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PREFACE

Hypersonic strong-interaction theory provides a framework for
the analysis of the flow past a slender body during portions of its
hypersonic flight through the atmosphere. Performance predictions
and scaling laws following from such an analysis can be used in tra-
jectory and discrimination studies.

In this Memorandum, a theoretical study is made of the laminar
flow past a very slender symmetrlic body when the Mach and Reynolds
numbers are large, in which case Navier-Stokes equations are reasonable
models for the equations of motion for a viscous heat-conducting gas.
It is well known that the flow-field structure for two-dimensional
bodies exhibites important qualitative differences from that for axi-
symmetric bodies, and one objective of this study is to ianvestigate
these differences and to develop a consistent theoretical solution of
the equations of motion., Matched asymptotic expansion techniques are
employed to develop the significant features of the flow field, and
simple expressions are presented for drag and for heat transfer in the
extreme case where the body diameter is much less than the thickness
of the viscous layer supported by the body.

In addition to its relevance for discrimination and performance
studies, the present Memorandum should be of interest to those involved
in the numerical computation of viscous flows, since it provides a dif-
ficult test case that can be used to make needed checks on numerical work.

This study, sponsored by the Advanced Research Projects Agency,
is part of continuing RAND Corporation resesrch on hypersonic gasdynsmics

for spplicstion to esrly reentry phenomenology.

| 3
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The Navier-Stokes hypersonic strong-interaction theory is presented
for the flow of a viscous, heat-conducting, compressible fluid past a

very slender axisymmetric body, where Db’ the measure of the ratio of

the radius of the body to the thickness of the viscous layer(s) (which
the body produces and supports), goes to zero. It is assumed that the
fluid is a perfect gas having constant specific heats, a constant
Prandtl number, 0, whose numerical value is of order unity, and vis-
cosity coefficients varying as a power, w, of the absolute temperature.
Limiting forms of the solutions are studied as the free-stream Mach
number, M, the free-stream Reynolds number based on the body's axial
length, RL, and the modified interaction parameter, x' =
{M2(2+w)/RLlog (1/Db)}1/2, go to infinity.

By means of matched asymptotic expansions, it is shown that, for
(1 - w) > 0, four distinct layers make up the region between the shock
wave and the body. The self-similar leading approximations for the
behavior of the flow in these four regions are analyzed, and it is
found that an arbitrary body supports 3/4-power viscous and shock

layers.
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*
SYMBOLS
CD e " friction drag coefficient in Eq. (47a)
1
Cp - = pressure drag coefficient in Eq. (47b)
?

c Cq = friction, heat-transfer coefficients in Eqs. (46b) and (46c)
C_ = pressure coefficient in Eq. (46a)
c._ ,c = dimensional specific heats

Db - 6b/6’ thickness ratio parameter

k = kllkm, nondimensional heat-conduction coefficient
L = characteristic longitudinal body length
M = u@/(ypw/pc)llz, free-stream Mach number

p = pllpo, nondimensional pressure
RL a PpUgl/iy, free-stream Reynolds number
r = rI/L, nondimensional radial distance, measured from axis
of symmetry of body
t. = nondimensional independent variables, BVL in Eq. (26a)
= nondimensional independent variables, PVL in Eq. (15)
T = TI/T“, nondimensional temperature

u,v = “1/“o' V1/“c' nondimensional axiz) and radial velocity

components
= (M2w )1/2
VL - /RL , rarefaction parameter
T 2w 1/2
Vx (M /RLx) , rarefaction parameter

= xI/L, nondimensional axial distance, measured from vertex
of body
o, = expansion parameter, PVL
6 = thickness ratio of "effective body"

6, = thickness ratio of actual body

*
The basic nomenclature is given here. Additional quantities are
defined as they are introduced.
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€ (y=1)/(y+l), Newtonian parameter

Gs e{ (1+e)/(1-¢)} Hz, stagnation temperature parameter
A [G[(1+¢)/(1'¢)}]1+w Vf Tblba, parameter, PVL

A kl/ua, nondimensional second viscosity coefficient
[V "1/"-' nondimensional first visc-sity coafficient‘
[ pl/p”, nondimensional density

g ulcpl/kl, Prandtl number

18 [log(I/Db)]-l, modified thickness ratio parameter
P Tw/es’ nondimensional wall temperature
X' {H2(2+w)/RL log (1/Db)}l/2, modified interaction parameter
w viscosity exponent

Subscripts

b body viscous layer (BVL)

h inviscid shock layer (ISL)
ht ISL-TL matching

k principal viscous layer (PVL)
kb PVL-BVL matching
kt PVL-TL matching

t viscous transition layer (TL)

w body surface

1 dimensional quantity

® free-stream dimensional quantity



1. INTRODUCTION

The purpose of this Memorandum is to enlarge upon the existing
hypersonic strong-interaction :heory (HSIT) for viscous, compressible
flow past a slender axisymmetric body, whose cross-sectional radius is
much less than the thickness of the viscous layer(s), which it produces
and supports.

