1, Ir on: , whi:h •-.11 th - I/ In r:lLr, h,: . r , .. . f'Pr I . r,:.%

',



(2.16) or (2.15).

To determine frequencies p of natural oscillations and corres-

ponding values ak it is convenient to reduce all formu:as to a .

dimensionless form, introducing the notations

=a__ ; (2.18)

(2.19)

sm--.; (2.20)

(2.21)

In such designations the final formulas for determination of

ak (k = 1, 2) and 5k (k = 1, 2) can be written in the form

.2 __•- •, (2.22)

where

2 (2.23)

(at k-1,2). (2.24)

For the convenience of calculation of positions of nodes of

natural oscillations of the first and second tone and corresponding

frequencies of oscillations, Figs. 3.19 and 3.20 give graphs computed

by the formulas (2.22), (2.23) and (2.24).

The smaller of the frequencies p1 and p 2 will be called the

frequency of the first tone of oscillations and the larger - the

frequency of the second tone. The node of oscillations of the first

tone is always lower than the center of gravity of the helicopter

( 1 > 0) and the node of oscillations of the second tone -higher

than the center of gravity (a 2 < 0).
2
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Fig. 3.19. 1ig. 3.20.

"F.i, 3.19. Graphs for determining frequencies of natural
oscillations of the helicopter.

Fig. 3.20. Graphs for determining the position of nodes
of oscillations.

II

-Id a. of' oofjjj.e.rS

Oif "b irit tone

Fig. 3.21. Characteristic foris of

oscillations of the first and zecond tone.

Iip'ur'e 1,.211 hhow:. characterlztic 'orrnri. r,f or;cillations of the

I l';tr::l, :i•J .;.(,-ond tonc:; for a o31ngle-rntor hollcopter with a pyramidal

$1,



4. Determining Damping Factors

Oscillation damping (i.e., the absorption of energy during

oscillatiQns) is, as a rule, small and for determination of frequencies

of natural oscillations and positions of nodes it can be disregarded

(ae this is done in No. 3).

Oscillation damping occurs, mainly, in shock-absorber struts of

the landing gear. Damping in tires in the first approximation cannot

be taken into account.

I,
C linear elastic element with

damping.

Let us examine the system depicted in Fig. 3.16. Let us assume
that Instead of springs certain linear elastic elements with damping
are furnished. Such an element is schematically depicted in Fig. 3.22.

Let us assume that force P, acting on this element, and its displacement

s (movement of the element) are connected by the relation

Pwzs k+ . (2.25)

We will call quantities c and k coefficients of rigidity and

damping, respectively, of the elastic element.

We will designate the stiffness coefficient and damping factors

of elastic elements in the system depicted in Fig. 3.16, respectively,

Cz,' c,, kz,' k;. 2 The equation of oscillations of body A with re.spect
z y z y

to the node can be written analogous to expression (2.11) in the form: - •
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IO"ZkO•+Co,?O, (2.26)

where quantities I and c0 are determined by formulas (2.12) and
Ok k

(2.14) and quantity kO k, by formula

ko, = 2ka 2 + 2k; (a, - e)2. (2.27)

1.:e wIll call this quantity the angular damping factor of the

sýyztem of shock absorption with rotation of the body with respect to

the node of oscillations 0k'

Equation (2.26) can be written in the fo.m:

+ -2nh,-+-v=O, (2.28)

,:there Pk (k = 1, 2) is the frequency of the 4-th tone of oscillations,

and the damping factor nk is determined by the formula

a.=.T.(2.29)

atur'al ozcl]ation of the I-.-th tone of the helicopter can be

approximately described by the law:

9 = - e-' Cos (p/+4), (2.30)

where �_i's the initial angle of deflection; tý - phase angle.

The !'requency of natural oscillations p- can be taken approximately
to oquna the frequene,, of natural oscillations, of the k-th tone, which

"(:a culated neglectring damping.

.: > drr i.u.. 'c:I ] ;j I-,t,; ,u;,:i~t it'I ,::.k ' aLrI: k ' ['or :, c-or:,:rr.1~., ::'/;:'te:r
y z

" ,.th, larndinc c(ar (nze 5i,,. : r7e: arn b), rt i; r,:e::ary pr*e I Im,'-

.,j rily to examine the action of' the :ro-callr-d shock-absorblnr strut-
t ire 2y,.term.



5. Joint Action of the Shock-Absorbing Strut-Tire System

Let us examine the landing gear system with vertical struts (
(see Fig. 3.17b). The shock absorber-tire system constitutes two

springs with rigidities c., and cy• united in series.

SLet us consider the work of such a system in the case when the

shock absorber has damping. Such a system is depicted in Fig. 3.23.
Let us assume that the shock absorber has a linear characteristic

analogous to expression (2.25):

P m h~.t (2.31)

'Having formulated the equation of motion of the shock absorber-

tire system, it is easy to show that with the assigned harmonic law

of the change in its general movement s with frequency p of the

force P, acting on the shock absorber, is expressed by formula

.P--nL4J+hg• •"(2.32)

whereby b 4and kXB are characteristic of a certain equivalent linear

shock absorber-of the standard type (Fig. 3.22) and can be defined
by formulas :

I ;- -~ ~c+ee).M+h.Y 2.33)

(2.34)

Thus, with the calculation of oscillatiuns the undercarriage

configuration with vertical struts (see Fig. 3.17b) can be replaced

by the configuration, depicted in Fig. 3,16, in which characteristicz

of elasticity and damping of vertical springs are selected by the

formulas (2.33) and (2.34). At kaM a 0 formula (2.33) gives the

valuo of c eqpal to the value of a' obtained by the second of
BR9 y

formulas (2.6).. Thus in the presence of damping, formula (2.6),

generally speaking, is not true. However, for an approximate

)418

iii . .. ....... ...



C cam ***~FSr

,•tation of the shock-absorbing
strut-tire system.

Nam

calculation of frequencies of natural oscillations it is possible to

use formula (2.6) for the deterininiion of c', since-value c

determined by formula (2.33), is obtained close to the value cy,
ys

found by formula (2.6). After frequency of natural oscillations p is

found, it is possible to refine value c' with help of formula (2.3?)
y

and then refine the calculation of frequency p.

For an accurate calculation of frequencies of natural oscillations

it is possible to us- the method of successive approximations (in

practice the above-mentioned correction equivalent to the first

approximation is sufficient) or to use the following procedure:

,-,signing values of c' in the interval
y

<C€. ' <c".

find frequencies of natural oscillations, and then from formula(2.33)

according to the assigned c = c' find the corresponding value of
MB Y

kaA••. A• a result of such calculation it is possible to construct a

graph of the dependence of f~quencies of natural oscillations of the

system on k .. The calculations show that frequencies and forms of

natural oscillations depend slightly on quantity k . Therefore, it
,.prac~i:all., "�;utficient to make the above-r.e:;crlbed approximate

K ; I utI orl with ;:ubsequent singl(•i ref1iemerVn, of the frerjucrien.e:;.

Por caJculation of the damping factor n (2.29) it is possible,
by di:.,rearding damping of the tire, to ass-zie in formula (2.27) that:

k'=O k'--k*3-

Ln case of a pyramidal landing gear It is po.;sible approximately

to calculate oscillation damping by the samc method, but with calcula-

t1ion of k Into formulas (2.34) instead o: quantities c. and k

SI ut'•C: ,, ••• itlut d values 1' , the so-. c I rik,-1.dit Ie.; rleduced to

¾i
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the tire and dampings of the shock absorber cO and ks determined

by formulas:

- k~,.L)';(2.35)

where X is the distance from the axis of the shock absot'ber to point

A (see Figs. 3.18 and 3.17a) of the crossing of axes of the lower

struts.

Fig. 3.24. Dependence of
equivalent damping on damping
of the shock absorber.

Let-us examine in greater detail the dependence of the equivalent

damping factor k BI of the shock absorber-tire system on value kam.

Figure 3.24 shows the graph of this dependence. As can be seen from

this graph, quantity k is increased with an increase in k only

up to a certain definite value k,-- mW8 at which the greatest damping

Sis attained. With a further increase in k damping of the shock

absorber-tire system decreases.

From formula (2.34) it is easy to obtain the expression for the

optimum value Ik:

Asp. m(2.36)

Here values of kam of formula (2.33 ana (2.34) give corresponding

values of vO. and l':

+ (2.37)
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onz.±.±.~ (2,38)

From the last formula it is clear that the more the greatest

value of kmal which can be obtained the less the ratio and the more

c,.. Therefore, from the point of view of damping of lateral oscilla-

t.ons of the helicopter it follows to have as rigid a tire as possible

and les- rigid a shock absorber as possible. With an incorrect

selection of characteristics of the landing gear greater relativeCox

rigidity of the shock absorber ;7, it can occur that by no inerease

in damping in the shock absorber it is possible to eliminate ground

resonance.

6. Reduction of the Problem to the Calculation

of a Rotor on an Elastic Base

After calculation is carried out of natu.ral oscillations of the

helicopter on the ground: (there are determined frequencies, positions

of' nodes of oscillations and attenuation factors for both tones of

riatural oscillations), it is possible to prod-uce an approximate calcu-
lation of ground resonance, reducing the problem to the calculation

of the rotor on an elastic support.

Tt would have been possible to produce ý_n accurate calculation

of ground resonance by formulating the equation of motion of blades

of the rotor and body of the helicopter similair to that as was done

r-. 5 1 for the rotor on an elastic support. In this case the order

of' the characteristic equation would oe highur, the greater the degrees

o2 freorim (X the helicopter or, the elaŽ;tlc 2-Lnding gear are taken

Int.eo a i -nt. For ocrat, case It would hFve L, tn necessary to produce

:1 very c-umbersome calcalatlon.

The approximate calculation, founder "the reductior of the
problem to the rotor on an el1astic support, ýermlt_- uzirig prepared

results obtained f'or the rotor on an elastic support. The accuracy

such a calculation is quite sufficient fc.. practical use.

' ?h,'' * ,,t:en•ri]( o ' tGhe. approx i;r. 1 te c~t•''.. '. " '• "t



following: a separate calculation of ground resQAance for each tone

of natural oscillations of the helicopter on the ground is produced;

then the body, of the helicopter is examined as a body having one

degr6e of freedom - turn around the corresponding node of oscillations.

Teequation of motion of the helicopter with an attached node

of oscillations has the form:

(2.39)

The right-hand side of this equation constitutes the moment of

force P from vibrating blades of the rotor with respect to the node

of oscillations of the examined tone. Quantity h is the distance

from the rotor plane to the center of gravity of the helicopter.

Let us introduce the new variable x - C(h + ak), which in the

magnitude of displacement of the center of the rotor. Then equation

(2.39) can be rewritten In the form similar to equation (1.2)',of

moti0 ol' tbe elastic support:

as~+hi~cxmP.(2.40)

where quantities L., A. are the mass, damping and rigidity of

the equivalent elastic support and are calculated by formulas:

ace- .. (2.41)
•+

OM 4 (2.42)

+• (2.43)

Thus the problem is reduced to the calculation of the rotor on the

equivalent elastic support whose characteristic is determined by

formulas (2.41), (2.42) and (2.43).

It is easy to be convinced that for calculation of ground
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resonance by: formulas of 5 1 there are required only three character-

i-tics of the elastic support mrOmz3 ,,no=nA [see (2.29)] and p 0 = Pk'
which are obtained from the calculation of natural transverse oscilla-

tions of the helicopter.

Thus for every tone of natural oscillations of the helicopter

on elastic landing gear an approximate calculation of ground resonance

is produced by the formulas derived for the rotor on an elastic

support (5 1). With such a calculation there can be determined limits

of zones of instability and values of damping factors of the blade

and landing gear necessary for eliminating instability with respect

to each tone of the oscillations.

7. Analysis of Results of the Calculation
of Ground Resonance

Results of the calculation of ground resonance are conveniently

represented in the form of a diagram of safe revolutions. Figure 3.25
:.nows such a diagram for the Mi-4 helicopter. Plotted along the axis

of the abscissas on the diagram are the number of tu-ns per minute of

the rotor and along the axis of the ordinates - tractive force T of

the rotor.

Frequencies of oscillations of the helicopter on the ground are

calculated in two variants:

1) ;2hock-ab.orherS struts operate;

2) :'hock-ahsorber struts do not operate.

This must be done because landing gear ,hock-absorber struts

operate only when the compressing force on t-e strut is larger than

the so-called force of preliminary tighteninr. of the shock obsorber.

Therefore, at a certain (critical) value of thrust T = T.. of the

rotor the force compressing the strut becomes less than the force of

the preliminary tightening of the shock absorber, and the strut

cease: to operate. For T > T the shock-ab.orber struts behave as
r' i rod", ;in,] the hrl leopt:r can rock only du(. to the elazt;IcIty of

v!s', t, r . , wh•e, :r r)rrLct. caly (• I p ,vei (vc( :rIir4,.. Z1on s oFr
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Fig. 3.25. Diagram of safe revolutions for
the Mi-4 helicopter: v1 - frequency of the

first type of oscillations with nonoperating
struts; v2 - frequency of the second tone of

oscillations with nonoperating struts; .v and

v2 - frequencies of the first and second tone
with operating struts.
KEY: (a) Thrust with-extreme left correction;
(b) Region of thrusts and revolutions allowed
by the pitch-throttle control system; (c) Thrust
with extreme right correction.

instability of the helicopter with nonoperating struts are usually
impossible to eliminate, and they are always on the diagram of safe
revolutions (in Fig. 3.25 these zones are shaded).

Plotted on the diagram of safe revolution are limits of zones
of instability and also the region of possible values of thrust T
and revolutions n of the rotor allowed by the control system of the
rotor and engine (pitch-throttle system). If not one of the possible
combinations of values T and n falls beyond the limits of the zone

of instability, this means that the stability of the helicopter is
ensured. It is always desirable (see S 6 for more detail) to have

a certain stability margin, i.e., sufficient distances on the diagram

between limits of zones of instability and limits of possible values

T and n.

For a single-rotor helicopter with conventional design of the

undercarriage (pyramidal landing gear one with vertical struts, see ( )
Fig. 3.17a and b), the frequency of the first tone of oscillations,
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as a rule, Is lower than the rotor's operatinr revolutions (Fig. 3.25),

and the frequency of the second tone is highe:' than the operating
revolutions. Therefore, selection of the damping factors of
oscillations should guarantee the absence of the zone of Instability

of the first tone of oscillations with operating struts. Here It is
necessary to have a reliable damping margin. The stability margin
with respect to the second tone of oscillations can be provided
practically only "by revolutions of the rotor," and it can be

characterIzei by a certain quantity n:

(2.46)

where n is the highest possible number of rotor revolutions; n[
Srevolui'ons corresponding to the lower limit of the zone of instabilityof tf;e second tone.
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I 3. C loteriltl 2f c D ing of the Undercarria e (
and Bl1ade. Their Errect

on Ground ]Resonance

1. DatermInIng the Damping Factor of the
Undercarriage Shock Absoroer

Vith the calculation of natural or'cillations of the helicopter

we assumed that shock absorbers of the undercarriage have linear

characteristics. In reality, characteristics of the shock-absorber

strut, as a rule, are nonlinear. However, for the calculation of

small oscillations of the helicopter it is possible (as Is usually

done in the theory of nonlinear oscillations) to replace the nonli' •ar

shock absorber by a certain equivalent linear shock absorber, for

which coefficients of stiffness and damping depend on the frequency

and amlitude of the oscillations. For an approximate determination

of rigidity of the equivalent linear shock absorber formula (2.5)

was proosed. To determine the coefficient k of damping of the

equivalent linear shock absorber It Is possible also to propose a

simple formula. This formula can be derived in considering equivalent

such a linear shock absorber which absorbs for one period of osciaa-

tiona the sam energ as that of a real shock absorber with Ldentical

frequency and amplitude of oscillations.

The most widespread designs of undercarriage shocit-absorber struts

absorb energy due to friction in the seal and flow friction with the

flow of hydraulic fluid through small holes.

If one wee to oonslder the force of flow friction In such a

shock-absorber strut proportional to the square or the speed, then



'jeneride-rce of' the resisting, for-ce P of the strut on speed _ its
di

pressing can be thus expressed

when >O0

p+a 0=- s'] when <0. (3.1)

where P0 is the frictional force in the seals, and a! and a2 are

coefficients of flow friction of the strut on the forward and back

strokes.

Lot u, ao:sume that. the rod of the shock absorber accomplishes

o:;hilion-, accor-ding to the law s = 0 sin pt and, consequently,

-"- ---Ps0 Cos P1.
de

,et us calculate the energy which is absorbed under these

conditions by the shock absorber for one peri.od of oscillations.

This energy is determined by the formula

7
A =P (t)(Of ~T. (3.2)

Calculating this integral for the case when function P(t) is

au:siggned by equations (3.1), we will obtain:

A=4Poso+ 3

where
2_+ _2. (3.3•)

The damper with linear damping P=k abs.orb:- the einerrýy

Ai=akpso under those same conditions for one period of oscillations.

Comparing expression for A and A,, we will obtain the following

formula for determining the coefficient of the equivalent linear

dumper:

"k".

X PSO 3



Thus in a real undercarriage snock-absorber strut quantity

k,, depends on the amplitude so and frequency p of oscillations,

and with this circumstance it is necessary t: consider the calculation

of oscillations of the helicopter. I
Figure 3,26 gives the dependence of quantity ka on the amplitude

so of oscillations. With an increase in amplitude of oscillations
quantity hm, decreases, atains the least value k01 at certain

amplitude s. and increases with further increase in amplitude.

Fig. 3.26. Dependence of the
Sequivalent damping for a shock• _• m //•absorber with dry friction and

quadratic hydraulic drag on
Ran the amplitude of oscillations.

Analyzing expression (3.4),it is easy to obtain the following

Si

Sformulas for determi1nation of the minimum value k-',* and corresponding
i amplitude s; of os-cillations of the rod:

2 -- (3.6)

cFrom formula (3.5) it is clear that the least iamping of the

shock absorber does not depend on the frequency and amplitude of the

oscillations. Therefore, with a rough estimate of damping ability

of sh-ck absorption of the undercarriage it is very convenient to use
formula (3.5) and assume with calculation of the shock absorber-tire
system ka&mk. . It is also ueeful to determine quantity s4 by the

formula (3.6).

In those cases when there is the possibility of conducting

tests of prepared shock-absoriber struts for damping, such tests should

certainly be conducted, since the proposed formulas give only
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approximate characteristics of damping.

Tests for damping can be conducted by one of two methods:

1) determination of the dependence of the force of hydraulic

drag on the speed of the rod;

2) determination of the energy absorbed by the shock absorber

with harm,Jrnic oscillations of the rod.

In the carryinC out of tests by any of these methods, air (or

nitrogen) 3houu'd be purged from the shock-abzorber strut, since in

the tests one should determine only the dam,-*ng forces.

Tests by the first method can be condu>.ed by measuring the

steady speed of the shock-absorber rod under the impact of constant

load at different values of it.

With the second method of tests harmoni2 oscillations on a

special test stand with a revolving eccentric are imported to the

rod of the shock absorber. At different valies of amplitude and

frequency (revolutions of the eccer.tric) cf .cillatlons of the rod

variable uxial s'rress in the shock absorber is measured.

r an ur•aercarria{t with vrtici - ''i 3.17b) one

*,oou -d Conduct direct tcsts o2 tr, e3hoc• a. )rr)er-tire system.

it is :,es2rable to conduct such teuzTs for a -V Wriida anuing Fear

(gee F1. 3. 17a). Tt is p:ss' oe to test ;_ 0nock absorber series-

nonducte, with the tire according to the so:. ,onf'iguration as in the

case of the undercarriage with vertical st.r,-ts but to select for

tests a special tire monotypic with that u:&d on a helicopter whose

rigidity i; hnigher than the rigidity of th- tire corresponding to the

pyramidal lanaing gear nr times. Number ri 1 calculated by the
f'ormiula:•

P ' f2l

(



where P=, is the stress in the shock absorber at vertical stress

PP. on the tire. (

2. Effect of Cutoff of the Shock Absorber Due
to Friction in the Seals and Natural

Oscillation of the Helicopter

:Frictional force P0 in seals (collars) of the shock absorber

practically does not depend on the speed of the rod (3.1). Therefore,

the effect of friction in the seals is analogous to the effect of

the so-called dry (or Codlomb) friction.

This effect consists in that at small oscillations, when the

variable force P<P*, the shock absorber does not operate and behaves

as a rigid rod. Therefore, at quite small amplitude of oscillations

of the helicopter the shock absorbers do not operate, and the elastic

"elements in the undercarriage system appear to be only the tires

practically deprived of damping.

If the angular velocity of rotor rotation lies inside the zone

of instability of the helicopter with nonoperating shock absorbers,

then the position of equilibrium of the helicopter, in general,

is always unstable, and small oscillations of the helicopter with

growing amplitude centainly appear. With an increase in amplitude

of oscillations the variable force in the shock absorber increases.

At a certain amplitude of oscillations a** the force in the shock

I absorber P becomes equal to PO" At large amplitudes of oscillations

a>a" the force P>p,, and (if T<T•. ) the shock absorbers start to

operate.

If damping .' the shock absorption is selected correctly, in

the system natural oscillations with a certain constant small

amplitude a greater than a' are established.

Thus, for any helicopter inside the zone of instability with

nonoperating struts natural oscillations, caused by the effect of

dry friction in shock absorbers of the undercarriage certainly take r

place.

4i
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Such natural oscillations should in no way be confused with

ground resonance in the usual understanding of this term. Natural

oscillations are safe and occur even when the ground resonance

margin (in movements) is sufficiently great.

In the most widespread designs of shock absorbers (in pneumatic

hydraulic shock absorbers) friction in the seals is relatively great,

5 and it appears that with calculation of the amplitude of such

oscillations it is possible to consider only damping caused by

this friction and not to consider the force of hydraulic drag in the
I shock absorber. With such approximate calcu"lation the amplitude of

natural oscillations can be only larger than the actual.

To evaluate the amplitude of natural oscillations there can be

obtained certain simple formulas.

Let us consider a system consisting of' two series-connected

springs 1 and 2, one of which with rigidity c, simulates the tire and

1.he other with rigidity c,,,, the shock absorber (Fig. 3.27).

Connected in parallel with spring 2 is a certain element (piston 3)

with dry friction, characterized by force PG,

Cla. a
-.3.27. Diarramn of

_. -seri_ýs connection cf a tire
and Tnock absorber with dry
-fri1;ion: and 2 - springs;

,A•a8- ~q 3 - piston.

Let us assume that under the action of force P(t), changing with

time by a certain law, the system accomplishes oscillations so that

point A, whose displacement we will designate by s, accomplishes

iiairmonlc oscillatlons

s-socos pt. (3.7)



If amplitude so is small, then spring 2.does not operate, and
spring i has deformation s. - s, which changes according to the
harmonic law (3.7). Here force P also changes according to the

harmonic law

But such operation of the system will occur only under the condition

P•,<P* and, consequently, under condition s P<e . At s>'PO spring 2

operates. There are certain time intervals when spring 2 operates
(slipping in element 3), and there are time intervals when the spring

does not operate.

Let us assume that 6-s-s- is the deformation of spring 2, which
we will consider positive if spring 2 is compressed. Then the depen-
dence of the compressing force P on quantity 6 can be recorded in

form:

.1lC..&+P,, if i>o'
o- f (3.8)

With oscillatory motion the dependence p=P(6) has the form of
a hysteresis loop (Fig. 3.28).

Fig. 3.28. Hysteresis loop
Pe for a shock absorber with

A ce dry friction.

a

When quantity 6 reaches the greatest value a and remains after
that constant •a), force P can take any value in the interval

c.€,a- .P <P'•C.a+Po.
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The dependence 6(t) for intervals of time corresponding to

slipping (6=kO), can be determined from the equation

cu"($aCos pt - )c,, &4- PO.

which expresses the equality of forces on both, elements 1 and 2.

From this equation we find 6(t) for sections of slipping:

For sections where slipping is absent 6=±a.

WIP-ure 3.29 gives graphs which show how quantities sQl), 6(t) arnd

P(t) change with time for the case ca,,=cZ and so-=2 £. The quantity
CvAP

0 t Fig. -3-29. Law of the change
with time of forces and dis-

p~acic~ns 'n a shoclc
P ~abso.-ber.

CT-I

of amplitude a of' oscillations of the rod of the shock absorber can

be found from the expression for 6(t) ,if in It we assume cosptmI.

The ownrk wh. ch 1-- pr,.)duce~ld du r i n -)..ci I atioris by the frictional

tur'C un bc'~iemfc by the ro rm u a

Ap. 4 Pa.



We will compare the system depicted on Fig. 3.27 with a
certain equivalent linear shock absorber, which with that same
amplitude of the rod a absorbs the same work and has the same value ( 2
of the greatest force Pmax*

Equating the expression of work of the linear shock absorber
(AmXh.4 to the work of frictional force Ap, , we will obtain the
following expression for damping factor kg,, of the equivalent linear
shock absorber:

"= a (eL)(3.10)

where n -certain dimensionless coefficient, depending from
amplitude of oscillations sa and determined by formula

! !(when ie>4I) (3. Ii)

(3.12)

We will obtain tbe expression for rigidity c.a of the equivalent
linear shock absorber, comparing values of the greatest force for
linear (Pm,-C,,o) and nonlinear [P=,.mc.(s0-a)] of the shock absorbers:

" + ,Pe
e,.--"- €••+1 (3.13)

Figure 3.30 shows the dependence of quantity n on the dimension-
less amplitude of oscillations so.. Quantity n reaches the greatest

Fig. 3.30. Dependence of the--- dimensionles3 damping factorn on the relative amplitude of

oscillation:;

* t 2 3 1,

value rpol-l when lo-2. When I#>2 the dampIng decreazez with an
increase in amplitude of the oscillations.
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The greatest value of kxin =km is obtained equal to

x p (3.14+)Co.

Comparing this value with value k-81, obtained for the linear

shock absorber-tire system [see formula (2.38)], we see that the shock

absorber with dry friction in the system with the tire gives -under
those same conditions the greatest damping, .a/2 times less than that

of the linear shock absorber.

Thus the amplitude of natural oscillations of the helicopter,

caused by friction in seals of shock absorbers can be found from

condition (3.10):
4

where k'P' is the damping necessary to eliminate ground resonance.

Prom this equation there is determined the appropriate value

n and then on Fig. 3.30, the appropriate value s

3. Characteristics of Blade Dampers

and Their Analysis

in the account of methods of calculation of ground resonance

we assumed that dampers of drag hinges of tht blades have line.ar

characteristics, i.e., that the moment of daMper M is proportional

to the angular velocity • of rotation of the blade relative to the

drag hinge: A1-k4.

In reality characteristics of dampers o'" the blade, as a rule,

are nonlinear. Basically two types of dampes are used:

1) hydraulic dampers;

2) frictional dampers.

) Hydraulic dam:•perz can have different cr.iracteristic3 depending

upon the, i n. In particular, the hyuraulic aanper can be linear



(so-called laminar damper, characteristic a c.n Fig. 3.31). However,

linear dampers are used extremely rarely, since they have serious
d e iciencl es ....-

a) b) c)

Fig. 3.31. Model characteristics of dampers
of a blade: 2) linear damper; b) frictional
damper; c) step damper.

One of the deficiencies is the great sensitivity of linear

dampers to temperature, which is explained by the fact that damping

in them is proportional to the viscosity of the hydraulic fluid,

which is greatly dependent on temperature.

Another deficiency of linear dampers is the fact that the moment

of such a dampe' is proportional to the frequency of oscillations of

the blade. Ret.lly, if the blade accomplishes harmonic oscillations
relative to the drag hinge 1-fsinwt, then the moment of the linear

damper changes according to the law M-kAj-.VlC.osVt.

This circumstance leads to the fact that with forward flight of

the helicopter the linear dampers load the stank part of the blade

by great bending moments, since the frequency of oscillations of the

blade in flight is approximately four times tiigher than with ground

resonance.

This d&7iciency to a considerable degrc*t; la etaoilshcI f1'or th,.

most widely used hydraulic dampers with a step characteristic (:;ee ,

Fig. 3.SAc) and also for frictirtat .wr~pers see Fig. 3.31b). NPoint

A on the characteristic of the " ý vtper co.rresponds to the moment

of the opening of special val-', ,

43f,

4156



The characteristic of the frictional damper (see Fig. 3.31b) can

be examined as a special case of the step characteristic.

To calculate ground resonance of a helicopter with nonlinear
dampers of blades these dampers can be replaced by certain "equivalent"
linear dampers the damping factors of which depends on the amplitude
and frequency of oscillations of the blade. Coefficient kms3 of such
an equivalent linear damper can be determined from the condition of
absorption by this damper at the given ampliz-ade and frequency of
harmonic oscillations of the same energy for- one period of oscillations
which the nonlinear damper absorbs under those same conditions. For

the fricti onal damper

k, 9 _L if(3.15)

where M0 is the moment of tie of the damper (see 'Fig. 3.31b); to -
amplitude of oscillations of the blade; v - frequency of oscillations

of the blade.

By this formula it is possible to determine approximately the
value k,, for hydraulic dampers with a step -haracteristLc if the latter

c clo.:e to the characteristic of the frictional damper.

In greneral quantity k,,•, can be determined by the known character-
itlc (•)of' the ,nonlinear damper with help of formula

k- .. 0 )A (t) dt ( . 6)

S.= 1sin'! and -----.

S!"or a prepared damper quantity k,.. can .Llso be determined exper-

• i•..1t•,y by; means of special laboratory te.;s. With such tests
harrmoric r•:;ci.lationrz are Impart-r! to the rr._ r)' the damper, and a
:'¢cOr~j .riI r 1;: .sr,(JIc.(!O .',n -•ri O:;c' -. g]m r f ...... " ,;rs uJ,' f"

rn ari r-,r;:r!A.



The main deficiency in dampers with a step characteristic and,

in particular, frictional dampers, is the presence for a helicopter

with such dampers of the so-called threshold of excitation. A

helicopter being stable at small amplitudes of oscillations can become

unstable at great amplitudes of oscillations exceeding the threshold

of excitation.

Let us consider this phenomenon in the example of a fricional

damper. Figure 3.32 shows the dependences of work A, absorbed for

a period of oscillations by frictional (curve a) and linear (curve b)

dampers on the amplitude of oscillations jo of the blade (at a

constant frequency of oscillations). For the frictional damper graph

A(to) is a straight line and for the linear Camper, a parabola. Let us

Fig. 3.32. Dependence of work
absorbed for one period of

b oscillations on the amplitude
- € •for a damper with dry -'riction

and damper with a linear

Icharacteristic.

assume that as a result of the calculation of ground resonance there

was determined the value krno necessary damping of the blade in the

case of the linear damper, and curve a on Fig. 3.32 corresponds to

tLhs value k.,, and curve b corresponds to the available damping of

the frictional damper actually available on a helicopter.

Let us assume that these curves intersect at a certain point c,

corresponding to amplitude ; . Then with oscillations of the blade

with amplitude Z<'I , the damping provided by the frictional damper

will be greater than necessary, and with oscillations of the blade

with amplitude o>t the damping will be inzufficient. The amplitude

of oscillations ; constitutes the threshold of excitation. Value

t; can be determined from formula (3.15):

IX. ''



Thus if the helicopter obtained some disturbance (shock)

as a result of w..hich oscillations began (of both the helicopter and

blades), then if the amplitude of oscillations of the blades is less

than - , the motion will be stable - the oscillations attenuate. If,

however, the disturbance is quite great (t>*), then increasing

oscillations of the helicopter will appear.

The oresence of the threshold of excitation for helicopters .Jith

dampers of blades having step characteristics is a serious deficiency.

r` oractice there were a great deal of .:ases when on the

heilcopter, being in operation for a long ti-:.e, there appeared ground

rt,;onance a3 a result of some strong shock, most frequently as a result

of' a rough landing with a blow against the ground by one of the

wheuls of the landing gear.

This basic deficiency of nonlinear dampors can be completely

,111minated only with the application of dampers providing great

d;aiipinj at low frequencies of ozcillations (,-round resonance) of the

blIde, and little damping at a frequency of coscillations equal to

revolution: of' the rotor (and above). Such ;I damper can be, in

-,r.'u r', .neuir. Figure 3.33 shows a di. ram of such a linear

. dasnron,::- ists of a,5,ni ",-.'Žr:teu elastic element

tni. i an th.c damper ]..... f with c,)efficient ,.

A c ?I... 3.33. Diagram of the

p el.ement a:., damper are united

in series.

Characteristic:s k and c this damner ca:n be thus selected in

,Crwder, oy prov'ding slfici~nt damping with -..round resonance, to have

Sben.-!inrc mom-nts on the blade during ifrwa r flight of the

,,,l~i,-o . (see i . or caltnlation r. "tr, elemint can be replaced

, :ri~.ir~i• ,v;] ":.I ,"ennt..w t rK, > .- I " C",;. and dampln[,- factor



k, determined by formulas

m 1(3.17)

These formulas are obtained analogous to formulas (2.33) and

(2.314).

(4. Effect of Flapping Motion of the Rotor
on Ground Resonance

As was already stated, dampers of blades used usually are

nonlinear. The basic peculiarity of any nonlinear damper is that

if motion of the blade consists of two harmonic components, then the

V~i~ damping of one of these components depends on the amplitude and

frequency of the other harmonic component, whereas the linear damper

absorbs energy from harmonic components independently of the value

of the other.

This peculiarity of the nonlinear damper is explained by the

following important phenomenon, which long ago was noticed during

tests of helicopters. With operation of the helicopter on the ground

there is sometimes the possibility of creating ground resonance by

a smooth deflection of the cyclical pitch control stick from the

neutral position. If then the control stick is quite rapidly put

in the neutral position, then oscillations attenuate. It is very

convenient to use this phenomenon during an experimental check of the

helicopter on ground resonance. This phenomenon is analogous to the

* effect of the influence of flapping motion on flutter. Let us

consider the mechanism of this phenomenon for the case of the

frictional damper (see Fig. 3.31b).

Let us first take the following abstract problem. Let us assume

that about a certain plate B (see Fig. 3.34), accomplishing in a

horizontal direction harmonic oscillations according to the law

44o I



yr. y~sinwt,t a certain body A evenly slips at speed P.

::'/.y , r:r'-;sz're to the vibrating late y certain ncrmal

A".:-. a'e "t e f r-tion betw;een the SraCe ":f

r,,uy A and plate E, corresponds to the ideal la'4 of dry friction, i.e.

frictional force is constant in, value and equal to PO=-LN, where p is

the coefficient of sliding friction.

The direction of the frictional force Gotpends on the direction

of speed of body A with respect to plate B.

We will consider force P (of the friction) applied to the plate

positive if it is directed opposite the absolute velocity of body

A, i.e., to the right. Displacement y of plate B will be considered

positive if it is directed to the left. Then the law friction can

be thus written:

P__+P0 for V>;

(-P 0 for V<4.

