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PREFACE 

Hypersonic strong-Interaction theory provides a framework for 

the analysis of the flow past a slender body during portions of Its 

hypersonic flight through the atmospnere. Performance predictions 

and scaling laws following from such an analysis can be used In tra- 

jectory and discrimination studies. 

In this Memorandum, a theoretical study Is made of the laminar 

flow past a very slender synanetvlc body when the Mach and Reynolds 

numbers are large, In which case Mavler-Stokes equations are reasonable 

models for the equations of motion for a viscous heat-conducting gas. 

It Is well known that the flow-field structure for two-dimensional 

bodies exhlbltr Important qualitative differences from that for axl- 

symmetrlc bodies, and one objective of this study Is to Investigate 

these differences and to develop a consistent theoretical solution of 

the equations of motion. Matched asymptotic expansion techniques are 

employed to develop the significant features of the flow field, and 

simple expressions are presented for drag and for heat transfer In the 

extreme case where the body diameter Is much less than the thickness 

of the viscous layer supported by the body. 

In addition to Its relevance for discrimination and performance 

studies, the present Memorandum should be of Interest to those Involved 

In the numerical computation of viscous flows, since it provides a dif- 

ficult test case that can be used to make needed checks on numerical work. 

This study, sponsored by the Advanced Research Projects Agency, 

is part of continuing RAND Corporation research on hypersonic gasdynamics 

for application to early reentry phenomenology. 



SUMMARY 

The Navler-Stokes hypersonic strong-interaction theory is presented 

for the flow of a viscous, heat-conducting, compressible fluid past a 

very slender axisymmetric body, where D. , the measure of the ratio of 

the radius of the body to the thickness of the viscous layer(s) (which 

the body produces and supports), goes to zero.  It is assumed that the 

fluid is a perfect gas having constant specific heats, a constant 

Prandtl number, a,  whose numerical value is of order unity, and vis- 

cosity coefficients varying as a power, m, of the absolute temperature. 

Limiting forms of the solutions are studied as the free-stream Mach 

number, M, the free-stream Reynolds number based on the body's axial 

length, R_ , and the modified interaction parameter, x " 

|M2(2fu))/R^log (i/Db)}
1/2, go to infinity. 

By means of matched asymptotic expansions, it is shown that, for 

(1 - u)) > 0, four distinct layers make up the region between the shock 

wave and the body. The self-similar leading approximations for the 

behavior of the flow in these four regions are analyzed, and it is 

found that an arbitrary body supports 3/4-power viscous and shock 

layers. 

m 
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SYMBOLS 

M 
CD,P 

CfC<, 

Vl ''l 
Db 

k 

L 

M 

P 

u.v 

X 

X 

'k 

6 

friction drag coefficient in Eq. (A7a) 

pressure drag coefficient in Eq. (47b) 

friction, heat-transfer coefficients in Eqs. (46b) and (46c) 

pressure coefficient in Eq. (46a) 

dimensional specific heats 

6/6, thickness ratio parameter 

k,/k . nondimensional heat-conduction coefficient 
^   00' 

characteristic longitudinal body length 

1/2 
u /(YP^/P,,,,)  I free-stream Mach number 

p /p^, nondimensional pressure 

p UjL/p,^, free-stream Reynolds number 

r./L, nondimensional radial distance, measured from axis 

of symmetry of body 

nondimensional independent variables, BVL in Eq. (26a) 

nondimensional independent variables, FVL in Eq. (15) 

T-j/T^, nondimensional temperature 

u./u^, v./u^, nondimensional axial and radial velocity 

components 

( 3m     V'2 
\M /K,/      , rarefaction parameter 

(2(1)   \ 1 / 2 
M /RTX)  , rarefaction parameter 

x./L, nondimensional axial distance, measured from vertex 

of body 

expansion parameter, PVL 

thickness ratio of "effective body" 

thickness ratio of actual body 

The basic nomenclature is given here. Additional quantities are 
defined as they are introduced. 



MP 

-xll- 

■ 

, X 

n 

P 

0 

01 

(V-l)/(Y*-l)i Newtonian parameter 

c((l+c)/(l-c)] M , stagnation temperature parameter 

[e((l+c)/(l-f)}]1+tl1 V^ Tb/6
4, parameter, PVL 

X./a  ,  nondimensional second viscosity coefficient 

M./p , nondimensional first viscosity coefficient 

p./p^, nondimensional density 

p.c /k., Prandtl number 

[log(l/D. )]  , modified thickness ratio parameter 

T /S-, nondimensional wall temperature 

|M 
(   /V lo8 C1/8^))  » modified interaction parameter 

viscosity exponent 

Subscripts 

b body viscous layer (BVL) 

h inviscid shock layer (ISL) 

ht ISL-TL matching 

k principal viscous layer (PVL) 

kb PVL-BVL matching 

kt PVL-TL matching 

t viscous transition layer (TL) 

w body surface 

1 dimensional quantity 

» free-stream dimensional quantity 
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I.    INTBODUCTION 

The purpose of this Memorandum is to enlarge upon the existing 

hypersonic strong-Interaction   .Seory (HSIT) for viscous, compressible 

flow past a slender axisymmetric body, whose cross-sectional radius Is 

much less than the thickness of the viscous layer(s), which It produces 

and supports. 