The existing HSIT for such a flow regime was first formulated by
Stewartson (1964) for a slender coffé using modified von Mises coordi-
nates. [Though Stewartson's formulation is for a ébne, his approach
is a modification of the formulation for a '"3/4-power" body -- the bodyv
for which similarity solutions have been shown to exist when the body
radius and the thickness of the viscous layer are of the same magni-
tude (Yasuhara 1956, 1962; Luniev 1960).] Succeeding analyses by
Solomon (1967) and Ellinwood and Mirels (1967) have followed the path
laid down by Stewartson, employing the Lees-Dorodnitsyn ''boundayy layer
coordinates,' which are not especially appropriate for the flow protlem
under consideration (as the latter authors point out).

In the Stewartson-Solomon-Ellinwood and Mirels (SGEM) formulation
a shock wave is postulated, and between the shock wave and the body
there are three principal zones of interest: (1) the thin inviscid
zone, or inviscid shock layer (ISL), described by hypersonic small-
disturbance theory (HSDT), bounded on one aide by the shock wave and
on the other by the viscous layers on the actual body; (2) the thin
outer viscous zone, or principal viscous layer (PVL), comparable in
thickness to the ISL, in which the fluid velocity and temperature are

slightly changed from their ISL values; and (3) the inner viscous zone,

Y
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or body viscous layer (BVL) -- which is implicitly of the thickness of
he body, and, hence, thinner than either the ISL or the PVL == in which
the shear and heat-conduction terms dominate the tangential momentum and
energy equations, respectively,

In the SSEM formulation, the matching of the solutions for the
various zones, or layers, is not treated formally in either the ISL-
PVL or the PBL-BVL case.

In the following sections, a rigorous and more complete treatment
of the very slender axisymmetric body HSIT is presented for the case
where self-similarity exists throughout the flow field. In Section II,
the Navier-Stokes equations are given in cylindrical polar coordinates.
In Section II1, the similarity HSDT for the ISL is given under the pre-
sumption that the "effective body," made up of the viscous layers and
the actual body, is a power-law body. The treatment is essentially
that given by Stewartson (1964). In Section IV, the similarity formu-
lation of the '"Oseen-like" PVL is presented. This formulation follows
quite closely that for Stewartson's outer viscous zone, except that it
introduces a modified radial variable, which simplifies the analysis
of the axisymmetric Navier-Stokes equations. In Section V, the simi-
larity formulation cI the '"Stokes-1like' BVL is given. As in the case
of the PVL, the proper choice of the modified radial variable yreatly
simplifies the analysis of this layer, which follows, in part, that of
Stewartson's inner viscous zone. The details of the PVL-BVL matching

are also presented.

It is determined that the theory presented is valid for



-1/2
1 L 1/2 i} 1)
6b << Db [log (Db)] T,  exp ( T <«< 1
-1/2
- 1 1/2
VL << [log (_Db)] = Tb/ <«< 1

Further, it is found that, to the order of approximation considered
for the flow quantities, the PVL-BVL matching requires the 'effzctive

body" shape, i.e., the outer edge of the PVL, to be
r = 6th3/4, Nh = Nh(e)- const.

but puts no requirement on the actual body shape, which may be

represented as
r = bbe(x), Fb(x) = arbitrary fuc(x)

The pressure, friction, heat transfer, and drag coefficients are

_ Vx -1/2
CP = cp,ovx log ] P cog
b
c (Vx. 1 (Vx) " [Fb(")]-l
cC, = —— ogl -5 % ocoo
f f,o bb 6: x
v v -1 Fb(x) -1
cC = C _x lllog 21t + ...
q q,° 6b 62

X
b
_2\ ~ 11
v v F, (x)
X X b
®p = %, 62»08(62)] I x
b b

-2
+ L 4




where CP c c = fncs(e, 0, w, TW/BS) = const. These expres-

,0 f,0? "q,0
sions for tha coefficients are equivalent to those found through the
SSEM formulation.

In tha Appandix, the formulation of the required viscous transition

layar (TL), intarmadiate to the ISL and PVL, is given (cf. Bush 1966).

Tha ISL-TL-PVL matching for the temperature is demonstrated.

A schematic diagram of the hyperaonic strong-interaction layers

for flow paat a very slender axiaymmetric body is given in Fig. 1.
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11, THE EQUATIONS OF MOTION

Consider the flow of a viscous, compressible gas past a very
slender axisymmetric body. Let X, = Lx and r, - Lr represent the
cylindrical polar coordinates along the axis of symmetry from the
vertex of the body and normal to this axis, respectively. The length
L is chosen so that x is of order unity in the region where the strong-
interaction theory is valid.

Under this formulation, the equation of the surface of this

slender body is

r = b F (x), withs = 8D <<§ << 1, F (x) =0(1)

b

where § represents the scaling of the effective thickness of the vis-
cous layer(s) supported by the body. The velocity components in the

x,- and rl-directions are u; = u u and Vi " Y, and the pressure,

1
temperature, and density, respectively, are Pp = PoPs T1 = TT, and
= PpP» Where u_, p_, T , and p_ are, respectively, the velocity in

the xl-direction, pressure, temperature, and density in the undis-
turbed region upstream of the body.
A perfect gas (p = pT) is assumed, having (1) constant specific
heats, c¢ and ¢, withy = (¢ /¢ ) = const.; (2) a constant Prandtl
V1 P LY
number of order unity (c = const. = 0(1)); and (3) its first and second
viscosity coefficients proportional to a power, w, of the absolute

temperature [u1 == u“Tw, with 1/2 < w < 1; Al =y A=Ky ys= Ku“Tw,

K = const. = 0(1)].



