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i'REFACE 

This report Is part of RAND's continuing Interest In the geo- 

physical effects produced by nuclear explosions.  It is a continuation 

of the work in RM-5738 on some aspects of the acoustic effects of such 

explosions. The work was sponsored by the United States Air Force and 

the Advanced Research Projects Agency. 
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SUMMARY 

The pressure pulse generated In an isothermal atmosphere by an 

energy source at the ground is calculated from an integral representa- 

tion of the pressure field previously derived by the authors. The 

shape of the signal is shown, as a function of time, at several dis- 

tances from the source for a fixed altitude, and at several altitudes 

at a fixed lateral distance.  The first signal to arrive at any 

location is a high-frequency acoustic wave, followed by a low-frequency 

acoustic-gravity wave.  The onset of the latter is marked by a sharp 

front, or caustic. At any instant (after the arrival of the caustic), 

there are three principal frequency components at any location, the 

lowest of which becomes dominant as time progresses.  It is shown how 

the qualitative features of the flow, as well as the exact location 

of the caustic, can be obtained from kinematic theory. 

r 
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I.  INTRODUCTION 

A great deal of attention has been devoted to the subject of 

acoustic-gravity waves In the earth's atmosphere. Historically, 

Interest In this area was first aroused by the worldwide detection of 

atmospheric disturbances of natural origin. This Interest has been 

renewed, In recent years, by the detection. In widely spaced regions, 

of atmospheric waves generated by nuclear explosions.  One aspect of 

such waves, and the one which underlies this study. Is the existence, 

at Ionospheric heights, of outward traveling disturbances produced by 

explosions near the ground.  For a summary of the experimental and 

theoretical work pertinent to this particular aspect of the problem, 

the reader Is referred to Row (1967), where an extensive bibliography 

Is also to be found. 

Despite Its well-known shortcomings, the Isothermal atmosphere, 

because of Its tractablllty, has received a great deal of theoretical 

attention.  It has been remarked often In the literature that, al- 

though caution must be exercised In comparing experimental observa- 

tions with the predictions of so simple a model, useful Insight Into 

the propagation of atmospheric disturbances Is nevertheless provided 

thereby. One of the principal results of the work presented here, 

viz., the existence of a front (caustic) bounding the spatial domain 

of the low frequency part of the disturbance, could be considered a 

case In point.  It may reasonably be expected that this Is a property 

which the real atmosphere shares with the Isothermal atmosphere, with 

the shape and location of the caustic depending, of course, on the 

actual density variation of the atmosphere. 
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Any theoretical treatment of the atmospheric waves generated by 

a nuclear explosion obviously requires some simplifying assumptions 

about the source.  (For a discussion of this aspect of the problem, 

see Pierce. 1968.)  In this paper, the Interest Is In the dispersive 

waves far from the source, with periods much larger than the charac- 

teristic period of the source. For this purpose, an instantaneous 

point source seems adequate. In particular, a point energy source Is 

assumed, since that seems more appropriate to the Initial conditions 

represented by a nuclear explosion than the point mass and point im- 

pulse sources which have appeared in other treatments. Some charac- 

teristics of acoustic-gravity waves depend only on the properties of 

the medium, and not on its excitation. However, other properties, such 

as the spectrum at a given location, obviously do depend on the source. 

Such properties also depend on the boundary conditions, for which 

reason the presence of the ground is taken explicitly into account in 

this work. 

In the following, two alternative approaches to the problem dis- 

cussed above will be presented. The first is a formulation as an 

initial value problem, with the appropriate boundary conditions, from 

which the characteristics of the disturbance can be calculated by the 

method of stationary phase. Details of this method have been presented 

elsewhere (Cole and Greifinger, 1968), and will be briefly reviewed 

here for the sake of completeness. It will then be shown how the 

main properties of the dispersive waves in the asymptotic field can be 

obtained from the dispersion relation and the kinematic 'ormulatlon of 

Whitham (1961).  Thus, in addition to providing useful Insight into 

I 
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the propagation of atmospheric disturbances, the isothermal atmosphere 

also furnishes an illuminating example of the relationship between 

these two alternative methods. 
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II.  INITIAL VALUE FORMULATION 

As mentioned in the Introduction, this section 1^ Intended prl- 

oarlly as a brief outline of the treatment by the authors of the Initial 

value problem, the details of which appear In Cole and Grelflnger 

(1968).  The problem considered Is the motion In an Isothermal atmosphere, 

above a ground plane, produced by the Instantaneous release of energy 

at a point on the ground (the origin of Fig. 1).  For an Isothermal 

atmosphere In a uniform gravitational field, the equilibrium conditions 

are characterized by the usual exponential distributions 

P (z)  p (z)     ,. 

