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(1:T TitU ";,:-UATION3 OF NU.:"LRICAL I-REDICTION

IN RELATION TO TH' NON-DIVERG-NCE CONCEPT

by
V.V. Bykov

The numerical method of short range weather prediction
makes usa of a system of equations consisting of two equations,
of motion, the equation of continuity, the equation of heatflow
(in adiabatic oonditions) and the hydrostatic equation. Taking

the horizontal co-ordinates x and y, the reduced pressure C

whore p is the pressure and'P the pressure at sea level) and
t-tho time, as in'dependent variables, the above-mentioned
equations may be written as follows:

af a - az a3H lv; ()

+a ---* V  _/ (3)

1o i +p ar +eter 0 0 (4)

COHT'. -(5)

Here,
u and v - wind components along the x and yaxis

H - contour height;
T temperature
1 -Coriolis parameter
R gas constant
~ individual change of pressure, playing in our

dl system of independent variables the role of
vertical motion, being related to it by

where w - the vertical component of wind
G - the acceleration of gravity

where T, * the dry adiabatic lapsrate
7 = the mean laparate
7.= the mean temT erature

The system of equations (1)-(5) is solved with
_ respect to the initial and boundary conditions. Theo" and T

don easily be eliminated from eq.(3)-(5) and the resulting
r-ruation syster consists of three equations with three unknown
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functions u,v, and H. The latter equation system is solved for
geostrophic conditions, i.e. it is assumed that horizontal
motion of atmospheric disturbances and the temperature field
takes pi twe g costrophic ally, the wind components u.= -I OH and

I OH I dy I
V'rn- being determined uniquely by the contour field. For

that r-eason the latter is taken as the initia*l state. The

boundary conditions are usually taken to be that Lt C-0-.

and t( 'I

The va:Lidity of the application of the geostrophic
approximation is demonstrated in many papers (3,4,5). In
particular, I.A. Kibel (4) has given a generalized method for
the adaptation of atmospheric motion to the geostrophic motion.

However, the genaeral 'acceptance of the geostrophic
approximation andits application in the equations of numerical
prediction has not meant the end of studies on the doparturosof
the actual wind from the geost rophic. M~any papers (6,11,12) deal
with the estimation of errors ~rosulting from tho application of
the geostrophic concept in the equations of atmospheric dynamics.
In some equations of numerical pred'tction, the non-goostrophic
departures of wind have been aocc'ounted for by their approximate
values in terms of geostrdphic. wind.

An alternative appro ach for taking into account the
non-geostrophic effect in the :s.tudies on atmospheric processes
is to accept the hypothesis of non-di~vergence of flow, based on
the smallness of th~e horizontal' velooity divergen~ce. In this.
scheme it is assumed that the wind field can bo expressed
approximately et t.': of. the atrnosp.%ere by a stream.
function+'~, so thatauint - 4 .Thie approach has boon ougroztod

D in (1 a . j

In recent years Bolin (7) and Charney ('8), on tWho ba34 3

of exporionce in numerical prediction with electronic computoers,
have sugge.sted that the concept of non-6ivergence be used in the
equations of numerical prediction instead of geostrophle approxi-
mation as a Tmeazs of increasine computational stability in fore-
casting.

Accepting this concppt and introducing thd stream
function into the equations. of'numerical prediction, those lattor
can ", written for the contour field 11 at the level of non-divere-
enco as follows:

+ +~,+p 0 (6)

where:i~-

This system is solved for a limited flat region using
for tha initial state the H(x,y) values from the contour map
that corresponds to the level of non-divergence.

The method of solution of those equations is as follows:
The non-linsar oquation (7) with known right-hond side is first

,solved for.+.. This yields the initial stream function corrospond-
ing to the initial H field. The solution of og.(7) is then
introduced into eq.(6) and this is solved for,# , yielding tho
future distribution of the stream function. This is put back

*According to Landers (10) this level Is best represented by
the 700 mb surface.
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again into eq.(7) and the latter is solved for the now unknown
function H, i.e. the future contour field is calculated from
the future stream function.