The Navier-Stokes equations of motion in cylindrical polar co-

ordinates for the flow of such a gas are

& Gun) + 5= (ovr) = 0 (L)

Rl ()L Mero Beil ol @

ox or l+e¢ M2

.RLL ({(24-1() Xyl +Kax})+2'r"’gr(lr’-)+g—x('r“’{g—:+g—:})]]
(3)

(G E) Hr (B )

(R Bk e 2]

0 2 2 2 2
b G B 4R @+ G
+Tie RLKH rbr(r)+aﬂ]] (%)

where ¢ = (y-1)/(y+1) = 0(1), the Newtonian approximation (of € << 1)
y 2
not being invoked; M2 - (p“u:/vp,) >» 13 es = ¢{(1+e)/(l-€)IM >> 1;

and RL = (p“uaL/u“) >> 1,



I11, THE INVISCID SHOCK LAYER

According to present hypersonic strong-interaction theory (HSIT),
the slender body, whose surface is given by r = 6be(x), combines with
the thin, viscous, heat-conducting layer(s) at the body surface to
disturb the uniform external flow. This combination of the body and
the viscous layer(s), whose outer edge is given by r = 6Fk(x), with §,
the thickness parameter of this combination (for the flow regime under

consideration, § = 6Db << § << 1) acts as a slender "effective

b
body," producing an oblique shock wave, r = 6Fsh(x) > 6Fk(x), and
an inviscid shock layer (ISL) between the shock wave and the "effec-

tive body." For this ISL, whose lateral extent is
6Fk(x) Sr< 6Fsh(x)

the approximations of hypersonic small-disturbance theory (HSDT) are

assumed to apply.

Introducing the coordinates x and r, , defined by

h 3
= X r = _l'
*h ’ h 3 (5)

the HSDT expansions of the dependent variables have the form

u = 1+62uh+ ) \
v = 6vh + ...
S (6)
p = M262ph P ooc
2 )
T = 986 Th + ...

with fh = fh(xh,rh) = 0(1). Thus, the first-approximation equations of

HSDT, taking



a®

+ 1+w 2w *
[ (c {%—:—f&}) ;;;!-———-] << 1

are

P, du, du, 3P},
T \x tVvhar, Yo 7 O
h \%%h h h k ¢))

p, [OV, v, op
- ("Jl'+ \/ -Jl) + e 2 . 0
Brh

Bh BTh s BTh 2 Bph Bph
— vy —)-E=E—[—+v. =] = 0
1 + ¢ Bxh h arh

The Rankine-Hugoniot shock relations, which determine the boundary

conditions for the flow quantities of Eq. (6) at r, = Fsh(xh)’ are

@), = (- olFL 6, (), = (- F,(x)
(8)

)y, = A+ oFLe1% @y, = (- olF, &)1

To obtain similar solutions to the general HSIT problem for a

very slender axisymmetric body, it is necessary to obtain similar

solutions for the ISL, For M2 62 >> 1, the flow in the ISL is self-

similar 1f the shock associated with this flow is described by a

power law; i.e., if

* -
In the notation of Section IV, [(c{(1+c)/(l-c)])1+“h2w/RL62(1 w)] =
Ak(62/ak)l+w. In the formulation of Section IV, it is necessary that
A = o), (62/ak) << 1; hence, the requirement expressed above for the

ISL is consistent with the requirements of the PVL.
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m

Fantn) = % (9)

For such similar solutions, the appropriate independent and dependent

variables are

o]
=

N SR (10)

x
- 3

o= - -on?e 2™y, v = - ome Gy () I
(1)
b, = A+ome 2™y, 1 - - omle 2™ ’

h (M)

When Eqs. (10) and (11) are introduced, the equations of motion,

Eq. (7), reduce to

P du dP
_h _h l - m) ] [ —h l -m ] -
[wh dnh B 2( m Uh v G nh dﬂh +2 ( m ) Ph 0

=

r(l2)

%["h{;’:: + (Zm;‘ 1)} - (l;—“l) “hj te(l-e) %: =0

® Ly .
;‘:[whan—h'2(l;m)®h]-lzie[wh dn:'z(le)P“] ")

wher: W= ta - OV, - nh]. The boundary conditions for these

equations, obtained from the shock relations, are

u,v,P, 6 =1, W o= -, as ﬂh-'l (13)
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The solutions of Eq. (12), subject to Eq. (13), determine

Nh = Nh(e, m) < 1, the value of ﬂh at the outer edge of the "effective

body," where W, = 0 (cf., e.g., Lees and Kubota 1957). For 1/2<m< 1,

1
as nh - Nh’ the similarity solutions yleld

Ph - Ph.o(e,m) + ..

v, = {N (¢,m)/(1 - )} + ...
B LR (14a)

-E
@h = ®h,o(e’m)(nh-nh) * oeee,

-1
m 1 +
£ = e = [(TI5)(EE) -
Hence, the expressions for Phe Vi and Th, as r, - Fk = th:, are

-2(1-m)

p, = (1+ c)mzph’ogh + oo

- nh(c,m)ggz(l-m) + ...
v, - muhg;(l'“) ‘... (14b)
T = (1 - c)mzah,oggz(l'm)(nh -n) B

ah(c,m)g;2(1°m)(nh - Nh)" + ...

