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ARMY MATERIALS AND MECHANICS RESEARCH CENTER 

STRAIN-HARDENING AND INTERACTION EFFECTS ON 
THE GROWTH OF VOIDS IN DUCTILE FRACTURE 

ABSTRACT 

The growth and coalescence of voids is a common mechanism of fracture in 

ductile materials. Analytical work on the problem to date has dealt mainly with 

isolated voids in perfectly plastic materials, so that strain hardening and 

interactions between neighboring voids have been neglected. These features of 

void growth are examined here, but only for a simple geometrical configuration. 

In particular, the growth of single infinitely long cylindrical voids in bodies 

of rigid-plastic, strain-hardening material is considered. Bodies with both 

finite and infinite dimensions normal to the void surface are included in the 

analysis. The exact relation among the pertinent variables: transverse stress, 

axial strain, hardeni ng coefficient , void strain and void growth rate is pre-

sented. Solution via a bounding technique is given for two general cases. The 

first case is that of an imposed constant void growth rat e and the s~cond case is 

an imposed constant transverse stress. The results show a decelerating effect 

of hardening on void growth . Application to the ductile fracture problem of 

void growth in the neck of a tensile specimen demonstrates the accelerating 

effect of void growth due to interactions between voids. 



Introduction 

Ductile fracture as a consequence of the growth and coalescence of voids 

* has been observed by many experimenters i ncluding Rogers [1] , Gurland and 

Plateau [2], and Bluhm and Morrissey [3]. Voids nucleate by the cracking of 

inclusions, the decohesion of inclusions from the matrix, and reportedly also 

in the matrix metal near the inclusions [2]. McClintock and O'Day [4] discount 

the importance of the last nucleation site in their finding that dislocations 

have a small effect on fracture strain of the bubble- raft analogue of a crystal. 

Once the voids appear they grow and coalesce by the plastic deformation of the 

matrix which in this paper is considered a problem in continuum plasticity. 

McClintock [5] justifies this approach as reasonable when the inclusions in the 

material are large enough to be seen under an optical microscope. 

The fracture of a simple tension specimen commences with the nucleation 

of fine cracks and voids in the necked region along the axis. Rogers [1] states 

that the flat portion of the cup and cone fracture is a direct consequence of the 

coalescence of voids which have growth under the influence of the prevailing tri-

axial stress system . The voids are most dense at the axis of the neck where 

the triaxiality of stress is greatest indicating a direct relation between void 

nucleation and growth and triaxiality . 

The analytical approach to the problem is not obvious because the mechanism 

of coalescence is not understood. A first attempt would ignore the interaction 

between voids and consider each void as growing in an infinite domain until the 

radius has growth to one-half the spacing between voids. McClintock [6] used 

The numbers in square brackets refer to the list of references at the end 
of this report . 
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this approach in his void growth work. The approach in this paper again 

ignores interaction as such but considers each void as in its own secluded 

domain of transverse dimension equal to the average spacing between voids. 

At some small void density it is valid to consider the void domains as in-

finite; as growth proceeds the effects of the void growth will be "felt" in 

the neighboring voids' domains so that finite body analysis begins as an 

approximate method of describing the acceleration in growth due to the interaction. 

There has been no published work known to the writer which solves exactly 

the problem of interaction of voids (however, McClintock [5] presented an 

approximate analysis of coalescence by shear bands between voids); in fact, 

there has not been any work reported on the exact solution of non-interacting 

voids in strain-hardening materials . McClintock [6] presented a criterion of 

ductile fracture by the growth of non-interacting voids in infinite domains of 

rigid strain-hardening material. The void growth behavior for the strain

hardening material is not exact however; it is obtained from an extrapolation 

between the behavior in perfect plastic and viscous materials. Rice and 

Tracey [7] presented a variational treatment of void growth in infinite domains 

of any rigid plastic material but only perfect plastic applications were pre

sented. Hence an exact strain-hardening treatment is desirable and here 

presented . 

