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01 Til: XQUATICONS CF NUMIRICAL FPREDICTION

IN RELATION TC TH. NON-DIVERGZNCE CONCEPT

by
v.v. Bykov

The nunerical method of short range weather prediction

makes uso of a system of equations consisting of two equations.
of motion, tho equation of continuity, the equation of heatflow
(in adicbatic oconditions) and the hydrostatic equation. Taking

the horizontal co=-ordinates x and y, the reduced pressure 'c’((_..'{’_.’

whore p is the pressure end’P‘the pressure at sea level) and
t~the time, as independent variables, the above-mentioned
equations may be written as follows:
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S Here, ;
u and v = wind components elong the x and y axis
H =« contouxr height:
T = temperatureo
l =« Coriolis parameter
R = gas constant

‘tew % » individual change of pressure, playing in our
system of indeprndent variables thoe role of
vertical motion, belng related to it by

PO | oH
tmw Gt a4y —gw)

vhere w = the vertical component of wind
‘ G = the acceleration of gravity

o “:""’R,

B e

rema RT,;

where Te:= the dry adiabatic lapsrate
T = the mean lapsrate
F = the mean temnerature

The system of equations (1)-(5) is solved with
respect to the initial and boundary conditions. The'r and T
can casily be eliminatod from eq.(3)=-(S5) and the rcsultiag
cruation syster: consists of three egquations with three unknown
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functions u,v, and H. The latter equation system is solved for
geostrophic conditions, i.e. it 18 assumed that horizontal
motion of atmospheric disturbances and the temperature field
takea place geostrophically, tho wind components u==_"72_' and
v-=lgﬁ being determined uniquoly by the contour field. For
that ' reason the latter is taken as the initisl state. The

boundary conditions are usually taken to be that ut C-Og..o
aP oM
2 '

The val:dity of the application of the geostrophie
approximation is demonstrated in many papers (3,4,5). In
particular, I.A. Kibel (4) has given a generalized method for
the adaptation of atmospheric motion to the geostrophic motion,

However, the general :acceptance of the geostrophic
approximation and its application in the equations of numerical
prediction has not meant the end of studies on the doparturesof
the actual wind from the geostrophiec. Many papers (6,11,12) deal
with the estimation of errors iresulting from the application of
the geostrophic concept in the equations of atmospheric dynanics.
In some equations of numericel prediction, the non-geostrophic
departures of wind have been accounted for by their approximate
values in terms of geostrdphiq wind.

An alternative approach for taXking into account tho
non-geostrophic effect in the :studies on stnmospheric processos
i3 to accept the laypothresis of non-divergence of flow, based on
the snallness of the horizontal velooity divergence. In this.
scheme it 1s assumed that the wind field can be exprossocd
epproxinetely et e£ll lgevels of the atmospiiere by a streanm
functioni¢;, 8o th!\ta_._.g‘l’.',‘.v-_ % ,This approsch has beon suggestod
1n (1) add (z). Y A '

In recent -yoeers Bolin (7) end Charney (8), on the dbasis
f exporionce in numerical prediction with electronic cormpuvers,
heve suggested that the concept of znon-&ivergoncs be used ia the
squations of numericel prediction instcead of geostrophic anpreoxi=-
maticn as a means of 1ncreaaing'computational stadbility in foro-

casting.

Lccepting this concept and introducing the strean
function into the equations of nurmerical prediction, thoso lattor
can he written for the contour field H at the level of non=-diverg-
ence us follows:

B+ @09 +B 52 =0; ®)
2[5 — () ]+0 3 = 84, .

wherefp-éy.

This system is solved for a limited flat region using
for tha initial state the H(x,y) values from the contour map
that corresponds to the level of non-divergence.

The mothod of solution of these equations is as followa:
The non-linsar equation (7) with known right-hond side is first
soived for: Y. This yields the initial stream function corrcspond-
ing to the initial H field. The solution of o0q.(?7) is then
introduced into eq.(6) and this is solved for'$ , yielding the
future distributiocn of the stream function. This is put back

* according to Landers (10) this lovel is best reprosented by
the 700 mbd surface.
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again into eq.(7) and the latter is solved for the now unknown
function H, 1.6. the future contour field is calculated from
thoe future stream funetion.’

The basic difficulty in the practical application of
this model i3 the initial oolution of eq.{(7),~ the equation of
balance ~, being & non-linear differential equation of Monge-
Ampere type.