For m = 3/4, ¢ = 1/6, Nh(l/6. 3/4) = 0.875, and nh(l/6, 3/4) = 0.549;

E(1/6, 3/4) = 0.313.
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IV, THE PRINCIPAL VISCOUS LAYER

Just as there 1s a principal viscous layer, usually designated as
the viscous boundary layer, which acts as an "effective body" in the
HSIT for flow past a flat plate, it is postulated that there is a -
principal viscous layer (PVL), having a thickness ratio of 0(§) (with

6, = 6Db <X § &< 1), which acts as an "effective body" in the HSIT for

b
flow past a very slender axisymmetric body with a thickness ratio of
0(6b). As in the case of the HSIT viscous boundary layer for a flat
plate, the HSIT PVL for a very slender axisymmetric body, which sup-
ports the ISL, is considered to be a high temperature, low density
region, across which the pressure is constant, at whose outer edge,
rs= 6Fk(x) = 6thm, the flow quantities u, T, v, and p have the be-
havior: u =1, T/Os -0, v-— Gmth-(l-m), and p -'Mzbzﬂhx-z(l-m)’
where Nh and ﬂh are constants defined in Section III.

The appropriate coordinates of the PVL are taken to be 8y and

tk’ given by

8F, (x) N, x™
Sy X, tk log {. T log T (15)
From the definition of tk’ it follows that
Fk/Fb
tk -0 as r - 6Fk; tk - log Db ~“® agr - bDbe

The expansions for the flow quantities in this layer, following, in

part, Stewartson (1964), are

de



.
o2 o
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u = l+akuk+

- 1-
v = 6F' exp (-tk)vk + ... = 6(mNhsk( m)) exp (-tk)vk P ooc

k

T = esaka + ...

p = M262pk+ (16)

with o, = parameter much less than 0(l) to be determined, and fk =

k
fk(sk’tk) - 0(1)'

For these representations, with

+w 2w
= 1+ e}\ M 1+w - 2 = <« *
Ak (e{l -¢ ) &LG‘. X o), 6 < o 1
the leading terms in the equations of motion for the PVL are
op
‘_k = = O '2(1‘[“)
atk 0, i.e., Pk Pk(sk) nksk (17.)
l-v l-v
— -2 = = 12(2m - 1) L + 5, (17b)
atk Tk Tk m

*Ihe requirenents of (1) M*% et = 0q1), (2) 82 < a << 1,

and (3) M 6 >> 1 yield the following individual inequalities:

u=2/ A7) o ¢ 1, M) o << 1

1/2
2w 2(2+w "2 < ¥ 2
1 <M <<R <M ). or MoP<«<v, = (M ‘”/l&) <1

Further, the modified interaction parameter, x', obtained from (1) and

(3) is

1/2
o - {“2(2+w)0ﬁ+‘”/RL} S

o

5]




k 9%k
du
e} w k)
= p — — (17C)
k atk (k atk
s, oT 1 -v\ 3T
2_4m-3 k Ok k) Ok, _4e _
HhNhsk exp (- 2tk) [T e +m ( T ) atk + T+ ¢ (1 m)J

f 3T
- k2 ( v —“) (17d)

Equations (17b-d) must satisfy the boundary conditions
uk(sk, 0) = Tk(sk’ o) = 0, vk(sk, 0) = 1 (18)

at the outer edge of the PVL in order that the PVL solutions may match
to those of the 1ISL.

For
u (s,,t) = A (50U, (t))

T (st ) = A (5,08, (t,) (19a)

vk(sk'tk) - vk(tk)

where

1/(1+w)
“‘“h": (4m-3)/ (1+w)
Al = A "
1/ (14w)

,
£ A = -Z7q:- form = 3/4 (19b)
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the self-similar ordinary differential equations and boundary oonditions

governing the flow in the PVL are

L(__l -vk)-z (1 -vk)s-
de, \ 9y Oy

du, \  exp(-2t,) v 1-v \du
d [-w3Y%) K | ram - 3 Yk k) 3% )
at (® ) ( 1+o/g * ™ ( B ) ac, - e -m)

EN

[2(2"‘ - - (ﬂH)]é_k ' (20a)

Kk kdtk m +w @k k k
(20b)
do o exp(-2t, ) 1 -V\ d
d w k k 4m - 3 k k 4
'&E(ekdck) m (1+)+“‘( @k)dt+1:e(1-m)
(20c)
Uk(O) = €k(0) = 0, Vk(O) = (21)

