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ABSTRACT OF THE DISSERTATION 

Procesßint; ojid Transmitting Information, 

Given a Pay-Off Function 

by 

Henri Michel Hiam-Huu-Tri 

Doctor of Philosophy in Mathematics 

University of California,  Los Angeles,  1968 

Professor Jacob Marschak, chairman 

An information system is defined as a chain of information 

services, encoding (processing)...transmitting.,.decoding (deciding). 

Each service is a transformer represented,  in general, by a stochastic 

matrix and a cost function.    The inputs of "encoding" are the pay-off- 

relevant events.   Actions are the output of decoding, actions and 

events determine the pay-off.   The utility of the services to the user 

is a function of the pay-off and of the different costs.    Efficiently 

choosing an information system is by definition choosing an information 

system which maximizes the expected utility. 

Communication engineers restricted themselves to information 

systems with fixed transmittint: (channel) and identically zero cost 

functions.    Moreover,  they equated the user's utility function with 

his pay-off function.    They handled the problem in the following way: 

vii 
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1.    choose first encoding with respect to the source of events 

and the pay-off function only,    P.    choose second encoding and 

decoding with respect to transmitting only.    Encoding is the 

composition of first and second encoding.    However, their approach 

was inefficient;    1.    They neglected the pay-off function in the 

choice of second encoding and decoding,    P.    they arbitrarily broke 

the original problem into two independent, more accessible. 
4 

\ problems. 
i       '    r i 

' We also restricted ourselves 'to information systems with fixed 

transmitting and zero cost functions and users' utility functions 

identical to their pay-off functions. But our approach is more 

efficient because v%  treated the problem of choosing encoding and 

decoding, given a source of events, a pay-off function and a 

channel, as a whole. The bounds we obtained should, therefore, be 

better, at least in all cases where the pay-off function has a wide 

range of values. We did, however, treat the non-restricted problem 

with certain properties of the source, the channel and the utility 

function assumed. 

1 

viii 



SECTION  1 

1.1.    Introduction 

The Economic Theory of Information is  concerned with the 

efficient choice of Information services.    J, Marschak (Efficient 

choice of Information Services,   1968.    Conference for Research on 

Management Information Systems) distinguishes the following sequence 

of 'services  in that order:    Inquiring,   communicating and deciding. 

Communicating is itself a sequence of Encoding,  Transmitting and 

Decoding.    Another component of the sequence,   called Storing,  which 

can be intermediate between any two consecutive services,  will be 

disregarded in this work,  together with Inquiring, which is the same 

as assuming that they are both costless and perfect.    Moreover, 

Decoding and Deciding will be reduced,   without loss of generality 

to a singJe operation: decoding into action.    Our simplified chain 

of services,   or information system will then consist of only three 

links:    Encoding,   Transmitting,   Decoding. 

More precisely,   see diagram 1.1,   there will be a source,    S,     of 

events   (or messages,   since inquiring is assumed to be an identity 

operation) generating the random variable    e    from a finite set    E 

with the distribution    P(*)«    There will be discrete,  memory less 

channels denoted     (X,P(y|x),Y)    or simply    (P(y|x))    with finite 

BH    ÜLJ ä 



'    ■ 

HPfü 

W» ***i%wm**vmw**miKwmffmv'*>NtmKt 

input and output alphabets    X   and   Y   respectively.    The Transmission 

!(•)  : X-» Y,    T(»)    Is a random function; the Encoding will be 

denoted   !,(•)  : E-• X; the Decoding   ^o^*) : Y-• A   where   A   is 

the finite set of feasible actions   (a). 

Source Encoder Noisy Channel 
T(.) 

Decoder 
*2(-) 

User 

Diagram 1.1 

One of the criteria,  that will be considered in the choice of 

services is the benefit to the user, a function    w(«)    of    e   and    a, 

called pay-off function:    "(*,•)  : E X A -» Reals.    The others being 

the costs of the different operations.    If costs would not depend on 

the chosen information system,  the user would, by definition, prefer 

the system yielding the highest expected Pay-off: 

E Ke.a)} = /    P(e) Prob (a|e)w(e,a). 

e,a 

The subscript is here to recall that the probability of action    a, 

given event   e,    is a function of Encoding, Transmitting, and Decoding. 

Now if the costs are introduced: k (e), cost of Encoding e, 

k-Cx), cost of Transmitting x; k (y), cost of decoding y, the 

user would try to maximize the expected value of a certain function 

U( u(e,a),k   (e),kni(x),k    (y)),    by definition his utility function. 
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Not much can be said about   U( ,  ,  ,  )   besidea the fact that it is 

Increasing in   w(e,a)   and decreasing in   k. (e), ^(x), k   (y). 

Moreover, the costs themselves are not well known, especially the costs 

of Encoding and Decoding, depending upon this complexity.    One has 

to resort to using arbitrary elementary (often linear) function 

to represent   UC«), k   (•)# k-C«)» k   (•)   more or less realistically. 
♦l i 'S 

We are not ready at this point to approach the general problem 

except for a special case:   binary symmetric memory less source, 

finary symmetric pay-off function, binary symmetric memoryless channel, 

U(*)    linear in   k   (•)> Ki')> K (')•    I« the rest of this work 
♦l T '2 

the transmission system costs will be assumed constant and the choice 

will be restricted to Transmission Systems with a fixed Channel.    In 

other words, attention will be devoted to the following problem, 

a preliminary one:    Find Encoding and Decoding procedures that would 

maximize the expected pay-off function   '*'(•,.).    in doing so, we will 

get some insight into the original problem and some partial answers 

to it, 

1,2.    Pure Communication of Information vs. Communication 

of Information, Given a Pay-off Function 

What is usually called Information Theory is essentially a 

theory of pure communication.    It was vrincipally started by 

C. E. Shannon in 19^8 in his,  "A Mathematical Theory of Communication", 

Let    e   be a random variable generated by a source    S,    taking 

on a finite number of values:    1, •••,g, »«^G   with probabilities 
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P(l)i •••»P(G).   The uncertainty associated with   e   was quite 

arbitrarily defined to be the quantity: 

H(o) - n(P(l),-",P(G)) P(ß)  log P(6) 

g-1 

where - log (P(B)) was interpreted as the uncertainty associated 

with the event (e ■ g} or the uncertainty removed (or information 

conveyed) by revealing that e has taken on the value g. H(e) is 

also called Entropy or Information rate of S, 

This measure depends only on the probability distribution of the 

messages. In particular, two messages with the same probability have 

their information characterized by the same number although they are 

not necessarily equally valuable to the user, for he evaluates the 

economic value of a message by the maximum profit he can make by 

using it. The value of a Source of information, as far as the user is 

concerned, is measured by the maximum expected Pay-off it can bring 

him. 

Shannon's further analysis of communication systems relies 

greatly on his measure of Information. In his l^B model (diagram 1.2) 

a randomly produced message generated by a Source is encoded into a 

signal belonging to a specifiea set, called vocabulary. The encoded 

message is transmitted through a noisy channel, whose output is 

decoded. The objective is to select a vocabulary such that the 

probability of correctly identifying the input signal is as large as 

possible. 

IKto* 'u* «*•«'•«*-«.!••. I.        ' —"»»■"—'' ■* 
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Source 
of 

Messages 
Encoder Channel 

TM 
Decoder User 

Ida^rara 1.2 

Diacrams 1.1 and 1.2 are identical» but our objective is 

somewhat different: make the expected Pay-off as large as possible. 

However, they are not completely irreconcilable, as shown first by 

Shannon himself in his 1959 paper, "Coding theorems for a discrete 

source with a fidelity criterion". Besides, it is intuitively 

obvious that there should be some correlation between the probability 

of correct transmission and the optimal expected pay-off. 

In his 19>9 model, rhannon added a new component in his 

Communication System between the source and the Encoder and also a 

distortion function d(e,a). d(e,a) is the "cost" of taking action 

a when the message is e. In Economic terminology it is the loss, 

of not taking an optimal action. 

Source 
Source 
Encoder Encoder 

^(0 
Channel - Decoder 

c. 

User 

Diagr am 1 .5 
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This new operator    (i|(    : E -»A),    mapped the messages   e    into 

a specified set of actions in such a way as to decrease the rate of 

information to be transmitted to a level acceptable to the channel, 

but resulting in some loss in pay-off.    The actions were then trans- 

mitted with as small    a probability of error as possible. 

Later on,   several authors,  including Yudkin,  Gobiick,  and 

Jelinek,   improved the source-encoding procedure. 

Let us point out that: 

I.    It is intuitively clear that their approach is inefficient 

because: 

1) Double encoding    (\lu(')>t-|^'))    i5 not justifiable 

although more accessible to mathematical study.    Moreover,     i-X") 

maps events directly onto actions.    Thus,  if an action maximizes the 

pay-off,   given two different events,  these two events will be encoded 

in the same message.    This message will specify that particular action. 

Yet an error in transmitting that message will result in specifying 

a non-optimal action and thus may cause a much greater loss in the 

case of one event than in the case of the other.     Two events    e    and 

e'     equivalent with respect to optimal action,   are,   in general,  not 

equivalent with respect to  the values of    d(e,a),   ä(e,,a)    for varying 

a.    Thus    tf^C')    would replace the set of "pay-off relevant events" 

by a generally coarser set of "action relevant events" and this 

diminishes the maximum expected pay-off  (Reference l). 

2) ilf-jC*)    and    ^p(*)    are chosen with no account taken of 

the differences in losses  due to having one rather than another 



i" ' \m 11 'W 

,„,«.".-«■-*■•"■""■'"■'"'" ' 

conununication error. 

5) They handled the communication problem in the following 

way: on the one hand, choose t-X*) for the given source and loss 

function (in Shannon's terminology, the distortion function), d(','), 

only, on the other hand, choose ^, (•) and i|(0(')> given the channel 

only. However, breaking the communication problem into these two 

independent problems is not efficient in moat cases. t-iC') an^ tpC') 

should simultaneously be chosen given: S, !(•) and d(','). 

II. No explicit solutions are ever displayed, but only their 

existence is proved. 

III. Only code words of fixed length are considered, although 

simple examples show that variable length encoders are often more 

efficient. 

IV. The usual analysis is confined to long blocks of events and 

long code words which indeed tend to yield perfect results. 