The basic difficulty in the practical application of
this model is the initial solution of eq.(7),- the equation of
balance -. being a non-linear differential equation of Monge-
Ampere type.

Let us examine the individual terms in this equation,
If the non-linear terms and the term for the variation of the
Coriolis force with latitude are neglected, then the term

7 H Wrelates the contour field with the stream function in
* a quasi-geostrophic approximation. In other words the eq.(7)

transforms, on the given assumption, into the equation of
vorticity:Q 0u _dU,"

The term J in eq.(7) indicates that the application
o. the geostrophic approximation for vorticity results In an
underestimate of vortioity in westerly flow /.t<o) and an

overestimate in the easterly flow >
The non-linear terms ---- -- can have a pronounced

affect only in case of a large curvature .-oibined. with large

'horizontal gradients, as observed in well developed oyclonesand

anticyclones and, to a lesser extent, in troughs and ridges.

* In parvioular, the neglect of the non-linear terms (which occurs
with the quasi-geostrophic approximation) leads to an over-
estimato of vortiotty in cyclones and an underestimate in'anti-
cyclones. Some Idea of the actual magnitude of these terms of
the Monge-Ampere equation can be obtained from Fig.l.

Let us now discuss some peculiarities of the numerical
solution of eq.(7). This equation Is Of the elliptical type with

rospect to the unknown function -(xylt if the condition

(8)

is satisfied everywhere in'and on the boundaries of the region

under consideration.

This condition is fulfilled practically everywhere

on tho particular contour map that corresponds to the level of

non-divergonce. For the numerical solution of oq.(7), Bolin (7)

suggests the relaxation method for one variant of consecutive
approximation. The speed of convergence of the iteration

process in solving a differential equation by relaxation depends,

as is known, on how successfully we have selected the first

approximate solution. The.,latter for eq.(7) can be taken, for

instance, in the form +=7 I'i.e. it is assumed that the stream
function is related to the contour field as in the case of
geostrophic approximation.

The second variant for approximate solution of eq.(7)

night be obtained, for instance, in the following way. Let us

rewrite eq.(7) as follows:

2 02+ 07 d?4i2

lot uo conaider it as a Poisson equation for the unknown
Stcti on q with known right hand aide, which expresses

,:o vorticity difference assuming a non-divergent flow instead

o: a geostrophio flow.



Eq.(9) is solved numerically in the following way.Ste rewrite It in finite differences for n gridpsluts, symmet-
rical with respect to a central point (i,j), for which the

solution is sought. 'On the boundaries of the region under con-
sideration we assume the flow to:be geostrophici.. '.,0;qi-+-7 = 0
In this way one obtains a system of n linear algebraic equations

O with n unknowns. The solution of the above system for the unknown
q at point (i,j) represents a sum of products of the right hand
side of eq.(9) [Q(xy)), taken at the surrounding n points
(including also the central point) by the corresponding weight
factors. The right hand side of eq.(9) is computed on the
assumption of the geostrophic wind, i.e.

The values of the individual terms and the whole right
hand side of eq.(9), computed from the AT700 map for the morning
of Sept. 7, 1953, are given,in Fig. 1.*

The method outlined here for the short range numerical
prediction of the contour field at the level of non-divergonco,
based on the solution of eq.(6) and (7) assuming non-divergent
flow, can be realized in practice by means of electronic computers
as follows:

The initialLKl at each grid point is read off from
an analyzed contour map for the level of non-divergene. These
are inserted into eq.(7) and'the latter is solved f r..,, yielding
the initial stream functionj+. This is now introduced into eq.
(6) which forecasts the future stream functions

The actual computation of the future stream function
is performed by time steps. Introducing '+#, into eq.(6),I ig"
and the whtole right hand side, containing derivatives of CYi'with
respect to the coordinates, L computed first for the time instant
• J, i.e. the quantityI. -i is calculated for the time instant 't,

assumingr 6  ' tat the boundaries of the forecast region.