Indeed, it is found that, in conjunction with Eqs. (2Ca) and (21),
Eqs. (20b) and (20c) yield, upon integration,

du t U
o¥ —k (2_'“'_1) - Ty =X g%
K dtk 2 ™ . exp ( 2tk) " dtk

-

. (—1—'—“‘”~1- RN P - 2t
: JLL - exp 20+ 28 (1= VY e (- 26

m

~(22a)

o  rm-1.. 2 1 -m\ [ "
o 7o = [ e () - e -2t

Q-
x

+(1-V)exp (- 2t,) (22b)

Near the outer edge of the PVL, where tk + 0, 1t 18 found that, for
(1 - w) = 0(1) > 0, the asymptotic solutions for the flow quantities in

Eqs. (20) are



=16~

o - @ 2/(1+w0)

k k’ok +".

t2ﬂ1+u0

k’ok +.'.

<
[ =1

Vk - 1 - vk,otk + o0 (238)

where

- -y 1/ (14w)
6o 2 (F 2n -y - S22 28 Ly - w ]}

-1
U o = (1= m)(L - w)[l Sl {2(2m -1y - {om > 31} -2 _ 1 -wa - w)] O o

€ l+e¢
_l(l-ﬁ-m (4m - 3)
vk,o m\l - w [2(2m - - l+w ] (23b)
When m = 3/4,

®k,o - {gg (%;gﬁﬁ) [1 + 1 : € (}_%_Q)]}l/(l+w)’ etc.

A comparison of Eqs. (14) and (23) shows clearly that the func-
tional behaviors of the temperature in the ISL and the PVL, as n, Nh
and t, 0, respectively, do not permit direct matching between these
two layers, and the introduction of an intermediate transition layer*
is necessary to complete the matching.

Near the inner edge of the PVL, where L it is seen from

Eqs. (22a-b), that

*

The details of the formulation of this transition layer, which is
consistent with that introduced in the HSIT for flow past a flat plate
(Bush 1966), are presented in the Appendix.
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® dUk 1 o U
@k T [Z(Zm - 1) “ exp (- Ztk) 5 dtk - e(l - m)]
k 0 K
de
1 gw _k 1 _2¢
;®k de, " m [(Zm -0+ 1+ (1 m)]

Hence, the shear and heat-conduction terms are found to dominate the
momentum and energy equations, respectively, yielding, in this limit,

the following asymptotic solutions of the similarity equations:

1/( 1+w)

= — = 1/(1+U.))
8, O, i + 0D T 85N AL uti

+ e oe

U = U 1/(1+U)) + ¢¢¢:>u = 1 +0o A.kUk 1/(1"'(1)) L Y

k k, ok ook
V =V +...)v o= a(mn 5~ (1-m) v exp (- t, ) + (24a)
k k,o = h k k,e k

where

1/(14w)

@ {m (1 + m)[(Zm - 1) + (1 - m)]}

™ U

1+ _k
Uk’m = = [Z(Zm - 1) '[o exp (- Ztk) @k dtk - e(l - m)
- 1l - m) 1 _ <4m = 3)
vk,oo ( m t1T+o 2m (24b)

With the possible exception of the asymptotic solution for v,
the solutions of Eqs. (24a-b) do not satisfy the usual nonslip,

temperature-specified boundary conditions at the body surface,
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I'-!

F/Fy
u,v =~ 0, 5.~ % - specified fnc(sk), as t, - log D - @
S b

(25)

Therefore, the analysis of an additional layer, interior to the PVL,
in which t = 0([log(I/Db)]> ~ o {s introduced in the next section
in order to describe the adjustment of the flow in the vicinity of

the body surface to satisfy the surface boundary conditions of Eq. (25).
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V. THE BODY VISCOUS LAYER

For the viscous layer adjacent to the body surface, referred to
in this Memorandum as the body viscous layer (BVL), the appropriate

coordinates are Sy and tys given by
6Fb (x) Fb)
sy, T % tb " T log r = Tl t log (F; (26a)

where

i —'1
Ty = [“3 (E;M «< 1 (26b)
From the definition of tb’ it follows that
b
tb +1 as r = 6Dbe; tb T log F;-q 0 as r - éFk

The expansions for the flow quantities in this layer [cf.

Stewartson, et al. (1964)] are

um= ub P o000

b
6Fb exp | - i)vb + ...
G[FNhs;(l-m)] exp (-tk) % <

T = eSTb P 0oa

<
[}

) | (1)
Fb

2.2
M6 Py + ..

o
[ ]

with £ = £ (s,, t,) = 0(1).
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Subject to later verification as to consistency, for Th?