Formulation of Problem 

In a previous paper [7) the growth of isolated cylindrical and spherical 

voids in infinite bodies of perfectly plastic material was treated. Here the 

growth of a cylindrical void in "finite" (infinite length and finite transverse 



dimensions) and infinite bodies of rigid-plastic, strain-hardening material is 

considered, Fig. 1. The bodies are cylindrical in shape with an axis of in-

finite length and a radius b, b having any value, finite or infinite. A 

cylindrical void of radius r 
0 

is oriented along t he z direction of the 

(r,S,z) polar coordinate system defined in Fig . 1. A strain is imposed on the 

body in the axial direction at a rate £ while the radial stress (or)b is 

applied at the external radius b . The axial direction is the direction of 

maximum principal stress and strain-increment in all cases considered. The 

problem lies in finding the expansion of the void as a function of the imposed 

stress and strain. 

The incompressibility condition gives the velocity field [7] 

u 
r = 

r • 
2£ + 

2 
r r 
~ (£ + ...£.) 
r 2 r 

0 

U = E:Z ( 1) 
z 

The void growth rate 

= 0 

~ /r must be known to completely specify the velocity 
0 0 

field. Note that at large values of r the velocity at r is not influenced 

by the value of r /r 
0 0 

If the body has a large enough radial dimension so 

that the void growth is not "felt" at some large value of r within the body , 

then the body can be considered infinite. 

The relation among void growth rate, imposed s tress and strain, and strain 

history is formulated through the equation of equilibrium 

dO 
r 

- - + <lr = 0 (2) 

3 
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and the s tress- incremental strain relation which for an isotropic Mises 

material is 

e: • • 
s... = 
~J 

fi T ~] 

/ ~H ~ld 
(3) 

where s .. 
~] 

is the deviatoric stress tensor, £ •• i s t he strain- rate tensor 
~] 

and T is the hardening parameter which is a function of the deformation his-

tory and equal to the equivalent shear flow s tress. Obtaining 

eq. (1), substituting into eq. (2 ), dividing both sides by Tb 

e:.. from 
l.J 

(the equival ent 

shear flow stress at the boundary), and integrating over the body gives 

r r r 

Lb 
(~ + 2 ~) ~d (~) r r r 

(or/1 )b 2 
T 0 (4) = -
Tb ! ·2 

I' 4 r 2 
+ (~) (~ + 2 ~) 0 3e: 

r r 
0 

A power law relation between T and the generalized strain y is 

assumed. In Lagrangian coordinates (radial coordinate denoted by R) y can 

be written as 

y(e:,R) = r y(n,R)dn (5) 

0 

where 

/2£ .. 
. 

y = £ •• 
~) 1) 

5 
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The strain-rate field E • • is found from t he velocity field eq. (l) in 
l.J 

Eulerian coordinates. The relation between Eulerian (r) and Lagrangian (R) 

coordinates is found through incompressibility: 

2 (r/r ) = 
0 

l+e-f£ 0+2 rr
0

)dn [ 2 J 
o o (R/Ro) -1 (6) 

Using eq. (6) to obtain y( R) and subsequently transforming back to Eulerian 

coordinates to obtain y( r) and substituting into eq. (4) with the notation 

H 
. 

= £ + 2 r /r 
0 0 

H = £ + 2 in (r /R ) 
0 0 

X = r /r 
0 

gives the final form of the integral equation in 

and .;, /r 
0 0 

= 

(a IT ) b , £ , r /b , £ r o 

N 

H(d xdx 

( 7 ) 



Bounding the Fl ow Stress 

The flow stress T appearing in eq. (7) is a cumbersome quantity. It i s 

a function of position , void strain, imposed strain, and the complete s train 

history : 

T = (8) 

In an effort to simplify the problem, bounds to T were derived by obtaining 

bounds to y which hereafter will be called 

Eulerian coordinates as 

r /(/3 dn)2 dB ) 
2 a ( y = + -8 1 + be 

0 

8 = H(n) 

b = H(e::)( -2 
e x 

a 
y 

-1 ) 

a 
y can be written in 

( 9 ) 

It can be thought of as the arclength of the actual strain path in e:, H 

space just as 

c·2 s = / dX2 
+ dX2 ( 10 ) 

1 2 

c 

i s t he ar clength of a path c in xl , x2 space . For monotonic paths , paths 

which have a slope of cons tant s ign, 

7 
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( ll) 

This point is illustrated in Fig. 2. The upper bound is a square path while 

the lower bound is a straight line path. The same bounds can be applied to the 

arclength of the actual straining path a 
y as long as the straining process 

gives a monotonic path (of course the path can always be divided into piecewise 

monotonic portions): 

( 12) 

The bounds are path independent; this is a very significant simplification 

from eq . (8). They were employed in the following with a large saving in com-

putation time. 