This last point is economically quite crucial. In practice, it 

is often impossible, or would result in great losses, to wait for a 

large number of messages to pile up before one starts to communicate 

them. In this sense, the information they carry might become 

obsolescent from the users point of view. A great deal of work is 

left to be done in this area. 

We have made no progress with respect to II, III and IV. But 

we have given a special emphasis on non-asymptotic results, so that a 

user who can afford to wait for up to N messages to accumulate might 
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have some indication about how well he can do and about how to do It. 

Wte have focussed our attention on I. In an effort to tie the 

given Source, Channel and Pay-off Function together, we have consider- 

ed a deterministic correspondence (to be optimised) between channel 

input alphabet and the set of feasible actions. We are, therefore, 

able to ascribe a value (or loss) to each error, and thuu to estimate 

the loss due to single-step (source and channel) encoding and also to 

increase the precision of the estimation of the loss due to transmission. 

In our procedure, both encodint; and transmission aim to maximize the 

expected pay-off. In Shannon-PiIc-Jelinek's, only the encoding aimed 

to maximize the expected pay-off, while the transmission aimed to 

maximize the probability of correct transmission. Our upper-bound 

on the loss due to üommunicat.'.on is therefore better in all cases 

where the loss function has -i wide range of values. 

1.5. Summary 

In Section 2.1, a brief survey of the main concepts of Information 

Theory is made with an emphasis on a notion of special interest to us, 

the Kate-Distortion Function, introduced by Shannon in 19^9» which we 

will call Rate-Loss Function. In section 2.2,  we introduce our 

notation and definitions, set the relationship between Pay-off and Loss 

Functions, respectively u(e,a) and d(e,a),  and describe our scheme. 

A Processing (Source Encoding) loss Function &,(e,x) and a 

Transmission Loss Function ^(x.x') are derived in such a way that 
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Ee,a fd(e'a)lt1(
,),T(-)^2(-)) < Ee)X (S^e.x)!^.)} 

It is convenient to consider the loss matrices associated with d(,,,)> 

b^',')    and B2(','). [d(e,a)] (respectively [&1(e,x)], [62(x,x)]) 

is the matrix with (l(e,a) as entry in the e   row and the a 

column. 

In Section J, we give a lower bound to the average loss one should 

expect with a channel of capacity C. Theorem 1 states that: for a 

constant, memoryless source C with a finite loss function d^,*), 

and a discrete, memoryless channel of capacity C, there exists no 

encoding and deeding procedure that yields an expected loss smaller 

than K (c), where R (•) is the inverse function of RC*)» the 

Rate-Loss Function, defined by Shannon. Corollary 1 states that: 

for a constant, memoryless source C with a finite loss function 

d^,*), there exists no source encoding procedure that yields a 

processing loss less than H (li(x)) if H(x) is the entropy of the 

channel input letters in the vocabulary. 

Section k  is devoted to Encoding. In ^-.1 the source encoding (or 

Processing) procedure originated by Ghannon and improved by Yudkin and 

Jelinek is described in detail and it is shown that there are encoding 

functions ^-.i')    which yield an average Processing loss as close as 

we please to the lower bound of Corollary I, Theorem II is a converse 

aBSSSB 
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of Corollary I. In h,2 a transmission loss function BoC*,*) : X x 

X -» Reals, derived from the encoding Procedure, overbounds the loss 

when channel input x is sent over the channel and recovered as x'. 

In Section !? we prove a transmission loss theorem. Theorem III 

says roughly that it is possible to select vocabularies 

U ■ Iui» ** *»um» * *'»^VJ ' ^  * e » 0^ code word.; of length n, 

u ■ (x ..,•••,x ), and decoding functiont- iJuC*) that yield, on the 

average, a transmission loss as low as desired, provided ty < c, 

the channel capacity. 

In Section 6, Processing and Transmission are linked together to 

give Theorem IV and IV1. Theorems II, III, IV and IV give in fact 

upper bounds to the various expected losses. Theorem IV states, in 

short, that there are codes (ih {•)> ^ * ^ that yield, on the 

average, a loss, due to communication, as close as desired to the 

lower bound in Theorem I, if Source, loss function and Channel are 

matched in a certain way. Theorem IV' is a variant of Theorem IV 

for limited length message blocks .- 

In Section 7 we treat the general problem stated in the 

introduction and give a tentative approach to the special case where 

the following additional assumptions obtain: binary, uniform source, 

binary symmetric loss function, binary symmetric channel, linear 

utility and cost functions. 
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SECTION ? 

2.1.    Basic Concepts of Information Theory 

2.1.1.    A discrete channel denoted by    (X,p(y|x^,Y^     or 

{p(y|xl}    consists of two finite sets,    X    and    Y,    and a non-negative 

function    p(y|x^ ,    defined for all pairs    (x,y:,  x ^   X, y •- Y    such 

that   2 p(y|x) = 1    for all    x's.    X    and    Y    are called input and 

output sets of the channel and   p(y|x)    is the conditional probability 

to receive    y   when    x    is transmitted. 

It is standard practice to consider the transmission of a 

sequence of symbols,  each symbol belonging to the input set    X.    For 

any positive integer    n    and any set,    for example    X,    we denote by 

A      the set of   n-tuples    (x, ,",>x ^ = x      with each    x,   t X.    If a 

sequence    x    =  (x1,
,,,,x  '     is applied at the input of the channel, 

then a sequence    y     ;  (y-,)'")^..    t  Y^    is received at the output with 

a conditional probability    p(y1,
,",y  ix , •••,x        which has yet to 

be specified for all    x,   •••  x     and all    n.    We will restrict our 

attention to discrete channels without memory.    For such channels, 

successive operations are independent. 

A discrete channel    (X,p(ylx jY^    is said to be memoryless if 

n 

p(ynUn'' -      p(yklv 
k-1 

11 

asssssmmissatm 
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for all   y11 e Y11   and all   xn e X11   and all   ne  (1,2,...). 

Thus a discrete, memoryless channel   (X,p(y|x),y)    is 

characterized by a matrix with row set   X   and column set    Y,    whose 

entries are   p(y|x).    This matrix is called the channel matrix.    In 

this work a channel will always he a discrete memoryless channel. 

Let   M   and   n   be positive integers, and   0 < ^ < 1.    A code 

of length   M,    word length   n,    and probability of error   < ^, denoted 

(n,M,^),    for a discrete memoryless channel    (X,p(y|x) ^Y")    consists 

of a sequence of   M   distinct elements of   A ,    {u,, •••,uM),    and a 

sequence of   M   disjoint subsets of   Y; D.,*"^..;    such that 

p(DJuJ  = 2 „        p(ynluJ > 1 " *    for   m = 1,---,M, m   m n€D m   - 
m 

p(ynl%) =11 p(ykIV" 
k=l 

{u1,'",uM)    is called a vocabulary of input messages or codewords 

and   D     is called a decoding set for   u . m m 

Practically one uses a code as follows.   A message   u     is 
m 

selected arbitrarily and tranmitted over the channel. The letter 

sequence y  is received with probability p(y |u ). If y € D. 
in Xt 

the receiver concludes that   u.    was sent.    The probability that any 

message    u     will be tranmitted so as to be decoded incorrectly is m 

A real number   ty > 0    is called an attainable transmission rate 

for a channel   p(y|x)    if there exists a sequence of codes 

(n,M ,^ )    for   pCylx"1    with    R> e111*    and   ^   ->0.    The transmission 

capacity   ^i*    of a discrete memoryless channel is defined to be the 
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supremum of the set of its attainable rates.    We may give the follow- 

ing interpretation to the transmission capacity   i(i*.    If   0 < ty < ty* 

then one can transmit any of   ty     e-ary symbols per transmission 

period over the channel with an arbitrarily small probability of error 

by making the word length   n    large enough. 

If    (X,p(y |x) ^Y1!    is a discrete memoryless channel and    q(x) 

is a given probability distribution on   X,    then we let   p(x,y) = 

p(y|x)q(x)    and    r{y) = ^   P^y1).    We define 

H(y^  = - )    r(y)  log r(y) 

x 

H(y|x^  - - ,    qU')       p(y|xxi  log p(y|x) 

x y 

where all logarithms are base    e.    Let 

I(ql  = H(y)   - H(y|x^ 

= H(x    - H(x|y^ 

x   y 

In information theory the quantity l(q^ which depends on the 

input distribution q( • 1 is interpreted as the average amount of 

information, per transmission, received through the channel. The 

maximum amount of information received through the channel is called 

channel capacity. It is defined as the maximum over q(0 of I(q). 

tw 
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C » max 
q 

V 
x   y x   y 

Where the max is taken over all distributions q(0 on X. 

The fundamental Theorem of Information Theory which was first 

proved "by Shannon states that, for any discrete raeraoryless channel, 

^ = C. 

2.1.2.    Pay-off function and loss function.    The pay-off 

function   (*)(•,•)   : E x A -> Reals    gives the benefit associat«d with 

event    e    and action   a.    For any event   e,    there exists at least one 

optimal action   a(e^    such that: 

^(e^e")) >'j(e,a) v a. 

The loss function associated with u(«,0 is defined on the 

same domain by the relation 

d^a) = oj(e,a(e)) - CA)(e,aK 

This function is what is called regret function in Decision 

Theory. We used the letter d because it plays exactly the same role, 

as far as processing and transmission of information go, as Shannon's 

"single letter distortion measure". We want to communicate information 

so as to maximize the expected-pay-off. It is actually the same to 
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communicate Information so as to minimize the expected loss, or 

distortion. 

2.1.3.    The Rate-Loss Function (Rate-Distortion Function). 

This notion, first introduced by Shannon Is his 1959 paper, 

"Coding theorems for a discrete Soura with a fidelity criterion", 

would appear to reconcile the two problems of communicating information 

accurately and communicating it efficiently, given a Pay-off Function. 

We will define this function formally.    Its Interpretation will 

appear immediately and Justify why.  Intuitively, it had to be con- 

sidered. 

Let    E =  {l, ••^g,•••,G)    be the set of events (or messages) 

and   A =   {1, •• ^k, •••,H)   be the set of actions.    Let    (E,w(a|e),A) 

be an arbitrary channel with input alphabet   E   and output alphabet 

A.    Let    d(e,a')    be the loss function and   P(^    the probability 

distribution on the messages generated by the source. 