The existing HSIT for such a flow regime was first formulated by 

Stewartson  (1964) for a slender com using modified von Mises coordi- 

nates.    [Though Stewartson's formulation is for a cone, his approach 

is a modification of the  formulation for a "3/A-power" body -- the body 

for which similarity solutions have been shown  to exist when the body 

radius and the thickness of the viscous layer are of the same magni- 

tude (Yasuhara 1956,  1962; Luniev 1960).]   Succeeding analyses by 

Solomon  (1967) and Ellinwood and Mlrels  (1967) have followed the path 

laid down by Stewartson, employing the Lees-Dorodnltsyn "boundary layer 

coordinates," which are not especially appropriate for the flow problem 

under consideration (as the latter authors point out). 

In the Stewartson-Solomon-Ellinwood and Mlrels  (S^EM) formulation 

a shock wave is postulated, and between the shock wave and the body 

there are three principal zones of Interest:     (1) the thin inviscld 

zone, or inviscld shock layer (ISL), described by hypersonic  small- 

disturbance theory  (HSDT), bounded on one side by the shock wave and 

on the other by the viscous layers on the actual body;   (2) the thin 

outer viscous zone, or principal viscous layer  (PVL), comparable in 

thickness to the ISL,  in which the fluid velocity and temperature are 

slightly changed from their ISL values; and (3) the inner viscous zone. 
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or body viscous layer (BVL) -- which is implicitly of the thickness of 

he body, and, hence, thinner than either the ISL or the PVL — in which 

the shear and heat-conduction terms dominate the tangential momentum and 

energy equations, respectively. 

In the SSEM formulation, the matching of the solutions for the 

various zones, or layers, is not treated formally in either the ISL- 

PVL or the PBL-BVL case. 

In the following sections, a rigorous and more complete treatment 

of the very slender axisymmetric body HSIT is presented for the case 

where self-similarity exists throughout the flow field. In Section II, 

the Navier-Stokes equations are given in cylindrical polar coordinates. 

In Section III, the similarity HSDT for the ISL is given under the pre- 

sumption that the "effective body," made up of the viscous layers and 

the actual body, is a power-law body. The treatment is essentially 

that given by Stewartson (1964). In Section IV, the similarity formu- 

lation of the "Oseen-like" PVL is presented. This formulation follows 

quite closely that for Stewartson's outer viscous zone, except that it 

Introduces a modified radial variable, which simplifies the analysis 

of the axisymmetric Navier-Stokes equations. In Section V, the simi- 

larity formulation c2  the "Stokes-like" BVL is given. As in the case 

of the PVL, the proper choice of the modified radial variable greatly 

simplifies the analysis of this layer, which follows, in part, that of 

Stewartson's inner viscous zone. The details of the PVL-BVL matching 

are also presented. 

It is determined that the theory presented is valid for 
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• 

6b   « 

VL   ^ [■-•ti]"" 

1/2 Tb      exp U) «    1 

T^2     «       1 
D 

Further,   it  is found that,   to the order of approximation considered 

for  the  flow quantities,  the PVL-BVL matching requires  the  "efftctive 

body" shape,  i.e.,  the outer edge of the PVL,  to  be 

r    -    6Nhx3/4, Nh    -    Nh(e)* const. 

but  puts no requirement on  the actual  body shape, which may be 

represented as 

r    -    6bFb(x), F
b(

x)    "    arbitrary f,ic(x) 

The pressure, friction, heat transfer, and drag coefficients are 

Z  \l-l/2 

c, - c 

-'■Mil 
■•$ h(5)l" FK(X) 

Fb(x) 
+ ... 

Fb(x) 

. 
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where C  , C,  , C   - fnc8(c, o, u», T /•-) - const. These expres- 
p,o' t,o      <li0        '  '  • w S 

sions for the coefficients are equivalent to those found through the 

SSEM formulation. 

In the Appendix, the formulation of the required viscous transition 

layer (TL), Intermediate to the ISL and PVL, Is given (cf. Bush 1966). 

The ISL-TL-PVL matching for the temperature Is demonstrated. 

A schematic diagram of the hypersonic strong-interaction layers 

for flow past a very slender axiSymmetrie body Is given in Fig. 1. 
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II. THE EQUATIONS OF MOTION 

Consider the flow of a viscous, compressible gas past a very 

slender axisymmetric body. Let x. ■ Lx and r. ■ Lr represent the 

cylindrical polar coordinates along the axis of symmetry from the 

vertex of the body and normal to this axis, respectively. The length 

L is chosen so that x is of order unity in the region where the strong- 

interaction theory is valid. 