2, 1+u
6 /ak , and (ai+w/T§) exp ('Z/Tb) << 1, the leading terms in the

equations of motion for the BVL are

== = 0, i.e., p = P (s,) = Hhs;z(l'm) (28a)

s, dF s, oT 8, 9
v, = —b—-‘l) (1-m)+l(—:—-‘l-—b—u3)]ub (28b)

du
2 (rg -13) = 0 (28¢)

2
oT du

3 W b 20 w b -

3¢, (Tb 5t )* T+e %b (a:") 0 (28d)

The boundary conditions to be satisfied at the body surface are

ub(sb,l) = 0, Tb(sb,l) = ¢; (29)

Taking the wall temperature to be constant so that

= 0 = const. (30a)
W b,w

and tak.ng the flow variables to be of the form

5, 9Fy, N
vb(sb, tb) = [(1 - m) —b--a—s-;) ]vb(tb) (30b)
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the self-similar equations and boundary conditions governing the flow

in the BVL are

Vb = Ub (31a)
dau
7 ey K‘z) =0 (31b)
b b
2
a0 du
d ( w b) 20 w ( b)
® + ® = 0 (31c)
e Vb dr /T TH €O \ae,
U () = 0, O, (L) = 8 (32)

The first integral of Eq. (31b) is

w b
a, " "% (33a)
where Sb, the shear function, is a positive constant. The first
integral of Eq. (3lc) is
1/2
d
w_b _ ( o/ ) - 1/2
% t, t2075%) Sp Cpm - O (33b)

where mb,m, the maximum value of @b in the BVL, is a positive constant.
The positive branch of Eq. (33b) represents the temperature field
between the point of maximum temperature, ty = tb,m’ and the outer

edge of the BVL, t, 0; the negative branch of Eq. (33b) represents

the temperature field between the point of maximum temperature,

tb = tb,m’ and the body surface, tb -+ 1.
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For Ub -~ 1 and @b -~ 0 as t, 0, Eqs. (33) combine to yield the

Crocco-like second integral,

1/2
D) (34)

1/2
- 1+ e) 1/2
Uy 4o ( 3 |®b,m S (E e

whose negative branch is valid for 0 < ty < ty o’ and whose positive
?

branch is valid for t o < ty < 1. From an evaluation of the positive
9

=1, i.e., for Ub = 0, @b =@ it is determined

branch at t b,w’

b
that

2
lc( 1+ ¢ )
b,m 46 1+e¢ 1+ g ®b,w >0 (35)
When Eq. (33b) is solved to determine @b(tb), the solutions
Ub(tb) and Vb(tb) follow directly from Eqs. (34) and (3la).
From direct integration of Eq. (33b), taking @b(O) = ( and

@b(l) = ®b,w’ it is found that the shear function, Sb, is

§, & —— ( g )w(l + l-:—‘ ® )ZMIU: 2°1 - 2) Y2 4z 4 J': 2°(1 - z)~1/2 dz]

b 41+w 1l +¢ b,w
o
z = 4(1 % ‘) ) (1 +1teg )-2 ;6)"
o (o b,w o b,w

*To give an idea of the magnitude of Sb, it is noted that

1/2 1
1 - - (8) | —2— = 0.31 for o = 3 ==z
%@'E'@mw @ (J[a+c) 0.3 %o 4 £
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Thus, near the outer edge of the BVL, where t, — 0, it is seen

b
from Eq. (33b) that

w d@b

G
b dt,

. a
1 + ¢

1l + ¢
o

®

Sb (1 * b,w)

and, hence, it follows that, at the outer edge of the BVL,

- 1/ (1+w) s . 1/ (1+w)
ap = mb,otb + ... T eSub,otb + ...
_ 1/ (1+w) i - . 1/(1+w) +
U, = 1 Ub,otb + ... D u 1 Ub,otb doc
vb = Vb,o + ... =
F t
ve=24§(1-m ;E Vb o %P |- b + ...
b O’ b
- -(1-m) l-m
G[mNhsb (T vb,o exp (-tk) + ... (37a)
where
g 1l + ¢ \o L ()
®b,0 ~ [(1 * ‘”)Sb(l n e)<1 paar= ®b,w).‘
-w
Ub,o = (1+ w)Sb@b’o
Vb,o = 1 (37b)
To verify the similarity formulations of the PVL and BVL, at least

insofar as these two layers are interrelated, it must be shown that the
solutions of Eq. (24a-b) match to those of Eq. (37a-b). The solutions
of the PVL and the BVL are matched through the introduction of the

intermediate limit, limkb, defined by
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6Fkb(x)
Sp = X fixed, tep - kb log < fixed;

L1 << Txb << 1, Fkb(x) = arbitrary fnc(x) = 0(1)

In this limit,

L e 1o Q)] <Ly -

Tkb

b

tp, " T_[tkb-’-T 1°3(r )]-._tkb ¢ (38)

kb

The PVL-BVL temperature matching requires that

t t
lim, tesak'rk(kb, ﬁ+ ) + : 5 3es'rb(skb, TT”—k:b+ ) + ...