,or the relative speed of the plate we nave the expression:

V* --V -- -V - y0 cos w,'.

Figure 3.35 shows a graph of this depen']ence. The relative speed

as a function of time is depicted by cosine curve shifted by magnitude

V along the axis of the ordinates.

B YYO si.ft Wt

fl. 3.3$4. Diagram of the Fi'-. 3.35 ],:w of, the
motion of a body on a plate charj;e with t0.rrie of the
vibrating in a horizontal relatve ::peed rind fr'r r:-
direction. t',r. ?,r,:,. wr r r i n , f r,-

i r;P"
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From the graph it is clear that at V<wya during one period of

T oscillations the time interval (T-2T-), during which "',, is positive,

is greater than the time interval 2TI, during which V,,, is negative.

Shown under this graph is a corresponding graph of the dependence of

frictional force P on time. During one period of oscillations in a

certain time interval 2T1 the frictional force is directed to the left

(negative), and in the time interval (T-2T1) the frictional force is

directed to the right opposite the motion.

Thus with the motion of body A (see Fig. 3.34) on the vibrating 4
plate B the frictional force periodically changes its direction

provided V<wya. The frictional force is directed a great part of the

time opposite the motion, and, consequently, on the average the

friction renders resistance to the motion of body A.

In order to carry out uniform motion of body A to the left, to

it must be applied force variable with time which at each .nstant

would balance the frictional force. Let us calculate the average

value Pep this force for the period, understanding by this such

a constant force which for one period of oscillations produces in

absolute movement of body A the same work as that of the actual fric-

tional force. If the mass of body A would be infinitely great, and

it would have been possible to disregard vibrations of body A and

also consider its motion on the vibrating plate to be uniform, then

force P.p would be the actual force necessary for a uniform motion
of body A.

Work of the averaged force for one period of oscillations of the

plate will be equal to:

A.p-PgpVT.

Work produced for one period of frictional force will be equal

to:

A,,. PViT-2T11-PV[2T m PV[T'-4TJ.(9

4"2



IEquating thesu two vtiue.- of work AP an, Aep, we will obtain the

following expr'se;,lort for the avpraged driving force:

Pep 1.- 4 !L

To determine values of let us note that

COS Wrl "

Hence, considering that F=IX we obtain

A~=&Larccos(XV)

Consequently,

PIPa=P0 I-L3 arccos (VZ1
v

The expression obtained is correct only under the condition that

V<wYo. if, however, V>oyo, then the frictional force changes neither

the magnitude nor the sign, remaining equal to P0 * Considering what

has been said and introducing the dimensionless averaged force Pe---3

we will obtain for the latter the following expression:

={I-±..2arcc rCos if V<WYo;

P 1, if V> (31.

Pigure 3.36 shows a graph of the dependence of quantity Pcp on

the dirien,;ionless speed of motinn V .

Peo

U Fig. 3. 6. Dependence of
relativ,.: averaged frictional
force r.- the dirn(rislonlesz
speedI a body on~ a vibrating

ardl(knO plate.

o $3

)
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At a low relati-ve speed V of motion of the plate it is possible

to us* the simplified linear dependence Pp(V), which is obtained ifi

in expansion of arc cos V in series in powers of V we are limited

to the first two terms. Then

UI

Thus with the slow motion of the body on a rapidly vibrating

plate, the averaged frictional force can be approximately considered

proportional to the first degree of speed:

P (3.19)

where the proportionality factor

A6M A.(3.20)

rqmwhat has been said it is clear that under the examined

coni-i-o.dr.y-riction in a certain sense is equivalent to linear

viscous friction, and the equivalent Oamping factor is inversely

Wroportional to the frequency and amplitude of vibrations of the

plate, This important circumstance was revealed for the first time

by Heinrich [41] and was checked experimentally by A. A. Krasovskiy

[14].

It is obvious that with slow harmonic oscillations of body A

on a rapidly vibrating plate B it is also possible approximately to

calculate the damping of these oscillations by using formulas

(3.19) and (3.20).

Thus if in the element with dry friction the relative motion of

friction surfaces constitutes the sum of two harmonic oscillations,

one low-frequency and the other high-frequency, then the damping of

low-frequency oscillations can be approximately calculated by using

formulas (3.19) and (3.20), understanding by w and y0 , respectively,

the frequency and amplitude of the other (high-frequency) harmonic

component.
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Le- us return now to the consideration of" oscillations of the

reference to the vertical hinge. With the deflection of the cyclical

pitch control stick of the blades when the helicopter operates on

land there appears flapping motion of blades of the rotor with refer-

ence to the flapping hinges. As is known, the flapping angle B of

the blade changes with time according to the harmonic law:

P- ac- a, cos ( -b, sinel,

where a is the angle of conicity; a and b. - coefficients of

flapping motion.

With flapping motion of the blade there appear Coriolis forces

which cause oscillations of the blade with reference to the drag

hinge. The amplitude of the first harmonic ý, of oscillations of

the blade with reference to the drag hinge can be defined by well-

known formula: 3

= col--+b (3.21)

As was already clarified in §§ 1 and 3, with ground resonance

(in the case p.-0 ) the blades accomplish c•illations with a frequency

vow (vosO,25), i.e., with the frequency approximately four times lower

than the frequency of forced oscillations of the blade inouced by

the flapping motion. Therefore, in accordance with the expounded

damplnir moment actlng on the ,ad± during -,r-ound resonance, It iZ

possible to calculate approximately by the -ormula:

M=k..j
where

(3.23)

Quantity M0 constitutes the moment of 'iig.tening of the frictional

damper (see Fig. 3.31b).
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Th's forced oscillations in the plane of rotation of the blade

with the frictional damper, caused by the flapping motion of the blade

in the plane of traction, lead to the effect equivalent to the

introduction of the linear damper in the drag hinge whose damping

factor (3.23) is inversely proportional to the amplitude &I of

forced oscillations of the blade relative to the drag hinge. There-

fore, all that has been said about the threshold of excitation of the

helicopter with frictional dampers (No. 3) is correct only in the

case when the flapping motion of the blades is absent. This usually

takes place with operation of the rotor at low revolutions. Conse-

quently, the threshold of exitation should be estimated for ground

resonance with respect to the first tone. Formula (3.23) should

be used for an evaluation of ground resonance in the presence of

flapping motion of the rotor (at operating revolutions of the rotor).

This is especially important in the calculation of ground resonance

of a helicopter on a landing run, which is the subject of discussion
in 5 4.

5 4. Ground Resonance of a Helicopter
on b Landing Run

In the account of methods of calculation of natural lateral

oscillations of a helicopter on the ground (J 2) it was assumed

that rolling of the tire along the surface of earth is absent.

With rolling of the tire its lateral rimgidity decreases, and

the vertical rigidity remains constant. A decrease in lateral rigidity

of the tire when rolling and also a certain additional damping with

lateral displacements of the rolling tire can be determined on the

basis of the existing shimmy theory of directive wheels. In this

section the method of such a calculation is given.
I.

A decrease In lateral rigidity of the tire with rollIng

(decrease in quantity 49, see Fig. 3.17) leads to a lowering of

frequencies of natural oscillations of the fAirst and second tones j
and, consequently, also to a lowering of limits of corresponding

zones of Instability. As was already noted earlier (0 2, No. 7),

usually for single-rotor helicopters the zoie of instability, which

corresponds to the second tone of oscillations, is higher than the
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operating revolutions of' the rotor, the ma'rg• with respect to

revolutions of the rotor mounting sometimes to not more than 30%.
The lowering of the zone of instability with rolling of the tire
can be of a magnitude of the order of 20-30%. Therefore, it can
appear that the helicopter, which is stable when operating at a
ztandstill becomes unstable on a landing run.. In this case is
possible to indicate the critical speed of motion of the helicopter
on the ground at which motion becomes unstable.

1. Rigidity and Damping of the Tire During Rolling

Let us examine the tire which evenly roils along the ground
(Pig. 3.37). Let uo assume that the wheel accomplishes latera2

oscillation according to the harmonic law so that the axis of rotation
cf the wheel remains A.1 the time parallel to its initial position
and the distance from the axis to the earth remains constant.

S Diametrical
2plane of
the tire

Line of Fig. 3.37. Form In the plan
. rolling on the site of contact and

f i line of ,o~lling of the tire:I|I *0 - angu.ar' deformation of the
Site of tire; X -lateral aefoc:Iation
contact of the tire ("tilt").

r~A

I "

'i -

1.

Let us select the fixed rectangular jy::2.em ol ,r,tjn'4tez z0j,
l~ybr on the -ur#"ace of eurth, sand we will direct axlz Oz in pkralir.*
I,. .the -tx' I; wn' 1. t u.; t:. . he lAteral diplacesent

"I i ,' ri, -Ii m. I. , 1. :a : -, or wn,(.-I chanv,. sith time stccor ing tV
l h,' tgII'l!.,ai *. " w:N:

*

*



where es is the amplitude of oscillations; m - angular frenuency of

oscillations.

We will determine the lateral force P. applied to the tire from

the side of earth with such motion of It.

Let us assume that A is the lateral deformation of the tire, i.e.,

the distance between the diametrical plane tf the wheel and the point

of the tire, which was the center of the arza of contact before lateral

deformation. Then the lateral force Pz will be equal to:

PM^S (4.2)

where c" is the lateral rigidity of the tire in the absence of

rolling.

Let us assume that further s is the path reckoned along the

line of rolling, and * Is the angular deflection of the tire, i.e.,

the angle between the line of intersection of' the diametrical plane

of the wheel with the surface of the earth and tangent to the material

line belonging to the surface of the tire ard constituting a line

of intersection of the diametrical plane of the wheel wLth the

surface of an undeformed tire.

Quantities z, A and # are connected by "he so-called rolling

conditions, which in accordance with the hypothesis N. V. Keldysh

E15], have the forms:

'.4.3)

Her* a and * are certain constant quantities for the given

tire, whioh can be found by experimental neoins.

I -
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Z t- trIe Jer 1 -; 3r I ve ... % t
'..h-'7 tJ o zzeed ct the "'-e Inr t.e dtr. ¢f axis 2s, we

dt

Assuming

and (4.5)

and considering (4.1). we will obtain from e~.-ations (4.4) the

following equations for determining constants )4 and 4'

Whence

O)I (4.6)

Substituting the found value AInto first of forumala3

(4.5) and then Into (4.2),, we will obt 'tn r oilowing expression

for force Pz, acting on the tire from the s!.e of the earth:

,whaere

L.et us cull the compleix ;(a 4 :.tP'j

,Uh.•P,86+W

1.r *

.1o
a-V -*}
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The lateral complex dynamic rigidity of the tire during transverse

harmonic oscillations of the wheel. (

The modulus of the complex dynamic rigidity constitutes the ratio

amplitude P0 of lateral force to the amplitude of oscillations z of

the diametrical plane of the wheel. The argument of the complex

quantity D(w) constitutes the phase of oscillations of force P with

respect to oscillations z of the wheel.

Let us consider further a certain linear elastic element with
damping (see Fig. 3.22). Force P, acting on this element, and its
deformation s (movement of the element) are connected by the relation

(2.25):

dt

Let us introduce the concept of the complex dynamic rigidity of

such an element and determine how it is connected with coefficients

c and R of its rigidity and damping.

Let us assume that displacement s of the elastic element changes

with time according to the harmonic law s-scei'. Then the force,

acting on this element, will also change according to the harmonic

law:

P (c +fwk) soeol

"or

where

Peuu(C +10ak) 54.

We will call the quantity

D()+Lw (49)

4 1
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"ecomplex dynamic rigidity of the elastic element with damping.

A-Is can be seen from expression ('1.9), the real part of the complex

quantity D(w) is the coefficient c of rigidity of the spring, and the

iimaginary part is the coefficient k of damping of the element multiplied

by w.

In order to calculate natural oscillation of the helicopter

on the ground in accordance with the diagram, depicted on Fig. 3.16,

It is necessary to select correctly the characteristics of elasticity

and damping of elements c' and c,.

It is obvious thain for the calculation of oscillations of the

helicopter on landing run it is sufficient to select the horizontal

elastic elements (c0 on Fig. 3.17) f that their complex dynamic

rigidity is equal to the complex lateral rigfdity of the tire during

rolling. Coefficients of stiffness and !,,mping, which is thus

selected of the "equivalen'" elastic element, can be determined

respectively as the real and imaginary part of the complex quantity

D(w), which is expi-essed by formula (4.8).

Separating in expression (4.8) the real and imaginary part,

we will obtain:

2 2\ 0,2V2 (4.10)

k,,m
S(_ )2 + 02V2 (4.11)

The obtained formulas are compar,.tively complicated and require

knowledge of constants of the tire a and B.

Formulas for determining cou, and k3,,, cý-n be considerably

Implified if instead of the rolling conditWons of M. V. Keldyih we

use the so-called hypothesis of "tilt", in ;,ccordance with which the

lateral deformation of the tire X ("tilt") .:; connected with the

anrgular deformation ot' the tire ý by the ':lpie relation

I 5 L
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where f- lis the so-called coefficient of "tilt".

As was shown in the work of M. V. Keldysh [15), this coefficient
"is approximately equal to radius r of the undeformed tire

(14.13)

(r is the distance from the axis of the tire to the ground in the

absence of pressing).

With this hypothesis the first of conditions (4.4) yields:

Assuming, as earlier, that

we obtain:

U o _ V * (4.14)

Separating In this expression the real and imaginary part,

we ob'-ain the following expressions 'or coeffi,;ienTs of stiff'ness

and dAnping of the equivalent elastic element:

NI
in " '" (;•)' J"1+.

V (4.16)
451
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--n si:::•p_.fiea formulas (4.15) and (4.16) are more convenient

frsr practical calculations and do not require knowledge of constants

S) rf' the tire a and 8. The accuracy of the approximate formulas is

ruilly ...ufficient for practical purposes. This is illustrated by

tho comparative graphs on Fig. 3.38, which are obtained as e

result of calculations carried out for the main wheels of the Mi-1

helicopter (a=l 8 -corresponds to the frequency of the second tone

of oscillations) according to the theory of Keldysh and according to

the theory of "tilt".

Thus, in the carrying out of calculations of natural oscillations

of the helicopter on landing run it is expedient to use formulas (4.15)

and (4.16). It is necessary to substitute tn.e frequency p of lateral

oscillations of the helicopter into the forn.ilas instead of w.

Fiý,uro 3.39 gives graphs of the dependence of the dimensionless

1JM1 ,% --- •2• I!

Bvw Xhe - k ,

By the
W1,• t al W I oYz

I 1 0

Fig. 3.38. Dependence of the relative "lateral rigidity and
lateral damping of the tire on the speed of the helicopter
on the grou1,d (--A-.)

•,•: - -,.•Tr • ig. 3.39. Dependence of,

P a I I I--,

Fig. 3,38. Dependenc o rela;ive lateral rigidity

I _ _, and lateral damping of the

S• --••------ tire on the dimensionless
• ___/•_-•I " •,spe•wi of the helicopter on

on th the Wround.

-- Fig 39 Depndnc of



lateral rigidity lfgm~. and damping (±-IN on the dimensionless

relative speed V.1.1 of motion. As can be seen from the graph,

the-lateral rigidity of the tire very greatly depends on the speed

of the helicopter. At V-3 (which for the tire an Mi-I helicopter

at p- 18  -amounts approximately to 50 km/h) the lateral rigidity

of the tire is 10 times less than that for a rigid tire. :
2. Calculation of Ground Resonance and Its Results

The calculation of ground resonance on landing run can be

performed just as in the usual ease (§ 2), but values of lateral

rigidity cl* of the tire during calculation of natural oscillations

should be replaced by values of Cm, enumerable by the formula (4.15),

and with the determination of damping factors of natural oscillations

(6 2, No. 4) an additional damping of the horizontal elastic elements

(see Fig. 3.17) should be considered in accordance with formula
(4.16). In formulas (4.15) and (4.16), instead of values w one

should substitute values of p of the frequency of the corresponding

tone of oscillations of the helicopter. Such a procedure of calcu-

lation is fully justified, since on the limits of zones of instability

purely harmonic (undamped) oscillations are observed and formulas

(4.15) and (4.16) are obtained precisely for the case of harmonic
lateral oscillations of the tire. The purpose of calculation of

ground resonance consists exactly in finding the limits of zones of

instability.

During use of formula

3+ V,1 (4.17)

in the calculation of frequencies of natural oscillations of the

helicopter there is the difficulty connected with the fact that for

finding the frequency natural oscillations p it is necessary to know

the value c,., which in turn depends on p. Therefore the calculation

of natural oscillations (determination of p) should be produced

by asaigning differcht values of two In the interval O<r.u<c:v, and

,i.n ••tLer determirntion of p the corresponding value of speed of ()
Lhe Landing run 1'rom rormula (1i. I1) should Le round. 'Po ditrrmrrae.
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I.
the speed of the landing run there is obtained the formula:

As a result of such calculation it is possible to construct
a graph of the dependence of limits of zones of instability on the

c;peed of landing run V. Figure 3.40 gives results of such a calcula-

* Lion for the Mi-l helicopter. On the graph there is depicted the

dependence of the lower limit of the zone of instability corresponding

to the second tone of oscillations on the speed of the landing run V.

AlMP, rt r/min

Fig. 3.40. Dependence of lower
- - -- limit of the zone of instability

on the speed of the land.ng run
306 - - -for the Mi-l helicopter:! .op -

"critical revolutions correspond-
•._ Ing to the beginning of self-

excited oscillations; n'-
,,otirq v•,,o1' revolutions corresponding to the

20i " '| ' .. center of zone of instability..

O 0 V 2 30 4,0 Vii/r

As can be seen from the graph, critical revolutions nup of the

rotor corresponding to the beginning of gro.:Lnd resonance noticeably

descend with an increase in speed of the helicopter. If for a

motionlessly standing helicopter the revolutlon margin is 36%, then

;tt a speed of landing of run 60 km/h the marL;in decreases to 8%.

It Is important to note that with an increase in speed V curve

np approaches to a certain asymptote. This nas follpwing physical

meaning.

With an increase in V the iaterul ris,,,•'1ty of the tire, deter-

mined by quantity L4 : [formula (4.17)], dec.- azes without limit

approatching to zero. Then the frequencies cf" naitural oscillatirns

of the air*t .nd s(cond t•ones decrease, an-. tre, frequuncy of" the

f'lrst tone p tertdv tc zer., and the Vrequer.". .i' '.,e c.'Jcrit, tone t1



the value

.. MV ((.19)

-Quantity pO is the frequency of natural lateral oscillations of

the helicopter in the absence of lateral rigidity of the tires.

The form of oscillations of helicopter corresponding to this

frequency, constitutes the rotation of the body of the helicopter

around the main longitudinal axis of inertia. The corresponding

node of oscillations (see S 2, No. 3) coincides with the center of

gravity of the helicopter.

Such a situation can appear for a helicopter standing motionlessly
or moving about a smooth surface of ice, when one can assume that the

friction between the tire and ground is absent (here also c7,-0).

From this reasoning follows the possibility of a simplified

(appraisal) calculation of ground resonance on a landing run, when

the frequency of natural oscillations is determined by formula

(4.19). Dor a mass of equivalent elastic support (S 2, No. 6)

there is obtained the formula

(4.20)

For the attenuation factor of the helicopter there is obtained

the formula

where H is the distance from the surface of earth to the center of

gravity of the helicopter.

Quantity h.. is determined by the formula

V
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Quantity k constitutes the damping factor of vertical elastic

elements (see Fig. 3.16), which depends on damping properties of "

S) shock-absorber struts end is determined just as was shown in No. 5

of §2.

Such an approximate calculation for a helicopter having a zone

of instability located above the operating revolutions gives a small

error in the "safety margin."

3. Ground Resonance with Separation of the Tires
from the Surface of the Earth

All the above-stated methods of calculation of ground resonance

assumed the linearity of characteristics of the tires. However, in

reality, the characteristic of the tire can be (even approximately)

considered linear provided one were to examine such situations at

which the tire in the process of deformation remains pressed to the

surface of the earth. In general, the characteristic of the tire
haS the form depicted on Fig. 3.41.

' Fig. 3.41. Nonlinear
ps Idependence of force

-- M acting on ..-e tire
Sfrom the saJe of the

earth on th.a vertical
displacement of the

0 5 . axis of the wheel.

It P is the force acting on the tire from the side of the earth,

.,r,• I ~i:. the eorr':Ol-ondinr, displacement, t;.en the characteristic

Y1* ~il fi ll i n? I hnt , fa; ill, Cs,%I*t:

0 !tor 86<0.

II' I !i'r, -' ,'yeriine i, l 11. f.1IIl i'|,..: cf the helicopter

iwar* th,. poaltl,,n of* :quilibrlum !orre.:pcmn4,:1rg to the riven traction

T of th, rttor at which r - PO ano s ; c trat trhe !),lnt

y y



depicting on the diagram the state of the tire is found during

oscillations on a certain segment AB wholly lying in the linear part

of the characteristic, then all methods of the calculation founded

on the linearity of the characteristic of the tire remain in force

(for such stall oscillations).

However, at large amplitudes of oscillations it can appear

that the point depicting the state of the tire on the diagram exceeds

the bounds of linearity of the characteristic. Thus, obviously,

it will be in the case when the amplitude of displacement As is

larger than the value of atntic pressing sa. The value of static

pressing so$ Just as force PO' depends on thrust of the rotor of

the helicopter and decreases when thrust T of the rotor increases,

approaching to a value of the weight of the helicopter G. If T < G,

then the tire is pressed to the ground; however, the less the ampli-

tude of oscillations of the helicopter at which the tire will start

to be detached from the surface of earth, the nearer quantity T is

to the value T - G. Therefore, the tires are detached most easily

from earth during takeoff and lending of the helicopter at moments

when thrst of the rotor is less than the weight of the helicopter

but lsquite great.

Calculation of oscillations of the helicopter with separation

of tires is %,ery complicated, but it is possible in not producing

such calculation to make certain very important qualitative con-

Alusions. Really, durirg oscillations with separation of the tires

the helicoptir constitutes a nonlinear oscillatory system with a

clearance. It Is known that the frequencier ofr natural oscilla-

tions of the system with a clearance depend on the amplitude of

oscillations and on the magnitude of the clearance, and the larger

the clearance (at the assigned amplitude), tne lower the frequency

of natural oscillations. This Is physically clear, since the presence

of the clearance is equivalent to the l.owerng or the average (for

the period of oscillations) of rigidity of .ae elastic element.

Consequently, during opr.. -ý ons or toe helicopter with

separation of the tires the .4 . tes of natural oscillations" __)

__



Jecrease, and together with them limits of zones of instability also

.decrease. Therefore, if the zone of instability corresponding to

the second tone of oscillations is higher than the working revolu-

tions of the rotor, then the margin with respect to revolutions up

to the lower limit of the zone of instability decreases during

oscillations with separation of the tires; and it can appear that

at a quite large amplitude of oscillations the lower limit of the

zonc of instability will be "released" prior to the working

revolutions.

Thus the helicopter having with small oscillations a zone of

instability located higher then the working revolutions is stable

only at small amplitudes of oscillations not exceeding a certain

critical amplitude aP, which can be ca3lled the threshold of excita-

tion during oscillations with breakaway of the tires.

From what has been said above it is clear that the less the

value of the threshold of excitation, the smaller the forces pressing

the tires to earth, i.e., and the nearer valuje of thrust of the

rotor to the weight of the helicopter. Conzsquently, the most

(1darngerous 1_ the situation at the time of seaaration of the helicopter

from earth and directly after landing. Theor.frc, when oscillations

form during takeoff or landing it is necessary to decrease immediately

the thrust of the rotor. Shock-absorber struts are included into

the operation, and oscillations with separation of the tires are

hampered.

It is important to note that oscillations with separation of

the tires present a danger only in the case when there is a zone of

instability located higher than the working revolutions of the rotor.

From this point of view the undercarriage configuration proposed

by the Bristol firm is of interest (sec Fig. 3.18). As was noted

already above (§ 2, No. 2), in this undercarriage configuration it

is; possible by sclect.on:, of the value of riridity of the special

spring cp to obLK,-n Poincidence of the cenerLr of rigidity of the

system of shock absorption with the center of gravity of the

i0 ( ) helicopter with satisfactory landing chara-..eristics of the landing
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gear. With this lateral forward oscillations of the helicopter and

angular, oscillations around the main longitudinal axis of inertia

of the fuselage, become independent. (A

Calculations show that in this case the frequency of lateral

forward oscillations is approximately the same (somewhat lower)

as the frequency of the first tone of oscillations of the helicopter

with an undercarriage of standard design, and the frequency of

angular oscillations can be considerably decreased as compared to

the frequency of the second tone with the standard undercarriage

design (it-can be made in this case even equal to the frequency

of the first tone).

Thus the application of the undercarriage of the "Bristol"

system permits obtaining a very low frequency of the second tone of

oscillations such that the corresponding zone of instability is

obtained below the operating revolutions of the rotor. For such a

helicopter ground resonance with separation of the tires from the

surface of earth is not possible.
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§ 5. Ground Resonance of Hei~coptersof Other Conflurationi

1. General Remarks

As was already noted above (0 2, No. 1), for the calculation of

natural oscillations of the helicopter on the ground it is necessa:y

to examine the problem of oscillations of a solid body (if one were

not to consider the elasticity or the fuselage) on an elastic support.

A solid body on an elastic support has six degrees of freedom.

Accordingly, there are six tones of natural oscillations of such a

system to each of which corresponds a definite frequency and form of.

oscillations. For a single-rotor helicopter :iaving an elongated

fuselage, it appeared possible approximately to examine only the

lateral oscillations and not to consider oscillations of yawing

(1 2, No. 1).

Por a helicopter for which moments of ir.ertia of the fueelage

with reference to the three principal axes of inertia are magnitudes

of' one order, such a simplification is Inadmis~ible. However, if

there Is a plane of symetry of the fuselage, then it Is possible to

examine the longitudinal arfd lateral oscillations as being independent.

I• the calculation of lateral oscillations i. is necessary to examine

three degrees of freedom:

1) transverse displacement;

2) angle of bank;

3) angle or yaw.

During the calculation of oscillation: In the plane )r simmetry

(longitudinal ou.1llations) it 13 necessary 11so to examine therw

three degrees or rr'edom:

1 ) InlonitUdIr,41 dISPIAP€Cent.;



3) pitch

From the point of view of ground resonance both lateral and

Slongitudinal oscillations can be dangerous.

Given in this paragraph are methods of the calculation of natural

osci]lations of the helicopter which considering all the mentioned

degrees of freedom.

It should be noted that these methods are applied to the single-

rctor helicopter and permit obtaining results more accurately than

results of the approximate calculation according to the method

expounded in § 2.

In this paragraph the method of calculation of ground resonance

in air, caused by the elasticity of the fuselage, is also discussed.

2. Calculation of Lateral Natural Oscillations
Taking into Account Three Degrees of Freedom

Figure 3 .412 depicts a helicopter on an elastic undercarriage.

Let us select the rectangular fixed sy-tem of coordinates cxyz with

the beginning in the center of gravity of the hclicopter c. We will

direct forward axis cx (in the plane of symmetry of the fuselage) in

parallel to the surface of earth, axis cy upwards and axis cz to

the right, if one looks in the direction of axis cx. Let us assume

that z is the displacement of the center of gravity of the helicopter

in the direction of axis cz, and x and y are angles of rotation of
x y

the fuselage, respectively, with respect to axes cx and cy (x -
x

angle of bank, 0, - angle of yaw).

Equations of lateral oscillations of the helicopter can be

written in the form:

aiamZ.
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where m is the mass of the helicopter; I and I -moments of inertiax y
.of the fuselage with respect to axes cx and cy; Ixy - corresponding

product of inertia; M and M -moments of external forces acting on
X y

the fuselage with respect to axes cx and cy; Z -projection of external

forces acting on the fuselage on axis cz.

A C'

Fig. 3.142. Diagram of bracing
CY, • • Y. of the helicopter on an elastic

undercarriage.

iY

JI

Let us consider first the oscillations in the absence of damping.
,1ý In this case quantities Mx, M and z during small natural oscillations

of the helicopter with respect to the position of equilibrium can be

linearly expressed by d-Lsplacements z, 4x and 4y. Let us write
x y

expressions for the displacement of centers of rigidity of shock

absorbtions (U,,K) in sections I-I and II-II of the fuselage (Fig.

3.42), which correspond to the front and rear undercarriages by

quantities z, 4x' and 4y
x y

1) front undercarriage:

2) rear chassis:
Z2- z+'PZ2--P.e,,

where XI and X2 are distances of planes of %,he front and rear under-

carriages from the center of gravity c; e- Irnd eP - distances from

axis cx to centers of rigidity of tne fron% and rear uridercarriages.
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By knowing the displacement of the center of rigidity of the

section of the fuselage z in the plane of the given undercarriage and,

also tne turn of this section with respect to the center of rigidity 4
(which for both sections will be equal to x), one can determine
e•lastic forces and moments acting on the fuselage in this section

.similar to that which was done earlier (§ 2, No. 2) for a flat body

on an elastic support. Determining then quantities Mx, My, and Z, we

will obtain for them the following expressions:

Mw• -- s,?-- .. Ciz. (5.2)

where the appropriate stiffneso coefficients are determined by formulas:

C C,. + C.;
C,- + e,. + e, e2 A

2'

Cps C'. 01+ CS 0K ~ ,2'(5-3)t C,, c 8.- c,l,;(53)

.=. C.e, -,e C;

Quantities c cz, cz l, and c2constitute coefficients of

lateral and angular rigidity of the front and rear undercarriages.

In the first of formulas (5.2) there is also the term Gz,

which is the moment of force of weight of the helicopter G with respect

to axis cx appearing with lateral displacement z.

Substituting expressions (5.2) into equations (5.1), we will

obtain finally the following equations of small lateral oscillations

of the helicopter:*

I,.9i - I.UY (G + c*) z - cy- .1%u;
/;.?- /;..-CA- Ca•l.- b ,9  (5.4)

MI cat +, ( ) +e.
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Searching for the solution of this system in the form of:

zzco. p1;

=,-W COS pt.

where z. , • and p are constants, we arrive at the following system

of linear algebraic equations for determining these constants:

(G + c,) zo-- (c,, - /ps) i + (c4 -+Ip 2) "; 0;(

- 1p)? =O.' - ~~CZo + (ell + ,,p TO, + MP, - Mp- •:o

Equating to zero the determinant of this system

(e,-- mp); -- e; el

-- ( + r.); (4'. -- /•p'); (r. + I/.pg) -0

-e; (4, - .uP); (r, , p')

and producing simple transformations, we arrive at the following

characteristic equation for determining frequencies of natural

lateral oscillations p of the helicopter:

ApG+Bpl+Cp2 .-f.O," (5.6)

where

+pl(a+P ) +,p iIak -- 2 pp;

-=.jO'9 ,4- AM+PI.A -P. -I+(57)

S,,--//•; *D--7 are dimensionless coeffi.ctents.

S) ~~Partial frequencies Pa. P,, P, and quantities. /#,' etc., are
given by formulas: as a

a r i i s
Pata rqece rP , n uniisf9,p. t. r

gie yfomls

S.. . . . .. . . . . . . . . • ' ' " - - " - . . . - . . " - " - " 4 6 -" 2



P2 a ___CxP

amL ps a*

S(5.8)A of
MA.; ASM&

Equation (5.6) is a cubic equation with respect to quantity p2 .
it 4s possible to show that its roots Pk

real and positive. Therefore, one of the possible methods of finding

frequencies of natural oscillations is the graphic method where

there is constructed a graph of the left-hana side of this equation,

which is examined as a function of quantity p. Points of intersection

of this graph with the axis of the abscissas will give values of

frequencies of natural oscillations (Fig. 3.43).

Let us number the frequencies of natural oscillations of the

system in ascending order: pl < p2 < p3. We will call quantities

P1 9 P2 9 and P3 . respectively, frequencies of the first,, second and

third tones of natural lateral oscillations of the helicopter. Each

frequency of natural oscillations corresponds to a definite form of

oscillations characterized by a definite relationship of amplitudes

z.,, i. which can be found for given Pk (k = 1, 2, 3) from equations

(5.5) if into them instead of quantity p we substitute Pk Then we

obtain expressions

''J'" L.•.)." ( I,- '.-.)." (ii, +Ia.,'.)' C'
(i, \ -.., ('t-',IR)(,ed +1.,,)-c,'. (i9t)

'. ire (e- +,. )- a(.,-I,, .), '.

where k * 1, 2, 3.
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606(p) -p.p'+ p4+CpR +P

Fig. 3.43. Character of the
graph A a A(p) for determining
frequencies of natural oscilla-

0 P3 P tions of the helicopter on an
01 elastic undercarriage.

It is easy to show that the form of oscillations of the given

tone is characterized by a defined straight line, which lies in the
plane of symmetry of fuselage xcy and is a locus of points (belonging
to the fuselage) remaining fixed during oscillations of this tcne.

Really, displacement zA of a certain point A of the fuselage

lying in plane xcy and having coordinates x and y (see Fig. 3.42),
obviously, can be determined by formula

S.A Z+VY-v9-u,.

With oscillations of the k-th tone:

Z-ZSCOS PAl

z--,cCosPat.

Consequently,

u.• I1+ (R,).P - (;AI c= Pd.

Therefore, condition

I + it. (5.10)

constitutes an equation of the locus of pojr.tz tn p].rie xcfy the
amplitudes of o:.e1lat1onz of which are eqd?.lto zerrr ,iuri,,s, r:t~lcl!a-
tions of the k-th tone-. hut thia:; In anr uerp:.tAlon of :, ,:,.rt;jl atralgat
line.

Thus the rorm jof oscillatioz *%f the s.-th tone cqn be -hh•racterized
by the po.iticrn o& a. certain :tr ýsjr.t iine r, plant xcy. .h1s. :traliht

4•
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Fig. 3.44. Characteristic location of nodal lines
of oscillations of the first, second and third tones.

line will be called the nodal line of the k-th tone of lateral

oscillations. The equation of the nodal line (5.10) is easily found

with the help of expressions (5.9) for the given value Pk"

it is convenient to present the results of the calculation of

natural lateral oscillations of the helicopter in the form of a figure

on which there is depicted the form" with a side view of the helicopter

and applied nodal lines of &l three tons of oscillations with an

indication of corresponding frequencies (Fig. 3.14).

The method of approximation of the calculation of natural lateral

oscillations, discussed In 1 2 and rounded or. the assumption of the ,,

Independence of oscillations of yawing, can be obtained as a special

case of the equations derived here. '

It axis cx and cy are the principal axes of Inertia (Ixy 0)1,

and there are also carried out conditions
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CotZ.O ChetI - r.eý, =0.

then equations (5.4) break up into two independent systeris of equatlons:

I,,m -ca-)z-cy,; 1 (5.10')

fai,- -cP,. (5.10")

Equation (5.10") determines the indepenaent oscillations of yaw,

and the system of equations (5.10') determines lateral oscillations

corresponding to physical pattern expounded in S 2 (two of the nodal

lines are parallel to axis cx, and the third coincides with axis cy).