Under this formulation, the equation of the surface of this 

slender body is 

r - 6bFb(x),   with 6b - 6Db « 6 « 1,   Fb(x) - 0(1) 

where 6 represents the scaling of the effective thickness of the vis- 

cous layer(s) supported by the body.  The velocity components in the 

x,- and r,-directions are u, ■ u u and v, ■ u v, and the pressure, 11 I   •     1   • ' 

temperature, and density, respectively, are p. ■ p^p, T. ■ T^T, and 

p. ■ P P» where u , p^, T^, and p^ are, respectively, the velocity in 

the x.-direction, pressure, temperature, and density in the undis- 

turbed region upstream of the body. 

A perfect gas (p - pT) is assumed, having (1) constant specific 

heats, c  and c , with Y - (c /c ) - const.; (2) a constant Prandtl 
v1 p^ pl vl 

nuBber of order unity (o * const. * 0(1)); and (3) its first and second 

viscosity coefficients proportional to a power, u, of the absolute 

temperature (M, - uji  - w^T1", with 1/2 s u < 1; X1 - w^A - Ky^w - KU^T"
1
, 

K - const. - 0(1)]. 
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The Navler-Stokes equations of motion in cylindrical polar co- 

ordinates for the flow of such a gas are 

^ (pur) + I; (pvr)    -    0 (1) 

/   au .      äiA .   1 - e   1   dp 

„ /  dv ,    av^ . i - c i dp p lu ä7 + v 57/' + ITT ? of 

(3) 

■ ^ KIF (-" g)-fe (^ S)I 

where e - (Y-1)/(Y+1) ■ 0(1), the Newtonian approximation (of e « 1) 

not being Invoked; M2 - (P.U^/YPJ » U Og - e{(l+e)/(l-e)}M   » 1; 

end ^ - (p.u^L/p,) »1. 
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III.     THE  INVISCID SHOCK LAYER 

According to present hypersonic strong-Interaction theory  (HSIT), 

the  slender body, whose  surface  is given by r " 6.F. (x),  combines with 

the  thin,  viscous,  heat-conducting layer(s) at  the  body  surface to 

disturb  the uniform external   flow.    This combination of  the body and 

the viscous layer(s), whose outer edge is given by r ■ 6F (x), with 6, 

the  thickness parameter of  this combination   (for  the  flow regime under 

consideration,  6.   - 6D.   «  6 «  1) acts as a slender "effective 
D b 

body,"  producing an oblique  shock wave,  r m 6F .(x) > 6F.(x), and 

«n inviscid shock layer   (ISL)  between the shock wave and the "effec- 

tive body."    For this  ISL, whose  lateral extent  is 

j 
: SFk(x) s r ^ 6Fsh(x) 

the approximations of hypersonic small-disturbance theory (HSDT) are 

assumed to apply. 

Introducing the coordinates x. and r, , defined by 

r 
X'   rh " 6 (5) 

the HSDT expansions of  the dependent variables have  the  form 

u    ■     1 + 6 u.   +  ... 

6vh + 

2 2 p    -    MVph + 

T   -   es62Th+ ., 

(6) 

with fh ■ fh(xh,rh) - 0(1).    Thus,  the first-approximation equations of 

HSDT,   taking 
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(■«) 
1+u) M 2U. 

h* 2(l-u)) 
«     1 

axh\Th/      arh\    Th    / 

Th \axh   Vh arh/   c ^xh 

Th \^    h arh/     arh 

Th\axh   VhaV"1 + «K   Vharh/ 

(7) 

The Rankine-Hugoniot shock relations, which determine the boundary 

conditions for the flow quantities of Eq. (6) at rh - FgjjC^). «re 

,2 
<Vsh    -    ■<1  " e>tF>h)l  • <vh> sh (1  - OF>h) 

(ph)8h - (i + e)[F;h(xh)]
2.     (Th)8h - a - oCF.Vvr 

(8) 

To obtain  similar  solutions  to  the  general HSIT problem for a 

very slender axisynunetric body,  it  is necessary to obtain similar 

2    2 solutions  for  the  ISL.     For M    6    »1,   the  flow  in the  ISL  is  self- 

similar  if  the  shock associated with  this  flow is described by a 

power  law;  i.e.,  if 

*In the notation of Section IV,  [(c{ (l+c)/(l-c)})l"h^2u,/RT ö
2^1"*^ 

A.(6  /a.) In the  formulation of Section  IV,  it  is necessary  that 

A    ■ 0(1),   (6   /or. ) «  1;  hence,  the  requirement expressed above  for  the 

ISL is consistent with the requirements of  the PVL. 
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m 
F8h(Xh)      "      "h (9) 

For such  similar  solutions,   the appropriate   indepeadcnt and dependent 

variables are 

5h ■ v    \ ■   « (10) 

uh - -d - o-V^VV'   vh - «l • •)<(l"")vh<\) 

Ph    -     (1 + «)m2^2(1-m)Ph(Tlh). Th    -     (i   -  .^r,- ^JH, 2.-2(l-m)( 

h Wi^'h ,) 

Mil) 

When Eqs.   (10)  and   (11)  are  introduced,   the  equations of motion, 

Eq.   (7),  reduce  to 

hV 9h ;     0h 

^K^-^KM^-^K]-« „ ■h ■"h 

S^KÖ^^t1)}-^)^-«<'-«) ft ■» 
., •• -^h 

dP. 

h n n 

>(12) 

when W - [(1 - t)V. " \1- The boundary conditions for these 

equations, obtained from the shock relations, are 

VVVeh-1'    wh^-e'    as   \^1 (13) 
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The solutions of Eq. (12), subject to Eq. (13), determine 

N. - N (c, m) < 1, the value of TL at the outer edge of the "effective 

body," where W - 0 (cf., C.R.. Lees and Kubota 1957).  For 1/2 < m < 1, 

as Tl - N, , the similarity solutions yield 
li   h 

Ph-Ph.o(e'm)+ 

Vh - (Nh(c>m)/(1 - e)] + 
(Ua) 

e h.eh_o(e.n>)(Vv"   ♦-. 