—* 0—'  e"Z/h CD 
P     P 

where P and p are the pressure and density in the plane z * 0, with 

the positive z direction taken upward. The scale height h is given 

* 
in terms of the temperature T , the specific heat ratio y, and the 

* . 
gravitational constant g by the relation h * RT /g.  The isentropic 

*      * 1/2   1/2 1/2 
sound speed is c * (yRT )   - y  c , where c - (gh)   is the 

gravity wave speed. 

The basic parameter of the problem is 

(Y-l)Q0 
«- —nr (2) 

P hJ 

where Q is the energy released at t - 0. This parameter roughly 

measures the energy release compared to the Internal energy in a scale 

height volume.  For sea level explosions, where the scale height is of 

—:  

■ 
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^^^^^^^^^^^^^^^^^^^^ '// 

Fig. 1 - Co-ordinate system, with the origin at the point of 
energy release. 

\ 
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the order of 10 km, e ^ 1.5 x 10  Yu, where Yu is the hydrodynamlc H H 

yield in KT. Thus, e « 1 for explosions of up to several MT or so. 

*  *    * 
With h, h/c , P and p as the units of length, time, pressure, 

and density, respectively, an expansion in the small parameter e is 

carried out. This represents the flow as small changes superimposed 

on the ambient state, viz., 

P - e'Z (1 + ep+ ...) 

p - e"Z (1 + eo+ ...) (3) 

-*■        •*■ 

q - ev f ... 

v - (u,w) 

where u is the radial component of the velocity and w is the vertical 

component. A linearized system is obtained for (p, o, v), with a 

ö-funetion energy source. 

A formal Integral representation of the solution of the equations 

of motion is constructed by a combination of Laplace and Hankel trans- 

formation. For the pressure field, for example, this has the form 

p(r,z,t) - e*/2 j^ j     Jo(kr) F(k;z,t) k dk (4) 

F(k;z.t)-^l/  e-.t-p(..k)x 

_1» 

if*"! 
s +k 

s ds       (5) 

P(«.k) -^ [(•2-h1.J(k))(.
2-Hl)*(k))] 

Re(w) > 0 

1/2 

. 

. 
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"M00 - y [(^ + k2 + 2ß k)1/2 + (|- + k2- 2e k)1/2] 

iliil 
1/2 

■ Brunt-VMisMlK frequency (dlmenslonless) 

where r is the cylindrical radius (Fig. 1). 

The pressure field is the main quantity of interest, but similar 

expressions are readily obtained for the other variables. The usual 

z/2 
amplification factor e   appears in these expressions. The properties 

of the medium are contained in the exponential factor e  , while 

the boundary conditions and the properties of the source are contained 

in the form of the square brackets. The initial conditions are satis- 

fied by taking the path of integration in (5) to the right of all 

singularities in the s-plane. 

A closed form approximation to the pressure field, valid in the 

main wave zone for large r and t, can be obtained by asymptotic inte- 

gration of (4) and (5).  The procedure involves the transformation of 

(5) to a Fourier integral over those frequencies which can propagate 

for a given (real) k, followed by two successive applications of the 

method of stationary phase. The method requires, in addition, that 

the asymptotic approximation for the Bessel function of large argument 

be used. 

The transformation is accomplished by a suitable deformation of 

the path of integration in the s-plane. The integrand of (5) has 

branch points at s - + Iw. (k) and • ■ + iki.(k), poles at s ■ + Ik, 

and an essential singularity (due to the p in HMI exponent) at s - 0. 

If the s-plane is cut in the manner shown in Fig. 2 and the phase of 
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Fig. 2 - Contour for carrying out the integration in the s-plane, 
with the location of poles, branch points, and essential 
singularity as shown. 
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U  suitably defined, the Integrand becomes a single valued function of 

s on and Inside the contour.  By Cauchy's theorem, then, the Integral 

In (3) Is equal to the sum of the Integrals around the branch lines 

plus the contribution from the residues at the poles. The essential 

singularity Is outside the contour, and thus does not contribute a 

residue. 

