
oo 

Contract« Nonr 8 39(34) and Nonr 839(38) 

THE IMPORTANCE OF BOUNDARY CONDITIONS 

IN THE NUMERICAL TREATMENT OF HYPERBOLIC EQUATIONS 

•v.0 
CO 

00 
«? 

by 

Gino Moretti 

Distribution of this document is unlimited. 

^«>2^ä& 

NOVEMBER 1968 

POLYTBCKNIC INSTITUTE OF BROOKLYN 

DEPARTMENT 
of 

AEROSPACE  ENGINEERING 
and 

APPLIED MECHANICS 

PIBAL REPORT NO.  68-34 

CLEARINGHOUSE f 



AD  681   3 65 

THE   IMPORTANCE  OF   BOUNDARY  CONDITIONS   IN  THE 
NUMERICAL TREATMENT  OF  HYPERBOLIC  EQUATIONS 

Gino  Morett i 

Polytechnic   Institute  of  Brooklyn 
Farmingdale,   New  York 

November   1968 



THE IMPORTANCE OF BOUNDARY CONDITIONS 

IN THE NUMERICAL TREATMENT OF HYPERBOLIC EQUATIONS 

by 

Gino Moretti 

This research was conducted in part under Contract 
Nonr 839(34), and under Contract Nonr 839(38) for 
PROJECT STRATEGIC TECHNOLOGY, and was made 
possible by the support of the Advanced Research 
Projects Agency under Order No. 529 through the 
Office of Naval Research. 

Reproduction in whole or in part is permitted for any 
purpose of the United States Government. 

POLYTECHNIC INSTITUTE OF BROOKLYN 

Department 

of 

Aerospace Engineering and Applied Mechanics 

November 1968 

PIBAL Report No. 68-34 

• 



TABLE OF CONTENTS 

Section Page 

1 Introduction 2 

2. Boundary Conditions on a Rigid Wall 4 

3 Permeable Subsonic Boundaries 12 

4 Imbedded Shocks 17 

5 Conclusions 21 

References 23 



p- i"" 

i 
- 

BLANK PAGE 
r 

• 

■ 



THE IMPORTANCE OF BOUNDARY CONDITIONS 

IN THE NUMERICAL TREATMENT OF HYPERBOLIC EQUATIONS* 

Gino Moretti 

Polytechnic Institute of Brooklyn 
Farmingdale,  New York 

ABSTRACT 

Many of the existing computations of initial-and- 

boundary value problems in fluid mtchanics suffer from 

unrealistic treatment of boundary points.    Three categories 
i 

of boundaries are briefly discussed:    rigid walls . arbitrary 

boundaries of a computational region in a subsonic flow, 

and shock waves.   An attempt is made to show in what 

sense the numerical treatment of such boundaries may be 

physically wrcng and what can be done instead.   Examples 

from the blunt body problem, the transonic flow in a nozzle, 

the incompressible inviscid flow past a circle, and the quasi- 

one-dimensional flow in a Laval nozzle, are shown. 

This paper was presented at the International Symposium 

on High-Speed Computing in Fluid Dynamics, Monterey, 

CaUfomia, August 18-24,  1968. 
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1.   INTRODUCTION 

A great deal of work has been performed in the 

attempt to use numerical techniques to solve complicated 

problems in fluid mechanics, but too many results are far 

from being satisfactory.    Failures are sometimes ascribed 

to such mysterious causes as "non-linear instability" (a 

term which is meaningless for lack of a definition and sounds 

very much like the "Hie sunt leones" label attached to un- 

explored lands in middle-age maps).   I will try to show In 

this paper that in mixed initial-and-boundary-value prob- 

lems major troubles arise if the boundary conditions are not 

properly handled. 