«■«(..-)-[(rh)^)-']' 
■ 

Hence, the expressions for ph, vh, and Th, as rh - Fk - \\,  ««"c 

PK -   (1 + •) ♦ .A e:2(1-m)* •• h,o3h 

(Ub) 

n   /       x,-2(l-m)   . 

\ "mNh5h +   ••• 

- V'.<2(1'ra)<\-v"1* ••• 
For en - 3M,  e - 1/6, »^(1/6,  3/A) - 0.875, and nh(l/6,  3/4) - 0.M9; 

E(l/6,  3/4) - 0.313. 
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IV.    THE PRINCIPAL VISCOUS LAYER 

Just as  there Is a principal viscous  layer,  usually designated as 

the viscous  boundary  layer, which acts as  an  "effective body"  in  the 

HSIT for flow past a  flat plate,  it is  postulated that there  is a   - 

principal viscous  layer  (PVL), having a thickness ratio of 0(6)   (with 

6    - 6D.   «  6 «  1), which acts as an  "effective body" in  the HSIT  for 
D D 

flow past a very slender axlsymmetric body with a thickness ratio of 

0(6. ). As in the case of the HSIT viscous boundary layer for a flat 
D 

plate,  the HSIT PVL for a "ery slender axlsymmetric body, which sup- 

ports the ISL,   is considered to be a high temperature,  low density 

region,  across which  the  pressure  is constant,  at whose outer  edge, 

r ■ 6F. (x) ■ 6N x   t  the flow quantities u, T, v, and p have the be- 

havior:    u - 1,  T/es - 0, v - 6mNhx"(1'm),  and p - MVI^X"
2
^""^ ' 

where N    and IL   are constants defined  in Section III. 

The appropriate coordinates of the PVL are taken to be s.   and 

tk.  given by 

log {^| - - |¥t (15) 

From the definition of t. ,  it  follows  that 

tk - 0  as  r - 6Fk;   tk - log l^l- as r - 6D. F. 
b b 

The expansions for the flow quantities in this layer, following, in 

part. Stewartson (196A), are 
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f 

u    -    1+Vk+ 

v    -    (>f\ exp  (-tk)vk +   . ÖCmN^^1'"1^ exp  (-tk)vk+  . 

' 

esakTk + 

2 2 
P    "    M 6  pk + (16) 

with a.   ■ parameter much  less  than 0(1) to be determined, and fk ■ 

fk(sk.tk)-0(l). 

For  these representations,  with 

1 Ha.    M2a) 

WHf}) 
RL6 

4 ak        -    0(1),        6'    «    o^   «    1 

the leading terms in the equations of motion for the PVL are 

^ - o,  i.e.. pk - pk(sk) - n^-^1-) 
k 

(Ua) 

m-^)--i--'>t^(t) dtk\ Tk 
(17b) 

*The requirements of (1) M^aJ^/R. 6* - 0(1), (2) 62 « a. « 1, 
2 2 k   L k 

and (3) M 6 » 1 yield the following individual inequalities: 

M-2/(1-u)«6« 1,   M"4^1-) « . « 1 k 

1 « M21" « ^ « M2(2+U,) ,   or   M"2 « VL -  (M2^)172 « 1 

Further,  the modified interaction parameter,  x  »  obtained from  (1) and 

(3)  is 

/   -   {M2(2+^/RL} 
1/2 

»     1 
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*A\'3 -p (- 2t
k> !k ^v +   Z1: Vk\ !lk 

T
k 

a8k m \ Tk / atk 

k at
k  \k at

k/ 

-  2e(l  - m) ] 
(17c) 

nhNh8tm'3 «P  <■  2t
k) 

k      k  . 
T

k
0S

k I T
k / at

k 
+ 1 + « (1   - m) 

a  atk\katk; (17d) 

Equations (17b-d) must satisfy the boundary conditions 

Ms.,.  0) - T.(8.,  0) - 0,   v.(s.,  0) - 1 
k
v k' k

v k kK k' (18) 

at the outer edge of the P/L in order that the PVL solutions may match 

to those of the ISL. 

For 

wv ■ ww 
\<\'\> - Vk^W (19a) 

v
k
(8

k'tk>    "    Vk
(t

k> 

where 

2     l/(l+u)) 

A
k<8

k> 

O   \ 

(Am-3)/(l+U)) 

2  l/(l+u.) 