The contribution from the poles, which arises from the presence 

of the ground, is easily calculated, and requires no approximation of 

the Bessel function. The resulting pressure field has the form 

PGR    2*  Y  
e 

(t2-r2)3/2 
(6) 

This "ground wave" is a non-oscillatory cylindrical wave, which exists 

only behind the spherical acoustic front. 

The dispersive waves arise from the integrals around the branch 

lines. A change of the order of integration makes it possible to 

express these as integrals over positive frequencies in two frequency 

bands. The pressure field in the low-frequency, or "acoustic-gravity," 

band is given by 

*/2 

''AG 
1m 

2ff 
r ^ r C(u)fk)dk.du) 

^(U)) 

(7) 

while the pressure field in the high-frequency, or "acoustic," band 

is given by 
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z/2 

2* 

^(u)) 

Im 

1/2      Jo 

k)dkda)' (8) 

k J (kr) r 0        .     .       J I 

k. (a)) - a) 

2  1 a, -- 

2 «2 

1/2 

For r sufficiently large that the asymptotic approximation for 

the Bessel function is valid, the integral over k may be carried out 

by the method of stationary phase.  The resulting expressions for the 

pressure field are 

PAG-6 

ß    2 2 :/2 cos » T J f    ü) (g -ÜJ) (l/4-ü) 

2A      J ^ 
2.1/2 

♦ -Ü) j 

icoafy 

(^l + iv  )el(u.fK*) . (Ill . lp )el(u.t- 
2Y ■ ^s 2Y 

z/2 cos | _ j  f     U.(ü)2-B2)U2
-1/4)

1/2 

PA" e   2lr2R 
Re\ |      D(a,^) 

no 

L 

(9) 

'(111 + lWi).l<«t-0W + (ill _ i^).^«^)! d(i) 

(10) 
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where 

2 2,2   2    12 2   2 
D(ü),(|I) - (u) -ß T cos (ji + (T- -ß )a) sin 

\i    m  cos 4» 
8 

^M-Jxß2-^2) 
2 2  2 

(ü) -ß cos 4i) . 

1/2 

n(w.») - 
(l/4-u)2)(ü)2-ß2co82(|>) 

2  2 
(ß -«/) 

1/2 

This representation is an expansion in spherical waves, with a 

spherical phase and group velocity depending on the pole angle 4).  It 

is interesting to note that the exponents in the spherical wave repre- 

sentations (9) and (10) are identical with those in the exact free- 

space Green's function obtained by Pierce (196?) and Row (1967). 

One final point worthy of note is that (9) and (10) both contain 

the factor cos 4>.  Thus, in this approximation, the dispersive wave 

train vanishes at ehe ground, where the signal consists entirely of 

the non-oscillatory cylindrical wave given by (6). 
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III.  PROPERTIES OF ASYMPTOTIC PRESSURE FIELD 

AND NUMERICAL RESULTS 

The pressure field associated with the dispersive waves has been 

expressed In terms of Integrals of the form 

- ct     .. l(u)t + fiR) . ,,,. 
/ f(u,^)e x  -  ' du (11) 

over the two bands of propagating frequencies.  For large R (spherical 

radius) and t, the exponentials are rapidly oscillating functions of 

a), and the integrals therefore permit a second application of the 

method of stationary phase.  It is easily shown that stationary points 

can exist only for the exponentials with the minus sign.  Such points 

must be solutions of 

|-^Q(«.#)-0 (12) 

and arc therefore functions of R/t and $, only. Some important proper- 

ties of the flow field can be inferred from the distribution of 

stationary points in (R/t,^)-space. This has been discussed in some 

detail by Cole and Greifinger (1968), and will be briefly summarized 

at this point to provide a better understanding of the numerical 

results to follow. 

Obviously, all points of stationary phase must lie behind the 

acoustic front, i.e., inside a circle of radius R/t - 1 in the 

(R/t,*)-plane.  In the acoustic band, 1/2 <_ w < «, there is a single 

stationary point associated with each point in the (R/t,^)-plane 
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behlnd the acoustic front. Along any ray In this plane, I.e., for 

any fixed value of $,  the frequency of stationary phase decreases 

monotonlcally from w -•• °° at the acoustic front to u ■ 1/2 at the 

origin. 