Surprisingly, the difficulties of boundary-value prob- 

lems so far seem to have been overestimated.    Let us quote, 

for example, from page 128 of the authoritative book by Rieht- 

myer and Morton :   "For one thing the effect of boundary con- 

ditions has not so far been considered"; and from page 167: 

"To treat the more complex boundaries that can arise with 

more space dimensions is very much more difficult and little 

has so fair been achieved in this area".   Consequently, Richt- 

myer's book, which is a study in mathematical foundations, 

does not even attempt to attack the problem.    Unfortunately, 

since nobody else does it in a book of the same level, oriented 

towards applications, the physicist and the engineer who face 

the task of solving a practical problem are led to believe that 
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what iß not discussed by Richtmyer is a matter of no con- 

sequence. In other words, they tend to underestimate the 

importance of boundary conditions which are, instead, the 

governing elements of the entire computation. 

The situation is worsened by the fact that the few 

examples of multi-dimensional problems given by Richt- 

myer in Chapter 13 (taken from the existing literature) 

show a number of troubles within the computational region 

whereas such troubles are generated at the boundaries. 

There are, in fact, two classes of points to con- 

sider in a numerical computation:   interior points and 

boundary points.   As far as the interior points are con- 

cerned, many techniques are available.   One can discuss 

their relative advantages or disadvantages in terms of, say, 

computational speed, accuracy, programming difficulty 

and iio on.    There are ways of determining such properties 

through a local analysis and some of the techniques, accurate 

to the second order, prove to be very good for all practical 

purposes.   Nevertheless, many of the published computations 

show a progressive deterioration of results which is incon- 

sistent with the good local qualities of the technique used for 

interior points and is then attributed to "non-linear insta- 

bility".   A "cure" for the latter is sought in damping devices 

("artificial viscosity"), a procedure which is physically un- 

justified and which may provide smooth results at a very high 
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price, that is, the destruction of accuracy  ,     In what follows, 

I would like to show a number of cases where there is no rea- 

son for introducing a concept of non-line£ir instability, con- 

flicting with the local stability, if care is taken not to feed 

unrealistic perturbations from the boundaries.    To empha- 

size the relevant arguments, the presentation will necessarily 

be sketchy and many details will be left unmentioned. 

2,    BOUNDARY CONDITIONS ON A RIGID WALL 

Let us begin witn few obvious statements. 

(1) A fluid flow problem is described by a system of 

partial differential equations which are classically known as 

the indefinite equations of motion.    Such equations are called 

indefinite because they apply to any problem in general but 

the equations per se do not define a specific problem. 

(2) The problem is defined only when a proper set of 

initial and/or boundary conditions is given.    The boundary 

conditions are such an important part of a definition of a 

problem that the patterns of two flow fields can be completely 

different from one another because of some differences in 

the flow boundaries, despite the fact that both flows obey the 

same system of indefinite partial differential equations. 

(3) For each system of equations there are a number 

of necessary and sufficient boundary conditions.    For example, 

for an inviscid flow the condition on a rigid,  fixed wall is the 

 _ 
I 



vanishing of the normal comronent of the velocity, V  . 

At the risk of appearing trivial, let me state that no 

other condition may be imposed on the rigid wall since the one 

above is sufficient to determine the flow field. 

Now, let us see what happens when a problem of in- 

viscid flow is treated by a numerical technique.   A certain 

mesh is used.   At the interior mesh-points the partial differ- 

ential equations are substituted by finite-difference equations 

(and we will assume that the substitution satisfies all conditions 

for local stability and convergence).   At each computational 

step, information is transmitted from each point to its neigh- 

boring points via the computation of finite differences.   In this 

way, the boundary mesh-points influence their neighboi    and 

transmit the effects of the boundary condition into the flow 

field. 

For this to happen, the values of all physical quantities 

at boundary points must be known ai each computational step. 