M for m . 3/4 (19b) 
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the  self-similar ordinary differential  equations and boundary oonditions 

governing the  flow in  the PVL are 

d    /      dUk\     exp(.2tk) r . 3.   Uk /l:Vk\dUk 

/    d9k\    a.xp(-2tk) T.    ■ 3) ,     /^ - Vk\ «»k      H 

d^\ekdtk/"     m       U + J + m\-^-/dtk 
+ rT 

(20a) 

(1 - ■) 

(20b) 

*c   (1 1   +   €    U - m) 

(20c) 

uk(o) '   8^(0) - o,   vk(0) = 1 (21) 

Indeed, it is found that, in conjunction with Eqs. (20^) and (21), 

Eqs. (20b) and (20c) yield, upon integration, 

®k IT    
2 K^TJI   

exp (- 2tk> t dtk 
k >/ n k 

U. 
- e (i^Jft) [j . exp (. 2tk)J + ^ (1 . vk) exp (- 2tk) 

(22a) 

a    k dt. 
r/2m - 1  .  2e  /I - a\~. f,      , 0k .', 

+ (1 - Vk) exp (- 2tk) (22b) 

Near the outer edge of the PVL, where t -♦ 0, it is found that, for 

(1 - u») = 0(1) > 0, the asymptotic solutions for the flow quantities in 

Eqs. (20) are 
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k k,o k 

k k,o k 

Vk    "     1  -\,o\ + "' (23a) 

where 

V ■ fe (H^X2<2" ■ » - ^^^ + rH " ■ •)<• - *>]} 
1/(14«) 

,-1 

„       . i (1+JS) [2(2™ . I) - US - m (23b) 
k.o      m\l-(u/L l + u)J N"/ 

Wh^-n m ■ 3/4, 

k,o ^(^[-^(V)]}1'^.- 

A comparison of Eqs. (14) and (23) shows clearly Chat the func- 

tional behaviors of the temperature in the ISL and the PVL, as n. -» Nh 

and t. -> 0, respectively, do not permit direct matching between these 

* 
two layers, and the introduction of an intermediate transition layer 

is necessary to complete the matching. 

Near the inner edge of the PVL, where t. -♦ », it is seen from 

Eqs, (22a-b), that 

* 
The details of the formulation of this transition layer, which is 

consistent with that introduced in the HSIT for flow past a flat plate 
(Bush 1966), are presented in the Appendix. 

■ 
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dU.   . ^ „» Uk ek dT 4 [2<2m - ^ I exp(-2tk)^dtk-e(l-m)J 
k o K 

Hence, the shear and heat-conduction terms are found to dominate the 

momentum and energy equations, respectively, yielding, in this limit, 

the following asymptotic solutions of the similarity equations: 

a  - 8.  ti/(W,ü) + ...ÖT - 6^. A.B.  t, 
k     k,« k '       S k Tc k,« 

1/(1-Hi0 . 
T • • • 

k 

k    k,« k ' k Tc k,<*> k 

vk ■ vk..+"Ov ■ 6K8k(1"m))vk,-exp(-tk) + ---(24a) 

where 

l/(l-*u) 

% tm
   - {^ (1 f ■.,)[(2m - l)+T2S_a.m)]} 

^[2(2m. I) J" .xP (- 2tk) ^ dtk - .(I - »)J P- 
k,» 

k.»    \ m /  1 ♦ u) \ 2m / (24b) 

With the possible exception of the asymptotic solution for v, 

the solutions of Eqs. (24a-b) do not satisfy the usual nonslip, 

temperature-specified boundary conditions at the body surface 
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u,v  - 0,       S- - «PM es      w specified  fnc(s. ), as  t.   -* log m- 
(25) 

Therefore, the analysis of an additional layer, interior to the PVL, 

in which t. ■ o( [ log(l/D. )] ) - <», Is introduced in the next section 

in order to describe the adjustment of the flow in the vicinity of 

the body surface to satisfy the surface boundary conditions of Eq. (25) 
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V. THE BODY VISCOUS LAYER 

For the viscous layer adjacent to the body surface, referred to 

In this Memorandum as the body viscous layer (BVL), the appropriate 

coordinates are s. and t, , given by 

x,   tb ^ - M - % [k + - ft)] (26a) 

where 

- [*• it)] 
-1 
« 1 (26b) 

From the definition of t. , It follows that 
D 

Fb 
tb -* 1 as r -. 6DbFb;   tb -» ^  log j- 

k 
0   as r -♦ OF. 

The expansions for the flow quantities in this layer [cf. 

Stewartson, et al. (1964)] are 

u ■ u. + ... 
D 

v - OF' exp 

:%Vb+"' 

'Kb(i-n)] 6lBlNh8b(1"w|exp ^v m \ Fb d8b; 
v,   + ... 

D 

T-esTb+ ... 

2  2 
p ■ M 6 p.   +  ... 

(27) 

with  fb-  fb(8b>   tb)   =  0(1). 