In the acoustic-gravity band, B cos $ <_ u <_ a,  the situation Is 

quite different.  For any given angle ^, there are two stationary 

points for all R/t smaller than some maximum value. At this maximum 

value of R/t, the two stationary points coincide, while for larger 

values of R/t (at the given 41), there are no stationary points. Along 

a ray In the (R/t,0)-plane, the two frequencies of stationary phase 

diverge from their common value at coincidence, one Increasing toward 

S and the other decreasing toward 6 cos $ as R/t tends toward the 

origin. 

The situation for the acoustic-gravity band Is Identical to that 

which arises In the case of Incompressible flow In a density strati- 

fied liquid considered by Mowbray and Rarity (1967). As In that case, 

the locus of double (coincident) points of stationary phase defines 

a front, or "caustic," representing thf; onset of the disturbance. 

Between the caustic and the acoustic front, the acoustic-gravity band 

is exponentially small, and the main contribution comes from the 

acoustic band. 

The location of the caustic can be calculated, parametrlcally, 

from Its definition as the locus of double stationary points.  The 

result Is shown In Fig. 3, where the caustic has been plotted In 

cylindrical (r/t, z/t)-space. Also plotted (dashed lines) are lines 

of constant * - — (ut - Rfl).  These are lines along which the phase 
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0.4 

-Caustic 

_L- 
0.4   0.5   0.6   0.7   0.8   0.9   1.0 

r/i 

Fig. 3 - Location of the caustic In (r/t,z/t)-space.  The dashed lines 
are lines along which the phase Is constant at any Instant. 

. - 
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1s constant at a given t, und  Intersect the caustic In a cusp. Crests 

(or troughs), as particular lines of constant phase, are therefore 

representable by such curves. However, since lines of constant phase 

are lines along which 4* decreases with time, crests are not stationary 

in this diagram, but move across It obliquely from left to right. The 

number of crests In the diagram Increases linearly with time, new 

crests being continuously created at the origin. 

From the above considerations, the frequency-time history of the 

signal at any location can be described qualitatively.  It is to be 

remembered that the frequency of stationary phase is the principal 

frequency associated with the group of waves at the location in ques- 

tion.  Furthermore, a given point (R,4i) in physical space corresponds, 

as time increases, to points approaching the origin along a ray in 

the (R/t,(j))-plane.  The variation of the frequency of stationary phase 

along such a ray thus provides the frequency-time history of the 

signal at the point (R,^).  Clearly, this history is qualitatively 

the same for all locations at the same angle $,  which all map into the 

same ray in (R/t,*)-space.  Thus, the first disturbance to arrive at 

any location (R,^) is the acoustic spherical front, containing the 

very high frequencies.  The principal frequency in this part of the 

disturbance decreases with time, tending asymptotically towards u ■ 

1/2.  Some time after the passage of the spherical front, the caustic 

arrives, carrying the frequency of the double stationary point associ- 

ated with the angle $.  This part of the signal then splits into two 

frequencies, one increasing toward 6 and the other decreasing toward 

ß cos * as time progresses.  Thus, the signal at any (R,(Ji) consists, 
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af ter long times,  of the three angular frequencies 1/2,  ß, and 

ß cos 4>. 

Such considerations,  of course,  cannot provide the shape of the 

signal, which depends on the relative amplitudes and phases of the 

contributing frequencies.    This can be determined only by actual 

evaluation of  (9)  and  (10).    These integrals have been calculated by 

the method of stationary phase, and the results are presented in Figs. 

4,  5, and 6.    The numerical results are based on a specific heat 

ratio of Y * 1.4 and an atmospheric  scale height of h - 8 km, values 

which are more appropriate to sea level than to ionospheric altitudes. 

However, no attempt is being made here to correlate these results 

v 1th observation,  the purpose being primarily to illustrate the dis- 

persion of the pulse with distance from the source. 

In Fig.  4,   the three separate frequency components are shown for 

the signal at a typical location.     It  is apparent that, after the 

arrival of the acoustic-gravity components,   the dominant frequency is 

the lowest frequency component,  i.e.,  the component that tends toward 

OJ = ß cos <t> as time increases, it is this part of the signal which 

has been calculated approximately by Row (1967)  for an unbounded iso- 

thermal atmosphere.     Figure 5 shows how the pulse spreads out with 

lateral distance from the source at a fixed altitude, while Fig.   6 

illustrates the change in shape of the pulse with altitude at a fixed 

lateral distance from the source.    Although the principal contribution 

to the signal  is from the lowest frequency component,  the shape of 

the signal is noticeably affected by the presence of the higher fre- 

quency components.     The break in each curve, which occurs at the 

.   - 
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arrlval of the caustic, Is a consequence of the Inapplicability of 