At a rigid, fixed boundary only the normal component of the 

velocity, V   is clearly defined, but the tangential velocity, 

V., the pressure, p, the density,  P, are also required.   At 

this point, we are required to find some way of computing 

them using information from interior points plus the boundary 

condition.   In other words, we must solve finite difference 

approximations to the partial differential equations of motion 

in their limiting form as one approaches the boundary.   If 
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we do not proceed properly, we face the risk of over-specify- 

ing the boundary conditions themselves and, in all probability, 

these overspecified boundary conditions will not be consistent 

with the nature of the boundary and the limiting forms of the 

equations of motion. 

Unexpected procedures are found in the literature. 

In general, it seems that an "easy" way for solving the equa- 

tions of motion at points on a rigid wall consists of adding an 

extra row of points behind the wall and computing the wall 

points with the same routine used for interior points.   At 

each computational step, the problem is then shifted into 

that of defining values at the extra points which provide good 

derivatives at the wall points.   To Ibis effect, many authors 

use what they call a "reflection-principle" which is not a 

principle at all and should rather be called a reflection tech- 

nique.   I have been unable to find a precise definition of such 

a technique in the literature.   In its crudest formulation, all 

physical parameters are specularly inflected on the rigid wall 

except V   which is assumed as anti-symmetric.   Bohachevsky 

3 4 et al.   , page 603 and 605; Bohachevsky et al.   , page 778; 

5 6 Burstein , page 2114; Singleton , page 2-2).   Unfortunately, 

only the assumption regarding V   is legitimate since it 

produces a vanishing V   at the wall automatically and the 

normal derivatives of V   so computed is the same as a 

one-sided derivative computed by finite differences, using 
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the interior point information (the accuracy so obtained is, 

however, very low).    The other assuniptions force the 

normal derivatives of the remaining quantities to vanish 

at the wall.   These are redundant conditions and are 

physically wrong. 

To show how far the real situation is from the 

assumed one, let us consider the case of a circular ob- 

stacle in a uniform flow, the flow being steady, two- 

dimensional, incompressible, and irrotational.    With a 

proper scaling of the variables, the flow is described by 

the complex potential, 

W = z + i 
z 

where z = x + iy is the complex coordinate in the physical 

plane.   Consequently, the complex velocity is 

v=i.i 
za 

The velocity components in polar coordinates (u in the 

radial direction, v in the transverse direction) are 

u = (1 - L )   cos 6 
r2 

v = ( I + 1  ) sin 6 
r3 

and the pressure coefficient is 

C   - -i. + 2 cos 2 9 

P " 'r" ra 



The obstacle is defined by r = 1.    The normal derivatives 

of pressure and velocity component at thi        itacle wall 

are: 

BCp 

or 
8 sin2  0 

la      = 2 cos  6 \     at   r  =   ! 

dv ->    •     o —     = - 2 sin 6 
or 

Obviously, such normal derivatives of pressure and v are 

far from vanishing, except at the stagnation points (6 = 0, n). 

For example, Fig.  1 shows the distribution of Cp and v along 

the radius at 9 = TT/2 (solid lines). 

The flow field described above can be considered as the 

asymptotic state of a time-dependent computation.    If, in 

performing the latter, conditions are imposed at the bound- 

ary which are patently conflicting with the real nature of 

the solution, one is left to wonder why certain   computations 

did not "explode",.    There are two reasons.    One is that the 

departure from symmetry is not substantial in the vicinity 

of a stagnation point or along a wall which does not differ 

too much from an infinite straight line.   The other, and 

more important, is that a very high artificial viscosity has 

been used   --   an ill-advised procedure as I said before. 
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Results of the following example support the above 

arguments.    Consider a blunt body with a circular nose in 

a supersonic stream (M     =4).    The shock layer is com- 

7  8  9 puted first by a technique which I developed  '   '   .    No claim 

is made here for it as the only possible technique or the best 

one.   However, a certain effort has been made to compute 

the boundary points with a physical insight: 

(1) The pressure is detern.ined by an equation where 

the relevant parameters are the pressure and the normal 

component of the velocity because the pressure waves sent 

to the wall in the normal directions bounce back from it due 

to the condition of impermeability (V    = o).    The technique 

used is a modified method of characteristics in the plane 

defined by the normal to the wall and the time axis. 