For a real helicopter conditons c£ I C eZ - 0 and Ixy . 0 are

never fulfilled accurately. However, for helicopters with an extended
j fuselage when angle a between the principal axis of inertia cx and
* axis cx Is small (see Fig. 3.42), and the mcoent of inertia Ix is

Ssmall as compared to the two others (I and *.' ), results of "accurate"
Y z

and approximate calculations can coincide wit! the degree of accuracy

t sufficient for practice.

To determine the camping factors of natural oscillations it Is

possible to use the approximation method anaogous to that expounded

In S 2 (No. 4) for the system with two degrecs of freedom. For each
tone of natural oscillations there is determined the damping factor

on the assumption that in the presence of dv..ping, oscillations of this

tone also constitute angu:ar oscillations around the nodal line of

this tone. Just as earlier (S 2, No. 4), tk.e equation of natural

angular oscillations of the helicopter aroun'. the nodal line can be

written in the form:

where Ik is the moment of Inertia of the he:.copter with respect to

the nodal line of the k-th tone; anguI.- iplar rigidity or the

shock absorption during a turn with reapect 't the nodal lir.e of the

4, f-,.



k-th tone; k,-- corresponding damping factor.

The moment of inertia of the helicopter with respect to the nodal

line can be determined- by the formula:

ISM--*+ /SCOV+ IbSATA+ auih2YA, (5.12)

where hk Is the distance from the center of gravity of the helicopter

to the nodal line; Yk is the angle which is formed Ly the noC:.il line

with axis cx (Fig. 3.44).

Quantities hk and Yk are determined by the formulas:

f4To (5.13)
wII

* ~(5.114)

The coefficient of angular damping k is determined by the

expression:

_2&d'+ 260&+22(k kt&2.a pcost VS. (5.15)

where dlk and d2k are distances from the nodal line (Fig. s.45) to

lines connecting points of contact with earth of the tires o. the

front and rear undercarriages, respectively; a1 and a 2 - track-. of

the front and rear wheels (Fig. 3.16); k bt, kh, kh- damping faciors

of lateral and vertical springs (see Pig. 3.16), respectively, of the

front and rear undercarriages having the same meaning az that In i
(NO. •).

Fig. 3.45. Conclusion of basic
relationships with oscillations
or the helicopter with respect tL
the nodal line of the k-th tone
of oscillations.
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After determining quantity k k the ,ilne;.zionless damping factor

eol the k-th tone is determined:

3. Calculation of Natural Osct1latlor.ý of the Helicopter

in the Plane of Symmetry (Longitudir.! Oscillations)

Let us turn to Fig. 3.46. The problem o:f oscillations or the

helicopter in the plane of symmetry is reducec to the investigation

of oscillations of a flat elastic secured so!-7d body In Itz plane (xOy).

Vertical springs with coefficients of rgildiý.: c yi and c y, simulate

the vertical rigidity of the front and rear .ndercarriages &rd

horizontal cXl and cx , tne rigidity of the front and rear u~AiJrcar-

riag-; i%- the directiorn of axis Ox. if *h(,- *ires of the ueei-arriage

are not braked, then cx a C A2 - 0. In the c.ase of braked tires the

elasticit:y of the undercarriage in the direction of axis Qx Is

k. ,%prlsed of the ela3ticity of the tire and elasticity of the suspension

system if' the tire (for example, bendinr, elaz-icity of landing gear

struts, etc.). The longitudinal rigidity o:' one tire &, can be for

tentative calculations accepted equal to c7'1kl.

i,.g. ;..46. Diagram of, bracing
of t.•: helicopter or an elastic
una,,rtarr~age for the calcula-
ton -.f oscillations In the

q -6-- -- a •e.•of I-.ravlty i

Let u3 assume that point :, (Fig. ?.46) with toordIrote ft x and

er It the center of rigidity Of tne sýt:.en -r shock ab-orpttlon during

longitudinal oscillations. Qua•tity t:V clc., ".Itutes the distance of the

centor or rravity of the helicopt#r from thc surface or earth, Ind

quantity e x to determined from the expr-ssirn

+ ( •
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e.t ;s assume that x and y are displacements of the center of

gravlty of the helicopte3r in the direction of axes Ox and Oy, and

Is the angle of rotation of the fuselage with respect to axis Oz.

Then equations of small oscillations of the helicopter in plane xOy in

the absence of damping have the form:

t;- -C, -Cy, (5.18)

IR.- li. ((+a~to# )y.+ASr; fg+

where

es -e, +ca.;• -h+, (5.19)

Let us introduce the following des+.nat+cns:

Oa 2 Lw * (5.20)

* ;

Let us also introduce Instead of" the new variable

(5.21)

Then equation (5.18) can be written In the form:

g- IIlos - 100FOR:•

Searching for the solution of this system of equations In the

form or

amt~mpt, g-•em• a-•,mp. (5.23)

we will come to the following system of linetr un!fom a1PeLPatuI'

"equattliwas rot dterulnlrh. quantitle. x1, Y,,. WO;'

I'm I



p,2-p 2 ) X0 P4 0u=;
(P -. P') YO+ P82,ioO; I(5.214)

- PEX-o + p; ;.Y. + (P, - P2) S. 0. o

Equating to zero the determinant of this system

p2 - p2; 0; pjC
0; P7P; p0e

p•_p 2

we will obtain the following characteristic equation for the deter-
mination of frequencies p of natural oscillations:

p÷+ap4+bpl+c,.o, (5.25)

where

r., e -'. A A - P,r P',, - .,, • (5.26)
1

2(

This equation has three real roots of p , which can be found

graphically by constructing a graph of functf.on A -A(p) = p6 +

+ ap + bp + c, similar to that which was indicated in § 5 (No. 2)

for eouation (5.6) (see Fig. 3.43). Let us arrange roots of equation

(5.25) in ascending order p1 < P2 % P3, and w,'e will c-ill quantities

P11 P2 . and respectively, freq,,rncies of the first, second and

third tones of natural oscillatio c-" the helicopter in the plane of

symmetry or longitudinal oscillations. Each tone of longitudinal

oscillations corresponds to its form of oscillations of the helicopter

which is conveniently characterized c..y the position on plane xOy the

corresponding node of oscillations " (here h - 1, 2, 3), i.e., the

point of the fuselage which remains fixed d'r:rg oscillations of this

tone. Coordinates of the ri'ode of oscillations xk and Yk can be found

in the following manner: amplitude4 ax and ay of oscillations of any

* point of the fuselage with coordinates xk and Yk in directions of

, • axes Ox and Oy are determined by the evident formulas:
/
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where o,-tsQis the amplit4de mf angular oscillations of the helicopter.

Coordinates x k and Yk are determined from conditions ax - 0 and

ay 0 0, and therefore

A A,--

Quantities of ratios 1 and can be found from the first two

equations of system (5.24), if is known the frequency of oscillations

p. With oscillations of the k-th tone we obtain

Hence there are obtained the following formulas for determining

coordinates of the node of oscillations:

I
(5.27)

Y"_(PIS't . # I

Let, us indicate iwo possibilities of the simplified calculation
of natural oscillatlons of the helicopter in the plane of symmetry.

In the case when the center of rigidity of shock absorption M

(see Fig. 3.46) *Wes on axis Oy (e a 0), the eqtations of motion

(5.18) are simplified and take the form:

4



o.,=

mam-ear (5.28),

aExU.C&X+Cait, ~5.29)

Equation (5.28) describes the vertical forward oscillations of

the helicopter, which are not of interest from the point of view of

ground resonance.

Equations (5.29) describe longitudinal oscillations of the

bielicopter, which in this case can be examined as a system with two

degrees of freedom x and z Such a system is mechanically equivalent

to the system which was examined in § 2 (No. 3) and is depicted on

Fig. 3.16. Therefore, with the calculation of frequencies of natural

oscillations of the helicopter in this case (if we disregard the moment

of force of weight G) it is possible to use the graphs in Figs. 3.19

and 3,20 and also formulas (2.22), (2.23) and (2.24), assuming in them

u "= I(5.30)

-= V C12(5.31)

Quantity i-="" will be the relative distance from the node of

oscillations of the k-th tone, which in this case will be located on

axis Oy up to the center of gravity of the helicopter.

For the real helicopter quantity ex, as a rule, is not equal to

zero. However, it is usually small as compared to quantity I + L

The approximate calculation, in which we assume ex a 0, in most cases

gives -values of frequencies of natural oscillations close to values

obtained by means of an exact calculation and can be used with

success as a preliminary calculation when it is necessary to obtain

re:ultz rapid1y, and there is no need in greater accuracy,

1+75



In the case when longitudinal oscillations with nonbraked tires
(Cxo a 0), are calculated, the equations of motiorn (5.18) again break
up Into two independent systems: (

mz-0

X; ta - eug-Cuay

In this case with the oscillations it is possible to consider
x 0 0, since the projection of external forces on axis Ox is absent.
One of the frequencies of natural oscillations of the system is equal
to zero and corresponds to the uniform motion of the center of gravity
of the helicopter along axis Ox. Two other frequencies of natural
oscillations, as in the preceding case, can be found by graphs in Figs.
3.19 and 3.20 or by formulas (2.22), (2.23), and (2.24), in which one
should take:

-," '.(5.32)

_.,,(,.- a)' + cj12 + ,5Sdsac (5.33)

Quantity au--L will constitute the relative distances from the

center of gravity of the helicopter to nodes of oscillations, which

in this case will lie on axis Ox.

Finally. in the uase when the tires are not braked, and quantity
e= 0, the simplest formulas for frequencies of natural oscillations

in the plane of symmetry are obtained:

To determine the attenuation damping factors of natural

longitudinal oscillations it is again possibLe to use the method of

approximation, founded on assumption that in the presence of damping

4+76
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forces oscillations of the given tone are angular oscillations with

respect to the nodal line of the given tone, which in this case is a
straight line parallel to axis Oz and intersecting plane xOy at the

point with coordinates xk and [k [see formula (5.27)]. The equation

of oscillations of the given stream can again be written in the form

(5.11), and only quantity Ik is found by the formula:

&- &m~x:g).(5.34)

With the determination of the damping factor k it is possible

not to consider the damping of longitudinal elastic elements c andxI

c (see Fig. 3.46) and to consider only the damping of vertical
2

elastic elements with rigidities c' and c' of the front and rear
y 2

undercarriages (see Fig. 3.16).

Corresponding damping factors k' and K' are determined as isSYl Y2

7.hwn in § 2 (Nos. 4 and 5).

In calculating the moment from damping forces with respect to the

nodal line, we will obtain the expression for determining quantity

k

k,, =2 1k,' (1 -x)+k(l, +k X- (5.35)

The dimensionless damping factor n of the given tone of oscilla-
k

t onr iS determined by the formula

ShApt (5.36)

4. [Reduction of the Prob>Ž-ri to ti Calculation

of the Rotor on an Elastie. Base

After frequencies and forms of natural )3cillation3 of the

helicopter on an elastic undercarriage are ")und, the calculation of

ground resonance can be reduced to the calciiation of the rotor on

the elastic support discusi;en 1r, S A.
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The method of calculation founded on the reduction of the problem

to the rotor on an elastic base, is approximate and similar to the

method expounded in 1 2 (No. 6) for a single-rotor helicopter. (

The essence of the method of approximation consistp in the

following: a separate calculation of ground resonance for each tone
of natural oscillations is made; then the body of the helicopter is

examined as a solid body having one degree of freedom - a turn around

the nodal line of the given tone. Of course, such a method of

approximation is Justified only in the case when the frequencies of

natural oscillations of different tones are quite "far" from each

other.

In the case when there are two "close" frequencies of natural
oscillations, certain corrections must be introduced into the

calculation. A method of refinement of the calculation in this case
will be discussed later.

Thus to calculate ground resonance there are examined oscillations

of the helicopter with respect to each tone separately as angular

oscillations of the fuselage around a certain fixed straight line -

nodal line of the given tone.

It Is possible to show that with such a simplification the

equations of motion of the system are reduced to a system of equations

similar to the system (1.16) (1 1). All formulas of § 1 remain in

force, and it is possible to use graphs for determining limits of

zones of instability (see Figs. 3.3-3;12); however, by the quantity

n. it is necessary in this case to imply the dimensionless damping
factor Wk of the given tone of oscillations, determined by the formulas

(5.16) or (5.36) (1 5, Nos. 2 and 3), and by quantity ek enumerable

for the given tone by the formula:

% •+lamA (5.37)
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where i l 1, 2, ... , s; a is the number of rotors, and each of the'

quantities Cik is determined by the formula:

T 'm- i (5.37Y.
(T -a-a It'

*ii Here Ik is the moment inertia of the fuselage (with masses of rotors

concentrated in their centers) with respect to the nodal line of the

k-th tone [see formulas (5.12) and (5. 34)]; Zk - distance from the

center of the given i-th rotor to the nodal line of the k-th tone,
if lateral oscillations are examined, or the di.stance from the no4al
line k-th tone to the plane of rotation o0 the given rotor, if
longitudinal oscillations of the helicopter are examined; n - number

of blades of the given rotor; %.,3 and I,, - static moment and

moment, respectively, of the inertia of the blade of the rotor relative

to the drag hinge.
ii

The rotors can be different, but the indicated procedure Is

correct only when all rotors have identical angular velocities of
rotation and identicAl values of parameters v0 (see formula (1.9)].

*. As was already noteu above, the method o' approximation of

calculation expounded here is justified only when frequencies of
oscillations of different tones are quite "far" from each other. It

* is possible to show that if there are two close frequencies of natural
lateral (or longitudinal) oscillations, for example, pn and Pm' then
the calculation of limits of zones of instability can be conducted

for one tone, for example, pm' but it is refined by introauction into

the calculation of a certain quantity ns.. Instead of nm (for the

given tone, and •i.<i.), which is determined by the formula:

(5.39)

This formula is derived for the case w, pn P m,' i.e., when

the frequenciez of natural oscillatlonZ of -wo examined tones accurately

coincide. If, however, p, # P., then formu> (5.39) gives the

decreased value g.



In the case when there are two close frequencies of natural

oscillations pn and pm, where one of them, for example, Pn' is the

frequency of the n-th tone of lateral oscillations and the other pmt (
the frequency of the m-th tone of longitudinal oscillations, then,,

in general, it is necessary to examine the rotor on an elastic support

with two degrees of freedom (see 1 1, No. 4). In this case it is

possible approximately (in a safety margin) to estimate the necessary

damping by the formula (1.52) for a rotor on an isotropic elastic

support, substituting into it quantities 50 and c for one of the two

examined tones for which the quantity of the ratio • is less.

It should be noted that the necessity of such a calculation

appears only in the practically very rare case when for both examined

tones not only values of frequencies pn and p are close but also

values and I . If, however, quantity f for one of the tones is

more than 2.5-3 times larger than for the other, for example •-3. -S
64

then it is possible to disregard oscillations of n-th tone and to

examine only oscillations of the a-th tone (as independent).

5. Self-Excited Oscillations in the Flight of a
Helicopter with an Elastic Fuselage

During the flight of a helicopter in air self-excited oscillations

of the ground resonance type are also possible. The fuselage of a

real helicopter constitutes and elastic system which has nat%:Jl

frequencies and forms of natural oscillations. If the form of

oscillations of any tone of the elastic fuselage is such that the

center of the rotor (or centers of rotors) during oscillations of

this tone Is displaced in the plane of rotation of the rotor, then

ground resonance is possible at which the fuselage will accomplish

oscillations with a form of this tone.

Frequencies or natural oscillations of the elastic fuselage are

usually high in comparison with frequencies of oscillations or the

helicopter on shock absorption of the undercarriage, and only the low

one or two tones of natural oscillations can be dangerouc from the

point of view or the possibility of self-excited oscillations.
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The lowest frequencies of natural oscillations of the fuselage

usually correspond to flexural oscillations of the fuselage.

Fig. 3.47. Form of the first tone
l-iIt of oscillations of the elastic

fuselage of the helicopter.

Figure 3.47 shows the form of oscillations of the first tone of

bending of the fuselage of the Mi-4 helicopter in a horizontal plane.

The form of oscillations is depicted in the form of a graph of an

elastic line u - u(x) (u- amplitude of oscillations of the point with

coordinate x).

Frequencies and forms of natural oscillations of bending of the

fuselage can be found by the usual methods developed for elastic

beams of variable cross section (see, for example, Chapter II of this

book) or are determined experimentally (in case of an available

ready helicopter).

If the frequency p 0 and form u(x) of any tone of oscillations of

the bend of the fuselage Is known, then the calculation of self-

excited oscillations with the form of this tone can be reduced to

the calculation of the rotor on an elastic support by formulas of

* 5 I or by graphs on Figs. 3.3-3.12. With this quantity E should be

determined by the formula:

%++ . .-- , (5.40)

where s Is the number of rotors.



Quantities £j (i 1 1, 2, ... , 9) are determined by the formulas:

(5.411)

(5.412)

where

X is the coordinate of the center of the i-th rotor; 0 is the

linear mass of the fuselage (the integral is taken along the whole

length of the fuselage).

Quantity Ui(x) it the amplitude of oscillations at the point with

coordinate x referred to the amplitude of oscillations of the center

of the I-th rotor. Quantity ui.r Is the largest value of kinetic

energy of the fuselage during oscillations with respect to the form

of the given tone with the amplitude of oscillations In the center
2-j of the I-th rotor equal to unity referred to quantity p1 .

Quantity no'should be equal in this case to the dimensionless

damping factor of the given tone of oscillations of the fuselage. It

is determined solely by losses to hysteresis In the construction of

the fuselage and usually amounts to 0.02-0.05.

Such a comparatively small value R0 doe-A not permit eliminating

ground resonance In flight with the help of the blade damper, and the

reliability of the helicopter can be provided only with a surficient

revolution margin of the rotor up to the lower limit of the zone of

Instability. Therefore, self-excited oscillation: In air pre3ent a

danger only for helicopters having comparatively low rrequenciez of

natural oscillations of the elastic fuselage. For example, for the

Mi-s helicopter the revolution margin up to the lower limit of the

zone of instability, which corresponds to the first tone of

oscillations of the ruselage (see PIC. 3.47', amounts to 2M.



-Fig. 3.48. Form of lowest tone

,. of oscillatcns of a helicopter
of transverzt configuration most
dangerous frocm the point of view
of ground resonance.

The greatest danger of ground resonance ý.n air Is for helicopters
or transverze configuration having a long ela-tic wing (Fig. 3.48).

Thzr dari'er of self-excited oscillations for ::.ch helicopters is

;,t,;ravated by the fact that centerE of the rc-ors are located in

;:•tnods erf the corresponding tone of oscl/hticns, which give.

z(Mnj::Ltlvely mreaIi values m [formula (5. •2)] and, consequently,
e. lvely wIde zont.r of instability.



5 6. Selection of Basic Undercarri,-.ge Parameters
and Dampers of Blades. Recomnendations

on Les ignIng

.As one can see from the general theory of stability of the

rotor on an elastic support, the stability margin, in general, can

be increased both by means of increasing the degree of oscillation

damping of blade and by increasing the oscil'.ation damping of the

fuselage, i.e., increasing the damping ability of the undercarriage.

However, the possibilities of increasing both of these forms

of damping are practically very limited, since the damper of the

blade and undercarriage fulfill a number of other functions not

conn6cted with ground resonance.

The damper of the blade operates during forward flight of the

helicopter, and the greater it loads the shank part of the blade

by a variable bending moment the greater the degree of its damping.

The strength of the shank part :i the blade and hub and, consequently,

their weight are determined exactly oy the presence of the

damper.

An excessive increase in the degree of damping of the under-

carriage without the application of special devices leads to an

increase in rigidity of shock absorption an,_, consequently, tc an

increase in dynamic loads during lending of the helicopter.

It is necessary to consider these pecu~iarities of operation

of tte dampers of the blade and undercarrlate irn the designine of

thp helicopter. Often it is not possible to provide 3ufficieitA

margin wilth respect to ground resonance wi:,out the appitiation or

certain apecial constructive devices, sometlze. it, thet lampezr of

the blade and sometimes in the system of t!.,, uniercarrio,,r..

,For single-,otor helicopters and tho:.• of locneitul:,sti c'na-

figuration the most dangerous usually appear- to be th-. oa• f

ground re:•onance -n a landing run. Theref.• re, it 13 ctrvenlent trý

consider the givlti case calculated for the ,election of



characteristics of damping of the blade and undercarriage. Here,

for simplicity, one may assume that the helicopter rocks around the

horizontal axis passing through its center of gravity, which is

quite true at a high speed of the landing run (see § 4, No. 2).

In this case, as we have seen, there are obtained especially simple

calculation formulas (4.18)-(4.21), and it is possible by the

simplest method to determine the required characteristics of the

undercarriage and damper of the blade. However, after characteristics

of the undercarriage and dampers of the blade are selected, it is

necessary to conduct a full calculation of ground resonance for all

possible cases, including ground resonance on a landing run, and to

construct a diagram of safe revolutions (see Fig. 3.25). After

that, when indispensable, it is necessary to correct the selected

characteristics of the undercarriage and hub.

1. Selection of Characteristics of the Blade Damper

The main characteristic of operation of blade damper is the

1;i.rcurtistance that the frequency of natural oscillations of the

r)lade (characteristic for ground resonance) is always approximately.

3-4 timse lower than the frequency of forced oscillations of the

blade during forward flight.
AD

Really, in flight the blade accomplishes forced oscillations

relat-ive to the flapping and drag hinges with a frequency wo equal

to the revolutions of the rotor, whereas the frequency of natural

os-cillations of the blade p. = vow. Usually v 0 = 0.25-0.3, and

the angular velocity un of rotation of the rotor during ground

ressonance, in any case, cannot be larger than the angular velocity

of rotor rotation in flight.

""This peculiarity is explained, in particular, by the inexpeJierc,,

of' the application of dampers with a linear characteristic (§ 3,

Dio. 3), conditionrel by the fact that the linear damper with a constant

amplitude of oscillations develops a moment proportional to the

frequency of oscillations.

)The simplest daomperz giving a moment not depend-ent on the



frequency of oscillations are frictional dampers and also hydraulic

dampers with a step characteristic, and this characteristic should

as far as possible approximate the characteristic of the frictional

damper (see K.g. 3.)lb). A hydraulic damper with such a charac-

teristic is an advantage to use on heavy helicopters, since such

a damper is lighter than the corresponding frictional damper, and

the gain in weight of the damper increases with an increase in its

power.

With the application of conventional dampers moment M of the

damper is selected from considerations of strength of the blade,

and its damping factor is determined by formula (3.23). The damping

margin with respect to ground resonance carn be provided in this case

only by an appropriate selection of characteristics of the under-

carriage. In those cases witen this is not possible, it is necessary

to think about the application of special designs of dampers of the

blade, which would give great damping of the blade at low frequencies

of oscillations (characteristic for ground resonance) and small

damping at the frequency of oscillations corresponding to the flight

of the helicopter. One of the simplest types of such a damper is

a damper connected in series with an elastic element (see Fig. 3.33).

Figlre 3.49 shows one of the possible variants of design of such a

damper. We will call such a damper a spring damper. 5

Fig. 3.49. Damper with
3eries-connected elastic
A2erient: 1 - elastic
elements (rubber); 2 -

housing; 3 - safety
valve; 4 - rod; 5-
regulating needle.

In order to estimate the advantages of the spring damper, let

us compare it with the standarn frictional damper. Let us assume

that the helicopter has ground resonance on the landinrg run such

ttia thie center of' the zone of Insthbility .oincides with the 4

486



'. :. :':-; ',r, rriutirn-. Let us assume that further the greetest

:rr:no-.ent in flight permissible with respect to considerations of I
strength of the blade is equal to M0 1 Then the equivalent damping:
factor in the case of the application of the frictional damper is

determined by formula (3.23): ____ I
k 4~m~2 M0qx NEIl

where is the amplitude of the first harmonic of oscillations of
the blade in the plane of rotation.

In the case of application of a spring damper the corresponding
equivalent damping factor is determined by formula (3.17):

whore p. is the frequency of- oscillations of the blade during ground
resonance, which can be considered equal to the product vow.

The moment which will be given in flight by a spring damper can

be determined by the formula

which with harmonic oscillations of the blade with frequency w gives
the following va)lue of the amplitude of moment M [see formula (3.17)]:

*M= , . (6.1)

Let u- state now the following question: .1 f" one we.ro to ,.elect

velues c and k for a spring damper in. such a manrier th•,t 1,1 1.':es

in flight the same moment M0 as the frictional, then what 1., the
lnrgest value of k'PY-0 that can be obtained by varying ouantities
c and k? We will consider that the amplitude of oscillations of
the blade with respect to the first harmonic 'I-in flight and

with a Irnrling run of the helicopter on the ground :i.s thc sam-e.

j - .



It is convenient to characterize relative increase in damping
with the application of spring damper by the quantity

AM 9I+t-A" (6.2)

Substituting pav.O in this formula and considering the condition
M = M0, we will obtain

9.A +-4, (6.3)
where the dimensionless quantity

-hi- (6.4)

Thus the relative advantage of the application of the spring
damper depends especially on the selection of value k. Figure 3.50

I, V I -T I IE.e
- Fig. 3.50. Depen-

._____ dence of

at v 0 = 0.25.

i !-Y

gives a graph of the dependence p(T) for the case 0 0.25. As

can be seen from this graph, with an increase in k quantity ?P first
increases and then decreases, attaining the greatest value 7P = max
at a certain value E = opt' which we call optimum.

Equating the derivative to zero, we will find:
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X (6.6)

At v 0  0.25, there is obtained Iopt =3.74 and 4'max 3.24.

Thus the application of a spring damper permits by more than
,.•three times increasing the damping during ground resonance, preserving

trthe constant moment which loads the blade in flight.

This, however, does not exhaust the advantage of the spring

damper as compared to the conventional. The fact is that the spring

damper gives "elasticity" in the drag hinge (cc,,,,). and the presence

of such elasticity, as was shown in No. 2 of § l,.2rwers value of

the required damping [see formula (1.31) ant graph on Fig. 3.131.

Calculations show that by taking into account everything

discussed previously the damping margin with ground resonance can

Ie increased 5-6 times with preservation of the constant moment

acting on the blade in flight.

2. Rotor with Interblade Elastic
Elements and Dampers

Thus far we examined only the case when1 the elastic element

and damper in the drag hinge are included between the blade and

housing of the hub, so that the moment acting on the blade depends

only on motion of the given blade and does not depend on motion of

the remaining Olades. Sometimes hub desigrn with so-called inter-

blade connections are used. A diagram of such a hub is depicted

on Fig.. 3.51. We will consider that each such interblade element

pmsesses a certain rigidity c and damping, characterized by the

,'oefCicient k, :,o t'-at furce P actiniu on such ar, element is con-

e,: teWd weith u a:lfnge in its length s by trK. re] , *in

p=CS+k-;s

In this case the moment acting on the given (k-th) blade from

thc :;ide oP tee Lnt. erbIadc elements will u(.pend not only on the

motion of tibis bIIre, :h:•racteri7ei b/ n,,` e (t), but also on

rotion:3 o t t .0 . ,!0Jacent bJa•ea3i(_ ( a nd .(t "

---. . . .--.~. . . .-.-- --.. .-.- ---- --- ---- ---- .- -<,



Fig. 3.51. Diagram
of hub of a rotor
with interblade
connections,

With small oscillations of blades relative to drag hinges, the

moment acting on the k-th blade will be expressed by the formula:

M-co(1-- 14, 1)+c cot- %,+,)+ ko$(- 1k-1) + ka (11,+O,

where

inch-;.} (6 .7)

where h is the arm of the interblade element (see Fig. 3.51).

Therefore, equations of motion of blades in this case have the

ii following form [compare with (1.8)]:

/,.r+ (- ,_)+ k9 ' ,)+.

where

h--I,2,8, . • • a.

If the shaft of the rotor accom,.lishes oscillations with re:spr-t.

to the harmonic law

X X4 Cos pt.
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thren forced oscillations of the blades can be found. The right-

hand side of equations (6.8) in this case has the form:

Equations (6.8) allow in this case the solution of the form

Let us calculate the elastic moment acting on the k-th blade

from the side of the interblade elastic elements during oscillations

of the blade with respect to any one of these harmonics, for

example, harmonic (P-w)-mP. We have:

Further

'P $In % h

where

k.

Using these expressions, we obtain

Considering that

s In (9* + 5ý)sIn facos +-cos %, in -2xr

we finally obtain the following expression:
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M-s,--2c, I-Co-!,. sfn%,-
I X1

In the case of the usual elastic elements with angular rigidity
C,, ~Included between the blade and housing of the hub, we had:

Thus the interblade elastic elements for the given blade are

equivalent to one standard elastic element with rigidity

"---r. -'- Co-s-. (6.9)

It is possible to establish accurately that interblade dampers

for the given blade are equivalent to one conventional damper,

included between the blade and housing of the hub and having a

damping factor

k9"'i2.[-_1co,- !-]. (6.1•)

Consequently, the calculation of ground resonance of the

helicopter with interblade elastic couplings and dampers can be

made by the standard formulas, taking the coefficient of the damper

equal to ka, and the stiffness coefficient in the drag hinge equal

to cms.

ofu I. of
"b1_11 121314 •.6.

4 22 1

Table 3.P gives values of the quantity:
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for rotors with different number of blades.

One of the deficiencies of a rotor with interblade dampers is

the fact that with simultaneous deflections of blades relative to

the drag hinges (all to one side and at one angle), which can happen

in transition operating conditions of the flight, and also with

the starting of the rotor, such dampers do not work.

On existing designs of hubs this deficiency is sometimes

eliminated by using combined designs in which elastic elements are

made in the form of interblade connections, and dampers are made

individually for each blade, i.e., they are included between the

blade and housing of the hub.

3. Selection of Characteristics of Rigidity

and Damping of the Undercarriagee

After characteristics of dampers of the blade are selected,

it is possible to proceed to the selection of basic parameters of

the undercarriage. For helicopters of conventional single-rotor

and longitudinal configurations the wheel track 2a (see Fig. 3.17)

should be selected in such a way that the frequency Pm of natural

oscillations of the helicopter on a landing run (rotation around

the longitudinal axis passing through the center of gravity) with

nonoperating struts (only the tires operate) is approximately 20%

higher than the operating revolutions of the rotor. This gives

condition (4.19):

i If the undercarriage is four-wheeled, theYin in this formula, '

instead of quantity 2c'a2 it is' necessary to take quantity cj,,c,,-+e,.
S[s;e formula (5.3)).

Since the tires are selected according to strut load, then

quantity c# in the given formula can be considered known; anr

9 therefore the appropriate value of a can bo4 fotini fror it.
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The rigidity of the shock absorbers and their damping can be

selected, assuming that the center of the zone of instability on a

landing run (during oscillations with operating struts) coincides

with operating revolutions of the rotor. Such an approach results

from the following considerations: if one were to select the rigidity

of the shock absorbers in such a manner that the zone of instability

on the landing run is higher than the operating revolutions, then

there appears the danger of the formation of ground resonance with

separation of the tires from surface of the ground (see § 4, No. 3),
since during oscillations of the helicopter with separation of the

tires the zone of instability can "descend" on the operating revolu-

tions. To make the zone of instability lower than the operating

revolutions is usually not possible (the exception is the under-

carriage of the Bristol system, the construction of which, however

is quite complicated), since for this an unrealizably low rigidity

of shock absorbers is required. On the other hand, if the zone of

instability is directly on the operating revolutions and the margin

of damping is sufficient, then the ground re3onance with separation

of the tires cannot appear, since with separation of the tires the

zone of instability will appear lower than the operating revolutions.

This circumstance wvi checked by numerous calculations and modeling

on an electronic colputer of ground resonance with separation of the

tires, which was carried out by engineer Yu. A. Hyagkov.

We will consider for simplicity that the undercarriage has

""ertical damping struts (see Fig. 3.17b). As was shown in S 2, No. ',

the greatest damping of the shock absorber-tire 5ystem, which can

be obtained with the selection of optimum damping of th,.. zhock

absorber, depends on the ratio % • If one were to use formulaz

(2.37) and (2.38) and to consider that on tr.e landinF run

then there can be obtained the following ftcmula, which 'Aet'rmlrne.;

the greatest poslhlble coefficient of avalletle dampingr of the nell-

copter on a landtri run:

7
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[ac= 0.25 (6.12)

,.-here -

"--£•- ~(6.13) ..

This means that the greatest possible damping factor which

can be obtained on a landing run, varying by quantity ka,, depends "

e:;pecially on the ratio *," Therefore, by knowing damping required

1'ur eliminating ground resonance, it is easy to determine the

necessary rigidity of the shock absorber -,. If damping of the

blade is known, the required damping n0 can be determined by formula

(1.31):

""1 , (6,14)

where .n is the damping factor of the blade 3,, referred to the

frequency Pw of natural oscillations of the helicopter on a landing

run with nonoperating (on only some tires):

(6.15)

j* is the frequency of natural oscillations of the helicopter

with operating struts with optimum damping referred to quantity p,,:

Let us assume that it is required to provide a dnmping margin

__J!1 (6.17)

Using; formula.,; (6.12), (6.14), and (6.16), we will obtain:

0.25 Bvo;n, 1+2%. 1
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This relation -7an be rewrittern in the followintý way:

where

1 19)

-After the selection of characteristics of the blade and tire

and assignment of the necessary damping margin n, the left part of

equation (6.18) is a known quantity. By knowing quantity a, it is

easy to find quantity x from equation (6.19) and then the necessary

rigidity ci. of the shock absorber. For convenience of the determina-

tion of x Fig. 3.52 gives a graph of the dependence a(x).

- -Fig. 3.52. Graph
of thp dependence

I of coefficient a
on v.,

* •4 45 a5

To n:elect the rir.idity c.. by the met-.d indicated it is

po.:,iblc Lto tLke q a- 1, since In the f'ormu a. sirven "kinematic"

tinmptne or tho.: tire on a landlng run Is nr)t coII;f.lnr4. " ice' rormul'n

4,.?J)J. "The real •ampirv marlr, vi, tbkLirnp. n,:,•:,t. tjii.

additional damplni., zhoul4 be obtained nWt ,,::;. I.',-:- '

After the rividity of the shock akicor.:-r iZ; I'oufe,,, I rip j•l• muI,

damping factor can be determined by formula (n',,), rrIy:

L496



w;here

pp'.(6.21))

Since in reality the characteristic of damping of the shock
absorber. as a rule, is nonlinear (§ 3, No. 1), then by quantity kShp

one shouli imply the damping factor of the equivalent linear shock

absorber.