the static .iary phase approximation In the vicinity of the caustic. A 

more accurate approximation Is the neighborhood of the caustic would 

show a large, but continuous, change In amplitude with passage of the 

caustic. 
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Fig.  4 - Resolution of the pressure amplitude at a typical location 
into  1-s  three components.    The elapsed time measures the 
time after the arrival of the acoustic front. 
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Fig. 5 - Response of an Isothermal atmosphere to an energy source at the 
ground, for fixed altitude and varying range. The elapsed time measures 
the time after the arrival of the acoustic front at the given location. 
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iMfttrmal atmosphtrt 
h • 8 km 
r • 1000km 
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l-t0'EI*Mdtlm(fflln> 

Fig. 6 - Response of an Isothermal atmosphere to an energy source at the 
ground, for fixed range and varying altitude. The elapsed tin« measures 
the time after the arrival of the acoustic front at the given location. 

I 
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IV.  KINEMATIC DESCRIPTION OF DISPERSIVE WAVE TRAIN AND CAUSTIC 

In this section, it will be shown how the overall geometric 

features of the dispersive wave pattern in the asymptotic field can be 

obtained from the dispersion relation and the kinematic theory of 

Whitham (1961).  In fact, although it will not be demonstrated ex- 

plicitly here, inclusion in the theory of energy considerations 

(Whltham, 1961) makes it possible even to determine the relative 

amplitudes of the various frequency components.  Thus, only the precise 

phase relationships are not directly obtainable from the theory.  In 

every other respect, the results obtained by kinematic theory are iden- 

tical with those obtained by the method of stationary phase. This is 

not surprising in view of the close connection between the assump- 

tions underlying the two methods (Lighthill, 1965).  However, the 

equivalence is of more than academic Interest, since kinematic theory 

seems more readily adaptable to the case of a slightly non-uniform 

medium than is the method of stationary phase. 

As far as kinematic theory is concerned, all of the dynamics is 

contained in the dispersion relation 

a> (k) (13) 

which is a functional relationship between frequency and wave number 

k.    The principal result of  the kinematic  theory Is  that,  for a homo- 

geneous medium with a dispersion relation of  the form  (13),  groups of 

waves of given wave number   (and therefore also of given frequency) 

* 
The Isothermal atmosphere is, of course,  not  a uniform medium. 

However,  it can be made to "look" uniform by a suitable choice of 
dependent variables. 
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propagate with constant group velocity c , given by the gradient of 
O 

the dispersion relation 

cg - ^k u(t) . (14) 

Thus, if all the waves originate at the origin, a given group travels 

radially outward from the origin with constant speed (provided no 

reflections take place at a boundary, as would be the case if the 

source were above the ground). Thus, the group velocity la c - R/t, 

where R is the position of the group at time t.  These relations make 

it possible to determine the location in (R,t) of groups of given 

wave number and frequency.  This procedure will now be carried out 

in some detail for the case in question. 

It can be shown from Cole and Greifinger (1968) (cf Pierce, 

-z/2 
1963) that the homogeneous wave equation for the quantity p ■ e   p, 

where p is the pressure perturbation defined by (3), is 

4   2    2 2        2    2 

I-2! - "H < H - x) - ("S + e2) (^ + "S")! P - o. (is) 
at  at  az      at     ax  ay 

For plane wave solutions of the form exp[i(k x + ky + kz- u)t)], x y z 

the resulting dispersion relation can be written 

2      I /u2 . u2 JL 1\ ^ r 1 /i.2 J. 1.2 J. M      .2 .2,1/2        ,,,. 
u    - 2 (kr + kz + 4° ± I 4  (kr       z + 40    ' 0      r1 (16) 

2        2 2 k    - k    + k    . r       x        y 

- 
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The plus sign Identifies the high frequency acoustic branch, while the 

minus sign Is associated with the low frequency acoustic-gravity branch. 

The kinematics apply separately to each branch, leading to the possi- 

bility of coexisting families of waves. 