(2) The entropy is kept constant along the particle 

path on the wall; from pressure and entropy, the density 

follows. 

(3) The tangential velocity is determined by a 

second-order accurate finite-different formulation of a 

momentum equation. 

A 7 x 12 mesh is used to cover the computational 

region.   The final results are reported at pages 48 and 49 
a 

of the report mentioned above   and can be considered 

accurate at least to within one tenth of 1%.   (Much better 
a 

results are obtained with a 10 x 14 mesh   --   See   pages 



50 and 51).    Fig.  Z shows the pressure distributions between 

body and shock along five different radii (6 = 0 is the sym- 

metry line and 6 increases from the symmetry line to the 

shoulder of the body).    Here again the non-symmetrical 

behavior of p with respect to the rigid wall is evident (and 

is qualitatively similar to the incompressible case mentioned 

above).   It may be expected that in repeating the computation 

after using symmetry rules at the body points (and, of course, 

leaving the rest unchanged) the results should not be too much 

affected near the symmetry line but should show a definite 

worsening with increasing 6.   This is what actually happens. 

Fig. 3 shows the same lines as Fig. 2 as dashed lines, and 

the results of the second computation as solid lines.   The 

slope of the p-curves at the wall is larger than the "exact" 

one, as a reaction of the numerical scheme to an attempt 

to enforce a vanishing slope.   Wiggles are generated, which 

propagate through the shock layer, modify the shock shape 

and eventually get trapped between shock and body.   Fig. 3 

has been drawn at the 560th computational step, which is 
o 

the last step computed  .   After it, the results are prac- 

tically frozen in both computations.   In cases where the wall 

geometry is more complicated, the errors generated by the 

reflection technique may eventually make the results un- 

stable. 
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Another technique for prescribing valuer on the extra 

row of points consists of extrapolating from inner points. 

Regardless of the order of curve-fitting used to extrapolate, 

it is easy to see that such a procedure is arbitrary, with no 

connection with the physical behavior of the flow.    Consider 

three points. A, B, and C.    The first is an interior point, 

the second is the point on the wall, and the third belongs 

to the auxiliary row, behind the wall.    We know the values 

of a physical parameter, f at A and B and its value at C is 

obtained by extrapolation.    In going from t to the next com- 

putational line, t + A t, some derivatives are needed, for 

example öf/än, 3af/än2 where n is a coordinate in the nor- 

mal direction.   The increment in f at B depends on those 

derivatives, which in turn depend on the geometrical nature 

of the fitting curve, not on physical properties. 

For the sake of brevity, I do not present here any 

result obtained by using extrapolation techniques instead 
9 

of the technique mentioned above  .    They are particularly 

bad when strong curvature effects dominate the behavior of 

the flow in the vicinity of the wall.   A more complete dis- 

cussion of such effects will be published elsewhere. 

Other attempts to deal with boundary points on a rigid 

wall, where the physical nature of the problem is not satisfied, 

can be found in the literature.   Again in the blunt body problem, 

Lapidus      introduces a diffusion along the boundary by averaging 
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certain values and arbitrarily corrects the momentun vector 

to make it parallel to the wall.   The results, as the paper 

itself shows, are not very good. 

3.    PERMEABLE SUBSONIC BOUNDARIES 

The second problem to be carefully considered refers 

to the handling of those boundaries which are not rigid walls 

but arbitrary, permeable limits of the computational region. 

For the sake of an argument, let us confine ourselves to the 

case of an inviscid, compressible flow. 

The computational region must be finite.    Since most 

of the practical problems deal with flows in an infinite domain, 

one is attempted to consider only a part of it by drawing ar- 

bitrary boundaries such as the ones shown in Fig. 4.    The 

flow may enter the computational region or exit from it through 

such boundaries.    In Fig. 4, CD, GH are "entry" boundaries, 

whereas AB, EF, and HL are "exit" boundaries. 

