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ABETKACT OF THE DISSERTATION

Processing and Transmitting Informationn,

Given a Pay-Off Function

by l

Henri Michel Pham-Huu-Tri
Doctor of Philosophy in Mathematics
University of cCalifornia, los Angeles, 1968

‘ Professor Jacob larschak, Chairman

An information system is defined as a chain of information
services, encoding (provessing)...transmitting...decoding (deciding).
Each service is a transformer represented, in general, by a stochastic
matrix and a cost function. The inputsof "encoding" are the pay-off-
relevant events. Actions are the output of decoding, actions and
events determine the pay-oft', The utility of the services to the user
is a function of the pay-off and of the different costs, Efficiently
choosing an information system is by definition choosing an information
system which maximizes the expected utility,

Communication engineers restricted themselves to information
systems with fixed transmitting (channel) and identically zero cost
functions, Moreover, they equated the user's utility function with

his pay-off function., They handled the problem in the following way:

H ’ vii




l. choose first encoding with respect to the source of events

and the pay-off function only, . choose second encoding and
decoding with respect to transmitting only. Encoding is the
composition of first and second encoding. However, their approach
was inefficient; 1l. They neglected the pay-off function in the
cholice of second encoding and decoding, ©. they arbitrarily broke
the original problem into two independent, more accessible,

| problems. \ ‘ f
¢ (o /

L I We also restricted ourselves’to information systems with fixed

transmitting and zero cost functions and users' utility functions

o /.
identical to their pay-off functions. But our approach is more

-

efficient because we treated the problem of choasing encoding and

| decoding, given a source of events, a pav-off function and a
channel, as a whole., The bounds we obtained should, therefore, be
better, at least in all cas;s vhere the pay-off function has a wide
range of values. We did, however, treat the non-restricted problem
with certain proverties of the source, the channel and the utility

function assumed.

viii
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SECTION 1

1.1. Introduction

The Economic Theory of Information is concerred with the

efficient choice of Information services. J,. lMarschak (Efficient
choice of Information Services, 1968. Conference for Research on
Management Information Systems) distinguishes the following sequence
of 'services in that order: Inquiring, communicating and deciding.
Communicating is itself a sequence of Encoding, Transmitting and
Decoding. Another component of the sequence, called Storing, which
can be intermediate between any two consecutive services, will be
disregarded in this work, together with Inquiring, which is the same
as assuming that they are both costless and perfect. Moreover,
Decoding and Deciding; will be reduced, without loss of generality

to a single operation: decoding into action. Our simplified chain
of services, or information system will then consist of only three
links: Encoding, Transmitting, Decoding.

More precisely, see diagram 1,1, there will be & source, S, of
events (or messages, since inquiring is assumed to be an identity
operation) generating the random variable e from a finite set E
with the distribution P(*). There will be discrete, memoryless

channels denoted (X,P(y|x),Y) or simply {P(y|x)} with finite
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input and output alphabets X and Y respectively. The Transmission
T(*) : X-Y, T(e) is a rendom function; the Encoding will be
denoted vl(-) : E o X; the Decoding ¢2(') : Y oA where A is

the finite set of feasible actions {a).

l

Source Encoder Noisy Channel Decoder —. User

Diagram 1.1

One of the criteria, that will be considered in the choice of
services is the benefit to the user, a function w(*) of e and a,
called pay-off function: w(*,*) : E X A — Reals. The others being
the costs of the different operations. If costs would not depend on
the chosen information system, the user would, oy definition, prefer
the system yielding the highest expected Pay-off:

E (w(e.a)) => p(e) Prob

1 Tobs (ale)w(e,a).

The subscript is here to recall that the probability of action a,
* given event e, is a function of Encoding, Transmitting, and Decoding.

Now if the costs are introduced:

k‘l’ (e), cost of Encoding e,

1

kT(x), cost of Transmitting x; kW (y), cost of decoding y, the
2

user would try to maximize the expected value of a certain function

U(w(e,a),k* (e),kT(x),kv (y)), by definition his utility functon.
1 2




Not much can be said about U( , , , ) besides the fact that it is

increasing in w(e,a) and decreasing in k, (e), kT(x), k, (y).
U1 V2

Moreover, the costs themselves are not well known, especially the costs
of Encoding and Decoding, depending upon this complexity. One has

to resort to using arbitrary elementary (often linear) function

to represent U(+), k*l(.)’ kT(-), k'a(-) more or less realistically.