Solution of Integral Equation for an Infinite Body with a Constant Void 

Growth Rate 

. 
When the void growth rate is constant, H = constant, the integral 

eq. (7) has its simplest form. Although the physical situations in which a 

constant growth rate is encountered are not numerous, solution of the equation 

for this case gives a feeling for the void growth behavior with the minimum of 

computational effort . For convenience, the body containing the void will be 

chosen to have an inf inite radius. The resulting integral equation is 



PATH I A MONOTONIC PATH BETWEEN (0,0) AND (~ 1 .~2) 
dX 

SIGN ( dX ~) CONSTANT OVER THE PATH 

PATH 2 STRAIGHT LINE PATH BETWEEN (0,0) AND (~1•~2) 

MONOTONIC PATH OF SHORTEST ARC LENGTH 

PATH 3 "SQUARE" PATH BETWEEN (0,0) AND (~I• ~2) 

MONOTONIC PATH OF LARGEST ARC LENGTH 

FIGURE 2 BOUNDS TO MONOTONIC STRAINING PATHS 
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(o /T) (e:) r ., 

N 

l£ [ ]2 1/2 

2 Jl _o,;;...,_=--

3

-+--=[:..:1=-+...;.e_H_( e:_-_n_~....:..( _x_-
2
_-..;;1...;.) J=-=.__-d n -;::=H= x=d=x= 

o 13 e: / 3~2+x 4H2 

= 

(13) 

. 
For a given constant value of H eq. (13) is solved for (o /T)..,(e:) , the 

r . 
s tress state at infinity necessary to maintain H for this problem the 

a bounds to y can be applied to obtain bounds to (o / T) (£) • 
r "' 

By us ing 

a lower bound to (o /T) r oo 

u is obtained; by us ing y an upper bound to 

(o /T) is obtained: r oo 

N 

t 
(o /T) (e:) 

r "" 
2 2] -l)x +1}] 

. 
H xdx = 

.e. 
y 

(14) 

H xdx 

I · 2 4•2 3e: +x H 

The quantity H(e:) i s known in this problem to equal He: • The cumbersome 

double integral (13) has been replaced by two s ingle integrals. The computation 

time of obtaining the bounds t o (o /T) (e:) 
r "' 

is many times small er than t he time 

necessary t o obtain the actual (o /T) (e:) . 
r "" 

Fig. 3 shows how the actual 

curve (found from solution of eq. (13 ) falls between the bounds for the constant 

growth rates of r / r = 5 
0 0 

and 10£ 
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FIG. 3 BOUNDS TO (O"r /T)m [€) FOR IMPOSED GROWTH RATES 
OF 5,10,20,30. N= . 3 . 
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Plots of (a /T)u,l are given in Fig. 4 for growth rates of 5 , 10, 20 
r "" . 

and 30£ for N = .1 . Fig. 3 i s the same for N = .3 . The curves were 

calculated to values of £ which would cause a geometric strain of the void 

equal to fifty. 

It is interesting that the stress state required to maintain t he imposed 

growth rate asymptotically decreases to the value required if the material were 

perfectly plastic (N = 0) . The deviation from the perfectly plastic stress 

state at a value of £ decreases with value of imposed growth rate and hardening 

coefficient. This suggests that for situations which induce small growth rates, 

in the order of £ , perfect plasticity would be an acceptable idealization. 

This point is demonstrated in the last section. Anot~er implication of the 

curves of Figs . 3-4 is that if the stress state were imposed constant, the 

void growth rate would continually increase to the perfectly plastic growth rate. 

The next section investigates this possibility. 

Solution of Integral Equation for an Infinite Body with a Constant Imposed 

Stress State 

When the imposed stress state is constant the integral eq. (7) has 

the form 

k r 0 

T(£, H(n), x) 
T 

00 

where k is the imposed stress (o /T) 
r "" 

g o1< £), x)dx ( 15) 

The yield stress T depends upon 

the imposed strain £ , position x , and the entire hist ory of the void strain 

which is r epresented by H(n) . The problem is to obtain the function H( n) or 
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just as well H(n) which gives H(n) upon integration. Again bounds to t 

will be employed. 