4. Some Recommend.ations on the Designing
of an Undercarriage

One of the basic difficulties appearing in the designing of

the undercarriage is the complexity of proviling the necessary

damping of the shock-absorber strut. If dimensions of the holes

through which hydraulic fluid flows when the shock absorber is operat-

ing arc sclected from conditions of ground resonance, then, as a rule,

operation of the shock absorber during landing will be unsatisfactory

(there will be too great forces with a shock against the ground).

If, however, we select them from conditions of landing there will

be obtained too little damping with lateral oscillations of the

helicopter, which is absolutely insufficient for eliminating ground

resonance.

This difficulty can be surmounded by tw/,o methods [18):

1) increase in damping on the recoil stroke of the shock

:,hn6rbe r;

2) instesllation of .pecial valves in the construction of ,;hock
Sb:sor ber.

The former of these r,%ethods is the simriplest and con2*i;:tz in the

fact that dimensions of holes through which hydraulic fluid flows

on the forward stroke of the shock obsorber (compression) are

selected from conditions of landing, and dIiensions of holes through

which hydraulic fluid flows on 'he recoil of the shock absorber

(extension) are selected from condItIcns. of _:round rezonen.e. -h1Z
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I

SMoment of valve
Air ,opening

w h en lending at the t m

- -Hole 
for the damping

Fig. 3.53. Shock-absorber str-'t with

valve.

appears possible because with oscillations of the helicopter at

every instant one of the shock-absorber 
struts (right or left)

operates 
on the recoil. 

Therefore, 
in general, 

the needed daiping

factor of the helicopter 
during ground resonance 

can be provide 
o

by only one damping on the recoil of the shock absorbers.

However, to increase damping on recoil is possible only in

known limits. Excessive increase in damping on reccil (very small

holes) leads to aovery slow y i of shock-absorber 
struts from

the pressed state after a landing shock. Therefore, 
if the held-

copter in conditions 
of operation 

should accomplish 
a running landing

on uneven ground, when after the first shock against the ground

further nhocks 
can follow, such a method of the increaie in damplln

can appear unacceptable.
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The second method does not have the mentioned deficiency and

consists in the fact that in the shock absorber there is a special

spring valve, which is opened only if the force of compression in

the shock absorber exceeds (with a shock against the ground) a certain

critical value P:t. At Ps,,<PD the holes whose dimensions are selected

from conditions of ground resonance operate, and at Pa,>P", additional

holes of larger diameter operate, the dimensions of which are selected

from conditions of limitation of overload with landing. Figure-3.53

t-ivcs a diagram of the design and a diagram of dynamic pressing of

sucr. a shock absorber.

Another important factor which one should consider in the

rlezigning of an undercarriage is the inevitable presence for any

shock absorber of the force of preliminary tightening (§ 2, No. 7),

i.e., the force with which the shock absorber starts to operate.

For a helicopter undercarriage it is desirable to have as few

forces of preliminary tightening P0 as possible, since at great

thrust of the rotor forces P on the undercarriage decrease and at

P<Po the shock absorbers do not operate. Ground resonance can

'Invelope with nonoperating shock absorbers orn elastic tires

practically deprived of shock absorption. For helicopter under-

cnrriages it is necessary to select characteristics of the strut

-o that the force of preliminary tightening fs not more than 10%

of the strut load on the shock absorber with zero thrust of the rotor.

Footnotes

'This formula will be derived in § 3 as well as formula (1.31).
2 1t will be shown in No. 5 of this para-raph and also in Nos. 1

adl 2 of § 3 how to determine coefficients k, and k'z y
3See, for example, A. Gessow and G. Myers, Aerodynamics of the

Hfcllcopjer, Oborongiz, 1964.

"1i .z consvider-ed that the actual dizpl.,cement i.; a r'real rart

rv the ,lcated corLpiex expression. The z- plication of c'm-.ex
Sezpr'e:s:;ns in the derivation of basic for:.,ulas permits ,on.:;i;f.:r'aby
:,I mplifyý,ng the calculations.
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5 The diagram of a spring damper of the blade for eliminating
ground resonance was proposed by engineers 0. P. Bakhov, L. N. Grodko,
I. V. Kurova, and M. A. Leykand. (Author's certificate No. 184142).

OThe method of selection of undercarriage parameter6 expounded
here was developed by engineer Yu. A. Myagkov.

7It should be remembered that the case when kinematic damping
is absent is realized with oscillations of a helicopter on ice,
when friction between the tire and ground is absent (see § 4, No. 2).
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CH A PT FR I V

THEORW ICAL B3ASES OF TEE CALCULATION OF BEARINGO
OF BASIC UNITS OF A HELIC3.'PTER

The service life of basic units of a helicopter in many respects

depends an the efficiency of their bearing subassemblies, and therefore

auestions of the theory of the calculation of antifriction bearings in

helicopter design are given much attention.

it is known that the service life of ge~neral-purpose antifriction

:~arngsbecauise of different factors of a metallurgical and

t.~echnological character, can vary over a wide range. In connection

with this the necesnary reliability of bearing subassembliesc in gerneral

:na(hine building is attained owing to the int*roduction of ccrrresprnd ing

-ýfety fact~orz, i.e., definite oversized calcla- o Loas Tt

)fIr~adal ta rqirmnt 'or the acc*..racy of calculation of

r~:rrflZ an be considerably lowered. For articles of aviation

!fiaf,eriel, where the increase in reliability s;hould be attained owing

to the perfection of the construction withoutll an increase in dimensions

mý.d weight. of the bearing -subassemblies, such, a means, naturally, is

u~nac-ceptable. This is even more so because aviation bearings are

:r~adr, from improved materialo, have a high accuracy and are subjected

-in production to specially thorough control, as. a. result of which the

dilsperston or ser-vie lifre for them noticea'rYJ,, decýreases_. Aviation

~ ringsirvfDludi~rar be(aringrs usr]r -in hcliconp.rn snoii~d hebt rilaý

:~:_iccuirat~re as pr:~ ~,takinr into acooruri'..p~~1ir .V f~'

Jr ad and 0p[('raq.1Aon)

Trn rcecnt ycars,. owing to works of .2ov>),,t and foreign reza'hr:

prafetir-:-L met4hods f ti clai of'f ~n ric +.1,0r eo r,-e. r -ýniErj

V) .L



obtained considerable development, but nonetheless they by far do not

always possess the necessary accuracy. This especially pertains to

cases of operation of bearings with complex combinations of external

loads and during oscillatory motion with small amplitudes, and these

.cases represent the greatest ipterest for helicopter construction.

The absence of reliable methods of calculation of antifriction bearings

operating in the indicated conditions hampers the designing of

reduction gears, cyclic, pitch controls, and hubs of main and antitorque

rotors of helicopters. It is possible to cite many examples when these

vitally important units were put out of operation before the end of the

service life because of the destruction of unsuccessfully selected

bearings.

In this chapter there is made an attempt to generalize the results

of theoretical and exj 'rimental investigations carried out for the

purpose of refinement of methods of calculation of bearings of units

of the helicopter. As practical experience showpd, the methods of

calculation expounded below permit more fully using the carrying

capacity of the bearings. The application of these methods in thc

designing of bea:'ing subassemblies in many cases made it possible tc

Sc:reate ,ufficient±y compact and light constructions, which w-r!re able

to work reliably for a long time under very high loads.

1§ . Equatio• of Static Equilibrium of Radial and
Radial Thrust Ball Bearings Under a Combined ýoa-ad

The dependences utilized during calculations of bearings are

based on results of investigation of the distribution of the external

load between rolling solids.

Let us formulate equations with the help of which pressures on

oalls in general of loading of radial and radial thrust ball bearings

can be founc.

Let us assume that a ringle-row ball bearing has a radl~l

clearace of 2A after fitting on the shaft and In thn housing with a

stabilized temperature regime of operation of the subazr-ombly.
, 1i

[j.
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. . sake a-rectangular system of coordinates xyz with the origin
: -. e center 0 of the outer ring. We will direct axis x along the

) •s.. of rotation of this ring (Fig. 4.1).

1

Fig. 4.1. Diagram of
movements of inner
ring of the bearing
under the action of an

Of arbitrary external load
$• applied to it.t

With the application to the bearing of an arbitrary external load
the center of the inner ring moves to point 0' with coordinates s, t,
an%' u, and its axis of rotation x' is deflected with respect to axis x
.. a c.ertain angle ý, the projections of which on plane xOy and xOz

,t.re respentively equal to 41 and ý2 (Fig. 4.1).

i ll consider that on the ball, the ,.?enter of which ,lie
n. plan, F, whi-,h forms with plane xOz the angle 1', there act normal

for-es? P * identical in magnitude and directed along a morxno:; line
pa;'sing througr, centers OH and 0. of sections of grooves of the Inner
and outer rings and point Ou, (Fig. 4.2). Displacement of tne center
of the site of contact of the ball with the inner ring from plane 71
and tangential forces appearing at points of contact of the ball with

the rings, as is usually accepted in the theory of antifriction
h'rrarIns, will be disregarded.

Ar:ordrinj. to tohc well-known formula- of Hertz

Hlere bV1 is the approach of grooves of ringn in the direction (O
owing to the elastic deformations in the zones of contact.

1 'or ball bearings with tne uruai internal geometry it J, pozs:bi,
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to assume

B==vB,(1.2)NMI

where v is a factor dependent on the relationship between radii r, and

r, of grooves of the outer and inner rings and the diameter of the

ball dw; g-r 3 +r.--d.- distance between points O, and O, at the time of

contact of the ball with the rings (at 6,=0).

2 O4

"I Fig. 4.2. Diagram of
f-rd-MtO.uc ;n forces acting on the

ball.
Y-4

"A /

If diameter d, is expressed in millimeters and forces in kilograms,
then with the elaszic modulus of material of the rings and balls

2
E=2O08X I6 kG/cm the coefficient BO is equal to 62.

Factor v has the values shown in Table 4.1.

Table 4.1.

r. (9)/d 0510 0,5151 0,520

i • ,• .- 0 1,I

1 063j 1.001

From condit.ons of static equilibrium of elementr. ,,f thn- 1,ra•"•

it follows that external forces and moments applied to the Inner rinr;:

can be thus written (see Fig. 4.2):

H



A2

A ~P+sinp1

R- e P, cosP•,P+ sin
R.- to$ P+Cos f,

Mj=rojP~s~nP,,cos.ý;

Mfm ra P+ sin Pjsin .

Here P+ is the angle of contact of the ball with the rings; rO -

radius on which centers of the balls are located. Sign X extend over

all the loaded balls.

Let us assume that the rings have an absolutely correct geometric

form not variable with application of loading. In this case to

determine the approach of grooves 6ý and angle of -contact P there can

be used formulas,
I* -1(s + Ojro sl.,•+ 02, Cos '.7 + (g- i - /tsin .?+ u Cos .:.r)2t / -_g;(1 . )

- + Stro s2% + •2 ro os.+=3TCtg-A-I,,n'j+ uo" (1.5).

Expressing in formulas (1.4) and (1.5) all linear quantities in

fractions of distance g, we will copy them in the form:

.! i "• :•: [~~~~(s- 7 ;1 s l,, ;,+ -1 CO S c o ',) , +t (COS • - T sill' + U Co s,rs . 1., 2 • • -• .( 1

+o s - in r + C•os÷ (1.7 )

where •• 0 3rccos - is the so-called initial angle of contact (angle of

contact with purely axial displacement of tU. rings owing to the

working radial clearance 2A).

In ,xpressions (i.6) and (1.7) • and ;2 c-enote quantities 6,
and & re.

TI I,: r1.,e,;,nr. to consider that the workinrp axial ciearanee of

,,h( hoea.rir•[ s 1; ennectfd with ang].e [ by the f'ollr, wir relation:

2so= 2g sinP.o

-)) r. by passi.*n,g to relative values,

2-0 = 2 sin 0o. 1- 2"



Relative quantities everywhere are designatpd by the same letters
as the absolute with dashes above them.

The equations given describe conditions of static equilibrium of
radial'and radial thrust ball bearings with any combinations of external
loads. From them there can be found all parameters characterizing the

distribution of forces between the separate balls. It is necessary,
however, to consider that because of the complexity of dependences
connecting quantities 6+ and P+ with relative displacements of the
rings, the practical application of these equations is conjugate with
the large volume of calculations. In connection with this, with
engineering calculations they are usually replaced by some approximate
relations. One of the variants of such relations most convenient for
practice, which possesses quite high accuracy, is described below.

An analysis of operating conditions 6f the bearing subassemblies
of different types shows that in most cases the resultant radial
force R-(R'+RY-" and resultant moment M-(M•+A,1)h1. absorbed by the
bearing act in one plane. In accordance with this, disposing the plane
of coordinates xOz in such a way that it coincides with the plane of
action of external loads applied to bearing, it is possible to write

R, 1R; (1.9)
M,-A-;
M--O.

As the calculations indicate, the distribution of the load depends
on the angular location of the set of balls. Taking into account this
circumstance, we will consider that the ballz are located symmetrically
with respect to plane xOz. Under this condition

1- (1.i0)

Considering equalities (1.10), let us expand expression (1.6) in
Maclaurin in the environment raO and C2= .0. Being limited to linear
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terms, after simple transformations we obtain

- Tt=•--S+ (i Cos MI ns Cos'• i

in equality (1.11)

i(-2 +costp,-I (1.12)

-=a-ctg (.

quantities • and f are nothing but the relative approach of

grooves, and the angle of contact in section m-90"*

As follows from expression (1.7),

+4L. sin 4' +7;; cot

Cos -Tsin I +-;Cos. (.os
SI* • l•+i,. am + cos Cos + (COS 4 + Co, 4)2l!2 - "

Proceeding with equalities (1.14) in the same way as and with
4.xpression (1.6), after rejecting the nonlinear terms and corresponding

formations we have
,•n. ship [I -!' •o,•( _cg• Io

Cos toj

P* "L • co-t (*-;t

Assuming
_ ~ ~,C osF + ;,Sin ._,mcos•esn (1.16)

li., uJs pre-(;int dropendences (1.11) and (1.15) in thr. form

"8,= (I X os•);( Co"s!

cosh-cosp 1'' -7 cs,+

Quantity 76 determining the pressure or. .he ball, the ,:ent,:r of
which ts plane xOy, can be expreszed in terX:; f anrl,,:; , ar+ [,
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The zone of loading of the bearing, as is known, is found from .
the: condition that on its limits 3-"0.

Assuming in equality (1.17) ".-.O, we obtain the following
expression which establishes limits of the zone of loading:

I•,fhlrcos(-+. (1.20)

The relative approach of grooves of the rings . reaches a
maximum value o in the center of zone of loading, which is .located in
the section V:-.V0 if •cosp+tjip_6;.>0 and in section V=i0•1801 if
UcosP+esillP-1.<O (Fig. 4.3).

Fig. 4.5. Zone of
loadinv of the
bearing.

Y

In the case "O----, 0<9,ý4180" and ,=--, and when 90=180,

18'< .; 4 •.36o@ and , .36o -•.

It is clear that expression (1.20) is correct only If pararvm.eter
exceedz utnity in abh-olute value. If 1.41<1, tron the zone of loadrlinr
florrin.: 3,C . i .,. , i , f.h, bearing all bal]r. ; :: .r: th,* 1I,,:,,], ",rrI

,j . , i, Int:ri ". :, . ; alway:; po-.i IAve, ri.jid thr! ':(i*r) . r-o t ,ri r],. ;
Vl t. tt,. :]tr• ¢OcosV . '1'1,, ]atll.,"- rn,:o i.n I .. 'r " thrir. t-it: for 9h•:

i] ,,a1l,; :',-ar(; .osdIO(.I, wtien VO-0o, 0C).<I and -,o. 18O•, -I .-

Taking In -:quality (1.17) *0.. we find

With the help of expressions (1.2), (1.17), and (1.21),..
that • let us give formula (1.1) in thp form.P , Bo°< I +~ 4f. ..

i- + "-.o 'O ' Cos ;0



ueper.•rncs (1.19) and (1.21) 1-how that in the case X=oo, i.e.,
':.th a loading zone of 1800, S=0 and, conseaucntly, = 0 independently

of the level of the load.

Let us introduce into the consideration of the sums

l x Cs) (1+±.cos.) cos- •. (1.23)z• z(I + I. Cos ,),

where

k 1, 2, 3.
E.re, as in all preceding equalitP'-, anile ,P can take only tr;os-

discrete valuc's w'hr:h de!t'-rminr: th'. anfular .,(.siJtion of the loade:]

ball.--

D: urs convert now with the help of' the -,btained expressions,

:i

Replacing in these equations PP, sin n' and cos . by their

":,os according to the formulas (1.22) and (1.13), in accordance with
<.::t•ulitltes (1.9) and (1.23), considering tne dependence (1.21), we
will ottairn

A- = B73.2sn PJ, X
zvd"

,rvd 2  O'O

B Cos ýO I+J osý S- P J

, 0° 2.X ,

•,"-T.--••4•Cos --fln

From de-pendence.• (1.1)) and (1.21) ther&, results ther follcwling

',:<prs;:i ;r for anir, -

I'i A+
+(i2,)



Equalities (1.24) and (1.25) are those relationships which can be

replaced with engineering calculations, "exact" equations of static

equilibrium of radial and radial thrust ball bearings. As

corresponding investigations show, an error in final results, caused

by such a replacement, usually does not exceed several percent.

With a change in the number of balls sums (1.23) are changed

insignificantly. This permits expressing them in terms of integrals

1.26

2x (I + (I +I cos -co0 coss-,, (1.26)C&

Its

which are functions of the product 1Xcosio. Here k = 1, 2, 3.

It is easy to be convinced that with the usual quantities of the

balls

j S :t c O S A- 1q Oj k ( 1 .2 7 )

Value of integrals 4k are given in Table 4.2.

Table 4.2.

I Cos $ 4v J3I aW Cos +0 IJI J2 ~ t

0 1.000 0,000 0.500 1.000 3,33 0,323 0.247 0.210 0.612

0,1 0.868 0,065 0.435 0.879 5 0,309 0.242 0,207 0.605
0,2 0.766 0,114 0.385 0.04 10 0,294 0,236 0.203 0.596
0,3 0.686 0,151 0,346 0,757 20 0.286 0.233 0.201 0,59
0,4 0.622 0,180 0,316 0.726 coo 0,279 0,229 0.199 1
0.5 0,570 0.202 0.292 0,705 -20 0,271 0,225 0,197 0.j63
0.6 0.528 0,220 0,273 0,60 -10 0.262 0,221 0.194 0,578
0.7 0.494 0.233 0,258 0,676 -5 0,247 0,212 0.188 0.567
0,8 0,466 0.243 0.246 0.670 -3.33 0,229 0,201 0,181 0.556
0,9 0.443 0.,250 0,237 0.663 -2,5 0,211 0.189 0,172 0.543

1 0,425 0.255 0.231 0,657 -2 0,192 P,175 0.162 10.528
1,111 0,409 0,257 0,226 0.651 -1,667 0.171 0.159 0,149 0,512
1,25 0.305 0,258 0,223 0,645 -1,429 0.147 0.14P 0.133 0,488

1,429 0.380 0.258 0,220 0,639 -1,25 0,120 0,116 0.1121 0.459

1,667 0.366 0,256 0.218 0.633 -1,111 0,084 0.083 0,060 0.4;4
2 0.352 0.254 0,215 0.2 --1 0,000 0,000 OOi 0.000 i.O

S2.5 0.338 0.251 0,212 0,611



§ 2. Calculaticn of Radial and Radial Thrust Ball
Bearings Under Combined Loads in tne Case of the

Absence of Mutual Misalignment of Rings

1. Pressures on the Balls

If the distance between the bearings is great as compared to -.he

diametrical dimensions of the bearings and all the parts of bearing

zubassembly possess high rigidity, then with the calculation of

pressures on rolling solids it is possible to disregard mutual

misalignment of the rings under a load and consider only their

displacements in radial and axial directions.

Entering into formula (1.22), which determines pressures on the

balls in radial and radial thrust ball bearings, are quantities bO and

A.

Relations (1.24T) and (1.25), which connect these quantities with

cternal loads applied to the bearing, in the absence of mutual

misalignment of the rings, i.e., in the case S = 0, can be represented

ln the form

A CO Li ]j(1F IO 12 . 1
12 CosO 1+i ' J2

TB'--"•=-- Cos oJ P+ ) (2.1)

1+x

We do not write out the expression for the moment, since at

S= 0 it does not play an independent role and is not used in the

calculations.

For convenienco let us assume that the direction of axis z

colnciried, with th, direction of the radial ioad.inf, R. Under this

P .(?fn(I Itlon the radilal r I splac-m,;nt u I :n pos,:i; v o, and, ron z,',uently,

.111g,10 I,/,() I; equai l tl.( Z,,ro. 'lh It rh.rr',ims:tnr•e' i:; ,:nsniere] ' ';

p.-qotiont; (2.1) and (2 ) and in all.

C,00)
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o It is necessary to note tnat 7ase $ = 0 is basic in the theory
cf ant-:fri.2tion bearings. Usually when we make no speci-al reservations

on the design and pec':liaiities of loading of the bearing subassembly

we consider precisely this case. In reference to it there are carried
out basic investigations [22], [23], [29], [42] directed towards the

refinement of methods of calculation of antifriction bearings,

operating under combined loads.

Static loading of the bearing is characterized by the magnitude

of maximum pressure on the rolling solid.

According to the formulas (1.22) the maximum pressure on the

ball

PO BOVdX = (2.3)

With prolonged static loading of an irrotational bearing the

greatest stress of crumpling a,, on the rolling path of the inner ring

caused by this pressure should not exceed 40,000 kG/cm2 . If static

loads acting on an irrotational bearing create greater contact stresses

then on the rolling paths there appear noticeable traces of permanent

deformations in the form of dents from the balls.

The indicated allowed value of a;,. is selected from the condition

that the magnitude of permanent deformation of the rolling path

amounts to not more than one micrometer for every centimeter of diameter

of the ball. In this case the smoothness of rotation of the bearing

is not disturbed, and its carrying capacity does not decrease.

In calculation dependences, which are ased f".r calculation of

service life of the bearings, there appears the quantity

P s.'-0 d ( 2 .4 )

where m iz the exponent under load in formulas of service life.

With the help of equalities (1.22) and (2.3) we will give

expression (2.4) in tnhe form



P-, WPO. (2.5)

Coefficient w here is equal to

2.2g(1 + ACOS ,o)/2, ( + ) cos ,ocos cos d I ."
Let us note that value P3 is the constant pressure P = const at

which the probability of fatigue breakdown of the ball race in the
given operational conditions is the same as that with real distribution
of forces between rolling solids. This gives the basis to call it the
equivalent pressure on a rolling solid for a ball race.

It should be borne in mind that quantity P8 sometimes refers not
to the whole length of the rolling path, as is done in expression (2.4),

but only to the loaded zone

At m = 3.33, as is accepted in Soviet practice,

"a ( + Icoo)S 2

(2.7)
tg ,L37+ T! + -0k7

With the practical use of formulas (2.6) and (2.7) it is necessary
to remember that for the selected direction of axis z angle V0 is equal
to zero. Angles *, and €, in formula (Z.() are taken in raaians.
Values of the coefficient w, found by this formula, are given in Table

4.2 together with values of integrals jk"

Pressures P0 and P. under the assigned ,xternal loads R and A
can be calculated in two ways.

The first of them consists in the calcuiatLon of' these quantities
by the formulas (2.3) and (2.5) with the use, of values WO and'.,
obtained as a result of the direct solution of equations (2.1) and
(2.2).

'15



Since equations (2.1) and (2.2) have a complex structure, then

this way, naturally, is associated with great difficulties. They are

sufficiently great even when the problem is solved approximately.

The second means, which is more acceptable for practical

applications, for determing pressures P0 and P. is based on the

following considerations.

If the angle of contact of all the balls is identical P= =

= const, then

A = BO732 s in3

(2.8)R S=BOVA cosPi
ZVdU 0

Relations (2.8) differ from equations (2.1) in that in them terms

are absent which consider the change in the angle of contact depending

upon the position of the ball with respect to plane xOz.

With a zone of loading of 1800, when in the bearing half of the

balls operates, X=±oo and, consequently, P = PO, Jl = 0.279, j 2 = 0.229

and w = 0.587.

From relations (2.8) for the given case we find

A tg 1,27 tgP.,(2.9)R &"

besides

ft R
PS = R =4,37

Z co Pjh acosph

P,= P, 2,=6.7 (2.10)
a = cosp

Formulas (2.10) are known Irn the theory of antifrictton bearinns

by the name of Schtribeck formulas.

AFor the case :s01,217 tg91 pressures PO and P. can be represented

in the form

514
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PO-- 4.37, " Cos(

P. - 2.57 K- CO Co 'P

where F=(A•+A2'), 2 is the resultant load on the bearing (Fig. 4.L).

Fig. 41 .'4, Res*. ±nt
force applied to the

I r bearing.

This fX.frm of recording uan be preserved taking into accouit the

vaRriability of angle .

Substituting into expression (2.11) values P0 and P from
equalities (2.3) and (2.5), we have

41.'. (2.12)

O,M7K

Coefficient-.- H0 and X are unique coeffir:icnt,, of reduction
r(!ferred to t.hc re.-ultant load F. It is important that they can be
f'ound from equations (2.3) and (2.2) by differrent Indirect methods
r,.,(:ludfng 1,hro r•eess'ty of a direct solution of t~hreec equat' on.s.

Values or rý)effficlentz HO and K for bearir,(r, witr, .init.'a. arig],:::
of contact P 0 , 1, V O, an 36, obta r.eI from ,uatI,,re; (2.1)

and (2.2) by the f;raphoanalyt-Ical method [75G, are p;iver in -1rP,: ).

)
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Table 4.3.
I ~I

10' 10' 20- 30" 40- 50" 60" 700 so, 9go

Values of coefficient IKhm*O

0.02 1.000 0,89 1,070 1,210 1,308 1.380. 1,42n 1.4281 1.308 1,306

0110 1-000 0-SO0 0.966 1,091 1,146 1,198 1,212k 1,192 1,152 1.060
0,07 1,00 0,880 0.024 1,014 1.078 1,116! 1,116j 1,094 1I0$0 0,976
0.11 1,000 0,9 .0 068 0,958 1,010 1,034 j1,030j 1,000 0950 0.874
0,14 1,000 0.,9 0873 0,933 0,974 0,994i Q.9,•4 0,952 0,906 0,82
0.21 1000 A 03 0.856 0,896 0,930 0o3•A 0.916 OI 0.830 0,750
0.35 1,000 0,94 0,. 8 0., 0,876 0,8721 0, W0 0.604 0.746 0,667
0,83 1,000 0,966 0.874 0,86 0,8420."0780750660,o

0."0 i 0.0.1 0:o, 00,2 0.,22 0:102' 0.,4811,718 0.,64,

0.00 IO , 083088080740,4 0,6727 0,67 0,506

ps- 120

"0,11 0,7070,• °0• °•l"• 0,572•1o.
A 1.9 1.7 .V ,W0930,149I. 0,99 0.937 0,.877

0.1 , 0 0.842 O.Wl .,9M o.W9 0,956 0.962 0,5•

9 .3 " .1, 1 .07 , 0 , 0 ,.98 0.14 6 0, o 0.40,75

0.11 I ,.6 0 0.841 0.871 0,681 0 .8" 0 '81 0.7 0,4

0.1 1.086 1,018 .7 0,8160,5 0,73 W 0.61 0,77 0.113f 0,355
0.5 1,0M 1,0066OU .W , .M 0,78 .2 .5 0,473

"0.3 iW 1.002 io,.W o.,,o 0,,78 0.7.• 0.73l 0.688 o.6M, o.s,0 .70 1 .= 0 o99 , o,,•, 0 .910 0:7o. VU o..715 o.SI 0.601 0.14

IOa8 I. 1.46 0.261l 0.78,51 0.;0 0,7132 0.704 0,727 0.61810.W4
"0.1 1 .252 1 .172 0 .o,,1 0.7 ,, o.M o o0 • 77 .749! o.7W 0.60.7

" i"0,1 1.1 1 .10 , o.,W G .M 0.,771 0 o61.741 0.66 0.637 0.5,I.W 1 ,10, 0,.-94 1 0 .7 ,, 0.,,o 0.749 , 0.71,2 0.67 0.61,0,3
1.10 IO 0,132 0 .7I 0.7I 0.730 o .62 0.46 0.• 0.42o.4

LO . 018 0. = o.- 0.73 o 0,7,' 0.661 0.04 0,M,[oPIo.LOU I '.m0 °."*13."1 0,73 0.6., o,.j a3o~m 0.316 0.-2

516

•mm~m.-----..... . .



0 0 2o W 30" 40' O"* 60" 70' 80"

2 I
I It _-26'

0,02 1,914 1.815 1,478 0,872 0,692 0,667 0,611 0,591 0,530' 0.454
0,04 1,600 1,528 1.321 0,865 0,62 0.665 0,635 0.587 05231 0.417
0,07 1,483 1,415 1,218 0,858 0,692 0,661 0.629 0,577 0,514 0,440
0,11 1,389 1,326 1,150 0.850 0,6921 0,6%' 0.621 0,5661 0,504 0.431

0,14 1,336 1,279 1,11111 0.847 0.692 0,6M' 0,618 0,560 0, 00! 0.424
0.21 1,249 1,204 1,069 0.845 0,692 0.6,50 0,611 0.551 0,4921 0,413
o.3.5 1,175 1,125 1,011' 0,837 0.693 0 647 0,600) 05,41 0,480 0,398
o,53 1.121 1,078 0.975 0.828 0.696 0:6421 0:5931 o055 0o4661 0:363
0.70 1.067 1,051 o,955 0,826 0698 0,6390 k 0,•o0 0,527 0,451 0,37
1,00 1,051 1,016 0,932 0,819 0:701 0,63.) 0, 50 1 0,44051 0,358

0,02 2,171 .. 051 1,823 1,426 0.795 0,5801 o,507 0,455. 0,388 0,310
0,04 1,815 1,756 1.574 1,242 0•777 0.575• ,7 0o4531 0,•38 0,:37
0,07 1.629 1.567 1.403 1.132 0,757 0,574 0,514 0,43i 0,385 0,304
0.11 1.496 1,425 1.27 1,052 0,746 0,576: 0,514 0,4511 0:380 0,299
0.14 1,445 1.359 1,205 1,011 0,742 0,576 0,514 0,449 0,3791 0,299

0.21 1.343 1.262 1,144 0,970 0.736 0,578' o,510 0.44 0.3751 0,299
0,35 1,207 1,156 1,060 0,913 0,724 0,57b , t,5101 0,s 5 0,370w 0,291
0,53 1,129 1,086 0.999 0,670 07141 0,578, 0•509 0444 0,364 0.285

0.70 1.098 1,053 0,967 0,848 0.707k 0,5786 (1,5061 0,440 0.364, 0,293
1,00 1,053 1,006 0.925 0.821 0 .696' 0,578 0.502! 0,434, 0,356i 0.275!.o I. I. . ~• .:,Io•o36 .

Values of coeffic.-!nt K

0.02 1,000 0,995 1,297; 1.520' 1,710 l &2 2.030w 2,150 2.230 2,270

0.04 1.000 O,,ou2 ,.,1,OA 1,3W 1502 1.6W-) 1,758' 1.82 I1b70 1,90
0,07 1.000 0,950 1,0551 1,212 1,355 1.471540 1608 W: 1,710
0.11 1.000 o06 1.006- 1.130 12 i.32 .1 •4 .,432 1.477 1.49

0.4 1.000 0.966 0,965 1.0931.1,19.2T 130375 1 . I. 1395~ 1,406
0.21 1,000 0,963 0.972 1,045 1.12 1,175 I.: t,!Ol, I . 1.263
0.35 1,000 0.970 0.937 0.979 1.4 ,2, .107 1.1225 1,260' 114

0,70 3,000 0.9n7 0,911 0:92410.9661 1,015ý 1.02S5 1.0121 1,03 Ow *029
0.-0 IC6 09 093 9 09 0 .97 ,09761 0,972. 0.%61 0.966

0.or . • o. • o.I •.01 %, 0 o.35 0 4,96

0.0 1.:lut 0111 0'"1 1' 14,2131 2 V It l Iyl.r 1.3
1, .065 1.0;4 0o.,,,13 ! OO . o,,, 1.10 1.1! 1loll I.,,,W 1.10

tI!,!



Cablie ~.¾Cunt inued

1 00 200 30 400 80* 0o. 700 W 900e

0.14 1.051 1.006 0.914 0,961 !.0171 1,07Y 1.111 1 1136k 1.149 1 1.52
0.21 1.037 0,999 0.916 0,923 0.gs81jIe2 1.(0,111.057j1,062 1,077
0.36 1.017 0.294 0,923 0.897 09971 O,:4.,! o#4631 0,96 l 0 ,991069

0,53 3.010 0.9"6 0.99 0.865 0.91110 0r.9 0.931, 0,92 0:1, 0:917
0.70 1,006 0.96 0:231, 0:883 0.891~ 1. 0.8921 0 ,66O.5 0 'sn 0.669
1,00 1,001 0,976 0,03 0.873 10.670k 0.8641' 0:.S,110.8341 0,826: 0.812

0.92 1.=3 1.250 0,972 b.,67 0,944~ 1.003 I .046~ 1,07 1.0911 1,102
0.06 1,231 1.175 0.962 0,673 0,9311 0,979 1.0006 1.03 1.056 1.062
0.07 1.170 1.115 0.252 0,866 0.9151 0.9571 0.961 0. 3 ,017~ 1.013
0.13 1,12S 1,077 0.941 0.650 O,MW O933 0.957w 0,95 0. 03w 6
0.14 1,104 1,067 O~ 0 w 0686 0.mI .4 0.0 05. 0.9#
0.21 1.96 1.063 0,232 0.50,672 O.S94 0.8941 0: 0:9131 0.906
0.a0 1,041 1.011 0,Ps 0.65w 0.m65 0.965~ 0.6m5 0I"s6 0,1 8 .5

0.33 1.602 0974 0.234 0. W 0.'70 $61 08M 0,8ý 07701071 0.73

0.6 145 1. 413~ 1.9m 0,86630 O.778;0.7w 1 0.?1070. 0.7-&A 0.760

0.97 125 116 106060 0. 0,69 0.94 O.4w.W 0.761 0.834N 0.747ml .