We are not ready at this point to approach the general problem

e i

except for a special case: binary symmetric memoryless source,
finary symmetric pay-off function, binary symmetric memoryless channel,
U(*) linear in kW (), kT('), k* (*). 1In the rest of this work

1 2
the transmission system costs will be assumed constant and the choice
will be restricted to Transmission Systems with a fixed Channel. 1In
other words, attention will be devoted to the following problem,
a preliminary one: Find Encoding and Decoding procedures that would
meximize the expected pay-off function @(°,+). 1In doing so, we will i
get some insight into the original problem and some partial answers

to it. '

1.2, Pure Communication of Information vs. Communication

of Information, Given a Pay-off Function

What is usually called Information Theory is essentially a

theory of pure communication. It was irincipally started by

C. E. Shannon in 1948 in his, "A Mathematical Theory of Communication",
let e be a random variable generated by & source S, taking

on a finite number of values: 1,°*°¢+,g,°*++,G with probabilities

e raiine D i o S m s 20 oo e e
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P(1),+¢¢,P(G). The uncertainty associated with e was quite
arbitrarily defined to be the quantity:

H(e) = H(P(L),***,P(G)) = -

G
\
) P(g) log P(g)
Cowd

g=1

vhere - log (P(g)) was interpreted as the uncertainty associated
vith the event (e = g} or the uncertainty removed (or information
conveyed) by revealing that e has taken on the value ¢. H(e) is
also called Entropy or Information rate of S.

This measure depends only on the probability distribution of the
messages. In particular, two messages with the same probability have
their information characterized by the same number although they are

not necessarily equally valuable to the user, for he evaluates the

; economic value of a message by ithe maximum prof'it he can make by
using it. The value of a Source of Information, as far as the user is
concerned, is measured by the maximum expected Pay-off it can bring
him,

Shannon's further analysis of communication systems relies
greatly on his measure of Information. In his 1948 model (diagram 1.2)
a randomly produced message generated by a Source is encoded into a
) signal belonging to a specifiea set, called vocabulary. The encoded
message is transmitted through a noisy channel, whose output is
decoded, The obJective is to select a vocabulary such that the
probability of correctly identifying the input signal is as large as

possible,




Source
of |—— Encoder Channel Decoder » User
Messages wl( . () g ()

Diggrram 1.2

Diagrams 1,1 and 1,2 are identical, but our objective is
somewhat different: make the expected Pay-off as large as possible,
However, they are not completely irreconcilable, as shown first by
Shanmnon himself in his 1959 paper, "Coding theorems for a discrete
source with a fidelity criterion". Besides, it is intuitively
obvious that there should be some ~orrelation between the probability
of correct transmission and the optimal expected pay-off.

In his 1959 moriel, {"hannon aided a new component in his
Communication System bLetween the source and the kEncoder and also &
distortion function d(e,a). d(e,a) is the "cost" of taking action
& when the message is e. In Kconomic terminology it is the loss,

of not taking an optimal action.

Source = foceres Encoder $d Channel Decoder }™¥ User
Encoder g () () i)
NE 1 | ¥
Diegram 1.3
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This new operator (wo : E>A), mapped the messages e into
a specified set of actions in such a way as to decrease the rate of
information to be transmitted to a level acceptable to the channel,
but resulting in some loss in pay-off. The actions were then trans-
mitted with as small & probability of error as possible.

Later on, several authors, including Yudkin, Goblick, and
Jelinek, improved the source-encoding procedure,

Let us point out that:

I. It is intuitively clear that their approach is inefficient
because:

1) Double encoding (¢O('),¢l(')) is not justifiable
although more accessible to mathematical study. Moreover, ¢0(~)
maps events directly onto actions. Thus, if an action maximizes the
pay-off, given two different events, these two events will be encoded
in the same message. This message will specify that particular action.
Yet an error in transmitting that message will result in specifying
a non-optimal action and thus may cause a much greater loss in the
case of one event than in the case of the other. Two events e and
e' equivalent with respect to optimal action, are, in general, not
equivalent with respect to the values of d(e,a), d(e',a) for varying
r a. Thus WO(-) would replace the set of "pay-off relevant events"
by a generally coarser cet of "action relevant events" and this
diminishes the maximum expected pay-off (Reference I).