After computation of. d ,&_ the equation

( 4).+~(1', +()at, (10)

is applied at all gridpoints, where (iis the "time step" selected,
usually according to the dimcnsions of the grid.

After the numerical value ofiA~;at the instant ( V.)
is computed for the internal grid points, i.e. the right hand
side of eq.(l0) is numerically solved for.+ as a Poisson equation,
i.ae.. in the form ( )4 +ai'F(X); the iew value of etreer function
4).+ , itself is calculated for the grid points.

TheAf and .': obtained for time instant 0 -H', are
novt inserted into oq.(l0) and the_ analogous procedure is
repeated for the time instant :t.'.+ 2dt eta. etc.

After the (...,, and:(0)1+h,, are found for a given
time interval r* where k is the number of time steps, they
are introduced into eq.(7).

Considering this equation now as a Poisson equation
for the unknown functiontHf.;+*

* This figure is not reproduced in'this translation.
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with known right hand side, it is solved numerically for H,
i.e. the future contour field is calculated.

Next, we derive thesystem of prognostio equations
for a generally baroolinic atmosphere assuming a non-divergent
windfield. For this we make use of the initial equations (i)-(51.

Differentiating eq.(l) with respect to y and eq.(2)
with respect to x, and subtracting the first from the second, one
obtains, as usual, the vorticity equation. Applying now eq.(3)
for continuity, we write the resulting equation in the following
form:

~7+%+ + ' ~rinO(12)d? + --Q+PV-A 0,

whore 0.y -- is the vertical component of vorticity, and
the X-axis is directed toward the east, the y axis toward the north.
In addition, we have disregarded 9 in eq.(12) as negligibly
small in comparison with 1.

Differentiating eq.(l) with respect to x and eq.(2)
in respect to y and summing up, one obtains the equation of
divergence:

" d- +2p, } - u- -A (13)

Oii

\.whe o D.- -- is the horizontal velocity divergence.
No restrictive assumptions have so far been made in respect of
wind speed in eq.(12) and (13).

Let us further assume, that the con4ition

D-- a(14)

is fulfilled approximately at all levels of the atmosphere. The
horizontal velocity divergence is thus assumed to be approximately
zero everywhere, except for the vortioity.oquation (term _4L. ..

This assumption is based on the estimates of the oraor of magni-
tude of terms In the hydrodynamic equations for the atmosphere.

The non-divergence (quasi-solenoidal) assumption for
atmospheric motions (eq.14) allows one to introduce a stream
function, so that

UV ca..

then, - and assuming the wind field is non-divorgent,
oq.(12) and eq.(13) may be written as follows:

+ (,. ?) + -0; (16)

14 + 2 [a ,-j- (.-Y +dyi= H (17)_ {y
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In addition, we transform eq.(4) for heat flow. Usin,
eq. (5) and (15) we write it in tho following form:

Differentiating dq.(z8) with respeot to r
0 _rOaH, d9. + .

and eliminating AL by combining equations (16) and (19) we have:

(. H C3n _H6\ sr A
+ 4o- (20)

Eq.(20) contains tvio unknown functions-A and±.

The second equation relating these unknowns is obtainod
by differentiating oq.(17) with respect to time t. The resulting
equation:

(21)

77y k 7 t y kd 7

has variable coefficients, however, it Is like eq. (20) linear ith
* respect to unknown .Hand "'

Thus, the system of eq.(20) and (21) can be used for the
determination of unknown ftnotions 6H .and .-L In addition to eq.(2t)

-"and eq.(21), eq.(17) is used, in analogy with the previous model
for the level of non-divergence, to determine the initial
function from the given H field. Two boundary conditions for!C.
are given in the above equation system.

The solution of the equation system.eq.(17), (20) and (21),
i.o. the determination of the future distribution of wind field
(stream function) and contour field can bo realized in practice by
means of electronic computers.
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