The proportional strain and "square" strain bounds to the actual strain 

path will be used to release t of its path dependence: 

where T
1 and u t are from eq. (12). The use of 1 

t would render an upper 

bound to H(e:) while tu would render a lower bound to H(e:) if u,1 
t could 

be evaluated. They cannot be evaluated since they depend upon H(e:), the intrinsic 

unknown of the problem. Since the derivatives of 
1 

t and u t with respect to 

H{e:) are positive, bounds to H{e:) can still be obtained by replacing H(e:) 

in 1 
t with some lower bound, in 

upper bound, The resulting bounds on and 

the bounds that would result from the use of H(e:) in u 1 
T , t 

:: r 0 

are 

•u H (n)dn H
1

(<) = f' H
1
(o)d, 

0 

It should be noted that any bounds to H(e:) can be employed. 

tu with some 

•1 
H , will bound 

Obvious can-

(17) 

Substituting into the integral equation (13) yields two single integral 

equations: 

k :: 
2 2 -l)x +l}) •u H ( e:) xdx (18a) 



( l Bb) 

Equations (18) are two equations in the unknowns H(E)u,t • They are inter

related. The first yields Hu(£) but only after knowing H1(E) which is found 

from the second equation by integrating 

requires Hu(n) before yielding H1
(£) 

•t H (n) • Similarly the second equation 

At £ = 0 the exact equation, eq. (15),reduces to 

k = 2 r [ 3+(1i"~o )x2)2 J N/2 

0 

·a 
H (0) xdx (19) 

Solving for Ha(O) and using it to evaluate T1
(0) and Tu(O) allows solution 

of eq. (18) for H(O)u and H(0)
1 • Thereupon the bounds are iteratively 

evaluated at small increments of E . In the plots presented the increment in 

£ was adjusted with k so as to instigate a void true strain increment of .05. 

Plots of the bounds t o ~ /Er were obtained for ( a / T) values of 3, 3 . 5 , 4 , o o r ® 

and 5 .5 for hardening coefficients of .1 and . 3 , Figs. 5-7 . Actual 

solution of eq. (15) was obtained for imposed s tress states of 3 and 5 .5 , 

Figs. 6,7 . 

The spread between bounds is great es t for high stress states. For small 

i mposed stresses like those encountered in the neck of a tensile specimen t he 

15 
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14 ~-----------------------------------------------

12 

10 

8 

4 

(i)co=3.5 

McCLINTOCK 'S PREDICTION , (a; )en= 3.5 

PERFECT PLASTIC GROWTH RATE, ( i )<X>= 3.0 

UPPER BOUND, (a; )en=3.0 

LOWER BOUND, ( c; )co=3.0 

PREDICTION 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 E 

FIG. 5 BOUNDS TO r0 /Er0 [E) FOR IMPOSED (O""r /T')a:> 
VALUES OF 3, 3.5,4. N =.I 
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bounds are very close. In all cases the void growth rate increases asympto-

tically to the perfect plastic growth rate as the longitudinal strain £ 

increases. The degree to which strain-hardening decelerates void growth is 

directly related to the degree of triaxiality and the value of the hardening 

coefficient. 

The growth rate predicted from McClintock's approximate work [5] is given 

in a few cases on figs. 5,7. His equation (27) for this case of equal trans-

verse stress, put in present notation, relates void growth rate and stress as 

r /~r = ~2 [ 1:3 sinh {(1-n)(o /T) } -1] 
o o 1-n r ~ 

The transient effect of void growth rate with strain £ is not included 

in this approximation, a very important feature as seen in the figs. 5-7. 

When the strain-rate along the axis of the body of Fig. 1 is reversed 

in direction so that the z - direction becomes the direction of minimum prin-

cipal stress and strain-rate, the only difference in result from the present 

case is that the growth ratio is faster by the amount £ • The intesral 

equation i s the same for both cases. The only difference is in the relation 

between H and ; /r 
0 0 

r /r = 
0 0 

H ~ £ 

2 

The minus sign holds for the present case, the positive sign when € is reversed. 