If the flow is supersonic at all points of one of these 

lines, there are no difficulties.    If the line is an entry bound- 

ary, all values can be prescribed along it.    Making them con- 

sistent with the flow upstream of the boundary is a task inde- 

pendent of the numerical computation.   Once such values are 

prescribed, there is no feedback into the region upstream 

from the computational region.   If the line is an exit boundary, 

there is no feedback into the computational region from the 
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region downstream and there is no feedback either from 

the exit boundary onto the preceding row of points,  so that the 

values at the exit boundary points can be determined, at each 

step, by a simple linear extrapolation from the inside of the 

computational region. 

If the flow is subsonic on an entry line, any change in 

the computational region will send waves upstream through the 

line.    These waves modify the upstream flow and the values 

on the entry line.   At the next computational step,  one should 

assume updated values on that line, but this implies bringing 

in the influence of the upstream flow.    Thus, at least a part 

of the outer flo»v should be treated in the same way as the 

inner flow, which is inconsistent with the existence of a 

partition.    Similar considerations can be made for a sub- 

sonic exit line. 

Any permeable limit of a computational region with 

subsonic points and constant values assumed on it makes a 

time-dependent problem ill-posed.    Disturbances are created 

which propagate inwards.    Here again, there are cases where 

the results do not look so bad, because the arbitrary boundary 

is far from the region of interest and the computation is 

halted before the perturbation waves have a chance of piling 

up.   But this is not a valid argument. 

The only possible way out is to extend the computational 

region to where the physical values are well defined and un- 

affected by traveling waves, either going inwards or outwards. 
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This amounts to extending the region to infinity.   In certain 

cases it is» possible to do it.   For example, in the case of 

a nozzle with a subsonic entrance, one may imagine the 

nozzle extended to an infinite reservoir, where the velocity 

vanishes and the other physical parameters take on their 

stagnation values.   In the case of a flow about an obstacle, 

subsonic and uniform at infinity, the computation must be 

performed on the whole space.   We can do this and yet keep 

the number of mesh points within reasonable limits by mapping 

the infinite physical domain into a finite region, a rectangle, 

say.   Suppose that AB (Fig. 5) maps the infinity of the physical 

plane, where all physical parameters are given, constant 

values.   The CD line maps some line lying in the physical 

plane at a large, but finite distance from the region of in- 

terest.   The computation is performed on the rectangular 

mesh, obviously using the equations of motion after trans- 

formation in the auxiliary plane.   To compute the values on 

the CD line we use information from the AB line and from 

the EF line.   The information from the AB line brings in exact 

values.   The geometrical stretching between CD and AB (and, 

consequently, the damping of outgoing waves and the absence 

of incoming waves) is included in the coefficients which affect 

the transformed equations.   One may be skeptical about the 

amount of error introduced by a stretching where a local 

value of a coefficient should accurately represent the global 
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phenomenon actually taking place throughout an infinite region 

(such as the physical region mapped onto the strip, ABCD). 

However, the flow in the strip is nearly uniform.   All de- 

rivatives are small and the local evaluation of the coefficients 

is sufficient to insure accuracy.    The important point is that 

the calculation in the rectangle is physically well-posed. 

I am indebted to Professor M. Van Dyke for pointing 

out to me after the oral presentation of this paper that a 

similar conclusion was reached by Wang and Longwell 

There the authors compare the results of two calculations of 

incompressible viscous flow,  one with an arbitrary trunca- 

tion of the computational region and the other with a stretch- 

ing of coordinates as described above.    The results of the 

latter computation are undoubtedly closer to physical reality 

than those of the former one.   Because of the nature of the 

problem, both sets of results are smooth.    In the first case 

such smoothness provides a good example of how dangerous 

it may be to infer accuracy from smoothness. 