^ 
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Subject   to  later verification as  to consistency,   for T. , 
b 

6 A>k  , and (Qk  /T.) exp (-2/T.) « 1, the leading terms in the 

equations of motion for the BVL are 

5- o.     i....Pb-wnh.;
2<l-> 

b 

(28a) 

/8b ^b^1  M    ,^1   (^  ^b   8b ^ 
vr&r)   (1 -m)+ 2 VfTär-irär; b      b 

s.   ck 
ub      (28b) 

5tb Vb atb/ 
(28c) 

J_ /T- üb\ . _2a_ _. fef 
3tb \ b atb/      1 + e    b \atb ' 

(28d) 

The boundary conditions to be satisfied at the body surface are 

Vv1) ■ 0'    Vvl) - ^ (29) 

Taking the wall temperature to be constant so that 

cp  » ®    = const, 
w     b,w 

(30a) 

and taking the flow variables to be of the form 

VV tb) ■ ub(tb) 

Vv S) \^ 

vb(8b' tb) I <->(«) 'b^b) 
(30b) 
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the self-similar equations and boundary conditions governing the flow 

in the BVL are 

Vu    =    UK (31a) 
b b 

dU 
d   (e'U     b>   .   0 (3lb) 

dt.    N b dt,/ 

d     '      <,S>- ^ "- -  /dU    2 

k^-T^^d^)    -   0 C3ic) dtb -. -b 

Ub(l)     -    0. eb(l)     -    ®b>w (32) 

The first integral of Eq. (31b) is 

dUK 

®K 7^ - " SK (33a) b dtb      b 

where S., the shear function, is a positive constant. The first 

integral of Eq. (31c) is 

1/2 da 

^b 
^dT - ±2(rTT)   Sb^b.m-V

1/2 <33b) 

where o.  , the maximum value of 9. in the BVL, is a positive constant. 

The positive branch of Eq. (33b) represents the temperature field 

between the point of maximum temperature, t, = t  , and the outer 

edge of the BVL, tb -♦ 0; the negative branch of Eq. (33b) represents 

the temperature field between the point of maximum temperature, 

t. ■ t,  , and the body surface, t, -♦ 1. 
D   b,m b 
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For U - 1 and G - Ü as t -« 0, Eqs. (33) combine to yield the 

Crocco-like second integral, 

ub - ' ■H*) 
1/2 

1/2 
b,m  N b,m   b 

1/2 
(34) 

whose negative  branch  is valid  for  0 ^  t.   < t.      ,  and whose  positive 
b   b ,m 

branch is valid for t.  < t.S I. From an evaluation of the positive 
b,m   b 

branch at t. ■ 1, i.e., for U. ■ 0, 9. ■ 0.  , it is determined 
b  ^b.w' 

that 

9. i,m   4 1 + e \    a   b,w/ 
(35) 

When Eq. (33b) is solved to determine P)L(tK). the solutions 

UL(t.) and VL(tL) follow directly from Eqs. (3^) and (31a). 
b b      b b 

From direct integration of Eq. (33b), taking ©.(0) ■ 0 and 

0.(1) ■ 0.  , it is found that the shear function, S. , is ;b '   b.w* '  b 

,2urflr „1 

'b       . 1+t 
4 h (Tf7)"(> + ^ \J   11 ^ - V-m " * L  *' - z'-1/2 «] 

z .*(i±i)9h (i+i^9h y o        \   a    /    b,w  \ a        b,w/ (36) 

*To give an idea of the magnitude of Sb, it is noted that 

•b(«■ i %,w■«)■ (5)[(Thrf2■ *■" £" "I ' 
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Thus. near the outer edge of the BVL, where t, - 0, it is seen 

from Eq. OSb"» that 

d& 
^  b    2  c (^   .  1 ±  e ö  \ 

and, hence, it follows that, at the outer edge of the BVL, 

b b,o ^ 

F. 
v -  5(1 - m) — V,        exp 

s,     b,o      r 

exp  (-t ) +  ... (37a) 

where 

-    • [('+ ^(rfrX1 + H^ eb,.)j 

u.       =   (i + uOS.O b,o b  b,o 

Vu =     I (37b) 
b,o 

To verify the similarity formulations of the PVL and BVL, at least 

insofar as these two layers are interrelated, it must be shown that the 

solutions of Eq. (2Aa-b) match to those of Eq. (37a-b).  The solutions 

of the PVL and the BVL are matched through the introduction of the 

intermediate limit, lim.L. defined by 
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s. . ■ x fixed, 
kb kb V o.M fixed; 

Tb ^ Tkb * ^    Fkb(x)  '   arbltrary fnc<x)   ■   oc1) 

In this limit, 

F 

Ht ■ ZT [\h+ Tkb lo8 ST)] •* r: ^ ^ 'kb kb'-1  'kb 

■ h [\*+ Tkb 1O
« (rr)] kb;j ' Tkb ^ 

- 0 (38) 

The PVL-BVL temperature matching requires that 

lim kb |jwk{*kb. i-•.)- - le T /s     Ik VbrW   T 
^'kb + ...I + - o 

kb 

(39a) 

From Eqs. (24) and (37), it is seen that Eq. (39a) reduces to 

limkbl esQ'k Vk 

1 
|es[®b 

••Vkb' 

/Vkb\ 
•0\ Tkb / 

1/(1+0») 

+ ... 

l/(l+u.) 