10,10 1,461 1.4150 1.224 0.656 0 0,773 0.7n; 0.70 0. ,732

0,1 1.121 1.120 1,01 0.640, 0.756. 0.704907107 0.7410 732
0.11 1.105 1.71" .0"9 086500,M O.M55 0.75411 0 79 0 7419 0,73_2

0.a0 1.04 1.671 0.950 0.150 0.764 0,3 074 1 0 .72 0 07 19 0 ,720.66

01.6 10.0 0.53 0,15 0.11 0.764jOM 0 .21 0 .707j 0.: 1: 0.615

son 1.16 O 0.9m 0. 714 1 0.;;1 3' 0.7140.561 0. 60j 0.865
0176 1.W60 .913 1,128 1,05 0.70904~1*0 150 ,8W 0.78,0~ li 00
I's 1,2 O3 0.0 -u .0 ~2t . 1 . GIlý06

t." I .19 1,*97 1,363 1,0942 0 .746 0.637w 0.3 ,: 0.50.j 0.33
Ms1 OR15 I.= Il0ia 0Ilan 0.? .6300.0031 50,0N 0.3517 0.3a4

1.30 1,0 .3305 1.141 AD0.0 0,; 0.63~ 1.~7 1~so~j
0.8 3.5 103)0.10 .65 0.U8 0.9 -Oj .$U 0.33 062

0,11 0.93 IP61". 0.97 0 0000 13i0,380 0,CGVI 0.3" 1 OM 0.31 6.514
0.14 I~ It I. O. 0.7 .G j.0 0 370 W 1

SN1.00 eM f 10.014 O. M 6.4. 3.140 0.6bI l& 0:53.1 0:1AM.IL



:-_r.Jcto oftblt--e"cýný of reduction H and K
. '~t~t a~iitaes he detecting of pressures P 0 and F 8 , hic

alwuigfor thspurpose very sipeadconvenient fo~ls(2.11),

Coefficients H0and HC are given in Table 4.3 in the function of

q uen it --'% _F-, Which characterizes the level of the load absorbed by

the bearinig, and angle a~arctg-_, which determ-ines -the direction of
R

resultant force F.'

2. Reduced Loads

Let us designate by Q the radial force creating in combination

with the longitudinal force A=1,217 tgf6Q at a constan anlLf ,tc

of the balls with the rings 0 3= const the same equivalent pressure

P as that of the real combination of external loads applied to the

b)earing.

Force .Q, can be called the given dynamic load.

Along with the concept of reduced dynamic load in the theory of

antifriction bearings there is widely used the concept of reduced

sta-tic load. 3y the latter it is und'erstood -radial force Q0 , which

creates in the indt&cated conditions the maxirrum pressure on the ball

PO equal to the real.

Replacement of real loads by reduced loads, determined by the

above-mecntioned way, permits using in the cal~culation of bearings

working under combined loads data of catalogs and reference books

re fe rr-i ng17 to radial 3 oadod be,.arings.

Corrparing, equalities (2.10) and (2.11), we zee that

Q-:m2F) (2.13)

In foreign arnd recently in Soviet practice, to determine reduýed

load_- there .is frequently used a formula of the. form

Q -_xR+yA.

Best Aai~a~



Various sources give different values of coefficients of reduction

x and y, and therefore the reduced loads calculated for the same

calculation cases can differ considerably form each other.

Since all methcds used of the calculation of radial and radial

thrust ball bearings under combined loads are based on the same initial

equations (1.1)-(1.7) and in fact differ from each other only by

assumptions accepted for the simpllf'ication of their solution, then

one of the main criteria of perfection of a certain calculation

method can be the proximity of reduced loads calculated on its basis

to "exact" values of these loads resulting from the indicated

equations.

On Fig. 4.5 there are compared reduced loads, determined with

help of coefficients of Table 4.3, with reduced loads found as a

result of the "exact" solution of equations (1.1)-(1.7). On the same

table there are shown reduced loads calculated by the method of the

International Organization on Standardization (IS02), accepted abroad

recently, and also by the metiiod of M. P. Belyanchikov [24], which is

recommended now for the calculation of general-purpose bearings.

As can be seen from Fig. 4.5, reduced loads, obtained with the

use of data of Table 4.3, are the closest to their "exact" values.

The application of the ISO method gives under certain conditions

an overestimate of reduced loads of 20-30%, which for bearing

subassemblies of aviation units, naturally, is impermissible.

With the calculation of radial thrust ball bearings with angles

of contact 0260, according to the method of M. P. Belyanchikov quite

hcrcurate values of reduced loads are obtained. However, at smaller

angles of contact the accuracy of the methcd decreases considerably.

This in the case of angles of contact f6|2-18" the error in a reduced

load can reach 40%. For angles of contact less than 120 this method,

in general, is inapplicable.
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F'el. 11.5. Comparison of different methods of
calculation of reduced loads on b. bearing.

3. Static Theory of Dynamic L!.ad Capacity

In calculations for service life there are lizually used voervr,.l

rTnliarities of the ztatic theory of fatigue of mreta.z, 'h-r. ,
trjnl th d'?,!truction of the material under ,r. action lie 1,,iiz

i:; n. random process of the accumulation of f;;t1,r•ur: damai,:: ,,;z:rdg.

:•,- ,,12,. { fr• jr' r'hara( .rri r tf.i c.. .8u.cr ra . apprerr:rr , ' J r. . : - :
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of service life is valid for all machine part:; operating under varying

stresses, including antifriction bearings, which are put out of service

due to fatigue crumbling of tracks or rolling solids.

Statistical representations, lying as the basis of' contemporary

methods of the determination of service lives of antifriction bearings,

were developed mainlyby Weibul] [43], Lundberg, and Palmgren [44].

The development of these representations for small probabilities of

destruction are the subject of the investigation of Harris [45] and

others.

The basic positions of the statistical tneory of the dynamic load

capacity of antifriction bearings can be thus formulated.

Let us assume that q. is the probability of the fact that the

bearing, rotating with the number of n revolutions per minute, will

operate h hours without signs of fatigue.

On the basis of the theorem of mathematical statistics on thf

production of independent events, disregarding the piobaoility of
destruction of rolling solids in view of its smallness as compared to

the probability of destruction rolling tracks, it is possible to write

qp-g.,w. ((2. 1)

where q, and q,, are corresponding probabilities characterizing the
reliability of revolving and fixed rings.

Considering the peculiarities of the stress condition under the

action of contact loads and also the character of' primary fatigue

microscopic cracks, which form in antifriction bearings, Lundberg and

Palmgren introduced the following discribution, which determines the

probability FA of the appearance of traces of fatigue on the section

of the rolling track with a length AL after rol2tng about it of N

rolling solids loaded by force P:

F,=I-exp-'/ H,'-- AV.2.5

Here H1 is the coefficient dependent on properties of material,
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K I
cleanness of treatment and accuracy of manufa;'ture; T- the greatest

tangential stress acting in areas parallel to the surface of the area

of contact deformation; z0 - depth at which this stress appears; AV -

stressed volume.

At m2 = 0, which would take place in the case when the probability

of destruction, introduced by each elementary volume, does not depend

on its location with respect to the surface, and distribution (2.1-5)

becomes the standard Weibull distribution.

Stress T and depth z0 can be respectivily expressed in terms of

tnrt-. greatest 2tress of crumpling o0 in the center of t ne area of

contact deformation and the semiminor axis b of this area:

= )' }(2.16)
z*o= ab.

Stressed volume AV in the first approximation can be taken equal
to

AV=,2azAL, (2.17)

where a is the serimajor axis of the area of contact deforration.

As follows from the theory of contact :7r:resses and d.forr.atiorz,

for radial and radial thrust ball bearings

2)1 2
4100 2 --ac

14---

4=0,0108%i(4 2- (2 * 1

113
b=0,0108v(4± 2 P do,.

Tr (rIqua] if, i :: (2.18) the followinri rjot :I' rr;; ;,.,: :,ept,'i

do cos o
2ro dw•



%oeff'icients HI, a,,, and az, strictly speaking, are not constants;

however, in practice this cannot be taken into account, sinde limits

in which their values change (depending upon ratio b/a) are very (
insignificant.

It is not difficult to be convinced that

AL=- d.cos (-iF l '),*' (2.19)

2 'i

where A* is the central angle corresponding to the-examined section

of the rolling tracks.

With help of equalities (2.16)-(2.19) let us give expression

(2.15) in the form

! 2.g (2.20)

The quantity of balls contacting with every section of the

rolling track for h hours of bearing operation will be

N- 3znh(l ±q). (2.21)

Substituting this value into formula (2.20), we finally obtain

Fa=l-exp[-fMaz'cos~o(nh)I ao_.in-- •A] (.2

7I-- -ePI 0cj 1SA~n) (2.22)

Indices m and c are expressed in terms of indices ml, m2 , and Z

in the following way:

n = 3 1
2n, !! (2.23)

Accrrding to data of foreign bearing firms, rvenirraiL.'ed In

rercommendations of the ISO, m = 3 and e = I.,, (at d,u-<25.wm).

The section of rolling track of the fixer] ring, loerate,] en azi.muth

•, with rolling about it of the balls is loarldd ear-h tim, b.; the- :';mrv.

force P * Assuming in accordance with this ýn oquality (;i.•)

P = P*,, for such a section we have

F& =I - exp (t3z. Cos ;• 0) -2.2)4)

I
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.Frm-,. *Žxpression (2.24) it follows that probability qw, which

":ar&,erizes the reliability of the fixed ring as a whole, is equal

h ---n(I--FFi)=exp[-/-azcoso(nh)1 (2,2F)
a. n H 3 ICO nh l -i l--I-C ( 2 . 2 r-)

where

P" PM;'d-

During a quite long time interval each element of the rolling

track of the ball race contacts with balls practically on all azimuths.

Taking this circumstance into account conridering the hypothesis

of linear summation of damage nature, for any section of the rolling

track of the ball race from expression (2.22) we find

F,&=I-exp [-H 3 z'copP.(nh)' l ] (2.26)

Here ,= PM is the same equivalent pressure which was

examined in No. 1.

The probability qp, which characterizes the reliability of the
whole ball race in accordance with expressior (2.26), will be

L ]q., 1, (1 - F,•j) =exp -- /z' cos No(nh,)l P~7--- . "."7)

,!i(}crit. 'K, appearing in the above-r-entionp'd equalities, can

t* repr'.cr:tei 1:r, tfr~j form of' tUh product of a certain ,'ont-,tant FH

anc quart" ty
TII1

wni ,ti arc functi ors it and , i.e-., paramet •.arac:tcri ir.:• trr:

i !, t , , s



Let us assume that internal ring revolves. For this case from

formulas (2.14), (2.25), and (2.27) we have

Subscripts "B" and "H" and also the upper and lower signs in
formulas (2.18), (2.19), (2.21), and (2.28) respectively pertain to
the inner and outer rings of the bearing.

Let us assume that at • = 0.2, e = 0.52, and X =o

H., + "/i - Hs.

Let us Introduce further quantities C0 and fq according to! q
formulas:

c.==.ff,,l= - , (2.30)

where

In ,

and

R-8)
J~ I•

,.4 (

Using formulas (2.30) and (2.31), let un; transf,,rm expresnion

(2.29) thus:

O.M M P.(,)C- ¢.(COS('-1.

Expressing here P8 in terms of the equlialent ,iyriximlo, 1,,a ',..

| s'#I



we obtain:

Q(ilk)• =h", (2.33)

where

Analogously there can be examined the case when the outer ring

is revolving.

Uniting formulas of service life for cases of rotation of inner
and nuter rings, after the introduction into them of coefficients R6

and Kr, considering the influence on carryingr capacity of the
cnaracter of load and temperature regime of the bearing, we finally

nave•

xx 5,.Q(nk)'O = c 1 . (2.34)

ere RH = 1, if the inner ring rotates and

1
x u = 'P • ( ,.H5 

)

if' the outer ring rotates.

With cr'n.rete. numerical calculations of radial and radial trnrust

rail bearingns, on the basis of tables of cm-Ificients X and x, va1'e.n

.,f kinomati. -'oct'ficient R can be approxlrinaely determinol dfep#'nridriý.

.p'n quantlt.y w -" O.5'7 accordlng to the ,raph ot" Fig. i.f,
KO

Fig . Kinemati'

a 4V 41 4
) .s



In foreign practice in the calculation of coefficients of
efficiency C0 and C, coefficient f' is usually considered equal to

150-200.

Calculations show that at the given e coefficient f" depends
mainly upon n. At m = 3, C = 1.8 and I = 1.11, which corresponds to
recommendations of I30, it has the values shown in Table 4.4.

Table 4.4.

ý1.06 0.1 00.0 1. .40

1 0. 10 .9211

For general-purpose bearings service life h10 is considered the
calculated, at which the probability of destruction is equal to 10%.

Since at q = 0.9, fq = 1, then
ql

XsNx*Q(ah)f a-C. (.6

Comparing equalities (2.34) and (2.36), we find

From formulas (2.37) and (2.31) it follcws that the average
service life of antifriction bearings is determnined by th-', expression:

wh#!re rl I-- the camnon t~unct ion tif the~ argumcr.n* (+ -

The: ratio of thpt medtan value ,.f servi i if.' tit.,, wtl1,:

corresponds to thr" rellablity q - 0.1, to . ,alculntir, P, ,.rV1rrC

life h1l0 wil be:

( T."
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Reletions (2.38) and (2.39) show that th3 basic parameter
2haracterizing the dispersion of service life of antifriction bearings
is exponent Z.

In most cases the ratio L" varies within limits of 4.08 to 5.

At -L-=4,8, I = 1.34, and -=4,95. If -- =o. then I = 1.17 andAtio hlo o

kv==6,5.
hie

As experimental investigations indicate, the given dependences
satisfactorily describe the dispersion of service life at q.<0.9. In
the region of small probabilities of destruction noticeable
deviations are observed from them. These deviations can oe considered
If for this region expression (2.37) is replaced by the following:

A -- ho (2.40)

Here h0 is a certain threshold of service life up to which the
probability of destruction is equal to zero.

Since at q,<0.9 19q-I0(1--qn)'1, then formula (2.40) can finally be
written in the form

h1, 0  • (2.41)

Accordinr to data of Harris [45], for bzll bearings •-•0,045
This drnotes that to ensure 100 percent reli-.bility it is necessary
to nave a) rrn;ervrj of ca.].cuan.tion of service Lif'e of trhe order of 22,
w:,; rh e',,rrr',•. orrdz to r. reserve with res.peci, to loads of 2.eý.

Above the basic positions of the statistical theory of dynami(:
load capacity of radial and radial] thrust bal. bearings. wor,--
discussed. Likewise correspondi:ing statiztic:,l theories of dynam'.,n
load capacity for bearings of other types were constructed.

Main results; emanating from statistical concepts about the
service life of antifriction bearings were reflected both in foreign

Sn.nr In Soviet practice. With this, however, Lt i5 necessanry to note

'4 '
L 0



that certain dependences, used in the composition of Soviet catalogs

and reference books, have a different form than that which is accepted

abroad. Thus, for example, our coefficients of efficiency C0 and C (
are calculated not by formulas (2.30) and (2.33), but are taken eqcua!
to

"d2to ~~c.-,, "-j z(-'-); 2L2

,]+%02,, ( 2.4 2)
Cc- Cos .

For general-purpose bearings f = 65. Let us remember that in

Soviet practice the exponent m is considered equal to 3.33.

The service life of two-row bearings, and also of rolling bear-

ings, consisting of several identical bearings, which can be examined

as one multiple bearing, Is determined by the expression:

0.39 •.•z cos NP,, (,, 14) " = C. (2.43)

The equLvalent pressure entering here

for (.,P. rthe (2.44)

where P* and It. are the equivalent load and kinematic coefficient
for the J-th bearing.

Formulas (2.43) and (2.44) directly follow from the above-

mentioned dependences for separate bearings.

If all bearings are loaded equally, ther,

P, , (2.454)

As the analysis of values of coefficients f" given in Table 4.4

shows, the efficiency of antifriction bearings noticeably depends on

quantity n. In expressions (2.42) this important circumstance was

not reflected, which is their considerable deficiency.
.I

As Is known, for aviation bearings poscessing high accuracy and

mnde from a specially qualitative metal, the coef'fllcntn of rfriiciency _

00,A '



z'--... ; er values than do those which are obtained from formula

S)

Therefore, using in calculaticn aviaticn constructions data cf

machine construction catalogs and reference books, it is possible to

expect that in reality calculation service life hlo will correspond

not to the 10 percent probability of destruction but to one

considerably smaller. With such an approach to the determination of

service life of bearing subassemblies of aviation units, this service

life is frequently identified with the required service life. In

practice this is achieved by the fact that in formulas (2.36) and

(2.43) h1 0 is replaced by h, and by h is understood service life at

w:hich the level of reliability of bearings necessary for articles of

avlation materiel is provided.

4. Effect of Axial Load on the Efficiency of Bearings

Let us trace how the axial load influences the efficiency of

rndial and radial thrust ball bearings.

Figures 4.7 and 4.8 show model graphs of the dependence _R- W_(-_)

at j-_Const, const. ',;ted according to data of calculation carried out
zvd*

in the composition of tables of coefficients X and X.
i0

l4-v Fig. 4.7. Graphs of the&•,dependen,.ce Q!R --- f(A/R)
3 at certa:n conrstant

4' 0.8 A~

A- can be seen from t hezc graphs, for cmach level of lord there
ixi:-ts a range of values - in which q<. its limits are given in

Table 4.5.

P-- "
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9 4Z 4.4 06 48 I43 U 4 t o

,f. , 4 . ýra y')hc of the del.endence VR =

"'(ii/R) at certain constant values R

and Pgv=".

Table 4.5.

SValue A/R at ini.iai a. •les of -:nta--t
deg

0 12 IS~ 26 3

0.02 0-..,1,5 0,260.38 0.39-0.56 0,56-0.,82 0,3-1.20
0,1, 0-0,28 0,25-0,45 0, .0 05,5-0.84 0.76-1,21

0,35 0-0,37 0.22-0.,7 0,5-0o,3 0,47-0.5o , 38o.-1.210.02 0-0.43 0,04-0,49 0.30-0,656 0.8-0,82 0,00-1,20

At values•, shown in Table 4.5, thr axial load not only does

not lower the carrying capacity of the )earinr± but even increases it

6omewhat. It is true that this increase is insignificant, since a

possiPle decrease in the given dynamic load amounts to several percent.

In radial thrust ball bearings acting on the balls are Coriolis

force,', which try to force them to revolve around axes perpendicular

to ttie surfaces of contact. Such "spinning" of the balls are prevented

by frictional forces appearing at points of tangency with the rings.

If in bearing tnere is an unloaded zone, then in this zone frictional

forcee preventing "spinning" of the balls are absent, and the balls

start to slip with respect to grooves of the rings, whichý at high

ispeeds of rotation leads to overheating and rapid wear of the bearings.

It is natural that with the designing of high-speed bearing
;;utbles with radial thrust ball bearings, it is nec :ssary always.

to try to have the load carried by all the balls. In practice 1;his it-,

5352



- ... _.: y means ef the installation Df bearings with

aniges of contact or by their certain additional axial

"A --:r•g to preliminary interference.

The magnitude of the zone of loading depends on relationship of

-xial and radial loads applied to the bearing. The larger the ratio

./ ... b r thi:2 zone. As was already i-Alicated -earlier, w1en

", tre zone of load amounts to %0 if 0-••.J. The value , =

eorresponds to tile case of axial loading of -.ie bearing at which

pressures on the balls are identical. The vIue -= I determines the

minimum value of the ratio A/R at which all tae balls are loaded.

This, in particular, follows from formula (1.22), which shows that in

,- case 0 = 0 end • = 1 the force absorbed oy the ball located at
0

the azimuth 10 = i80° turns into zero.

Considering that X =1, Jl = 0.425, j 2 = 0.225, and j = 0.231,

from equations (2.1) and (2.2) we find

V211 --,6

A,,_ 1,666 ! -o,-.' (2.169
cO-) os @0 o+S+-P-

1+0.905 cos 2  4 2 +to

rtrnd here the radial loading R is determined Ly the expressUon

R (4ilP+~+;-;F--.,51BO Cos PO I1+O0'905 4(.2+9, o.2 -..

and relation

(Q)9 , 0,,5025- 2 +0 -2

, ,, o+Bo+T (P. 43)
1+0.905

0 COS2 Po

Ar, c hr be :7.eri from equaloit ,dn ".J(), 'K¾7),:ird (K'. I')
,pityi A4 -Qr, dcp nrl, both on I,: infitial rnfýl. ()I'
Ortact and alio or, the l(v31 ot' the 1(,'d i,:, orb)ed by thr K , .ri r .

For the most frequently encountered ir tial angle:c of ýon~tact

51" :1



0 ,-0 0
. -,-, 1, .2°, 180, 26°, and 36 with the help of equalities (2.46),

.- ), and (2.48) on F*guces 4.0 and 4.10 there are plotted curves

whic"l determine values (-) anK (9--)- in function

•.:'1 ! !1 i1i'
__ _ _ _ 

i 1 1 l6'OJ4 
ii 1 L

9 42o , . - ~ o,z 0.4 • s oa- - 7

t2\A
46 12

Fig. 4.9. Dependence of Fig. 4.10. Dependence of

the ratio -- ) on the the ratio -- ) on the

level of the load. level of the load.

At small loads

(A 1,67tgP6 and (Q),.

With an increase in load quantities..-•-) and increase. Thus,

for example, for angle %0 = 180 when R

(A).2,6)tgPO and 1,064.

As was shown above, in the case of a -cnstent angle of contact

of the balls with rings with the zone of loading of 1800, when

parameter =-±oo, the ratio A

Values of ratio (F*-). taking into account the 0hange Ink the

angle of contact depending upon the position of the ball wt•th respect

to plane xOz, can be found by the curves shown on Fig. 4.11. Figure

4.J.2 depicts curven by which there can be determined appr(.prlate

values of the ratio (Q.

Graphs on Figs. 4.11 and 4.12 are plotted with the help of

formulas

5.3) - 1



(-•-)). 1.217tg PO,822i 1
(;.2 ) o,229Boi2cos PG.( + o,868tg2 o . (2.49)

i Qt-), -- I +0, 8618tg PO To

wnich results f~rom equations (2.1) and equalities (2.12) and (2.l3).

0,P, - - - -E -1272,- - --

44 -. . .. .. 0.,9-4
:. -L-7--•-•- 0-T, ....

0 0,2 4, 0,6 0,8 0 0.1 C2 3 0..o 0.5 0,6 0.7 8, R

Fig. 4.11. Dependence Fig. -. 12. Dependence

of ratio (A) on the of ratio on the

level of the load. level of the load.

The given data permLt estimating the influence of the axial load
on the carryinc- capacity of radial and radial thrust ball bearings.
With their help there can be set the optimum axial preliminary

interferei:ce with which bearings should be a2sembled in the

:;ubassembly, and the most rational values of the initi.9.l annle of
(,ontact ý, for different combinations of' the radial and axzil loads

. r(. sel, CA( ].

.. -



5. Approximate Solutions of Equations (2.1) and (2.2)

It is necessary to remember that the angle P is determined by
the working radial clear•ance 2A, which is in the bearing after its
fitting on the shaft and into the housing at a stabilized tempera-

ture regime of operation of the unit and also at the actual distance
g between centers 0H and 0. of sections of grooves of the rings

[see Fig. 4.2 and formula (1.7)].

Because of the effect of landing interferences, the irregularity
"n the heating of separate elements of the subassembly and also the

possible oifference in values of coefficients of linear expansion
of the shaft and housing, the clearance 2A can considerably differ
from the initial radial clearance in the free bearing. The magni-

tude of distance g can noticeably be affected by deviations in
radii of grooves of the rings and diameter of the ball. In connection

with this, in the calculation of high-loaded radial and radial thrust
ball bearings the angle 0 cannot always be replaced by the nominal

0
initial angle of contact shown in the catalog. It is impossible to
forget this circumstance in the designing of specially critical
bearing subassemblies of units of helicopters and other aircraft.

Values of coefficients x and K for radial and radial thrust
ball bearings with initial angles of contact 0 different from
the standard can be obtained by the interpolation of data given in

Table 4.3. At the same time there are many cases when it is more

convenient to resort to this method but to solve problems connected

with the calculation of such bearings by means of direct determina-
tion of quantities F. and X from equations (2.1) and (2.2), using

with this purpose the methods of approximation.

If •-- i) i.e., the load is carried by all th• baeI:a, then

integrals can be found from expressions:
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The ri,-ht-hand side of equalities (2.50) constitute first terms

of a power series, in which products jA(I+X)'/, at •O-O and O4CL41

ore expanded. Considering the rapid convergence of this series in

the shown region, terms containing parameter X in a power higher than

the third are rejected here.

Solving equations (2.1) and (2.2) taking into account equalities

(2.50), as a result of successive approxtmations we obtain the

working formulas:

33

11+1 (2.51)

11I-•

where

Coefficients Dl, D2 , and D3 are respectively equal to:

123 3
* 2(j_/_.

R. (Inl'+2P 1* (2.53)

, DS 3.+I 1+
_r~a _am --•i .A.•

At, -A. the formula for maximum pressure on the ball can

he reprt'sc.nttiI in the form

(2.54)

From expressions (2.3) and (2.51) it follows that coefficient

57A



In .ormula . can be assumed equal to

I+T- DI A +

\I Ia.u, I-i,+~ .(2.55)

It is easy to note that in the exemined case the reduced loads

QO and Q can be expressed in the following way:

Q,==O.2297eA)cosP6A;
Q.o,39OuiA•.A. }(2.56)Q-o.39owWP, osA.

Comparing equalities (2.56) and (2.13), for the given case

we find:

X~s. -(~A) * P6i@; (2. 57)

If radial loading R = 0, then in accordance with equalities

(2.53) D2 = 0, and D3 = 1. Substituting these values into expression

(2.55), for the case of a purely axial load we have

we 1 (2.58)

Figure 4.13 gives curves of the dependence •--- (.1). obtained
from initial equations of static equilibrium of radial andl radial

Fig. 4.1;. Curv.: , ::

". .the depeniAerc': i- .•' .

I l l I I l-1--

2--



thrust bali breaarings without any simplifying assumptions. On the

same fijurf,-:iIi "x" denotes value of the coefficient i. calculated

by formuh (ý. whicn makes it possible visually to be convinCed

of its quite satisfactory accuracy.

The Ae~scribed method of the determinaticn of quentitie; 0,

and X can ttc u.;ed only in the case when in ti.e bearinr there !ý-re

ho unlo Ir-j al:.

Let bi; a.;:u:ume that now the zone of loa-,r amour t:* to ;:;.: thn
360°. W -th 5 zor.e of loading :;maller than .... quant'ti / zary

mror (Ti to (-)rI d from -oo to a certain negativ ý value X., w:,ch

-orre:poni.'; to the case when the bearing abL,:rbs a purely; rq ;ia!

1r-n,,in: ir tr.r abzence of an axial load t>.-. center of thn. area of

contac-.Ct ,:us to the middle of trie qroovt, and angle r turns into

zero. A....;u:,ir.a in formuln (1.19) angle i i• equal to zero, we see

that with ra1ila loading of the bearing

-Cos-i. (2.5)

Let us introduce the notations

(E+41 1-- 1

v, A l
!Vali. <.' iur-ntitic.; E in function A " Fiven r,. it ;.,: ,.".

a' It e C'+ el 82 It 1
11 -- U 2 -0 1.10 -#.*l

To.I I I. • amI -0.11 .. L• .
0.9 1.7, 1.19 1i.3 O. - 1 -.0.2 4 3-

1, .2I4 1.125 1,4166 0.600 -. 0.1' " ,IS 1j * A
0.6 1.0? 1.P 1.2 0.616 - 0.3t -1.24i 3:. 4i 1.136 -2.9
0.7 1.01? 1.242 1.47 8,9U6 -80.41 -2.(r.I CYR!5 1.115 2.4
0.6 0.930 1.311 1.430 1.106 -.0.$ -,3.1 5.t 1.061 --1.12

0.5 0.631 1.40' 1.316 1.443 -0.6  -3.1 1 . 1.01I -I.0
04 0.717 1.3 1.34 1.? -4.? - 1:74 1.461 -t.300

0. 0.0 1.6 1.309 2.50 -0.o1 -16.4' 12. 23 I -. 1

0.2 0,4 1.62 1.27?? 03 09 . 4, : 1.:041 -1.20%
*.lMM 2.= 1.247 6,02 -1 ~lm ~.5 ~

. . 2: .2171,21



I

I)
At T = cos - 1 and = 0 the second equation (2.1) can be

thus represented:

-(2.61)
a'

where

Let us remember that in accordance with the acceptrA Jirectlon

of a,-is z angle ,-O and, consequently, xcosi.o--x and 6;-W(J+-fX).

From equality (2.62) [sic] it follows that A, shouid ssrtisfy

the ccndition

E, Q.)-- . (2.62)
A I

To solve equations (2.1) and (2.2) in the case i- we

will proceed in the followig way. Considering parameter X to be

known, with the help oftthe method of iterations we will find from

the second equation (2.1) quartity *a+j. Rcplacing trigonometric

functions of angle 0 by corresponding values emanating, from equation

(2.2), as the approximate value 16 we will ta:.e

GUM.

where

II

St

Ui ().I4

It ashould be kept in min-! that Inammuct. a:: f .rt: . '.;. -

1:. apprt•,wr vaiu,- W. retoermlntel rrom Ut&Ih ,:vpr,::..;,,r, •,,,

A 1,,, somewhat dIflers from the. value c(rrK;;pordireJ' t,, ,

From cquatior,.: (;.1) we N1vr Curth."r

K -O
"S



- ++ . - "-(2.65)

oC -2  E2 1+'

A.3sim;niLnr X, we construct with the help of formulas (2.63)
R A = F(X) (Fig. 4.14). Accordingj;Jn] (.o a agraph of the Jependence

Fig. 4.14. Auxiliary graph
p for the approximate solution of

equations (2.1) with the zone
of loading sma-ler than 3600.

S~/

A . A I

to this graph, knowing ratio A/R, we find value X, which is the
aTr)roximatn solution to equations (2.1) and (2.2). Using tne obtainerd
value of X, wý.- calculate by formuls (2.63) the real value T and fin-r
b1/ it O

A.s numcrirl calculation: show, the accuracy of formulas (2.")'

ann] (2.65), ,ju•.t a.; that of formulas (2.51) and (2.52), is quite

s;ufficient for engineering applications. Deviations of quantities

V- and X, c•lctlated with the help of the indicated formulas, from
correspondinr "exact" values, determined by equations (2.1) and
(2.2), nt initial angles of contact 0- 45' amount to, as a rule,

not more than 3-4%.

FolI.owwln±,r by coxprosnion (2.63), we car, write

Cos (2 °

Rememberinrg that Es and / _- R -. for the ca-:

A < we find

'54 -1
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iiere

14MI -O-L. (2.68)

Comparing equalities (2.11) and (2.67), it is easy to be
convinced that coefficient ce in this case can be thus expressed:

a.-.229xr cot a.

Accordingly,

6. Relative Displacements cl Rings

For certitn hig,,h-precision high-speed iUarinv subaszemblies
'lie rorrect determination of relative ditplab ,ement• of r1rign; of'
| undIer a 16an is important. With tr,.: ah::orption toy rarliai

and radial thrust ball bearings of combined Aoad,; this problem Is
solved in tUis way.

As can be seen from relations (1.13) ani (1.16), in trhe absenct
of mu'.ual misalisrm.ent of rings (i-.•--0)

P -j

Using the dependence (1.19), we find

1 [+s.(2.70)
A 90+4

Let un assumic that U>'i.tnder thI.. contit-n, di~regar'l~np

In equalitie3 (;1.hI1) quantity "IS in vleo ow it. -lir:, Wit, ita-

neip of formulas a end (2.•) we obtai,. fur rtJlat11'e ,dple-
merts s and U the foilowing expressions:

-- - .-. . ..



i=sin2 + 2 +( 1,410ý

(2.71)I , [o,Cos U -) '-,.• 1,,,.13.

T2 PON+ 2 (T+il-]

As rjL-placements • and u are changed with a change in relntion-

:;hips of radial and axial loads, this can be traced in the example

of bearing 36207, for which on Fig. 4.15 by formulas (2.71) there

- Fig. .4.15. Curves
~FTT-f~ . UVd2 

I

,•4a I- R '. aa a constant

-- a value of the axial load.

O,2

9 0 42430.~450.5 474.

are plotted curves 57-5 V and 1-1V at a const~nt value of*

the axial load A -0,531. For a comparison on the same figure the

:;ifn "X" renote'; accurate values of displacements 1 and 9 calculated

1with the help of equations (1.3), (1.6), and (1.7) for cezr;

S, --. inj .. 1, which determine the limits of applicability of

formula.:; ("'.71).

As follows from the cited data, the eqtation of moments- doe:;

not enter into the system of equations with the help of which there

is investigated the distribution of the load in radial and ra-jiel

thrust ball bearings operating without misalignment of the r•.,;t.

Therefore, the azsumption of the action of radial force and mor.-,

in one plane, uscd In the formulation of re-ations (1.24), 'jez not

introduce any nrlditional limitations narrowing the fiel,] of applica-

tion or lt'e Or ,ov,-: L,a ted method of cofIeul:t;on or zur 1 br;;:r .

M3ost A10"



Thus far radial and axial loads acting on bearing were con-

sidered assigied.

Radial loadings on bearings are found from equations of

equilibrium of the shaft on which they are mounted.

tt great distances between bearings determination of these

loads is not especially difficult, since in this case they

depend little on moments absorbed by bearings, for which with their

calculation the latter need not be considered.

Regarding the axial load, then with its calculation frequently

considerable difficulties are encountered. Strictly speaking, the

axial load can be considered knuwn only in the case when the

examined bearing absorbs all the axial fcrce applied to th( shaft,

as this takes place in bearing subassemblies with one bearing fixed

in the axial direction.

If equations of equilibrium of' the shaft are not enough for

finding loads acting on its bearings, then, naturally, it is

impossible to calculate separately bearings mounted in separate

bearings. lu similar cases for determining pressures on balls, it

is necessary jointly to solve equations of equilibrium of the shaft

with equations of static equilibrium of all the bearings installed

in it.

¾r



§ 3. Certain Problems of the Calculation of Radial
Thrust Ball Bearings Taking into Account

Misalignment of Their Races
Under a Load

1. Fundamental Relationsnips

In a number of units of the helicopter radial thrust ball
bearings, located at a short distance from each other, absorb

combined loads, in which, the moment plays if not the main, in any

case, a considerable role. it is clear that during the determination

of parameters characterizing the efficiency of such bearings, it is
impossible to disregard mutual misalignment of the rings, as was

done in the preceding paragraph in connection with which their
calculation is greatly complicated.

The absence of reliable methods of calculation of radial thrust
ball bear~ngs absorbing considerable moments at small distances
between the bearings hampers the designing of many bearing sub-

assemblies, in particular, the subassembly of the disk of the cyclic

pitch control, which is one of the most loaded and important elements

of the helicopter.

Let u.• cons;ider certain problems of the calculation of rdilel

thrust bri]l .h-arinfgs, taking into account misalignment of the:ir Y'ini(;
under a lJ od. [•ezults obtained in the sol]tion of these problem:;
permit ~n~z'ering majin questions appearing in the desirgning of bearinj'
sur~s:•:;ernlica of units of a helicopter inter.ded for absorbinrg ',reat.
,.om, e r i Usý.