Consider 

(1) d(w(.|-')) = E   B   (d^al) = ,'    P(e^ w(a|e) d(e,a) e,a . _i 
e,a 

(2) I(w(.M) = 
VP(eW(a|e)log   V  t ^^. [^ 
e,a 

By definition: 

R(D^ = Inf     I(w(-|-)) 
w(-|-) 

aaaaaa 



■    • 

WBWBgguimju.. u j'"1 ... :. :; ..■ .-r1 

i   .^»«•(^#«*.(», num   ii**f* 

16 

with the constraint 

d(w(-|«)) < D. 

Note that I(*^ is a continuous function of w( • | * ^ and that 

the domain of w('|^ is closed and bounded. The inf is in fact a 

minimum when it exists. Moreover, R(D^ is decreasing in D since 

as D increases the domain of minimization increases. One shows 

quite easily that R(D,l  is convex downward and that the constraint 

dCwM'M < D is equivalent to d(w(.|0,l = D. 

d(w('|«^) is a measure of the average loss, I(w('|'x) is 

the average rate of information through (E,w(a|e),A). This last 

quantity is proportional to the effort we must make to transmit the 

messages. We would like to make both of these quantities as small as 

possible, which of course is not feasible. So, given the source and 

?(•' and d(«,0, it is important to know what is the smallest rate 

of information consistent with the maintenance of a loss no greater 

than some specified level, or equivalently, what is the smallest loss 

we can achieve if the rate is fixed. 

The answers to these questions are given by R(D,i, the so-called 

Rate-Distortion function, or Information rate of the Source for a loss 

level D. (This has to be proved because the minimum was taken over 

a very restricted class of information systems.! Shannon's coding 

theorem states that, with some mild restriction on ?{•)    and d(«,''), 

R(D) is the minimum achievable rate of information consistent with 
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E (r   {d(e,a)) < D. Or, for any e > 0, there exist codes with 

E   (d(e,a)) < D and Rate < R(D) + e. Conversely, there exists no 

code with average loss D and rate less than R(D). 

Typically, R(D) is found to have the following general shape: 

mt; — 

i \ 
\ 

x. 

where: D . = S p(e) min (i'e,a) = 0 because our distortion function min   e      a 

has the property that for any e 3 an a such that d(e,a^ =0. 

This point is achieved with a deterministic channel with w(a(e) le) = 1 

and w^le1) = 0 for all a / a(e'. The corresponding value R(0) of 

R(D,i  is the entropy Hfe'  of the source. 

D   = min 2 ?{e^  die,a.)    is the minimum achievable average 
ITIELX       £L  S 

loss with no information.    Here the    w^je")    matrix has a column of 

ones, all the other entries being zero.    The capacity of such a 

channel is null because it has  identical rows (see Ash,   for exampleN . 

For a binary, uniform, memoryless source, with the loss function: 

,0    if   e = a 
d(e,a^  - 1 - A(e,al  = < 

l- 1    if   e / a. 

] 
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1 

h(C)sl 

R(D)-I-HID) 

in bmars on»** 

2.2. Notation and Definitions 

2.2.1. The source s proauces a sequence ^irK--]    of 

messages (or events^ at a fixed rate of 1 message per second, each 

e,  being taken at random from a finite set E = il, • • ^g» • ••,G). 
K 

. .00 

The process    levJv_T     is a sequence of independent,   identically 

distributed random variables.    Prob  {e,   = g) = P(e = g)  = P(e) V 

k = 1,2,-". 

2.2.2.    The channel    K    is discrete, memoryless with input 

alphabet   X=  {1,•••,!,•••,l},    output alphabet    Y=   {l, •••,j,•••,J}, 

Prob   ly = j|x = i} = p(y|x).    The channel capacity per use is    C, 

and it can be used at most once every second. 

.       -co 
2.2.5.    The actions form a sequence    lasJ.   , >    each   a.     is 

chosen within a finite set    A =  (l, • • ^k, • • ^H). 
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2.2.k.    Blocks of   n    events    e   = e.   • • • e.    • • •  e^ e  E   = 
,—A—, '      k 

ExE  ••• x E    are encoded into blocks of   n    channel input letters; 

n „ vn x    = x,   • • • x,    •••x   ex. 1 K n 

Blocks  of    n    output letters are recovered: 

y11 = y-L • • • yk • • • yn 
€ Y^ 

which are decoded into blocks of    n    actions: 

n .  .n x    = xn   • • •  x,    • • • x   >- A  . 1 Tc n 

REMARK:    As was said in the introduction,  it is not efficient 

to restrict ourselves to vocabula-ries where all words have equal 

length. 

2.2.5.    A code of length    H    consists of:    a vocabulary   U   of 

M    channel words of length    n: 

u= V'-'V-'V   u
m
e ^ 

and of two functions respectively called Encoding and Decoding 

functions: 

 "'  — '       ■■ —» 1 ■ '      BBB 
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*1 

t' 

: E11 -^UCX11 

: ^^VCA11 

2.2.6.    The rate of a code    (iK^o)     is defined to be 

i|( = - log M   where the    log    is of base    e.      We will sometimes use 

log-   to express  final results because a bit of information is more 

readily interpretable than a   nat.    It suffices though to remember 

1 bit 
that 1 nat = log2 e * 

2.2.7. The loss-measure. We recall that the loss when event 

e has occurred and action a has been taken is defined to be: 

d(e,a) = cj(e,a(e)) - u)(e,a) 

u)(e,a(e,i) > (j(e>a) V a, 

where tj(e,a) is a finite Pay-off Function. d(e,a) is a non-negative 

function of e and a and, for e fixed, it assumes the value 

zero at least once. 

By definition: 

., n n, A 1 \  ,    . 
d(e 'a ) = „ i ^VV 

k=l 



M^^^W 

21 I I 

Ulis definition implies that time does not enter this problem.    It 

intervenes only through the message and decision rates. 

The treatment of time would introduce more parameters such 

as:    encoding time,  transmission time; decoding time, discount 

factor,.... 

The overall loss  for the system of information    ((|(,(')>T(.),\|r_(*)) 

is then 

d=7      P(en)  Prob.  T,    (an|en)  d(en,an). 
ft  n Vi>*2 e ,a 

Prob  „   (a |e ) is the result of the composition of 

ilf ■,(')>T( •) and i|fo(') in tliat order. 

2.2.8. Processing and Transmission Loss Functions. We have 

to cope with a major difficulty in connection with i|r-,(•!>: a channel 

input letter cannot be loaded, on the average, with an amount of 

information larger than or equal to the channel capacity, C, because 

the information which was loaded will eventually be entirely lost 

after transmission. If H(e,l > C, one is forced to resort to what 

transmission engineers call a noisy code, Le., a code where the same 

word may represent several messages. In doing so, we present the 

channel with coarser information, that is, information of lesser value. 

The information is coarsened to the extent necessary so that it can 

be carried through the channel. 

Practically, an efficient choice of IJNC'I and iini')    is 

possible only if one has a measure of the loss (of information value) 
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due to   ti(')i    and a measure of the loss due to    T(«)    and   Ip^ 

such that the total loss is given by processing    (t-.C*)) + transmitting 

(T(-)  * tgC'))    losses. 

Unless there is a well-defined relationship between channel 

input letters and actions, it seems difficult to derive these 

measures from   d(.,.).    For the sake of simplicity, we have assumed 

I = H    (i.e., the channel input alphabet and the action set are of 

equal size), which lead us to consider all possible    1-1 correspond- 

ences between   X   and   A.    Not making this assumption would bring 

about more complex associations, but the increased difficulty, we 

think, is not insurmountable. 

Let momentarily denote    x      the    x   associated with a particular 

a: 

DEFINITION.       5,(6,x )  = d(e,a)    is called Processing Loss 

Measure (Function)    ^(e >x )  = —   \_1 
8l^ek,xk^' 

The average Processing Loss,    6 ,    equals 

ZnP(en)   61(en,t1(en^. 
e 

The transmission loss when x  is sent and x'  is received 

is given by 

L P(en)[&1(e
n,x'n). B^x")] 

n u_. -1/ n\ e 6^ (x ) 

However, the proof of our transmission loss bound required a single 

letter measure (i.e., 6 (x,n,x ) = jr 2? i  52^x,k,xk^*    ^^ trou€ht 

about the following definition. 
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DEFINITION.    Mx^x') = max  (2   p(e)X    ,(e) 6,(6,x')  - B (e,x)]; 

2e P(e)Xx,x(e)   [B^e^)   -61(e,x')]}>     where    X^^e)     is the 

indicator function of    {e : 6 (e^x1)   >6 (e,x)}. 

It is justified by the fact that 

n 

^ I ¥vxV ^    I P(en)[&1(en,x'n)-51(en,xn)], 

k=l n_,   -1/ ris e e^   (x ) 

2.2.9.    Transmission Scheme. 

^«-e>x 
TC) v- D«co<Jer 

|A 
-** t^-^^ 

Processing Loss 

n      /  nx 

e 
En{61(en^1(en))j=b1 

Transmission Loss 

<      E        (&?(xn^p(yn))} = &. 
n    n 

x ,y 

n  .   /  ns n ,   /  n\ Total loss    <    E n  (B^e^^Ce11))} +    E {62(x ^(y11)) ] 
e n    n 

'•"■•- -•""•• 
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SECTION 5 

The lower bound on Communication Loss for a given channel capacity 

The theorem we are about to state is due to Shannon (1959) • 

It answers the question,   'What is the smallest average loss one should 

expect with a channel of capacity   C?' 

THEOREM I.    For an independent memory less source     S   with a 

finite loss function   d(',-)^    and a discrete memoryless channel of 

capacity   C,    there exists no encoding and decoding function that 

yields an average loss smaller than   R- (C),    where    R- (•)    is the 

inverse of the Rate-loss function    R^). 