(39a)
From Eqs. (24) and (37), it is seen that Eq. (39a) reduces to
i ¢ 1/(1+w)
kb + +
limkb %esak Akgk’m(‘fkb) s e ooc}
(1 (*b‘kb)u(w) : '
- 16 e P cool| ¥ ocac =0
' S_®b’° Tb ‘
(39b)
and, hence, the temperature matches if
-1/ (1+w)
. JU(w) (_L)
o b [log Db <«< 1 (40a)



-25-

2
N
. . 2 . (L)
Ak e ™ B o=2m = K 2/ (1+L+_g® )
b (of b,w

(40b)
The PVL-BVL longitudinal velocity matching requires that

\

t T t |
kb b kb , + = 0
—+ ..+ Y- s oo e

limkb gl + akuk (skb’ ka ) } {ub( bk’ T )

(41a)

i.e., that

1/(1+w)
kb
— + ...+ ...
limkb {1 + Qk [Akuk’m (ka) ] }

1/ (14+w)

"b kb
- -u (-———— + ..+ .. =0 (41b)
%[ b,o ka ] }

Thus, the longitudinal velocity matching reconfirms the requirement

that o, = 7;/(1+w)

K , and yields the additional requirement that

n -7 r 22ty K de [(1+2e)/ Lteg 7. «]
40 e (=2t,) o kT 7 N Y58 ) - 4J

(42)

The PVL-BVL radial velocity matching reconfirms the requirement that

m= 3/4,

An important fact, implicit in the results of Eqs. (40a-b) and (42),

is that, although, to the order of approximation considereu for the flow
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quantities, the PVL-BVL matching requires that m = 3/4, and, hence, the

"effective body'" shape is given by

r = BNh(e,m = %) x3/4

This matching does not require the specification of the (actual) body

shape, and so the equation for this body remains
r = 6be(x), Fb(x) = arbitrary fnc(x)

Therefore, in the present first-order analysis, the flow in the PVL is
independent of the exact body shape. This point is not made explicitly

in the first-order analyses of Stewartson, Solomon, and Ellinwood and

Mirels.

Further, since, from Section IV,

1+w
k 1 -¢ . L 64
where
SO ) - [l
% b » 8 (Db S P\t JKS

it follows that the parameters Db and T, are given (in terms of the

measure of the actual body thickness ratio, 6b’ etc.) by

o )T - oo - )

b

Ak] b << 1

=1/2
VL

(43a)
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-1 "7 -1

)I ~ 2|10g{ 2 (43b)

T - Ilog(L
b D
b b

In addition, the inequalities required in the formulation of Eqs. (28a-d),

2 o{1+u)
_5 k -2} o«
Tys o) 2 exp( 'r) < 1
o, T b
K b
make it necessary that VL satisfy
- '1/2 1
VvV, << log(l = 7 /2 << 1 (44)
L Db b

From Eqs. (43) and (44), 6b’ itself, must satisfy

-1/2 .
1 2 1
6b << Db llog(q)l = Tb/ exp (- E[ << 1 (45)

which requires that the actual body must be very slender for the theory
presented to be valid. For example, if 7, = 10", then 6, << 107°.
It is found that the pressure, friction, and heat transfer coef-

ficients are, respectively,

Cp = _2:::1;:»
- 1+w/M 1/2
et ) e )] s

-1/2
_’i
2
b
11/2

v
SN il b1 | IR (46a)
h
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C =
f
Puus
_ -1
-—2 [ _ _l
- o(fis )ws Vs oo (L) [Fo®
1-¢ b| & Bl 2 x V0o
b 5 L
| b
21 ! .
v v 'F, (x)]
- X X b
cf,o 5 log 2 " + ... (46b)
b 6b
L
aT.\|
1
2[;1(Br )
1"]w
cC = e~
A Pty
-1 l+te
2 (1 o ®b,w) Ce +
-1
v;‘: v F, (x) -1
-cq,OE; log ;-2- . 2 Qoo (46¢c)
b
The friction drag coefficient is
*1 [ du,
. Jo lul (S;I w [rI]w dx1
pcnucn rl W
-2 = -1 - .
Vx Vx Fb(x) -2
t— i + o
2Cf,o 62 log 62 x (47a)
b b

The pressure drag coefficient is
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d[rljw
f tplj [r w dx1 dx1-

c
2 2
oP Putie (1)1,
—\]-1/2
= Cp,ovx log ;5
b,
- r'(x) F(“)
x}l 3 X x"3/2 ’f l/zl—u— d?(':+...
(47b)
Thus, the principal contribution to the drag coefficient is from
friction, since
2 T \I1/2
v
bp z 5242_ Y log [ =X
D, £ e o5 | o \s2
’ 07 Vx b
2 x (v
F (x) . Fy N2
‘ 2 + 1.3/ ~1/2 dx )+ .o
l b3 2 % ’
(o}
where
S
— << 1
v
x

In terms of the parameters introduced in this Memorandum, the

interaction parameter of Ellinwood and Mirels, A(EM)’ is given by

Vx F, (x) "2 V.
A(EM) —5 —_— s log A(EM) = log —; + ... (48)
S by

From Eq. (48), then, it follows that the expressions for Cp, Cf, Cq’

CD £ given in this Memorandum are equivalent to those found by
]

Ellinwood and Mirels for these coefficients, (Further, since, in turn,
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. = 2 [log A