19 



Void Growth in the Neck of a Tensile Specimen 

The necking of a tensile specimen introduces triaxiality of stress in the 

necked region. Bridgman [8] found that the strain was very nearly uniform at 

the necked section, so that the state of stress in the neck consists of a uni

axial stress equal to the flow stress, r~ T , plus a hydrostatic tension, 

a • The latter is given approximately in terms of the neck radius, a , radius 

of curvature of the neck surface, R , and distance from the axis, r , as 

o = (~ T) in (1 + a/2R- r
2

/2aR) (20) 

In an attempt to predict the ductility of tensile specimens for various ini

tial void densities the interior of the necked region was assumed to contain a 

number of cylindrical voids of radius r 
0 

and spacing 2b , with axes aligned 

with the tension direction. The initial void diameter to spacing ratio was taken 

as the cube root of the volume fraction of voids present in the material under con

sideration. Each void is assumed to grow independently in its own finite domain 

of radius b When the void radius grows to a value equal to b there is coal-

escence and internal fracture is complete; incipient shear, in the scheme of Bluhm 

and Morrissey [3]Jfollows to finalize the fracture with a comparably small 

additional strain. 

Since voids are seen to be most dense at the axis of the necked region [3], 

the stress state there will be used as that stress state imposed on the cell 

walls. To obtain a relation between a/R and the longitudinal true strain c 

the a/R vs £ plot of Bridgman [8] was utilized. The data was collected using 

steel, bronze, and copper tensile specimens. The spread in data is considerable 

(as would be expected since the necking process varies with material) but for a 

~) 



first attempt the relation obtained from fitting a curve to the data was used: 

a/R ~ 2. 93 [1- exp {- (£ - .1)/3}] 

for £ > .1 

With this t he imposed r adial stress can be written as a function of £ 

0 ( £) 
r = (/3 T) 1n [1 + 2 ·

93 
{1- exp [- (£- .1)/3 ]}) 

2 

for £ > .1 

(21) 

(22) 

The quantity (/:3 T) is the uniaxial flow stress present in the neck along with 

the hydr os tatic s tress . Since T is the flow stress in shear, which is constant 

across the neck (8), it was evaluated via the power-law relationship from the 

strain state far f rom the void conglomeration at the axis: 

T = T "' 00 

The integral equation (7) takes the form 

1:3 ln [1 + 3 ·~3 {1- exp [- (£ - .1)/3]}] 

I . 2 4•2 
3£ +X H ( £) 

( 23) 

( 24) 

21 



The void spacing is changed only by the nominal transverse strain 

b(c) = b(O) exp {-c/2} 

so that the radius ratio is given by 

r 
0 
~E) " ~0) exp { ~ f' H<nldn) 

0 

(25) 

The hardening coefficient of a material is influenced by t he density of inclu-

sions, particles and voids. The data of Edelson and Baldwin [9] relating N and 

the volume portion of second phase particles (including voids) of two-phase 

copper-base alloys was used in this analysis. The bounds to y , eq. (12), can be 

utilized with the modification of using bounds to H(c) as in the previous sec-

tion. The equations were solved for initial void volume fractions of 0.02 to 

0.2 . The fracture strain, Ef , at which the voids coalesce is that strain when 

r /b = 1 • In practice at some radius ratio less than 1 the growth rate takes a 
0 

sudden surge which implies coalescence at the next increment of strain. The radius 

ratio just before coalescence varied between 2/3 and 3/4 . The resulting 

ductility-volume fraction curve is plotted in Fig . 8 along wi th the experimental 

curve of Ede l son and Baldwin [9], the curve offered by McClintock [5], and the 

s olution of eq. ( 211) f or t he case b = oo • Except at small volume fractions all 

the curves pred i c t ductilit i es much larger than those experimentally observed . 

Certainly there have been many s implifications made which might cause the dis-

crepancy. Voids of all shapes are oriented in all directions in the center of 

a tensile s pecimen neck . The increase in volume fraction of voids with applied 

strain due to both void growth and continued vo id nucleation must be 

22 
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affected by interactions among voids . McClintock modeled t he neck as composed of 

cylindrical voids oriented along the three principal directions and entirely 

neglected i nteraction. Here interaction is included in an approximate sense but 

only cylindrical voids parallel to the specimen axis are allowed. A feeling for 

the effect of void orientation and interaction on ductile fracture can be gained 

by comparing the various results . The finite and infinite body analyses, curves 

I and II, show the significant acceleration of void growth, and thus decrease in 

ductility, due to interactions among voids. The two infinite body analyses, 

curves I and III, imply that voids transverse to the specimen axis will experience 