In other words, for any code    (i|ii>to)    the average loss, 

D > R-  (C).    We will give a condensed version of Shannon's proof: 

Suppose   D   is the average loss for    (\|N40»    
a block code of 

length   n.    nC > l(x ;y )    by definition of capacity for a discrete 

memoryless channel     I(x ;y )  > l(e  ;a )    by the data processing 

theorem (Feinstein S.3.5)    I(en;an) = H(en) - H(en|an) > 

^«1  [H(ek)  ' H(ek'\)]    because    "(e11!*1) " H(e1|a1  ••• an) + 

H(e2|e1,a1 ... an) + ••• + ^ej6!''"'Vl'V * "'V - 

H(e1|a1) + ... + H(en|an). 

2h 
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Now   2"      I(e  ,a, ) > nR(D)    by definition of    R(D) 

.'.   C > R(D)    •*• D > R" (C^    because    R(*)    is decreasing. 

q.e.d. 

COROLLARY I.    For an independent memoryless source    s    with a 

finite loss  function   d^,'   .>    there exists no encoding function that 

yields a processing loss smaller than    R" (H(X^)    if   H(x^    is the 

entropy of the channel input letters  in the encoded messages. 

Proof.    This result clearly holds when the channel function 

T{')    and    tyni')    are identity transformations. 

I(x  ;y      = H(x   )   = H(x) 

the seune string of inequalities yields 

C > H(x'   > R(D"     .".    D>R"1(H(x■') q.e.d, 

In the next section, we will prove that there exist ^..(•^'s 

such that 

Ö, < D Ü < D < D 
1 - —  - max 

H(x' < R(D) + £     V e > 0 

"" '■■" taajsm 



SECTION h 

k.l.    The Processing Loss Tlieorem. An Upper Pound to Processing Loss 

We are faced here with the problem of processing the messages 

from the source (source encoding1  in such a way as to decrease the 

rate of information to be sent through the channel so that there will 

be a least possible loss  in information value for the user.    The 

relevant loss measure is    b (•,•): E x X -* Reals.    We recall that a 

1-1 correspondence was established between   A    and    X    and that 

o, (e^l    was defined to be equal to    d(e,al    for the associated 

couple    (x,a).    It follows that the rate loss  function for the source 

6,    with    b {','), nJ/X^,    is identical to    R(-U 

The encoding procedure we will describe is due to Shannon for 

its basic idea,  which was later improved by Yudkin,  and to Jelinek 

for its final version. 

The problem was:     given a mernoryless source,  governed by a 

distribution    P( •      over the outputs    e e  E,    an alphabet 

X =   il,'",}{]    and a loss measure    &,(•,•")   :  E x X -»Reals,    let 

^.(•^    denote an encoding function that maps sequences    e      onto a 

set,    U =  {u,, • • ^IL.)     of    M    sequences of letters,   u    =  (x..   ,...,u    }> 

called a vocabulary.    What is the least obtainable value of the 

average loss    E      (5 (e  ,\|(.(e ))}    and what is the corresponding t-.C*'1? 

2b 
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. 

The only general answer to this question is obtained through a 

"random coding argument", which involves "threshold type encoders" 

proved to be efficient for large    n's.    In Shannon's approach, the 

threshold was a constant.    In Yudkin's, it is a function of the 

sequence    e      designed in such a way as to minimize the expected 

processing loss.    We may think of   S^e.x)    as a distance between 

e    and    x    (although it does not necessarily have the properties of a 

mathematical distance)  and say that an optimal   tyA')    should map each 

sequence    e      onto its closest code word in the vocabulary. 

We will now reproduce the main steps of Jelinek's proof.    We 

will need these in Section ^.2. 

ij!,(*'     is defined in the following fashion,  given    U: 

/Jr^e11'    - u     if    Men,u ) > d0(en)    for    m' 
f   Ylv      Um lv     '  m Cr = 1,••• ,m - 1 

and    &
1(en,um) < d0(e n, 

n 

V 
\);,(e  ^     ^ iL.    otherwise, 

d (e  )    is a function over    E      whose exact form will be 

determined later according to the statistical properties  of the source 

and the loss function. 

Let    d be the largest element in the loss matrix    [ö^fe-x^Ö] max 0 V   ' 

and    ^-jC'1)    the characteristic function defined on    E      as follows: 
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1        U       ^0 

1    if   6(en,u ) > dA(en)    for all   m = 1,--,M in u 

otherwise. 

The expected loss, given   U,    and   d (•  ,    can be bounded; 

E n  {&1(en,.i1(en>
uW = b^ P(en^ d0(enMl - ^(e^l 

e n 
6 (^.1.1 

+ d P(en^ (Z!.(en\ max   _,      v        *r      u 
e 

In order to estimate the bound, a random coding argument is 

resorted to.    Let us assume that the code words    u      of   U   are select- m 

ed independently at random, with probability 

n 

Prob (u = x*) =!] q(x. ) ^ <ki^ 
m   m   , * n   K.,m m k=l 

Prob (U) =   Q(u ), J ^   m 
m=l 

where q(•'  is an arbitrary distribution on X. Then; 

F. = E (E  [&.fen.Jf.(e
nV W < ' Fie^dJe1^ Eu {En [^(e ^(e y)<   P(e^d0(l 

n 
e 

_,, n. ,-„ . n  R / n n. _ , / n., ^M 
+ d      P(e 1 IP x : o (e ,x ^ > dn(e IJJ 

max ._  v     q     lv  '      0V 

e11 

The M   power appears because the M codewords are selected 

independently. 
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x-1 
Now, by the inequality   log x<x-l    or   x<e      ,    the 

above inequality car be written: 

nN ,  /  n, &, <,     P(ell)d0(e11    +d       /    P(enl  exp  [-P  (x11 : 6^ (en,xn^ < <L(en))]-M 
1—.'       v     '  Cr max. L-, q 1 — u 

n 

(^.1.51 

T A f n    T,     re-   /  n   nN      j  c  nx •.      n^ Let    J =  le  : P    1° (e ,x ) < d.Ce )J < ^i. 

Then; 

nx   -n 
P(enHP {\{en,*n) <ti0{en)f<) i    H^ +  '        P(en)e 

e €j e ej 

< e      +        P( e   1 

n e 

cr > 0 

ne lo- 

nN ■,.' P  t^^x")  <d0(e"))j 

{h.l.k) 

The last term is obtained by using the usual bound to the indicator 

A 1 
function of J and the definition of the rate of a code ^ = ~ log M' 

A lower bound to the probability in the denominator is found 

in Chapter 8 of Fano's, "Transmission of Information". 

It can be shown that; 
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I* 

P {&1(e
n,xn) < ^ 7'n(p,e

n)} > exp [7n(P,enl - P7'n(P,e
n) 

(^.1.5) 

+ ™ log 27m - B(p,en) ]    -» < P < 0 

Where: - B(p,e ) is a monotonically decreasing function of P, is 

independent of n and is bounded for all e 's, as long as |p|,G,H 

are finite. 

^       A ^     "' P61(ev;X
,i 

7n(p,e
n) =2. ^p'^  =1 l0g [L  q(x) ^      ] ^•1-6) 

k=l       lc=l     x 

If we choose    d (e "l = " /' (P>e )>    (3«1«5)    hecomes 

GH 
6i <^  P(en) i ,.n(p,en) + dfflax [e-n + n^ ßi?)^^*^] 

** (^.1.7) 
-M   <   P   <   0 0 < or < 1 

Where; ^(o-)  ^-log  n?{e)  e-
CT(y(P^^P7'(P,e))] 

ß{ß)  =  (2T)    
d      exp  [max     B(p,en) } 

Finally, provided    3 a e   [0,1]    such that    |i'(a-)  = ^ 

5. < /    P(e)7' P,e) + d e     + n      ß P e    ^  ^ ^   '      ^     '] 
1 —/_■ max   — »-^    — 

-» < P < 0 (^.1.8) 
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let us define: 

P^Ce^x) 

W   (xle)   =    ^X)& .    . pr Wp^X|ej P&,(e,x') 
>VeXq(x')e 

so that 

7'(p,e)  = ^  wp(x|el5:L(e,x) 

and 

^ <>    P(e) )    wn(x|e)5 fepc) +d        [e*11 + n 2 p(p)e-n(^,(cr)^(cr)) ] 

The second term tends to zero with    n   as long as    oty   - |i,(a) >o. 

We want to minimize   f    under the constraint: 

/     P(e^ wp(x|e)6i(e,x^ < ^ ^e   [o,DM] 

e,x 

1,1111 ^   (P^CO)^^) {L p(e) wp(x|e^ l0g~^r] 

e
'x (^.1.9) 

A {tx^  =   l(p,q(0,)   :   '     P(e^  wp(x|e)S1(e,x^ <\;P<0] 

e,x 

It turns out that   ^   .   (A,!  = R(A^)    (^.1.10)    for a complete 

proof,  I refer to Jelinek, Chap. 11 section 11.3 and 11.^ 

' M —■ 
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THEOREM 11. Let S, a constant, memoryless source governed 

by a distribution P( •) over the messages e £ E, a loss matrix 

[Me,x)], e e E, x e X, and a number A. e [0,DM] be given. The 

random family of encoding functions il/nC*). , we have considered, of 

output sequences e  onto a set U = {u,,...,!^} of M = e * 

codewords u = (x .,...,x ) yield on the average a processing loss 

F  such that: 

A ^    -na(^A) 
\ = EA ^(e^.Ce^y < ^ + dmax{e-

n + n
2 ß(p)e    ^ } 

(4.1.11) 

Where 

d    is the maximal entry in [&.(e,x)] 
IUCLX X 

P(e) w (x|e) Me^x) = ^ 

e,x 
P5,(e,x) 

q(x')e 
Pv   ' po1(e,xl) 

2
X,  q(x,)e 

and 

ai (f A) > 0    provided   i|f > R(A.) 

COROLLARY II.     There exists an encoding function of sequences 

e      onto a vocabulary    U -  (u, ,...,0^.} c X , M = e *    whose loss,    8,, 

is bounded by the same expression. 



,4,   ■ ,_      • •   » ■   '   «w--r ' ""' ^ 

33 

^.2.    Derivation of the Communication Loss Measure (Function) B^x^x1) 

Let us come back a few steps from the point we have reached. 

Let    q(0    and   P < 0   be arbitrary.    Let   ^    be equal to   M-'(o"), 

0 < er < 1. 