For the purposes of calculation. It Is more convenient to write 

the dispersion relation In the form 

2 <kz n -" > 
t     2 2  

(r -u) 
(17) 

treating k    as the dependent variable and u and k    as the Independent 

variables.     In this  form,  the acoustic branch corresponds to frequen- 

2        2      1 
cles u    >_ k   + T- and the acoustic-gravity branch to frequencies 

2        2 
a)   £ B  .     In terms of these variables,  the components of the group 

velocity take the form 

t 
"9(k^)' 

.9(0) )- 

3(kJ) 

9(k2
2), 

(18) 

w 
9(^)" 

3(a)2) 

Furthermore,  since  the groups travel radially outward,  the direction 

(polar angle)  $ In which the group propagates  Is given by tan $ - r/z. 

From these relationships.  It Is possible to express the components 
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of the wave number of a given group in terms of the frequency and 

the angle at which the group propagates; thus, 

u (T ~ w ) sin $ 

((32- OJ
2
)^

2
- ß2cos2^ ) 

1/2 

(19) 

.1  2W„2 2X  2 
(T

-
 ~W ) (ß -(*> )C08 4 

2  2   2 
(o) -ß  COS (|l) 

1/2 

The requirement that k and k be real serves to define the 

allowed frequency bands for groups of waves propagating in a given 

direction. These bands are shown in Fig. 7, where k and k are e r    z 

plotted against u for a given $. The frequency range of the acoustic 

band is 1/2 £ u < ", while for the acoustic-gravity band the range is 

ß cos (j) £ u _< ß.  The cutoff frequencies for the propagation of groups 

in a given direction are thus identical with those obtained by the 

method of stationary phase described earlier. 

With k and k given by (19), it is now possible to express the 
r      z 

2 
components of the group velocity (18) in terms of u and 4>. The 

resultant group velocity is 

f/l  2W 2 2W 2 2  2 N1l/2 
R   KT -W MB -U )(ü) "ß COS (|))] 

c8 " * E    r/02    2.2 ^2,1    TIT    7TT~ cj[(ß -w )    +ß  (^ -ß ) sin (jij 
(20) 

This result agrees exactly with that derived by Pierce (1963) from 

the free-space Green's function. 
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Fig. 7 - Vertical and radial wave number (units of 1/h) as a function 
of angular frequency (units of c*/h). 
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In Flg.   8,  c    is plotted against u for a given value of $. 

Equivalently,   this Is a plot of R/t against u, where (R,t)  Is  the 

location In physical space  (at the angle $)  of the group    of frequency 

u.    In the acoustic band,  the group velocity Increases monotonlcally 

from 0 to 1 as the frequency Increases from 1/2 to <>>.    Thus,  there 

Is one,  and only one,  frequency In this band at each location between 

the origin and  the acoustic front.     In the acoustic-gravity band,  on 

the other hand,  the group velocity is zero at both ends and has a 

single maximum in between.    Thus,  there is a maximum R/t < 1 to which 

waves in this band can propagate,  or,  equivalently,  a fastest group 

of waves.    For all smaller values of R/t,   there are two groups of waves 

from the acoustic-gravity band  (In addition to the single group from 

the acoustic band).    These results are identical with those obtained 

by the stationary phase approximation. 

The occurrence of a front, or caustic,  appears in the kinematic 

theory as a maximum in the group velocity in any direction.    The condi- 

tion for the caustic is therefore 

3c  (M) 
(21) 

which serves to define the frequency u (^) at the caustic in a given 

direction.    If this is combined with (18), an equation for the caustic 

can be obtained.    The result again agrees exactly with the stationary 

phase calculation of Cole and Grelfinger (1968). 

It can,  in fact, be demonstrated more generally that the equation 

for a caustic obtained by kinematic theory is identical with    that 

I 
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0=60° 

Flg. 8 - Group velocity (units of c ) as a function of angular 
frequency (units of c /h). 

 1 —a 
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obtalned by the method of stationary phase.  Since the group velocity 

is in the radial direction, the condition that the group velocity be 

a maximum in a given direction is equivalent to the condition that the 

derivative of the group velocity be zero in the direction of the group 

velocity. The condition for a caustic can thus be written (in k-space) 

c  • ^ c 
g   kg ^k <2*> * 0 (22) 

where the first equality follows from the usual vector relationships 

and v. x c "• 0.  In terms of Cartesian components, this becomes 

t 3 oj  au 

. . ak.ak.3k. (i - 1.2.3) (23) 

The system (23)  for the three components -r:— of the group velocity 

has non-trivial solutions only if the determinant of the coefficients 

vanishes, i.e.. 

a2 
3 uj 

3ki3k 0 . (24) 

This condition for a caustic is identical with that deduced from very 

general considerations of stationary phase (Lighthill, 1965). 