larger growth rates than voids parallel to the axis. A plastic solut ion to t he 

former case of unequal imposed stresses transverse to the void would be a welcome 

tool in making further studies (McClintock [ 5 ] used an extrapolation from vis

cous behavior to obtain curve III) . The method of approximating void interaction 

by considering each void growing in a finite body of radius equal to one-half the 

void spacing cannot be adequately judged until it is built into a complete model 

of void growth and coalescence. This must allow different orientations of voids 

and a description of unstable flow be tween voids. Until then the lower due-

tility predicted by curve II compared to curve I encourages further thought along 

these lines. 

From the previous two sections we see that the difference in growth rates 

of voids in perfectly plastic and hardeni ng materials depends directly upon the 

triaxiality of stress . For the small triaxi alities realized in the neck of a 

tensile specimen it should then be a valid approximation to consider the voids 

as in a perfectly plastic material. Solving eq . (7) for N = .0 gives a very 

simple relation : 

24 



= 
-1 coth 1 + 3 

H( £)2 -

-1 
coth 

The imposed stress state is given by eq. (22); the radius ratio 

(.e._) 
r 

0 

4 

r /b 
0 

(26) 

is given 

by eq. (25). Solving eq. (26) for initial void volume fractions from .02 to 

.2 gives predicted ductilities only a few percent lower than those of eq. (24). 

Here is a very important simplification of at least the initial growth process of 

voids in the neck of the tensile specimen. The initial growth can be considered 

in a perfectly plastic material. Future research will show if the same simplifi-

cation is possible in the entire growth and coalescence process. 

Discussion 

The growth of single cylindrical voids in finite and infinite bodies of 

rigid power-law hardening materials was related to the state of transverse stress, 

imposed strain, and hardening coefficient. Bounds to the actual flow stress 

field are presented which release the void growth problem of its dependence 

on deformation history. By solving two extreme cases, the stress state necessary 

to maintain an imposed constant growth rate and the growth rate resulting from 

an imposed constant stress state, the behavior of voids in strain-hardening 

materials is seen to deviate from perfect plastic behavior directly with value 

of transverse stress and hardening coefficient. As imposed strain increases the 

strain-hardening behavior asymptotically approaches perfect plasticity behavior. 

Small transverse stress states like those in the tensile specimen neck cause 

little deceleration in growth rate from perfect plastic growth rates. 
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Although void growth is decelerated directly with hardening coefficient 

with stress state constant, Rice and Rosengren [10] have shown that there is a rise 

in stress triaxiality ahead of a crack which is also directly related to hardening 

coefficient. Since an increase in triaxiality accelerates void growth, hardening 

could have a net adverse effect on ductility for some configurations. 

The theory is applied to the fracture of a tensile specimen by considering 

the interior of the neck as composed of an array of cylindrical voids oriented 

parallel to the axis with diameter to spacing ratios equal to the cube root of 

the initial volume fraction of voids. Considering ductility to be that strain at 

which the voids' radii grow to one-half the spacing between voids, calculated as 

if each void were independently growing in a cell of transverse dimension equal 

to the void spacing, the resulting ductility vs volume fraction curve was very 

much above the experimental curve of Edelson and Baldwin [9], Comparing results 

with McClintock [5] it was concluded that voids normal to the direction of 

straining grow faster than voids parallel to the axis. Interaction among voids 

is seen to be a significant factor in void growth from nucleation to coalescence. 

The need for a more complete model of void growth and coalescence is noted. 

Such a model would allow random orientation and both stable and unstable inter

actions among voids. To keep the analysis manageable it seems that only cylin

drical and spherical configurations would be included. The problem of the growth 

of a cylindrical void under unequal transverse stress components must be solved 

if one chooses to use the cylindrical configuration, The results for the growth 

of a spherical void in a perfectly plastic material [7] might be utilized. The 

finite body approximation to interaction could be tested in such a model. Of 

course the instability of flow between coalescing voids is another problem to 

be solved. 
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The tensile specimen fracture problem was solved with the approximation 

of perfect plastic material with near identical results to the strain-hardening 

solution. This is a result of the small decelerating effect of hardening at the 

low triaxial stress states present in the neck. This encourages future work 

on the tensile test to use the perfect plastic approximation. 
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