Let U be a vocabulary of e * codewords 
w (x|e) 

(if > Se x P(e)wp(x|e) log p^   )    U = {u1,--M^}. The encoding 

rule is the following: 

Encode e  as u  if u  is the first code word in U 
ram 

such that Me ,u ) < d0(e ); if this never occurs, encode e  as 

VL.,    or, which is the same, do not encode it at all. We understand 

how this decreases the quantity of information to be communicated 

it is now < f nats, on the average, per event. From (5.1.1^ 

(^.2.1) 

The second term overbounds the processing loss due to not 

encoding certain e 's. The first overbounds the loss due to the 

actual encoding of the other e 's. Note that this term does not 

depend on the vocabulary U, but only on dn(e )    which, in turn, 

depends only on q(x1i and P. 

SE tuat 
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Case of tlock length one: 

There are M = e1" words in the vocabulary, chosen randomly 

with probability q(x'i. A single message e is mapped on u = x 

only if 

\  —i 

5;L(e,x^ <d0(e) =   wp(x|e,) b^ie,*). 

What is the added loss if u = x is decoded as x'? 
m 

If B. (ejX1) < dn(e
,) there might be a loss, but it has already 

been taken into account in the (source encoding bound) Processing loss 

bound. We need only be concerned about those e's such that 

6 (e,x) < dJe) and 61(e,xl) > d0(e). Clearly 

{e : 6 (e,x) < d0(e^ and ^(e^') >d0(e))c {e : B^e^) < ^(ejX1)). 

Let X .(e) be the indicator function of 
xx'v 

{e : 6,(6,x) < 51(e,x,)). Then the loss & {x,x')    due to 

Transmitting and decoding input x into x' 

Z2(x,xn  <  P(e)Xxx)(e) (^(e^') - ^(e^))    (4.2.21 

e 

DEFINITION.    The transmission distortion function is 



i.     iianamii.. <I.JI.,JII 

3 r 

52(x,x,) = max  ( )jP(e)Xxx,(e)(&1(e,x')  - ^(e^i); 

6 (^.2.3) 

) p(e'xx.x(en&
1(e,x)  - ^(e^'))). 

e 

This definition is unnatural a priori. The consideration of 

&„(.,.) is Justified by: 

- 6_( •, •) is not function of the particular code at hand 

whereas ^0(,,•) is. It is function of the given of this problem: 

P(•) and d(•, •). 

- .0 (x,x') < & (x^x'l   V x and x'. 

- i (xn,x'n^ <- / &?(x,,x' 1. This last property is 

k=l 

crucial in the proof of theorem III. It will be proved below. 

Case of block length n: 

LEMMA. The loss ^0(x
n,x'nl due to transmitting and decoding 

channel input x  into x'  is over-approximated by the single 

letter loss function &0(x,x'): 

n 

yxn,x'n) <\ ;  &2(vxV" 
k=l 
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Proof. 

n    ,n n> rt   /   n    .n.       t   /   n    ns 
2(xll,x-")  < PCe^b^e-.x-'4)   -b^e^x )] 

e tt 

where; 

P.    -   {e     :  b^e  ,x )   < S^e  ,x,  ) j 

now: 

5Ö 

nv r c   ,   n    , a n    nx PCe'M^Ce^x'")   -b^e^x)] 

n _n e tC 
n 

ns   1 

n „n 
e eG 

P(e")i   ^   (b-^xV   -^(e^x^) 

1 claim that 

n 

(&i(vxV -^vV) 
k=l 

k=l k    k 

Indeed,   suppuse that for a particular    e ,  \      ,   (e,)   -   ).    Then 
K. X. X    .        xv 

K    k 
&.(e.,x'   )   < 6 (e   ,x )     and therefore,   to a non-positive  term in the 

fix^st member correspünds  a zero term in the second. 



..■••■...   ....— asaon ...  . . i ...VJ-TI: ^..r.j 

57 

n 

.■.yxn,x.n) <^ P(en) i 7 X    (ek)(&1(ek,x.k) -t^e^x,) 

n      R-i  k k 

Now, since P( e ) - P( e ) ••■ P(e ) 

irAx
n.x'n) <- P(e)>  , (e)(6-(e,x',) -bJe^xJ) 2V     ' — n  ,  ,   ' x, x'  ' lx   k   1^  k' 

, - ■ ^     k k k-1 e 

.-. ^(xn,x'n) <^   b2^\'X\)     ^ ^'?'ti *-e-d' 
kfi 

REMARK:  5^(x,x,)  is in fact the product uf the probability of 

x being sent given that x belongs to the vocabulary u and the 

loss when the output of the channel is decoded into x' . Therefore, 

to compute the Expected transmission loss, we need only sum up the 

expected losses for each word in the vocabulary. 

Properties of &p(-j*): 

1) bJXfX*)   -'O, b, (x.x1) - )    when x -^ x' 

2) the     [b^XxjX1)]    matrix is  square and symmetric,   an 

important property  for what follows. 

'->)    &„(•,•)     has the triangular  inequality property. 

LEMMA.     &, (xn,x.)   <&,(x.,xj   +&,(x, .x.) 

Proof.     Let  us  first show that 

aBaagsssgag—^KaaBB—a —■ — 
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the first member can be written 

38 

< P(eVxx ^(61(^(6,x.0   - 61(e)x1^ {h .2.h) 

+  '      P(eV (e)(61(e,x^   -  6^6,xj 

P(eVx        (e)f6  (e,xj 
x^^ 1'       5 

6.^6,x?)  + &1(e,x?l   - :"1(e,x1) 

Suppose    <        (e^   - 1,     i.e.,     Sife-x/1  > J^(e,x^,!.    These cases are 
xx, lv      3 11 

possible. 

1) 6,(e,x,v > ^-jCe^x^l > ö^ejX,x the two members of the in- 

equality (^. 2.1+) are equal, 

2^  6 (e,x0') > & (e,x ) > b (ejX,) the right-hand side of (i+.P.V 

is larger because it has a zero tern rather than the negative term, 

5)  6 (e,x " > o (ejX,' > S1(e,xn) the right-hand side of {h.?_.h] 

is larger for the same reason as in O] 

If    X        (el = 0    then the right-hand side of (k.P.h)  is larger than or 
xlx3 

equal to the left-hand side, because it is non-negative.    We would 

prove in the same fashion that: 
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P(e).<x x {e){b1{e,x1)   - ^(e^^)) 

59 

<        P(e)X        (e)(& (e,x )   - ^ (e,x ) (^.2.1+') 

+   '    P(e)X        (eU&^e,/./   - b (e,xJ 
X?X1 xxx. 

therefore,  from (^.2.3),  {^.2.h)  and h.2.h'),  it follows that: 

62(x1,x5i < Sp(x1,x2)  + 8?(x2,x5) q.e.d. 

""- •i-^- M— 
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SECTION 5 

An Upperbound to the Expected Transmission Loss, Given a Channel 

Let us be given a channel (X,p(y|x),Y), where: 

X = il,"-,i,---,H) 

Y = ll,---,j,-'-,J} 

and a transmission loss matrix    (^(xjX'))-    We recall that    6p(,,0 

was induced by    &,(">*)    through an arbitrary 1-1 correspondence 

between the action set    A    and   X. 

We want now to associate channel  input and output letters in order 

to define a distortion measure between channel input and channel output 

letters.    Let us call    a(y)     the action associated with   y    determined 

in the following fashion: 

^    q(x)p(y|x^52(x,a(yl) <)^  q(x)p(yIx^x^x') V x', 

X X 

where    q(x)     is the probability distribution used on the    x's. 

Define:    &,(x,y) = &p(x,a(y)). 

We will suppose,  furthermore,  that the correspondence between   A 

and    X    has been done so as to minimize 

ho 



mmim 

hl 

q(x)p(y|x)62(x,a(y)) 

x,y 

The channel is now adapted to the source and the loss function 

d(-,-). 

We now propose to ask the following question;    Let   U   be a 

vocabulary of    M    sequences     (u , •••,ILJ    of channel input letters  of 

length   n  :  u    =   {x ,,•••,x    )    and let the source messages    e      be 0 m ml'      ' mn 

mapped on the codewords    u 's    by the rule given in ^.1.    The loss 

when    u      is transmitted and decoded into    u  .    is over-approximated m m' r 

hy    5p(u ,u  ,).    What is the best decoding function    ty0i')   :   i    -^ A 

and what is the least obtainable value of the expected transmission 

loss? 

Is  B.. -aatter of fact, the only optimal decoding function is the 

one   .nioh maps an output sequence    y      onto the code word    u      that 
m 

minimizes the quantity, 

rn^l 

Pr{u ,|yn}&0(u ,u  ,). m' 2V  m    m' 

Unfortunately this decoding rule is hardly feasible in practice, 

especially for large    n's,  and moreover one does not know how to 

evaluate its performances in terms  of a bound. 

We will r'.nstead use a so-called  "minimum distance" decoding 

function,  defined as follows: 



11 ■ ',./ 
I- '  . .■ -.-.   -.■-:,,.  1 

k2 

*2iy\ = um if Ö5(Vyn) ^ 63(um"yrl) V m, = 1'"*'M  (5-1) 

When y  is received, t^(*).  decode it as the code word u 

which is the less distorted with respect to y . 

Given a vocabulary U = {u., • •-jiL.}, we would like to evaluate 

the expected value of the transmission loss function: 

m=l 
^ 

As in Section ^.1, we will only be able to evaluate the expected 

value of this quantity over all   u's =   Cu,,"',,uM)    generated at 

random as in ^.l.    We will prove that if the code rate   i|f    is small 

enough, the expected transmission loss, averaged over all   U's,    is 

bounded from above by a function which tends to zero with   n ->". 

Proof.    Let    U   be generated at random,  each word   u     being 

chosen independently with probability    Prob   {u    = x  ) = Q(x ) = 

Ir ,   q(x. )    where      x    = (x, .•••,x , •■•.x )    and    q(«)    is the same x=l ^v k v  1 k n ^   ' 

distribution as in ^.1. 