In the kinematic theory, there is no acoustic-gravity signal 

ahead of ehe  caustic. As mentioned in the preceding section, in the 

stationary phase approximation of the exact integral representation, 

the signal ahead of the fastest group is exponentially small. More- 

over, a more sophisticated evaluation of such integrals (Lighthill, 
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1965) provides an accurate description In the Immediate neighborhood 

of the front. The kinematic theory, however, does give the correct 

qualitative picture of the dispersive wave trains behind the front as 

well as the exact location of the front Itself.  In that It can be 

easily generalized to a medium with slowly varying properties. It 

should prove a useful method In treating such problems. 



-31- 

REFERENCES 

Cole, J.D. and C. Grelflnger, Acoustic-gravity Waves Produced by 

Energy Release, Proc. of the ESSA/ARPA Symposium on Acoustic- 

Gravity Waves In the Atmosphere, Boulder, Colorado, July 15-17, 

1968. 

Lighthill, M.J., Group Velocity, J. Inst. Maths. Applies., 1^, 1-28, 

1965. 

Mowbray, D.E. and B.S.H. Rarity, A Theoretical and Experimental In- 

vestigation of the Phase Configuration of Internal Waves of 

Small Amplitude In a Density Stratified Liquid, J. Fluid Mech., 

28, 1-16, 1967. 

Pierce, A.D., Propagation of Acoustic-gravity Waves from a Small Source 

Above the Ground In an Isothermal Atmosphere, J. Acoust. Soc. Am., 

35, 1798-1807, 1963. 

Pierce, A.D., Theoretical Source Models for the Generation of Acoustic- 

Gravity Waves by Nuclear Explosions, Proc. of the ESSA/ARPA 

Symposium on Acoustic-Gravity Waves in the Atmosphere, Boulder, 

Colorado, July 15-17, 1968. 

Row, R.V., Acoustic-gravity Waves in the Upper Atmosphere due to a 

Nuclear Detonation and an Earthquake, J. Geophys. Res., 72, 

1599-1610, 1967. 

Whitham, G.B., Group Velocity and Energy Propagation for Three- 

dimensional Waves, Comm. Pure Appl. Math., XIV, 675-691, 1961. 



DOCUMENT CONTROL DATA 
I ORIGINATING ACTIVITY 

THE RAND CORPORATION 

2a REPORT SECURITY CLASSIFICATION 
UNCLASSIFIED 

2b. GROUP 

3. REPORT   TITLE 

ACOUSTIC-GRAVITY  WAVES  FROM AN ENERGY  SOURCE AT  THE   GROUND  IN AN  ISOTHERMAL ATMOSPHERE 

4. AUTHOR(S) (Last name, first name,Initial) 

Cole,   J.   D.   and  C.   Greifinger 

5. REPORT  DATE 

December   1968 
7. CONTRACT  OR GRANT No. 

DAHC15-67-C-0141 

\ 

6o. TOTAL No. OF PAGES 
38 

6b. No. OF REFS. 

6. ORIGINATOR'S   REPORT  No. 

RM-5 828-ARPA/AFT 

9o AVAILABILITY/LIMITATION   NOTICES 

DDC-1 

9b. SPONSORING AGENCY 

Advanced Research Projects Agency 

10. ABSTRACT 

An analysis by two different methods 
—stationary phase and kinematic theory 
—of the pressure pulse generated by a 
nuclear explosion near the ground in an 
isothermal atmosphere.  The present study 
builds upon work reported in RM-5738-ARPA/ 
APT.  The shape of the signal is shown, as 
a function of time, at several distances 
from the source for a fixed altitude, and 
at several altitudes for a fixed lateral 
distance.  The first signal to arrive at 
any location is a high-frequency acoustic 
wave, followed by a low-frequency acoustic- 
gravity wave.  The onset of the latter Is 
marked by a sharp front, or caustic. At 
any instant, after the arrival of the 
caustic, there are three principal fre- 
quency components at any location, the 
lowest of which becomes dominant as time 
progresses.  It is shown how the qualita- 
tive features of the flow, as well as the 
exact location of the caustic, can be ob- 
tained from kinematic theory. 

II. KEY WORDS 

Physics 
Nuclear explosions 
Nuclear effects 
Geophysics 
Sound 
Wave propagation 

I 