-Let us examine tho individual terms 1£ thio oquation,
If tho non-linear terms and the torm for the variation of the
Coriolis force with latitude are neglected, then the term

5¢==%'Aﬂfrelatoa the contour field with the stream function in
o quasi-geostrophio apprroximation. In other words the eq.(7)
tronsforms, on the given assumption, into the egquation of
vorticdty: g 9% __9¢ '
ax "oyt

The term IByr in eq.(7) indicates that the application
02 the goostrophic approximation for vorticity results in an
underostimate of vorticity in westerly flow '(Zvi(o) and an

overostimate in the easterly flow (%¥:>0)ﬂ

The non~-linear ‘torms z—:% ?,}t— -d—::%-)’ can have a pronounced
offoct only in oase of a large survature.comdbined with large
‘horizontal gradients, as observed in well doveloped ocyclonesand
cnticyclones and, to a lesser extent, in troughs and ridges.

In pariioular, the neglect of the non-linear terms (whioch occurs
with the quasi-geostrophio approximation) leads to an ovor-
sotimate of vorticity in coyoclones and an underestimate in‘anti-
cyclones. Some idea of the actual magnitude of these terms of
the Monge=-Aripere equation oan be obtained from Fig.l.

Lot us now discuss some peculiarities of the numerical
aolution of 6q.(7). This equation is of the elliptiocal typo with
rospect to the unknown funotion'¢i(x,y), if the oondition

sH—pgt>— 4. (8)

i0 scatisfiod everywhere in‘and on.the boundaries of the region
- undor consideration.

This condition 1s fulfilled practically everywhere
on the particular contour map that corresponds to the level of
non-divergonsce. For the numerical solution of oq.(7), Bolin (7)
suggosts tho relaxation method for one variant of consecutive
approximation, The speed of convergence of the iteration .
process in sovlving a differential equation by relaxation deponds,
as ig known, on how successfully we have seleotsd the first
cpproximate solution. The latter for eq.(7) can be taken, for
ingtance, in the fornm ¢==ﬁ;i.e. it is assumed that the streanm
function is related to the contour field as in the case of
geostrophic approximation,

The second variant for approximate solution of 0q.{7)
might be obtained, for instance, in the following way. Let us
rowrite o0q.(7) as follows:

2 By NI N Ay ]
8g=7 [(‘m;) —a}i");:]_T'%=Q(X-}') (9)

w. - lot us conalder it as a Poisson equation for the unkanown
swnction ¢=¢—-— with known right hand side, which exprossos
vho vorticity difference assuning a non-divergont rflow instead
o2 a geostrophic flow.
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Eq.(9) 1s solved numerically in tha following way.

"We rewrite it in finite differences for n gridpoints, symmet-

rical with respect to a central point (4,3), for which the
solution is gsought. "On the boundaries of the region under con-

-8ideration wo assume the flow to: be goostrophic,i.e% i¢ "”""'7'! =0

In this way one obtains a system of n 11near algobraic oquations
with n unknowns. The solution of the above system for the unknown
q at point (4,3J) represents a sum of products of the right hand
side of eq.(9) EQ(x,y)], taken at the surrounding n points
(including also the central point) by the corresponding weight
fuctors., The right hand side of eq.(9) 1a computed on the

---.--—

The values of the individual terms and the whole right
hand side of eq.{9), computed from the AT700 map for the morning
of Sept. 7, 1953, are given,in Fig, l.#

The method outlined here for the short range numerical
prediction of the contour field at the level of non-divergencs,
basod on the solution of eq.(6) and (7) assuming non~divergent
flow, can be realized in prnctioe by means of electronic computers
as tollown:

The initial|Hg' at cach grid poiat 1s read off from
an analyzed contour map for the level of non-divergenoe. These
are inserted into eq.(7) and, the latter is solved tor.*. yielding
the initial streanm funotionM. This 18 now iatroduced into eq.
(6) whioh forecasts the ruturo stream funotion:

1 ‘-T,'H(Av. #)—3 R

The actual oomputation ot the ruture streanm tunction

via porformed by time steps. Introducing *a into eq. (6)‘;L

and the whols right hand side, containing derivatives of @,with
rospoot to the coordinates, is computed first for the time i{astant
i 1.0 the quantityl'”% 18 caloulated for the time instant 7,

. 0
aseuning —0 and a‘ ~— at. the boundaries of the forecast region.
0

(A+),,+.,=-(a~»,, (‘”*),. i, (10)

is applied at all gridpoints, where[y'is the "time step" selected,
usually according to the dimcansions of the grid.