Let uo e:;sume that the bearing subasser.,bly, which consists of
two radial thrust ball bearings, absorbs a combined load in the form

of radial force R, applied in the middle be:.ween the bearinrgs, axial
force A and moment M (Fig. 4.16). It is aso;umed that force P end

moment 14 act in one plane.

Let. u,; eorn?(r subscript I to the bear- ng of the :h-:;;,.rLI ,]

l'or which the pcezu res on the balls, cau.red by the oje WA ,r: rf ' ,

, 1 Ortl-rit t4, -f' CWIdded. Al, equkrn itie:• . fvrr r *' r, ': ,, ' l,-*r

Co o' --
5



7,

Fig. 4.16. Diagram of the
loading of two ball bearings ()

N by radial and axial forces
A and moment.

M7 , 2O

• / "YS

will be recorded with this subscript. The sccond bearing making up

the subassembly and all quantities pertaining to it will have the

subscript 2.

Let us direct axes of coordinates for bearings 1 and 2 as is

shown on Fig. 4.16. It is easy to note that in the system of

coordinates xlYlZI, force R and moment M always have positive values,

but axial force A can be both positive and negative.

Conditions of equilibrium of the shaft, on which the bearings

are mounted, are reduced to the system of equations:

A-A,-Ag .

M--M1+M2 +R4- ,+Rq-,

where L is the distance between the bearings.

'Since moments.M and M at short distances between thne bearltnrrs
LTI,

are not only commensurable with moments R arid R . .,uf, ,iuh- ,:,n

considerably exceed them, then equ~tiorn (3.1) :ho,1, t,: :;,,Iv:J

jointly with equatLons of static equl|,riua of 1,:,,r ,,u:: I (,,A' ,.

Let us assume that in the lorided :;u hh;::,m1,1j I.h,: ,:,:r,,,:r ,>f '.

pack of inner rings is displaced in the direction of :rio:. -' j
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Fig. 4.17. Diagram of'I I

movements of internal
rings of bearings under
the acticn of an arbi-

,0 -trary external load.-
applied to them.

Forces A and R at distances s and u, and the common axis of rotstion
of these rings is turned in the direction cC action of moment M
a 1. angle 3. Anr•.c ý is the angularity both for bearing 1 and fof.
bearinr 2.

Relative displacements 3 determining the position of centers
of the inner rings of beari.ngs 1 and 2 in sYstems of coordinates

z and 7. ',2z.2 according to Fig. 4:17, are equal to

E,= • €;:.(15. 2).

s2 -- Sin-+€.

!re A. is half of the axial preliminary inrterferencc at which t,-e
b,'oring P.r•- ,t; ratio of the distance between the bearings
to the dIrametcr on whlch the balls are located; £-".

linvin, wrif.f.r, ri for both bearings equali.tler, (1.1(')) rjn, sub-
: t tit fi r• in Lhcm express Ionr (3.2), after :,impl'. tr)n:; rr:, tionz

r,- will] oh. , iir

2 ('gpp + Ctp ,O c•A + cosP

+ +(3.;)

+tg, h +,.+ •) co°,', cos

1



In the bearing subassemblies of the type examined there are
usually used radial thrust ball bearings with large initial angles

of contact, for which relative displacements I1 and b-2 rarely exceed
0.25. sin2 . With the indicated values of quantities ! and b

"equ!lities (3.3) can be replaced by the followingw approximate

relations ;

2 cash Ii o

With the selected direction of axes of coordinates, angle 1P
Swhich doteriinos the position of the most loaded ball in bearing 1,

.ij l*wys equal to zero. Angle *02' which characterizes the position
of the most loaded ball in bearing 2, depending upon the relationship
between radial force R and moment M, can have both a zero value (with

ýhe predominant moment) and be equal to 180° (with the predominant

raftai 1 loading).

Considering the last circumstance, with the help of Qu:!"'ez

(I,'&), (I,25), (1.21), (1.27), and (3.4), considering the re.*rkz
made on the order of quantities 6I and b we will represent the

1 b2, ewl ersn9h
forces and moments absorbed by bearings 1 and 2 thus:

( "
Sa -sBoP sin jj, i+ •lb2i . + 1L COS.+o0

) Ii

BafsnPi 22 C22o4 Co "02
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.r.expesic~~s(3.5) the following notptions are accepted:

=~si 2h (I.2 g ('P.+

C11

J3, sIn2PO~tgpQ+c

b 1 2=ctg~J2~~L36

Cis SIU&.gtgP.+- Cos 402,,

"u=a [ In2PO(igFO+C).oQ d

b. Ctg% + cPo Co

ten fro th etexrsMn efn

Using ~j Iqalt ( in.21)0w final haveC

tg , +-gp 2gP

S~ rinc at 140,2r'nrin2; itli porsmbtes haproiacteriiy the-suet

rII'i(:iethen from crii huth lall bexprens short wfiditns ewn

Uhsb~inr; eqaityi mu1a.2) wesa f~iinallof hav-e r sudrtela

of tesedepnde~ee. otaiedand the suntlyr wtht Pjuiartiorl

b 1 ard 1)2do n~ot ezceed 0.25 sr 3fati: .aar'lze

ý301 260 with wnichl' it is usually neces-sarv, to en1cournte.r ir'4,~ -

subassembldes, intended for absorption of 1izrge rnomerftz, 1..,; :i~t



Let us analyze the main calculation cases encountered in the

designrng of bearing subassemblies of this type for units of the
helicopter..(.

2. Case of "Pure" Moment

If the bearing subassembly, which consists of two identical

radial thrust ball bearings, absorbes the "purt" moment (Fig. 4.lP),

Fig. ~4 .18. Diagram
of loading of two
ball bearings by.1 "pure" moment.

then in view of the identity of loading of both bearings RI =R2

A1  A2 and M = M2 . It is natural that in this case *02 = *01 = 0,

1 - 2 and '01 = "02

As can be seen from formula (3.7), at V2-.0. I., -- and 701 = '60 2
S~(3.8)

I + lj

Consequently, with the action of "pure" moment

It is clear that relation should be always greater than
unity. This becomes evident if one were to consider that the

product slnr.?, constitutes a relative appronch of grooves of th:
ringps caused by preliminary interferenceý, . the .1•r relativ/e

Approach or groovrs of the rings which there Jr, prior to hpplicjt.1r, &

to the :;ubassembl: or theic- external ]o;rei.
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R.elation (3.9) determines the zone of loading depending upon

the level of the load and preliminary interference. From it, in
particular, it is clear that so that all the balls bear the load,
the bearings should be mounted with relative preliminary interference

sin h

The influence of preliminary interference on the zone of the
loading is shown on Fig. 4.19.

4% Fig. 4.19. Influence
'0 I , of preliminary inter-

ference or. the zone

I/4 1 / of loading.

ITw
0401 402 403 ASLR P#

Preliminary Interference is frequently assigned not In the form
of the relative axin] displacement 2L. but 'n the form of the
corresporidinf axial. load An. determined by ezpression

A.=z~~~o•'@.A. ~sin PoO rc,•-•,,,, -,.A) .]<

Zirce with the action of the "pure" moment R1 = r2 Ai " A
then the fi rst two equations of system (3.3) are sntisf:Led iir:,y.
The third equation of this system for the case of the "pure" momer.ent
can be converted with the help of dependences (3.5), (3.6), ard
(3.7) in the following way:

24,2sn2( +:, s;, PO
r,-___ ,,_ I, ,, .,.,l+€.cigl~o 3 1 +€t~ "(.]

X[14-cg'P. 1-91 1-~ -31-C----4*,

Uslng equalLtles (2.3). (2.5), (3.9), .•on (3.11), it it; ':.7

to construct p'raJ)h' of deere.r . -, ---i.,, .sn), f 2
_;0. ( ovd., V2 r,*vd)

,*ýjI



Fig. 4.20. Valups

and depend ing upon

i ;'f
vU

M when 00 360.

on which the maximum and equivalent pressure on the balls can be

found. An example of such graphs can be the curves depicted on

Fig. 4.20. They are obtained on the assumption that 00 = 360,

0 0, and !,$In% = O.01.

Let us present the maximum pressure on the ball PO1 in the form:

p.. "-. 4.4" (3.12)

Accordingly, we will assume

PSmpejspj (3.

where &0 l

It should be noted that w~th the actiorn of the "pure" moment

P0 2 "P,, and Pi'Po-

Tt Is *sy to the cornvnced that coerf%. 1:ent

With zero preliminary Intorrerence, wl.-r, sccor.Hir. t,, t.4e formua

(".) ' •, from. tne relittlor, .) we V



-I , 19,,-1- (3.15)
,•, .)\ tgl-t-.)

Values of coefficient nM corresponding to expression (3.15) can

be determined on the graph on Fig. 4.21. Plotted here along the

axis of the abscissas is the quantity-T i d (1+c A Quantity
Sr0

Q== =zi--!, is accepted as a parameter.

S -, Fig. 4.21. Values of

o0.3• coefficient x4 m) depending

. . upon parameters f. and M.

0 0,9 0.1 ,,! A

The graphs on Figs. 4.22 and 4.23 show how coefficients Keý and
%,$f)are changed depending upon the preliminary interference at

-042 * '.&...vfL

2 '16 U -1.0

-0, "16. 0.6 J'- 4,40o.
0 0,02 ,0, 406 0.008 I,-Sn , 0,02 O, 0 408 4su•o p.

Fig. 4.22. Fig. 4.23.

Fir. )1.22. Values of coefficient A depending upon the

prcliml.nnry interference at certain cronstnnt values- .

i,'i;,. * •;'5. * VnIl, u . of' :e Cfj-i C I fl nt. ,m('u1 , ,:per, r' upoT t -,o
M

p 0r,!i ir, iri err(.renco, at certain cor,[;tpnif v•,] t;.- -eAt

½•' = 3(° and t, = . From the j t'ien curves •1. is Clear tht,~f it.i:

expedient to -elect the preitmnLrinry 1nt erf'(:'!ne In ,;uch r, wt;/ J

parameter X3 lie- within limitýz of I to 1.(,. With :,.: r r.'. *5
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i
of preliminary interference coefficient :•ml, and, consequently, the

maximum pressure on the ball descend by 10-12%. Coefficient A(m).and,
together with it, the equivalent pressure on ball, maintain approxi-

mately the same value as in case when the preliminary interference

is absent. Similar conclusions can be drawn in the examining of

other combinations of quantities PO and C.

It is extremely important to estimate the influence of the
preliminary interference on the angular rigidity of the bearing

subassembly. This is easy to do with the help of the second of
relations (3.4), which for the case of "pure" moment can be repre-
sented in the form:

Cos.(.P.+C) l+Xi (3.16)

Formula (3.16) shows that the transition from X= 1 0 to X 1  1-1.25

lehras to a decrease in misalignment of rings of the bearings 2.2-2

times.

From what has been said it. is clear that with the instellation
of' radial thrust ball bearings with optimum preliminary interference,
which correspond to values of parameter X from 1 to 1.25, conditions

1
of operation of bearing subassemblies loaded by the moment are

noticeably improved.

I

The preliminary interference at which the paramefer X = 1-1.25
with practical calculations can be calculated by the approximate

formula:

- I (t,96.+ I.94)W Wi"

(2 2,25) s•nP 101 +F(I. + 1 g4). 1H (12. )

where

H- cte P6 I' f+ (0.905-41.08) -ip12+2.25+• I + CccgL -+cIS, J

Here quantities PO1 and P,, are respectively equal to: N'01 (3.92 -1 3.98). . iPat - 2*, sin F9(I + Cc IS1) 11 + H (1.96 ".gqWQý,)•T•• 3 ! )-

P, - (0,657 -4-0,645) P0,1.
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3. Joint Action of the Moment and Axial Force

With the joint action of the moment and axial force (Fig. 4. 2 4 )
conditions of loading of bearings 1 and 2 are unequal, which

2,

Fig. 4.24. Diagram
of loading of two bell
oearings by moment and

A x, "X xz axial force.
of, 0

zi

,..orisIderably complicatez calculations connec-ted with the determinatlon
.,f' pres-zurc. on the balls. In order to finru quantities P~o. P0,. p,:
ario P,2, In this ca.se it is necessary to con.Ztruct a number of
auxiliary graphs. The order of constructior. of these Ltraph.; is

,:y: to comprehend by the following example.

Let us assume that the initial angle o" contact P0 = 360. For
strplicilty we will consider that the relative preliminery! inter-
ference Aa-0 end relative base ( 0, i.e., we will exrmirne the
ca:;e havinp a ,dLr-c.t relatior, to the cal.cution of bearings of

'iJi k of V hO cycl ,' pitch control for which *.o a ruffi c,:i ont. ,e .
t (,,•e •,s:;irnp un .; ire correct.

A,,:ord , Lr it.rto (oc.ntiono (".5) with rarJ i:.i loadirlrr R - - 0
quantities a'n,'0. end 12 are connected wit:, each other by/ oho

following relation:

te Or i21Cf2ibf6N3 -(J.)34.]b-')\ o,~1 "A

• + :•-555
i "<.• 't '% +
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,~- ri.), es in P.1 subsequent jeoerdercmcs, it is

f:r ... ir tnPet witr, the loint acicni of the moment anj axial force.

a: in tr.e case of the action of "pure" momern;, -0.2"RV4O.

From fotmula (3.7) with zero preliminary interference we have:

Oki + (3.20)1+ 11+ =,o

Whence

~ -~(-~~~+ I.) (+21

Subsequently, relation - will everywhere by designated by x.
i0i

Using equalities (3.6), (3.19), (3.20), and (3.21), let us con-

struct curves 0=6o (x,).) satisfying the conaition R = R1 - R2 = 0

(Fig. 4.25). Intersecting the obtained curves by lines 701,-colist,

5 ' Fig. 4.25. Model
k ,.Z 0,4\_ ;56 graph ",,-,(a ) when0, A€,,t \0. \4 RI= R_ R2 0 .0.1 J'-eonst 2B-B 0

0, g4 26 go ,o 1, 1

we f.irid val ueP; of ii correspor-iinfr• at, -river. elu - of x1  (from . to 0)

,. .s.lettod values of 6. Thking further _ a,% a parameter, with

the he.lp of' equations (3.1), (3.)), and the above-mentione'd

elu.litles, we calculate quantities VdII OZd2'l
M ... , and .3p- _ • '•2 -W.

Pot pot mIV

Results of the calculation are giver graphically, as was done

on Figs. 4.26-4.29. Figure 4.26 permits bY the assigned values -- A

Al - vd2
.ni oj determining quantities 60, and X , knowing which it is

e s.'sIly possible to calculate the maximurn• i ,, eq, i e.r pre:;rzr.2

2.t



4,6 •,4 Fig. 4.26. Dependence of

0,4 A' o at certalrn

constant values im and•'I*. '- • _ ' x1

ZVdk

4o2 0/.o0-9-0,9 ,•0 ,2 o.L.

JfC LLI

4.06

A. A 6 _ 0

0 t.4 48 1.2 19 2,V 2.4j 0Al0 I2 15 2, ,

Fig. 4.27. Fig. 4.28.

Fig. 4.27. Dependence of ratio 6f- on a-L t certain
Pa I

constant values of 1* .

F,'ir.. 4.28. Dependence of ratio N on Iat certhlr.
P63 Al

conatert values of 1 .

PO1 and Ps, . Prom Figs. 4 .27 and 4 .28 we find ratioz ?S and

and then calculate the maximum and equivalent pressures P02 and] Pa.

Analyzed above w.s the case 3.-O and r, = 0. At arbitrary

quentitles of these values, and also at other initial enr'lez of'

contact the determination of pressures PiPsi.P and P,2 is

produced In the same way as in the examined example. It i.; necezsr.;/

only Co rcmi-memer t:hat in the presence of pre:liminary interfrerrcn:

qumntit.y 601 (:-irot be le :;s sin s.

It shculd be noted that the caze a.-0 And Ls 0 O [ rr:,r;:)
-not only for be•rinir.s of tr.c d is:K o0, the c :] c tir tc. .- ¶
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also for many roller bearings of large diameter.;, which are used

in turning, devices of contemporary machines and mechanisms.

From the given data it is clear that at the prevailing mcment,

when ).>I, most frequently bearing 2 appears the most loaded, 81though

at first glance conditions of operation of bearing 1, in the direction

of which axial load A is directed, are more difficult.

The expounded method of the calculation of radial thrust ball

bearings with the joint action of the moment and axial force requires

fulfillment of a large number of calculations and constructions.

Therefore, its application is justified only in special investiga-

tions which have the purpose of revealing peculiarities of the

distribution of the load in the bearing subassemblies with short

distances between the bearings and also for development of auxiliary

graphs with the help of which separate model constructions can be

calculated. If such graphs are not constructed beforehand, then in

engineering calculations one should use the simplified method

founded on maxiS dependences obtained for the case of small loads,

when forces are distributed between tne balls by the most unfavorable

manner.

4. Maximum Dependences on Small Loads

At small loads one can assume that the angles of contact of

all balls are approximately identical and ecual to 0'

Rejecting in equations (3.5) terms considering the change in

angles of contact, and introducing into them instead of quantitles

b01 and 602 the maximum pressures on balls P and P OP which Is

more convenient for small loads, we have

R,= zPol co's P.JX;
A, _zP0 , sin %i;(.2
M, = rozPa sin PoJh;

As zP.s5n 58l,.
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.7u: stitutirg ependences (3.22) into equeations (3.1), we will

c n

R.= zP*1 cos ho (U21 - X'J cos * 2);
A =zP 01 sin 6(J -x1j,2); I,.
M = r0ZP01 sin PO (1 + C Ctg P) U2+ 3j2 cos o2),

where, as before, = ! (P•-1) 23

Since in this case angle P02 cannot be equal to zero, then

taking. into account this circumstance from equality (3.7) we find

ý2 '., COON+ IL(I + 1) '7. ( 24)
," 1-( 0h a in 00

Let us examine the system of equations:

121 + 1212'- . ....1
Ir .-4,2)

J21-- [(+ -4)+ 122

It Is easy to be convinced that values I X and 1 at cero

preliminary interference, which satisfy equations (fý.2.P), _lso

satisfy equations (3.23) and (3.24) if one w.,.ere to ass:ume triat

M

0 ,A(I+ ctg PU)'

=rR (I + Cag )IgL 0
i ~M

-- at roR(l+ CctgPo)tgp0 >1

M
A

,R•(l + Wtoo0 ) tg"

It Is necessr, r.,l t(, (consider that In t, first case. an.ole
e .; 1 / t: , o ! Z , I•, l 1T, Ir , 0 .



If in the external load the main role is the axial force, then

pressures on the balls are usually written in the form

S4f)A

KS~'A(5.28)

&s8inkP

If tho moment prevails, then, as a rule, there is used the

form of recording which was already used earlier:

4.37s4()AI

2r•z sin ko{I + Ccig ko)

2ror s~'Po(1 +¢cqtfo)

2.574m"M
,,•Fo , s(+ c cig k)

According to equations (3.23)

01 4.37 () + x 3 .2 co~s'o)

4.37 ( __ __ -

2 " A1COcI + gpo)

ps60

i Reg~Accrding toequaioints (3.23)• '••ad 4,thyae qa

i; 1
011

12 0567 '1''40

Le snt htbtencefcei.,K()nrth olwný(on-.Ln
14I 43 uN

L.___ ~~~ ~ ~ rB ............ .. .............
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Fi'. 4.29. Nomographs for the 4pproximte

calculation of bearings loaded ?,:/ the axill
end radial forces and moment.

The solutioN, of system (5.25) can be r'presentr•cJ in t~.e fors.
of the graphs depicted on Fig. 4.2 9 . From these graphs, s nowing t

and v, it is easy to find values v• and XI, by which the product

).zcostL'0• is calculated and then coefficients ..,., . A•' or

X~,A'", /•L ' A'A':'h•' are calculated.. After that the determination of

pressures on the balls does not pose any special. difficult:y,

Graphs on Pie. ~4.29 are interesting in the fer-t. tri~t in them

neither engle F• nor ( appear. Thus we arr/',r, aJt the ;er:l ,:or,',:nijn.en

practical approxlmate method of" calculatiorn of re•J[a] thruszt h-,].j

lbearIThffs with large initial .angles of Carnt:::t. in fthe mos.t !•r~erff,]~
case of their lo~i.,J1ng. Prellminer;! tnterfe-ence. as we wer, s] fteoP/

conviniced in exemtning bearing suhassenLIlie:; loaded byl the "p,•'e"

moment, has an effect, mainly, on the ri~'IdLty of th~e .system,
S % changing little the computer values of mnaxLimum and equivalent

5a
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pressures on the balls. Therefore, the expounded method of approxi-

mation of determining these values, founded on the assumption that

the preliminary interference is equal to zero, can be used for solving

a sufficiently wide range of problems connected with the calculation

of radial thrust ball bearings with large initial angles of contact

which are set in bearing subassemblies having a short distance

between the bearings and absorbing the arbitrary combined load. In

simpler cases of loading in the examining of maximum distribution of

forces between the balls corresponding to small loads, preliminary

interference when necessary can be comparatively easily considered.

Let us assume that the subassembly is loaded only by the moment

and axial force. In the absence of radial loading, as follows from

equations (3.23), jrn-x'h incosta-0. Using this relationship, we will

give expressions for coefficients g4I and &0) to the form:

SI) 4^ 1&'t

;5 1 1 A).

14 57j ' J

Relations (3.32) are real in the presence of preliminary

I interference.

Coefficients KW'.'c."-Aj0 and mix). determined by formulas (3.32),
at zero preliminary interference can be found from graphs on Figs.

4.30 and 4.31. Since at small values of the ratio - coefficients a"

and x(mI for bearing 2 are considerably larger than those for bearing

1, then naturally there appears the question whether it is impossible

to vary their values owing to the corresponding selection of

preliminary interference. Not discussing the transformations

connected with the solution of this problem, inasmuch as they are

quite evident from that stated above, we will give immediate'.y the

final solution. Figure 4.32 gives curves showing at what values
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F -1 a7'-"~A s - 1 , " 1 - 1 4 ,
e o~ "(.# ,,z,( •.i

9 4 44 40 2

Fig. 4.30. Fig. 4.31.

Fig. 4.30. Values of the coefficient -4-7()

for the case of the combined action c,2' the moment and
axial force.

Fig. 4.31. Values of the coefficient Uflm(7;)

for the case of the combined action c: the moment and
axial force.

. Fig. 4.32. Values
- of preliminary inter-

ference to ensure

f -conditions a,",

.I)|.4-, and 12 1.

of the ratio the identity of the static and dynamic load of

hearitai:; I and 2 can be theoretically provizaed, i.e., the equality
w,' aoerficients ';" and jO) or xlxl and !A'. Values of these

,:quallz(!d coefficients are plotted on Figs. 4.30 and 4.31 by dashed

lines.

For subassembiies which should have inrcreased rigidity, it is
desirable that in both bearings all the balls be loaded. This

problem is also easily solved by means of tne selection of preliminary

Interferonce. Since with Joint action of te moment and axial force

t||L zone of loadinp In bearing 1 i-- alwayz ,resiter then t.r;iL 1rn



0 " Fig. 4.33. Influence of
preliminary interference

4C (condition X,, = 1) on
0 the angular rigidity of
4. -4 the subassembly.

* 40 43$ AZS9U,.o

bearing 2, then the condition of full loading of the balls of both
bearings is the inequality 4,*I. Values of coefficients xm) xf". 00

and xe'N and the ratio 3. which correspond to case X2 are

also given on Fig. 4.31 and Fig. 4.32. Figure 4.33 shows that in

the presence of preliminary interference, which provides loading of
all balls on both bearings, the angular rigility of the subassembly
increases more two times, and the maximum ani equivalent pressures
on the balls are increased by approximately 10-15%.

Maximum dependences obtained for the case of small loads are
very convenient for practical calculations, since they considerably

decrease the laboriousness of the determination of pressures on the
balls. It is necessary only to consider that the use of these

maximum dependences leads to a definite overestimate of design

pressures on the balls. At contact stress cf the order of 20,000
2kG/cm it amounts to 15-25% for the angle b- = 260 anti 2-17% for the

angle %0 = 600. Considering the last circumstance, with calculation

of calculation loads on a bearing subassembly in the crie of applica-

tion of uhe indicated maximum dependences, it iL po~islbl tG take
the smaller values of the safety factor.

On the basis of the above-mentioned dc;endences thte pr,:Pure

on the balls of the eccentrically loaded twt-row thru3t ball bearing;

can be determined. Here one r•Qould remember that for the inItita

angle of contact 19r= 900 at A-0 formulas (3.32) givr! "accurate"
values of coefficients entering Into formul-,s (%.28) an• k .

Let us note that in this case quantity r c -ra.tltutcn th-e relati'.

eccentricity e- (F i. 4 .34).

I •
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Fig. 4.34. Fig. 4.35.

Pig. 4.34. Thrust two-row bail bearing
loaded by the axial force and moment
(eccentrically applied axial force).

Fig. 4.35. Values of coefficients 44
and x"' depending upon r.

If the eccentrically applied axial fcrce is absorbed by the

single-row thrust ball bearing, then

A

A A l

Values of coefficients w and 04 are found from the curve

represented on Fie. 4.35. These curves are obtained from 7&1-;e: )

corresponding to the equation -v, direct!-, resulting frc• ,r.oitIons

of static equilibrium.

5. Distribution of the U4a0 betwqc!. hrwn lu.4 1¶all
of Two-Row Radial Thrust P614' !earing:

To absorb Jointly effective radial an. axial lbi n unit:;

of a helicopter there are wtic:lJ uced radl" thru.st 1#11 trrre

with initial oanlez; of contact of ;,*.o an•i .0o which have :;maUl

prclminary interference (Fir. 4.y).

Let us try to esta.list, ttow the ioad ; 11:;tribt1ter! t.,.. ,.:.



Fig. 4.3r.. Two-row
radial thrust ball
bearing 'oaded by
radial and axial
forces.

rows of balls of such bearings operating under conditions excluding

the possibility of noticeable mutual misalig.-ment of their rings.

Considering that the small preliminary interference has little

effect on the magnitude of pressures on the balls, let us use for

tine approximate zolution of the problem the maximum dependences

given in the preceding point.

Aszuming in equalities (3.4) and (3.7) 7-0 and -,%.-0 and

rememberina that ,• and -l+m - ' ", find A,p . utscript

"I" is given to the row of balls in the direction of w.hich tne axial

force is directed. Since with loading of z,..e bet-ilng by radial and

axial forces angle 1O2 0 i•0° and, consequently, cos = -1, then

for the examined case from equations (3.23' we nave

Depennrn:: TctriturmiIner, prv;ure- i•. rA P., rt.r ,wc.-r,.-

radial tsruat bal1 bcarzirs can te written rn t e 6xiie'x-ran 17

seats 2 1!
' f
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Equivalent pressures for both rows of "ralls are respectively

F:qual to

P4 ll mWpa. (3-37)

Values of parameter X1 and coefficient 4!) depending upon

quantitij -~-cj-;, can be found from graphs on Fig. 4.37.

Fig. 4.57." Values of
A1 and ui coefficients

d' depending upon .

As calculations show, the first row Is always more lo

At -;1.67. when lo- I. it tcars the entire loaJ applied to thre tearine.I I

i1:t U:i n7 bte that nt ' = O.i. the ratio --7 tg 00

Wifl,: LI'h iir.Idqminant nxlal loads, when one row of the balls

.- •,-.'.:* f'," tl.- ptirpo..e &P' ottanngnt mort -qccurate relults the.

- ji..ir3L(- K two-row railsal thrulit boll h,.rlrj,: of all Lyre;,
ir,-tu.lLro, thui4p texamined In thr! given .;Ct•s. •,houlr h.e pro-'zuf!#:t

d.t!. the relp of depenJences of 9 2.

6. ~Example4 of tht Calci.Aetton

Exam± e 1. To determine tthe calculat•:n of the service life

1),41 beartires of the tii:;) of tr, i:ul'~~ tc- ýont rol (F-o..



Fig. 4.8 Cyclic pitch control of the rotor of a
hý-1icopter.

loaded of m~oments M = 150~ kG-m and revolvin,;cý at 240 revolutions

per minute. The bearings have the following parameters: ~.360,

d.: = 9.525 mmi, z = 242, r~ 70 T.

The relative base =0-1, an'2. the p~ 1iinlr11ary I ite rfe rence-

Since the bearing, has zero prelllmina-r-, interference, tr!-

'~offiiens 4~~and K~t 1 necessary for calcnilating Iloads on ei,

are determined with the help of Fig. '4.21.

These quantitles are calculated

1-Ct.C Itk J_ R-, 1.0,726_

I M5
M = ;v; -'25 .O5 s(I n C1 .o)' - ý-

~J co



2ince = 0.515, then coefficient v is accepted equal todw

A,'cr' to Fig. 4.21, the obtained values of p and R correspond
to the value KO0) = 0.912.

Thus maximum pressures on the balls in both bearingz will be

4.37,4AM
2',• sin P,(1+C€:g •

-, 4137" "1,7 ,G.
2.0,079.42.0,5 (1 + 0, 1.1.376)

In the examined case -j=)2=oo. Consequently,

P.1=P,:=w-,_.Po0 =O,587• 134,7=79,1 kG.

The equivalent pressure PY,, which determines the longevity of
trie subassembly, can be found by the formula (2.44). Considering

thst at ),=7.2=00 and 4,-K- = 1.2 (see Fig. 4.5), from this formula

;':e find
I

P,.,=2a'~xIP,1 =,1,21• 1,2.79,1=1!14,8 kG.

Here it is accepted that I --

For bearings with the inaicated dimensions, according to the

formula (2.42), the coefficient of efficiency

9.5252
C.=65"zk% -65.420')-1. =67 794.

I + I,02dm ! + 0,02.9,525

As results of bench tests show, for bc;rings of the disk of

L<<:/ c.cli(' pitch control the product of col.'ficicnts X•-K = ]...

In accor]ancce with this from expressicoi (,.4")), coris iurin/.
Sho t h , we obtain

__________ 67794
, ,0 39.,1.42.114,8.0,809
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Whence

ahi-=228370 and A= Z37h0%950 .ours.

Example 2. To calculate the maximum and equivalent pressures

on theballs in the bearings examined in Example 1 at the moment
absorbed by them M = 60 kG-m and axial force A = 500 kG.

Since the relative base • is small, then for tre determination

of the indicated pressur"es we will use Fig's. 4.26-4.28.

According to quantities

A f 60 - ;!= , 199 -3 k G / ir, m 2

and

[ _A = M ,5 0 ,0.1312 kG/ 2..m2
;%7vd2. 42.1.9,5252

with the help of F!.g. 4.26 we find: 6o, 0.055 and = 0.7.

Let us calculate further P01 and Pai. S3ipce Xl 0.7 corresponds

to the value w 0.678, then according to the formulas (2.2) and

(2.6) we have:

P., 2=Bovd.L' 2= 62. 1.9,5252.0,0553.2 72,5 kG;
P,,=WP01=49,2 kG.

i ti

IFrom the graphs on Figs. 4.27 and 21.28 let us find the values

P, 2 jP,, and PO.2 / 1Oi. Using these values, we obtain

PQ2=1.085P*,-78,7 kG; PO=0,875P,1=43 kG.

4. Calculation of TLpered RolIer ]?earirnrs
Under Combined Loads

1. Calculation of Single-Row Taper&,• Rt.ller hri;rilnfr,;

Discussed above were methods of calculation of radial and
radial thrust ball bearings absorbing comlired loads. Let us consIder

? :I



Section at angle 7P
to the plane of
loading xOz

Fig. 4.39. Diagram of the

loading of a tapered roller
bearing by radial and axial
forces.

4 0

now the peculiarities of the calculation of tapered roller bearings

operating under conditions of a complex load.

First of all, let us resolve the problem of the determination

of forces acting on the rollers of a single-row tapered roller

bearing, with assigned values of radial and axial loads applied

.,o it (Fi,. 4.39).

Normal forces P* and P$, acting on the roller from the side of

the inner and outer rings, are connected wi*h each other by the

relation

C , (4.1)

At u3ual values of angles y and 7T we can practically assume

tnh t

P; =P4.(4.2~)

In conformity with the Hertz theory, for the case of linear

contact it can be assumed quite accurately "hat

wrire 5P is the approach of ringrs T tin roc :tlon locat;o al. anb .

t0 the plane of loading.

in the o:•Osln: of muti, : i.::'li nm,:ni ,f' rings unruer ,



the approach 5 is determined by the expression

61, -ssinfP+tcos cos*. (4.4)

Here u and s are the radial and axial displacements of the inner

ring relative to the outer ring reckoned from a position at which

in the bearing the clearances are selected; • -- angle of cone of

the outer ring.

Assuming that

-- " cgP~x,(4 5)

from expressions (4.3) and (4.4) we obtain

P+=BssinA(I+,cosV). (4.6)

If the direction of radial loading coincides with a positive

direction of axis z (R > 0), then displacement u 0 0. In this

case the center of the zone of loading is in section ?P = *0 0.

If the radial loading acts in an opposite direction (R < 0), then

displacement u < 0, and then the center of t're zone, of loading is

disposed in section 7P = 7 = 1800.

According to formula (4.6) the maximum value of force P• i½

equal to

Po-Bssirnp(1+X cos lo). (4.7)

Using equality (4.7), we finally have

e, P O(I+ Xcos,ý. (+I'" + 1cos 4,

As follows from conditions of static equilibrium

R a CO (1+ cos -) cos (4

'% P sb (1 +XcosJ).
I +Icos08

Wi th tne u;u.j'1l quarititie.r; of ro lers '.:unt,ii)n,; .) (1 ') r 1,,:

r(:plquud by reint 1, ot:;

R P• cos P12Cos 4; 0 (). * ()

A P sip.

S- ' 7 ,



Here

It
SY''•O~l €, ¢o).(1 + 2) c, os 1•,) d•- *]

-

( 4 L(4.11)

),Cosam.a

-2sl+ o8{2sn.'+ ,Co,$0 [(:-.)+ sIn 2?}•

Limits of the zone of loading 'It and '?• are determined Just

:,z for radial and radial thrust ball bearings [see formula (1.20)

and explanations to it].

From relations (4.10), assuming for simplicity R > 0 and,

consequently, = 0, we find

(4.12)

The equivalent pressure P, for a tapered roller bearing can be

reýpresented in the form:

where

STIb).lO COS.,,

The va•lue of quantities J1,J2 and w In function ).Cos-,• is tgiven

in Table 4.7.

The calculetion of tapered roller bear"ngz, ju:;t r,z that op
r;,,jJa), thrusit ball bearings i.s; u:.ually conrjract.e, with the tell,

of' reduced ztatlc and dynamic loads. There loadz are found rrgro
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Table 4.7.