+ .. 

+ ... 

+ ... h 
(39b) 

and, hence, the temperature matches if 

'(t)l (40a) 
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k k,"    b,o ^^ h   \ H*) \< 

b \    c   b,w/ 

The PVL-BVL longitudinal velocity matching requires that 

(A Ob) 

limkbIKl + 

I.e., that 

limkb||il + ak 

vk(v.i-)-!-k(v.^f-) 

l/(l+tt)) 
+  . 

-  0 

(Ala) 

-"b       I") b'0 \  Tkb / 

l/(l+tt)) 
+   . . . +   ...U    - 0 (41b) 

Thus,   the  longitudinal  velocity matching reconfirms  the requirement 

that ^u " Tt. i  and yields  the additional  requirement  that 

A. U.   - -u.    ^ 
Tc k,»   b,o £? 

-Ut 

3 
m ■ -r | • J" eXP <-2tk, J ^ - - [(i^X, + i^ e^j- 

(42) 

The PVL-BVL radial velocity matching reconfirms the requirement that 

m - 3/A. 

An Important fact, Implicit in the results of Eqs. (40a-b) and (42), 

Is that, although, to the order of approximation considered for the flow 
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quantlties, the PVL-BVL matching requires that m - 3/4, and, hence, the 

"effective body" shape Is given by 

6Nh(e,m-f) 3M 

This matching does not  require the specification of  the  (actual)  body 

shape, and so the equation for this body remains 

r    -    6.F   (x), F
b(

x)    "    arbitrary  fnc(x) 

Therefore, in the present first-order analysis, the flow in the PVL Is 

independent of the exact body shape. This point is not made explicitly 

in the first-order analyses of Stewartson, Solomon, and Ellinwood and 

Mirels. 

Further, since, from Section IV, 

+ e 1 \   ~2  k \ - («(Hfi)    t 
where 

•k - <ni^-   ' • Or) •„ ■ [«<)] h 
O D 

it follows that the parameters D. and T. are given (in terms of the 

measure of the actual body thickness ratio, 6. , etc.) by 

Ilk 

L 

« 1 

(A 3a) 

• 
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i.  e.. 

-(t)f log (43b) 

In addition,   the  inequalities required  in the  formulation of Eqs.   (28a-d), 

l+uA For, 
Tw. b»       l+ui»    I     2 

K \    b 
K) exp   |- """I    «     1 

make   it necessary  that V    satisfy 

»i« |l0»(^)| 

vl-l/2 

^ « ' 04 ) 

From Eqs.   (43) and   (AA),   6. ,   itself,  must  satisfy 

6b«Db    log (t)l 
1/2 1/2 Tb        exp «    1 (A5) 

which  requires  that  the actual  body must be very  slender   for  the  theory 

presented to be valid.    For example,  if T.   ■ 10    ,  then  6.   «  10 

It  is  found that  the pressure,   friction,  and heat  transfer coef- 

ficients are,  respectively, 

c     -   —Sr 
P p u2 

0O   OB 

iHl}|r^('{Hl})l+^(-^%.J 
-1-1/2 

1/2) 

i     i-2ii 

C        V p,o    x ..,- 

1/2 

+   . (46a) 
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2|M M 
P  u 

<.M)" 

!. 
t.o «, 

V2 

1 

logii 
6b) 

loil-» 

Fb(x) 

Fb(x) 

+   ... (46b) 

■MSI. 
0  u 
^00    CD 

2 \ a        h,vj    f 

v2 

q.o  6b 
log|-f 

6b^ 

-1 
Fb(x) 

(^6c) 

The friction drag coefficient is 

, 0 Ir^ dx1 

'D.f P.4 Cr^ 

v2 

■2C^ 

loil-fl 
6W 

Fb(x) 
(47a) 

The pressure drag coefficient is 
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'D,p 
fS^Mh 

p«u- t^t 

C      V p,o x log I-I 

•1/2 

!l+ix-3/' 
I ^17//: 

Fb(5r) 
m dx +  ... 

(A 7b) 

Thus,   the  principal contribution  to  the drag coefficient  is  from 

friction,  since 

where 

D.f \2Cf,o/v 
logli 

I    Fb(x) 

1/2 

x 
i    -3/2 f   ?1/J 
n    A X 

^K^) 
dx 

r1 «   i 
V 

X 

In  terms of  the  parameters  introduced  in  this Memorandum,  the 

interaction parameter of  Ellinwood and Mirels,  A/E,„.,   is given by 
IKM 1 (EM) 

(EM) 
_x 
.2 

K(*) 
log A 

(EM) 
108 (l)+- (48) 

From Eq. (48), then, it follows that the expressions for C , C , C , 

Cn f  given in this Memorandum are equivalent to those found by 

Ellinwood and Mirels for these coefficients.  (Further, since, in turn. 
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Tb " 2 [l08 ^EM)1"1 + '• 

it also follows that the expansion parameter of the PVL, a  ,  is line- 

arly proportional to the expansion parameter of Ellinwood and Mirels, 

When the (actual) body is a cone, the body studied by Stewartson, 

Fb(x) 

cone 

and the pressure, friction, heat transfer, and drag coefficients are 

C  V  log 
p,o x ' 