After the numerical value of'dlat the inatant (fe-3f,)
is computed for the internal grid points, l.e. the right hand
side of eq,.(10) is numerically solved for-¢ as a Poisson equation,
1,60 in the form (89),,, = F (£ 9.1 tho 1ew value of stresr function
(ﬁ,*u itself is calculated for the gria points,

The Ay) and .y, obtained for time instant “o-F% are
row inserted into eq.{(10) and the analogous procedure is
ropoated for the time instant :/, } 29 etc, otc.

After the (%), ,m and:(3¢), .., are found for a given
tine 1nterva1']" where k is the number of time steps, they
are introduced into eq.(7).

COnsidering this equation now as a Poisson equation
for the unknown function Hii e

% This rigdro'is not reproduced in"this translation.
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with known right hand side, it is solved numerically for H,
i.6. the future contour field is calculated.

N

Q-/ Next, we dexrive thesystem of prognostic equationas
for a gonerally baroclinic atmosphere assuming a non-~divergent
windfield. Yor this we make use of the initial equations (1)-(5}.

Differontiating eq.(l) with respect to y and eq.{2)
with reapect to x, and subtracting the first from the second, one
obtains, as usual, the vorticity equation. Applying now eq.(3)
for continuity, we write the resulting equation in tho following

forn:
a0 o0 o0 I & (12)
5t tvg tiv—pg=0,

whore Q-QK-%ﬁ is the vertical component of vorticity, aad

)
tho X-axis 1s&dir%cted towerd the east, the y axis toward the north,
In addition, wo have disregarded 2 in eq.(1l2) as negligibly
small in comparison with [ .

Differentiating eq.(l) with respect to x and eq.(2)

in regpect to y arnd summing up, one obtains the equation of
divergence: »

S+ udl v S0+ () () +2se e+ pumta—aH, (13)

\_ WheTe D.—-;,a{--i—;a-f- is the horizontal velocity divorgence,

No restrictive egssumptions havo 8o far been made in respost of
wind speed in 0q.(12) and (13).

Let us further assume, that the condition
'
du dv '

is fulfilled approximately at all levols of the atmosphers. The
horizontal velocity divergence is thus assumed to0 be approximatoly

. zoro everywhore, except for the vorticity.oquation (term._.%é%..upy
 This assunption is based on the estimates of the oraor of magni=
s tude of terms in the hydrodynamic equations for the atmosphere.

The noan-divergence {quasi-solencidal) assumption for
"atmospheric motions (eq.l4) allows one to introduce a strean
fuaction, so that

Y
PR .Y (15)

, v 9
than, iQ'“'az—;j;""‘A‘l‘ and assuming the wind field is non-divergent,
0q.(12) and eq.(13) may be written as follows:

> s gan+adh L o, (16)

i+ 2[5~ (T ) |+ se=r. (17)



In addition, we transform eq.(4) for heat flow. Using
(5) and (15) we write it in tho following form:

3 H Y 2
L4 )+ )+ om0 (10
% i Differentiating ¢q.(18) with reapest to ¢
QO _ O [0 (3HN (. OH 2 9 ‘ 19
| i oc"[??(?c‘)'*(%?‘c‘)]"'%w‘f-o- (19)
and eiiminat1ng %% by combining equations (16) and (19) we heve:
. , 2 . o
: x0% ( )"l‘ ( )-s——[(«p,AyH-p ] }C’(' a—i—’-) (20)
Eq (20) oontaina two unknown funotions 7— and-ﬁit
The seoond equation relating these unknowns 1is obtainod

. by differentiating eq.(17) with respect to time t. The resulting
| equation:

B A (21)

—2 35 w55y () + 5 oy ()= T"‘('ar)- |

z'.- - -6 ’
! :

|

{

|

!

i

: has variadle coefficients, howovor, 1t 48 like eq. (20) linear with
. respoct to unknown QJ’!. and -%?

Thus, the system of eq. (20) and (21) can be used for the
detormination of unknown ftnotions 0 -and %L In addition to eq.{2C)

: \:Dand 6q.(21), eq.(17) 1s used, in analogy with tho previous modol

| for the level of non~-divergencs, to determine the initial v
funotion from the given H fiseld. Two boundary oconditions for'{
are given in the above equation systen.

The solution of the equation system.eq.{17), (20) ane (21),
1.0. the determination of the future distribution of wiand fileld
(stream function) and contour field can bo realized in practice by
means of electronic computers.

I - S
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