Let   x    = (x,   • • • x )    be a code word and    y     be received when v  1 n J 

x      has been sent.    The probability that the distortion    S,(x ,y )    be 

larger than some value    0    is bounded from above using a result of 

Fano's,  "Transmission of Information",  Chapter 8. 
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^ 

■n_ ,. fR ^ n nN ^ ,/ n N1 ^ ^[sg'fx ,s)-g(x ,s)] ^ n fc *\ Prob lB_(x ,y ) > g'fx ,s)] < e   ^ v » / =.v  ' ^ ■' s > o (5.5) 
5   ~ 

where; 

g'(x ,s) is an increasing function of s and 

g'(xn,0) =V Ti^l**)^,^) 

»sg'Cx11^) -g(xn,s) =^ ^ /^ Ps(y|xk) log p^i^J > 0 
k=l   Y ^ 

increasing with s 

s6x(x1,,x) ^ 

5^kJ 

, , , N   e 3V k  p(y|x ^ 

2yI P(y
,|xk)e 

If &,(x ,y ; > g'(x ,s)  then the transmission loss is less than or 

equal to &_   , the maximal entry in the [&0(x,x')] matrix. If 

ST(x ,y ) < g'fx ,s]    then a transmitting and decoding loss smaller 

than or equal to 2g'(x js) could occur only if there was another 

code word x'  such that 5,(x' ,y ) <g'(x ,s), otherwise, no loss. 

The probability of such a situation depends on y  and g'Cx ,s) 

only, since the code words are chosen independently. This probability, 

averaged over all y 's such that 5,(x ,y ) < g^x ,s)  is taken to 

be equal to the probability of another code word at a distance less 

than g'(x ,s) from x . 

Let us now estimate this probability using once again one of 

A 

''■.!,• 
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Fano's bound: 

Prob   U'n  : 6p(xn,x'n) < g-(x'n,s)} 

(5.M 

< e 
n(A(xn)f'(xn,A(xn))}-f(xrl,^n))3;   Mx")  <0 

where: 

( 

g'(xn,s) = f (xn,A(X
nl)    or    A(xn) = 0    if    g'{xn ,s) > f {xn ,0) 

f'(xn,>v)    is an increasing function of    A 

f'(xV) < f'(xn,0) = )     Q(xn)&?(xn,x'n) ; A < o 
-h x 

An        ^—i Q (x* Ix, ) 

{Af'(xn,A)  - f(xn,A^  = .    i  ^    ^'V  l0g    \(x')      -0 f0r A^0 

k=l     x'eX 

is a decreasing function of   A 

QA(x'lxk^ 

A62(xk,x') 
ixll 

\, q(x')e 
A60K,x-) '2v"k 

The probability that   3   no other code word in the sphere of 

radius    g'(xn,s)     about    x11; 

ß\^fv
n ^rv

n^   '"-n ^--n^ M":L 
1 -7r> [1 - e-nCACx^f'Cx",^^))-^^,^^))^-^ j...^ 

the probability that 3 at least anocher code word in this sphere; 



1+5 

TT <  1  - 
iM 

1     1/ -      =i-x 
Now    (1 - x)    > e 

.^    .1 
2 ' 2 >e forO<x<l 

-n(A(xn)f'(xn,A(xn))-f(xn,A(xn))) 
.'. TT < 1 - exp [- p e '' M] 

but    1 - e"X < x V x    and    M = &^ 

-n[A(xn)f'(xn,A(Xn)).f(xn,A(xn))^] 
•. TT < ^ e 

So the loss, averaged over all   U's    that have    x      as  one of the 

code words, is bounded by 

E {6?(xn,Uy^      n  ) 
U(xn)y

n "(lt ' 

< 3g (x ,s)e (5.5; 

n    s     / n 
+ & e-n(sg'(x  ,s)-g(x ,s))        A(xn) > s<0 

2 max 

It is left now to average the loss over all vocabularies and all 

code words. The probability of x  being a code word is equal to 

1 - [1 -Q(xn)]M~Q(xn: 

'. the average loss for U, averaged over all u's 



1^6 

E 
n    n 

U,y ,x 

(62(xn,t2(yn)u) 

Vwun y/J^w.-PfJ1 KJ*) <    E B8'(x",s))    E  1.-nWx")f(x">Kx")).f(X"^(x ))-*! 

n n 

+ 6 E    te-n(g,(xn's)-g(xn'S))}    Mx") < 0,  s > '2 max 

(5.6) 

Now: 

E   (5g'(xn,s)) = 5 I Q(xn) ±   >. L p
s
(y|xk)65(xk'y) 

n _ i. T k=lyn 

= 5 /^   q(x^  Ps(y|x)65(x,y) 

x,y 

Hv -nH because    Q(xu)  = njJ=;L q^) 

Jis.vffJ1 Vv
n n -V/JIN 

E      {e-n[A(xn).f'(x",>(xu))-f(xu,A(x"))) 

n    — 

Q(xn)e-n[A(xn)-f'(xn,A(xn))-f(xn,A(xn)] (5>7) 

{xn:Mxn)<0) 

+      ) Q(xn)e0 because    Af (xn,A)  - f(xn,A)  = 0 for A = 0 

(xn:A(xn)=0) 
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r-1 

L Q(xn)  = Pq(xn   : A(xn) = 0} 

n -w n {x":A(xu)=0) 

= P    ()    Q(x'n)6:5(x
n,x'n) < '    Pjyn|xn)Mxn,yn)) 

,n n 

by (5.^).    Q(x'n)  = I^=1 q(x'k).    .-.as    n 

^   Q(xn)&2(xn,x'n)  -> ^     q(x)q(x')&2(x,x') 

xrn x^' 

'K V   Ps(yn|xn)65(xn,yn) -> Y  q(x)Ps(y|x)65(x,y) 

yn x,y 

But   Z       q(x)  P (y|x)5 (x,y) = Z       q(x)  Pc(y|x)& (x,a(y))    because 
x,y s 2 x,y s <; 

of the association between    Y   and   A,    by this association: 

^   q(x^p(y|x)S2(x,a(y)) <^   q(x)q(x')62(x,x') 

x,y xx' 

.".   since   2       q{x)  P (y|x)6 (x,a(y))    is an increasing function of    s, 
x,y s rd 

we can choose    s    small enough to ensure 

)    q(x)   Ps(y|x)62(x,a(y)) <^     q(x)q(x')&2(x;x') • 

x,y x,x' 

.'.   for    s    small enough    Prob    (^  .n QCx'   )&2(X  ,X'   1 < 

2     P (yn|xn)6-.(xn,yn) }    tends to zero exponentially as    n -x». 
^*      S J 

y 

smasssasi 
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1+8 

Now, because of the continuity in   ^   of   Af'(x ,^)  - f(x ,A) 

and because of the continuity of the expectation operation, there 

exists a maximal   A < o    such that: 

(e-n[A(xn^f(xn,A(xn))-f(xn,A(xn))]) < e     x
n 

-nE    (A f(xn,A Uf(xn,A )) 
S 'S 

r 

\ 

E   {f'(xn,As)) =   >    q(x')QA (xlx^&^Cx^') > '     q(x)Ps(y|x)6^(x,y^ 
n ö        ' " , s 

x XjX' x,y 

\' '—' 0  f x' Ix. ) 
E  {Af'(xn,A) - f(xn,A)} = E    {i/    N    ^i*'\\) log    -rpy^ ) 

x x       k=l x' 

\ 
QA(x'|x) 

E   {Af(xn,A)   - f(xn,A)} =   :       q(x)QA(x'|x)  log    " ;   .y (5.81 

x x,x' 

ns ^z n -w riv s   „,  n ■-.,  nN 

Finally,   in order that    E      (e-"fMx^f(x",A(xu)).f(x",A(xu))]+^} 
n    — 

tends to zero with    n -> »o,    it suffices that 

Q?N(x,|x) 

^<^      q(xlQx (x'|x)  log      S^x.^ (5.9) 

XX' 

In the same fashion 

E  {g'(xn,s)} = Ev {g^x^)) 

xn 

and 

• 
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^9 

E    {e-n[sg,(xn,sl-g(xn,s)], = E    (e-n[sg,(x,s)-g(x,s)]j 
— v     — 

' 

We have proved,  so far, that the expected transmission loss,  averaged 

nA \ 
over all   U =   [\>" '>\}>  (M i: £ 

/E     n   n(S2^x  '*2(y  ^-3Ex  te't*'*^* 
.; U,y ,x 

0^ (x'lx 
-n[>:x^q(x)QA (x'|x)]qg ^y -^ 

i 

I 
t 

i " 

+5o E    {e-n[sg'(x,s).g(x,s)])    with    s>ü 
2 max    x    — 

)    q(x)QA (x'ix)&2(x,x') > :     q(xlPs(y|x)& (x,y) 

Vxx' x,y (5.10) 

Let us ask now a question of theoretical importance (its economic 

relevance cannr.t be asserted unless the utility function of the 

information system and the various cost functions are given): 

What is the supremum,    f   ,    of the permissible code rates? 
* 

A priori    ty    < C    the capacity of the channel. 

Let us  prove that    \|    > C: 

H^M 
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QA(x'|x) 
, *        max        \ /   \ A /   i I   N   T        "A- 

*     =  q(-),A   L     ^X)QX(X   IX)   l0g       q(x') 
XjX* 

/'    with 
\ 

(5.11) 

V   /     q(xNQA (x'|x^2(x,x')  =   '      q(xN:p(y|x)55(x,y) 

x,y XX' 

ty 3'9> 5.10 and the fact that   ^        q(x)P (y|xN)&2(x,y^    is minimum 
x^y s j 

for    s = 0.    PrtCylxl - p(y|x) 

'(yk) C - max q(x,|p(ylx'  log ^ vv /' I   \ ,0 
HV     ^^ B Sx^(x^p(y|xl 

x,y 

by convexity    U    of    - log( • ^ 

C < max      x     q(x^p(y|x)  log 21^1 
r.)  --. q^) 

x,y 

(3.1?^    can be written; 

(5.12) 

C < max q(x) 
qH _, 

p(y|x^   log^f, (5.13: 
xx' {y:a(y^x') 

where    a(y,)    is the action or equivalently the channel input letter 

associated with    y. 

Let us denooe b^     Q (x'|x),    the sum   ^{v.afv)_x» •) P(ylx,)'    By 
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convexity fl of log( 

p(y|x)log^< I p(y|x)log^M (5.11.) L 
(y:a(y)=x') {y:a(y)=x') 

From (5.15) and i^.lh) 

;X)Q'(X'|X) log Q ^'p' < i, C < max q(xii<i ^x- |Xi  xog      ■/ 

^ XX' 

because; 

)     q(x)Q")'(x'|x^o(x,x') =  ^     q(x)p(y|x)6 (x,y) 

x'x x,y 

by definition of    a(y1     and    Q (x'|x).    q.e.d. 