- l"1/2 

(if)] 

.•(öi-(i 

(A9) 

The  foregoing expressions for C, and C    are equivalent  to  those found 

by Stewartson. 
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Appendix 

THE VISCOUS TRANSITION LAYER 

To span the distance between the ISL and PVL, a viscous transition 

layer (TL) Is Introduced, whose coordinates are taken to be x and r , 

defined by 

{(f)  V'l   (ft) - 5. '3rt}       (A1) xt - x,     rt - -^-^ B;         (A-l) 

where B Is a parameter much less than unity to be determined.  The 

expansions for the flow quantities In this layer are taken to be 

k t       t 

" ^\\m + \\ + "-} 

T       h\\ Tt+ ••• 

p - M262pt + ... (A-2a) 

The behavior of u and T In the ISL    ?VL requires 

6
2 «  B2/^>c>  <. .  -  Ty(W «  1     (A.2b) 

t       k      k     b v   ' 

Then, the equations of motion for this TL reduce to 
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äp 

äT  "   0'      i-e-' pt   "   pt(xt> "  Vt 
1/2 

twt) axtutrAxtTt 

I_/!!t+     !!t\    1   -3/2       üJL/T»^ 
Tt    \axt

+ vt örj- 2xt       "   nh art \Tt ivj 

ÜÜ/üt.v   üt\+^_x-3/2    .    l\    WT.!M 
Tt    \axt    

vt art/   i + c xt o i^ art ^t art/ (A-3) 

To  find a self-similar  solution for T. ,     take 

Tt - rt9t(ct) (A-4a) 

where 

^t    "    xt' ct - —b 
Vt 

(A-Ab) 

where a is a constant to be determined, and b ■ b(a) - 3/A + [(1 + u))/2]a 

Then, the continuity and energy equations combine to yield 

»V* dCt 

d®. \ ^ 
^ (B* ^ dCt \ t dcJ 

dB 

(A-5) 

For  the sake of brevity,  self-similar solutions  for u    and v    are 
not considered in this  presentation.    It can be seen,  however,   from 
Eq.   (A-3),   that, once   the  self-similar solution  for T    has been de- 
termined,  such solutions  follow directly. 
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* 
(This equation  is   invariant under  tne  transformation C..  "^ C,. + C*» 

where  Q    ■ const.) 

Considering that the TL temperature solution should approach the 

PVL temperature solution for {L -• " •, it is found that one asymptotic 

solution for the TL temperature, based upon a balance of the inviscid 

and viscous terms of Eq. (A-5), is 

0  - ® . (-r )2/(1+u,) + .      with® .  -  (A.Q,  ) Jt     t,kv ^t' ' t,k    v k k.o^m» 3/4 

7^ (A-6) 
N x Vt 

Considering that the TL temperature solution should approach the 

ISL temperature solution for Q    -»+00^ it is found that one asymptotic 

solution for the TL temperature, based upon the domination of the in- 

viscid terms in Eq. (A-5), is 

0t  " ^t.hC + •'• > 

.        , .    2[a(l + e) + el ,  , 
where c ■ c(a) - - -L—i i i   , Q^ . ■ const, to be determined 

(3 + UJ)(1 + e) + 2c     t'h 

*t - *tAV+ ■■• ■   »-"«- •<«> ■ [(1 w: - CJ 
(A-7) 
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The temperature  solutions of  the PVL and  the TL are matched 

through  the introduction  of  the  intermediate   limit,   lim,    ,  defined by 
K C 

L>) 
'kt 

kt 
fixed, B      «     B,        «     1 

t kt (A-8) 

In  this  limit, 

lo«{(1 -^kt)"1)   *   Bkt\t+ •••-o 

The PVL-TL temperature matching requires  that 

lim kt 
GsVk(8k' 1O8{(1

 ""ktV'1^* • 

9SakBt 
2/(1+UJ)T /? ^  . Bkt\t' 

B. (A-9) 

From inspection of Eqs.   (19),   (23),  and   (A-6),   it  can  be seen that 

the matching follows directly. 

The  temperature  solutions of  the  ISL and  the TL are matched 

through  the introduction of  the  intermediate   limit,   um,    ,  defined by 

fcN ■: 
'ht 

In  this   limit. 

ht 
fixed, Bt    «    Bht    «    1 

(A-10) 
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\    '    Nh<1 + Bht\t>-Nh 

^ ■ Gf) V 

The  ISL-TL  temperature matching requires  that 

2. li % ■1 V VWL + BhtV>+ 

esVt     Tt^t'   B   ;+ ••• (A-ll) 

From Eqs. (1A) and (A-7), it can be shown that the matching requires 

that 

.a ' -1 
T, 

B 
,2(1+0)) 

,  with  a 

®t.h = *hNh 

1 + m(Ht) 
(A-12) 

. 
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