For compressible inviscid flows wiggles build up as 

a consequence of the presence of subsonic boundaries.   For 

example, Fig. 6 shows the pressure distribution along the 

wall of a two-dimensional Laval nozzle as assumed initially 

(dotted line) and after 300 computational steps.   The tech- 
9 

nique used is the same as the one outlined   for the blunt body 

problem.   The wiggles in the results are a direct conse- 
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quence of an arbitrary limitation of the computed region.    Waves 

traveling upstream are reflected at the boundary and trapped 

within the computational mesh.   Results for an axisymmetric 

nozzle computed with the same technique but with a stretching 

of coordinates which let the nozzle emerge from an infinite reser- 

voir are reported by Migdal et al.      and appear to be extremely 

good. 

Another test of the infinite-stretching idea is currently 

in progress.   The two-dimensional compressible inviscid flow 

about a circle in a stream, uniform at infinity, is being studied. 

For veiy low values of the free stream Mach number (M = 0.1, 

say), the flow is practically incompressible.   The problem is 

analyzed as the time-dependent evolution of a flow, starting 

impulsively from rest.   At the rigid boundary, the conditions 

are treated as outlined in the preceding section.   A second- 

order accurate technique is used for the interior points.   A 

number of stretching functions has been used in an attempt 

13 to optimize the clustering of mesh points near the body. 

The dots in Fig. 1 of this paper show the computed values 

of pressure and velocity at 6 = TT/2, after 500 computational 

steps.   The agreement with the theoretical values for an in- 

compressible flow is extremely good, which proves that both 

boundary conditions, at the rigid wall and at infinity, are 

properly treated. 
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4.    IMBEDDED SHOCKS 

A third problem which should be mentioned when 

talking about the treatment of boundary conditions is the 

problem of discontinuity surfaces.   I will confine myself 

to a brief analysis of shock waves.   A shock can be con- 

sidered as a boundary between two regions where the physical 

parameters are continuous and differentiable.   In inviscid 

flows, shocks are discontinuities and should be handled as 

such since the jump conditions across a shock are not 

compatible with Euler's differential equations. One may 

anticipate, thus, that any attempt to compute a flow con- 

taining a shock by a numerical technique which closely 

approximates the inviscid differential equations is bound 

to fail (Richtmyer and Morton , pages 329, Fig. 12.4; 
2 

Moretti  ).   It is well-known, however, that sharp trans- 

itions leading from the state ahead of a shock to the state 

behind it can be obtained as solutions of the Navier-Stokes 

equations and that the thickness of the transitional region 

is related to the Reynolds number of the flow.   A similar 

result is obtainable by using difference equations obtained 

from the partial differential equations for inviscid flow, 

with the additions of an artificial viscosity (Richtmyer 

and Morton , page 327, Fig. 12.3).   However, the Rey- 

nolds number is so high in most practical cases that, to ob- 

tain a good value of the shock thickness, one should use mesh 
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sizes many orders of magnitude smaller than the meah sizes 

permitted by the capacity and speed of our present computers. 

A coarse mesh and a high viscosity (either natural or artificial) 

spreads the shock thickness unrealistically.   In addition, the 

high viscosity affects the whole flow field and makes the sol- 

ution depart substantially from the inviscid one (or the one 

corresponding to the actual, high Reynolds number).   In this 

connection, a note of warning should be given to the reader 

jf page 328 in Richtmyer's book.    There the problem is that 

of a jump between two constant states, where all derivatives 

vanish.   Obviously, the presence of viscosity does not affect 

a uniform flow and does not affect a numerical computation 

of a uniform flow either.   However, the numerical solution 

of any other case treated as an inviscid flow with the addi- 

tion of artificial viscosity is, in all  practical calculation, 

extremely poor from the point of view of accuracy. 

The Lax-Wendroff scheme (Richtmyer and Morton , 

page 330) is undoubtedly a closer approximation to the 

differential equations of inviscid flow than a first-order 

scheme with added artificial visco lity.   In addition, it is 

consistent with the Rankine-Hugoniot conditions across a 

shock.   Therefore, it is considered a powerful tool for the 

numerical analysis of shocked flows, and some interesting 

results have indeed been obtained.   However, aside from the 
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unrealistic spreading of the shock thickness over several 

mesh points, it shows another disturbing feature, that is, 

at least on one side of the shock there are oscillations. 