I iI I T I'
0o1 0,.09 0.454 0,913 2,50 0,389 0,267 0.602
0,2 0o.8 0,417 0,853 3.333 0,371 0,264 0,686
0.3 0.769 0.385 0,806 5,000. 0,354 0,261 0,679
0,4 0,714 0,357 0,773 10,000 0,338 0,258 0,670
0,5 0,667 0,333 0,751 :k G 0,318 0,250 0,660
9,6 0,825 0,312 0,738 -10,000 0,300 0,242 0,648
0,7 o0M 0.2k 0,729 -5,000 0,21 0,234 0.,634
0,6 o,55 0,278 0,725 -3,333 0,261 o0, 0,617
0,9 o02 0,263 0,722 -2,500 0,240 0,210 0,598
1,0 0.500 0.20 0,720 -2,000 0,218 0.195 0,576
1,111 0,479 0,258 0,718 -1,667 0,194 0,178 0,548
1,250 0,460 0,264 0,714 -1,428 0,167 0,156 0,518

1r42t 0.440 h 0,266 0,706 -1,250 0,136 0.130 0,484
1.867 0.424 [0,268 0,704 -- 1.000 [0.00• 0.000 0.000

from the condition that

P%. q we -4 .

P* =!= - =264  o . (4.14)A,, =- . QF SO*

In comparing equalities (4.14) with equalities (4.12) and

(4.1A), we obtain

Q*o(R) R; }(4.15)

where

In accordance with relations (4.10), tc value:; of parimet.,rr A

necessary for the determination of coefficIr:nts KO" arn K. ]

satisfy the condition

A .a, tg ,. (4.11)
J A A
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ince at - 0- 0 then so that in the single-row tapered

rr!lcr bearing all rollerL are loaded quantity T should not exceed

At TrO,5 values of coefficients ic?' and I"" can be determined
by the graphs shown in Fig. 4.40. These graphs'are plotted on the

basis of equalities (4.16) and (4.17).

Fig. 4.40. Values of

coefficients 4" andI-i -• i ,•" depending upon T.

V 0.5 a. 47 "i . -i

If ,10,5 and, consequently I, then cxpressions for integralz
j, and J2 take the form

J2ý 2 I+A.

From expressions (4.17) and (4.18) we find

Thus;, nt :,0.5. when thre load is carri,,f by all. rollý.-r:;,

(4.20)
M~'-'----Kr'0,76w+O0.38 M.' .0

As follows from equalities (4.20), witcr all loaded rollrz

Q •aO,5R+O,2d0,2A ctg P;..)
Q=O,76wR+-O,38A ctg,. ( .- )
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Fig. 41.41. Values w
depending upon T.

0 0.2 q& 0.U

It is convenient to determine values w in function T by the

curve shown on Fig. 4.41.

The dependences cited give an answer to all basic questions

appearing in the calculation of tapered roller bearings absorbing

combined loads, under the condition that mutual misaliggnent of their

rings can be disregarded.

As can be seen from Fig. 4.40, in the region ¶ = 0.6-0.8 curves

Kf X(P(t) and 1-M•O9(?) have a quite clearly expressed minimum. This

indicates that the appropriate selection of the angle of contact 0

can be achieved in order that with the assigned combination of

radial and axial loads the maximum arid equivalent pressure on

SFig. 4.42,. Values of
the optim.um angle of

20 contact depending

the A
10-1 P"PI|U upon the ratio R

U 0.2 0,4 0,5# As

rollers, have lea.st value. The optimum angvl, of contact 3L which
c= pmin are fulfibod
conditions P and P.mP'' fure determined by the0}
graphs shown on Fig. 4.42. These graphs arc obtained as a re.,ult
of the investigation of dependences -- ani - R), plotted

R O

for a number of angles of contact lying in the range of 0° to 70.
'I



2. Some Remarks on the Calculation of Bearing
Subassemblies Consisting of 'iNo

Tapered Roller Bearings

If the bearing subassembly, consisting of two tapered roller

bearings, is loaded by the moment acting in combination with radial

2,\1

- ~Fig. 1K4.Diagram of'
loading o4" two tapered

01 roller behrings by
"~ radial an(: axial forces

Land th, momzent.

.rJd L:vlal forces (Fig. 4.4 3 ), then to calculate it there can be

usýir the :;ysterm of equations

R - zP6, Cos P (hU - ,jhCo6 1J;
A.=zP*, sin PUj1 -:132);

M = rozPol sr (1 "- (I C CtgP) (jU,1 +VA..: Cos -.0); (4 .23)

12COS~ 7-12 + L) 2A. sin P]

•n:!ogous to the system of equatinns (3.23) and (3.211) describing

c'uoition,; of static equilibrium of bearint" subassemblies with two

rdipl, thruot ball bearingz,, on the a sumptirin that angles of contact

oW' rll bnlls nre identical and equal to the initial.

It i:; t•cccsnry tu not'e that equations (4.23) Pre "exact,"

~ie::;mtfch ;:; in tapered roller bearings the Lngles of contnct are

Sro ec(i conl:: Lt Ti nL rid do riot ehon(,e under o1 - :, inn] those equati.ons

are reorl both in the preserict, end in the ;),,enzce of' rr•Atua L ..iseLt•rr -

mecnt of the rings;.

In equations (4.23) instead of xuanti , ':"' rurantity w' appears.

<77j



This is explained by the fact that for tapered roller bearings

PO.

In tne case of zero preliminary interference values X and x,

which satisfy equations (4.23), are found by the graphs 3hown on

Fig. 4.44. Quantities r and v here have th(, same meaning as they

do for radial thrust ball bearings [see formulas (3.26) and (3.27)).

A
S I_

At - 6 t r4140a 48 1tv

Fig. 4.44. Nomograph,- for th e •a•.-ol e.-. tlon o .,
Ibearing:s loadied by radial1 and .,' forces
and the- moment.

With respect to the found vapWe. o tt a: t'.c xs aW.nItj ;.o¢;ci

L• calcuiated.

NMax' = and equivalent pressures on r .- ers In tearings "nt

2 are determinec.. from tne expres3ior.n:

- .1



-2,4c"M xo(A,

p01  $orin (0+ Ccig A) :sInA

t.3r44' si ,(4A)cgP) ZIA (4.24)

1,32x(*)Mf ,JA)A

roz %In P(0+ Cdig A) sin A

Here__ _ _ _ _ _ *M) rf)

(A(A If~ I

0.66 0J2 1 (425
kfA) -!!L OxAl); 2(f Ir g)

Asz-um'in-' in nystem (4.23) 0 900, we arrive at the following

eqiiations, which describe conditions of static equilibrium of two-

row thrusýt rcller bearings:

A zP01 (aIll- x 12)
M==rzP.(I 21 x/~. ~(4.26)

Methods of solving equations (4.26) are clear from the foregoing,jand therefore discussing them has no special- meaning.

If in equations (4.26) we assume that x. 0, then they will

obtain the form:

AI~r 0 P 0 J 2 .(4 .27)

[Rel t Lor1:, (N .'ty) chiaracterize the diottribut1 on of' loadj In

r;nle-io t~hrust roller bearing,.

Fig. 4.45. VFalue-s of coaffi-

cients AA anr.r x-') depending
upon T.

6I 42 C,' 454 0.

Ij



Value of maximum P O(A•) and equivalent p,=•A)' of pressures1 5

on the roller, which satisfy relaticns (4.27), are conveniently
found with the help of curves Kr)t,&4)A(T) and ()=h)(r), shown on

Fig. 4.45.

For X4I, when in the bearing all rollers are loaded, integrals

Jl and J2 are determined by expressions (4.18).

It is easy to be convinced that in this case, taking place

M
when T'-4 0.5,

1 (4.28)

§ 5. Calculation of Bearings Operating
with a Vibrating Motion

In tne designing of helicopters there are considerable diffi-

culties in the correct selection of bearings of hubs of the main

and antitorque rotors. These bearings, as is known, operate in

specific conditions of a vibrating motion. They are put out of

service not because of contact fatigue but due to the local weak

rolling tracks, which received the name of "false ball test." It

is understandable that the usual methods of calculation for such

bearings are inapplicable.

Properties of lubrication have a great influence on the efficiency

of vibrating bearings. Practice has showed that the reliable

operation of many critical bearing subassemblies of a helicopter

is possible only with the application of special oils and lubricants.

Therefore, in helicopter design it is necessary to pay serious

attention to questions of the selection of lubricating materials

for antifriction bearings. This, first of all, pertains to bearings

of hub axial hinges of main and antitorque rotors, which absorb

considerable axial loads from centrifugal forces of the blades.

The complexity of calculation of bearings of hubs of main arid
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nt"�,,�i�~o utors consists in the fact that the relatively low
rigidity of their basic parts, especially on heavy helicopters, can
lead to noticeable deformations of the rings, which is difficult to
consider in determining forces acting on rolling solids. The
development of general methods of calculation which consider the
influence of all factors determining the carrying capacity of bearings
of hubs of main and antitorque rotors thus far has been unsuccessful.

However, experimental data accumulated up to the present time permit
giving definite recommendations on the selection of allowed loads

and determination of longevity of the most widespread forms of
bearings used in these complex and critical units. Analogously
there is the case with the calculation of bearings of hinges of

cyclic pitch controls and control mechanisms of helicopters, which
just as bearings of hubs, operate with an oscillatory motion.
Only here it should be additionally considered that loads absorbed

by the majority of these bearings have a dynamic character.

1. Peculiarities of the Mechanism of Wear
of Antifriction Bearings Under
Conditions of Vibrating Motion

Let us examine the peculiarities of the mechanism of wear of

antifriction bearings in vibrating motion.

At small amplitudes of oscillations, wven the contact of

rolling solids with rings occurs only on separate sections of
rolling tracks in the bearings, dents will be formed in the form of
holes from the balls or grooves from the rollers, which with the
crumbing of their surface are turned into deep pits (Fig. 4.46).
The failure of rolling solids in the majority of the cases starts
only after considerable damage to the rings.

An analysis of results of tests shows that with vibrating
motion the wear of bearings to a considerable degree is determined
by oxidizing proc..osses and special conditions of lubrication in
zones of contact of rolling solids with the rings.

In zones of contact there occurs .ntense frictional corrosion.



S....fIGRAPHIC NOT
"AIIEPRODUCIBLE

Fig. 4.4+6. Rings of thrust ball and
roller bearings after prolonged opera-

S~tion under vibrating motion with small
I amplitudes.

The obtained products of iron oxidation, being mixed with the

lubrication, will form a unique polishing mixture which causes
rapid wear of rolling tracks. With the rolling of a rolling solid

in front of the contact area there will be formed a "tthreshold" ,
of lubrication but after it, streams of lubrication trying to fill
the space behind the moving rolling solid (Fig. 4l-.7). If the ,

Thre shold of
•bric•ation

S Area of' contact,
1 .. • ,Fig. 4.ky. Lubrica-
I , tion chart during

-I- • '-. vibrating motions.

lubr ication poor lubri..

lubrication is insufficiently mobile and does 1iot succeed immediately

in filling this space, then the section of the rolling track directly
adjacent to the area of contact will appear covered only by a thin
C:Llm of lubrication. It is natural that at the time of the change

in direction of motion the rolling solid will pass this poorly
lubricated section earlier than lubrication will proceed to it
na•;in. Due to this on limits of sections of the contact of rolling

solids~ with the rings, where a change in the direction of thE motion

occurs, pressure peaks appear leading to the acceleration of wear.
At very small amplitudes of oscillations, when the oreas of contact

in extreme positions of the rolling solid are covered, the
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disturbance in the lubrication 1-ayer can appear constant. In this

case peaks of pressures increase even more, and the life of the

bearings noticeably decreases. The increase in mobility of lubri-

cation improves conditions of operation of vibrating bearings.

Ncnetheless, even with the application of oils possessing high

mobility the conditions of their operation differ considerably from

conditions of operation of bearings revolving in one direction.

From what has been said it is clear that in bearing subassemblies

operating with a vibrating motion, in all cases when it is possible

by constructive considerations one should use an oil and hot grease

lubricants. When using grease lubrications the carrying capacity

of vibrating bearings noticeably decreases.

2. Lubrication of High-Loaded Vibrating Bearings
at Small Amplitudes of Oscillations

Inasmuch as properties of lubrication have a great effect on

the life of vibrating bearings, then to discuss allowed loads for

such bearings ini the separation from lubricating materials used

in them has no meaning.

Bearings of helicopters, which operate with a vibrating motion,

can be divided into two basic groups:

1. Bearings of hubs of main and antitorque rotors, cyclic

pitch controls and certain elements of control operating at

amplitudes of oscillations up to 100 For these bearings the total

number of oscillations between two overhauls, during which they are

replaced, usually amounts to not less than 10 million.

2. Bearings of control mechanisms accomplishing a limited

number of oscillations (up to 100,000) with amplitudes of more than
0

20 It is kept in mind that the covering of neighboring areas of

contact does not occur.

Practice has showed that bearings of the second group can

satisfactorily operate on good grease lubricants. This is explained
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by the fact that on rolling tracks of such bearings considerable

dents from rolling solids can be allowed, inasmuch as their efficiency

is usually limited only by the magnitude of the permissible moment

of friction. j

In bearings of the cyclic pitch control and elements of control

belonging to the first group, the application of grease lubrications

involves a noticeable lowering of the carrying capacity; however,

according to corstructive considerations with this it is necessary

to accept and compensate the insufficiently high lubricating

properties of lubricants by a certain decrease in allowed loads.

Regarding bearings of hubs of main and antitorque rotors, then

considering that for them permissible wears of rolling tracks are

comparatively small, they can operate a long time at high contact

stresses only in the case of the application of oils possessing a

definite complex of physical and chemical properties.[II
The life of vibrating bearings essentially depends on the

quality of packing of bearing subassemblies. With poor packings,

which allow atmospheric oxygen to penetrate inside the subassemblies,

and also with small volumes of lubrication and large volumes of air

the life of vibrating bearings noticeably decreases. A very effective

means for increasing the service life of bearings operating in a

vibrating motion is a supply of lubrication under pressure and

especially the transition to circulation lubrication, which provides

continuous entering of fresh nonoxidized oil to zones of contact

and the removal from them of wear products.

Let us discuss questions of the selection of oils for hubs of

main and antitorque rotors more specifically, since these questions

are very urgent for helicopter construction.

Oils for oxial hinges of hubs of main and antitorque rotors.

As experiments show, bearings of axial hinges, absorbing considerable

axial loads from centrifugal forces of the blades, are especially

sensitive to physical and chemical properties of lubrication. Oils

for these subassemblies, the service life of which usually determines
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the total service life of hubs of main and antitorque rotors, should
satisfy the following basic requirements:

- first, these oils should not create amplifications of oxidizing
processes in the zones of contact;

- secondly, they should preserve high mobility in the whole

range of operating temperatures and provide sufficient strength of
the oil film over the whole extent of sections of contact.

The permissible level of viscosity of tne oil is limited also
by the permissible magnitude of the moment of friction of the axial
hinge. If one proceeds from the operational experience of Mi-l
and Mi-4 helicopters, then one can assume that at minimum operating
ten'perature the kinematic viscosity should not exceed 90,000 cSt.

Tests show that in this case there is observed neither a noticeable
increase in moments of friction nor the reduction in life of the

bearings because of a decrease in mobility of the oil. It is
necessary to note that oil MS-14, successfully operating in axial
hinges of hubs of rotors of helicopters Mi-l and Mi-4 at temperatures
down to -25°C, has the indicated kinematic viscosity at a temperature
of -20 0 C.

In virtue of specific conditions of operation of vibrating
bearings oils and lubricants for them shoulAd be selected only
according to results of tests with vibrating motion. The standard
method of tests of oils and lubricants on a four-ball instrument
for these purposes is absolutely unfit. Lubricating properties of

oils and lubricants for axial hinges of hubs of main and antitorque
rotors can be expediently checked in thrust ball bearings, since they
operate at higher -ontact stresses. Experiments show that lubricating
inaL-rials posse:;sing the highest efficiency in such bearings are best
for vibrating biwrings of other types, including thrust bearings

with "turned" roli.r rs, which at present ar.. successfully useid in
hubs of rotors of all Soviet commerical hei'copters and also for
multiple radial thrust ball bearings instal&Ucd in hubs of main and
antitorque rotors of a number of foreign ro..icopters. Inasmuvl. as
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in thrust ball bearings the load is distributed evenly between the

balls, then with an oscillatory motion each contacting section of

the rolling track can be examined as an independent object of tests.

Of importance in tests of oils and lubricants for bearings of

axial hinges of hubs of main and antitorque rotors is the correct

evaluation of the state of rolling tracks. Even with the most

moderate contact stresses after a short operation on rolling tracks

holes from the balls appear. If we consider the appearance of such

holes, independently of their depth, as the beginning of the bearing

being put out of commission, then it will be necessary to reject

the bearings, which could still reliably operate for a long time.

Depth of Fig. 4.48. Depen-

\•7-:0 •m _dence of coefficient
M -, of friction of a

thrust ball bearing

o a on the depth of holes
[ Ho3es are on rings.

- - - 1absentS00Z Thrust ball

- ___ 'bearings 6311llmtl " I iq-:*O osc/min I

"" 400 8000 120-0 A kG

Curves on Fig. 4.48 show how the depth of the holes affects the

coefficient of friction of a thrust ball bearing. With the depth

of the holes at 7-10 Pm the coefficient of friction increases by

30-40%. The increase in the coefficient of friction it, aiuc'. liuIt ts

is usually not felt in an operation. Therefore the state of thrust

ball bearings at a depth of the holes down to 10 jm should be

considered as satisfactory. The same depth of the holts can be

allowed in radial thrust ball bearings.

Tests have established that NS-20 oil is one of the best for

vibrating bearings. In accordance with this it can be accepted
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JWP ! J;•* Fig. 4+.49. Life
A f - curve a = o(rh) for
H ] . !thrust ball bearings.

iir,

as the standard for the evaluation of lubricating properties intended
for operation in axial hinges of hubs of main and antitorque rotors.
Results of tests of thrust ball bearings on MS-20 oil are represented
on Fig. 4.49 in the form of a life curve a = a(nh), which establishes
the connection between contact stress a and the product nh of the
number of oscillations per minute for a duration of operation in
hours. Tests were conducted with the amplitude of oscillations of
the mobile ring q0 = 4.5 , frequency, n = 240 oscillations per
minute and temperature of oil bath, 20-40°C.

With values of contact tensions determined by the life curve,
depicted on Fig. 4.49, 98% of the holes on rolling tracks have a
depth not exceeding 10 4m.

It should be noted thet between maximum A'"" and average Aq
depth of holes there is a definite statistical connection. This

connection is set by the experimental distribution curve ofAes
ratio w-.- which, as one can see on Fig. 4.;., is close to the
Maxwellian distribution often encountered i. technology.

- " "! I I Fir. 4 ,O Distribution

16 ' 'J' curve c,. ratior w

I 1 i t
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An analysis of the life curve on Fiv. ,,. 4 n 2ermits; Froposing

the following conditions of accelerated olizllnation tests of oils

and lubricants for axial hinges of hubs of rotors: duration, I

100 h, number of oscillations, 240 per minute, amplitude of oscilla- I
tions 4.50, contact stresses 34,000 kG/cmL. Such conditions permits

comparing lubricating properties of the test oil with lubricatirng

properties of MS-20 oil.

It should be kept in mind that with aa increase in duration of

the tests, the role of the oxidizing processes occurring in zones
of contact increases. Nevertheless, preliminary elimination tests

of oils and lubricants for bearings of axial hinges can be conducted

by given reduced program, since accelerated tests in many cases
permit immediately rejecting a considerable number of samples.

MS-20 oil under conditions of oscillatory motion possesses
very high lubricating properties. However, it can be used only in
the summertime. In winter MS-20 oil is usually replaced by MS-14
oil whose lubricating properties are also quite satisfactory. Since

at a temperature of -30°C MS-14 oil congeals, then et ]wer tempera-
tures its application appears impossible, w1.ich greatl, hampers

winter operation of helicopters. The replacement of M_-14 oil by

low-congealing general-purpose oils does not give positive results.

Tests showed that when operating on standarn low-congeauing oils

axiel hinges of hubs of rotors, as when ope'-tir cr grease lubricants,
are rapidly put out of service. This question must be soe!ially

discussed, inasmuch as the regularity of such a result woq lisputed

for a long time by certain specialists in t:.e field of lubricating

materials, which prolonged the delay of the solution or the problem

of lubrication of axial hinges of rotor hut-. at low temperatures.

Experiments have established that oil ;'or axis' hine..i of hubs

or main and antitorque rotors should have &-. a temperature of

100°C a kinematic viscosity of not less thtLi 9-10 c.t. When cpersting

on low-viscosity oils increasel weer of rr, Liag tracks and the crum-

bling and destruction of rolling solids are observed.
1
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From what has been said it follows that oils for axial hinges

of hubs of main and antitorque rotors should have neither antiwear

additives nor destructive thickeners. This clarifies the unsatis- (
factory operation of these subassemblies on all standard low-congealing p

oils, with the creation of which the indicated circumstances were

not considered. ,.

Following the given materials according to the efficiency of

lubricating materials under conditions of vibrating motion, VNII NP

[Editor's Note: All-Union Scientific Research Institute of the

Petroleum Industry] proposed for axial hinges of hubs of main and

antitorque rotors the low-congealing oil VNII NP-25 [28].

VNII NP-25 oil contains low-viscosity petroleum fraction with

a solidification point of -670 C and thickening high-viscous com-

ponent, which is distinguished by extremely nigh mechanical and

"thermal stability. Under the action of high temperatures of friction

the petroleum fraction in zones of contact can evaporate; however,

the contact of rolling solids with rings will not occur because of

the presence of a thickener film, which possesses great adhesion

properties. The high thermal and mechanical stability of the

thickening ýomponent and antioxidant additive provide insignificant

changes in properties of VNII NP-25 oil in the operational process.

1Basic properties of VNII NP-25 oil are given in Table 4.8.

I As results of tests indicace, VNII NP-25 oil in lubricating

properties with oscillatory motion is similar to oil MS-20. j
SBearings of all types, which operate on VNII NP-25 oil at both

positive and negative temperatures, have little wear.

Improvement of lubricating properties of oils can be a most
S~ important factor, which is able to increase sharply the service

life of hubs of main and antitorque rotors of helicopters. Therefore,

works in this direction will take on an even greater character.

With the carrying out of these works there should be considered the
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above-described peculiarities of the
0to
o C mechanism of wear and conditions

: + of lubrication of high-loaded vibrating

ii beari-bearings.

a) H Oils for needle bearings of

> flapping and irag hinges. These
S> .o 0 bearings, as a rule, are less loaded

OD C than bearings of axial hinges, and

0 therefore they are not so sensitive

4-) -f-,J r ) •"t.perties of lubrication. The
0 oC select" on of lubricating materials

Sfor neele bearings of flapping and

-H drag hinges of hubs of rotors is
-CO facilitated by the fact that thickening

z in them of the lubricant with a
(U 0 nonoperating rotor does not involve

CO 4- - £0 unpleasant consequences. In flapping

1 0- and drag hinges of antitorque rotors
- thickening of the lubricant cannot

be allowed, since increased moments
M of friction iLn these subassemblies

IC*4
4-_ _H can cause shaking of the helicopter.

4J -

• (n o At preerit in flapping and drag

hinges of hubs of main and antitorque

rotors of Soviet helicopters hypoid- I 'DCU C•.• •oil is used. Operational experience

H .CI of helicopteocs shows that hypoid oil,SO •0 -r-
) F, ýo in spite of presence in it of free

sulfur under standard specific

pressures provides a sufficiently high service life of vibrating

nuedle bearings. For axial hinges hypoid oil, just as other oils

with antiwear additives is unfit.

11lypoirj oil pose,-;8es very high adhesiv:.iess, and in connection

with thi', it provi do.; tri ri,:o.;r'j 1]ubhi r; .,Lon ofl 'or~ta: tirt , ements
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-yrie w th inccmplete airtightness of the hubs. The replacement

of hypoid oil by grease lubricants (this must sometimes be done

In antitorque rotors of helicopters operating at especially low

temperatures) considerably lowers the service life of needle bearings

of flapping and drag hinges.

3. Calculation of Bearings of Hubs of Main
and Antitorque Rotors

Bearings of axial hinges. Figure 4.51 gives a model construction
of axial hinges of hubs of rotors of Soviet helicopters.

Fig. 4.51. Axial hinane of rotor nub.

In the calculation of bearings of axinl hinges cf hubs of rotors

it is accepted to consider the centrifugal force of" the blade N and

the moment in the plane of rotatior M;,, nreated by the damper. I -

In axial hinges made according to the diagram shown on Fig.

4.51, the centrifugal force of blade is absorbed by the thrust

bearing 1. The damper moment is partially absorbed by this bearing

and partially by radial bearings 2 and

Loads in flight on radial bearings 2 &nd 3 are comparatively

small, and therefore they are usually selected from static cmn-

siderations according to the weight moment of the blade transmitted

to them when the helicopter is standing, when the main rotor does

not rotate and the blade lies on the overhand limiters. As practice

shows, the loads on radial bearings of axial hinges from the weight
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,,,,. 'r t:.e Ide tar. reacn :-c-1 percent of their statl! load

rTapacity indicated in the manuals.

The service life of thrust bearings of axial hinges is calculated

on the basis of experimental dependences a = a(nh) obtained as a

result of tests of corresponding types of bearings under conditions

of vibrating motion under a purely axial load. For thrust ball

bearings the curve of service life a = a(nh) was shown in Fig. 4.49.

Fig. 4.52. Thrust bearing
with turned rollers; record-

Ye ing of motion of bearing
d* t ae nseparator with vibrating.• mot ion.

se Far-t or

As was already stated, at present in axial hinges of hubs of

rotors of all commerical Soviet helicopters bearings with turned
rollers are used. A schematic diagram of such bearings is depicted

on Fig. 4.52. Owing to the location of recesses of the separator

at an angle to the radial direction in bearings of this type the

separator not only vibrates together with the mobile ring but also

continuously, although very slowly, is displaced in one direction.

The continuous displacement of the separator prevents a "ball test"

of the!rolling tracks and leads to a considerable increase in the

carrying capacity of the bearing.

As a result of the tests it is established that the service

life of thrust bearings with turned rollers to a considerable degree

depends on the speed of displacement of the separator. This speed

can be characterized by time Tc, during which the separator turns

at an angle of 3600. Optimum values of time T for amplitudes andc
frequencies of oscillations, with which thrust bearings of axial

hinges of hubs of rotors operate, amount to 40-80 min. At Tc > 80 min
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the probability of putting the bearing out of commission increases

because of the crumbling of metal on the rollers. In spite of the

continuous displacement of the separator in contact with the rings

there are the same sections of the surface of the rollers. Therefore,

destruction of thrust bearings with turned rollers in most cases

begins with damage of the rollers. It is necessary to note that

at Tc - 2.5-6 h, the stability of rollers decreases approximately

tw1ce. At Tc < 40 min losses to friction and wear of rolling tracks

are noticeably increased.

The curve of service life a = c(nh) for thrust bearings with

turned rollers, which have an optimum speed of displacement of the

separator Tc = 40-80 min, is shown on Fig. 4.53. This curve is

a kG/010 2

Fig. 4.53. Curve of service
22 life a = a(nh) for thrust

ball bearings with turned
MW - -rollers.

plotted according to results of tests of several groups of such

bearings with MS-20 oil at the amplitude of the mobile ring o = 4.5°

and frequency n = 240 osc/min, i.e., under conditions similar to

conditions of tests whose results were used in the construction

of the dependence a = o(nh) on Fig. 4.49.

Bench tests and operational experience indicate that curves

of service life, depicted on Figs. 4.49 and 4.53, can be used for

the determination of the calculation service life of thrust bearings

of hubs of rotors under all operating conditions of these units

encountered in real conditions.

As can be seen from Figs. 4.49 and 4.53, equations of curves

of service life a = a(nh) for vibrating bearings have the same form

as for bearings revolving in one direction:

."(0h) Const, (5.1)
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where in case of the point contact m* = 10 and in the case of linear

contact m* = 6.66.

I ; us take for the base product nh = 120,000, which approximately
corr Oonds to a 500 hour service life of operation of helicopters
of the Mi-l type. At nh = 120,000 the allowed contact stresses
amount to 29,000 kG/cm2 for thrust ball bearings and 18,800 kG/cm2

for thrust bearings with turned rollers. Let us designate by A0

the axial force, which creates in the bearing at equal distribution
of forces between rolling solids, contact stresses equal to those
allowed at nh = 120,000. Then, in accordance with formula (3.1)
the allowed force on the ball will be:

p 120 000oo0.3
Pnil • • (5.2)

Here it is considered that for ball bearings contact stresses
are proportional to the cube root and for roller bearings, to the
square root of the load.

Special experiments have established that the moment which must
be taken into account in calculating the service life of a thrust
bearing of the axial hinge, depending upon peculiarities of design
of the subassembly and clearances in radial bearings, consists of
25 to 50 percent of the moment of the damper. With this calculation
is conducted with respect to the instantaneous maximum pressure on
the rolling solid, i.e., the moment acting on the thrust bearing
of the axial hinge is conditionally considered constant in magnitude
and direction.

Tne maximum pressure on the rolling Oc3lid of the thrust tearing
loaded by axial force and moment can be represented in the form

p.

Comparing this equality with equality (5.2), we obtain the
following exore:;sion, which determines the calculation service life
of thrust bearings of axial hinges of hubs of rotors:
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As follows from §§ 3 and 4, coefficient 1 A) depends on the

relative eccentricity of the app 4:qtton of the axial force, which

in this case is equal to

S - (0,2 -#- o, -M • (5.4)

With the usual relationships between the moment of the damper

and centrifugal force, T does not exceed 0.1, and therefore in

thrust bearings of axial hinges all rolling solids 4 are always

iiloaded.

For thrust roller bearings in which the load is carried by all

the rollers,

KA)1+2v. (5.5)

At small values of T coefficients Kill for thrust ball and'

roller bearings practically coincide. This permits using formula

(5.5) in the calculation of thrust ball bearings. I,

From equalities (5.4) and (5.5) we finally find

,AV) I+ (O.5 1)Al (5.6)

It is necessary to note that the calculation of radial thrust
bearings of different types, intended for operation in axial hinges

of hubs of main and antitorque •tors, can also be produced with
the help of formulas (5.3) and (5.5), provided first for these
bearings there are determined the permissible axial loads A0 corre-
sponding to the value nh = 120,000. It is assumed that moments
acting on bearings are known from calculations or expcrimrnt:;.

It should be kept in mind that values of A., obtAined not by

a complete curve of service life a = o(nh) corresponding to a definite
probability of the breakdown of the bearings and by means of conversion,

according to the results of experiments conducted with any one value

of nh, at an insufficiently large number of test samples can appear -I
incorrect, which, apparently, is connected with the considerable
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Fig. 4.54. Axial hinge of rotor hub implemented on
multiple radial thrust bearings.

dispersion of service life, which is difficult to reveal with one

level of the load.

In axial hinges of hubs of main and antitorque rotors of certain

helicopters, there are successfully used multiple radial thrust ball

bearings with angles of contact 0 = 450 and decreased ratio of the

radius of the groove to the diameter of the ball (Fig. 4.54).

Usually in antifriction bearings this ratio is equal to 0.515.

In the indicated multiple bearings it is decreased to 0.510, which

leads to a lowering of the contact stresses by approximately 7% and,

consequently, increase3 the calculation service life of the bearings

2 times. It is clear that such a means of increasing the carrying

capacity of radial thrust ball bearings is useful mainly for the

ease of vibroting motion, since a decrease in the ratio of the radius

of the groove to the diameter of the ball increase. the length of
t4,e area of contact deformation, because of which losses to friction

increase noticeably. Results of tests indicate the "qct that with

qualitative fulfillment providing sufficiently equal distribution

or the external lcad between bearings of the set, for multiple

radial thrust ball bearings permissible contact stresses, proceeding

from which it is necessary to calculate the axial force, amount to

n4,000 kG/cm2 .
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There is still no sufficiently proven data on permissible con-

tact stresses for radial thrust roller bearings with operation of

them. under condit 4 ons of vibrating motion.

The above-mentioned values of permissible contact stresses

pertain to cases of operation of axial hinges of hubs of main and

antitorque rotors on oils not yielding in lubricating properties

tocils MS-20 and MS-14. If this condition is not carried out, then

they should be lowered accordingly.

Permissible contact stresses are noticeably influenced by

dimensions of rolling solids, and therefore with the application of

bearings of large dimensions there should be introduced a definite

correction for scale factor. As results of tests indicate, the

above-mentioned values of permissible stresses can be considered

real for bearings with balls with a diameter up to 25 mm and rollers

with a diameter up to 15 mm. In the transition from rollers 15 Mm

in diameter to rollers 24 mm in diameter, permissible contact stresses

for thrust bearings with turned rollers decrease by approximately

10%.

Needle bearings of flapping and drag hinges. For the majority

of hubs of rotors in flapping and drag hingea needle bearings are

used.

The efficiency nf needle bearings is usually estimated in the

magnitude or anecific pressure per unit aree of projection of the

rolling track of the internal ring.

In the calculation of needle bearings of drag hinges, as a

rule, it is considered that the load is dist.ributed evenly over the

length of the needles (Fig. 4.55a). In itczordance with this the

specific pressure for bearings is taken eq,;al to

where D is the diameter of rI ,ling tracic of' the internal ring;

is totel effective length of the needle.,.
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)--Fig. . Calula-
ticn of needle bearingsS... • ------- of flapping and drag

hinges of hubs of
rotors.

b) .

Needle bearings of flapping hinges absorb besides the centrifugal

force of blade N still the certain moment M (Fif. -.55b), the constant

part of which Ma with a sufficient degree of accuracy is determined

by the expression

. m, N .(5.8)

Here Ala. is the torque of the rotor; as* - number of blades of the

rotor; a - "drift" of the middle of the flapping hinge from the

aYxis of rotation; 12 - distance between flapping and drag hinges;

I.. - "stavger" of the drag hinge.

The variable component Mv of moment M in the calculation of

rec-lle behringi of flapping hinges of hubs of rotors is not con-

-Ldercd, since 't has little effect on their service life.. It is

accepted to consider that in flapping hinge . , made accordcing to

the configuration 3hown on Fig. 4.55b, tht load is distributed along

the length of the bearings according to the trapezium law. The

loading of the bearings is characterized by specific pressures q,

and q2 on external e2ges of the rings, whic:, is caused by the Joint

action of force N and moment M'. These pre.sures are calculated

uav the formula

A I



where B is the effective width of the set of~ bearings.