.'.     llr       =   C. 

Let us  summarize the results obtained: 

THEOREM III.    Let    (X,p(y ix"),Y),   a discrete meraoryless channel 

of capacity    C    and a transmission loss  function    &p('j'N)   : X x X -> 

Reals be given.    Let    q^    be an arbitrary probability distribution 

on    X.     Let    U -   (u, •■••.u  »••'»U-J,  M -   e   ',  u    =  (x ...•••,u    )    be 1;      ' m'       ' M ' -   '    m      v  ml' mn 

a vocabulary of code words  of length    n    generated a", random,   each 

word being chosen independently with probability    Q(u  )   - ir_,   q(x , ) 

Then the expectation over all    U's    of the average transmission loss 

for a given vocabulary, when a  "minimum distance" decoding function 

t0(",l   :  Y    -> A      is used,  satisfies the following inequality: 

mmnmt m  m 
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51 -    E 
U,yn,xn 

n n -n[i>(X)-*] 
IMx".*,^"),)) < 3 E    (g'(x.8))e 8 

< •        U     ~       x 

(5.15) 

+ 6o      ^   E     (e-"[sg'(x,8)-K(x,8)))        a >ü 
P max    x    — 

Where   6- is the    max      . bJx,*') 2 max x.x1    ?-    ' 

% (x'lx) 

*(\) "/     q(x)  QA (x'lx)  log      *,} >0    for    s>0 

xx' 

A s 

sg^x ,s)  - g(x ,s) > ü    for    s > ü 

% (x'lx) jXülk 
\62(x,x') 

z
x,  q(x')e 

As52(x,x') 

s&2(x,a(y)) 

p (vlx) =   p(ylx)a    ■ ,    — 
s^130 so (X,a(y)) 

sy, ^y'lx^   2 

a(y) is the action associated with output y 

)  q(x)QA (x'|x)6 (x,x') >) q(x) P (y|x)6 (x,a(y)) 

xx' s 
x,y 

sup  ilr(^ ) - C 
q(,))s 

and the bound tends to zero when s > 0 and ^ < ^(A 
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COROLLARY III.    There exist» a vocabulary   U-  (u1,'",uM), 

•u    ), M -^ e ,',    whose average loss, 6_,    satisfies 

Inequality (5.1^• 

um " (una' 

iwraBB"^ 

■    ■ "■• " *' 
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SECTION 6 

The Communication Loss Theorems 

We recall that, for the sake of analysing the effects of 

encoding on the one hand and transmitting and decoding on the other 

hand, we Introduced, respectively, the Processing Loss Function 

8 (•,•) and the Transmission Loss Function 5 (•,•) in such a way 

that the expectation of the loss due to communication, d, be less 

than or equal to the sum of the expectation of the loss due to encoding, 

6 , and the expectation of the loss due to transmitting and decoding, 

V 
d < 51 + 62 (6.1) 

In section four, we proved that: 

- If a vocabulary U - (u^*"^), M = e1*, un = i^''"f^j^J 

is generated at random with Prob (u) = ^.n \-i ^^mk^' ^'^ teinS 

an arbitrary distribution on the channel alphabet X. 

- If the blocks of source messages of length n are mapped 

onto U in such a way that \l(,(e ), = u  only if 6, (e ,u ) < d-(e ). x       u       m J. m   —   u 

Kien the average processing loss   F,  = E (6,^ ,i,(e ). )) 1       .nnl       Tlu U,x ,y 
satisfies: 

5^ 

Tl'iffl  f'TH—    f"»«Ai ' 
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. F. <) P(e)7'(p,e) + d^ (e-n + n
? fa)*'*^'^ ] 

p < <*>      0 < (J < 1 

k-l k=l x 

us 

w
D(

xle) 
\ and a^ - ^(a) > o if f = ^'(a) > ^'(0) = , P(e^Wp(x|e)log g^ 

e,x 

In Section five, we proved 'hat: 

- If a vocabulary U is generated at random as in Section four, 

ing a distribution q( •)  on X, U = {u1,
,,*,uM}, M = en^, 

u = (x ,,••',x ) . 
m  v ml   ' mn 

- If the channel outputs of length n are decoded, using the 

"minimum distance" decoding function ^pC'), • 

Then the expected transmission loss 8 = E    n^?^x '^o^ \ )^ 
U,yn,x 

satisfies: 

* ..rV / w  w -"^^s^^ ^^    V   .   . .n[sg'(x,s)-g(x,s)] 62 1 5^qWg (X,S^ - + 2maxLq^X^- 
X X 

QA (x-|x) 

where *(^s) = ) q(x)QA (x'|x) log —|^  (6.5) 

XX' 

and f(X ) - f > 0 if i|r < 0 if ^ < ^{'h ) 

From (6.1), (6.2) and (6.5) it follows that; 

A 
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THEOREM. 

(1) 
OH 

(2) 

<  ^P(e)7HM        s]ax[e'
a + n2  ß( p) e ""^^ ^ ^ ] 

0) W 
(6.^) 

3 (^(x)g.(x,s))rnv''j ^2ffiaxyqwe-ncsg,(^s)-g(x'8)] 

p<0, 0<o-<l,    s>0 

where (2),  (5)   and (4)   tend to zero as    n ->«>    if 

V Wn(x|e) ^ VX'|X) 

^   P(e)Wp(x|e)   iog-£^-< t<2_j   q(x)^(x'|x)   log      sq(.^ (6.5) 

e.x xx' 

etnd    q( •)     is arbitrary. 

Note that (6.5)   can always be satisfied for    q( •)     and    s    given 
W(x|e) 

by taking    p < 0    large enough because    E       P(e)W (x|e)   log    ^ ,     -»Q 

as    p -»0. 

Let us now minimize the bound in (6.4) . Two cases need to be 

considered: 

a)  There is no constraint on n. 

Since (2), (3), and (4) tend to zero with n -»« when 

p < 0, s > 0 and ^ = ^'(0) < v(X ) >  n can be chosen large enough 
S 

to make (2), (3) and (4) negligible with respect to (l) . We want, 

therefore, to minimize (1) under the constraint that (0.5) is 
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satisfied,  I.e. 

/ 
^mln P(e)W  (x|e)&1(e,x) 

.subject to (6.6) 

Q,   (x'|x) 
W (x|e) -n 

P(e)Wp(x|e)   log    Pq^x)    - ^ = n' (tr) <^ q(x)Q^ (x- |x)  log      |r^ 

le,x xx' 

^\ Now suppose    pn,   <!-,(')    and SQ are solutions to  (6.6),  then 

QA    (x'|x) 
S0 QA(x'|x) 

)     Nu(x)QÄ     (x- |x)   log —-T^T  <       sup    )      q(x)QA  (x- |x) Jog—r^y 

^x' S0 ^ l^)'* ™. 

Q^    (x'lx) 

■ 2xx' qo(x)\ (x' ix) l0s -^irr < C 

with equality only if    ^i')    and SQ are solution to 5.11.    If that 

is so we will say that the source is matched with the channel.    If it 

is not so, 

%    (x'|x) 
s0 

/ , 
xx' 

%M\ ^ ^ ^ "1^1 

could be used as a measure of the mismatch between Source and Channel, 

.".in general    min      ,  *     2    p(e)W (x|e)B  (e,x) > R'   (c), by definition 

of    R(D). 

i 
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THEOREM IV. Let S be a constant, memory less source which 

generates messages e € E with a fixed probability ?{•).    Let 

(!(•,•) : E X A -»Reals be the loss function attached to S and A, 

the oet of feasible actions. Let (X,p(y|x),Y) be a discrete, 

memoryless channel of capacity C. 

Let a vocabulary u= (u^ •••,uM), M = e
n^ um = (xmx'* "'^mn^ 

be generated with probability Prob { ) = lr_ II?  q(x ). Let 

the source messages e  be mapped onto U using the encoding 

function ti^*)! • ^ 'the outputs y  of the channel be decoded by 

^'\ '    'rhcn: 

(1) 

U,T(-),er 
{d(en42[T(t1(e

n)l()]u)) <^ P(e)Wp(x| ejB^e^x) 

(2) 

GH 

+ a   [e  + n  P(p)e   y ^v '  \ meix — 

(3) 

+ 5(7 q(x)gt(x,S)]e-
n[*(As)-*] 

(6.7) 

00 

+ 69   r (x)e-n[sg.(x,s)-g(x,S)] 
2 max  ^v '— 

where PJQC*)»
8
 minimise 



1 .l«« '^mmfimm. 
■ 

59 

,)    P(e)W (x|e)&1(e,x) 

i  under the constraints    p < 0,    s > 0    and   0 < a < 1 (^«Ö) 

W(x|e)                            ^                                      QA(x'|x) 
^  P(e)Wp(x|e) log -^y - ^'(r) < ^  <li*)\ (x,|x)loe —|^  

e.x XX' 

and     2    p(e)W (x|e)6 (e,x) > R-  (C)    with equality only if Source and 

Channel are matched. 

COROLLARY III.    There exists a code    (IIN^O)    whose expected loss 

satisfies  (6.7) 

b)    the block length   n    is constrained to be at most equal to 

N. 

THEOREM IV'. 

GH 

^<..nr.ÄV„.  t;  P(e)r(p,e) + dmfiY  [e-n+n
2ß(p)e-n^-^))] P,<li'),s,n,i/ max 

(6.9) 

+ 3 (yq(x)g'(x,s))e"nCt(As)'t]
+&2max7q(x)e-n[s^^S)-^X'S)]) 

with      p < 0,   s > 0, n < N,   ^ = |i.' (a),    0 < a < 1. 

The minimization is made easier by the fact that all the function 

in the bound are well behaved,  either increasing or decreasing in the 

various parameters. 
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SECTION 7 

Treatment of the General Problem with Certain Properties of 

the Source and the Channel Assumed 

In this section,   we deal with a more restrictive set of 

assumptions, namely: 

- the source    S    is binary, memoryless and uniform,  i.e., 

E = {l>2),   {e, ),   ,    is a sequence of independent identical random 

variables and   Pr {e,   = 1] = Pr (e   = 2) = 75  . 