Such a situation is clearly shown by Fig, 12.6 of Richt- 

myer's book , page 333,   A reader, familiar with the 

theory of Fourier series, is reminded of a similar pheno- 

menon which appears any time a Fourier expansion is 

attempted on a discontinuous function.   See, for example, 

Fig.  7 where the Fourier expansions of a saw-tooth function, 

truncated at the tenth term and at the 50th term, are plotted 

in the vicinity of the discontinuity.   The fact that such a 

Fourier expansion is not a suitable way of handling a dis- 

14 continuity is proved by the Gibbs phenomenon 

Now, when a Fourier expansion of a discontinuous 

function is needed, one proceeds first to eliminate the dis- 

continuities by subtracting from the given function the pro- 

per number of saw-tooth functions with suitable values of 

the jumps, and then to expand the continuous function so ob- 

tained.   The convergence is quick and the Gibbs phenomenon 

does not appear. 

The same principle should inspire the numerical 

treatment of fluid flows containing shocks.   The regions 

between shocks are smooth and can be handled with coarse 

meshes.   The shocks (which, in a time-dependent case, 

must be left free to move) can be described with ease by 
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the Rankine-Hugoniot conditions plus one equation written 

from the inside of each region up to the shock.   Such an 

equation must have the nature of the compatibility equation 

on a characteristic.   In multi-dimensional problems, the 

method of characteristics has to be modified suitably.    That 
9 

this can be done is proved by the excellent results obtained 

if all the shock and body points are computed using such a 

technique. 

Last year, I reported      a preliminary approach to a 

more ambitious problem.   A steady three-dimensional sym- 

metric flow was studied, which is strongly compressed in a 

region and strongly expanded in another one.   An imbedded 

shock builds up in a part of the flow and dies out somewhere. 

In a simpler case, the possibility has been proved 

not only of fitting a moving shock so that the solution is 

extremely accurate despite the use of a coarse mesh, but 

also of predicting where and when the shuck starts building 
2 

■jp without resorting to coalescence ol characteristics   .   In 

Fig. 3, some frames from a computer-made movie    are shown, 

from which the formation of a shock appears together with its 

evolution and final freezing at the place where the steady shock 

should be, according to the geometry of the nozzle and the 

exit pressure. 
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5.    CONCLUSIONS 

Let us summarize now the basic points of the dis- 

cussion. 

(1) There are two classes of points in a numerical 

computation, interior points and boundary points. 

(2) No conclusion can be drawn on the effectiveness 

of a technique for interior points unless one is sure that no 

disturbances are fed in from the boundaries. 

(3) One can discuss the degree of accuracy of a 

particular technique for interior points; however,  within 

the current state of the art, the question, as far as boundary 

points are concerned, is different, viz.:   Is the technique 

used right or wrong? 

(4) Cures for "non-linear instability" such as artificial 

viscosity decrease accuracy and conceal the nature of the 

trouble. 

(5) Rigid wall points can be properly treated.   Some 

examples are shown in this paper and warrant more intensive 

study. 

(6) Preliminary examples show that, for certain flows 

with simple conditions at infinity, the use of a stretching tech- 

nique provides satisfactory results. 

(7) Imbedded shock waves should be treated as dis- 

continuities, if one aims to achieve accuracy without having 

to resort to a prohibitively fine computational mesh. 

(8) Beautiful rösuits can be achieved on the present 

generation of computers, using a small number of mesh 
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points ^.nd consequently spending a short time to compute, if 

the boundary value problem is properly handled.    In fact, I 

believe that finite-difference techniques for initial-and- 

boundary-value problems are a powerful, accurate, and 

inexpensive computation tool. 
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