-1
b @yl t e

it also follows that the expansion parameter of the PVL, = is line-

arly proportional to the expansion parameter of Ellinwood and Mirels,

€ c
(1))
When the (actual) body is a cone, the body studied by Stewartson,

F (x)
X

cone

and the pressure, friction, heat transfer, and drag coefficients are

_ ~1/2
_ v
C = C V [|log X P 000
P P,0 X 2
by
-2 - 1
vx vx
Cf = cf,o E; log -3 P 00a
8,/ ]
2 _ -1
cC = C = log + ...
q q,0 \ 8 »_ 65 d
_2 _ -1
(Vx) (")
c. = 2C <) |10gl = + ..
2 £.0142 82 (49)

The foregoing expressions for Cf and Cq are equivalent to those found

by Stewartson.
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Appendix

THE VISCOUS TRANSITION LAYER

To span the distance between the ISL and PVL, a viscous transition

layer (TL) is introduced, whose coordinates are taken to be X, and L

© no} @2,
t

t

defined by

where Bt is a parameter much less than unity to be determined. The

expansions for the flow quantities in this layer are taken to be

- 2/(1+w)
u l+dkBt ut+...

v = 5{% N, x;”" +Bv + }
T = GsakBi/(1+w) Tt + ...
P = M262pt + ... (A-2a)
The behavior of u and T in the ISL " VL requires
52 <« Bi/(“‘”) @ < o = T;/(“‘”) <«< 1 (A-2b)

Then, the equations of motion for this TL reduce to
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op
—-—t = = = -1/2
art 0, i.e., pt Pt(xt) Hhxt
3 (":)+ 3 (1)+ 1 1
—  — — | —_— =
art Tt axt Tt Axt Tt
-1/2
“t (i_c Y i‘;)_sx-m i &i(Twa_‘i)
‘I‘t axt t art 2t nh art t art
-1/2
t (a_TgH ?f;)+_e 32 lﬁe_a_(Tw f_t) )
Tt axt t art 1+¢t o] ﬂh art t art
To find a self-gimilar solution for Tbt take
a
T, = £ 0, (A-4a)
where
Ty
A L . (A-4b)
h't

where a is a constant to be determined, and b = b(a) = 3/4 + [(1 + w)/2]a.

Then, the continuity and energy equations combine to yield

)
4 (0%
Ao a | 96 %t C:) ¢ d 1 -\ 11
2 a¢ 3 '{”'Hc&-d@ "{1'(2)“}@_'0
cnhNh t EEE dct t
t t
(A-5)

*For the sake of brevity, self-similar solutions for u, and v_ are
not considered in this presentatirun. It can be seen, howevér, from
Eq. (A-3), that, once the self-similar solution for Tt has been de-
termined, such solutions follow directly.
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(This equation is invariant under the transformation gt - Ct + g:,
where g: = const.)

Considering that the TL temperature solution should approach the
PVL temperature solution for gt -+ -®o it is found that one asymptotic
solution for the TL temperature, based upon a balance of the inviscid

and viscous terms of Eq. (A-5), is

: . 2/ (1+w) -
O, ®t,k( gt) P ocoog with et,k (Aﬁgk,o)m-3/4
- _m 12/ (1+w) e )
Tt @t,k( nt) + e, for ﬂt N x3/4 (A-6)
h™t

Considering that the TL temperature solution should approach the
ISL temperature solution for gt -+ o jt is found that one asymptotic
solution for the TL temperature, based upon the domination of the in-

viscid terms in Eq. (A-5), is

-c
®t = ®t,hgt + o0,

2[a(l + ¢) + €] o

where ¢ = c(a) = - ,
(3+ o)(l +c¢€)+ 2 t,h

= const. to be determined

(1 + 2¢)c + ¢
1 + ¢ J

-
1

-8,-C
Tt = @t’hgtgnt P ooo ¢ where g = g(c) = L

(A-7)



=34~

The temperature solutions of the PVL and the TL are matched

through the introduction of the intermediate limit, limkt, defined by

59
6th3/4 |

nkt = - Bkt fixed, Bl’. << Bkl’. << 1 (A’S)
In this limit,
g - ‘1} = -
€, log {(1 B, N, B, Mg + ++ = 0
B
kt
M ) (Bt ) Mg =7 °

The PVL-TL temperature matching requires that

-1
- + ...
limkt[[esaka(sk’ log {1 - B, M) D

B

B .M
) °s°k33/(1+w)Tt(§t’ . _LLZLE) + ... u = 0 (A-9)

From inspection of Eqs. (19), (23), and (A-6), it can be seen that
the matching follows directly.
The temperature solutions of the ISL and the TL are matched

through the introduction of the intermediate limit, limht, defined by

—r _\
6th3/4

'n =
ht Bht

fixed, B, << B _ < 1
(A-10)

In this limit,
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N

M = NA+B, TN

B
ht
M (B ) The =
t
The ISL-TL temperature matching requires that
i 8,61 € N{1L+B 10 D+ ...
e |{°S° “h'>h’ h ht 'ht

B .7
2/ (1+w) ht 'ht -
- 80, By w Tt(gt, ——32—-> + ...]I = 0 (A-11)

From Eqs. (l14) and (A-7), it can be shown that the matching requires
that
a ‘-1

b 1+ w)({l-c¢ I
Bt = l62(1+w) ’ with a 1+( 4 )(1 T 2€)
C

-

-E
O = N (A-12)
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