Substituting into formula (5.9) value Mlet us reduce it to

the form:

As the experimenit or lesigning corresponding to selection of
"drift" a indicates, it ia possible to provide that In basic co~n-

I ditions, of the motor fitaht specific pressures q, and q2 would be
quite close to the average specific pressure, qO N/Dij. It is
necessary to note that the "'driftn of the middle of the flapping
hinge frvai the axis of rot.ation at distance a is equivalent to the

turn of this hinge at angle IL-m-arctf -I- (see Fig. 4I.55).

According to expression (5.10), specific pressures q, and q
depend on the centrifugal force N and torque Mwe. Therefore, they

can be examined as certain functions of the number of revolutions

and power of the rotor. Constructing with the help of expression

(5.10) graphs of dependences q,-q, (,No*) and qqN.)with the most
characteristic revolutions or tne rotor, a4 is done on Fig. 4.56,
It Is possible to determine easily the valw..s of specific presSures

9 -- -Fig. 4.5b. Der-ndence of specific
*pressuires qar.,- , on the numb~er of
*it' revolutions and power of the rotor:

qLa06* - revolit-ions and power of ttie
rotor at cruis~::&; .~h,-revolutions

and power or roj-or ini cord~tlons of

andpoerof te I takeorf eon-

ditions; -revolutions and

M3 4 NZpowo'r of rotor In autorotatIon
conditions.



and q2 in basic conditions of the helicopter flight and also to

estimate the correctness of selection of "drift" a in the necessity

of introduzing appropriate corrective in the design of the rotor

hub.

Fig. 4 .7. Calculation
I ~of' wide-spaced needle

bearings cf. flapping
hinges.

If the flapping hinges are made in the form of two independent

supports, di-.tance L between which considerably exceeds the diameter

cif the rolling trackz D (Fig. 4.57), then cr:e can assume that within

1imits or each support specific pressures i:. the bearings are constant.

In this case the calculated specific -ressures, which determine

the aervice life of needle bearings of flapping hinges, are equal to

4- •;(,.,.llI

where Z1. is tne total length of the needles in both bearings.

With the application of :nypoid oil per-nissible specific pressures

In well -,,n:ol11at~ed needle ýearings, whic:., correspcnd to a Service

.ife of' iCT) hourn at 2*4c csc/min, amount 4,) r:,,t lesa than 3V) krG/cm2

,'-r fClpplne, hinrt':, and ,CP k,;/l:m' for Ir hcrs,,::. A r,.'".ri,:ly
:• ]]r ti ci ,f ipermizl=- ,le X:e:f' ~,: r:: • .:,~.: •

:'iappinrr • r•, to a t:ertalra J':Uree ,r. [.,, If. t:'i t~j tv,,: :ee.

t1at thel +erotp at amplituie3 of c..;elPtiona from2" tc.

wnereaL the amplitude of ostcilations of !,.arinr;; drair hlnv,:s

t..sually does not xceed I'. Although this contradicts the establisled

o•pinions, practice shows thot at amplitude: of oscillations up to 10

tr, service life of needle bearings appear.. higher than that at

,n.C



nmplitudes of 2 -6L. Possibly here a definite role is played by

the fact that because of deformation cf part under a load in known

cases the actual specific pressures on edges of needle bearings of

flapping hinges can exceed the calculated pressures.

Perennial ope Ltional experience "onfirms that in the selection

of dimensions of nerdle bearings of flapping and drag hinges of hubs

of rotors in light and medium helicopters, it is possible to follow

reliably the above-indicated values oZ permissible spzciff.c pressures.

For heavy helicopters whose parts, as a rule, have relatively lesser

rigidity, it is possible to be oriented to these figures only in

the case when special measures are accepted which provide uniformity

of distribution of the load in bearings of drag hinges and the

approach of the diagram of distribution of the load in horizontal

hinges bo the trapezoidal (see diagram on Fig. 4.55b). As a rule,

distribution of the load along the length of the needle bearings of

flapping and drag hinges can be obtained by means of selection of

rigidities of ears and fingers ald also by the corresponding increase

in the pliability of ends of the rigo. This, in particular, can

be seen from Fig. 4.58, on which there are shown experimental diagrams

Fig. 4.58. Effect of rigidity
of the pin and pliability of
rings on the distribution of
specific pressures along the
length of needle bearings of
the flapping hinge: a) initial
variant; b) effect of pin of

'1 increased rigidity; c) effect
of "pliable" ends of rings of

b the bearing.
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.-- Fig. 4.59, -Distribution.' " -"" "'-'-•':" ":['.l of needle bearing because of
, ;.- . :..•~ ,insufficient rigidity of

ii*": construction.

.. °GRAPMIC NOT
SREPRODUCIBLE

(A' the change in distance between generators of outer and inner

rings with three variants of the constructive fulfillment of the

flapping hinge of the rotor hub of a heavr helicopter. it should

'e nioted that insufficient riridity of the ears and fingers of flapping

and drag hinges can lead not only a local inrrease in dept of the

"ball test" on edges of rolling tracks but also to the crumbling of

large sections of their surface and sometimes to the breakdown of

the needles (Fig. 4.59).

Fig. 4.60. Calculation
of needle bearings of

LI hubs of tail rotors.

The calculation of needle bearings of flapping hinges of hubs

of antitorque rotors (Fig. 4.60) is a consicaerably more difficult

problem than the calc-ilation needle bearings of flapping hinges of

tubs of main rotors, since they, as a rule, absorb a considerable

virlable momeril., which in the evaluation of their efficiency is

.i•);;;;,•I(to dl).trefrard. This moment is cr(:ated by variable aero-

I "viumin' d ir• :r'l n, I (Corlol:1; s) Forces actliri On the blade of the

.'nir]itorque rotor in the plane of rotation. With the esAtimated
calculations it is accepted to characterize; the loadinf. of needle

bearings of flapping hinges of antitorque rotors by the instantaneous

maximum specific pressure appearing on the eAdge of the rolling track.

On the assumption that the load is distributed along the length
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of the bearings, according to the trapezium law, this pressure is

equal to

AI~ + At,

___L 1+ E9aB (5.12)

where Me., is the torque of the antitorque rotor; z,.. - number of

blades o' the antitorqu,,. rotor; Mv - amplitude of variable moment

loading the flapping hinge.

Values of specific pre''-"re q, calculated by formula (5.12),

for antitorque rotors of light and medium helicopters in conditions

of a cruising flight should not exceed 300-350 kG/cm2 . In the case

of the application of hypoid oil in flapping hinges it is possible

to expect that the service life of the bearings will not be less

than 1000 h.

Finally the service life of needle bearings of flapping and

drag hinges of hubs of main and antitorque rotors is determined as

a result of tests of these units on special test benches.

4. Calculation of Bearings of Cyclic Pitch Controls
and Control Mechanisms

Allowed loads on bearings of hinges of a cyclic pitch control

and, directly connected with them, control elements are usually

determined experimentally. For this on special, very complex stands,

which permit creating all forms of forces acting on the cyclic pitch

control in flight, prolonged tests are conducted.

Loads on the cyclic pitch control have a dynamic character.

This, in particular, can be seen from oscillographic recordings shown

on Fig. 4.61 of the hinged moment of the blade Mw and forces PwA

and Peon in rods of longitudinal and lateral control connecting

corresponding rockers of the cyclic pitch control with power-

assisted controls.

It is natural that with such a complex character of the load,

6o4



SA/\'Aj• Fig. 4.61. Oscillograms
_V_____ of the hinged moment of

__the blade and forces in
t rods of longitudinal

•°P0• and lateral controls.

any recommendations according to the calculation of bearings of

hinges of the cyclic pitch control will inevitably have a very

conditional character. Nevertheless, some of them can help designers

to be oriented in problems of the selection of bearings for these

critical units, for which it follows to discuss them briefly.

If it is considered that with similar designs of rotors only

the absolute value of the hinged moment of the blade is changed,

and the relationship between amplitudes and phases of its separate

harmonics remains constant, then in the selection of bearings for

similar hinges of the cyclic pitch control, made according to the

same design scheme, it is possible to proceed from the maximum value

of load P ax absorbed by them (Fig. 4.62).

Fig. 4.62. Load on
bearing>s of hinges oft.at the cyclic pitch
contrcl.

For cyclic pitch controls similar in oc:zsgn to cyclic pitch

controls of Mi-i and Mi-4 helicopturs (see 1ig. 4.38), with all-

mietal blades of the rotor having a rectangular form in the plan,

when using grease lubricants of the TsIATIY-201 type the allowed

loadls P" can be determined with the help of Table 4.9. This

tablo was compl]ed according to results of ,ench tests, taking into

3ccournt the operatlonal experience of cyclic: pitch controls.
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Table 4.9.

Place of Permissible values of P.I",o (kG) for different
installation bearings

ball ball roller roller needle hinged
radial, spheric spheric radial types,
radial thrust (BS)
thrust and ball
and thrust spheric
thrust

Hinges of disk, 0.8 Q. 2 DI
rods and levers OT
for turning the
blade

Bearings of 0.8 Q.T
Cardan joint CT

Bearings of QCT QCT 0.8 2 DI
rockers of longi- C
tudinal and OT
lateral control

Bearings of rods Db
of longitudinal
and lateral
controls con-
necting the
rockers with the
external ring of
the Cardan joint

Bearings of the QCT QCT 0.8 2 DI
lever of general CQcT
step I I

'CT - permissible static load on irrotational bearing indicated
in catalogs and reference books; D - diameter of rolling track of
inner ring of the needle bearing or sphere of hinged bearing in mm;
b - width of outer ring of hinged bearing ir. mm; I - effective length
of needles in mm.

The values given in Table 4.9 of allowed loads PO at the
number of revolutions of the rotor of 240 per minute correspond to a
service life of 1000-1200 h. With other revolutions the service

life is found from expression:
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where n represents nominal revolutions of the rotor.

If the character of the loads is different than that for cyclic

pitch controls of Mi-l and Mi-4 helicopters with all-metal blades
of rotor, then permissible values P"' should be refined as a result

of corresponding bench and performance tests.

Thus far there have been examined vibrating bearings whirch
accomplished during the calculated service life R large number of

oscillations (over 107).

Permissible loads on bearings of control mechanisms of aircraft,

for which the total number of oscillations does not exceed 100,000,

and the amplitude of oscillations is equal to 200 and more, the

VNIPP [Editor's Note: VNIPP = All-Union Scientific Research, Design

and Technological Institute of the Bearing :ndustry] recommends

determining by following experimental formula: 5

R£.. -.. z4.(5.14i)

Value of coefficients ao. for certain types of bearings
operating on grease lubricants, at 25,000 arn 100,000 oscillations,

are given in Table 4.10.

Table 4.l0.

.Yof oesivatior f-rnrdib.j Vg of the I ýI t 10000;4l

O0100 31 -

I 00______o__ _ 9 4
1P0

&beve so 4 J l
60f i

-ir"' ' I *' I i
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Table 4.10 (Continued).
i n In i Valu t of ooefricipnt 2gOfrl

bearing of beoar In•g Vrote at 25 000 at -00,000besin o barn8 t, o' he oslilla- osi a.

bear ing, M tions tions

1000 "Jp to 1o 4 2.5

Ball 1200 Up to w 4 2,8spherio I1
1300 Up to 50 4.7 3,3

§ 6. Theory and Selection of Basic Parameters
of Thrust Bearings with "Turned" Rollers

As was already indicated in the preceding paragraphs, in axialI hinges of hubs of rotors of Soviet helicopters thrust bearings with

cylindrical rollers located at an angle to the radial direction are

used successfully. High carrying capacity of such bearings, which

are called thrust bearings with "turned" rollers, is explained by

the fact that in them the separator during vibrating motion not only

oscillates together with mobile ring but also is continuously

displaced in one direction. The time of turn of the separator Tc

at angle 3600 which characterizes the speed of this displacement,

is determined by a number of factors. It depends on the coefficient

of friction of the slip between rollers and rings, the amplitude and

frequency of oscillations of the mobile ring, and also on a number

of geometric parameters the main role of which is played by angles

of inclination of recesses of the separator. It is understandable

that these angles should be selected in such a way that the time

Tc lay in optimum limits, which provide high stability of rollers

with acceptable wear of the rolling tracks. Below thert 1z expounded

the theory with the help of which this problem can Ie solved.

1. Determination of Time Tc

In thrust bearings with turned rollers the ratio of angular

velocity of the separator to the angular velocity of the mobile

ring A-! depends on the direction of the rotation. This conditions
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trhe continuous displacement of the separator, which is observed in

such bearings during vibrating motion.

Values of ratio A, corresponding to cases of rotation of the

bearing counterclockwise and clockwise, are found in the following

way.

Frictional force of slip, appearing at points of contact of

roller with the rings, are reduced to resultant forces Fly# Fix,

F 2 y, and F2x and moments Mlz and M2z (Fig. L.6 3 ). With a constant

14,fix. Fig. 4.63. Forces andIa moments affecting

cue ~icont C fictin ~ the "turned" roller.

coffcintorsliding frcinobetween t,.!~ rollers and rL-jZs,,

vales f teseforces and moments can be colculated with a sufficient

degree of accuracy by the formulas:

Pbn=*P(-P4 A*+AuAL);

-+ !LC, SL C. I)'J
m -! a I Y1
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HeLre P is the force absorbed by the examined roller; yl and y2 -

coordinates of points contact, in which slipping in a direction
perpendicular to the axis of the roller is absent; dp -- diameter of
the roller; I - effective length of the roller.

In deriving formulas (6.1) it was assumed that normal loads

ql and q2 are distributed along the length of the roller according

to the law:

(6.2)

where VI

Such a distribution of normal loads is caused by the action

of the moment (Fj +4 FO 0 which strives to turn the roller around
axis OPx. Since the usual concentration of the load on edges of the

roller has little effect on time , then for simplification of

calculation dependences it is not considered. In view of smallness

of the frictional force Pe (FV-Fax) we consider that 'I
Sqjdg amq4P.

Coefficients entering into formulas (6.1) are deteri:ned by

equalities

Au In_____ I:

I tooIt P 16A1W

C.----.
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h'e re

I
PM-.

From kinematic relationships and the cquation of moments with

respect to axis Opy the following expressions can be obtained.e

! AllI 'kPf p-

.ff -.3 '*at-- i

! _ An 2

Sa

• Upe -.i• eraint thes expreens.--s>ionsheloer

to aAwen,,,-I

calcInatc th e expressionsbetweenire rs an d th e

F•¢. 11 Im.I.....

.,.ee l i , t.e coffici'ento •rolnling•l•• ,ri ioll;rs momnt con-

siernC tho• I•' rctlon onr ,etdsefmn~ t ::,•i: the rolradfition arvrisro

separator.

Upper siEm1; pertain to the case vtien Fý.-F*.>O. anri the 'Lower,

to case when Fb- e i

The angle of Inclination 7 IS cornsider•'. positive if the roller

can~ be -set In a radial polalton by a turf.m 4,-wnd point 0 P counter-
:leki~O nrier this c ond ltlon pusltlv'ý :.,-Iues of force.-,

eilculatou t hi tnh Cormula: t.) correspG~:. to direct ioný- -IMwnw
. II. 4 ~ ~ or annle: *. Incl1 raztitlt:. XC rollern ro u.(..

(Iirc~t..1Q tu: rot.ption are elet,ý-Minel Irn Ulf:ia: t.1, t.'nre~ -ram

ttie -;Aot or4 the mvblle riiPi..

The ruller with. ttie angie of r.lrbr ycrtate.-, with



respect to the axis of rotation of separato:, the moment

M- (F.- Fu) rco• y+(Fw- P)rsn yv-(M,,--M, 1 )

As calculations show, the resistance to rolling and friction
of the roller against the separator and lubricant have practically

no effect on the value of this moment. Taking in accordance with

this f - vc W 0 and considering that in real constructions angle

y < 60 and, consequentwy, y f 1, with the help of expressions (6.1),

(6.3), and (6.4) let us convert the last equality thus

-f (6.5)

,there

Table 4.1, gives values of coefficient. A10 and A11 depending

upon quantity 1/p.

Table 4 .11.

In the case of negative values of p for the determinataion, of

coefficients AO and Al there can be used ;.hese relations:

-- LI
I (-p)- 11 (-)

and (6.6)

These relaLivn3 directly follow from equalities (4.•).

At small amplitudes of oscillations. wnen Inertial forces can

be disregarded the equation of motion of t.ne separator of the

bearing with "turned" rollers is reduced tc, the rondittor.

612(' Ii
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re l - K.Y Is trhe total moment of forc:, of' sliding friction

actinr on the rollers on tkre side of the rinjs of the bearing; M, -

drag torque to the motion.

Let us assume that the separator has z recesses, in each of

which there is s rollers. Let us designate -he angles of inclination

of recesses of the separator on the average radius r by -y and

2ngles of inclination of the rollers by v1 . Subscript i denotes

t.!(. number of the recess of the separator, i.-nd subscript k indicates

tt position in It of the rGller. Usually :n each recess two

rollers .,rv placed. The .oaci or. the roller 4ith an effective length

i .,; e'ual to:
k

,,,. ,. U; the total effective lenrth of tr.e rollers locateJ in

one reccr.•:; N is the axi~l force applied tc the bearing.

A ehancre in the direction Pf rotaticrn -f the bearing is equiva-

lent to a change in signs of angles of slop. of the rollers.

Ct#nsidnrirn this circumstance, from eq,. littes (6.5), (6.(), and

•t-,%Jf -l &, t tPi

-1 A ll (. 4,).v ,-

Pta IMP,

LFo~r 1 t-lv3Z. we -cf-.3 ;e r .!er. of Anc'0. or tnt

.1'.pe ur r-,I' O:rt O ~v r. for .~ rt' ~ rrIut.Icmi or u toý.' *rIfl



-- with rotation counterclockwise:

A A'=m + I r± - 2 rc (,, 'rc
2 2A"A(Pi,) (6.10)

-- with rotation cloqkwise:

- II

Amwe--o---2 "1p" (6.11)

Knowing juAntities At and A", it is ee.ay to calculate the
time Tc. From Fig. 4.52 it follows that for each half-period of
orcillations the separator is displaced by the angle Av,-(A'-A");o.

Ccnseqnn.tly, the time of turn of the separator at angle 3600 will- be

" 21A' -- A-IaO'

where n = I/T 0 is the number of oscillations of the moving ring per

minute.

Since moment MT of resistance to motion of the separator should

not depend on the direction of rotation, then in accordance with

the relations given above L

-- ,V All ((i.)
"," dp A A'. I°

Formula (6.12) is basic for the theory of a thrust bearing with

"turned" rollers. From it, in particular, it follows that resistance

to motion of the separ'ator does not affect the time Tc. This
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Table 4.12.

Time Tc (min) at ter.-

perature of oil (deg)

+ (20+301I - (30+ 40) J (45+55)

63J 54j 5

Oil VNII NP-25
1(v 0 cSt at t =

= +1000 C and v = 50,000
cSt at t = -400C).

conclusion important for practice is confirmed by results of experi-

ments in determination of time Tc at low temperatures, when because

of the increase in viscosity of oil moment M, can reach a noticeable

value (Table 4.12).

2. Selection of Angles of Slope of Recesses
of the Separator

The prescribed speed of displacement of the separator is

provided by the appropriate selection of angles of slope of its

recesses. Here there should be kept in mind not only nominal values

of the angles but also allowances for manufacture, which have a

noticeable influence on the time Tc. The remaining geometric

parameters of the bearing influencing time T are selected by con-

structive considerations.

Industrial deviations of angles of the slope of recesses of

the separator with greatly improved technology and strict control

o the prepared articles reach 7'-10'. If, however, special measures

it, the manufacture of bearings are not taken,, then these deviations

can reach 20'-30'.

Time Tc depends also on clearances betzeen the rollers and the

separator. In the presence of clearances te position of the

rollers in recesses of the separator and, cunsequently, tne actual

angles of inclination of the rollers are rccermined by forces of

615



yet

* L Fig. 4.64. Determina-
tion of quantities p
in the presence of
clearances between

'"r rollers and the

f separator.

sliding friction, which act on them from the side of the rings. F

Since in general the determination of these forces is difficult, 1
then we will consider that rollers with equal probability can

occupy any of the two positions shown on Fig. 4.64:

in position I:

re$se + ,c sin (V, +• ;I

-- in position II:

14______ 115
Ilk

From the given equalities it is clear that the influence of

clearances for' the time Tc can be considered by the increase in

calculation deviations of angles of slope of recesses of the

separator up to the quantity

where 6. is half of industrial allowance and er mx is the maximum

clearance.
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The rczt general case of the location of recesses of the

:*rjp:rrator representing practical interest is the case when in the

:;eparator there is z recesses with an angle of slope Yt±t (y,>O)

and z2 recesses with an angle of slope at O±L

For the simplif'ication of further computations let us assume

that I Z = const. If quantity E is s"uch that the difference
k

A' - A" is positive, then under the condition 7I I const time

T can change from a certain

so + X-(6.13);i T•,'"' = n~p dp- A,- -' (P;) + -'J' (P;) ( .3

up to a certain

,-a,__ 1,0 2r, A,,(p;)+X.-4,,p;) (6.14)

Here

p I I
rcsln (r.a-e) ;r••• .. . .G

and v tkdre

Coefficient v is usually close to unit./ (v = 0.98-1). This

irtricates that time Tc depends little on thr, number of roPller' s

being in one reces;.

In expres:;ionf for Tcma) .. d T (,In)t

minimum and maximum value of the coefficierUL of :-lidlnu, 'rI,:t.I.irjt

With good lubrication .' • 0.05 and W .

Let us assume that the upper and lower limits of the range of

optimum values Tc are respectively equal "c T, and V.k A+. f'o..lows
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from results of tests, for thrust bearings with turned rollers

operating in axial hinges of hubs of the rotors, Tf = 80 min and -

T" - 40 min. It is established that to provide maximum stability -

of the speed of displacement of the separator quantities 71 and X

should be selected so that at the given value I T.48' they are equal

to TA - TT quantities y1, X, and t are connected with

each other by a definite relationship. Considering in expression

(6.13) T(max) = Tc, we will present this relation graphically in

the form of a family of corresponding curves. 7  From Fig. 4.65, on

" 41 -n Fig. 4.65. Curves
- - -! I = 7 1 (X) at different

values of deviation •.

At 44 0s 48 t o 42

which there is ¶iven a family of such curves, it is clear that

condition T(ma = T' imposes known limitations on the selection of

quantities y1 and a. Thus in the case Tc = 30 min the relation X

should not exceed 1.28 at • = 0 and 0.77 at k = 15', and angle -l

should be not less than a certain minimum angle 71(min) +

(where Yj is the value 71ain) when X = 0 and a = 0). The range of

the variation in speeds of displacement of the separator is

characterized by the ratio q-

Figure 4.66 gives curves r = -(a) for a:ngle:; -l a and

71 =300, plotted on the assumption that T(I48x) =T. F"iure 4 .66

shows that the relation n depends mainly on quantity •. Antle 71

has very little effect on n. Thus from the point of view of the

stability of the speed of displacement of tne separator, different

combinations of angles of slope of recesse.. are approximately

e uivalent provided they ensure fulfillment of the condition

TcX) - Tl. According to Fig. 4.66, the 6eviation a at which
c!
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-- Fig. 4.66. Dependence
of relation I on devia-

,*30 tion a". different
angles 'Y1.

0.3.
0 ,O' ZO' t,440

u V•=40 min and, consequently, • 408 = 0.5, amounts to about 51.

It follows from this that even with the most thorough manufacture of

separators, there are not excluded cases when time T will fall

outside the limits of the optimum range.

In practice two variants of the location of recesses of the

separator are encountered. In the first cf Vhem all the recesses
0

have an identical angle of in lination not exceeding 1 , in second -

p0-
several recesses are located at an angle 30-6 , and all the remaining

recesses - radial. We compare these variants in the following

examples.

Let us consider a bearing for which "yI = 45',X = 0, dp = 9 mrm,

rc = 40 mm, 1 = 8 mm, emax = 0.2 mm, t. = 7' and s = 2; the bearing

operates at T.= 4.5o and n = 240 osc/min.

In the case when all rollers have an ar.gle of inclination equal

to "y,

o# dp A"(p)

.; he re

Figure 4.67 gives curves Tc T c (-y) w:.-ch show how tine T

changes depending upon angle y at 4 - a = -. 05 and u - , 0.03.

Let us separate between curves Tc = Tc(-I) tne region limite,- by

vertical ztrailtct lines V'VY+t@+ý-"'-6O' r.W a i--- 0'. trr

2, I 2t4



m-le4o./.ns Fig. 4.67. Dependence
of time Tc on the anglem • ----- of Inclination of

-41S recesses of the
separator y.

limits of this region the actual values of time T. should lie. It
is easy to note that for such a bearing T(max) = 74 min and
ST(ran) = 31 min. These values are quite c1ose to the optimum.
Results of experiments in the determination of time Tc for several
hundreds of bearings with the given parameters showed that the actual
values of Tc practically do not fall outside the limits of the

indicated range, being grouped around mean values T(cp) = 50-60 min.

Let us assume that now the bearing has the following parameters:
', - 50P X - 5, dp = 5 =0, rc - 28 mm, I - 4.2 mm, emax = 0.2 mm,

t= 7',s - 2 and operates at -0 4.5 0 and n - 300 osc/min.

Let us assume that the actual angles of inclination of radial
recesses are equal to •. Then

t.- I-- - -- - ( 2: "-• (6.16)

where d+

and Pue

From Figure 4.68, on which there are given curves Tc Tc(,

plotted by the formula (6.16), it is clear that at • = 0, depending

upon the coefficient of friction •i, time T,. - 163-2f. min. If
t -51, then time Tc will tend to Infinity. In other wor'Iz, at

small negative deviations of angles of slopc of radial recrt;zez
stopping of separator is possible. Such c':;c. were repeatrd~ly

620
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220 -Fig. 4.68. Dependence

*ZOC of' ti-.a on deviation
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120
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observed with tests of bearings with large values of x.

When =0.08 and L +-I'the timr- T. = 4I7 mmi. Conse-

-;uerntl.y, In~ the 'examined case time Tcan c:.ange from T~twa mo to
47 min.

From the examined exampleo it In ciear- trnat, 'nly t!:.e Lr:;t

rntof theŽ location of recesses of the -;,perator provI,;.-
oputration of' the Iearings under conditiorý;, -Ise to the optilinr~.

With ti.c location of recez-eý; of the i;,para$,or undetr Iienttcal
~9e~ ~~;e~tt friction ant the irrek*1ular*Ly or Jistrit~ution of'

1/normal loa-i along the lir~e;. or ccontao~t decreaz~e.

Ioý-3e- to friet.Ion in thruwt beerinr.v.. Ith Lra.irr'Ir-
Aopcýnt 60Vt ()r, the :;Peco~ of iip~c~rt~. -:.~~~r s :.

~.)I, ýIi ox A''i ;p j r -1. i nnd pr -1

~C



The moment of friction of the bearing is usually recorded thus:

(6.17)

where f Is the given coefficient of friction.

Using dependences obtained in the preceding points, after a
number of transformations we find

++ (6.18)

Here f. Is the coefficient of rolling friction; fc - coefficient

characterizing losses to the sliding friction.

Coefficient fc can be represented in the form (see work (27]):-

"Amp (6.19) J

where

With the help of Table 4.10 it is easy to be convinced that

with an increase in the angle of Inclination of the rollers the

ratio I in the beginning increases ranidly, reaching it

arc sin 0.57 I/r. values equal to unity. With a further Increase 4
In the angle the ratio 1440 does not char,,ee. This m~nsn that

quantity T(O) Is the minimum time which car. be obtainc,• at the given

value of the coefficient of friction p (see formula G.15)].

From Fig. 4.69 it Is clear that at the some speed of displace-
ment of the separator with a decrease in arnle 71, losses to friction

decrease. It follows from this that minimumn losses to friction
indeed take place with the location of all recesses of the separator -
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412- -00 _ Fig. 4.6'9. Losses

0,1• to sliding friction.

.0, 0-3'

0 0,2 44 0,6 0,8 ,,0

at identical angles to the radial direction. At optimum speeds of

displacement of the separator rejection of such a location

of the recesses can lead to an increase in losses to sliding friction
of 1.5 times.

4. Additional Considerations on tihe Optimum
Construction of Thrust Bearings

: with "Turned" Rollers

According to the above-mentioned formulas, coefficient K,

characterizing the irregularity of distribution of the load along

the length of the roller, is equal to:

K-6@.ýý- 2B;o+jL B,,•'j .I Y2

Since I2BIol>IB •0--I then with suff'icient accuracy it is

possible to consider that K-12 dpe. Thus cefficient K depends

only on angle y. From curve K K(y), givcn in Fig. 4.70, it

l' . t Fig. ..70. Deprndrier,-.
or co,:'ficicrit K onr
the an-r.lc of slope of

I I the ro lers.
0 . I Z . I'

follows that with the transition from an an.,le of 50 to an anngle
of 451, which corresponds to the location o all recesses at ijenti-:3.

sngles, coefficient K decreases from 0.55, : 0.14.



The location of all recesses of the separator at equal angles

is more preferable according to the following considerations. If

the angle of Inclination of recesses is ide,. ical, then forces

Fx -F' which press the rollers to their lateral surfaces, are
x x

very small. In the case MT - 0 and s - 1 theoretically, in general,
they are absent.

At various angles of inclination of the recesses, when "turned"

rollero mast surmount the resistance of radially located rollers,

forces P] - F2 can reach a noticeable value (up to 0.1 "P) and

cause wear of the separator (especially at large X).

Thus far it was assumed that all the rollers have identical

length. iow let us see what the alternating of long and short

rollers staggered can give.

Table 4.13. Effect -f ýhe distributý_on of lengths of
rollers on quantities T , fTp' and K.

Variant of distribution of Tc f (at K
lengths of rollers min •"

- 0.003)

Rollers of Identical length 48 0.0061c, V.14(11 "1 8 mm)

Long and short rollers 45.7 ,x00674 (4;••
alternated staggered 1 r

From Table 4.13 it 13 clear that In tr.- lost case t•e 7 .r,

the given coefficient of friction f., are -;n~er r.n~inar.t;.:,

a.z coefficient K for short rollers Incrmsse; 0 time:+. Th. ir.i1:at'=

that in the thrust bearings with turned rol..er it Is expedient to

"use rollers of identical length.

• i i m • i • • ml ~~I i s s im Im ms



In the evaluation of the effect on longevity of the bearing

of irregularity of distribution of the load, caused by the action

of moment (Fl + F2 )(do2), it is impossible to overlook that the

load at each point of contact does not remain constant but changes

with a change in the direction of rotation. In particular, on ends

of rollers the normal load chrnges according to the law:

L 2 1

Due to this the irregularity of d*.stribution of the load,

caused by the actton of the indicated moment, should not greatly

lower the service life of the bearing.

Of greater importance is the usual concentration of the load

on ends of rollers, which we did not consider, assuming that at

y= 0, q = const. To decrease the harmful effect of the latter it

i[: expedient to use rollers with a cylinder.

5. Example of the Calculation of a Thrust
Beairing with "Turned" Roflers

In conclusion let us give an example of the calculation of a

thrust bearing with "turned" rollers.

The axial load is N = 20,000 kG, the ez.plitude of oscillations

of the moving ring, p0 = 4.5°, and the freczency is n = 180 osc/min.

For the given conditions a bearing wit-r. the followinra pararreterz

i:; :-elected" dp 12 mn, rc 61 irmm. I = -&.5 mir (full length of

rollers ' -12 mn), z = 20 and s = 2.

It iz required to determine the angles of inclination of

recesses of the separator providing its di.;lacement with optimur,

speed and service life of the bearing.

We calculate coefficient v:



'it

Ii

Let us assume that all recesses have an identical angle of

inclination. Substituting into formula (6.15) go = 4.5 n , 180

osc/min, v = 0.99 and • = i' = 0.05, with the help of Table 4.11

we construct curve Tc = Tc(y). We find along the curve the value

of -y' and angles y at which T. = T' = 80 min. In our case y' = 46'.

Taking t = 7' and emax = 0.18 mm, we determine the calculation

deviation •:

0.18 12'
=7 +57,3-60 -=1'

The nominal value of angles of slope of recesses of the separator

Y -- Y+t'-46+ 12--58"

Contact stresses in the bearing

8=M86 0 000 17000 kG/cm2 .
y sdpi 520.2-1.2.1.05 17O

According to Fig. 4.53, this value of u corresponds to

nh = 27-10 . Consequently, the service life of the bearing

27, 104
h.--...= 150 hours.
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Footnotes

1 1n the calculation of quantities and also R and A

diameter d is always expressed in miilimelers.

2Draft of recommendations according to the calculation of dynamic

load capacity of ball and roller bearings, ISO, No. 278, 1960.

SAll relative quantities, as earlier, are expressed in fractions

of distance g = r. -+dr.

4The relative eccentricity at which unloaded rolling solids
appear, as is known, amounts to 0.5 for thrust roller bearings and
0.6 for thrust roller bearings.

5it is assumed that the area of contact of adjacent rolling
solids are not covered.

elt is assumed that quantity p.(2A--) can be disregarded as

compared to unity. The inertial moment of the roller is not considered.

7Everywhere where no special reservations are made, it is assumed

that T• = 80 min. Here all concrete numerical values pertain to

the case dp = 9 mm, rc - 40 mm, z = 8 mm, v = 1, p0  4"5°0

n 240 osc/min, = 0.06.
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U. S. BOARD ON GEOGRAPHIC NAMES TRANALITERATION SYSTE4

Block Italic Transliteration Block italic Transliteratiorn
A a A a A, a PP p R, r
5 6 5 6 Bb C C S S,
B 5. V, v T T Tm T, t
r r re G,g Y y Y y U,u
A i a D, d y * 0 F, f
'E E Ye, ye; E. e X X Xx Kh, kh

a AN 3X Zh, zh U U L Ts, ts
u 38 Z, "4 zYV Ch, ch

HM N I,i W W 18 W Sh, sh
R *9 Y, y 14 I aq Shch, shch
KK x K K,,k 'hb 7o o1* JX N a L,i 1l W ,Y, y
M MX M Mm b b b 1
H N N N, n 0 .9 a E, e
S 0 G0 0,9 0 o D a Yu, yu[ an fl/ P, p RX N P Ya, ya

* ye initially, after vowels, and after -0, b; e elsewhere.
RWeen written as 6 in Russian, transliterate 's y* or •.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.
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FOLLOWDING ARE THE CORESPOINDING RUSSIAN AND ENGLISH

DESIGNATIOIS OF THE TRIGO#6TRIC FUNCTIONS

Russian English

@in sin
coo 00c
tg tan
otg Got
oeo see
cO0ec o03

sh sinh
oh cosh
th tanh
oth coth
Bch sech
oech each

arc sin 1in- 1

are 0oo 08- 1

arc ag tan 4

arc tg cot"
are no see"1

arc sh sinh"I

arc oh coah-'
arc th tanh"1

arc oth coth-1
are sob sech-,
are oech oach"1

rot curl
ig log

I.
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