- A = (1,2) 

- The loss function is symmetric in the following sense: 

DEFINITION.    A loss function is symmetric if each row of the loss 

matrix    [d(e,a)]    contains the same set of numbers    d , "^d      and 
X H 

each column of [d(e,a)] contains the same set of numbers 

d'^--- 'dV 

[d(e,a)] = 

\ 1          2 

1 

2 

0      d max 

d          0 
max 

We will take d   =1 without loss of generality, so that 
max 

E   {d(e,a)) = Prob (error) per message, since d(e,a) =1-8 , 
e,a " ea 

where 5 is the kronecker symbol. 

60 
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- The channel Is binary, symmetric and memoryleas. 

DEFINITION, A channel is symmetric if each row of the channel 

matrix [p(y|x)] contains the same set of numbers p'•,,•••,?'T and 

each column of [p(y|x)] contains the same set of numbers q' ••• q*. 

^ 

1 
P(y|x) = 

2 

1 - P    P 

P     1 - P 
P <2 w.l.q. 

- The utility function is linear in all the criteria, to be 

given later. 

These hypothesis have been selected in such a way that: 

- the computations be feasible by hand, 

- the number of parameters be reduced to a minimum, 

- the results be simple enough to allow a direct reading of the 

effect of each parameter. 

This will enable us to discuss, for this case, the general 

problem, stated in section 1, of the choice of an optimal Information 

System (i.e.. Encoding, Channel, Decoding), given a Source of messages 

and the user's utility function. 

It is important to note that "binary" can easily be dropped if 

all the other assumptions are kept. 

Let us compute the right hand side of (6,9) 
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(1) (2) 

GH 

min (V P(e)7'(p,e) + d      [e-11 + n2ß(p)e-n(a*^(cr))] 
P,qC),8,n,t  V max- 

(5) 

+ 5 () q(x)g«(x,s))e 
x 

•n[t(\)-*] 

+ 6, 2 max 
V   q(x)e"n^sg^x's^"6^s^) 

p < 0,   s > 0,     ^ - M.'(O-),      0 < a < 1. 

In this perfectly symmetric situation,  the optimal association 

between    X, Y   and   A   is,  a priori: 

X Y A 

1 4—»     1   «—♦        1 

2 «—*  2 «—♦    2 

Likewise the optimal    qC*)»   V,  p,  s,  n,   \|(    is the uniform 

distribution   q(x) = -5 V x. 

A.    Computation of (l) and (2) 

1     2 
1 

1                 2 

0 1 

1 0 
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,      , V    f ^ p5l(e'x)      1       /I   PXO + 1   oxl. 7(p,e) = log^   lOOe = log (g e       +^ e      ) 

7(p,e) = log 3  (1 + ep)    V e (7.1) 

/'(P^) fi—;    V e 
1 + e1" 

(7.2) 

^(c a) = logy   p(e)e[-^e)-p7,(p'e))] 

H(a) = -a [log I (1 + ep) - -^--] (7.3) 
1 + er 

p6   (e,x)-7(p,e) 
W (x|e) = e q(x) 

P     ' - 

[Wp(x|e)] = 

^ 
1                      2 

1 V^eP     ^/l + ep 

2 //l + ep    ^l.eP 

(7.4) 

B(p,a)=|p|+i+V^7=|pl+^i^    - 

ß(p) = 2Tr e 
[bk^W 

(7.5) 

from (7.1),   (7.2),   (7.3),   (7.5),  and (6.9). 

rsaane c= j^^ ■  g 
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(1) + (2) = —S—- + (e"n + n 27r e 
1 + ep 

-n[(r^cT[log| (l+ep)--ßS-] 
1+e 

(7.6) 

By definition 

Al = 

1 + e^ 
(7.7) 

CT = 1   minimizes (2). 

From (^.1.9) and C+.l.lO) 

log I (1 + /) - -^-D = - R(^) 
1+e' 

(7.8) 

We will confine ourselves to    ^ < g    wi^110^ loss of generality; 

.-. from f.7) and (f.S) 

-n (1) + (2) = ^ + (e " + 2TT n"e' -^- e 
23^5^.-^-^!)] ) (7.9) 

B.    Computation of  (5) and {h) 

[62(x,x')] = 

x^J 1           2 
1 0         1/2 

2 1/2      0 
(7.10) 
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x* 1       2 

1 
[5,(x,y)]  = 

^                      2 

0        1/2 

1/2      0 
(7.11) 

s5,(x,y) 

F
s
{ylx) ttt^T 

p(y|x) 

Z    e    ^ 
y - 

p(y|x) 

2^ 

Ps(y|x) = 

±2 
772 

pe 
s/2 

l-pfpe ' 1-p+pe 72 

_£e i/2 

1      .    "^72 "   ""     s/2 

(7.12) 

\   '     _    /     I     v>     / v 1 PC 
s/2 

g'(x,s) = /     Ps(y|x)&3(x,y) =3 2    i I      s72 1-p + pe ' 
Vs   (7.13) 

1 Pe 

q(x)g'(x,s)  = 3 
;A 

1-p+pe ' 
(7.1M 

r , Ps(ylx) 
Ex     {sg'(x,s) -  g(x,s)]  =   )     q(x)Ps(y|x)  log — ^-^y 

x,y 

«■„ .«»»^^.fi-w»-^- 
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1      ^ 
sg'(x,s)  - g(x,s) = log  £72 + f Z s72    Vx 

l-p+pe' l-p+pe7 

s/2 

P + Pe 

(7.15) 

QA(x'|x) = 

A5p(x,x') 
e  2    7    q(*) 

2 .  e    2 q(x') 

Q-v(x' |x) = 

V, + ^ ^/l + / 

A + eA ^1 + eA 
(7.16) 

l    £ 
f(x,A)=)     Q,(x«|x)6?(x,x') =5-^^: Vx (7.17) 

V     '   ' 2 
x' 

2  . .     ^ 1 + e 

, , Q   (x'    x) 
Äf • (x, A) - f (x, A) = )   QA(x' |x) log -^ry- 

(7.18) 

te' 
= log 

1 + e        1 + e 
V x 

A     is the maxim-urn    A   such that 
s 



6? 

-nETi[Af(xn,A)-f(xn,A)] 
{e-n[A(xn)f'(xn,A(xn))-f(xn,A(xnj)]}^      x11 

q(x' )QA(x' |x)&2(x,x') > )       q(x)Ps(y|x)65(x,y) 

vxx' xy 

But here      A(x )    is independent of   x ,    due to the  symmetry. 

Moreover,    Af' (x, A) - f(x. A)    is independent from   x.    Therefore : 

-nEn[Af(xn,A)-f(xn,A)] 
E      {^n[>f(xn,A)-f(xn,A)]} =^     xn 

x 

-nE [Af'(x,A)-f(x,A)] 
= e 

Therefore A  is such that; 
s 

)  q(x')QA(x'|x)52(x,x') =/  q(x)Ps(y|x)63(x,y)  (7.19) 

xx' x,y 

i.e., 

A 
s s/2 

^^.^L^ (7.30, 

from  (7.1^) and  (7.17))   and that relation is true if and only if 
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[QA (x'|x)] =  [Ps(y|x)] (7.21) 

.-. fromC.15) and (7.18)    y(\) = sg«(x,s) - g(x,s)    and (5) + 
s 

(k) can be written 

(5) + (M = 
3e ■n[i|r(Äs)-f]      1    -nt(As) 

1 + e s 
+ 2^ (7.22) 

From (7.9) and (7.22) we get 

< A^ + e 
-n 

d<A1+e      +2Tren    e 
j    2 Z^d-A^ -n[^R(A1)] 

5e s  -n[t(\)-*]  ! -nt(As) 

1 + e 
A ^ 
s 

+ 2^ 

with 0 < A1 < 2,  s > 

1 ilr(A ) = sg'tas) - g(x,s) 

(7.25) 

Let us denote by F(A ,n, \|f,s) the upper bound in (7.23). it 

is easily checked that F^) is convex U in all the parameters. 

Now, A^, n, f are parameters of encoding and decoding, whereas 

s is bound to the channel. It is intuitively clear that: 

the encoding gets more difficult as n increases and A 

decreases, 

the decoding gets more difficult as n and ty    increase. 
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- The channel gets better as the maximum value of s increases, 

In this context and short of being able to do better, one might 

decide to choose an Information System in terms of ZL,n,i|(,s and 

F(A^n, \|i,s). One might further decide to attach constant cost 

coefficients to these parameters and try to maximize a utility 

function of the form: 

U^n^SjF^n^s)) = k A1 - lyi - k Jr - kss - k^A^n^s). 

(6.21+) 

U(*) would have a non-boundary maximum since it is convex f) 

in A,n, ilr, and s. 

Now, if we assume that the user is not interested in very small 

n's, i.e., he allows n's large enough so that minimizing (5) + (M 

in s would amount to choosint: s so as to minimize the 

exponential terms, that is, he would choose z     so as to maximize 

\lt(A ). But we have proved in Section 5 that max / *  i|t(^ ) = c« 

We have already maximized ^(A ) with respect to qC')- Therefore, 

for that s  that maximizes \lf(A ), 
m T x s 
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/d < ^ + e"n + 2Tr e^ n 
3 _2   ^d-^) -^t-RC^)] 

5e^ ,^e-°M)+|,-nCAF»(Vi(tiC) 

1 + e m 

with    0 < A^ < -i 1 
2 

^m "2" 
e^_ pe 

1 + e 

^ m 
m       1 - p + pe 2 

s_ 

And he would choose    A^,n, i|r,C    so as to maximize 

U*(A1,n,^C,F*(A1,nft,C)) = k   ^ - knn - k^ - l^c - k ^F*(^,11,^0), 

F  (A^,n, f,C)    gives very explicitly the following asymtotic 

information: 

If    R(Aj < I < C,     there exist vocabularies    u = (u , •••»uj 

M « e  ',    such that the average loss due to communication with 

(f (•),»   ^'\' C^    be lesS than   ^ + e(n)    where    e(n) -> 0 

as    n -» «. 
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