2) y,(+) and y,(+) are chosen with no account taken of

the differencer in losses due to having one rather than another

— = T = —— e - Do et on B Wb vis s e cbe ATl L et ey i o B
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communication error,

3) They handled the communication problem in the following
way: on the one hand, choose wo(-) for the given source and loss
function (in Shannon's terminology, the distortion function), d(-,:),
only, on the other hand, choose Wi(') and we(-), given the channel
only. However, breaking the communication problem into these two
independent problems is not efrficient in most cases. wl(-) and we(.)

should simultaneously be chosen given: S, T(-) and d(.,-).

II. DNo explicit solutions are ever displayed, but only their

existence is proved.

III. Only code words of fixed length are considered, although

simple examples show that variable length encoders are often more

efficient.

IV. The usual analysis is confined to long blocks of events and

longr code words which indeed tend to yield perfect results,

This last point is economically quite crucial. In practice, it
is oftten impossible, or would result in great losses, to wait for a
large number of messages to pile up before one starts to communicate
them, In this sense, the intformation they carry might become
obsolescent from the users point of view. A great deal of work is
left to be done in this area.

We have made no progress with respect to II, III and IV. But
we have given a spec;al emphasis on non-asymptotic results, so that a L

user who can afford to wait for up to N messages to accumulate might




have some indication about how well he can do and about how to do it.

We have focussed our attention on I. In an effort to tie the

given Source, Channel and Pay-off Function together, we have consider-

ed a deterministic correspondence (to be optimirzed) between channel |
input alphabet and the set of feasible actions. Ve are, therefore, I
able to ascribe a value (or loss) to each error, and thus to estimate

the loss due to single-step (source and channel) encoding and also to

increase the precision of the estimation of the loss due to transmission.

In our procedure, both encoding and transmission aim to maximize the

expected pay-off. In Shannon-Pilc-Jelinek's, only the encoding aimed

to maximize the expected pay-off, while the transmission aimed to

maximize the probability of correct transmission., Our upper-bound

on the luss due to communicat.on 1 therefore better in all cases

where the loss function has 1 wide range of values,
1.5. Cummary

In Section 2,1, a Lrief survey of the main concepts of Information
Theory is made with an emphasic on a notion of special interest to us,
the Rate-Distortion Function, introduced by Shannon in 19%), which we
will call Rate-ioss Function, TIn section 2.2, we introduce our
notation and definitions, set the relationship bvetween Pay-off and lLoss
Functions, respectively w(e,a) and d(e,a), and describe our scheme.

A Processing (Source Encoding) loss Function bl(e,x) and a

Transmission Loss Function 62(x,x') are derived in such a way that




=

yor

By o (dle,a) v (*),T(-)ywy(0)) < B, (5 (e,x) [y (+))

e,éa
+ Exx, (52()(,)(' ) IT(')’WE(')]

It is convenient to consider the loss matrices accociated with d(',°),
61(-,~) and 62(°,'). [d(e,a)] (respectively [Sl(e,x)], [62(x,x)])
is the matrix with d(e,a) as entry in the eth row and the ath
column,

In Section 3, we give a lower bound to the average loss one should
expect with a channel of capacity C. Theorem 1 states that: for a
constant, memoryless cource C with a finite loss function d(°,'),
and a discrete, memoryless channel of capacity ©, there exists no
encoding and decoling procedure that yields an expected loss smaller
than R-l(c), where R-l(-) is the inverse functbon of R(*), the
Rate-Loss Function, defined by Shannon. Corollary 1 states that:
for a constant, memoryless sour:e { with a finite loss tunction
d(','), there exists no source encoding procedure that yields a
processing loss less than R-l(ﬁ(x)) if H(x) 4ic the entropy of the
channel input letters in the vocabulary.

Section 4 is devoted to Encoding. 1n 4,1 the source encoding (or
Processing) procedure originated by Shannon and improved by Yudkin and
Jelinek is described in detail and it is shown that there are encoding
functions ¢1(') which yield an average Processing loss as close as

we please to the lower bound of Corollary I. Theorem II is a converse




of Corollary I. In 4,2 a transmission loss function 52(°,') : X X

X — Reals, derived from the encoding Procedure, overbounds the loss
when channel input x 1is sent over the channel and recovered as x!',

In Section 5 we prove a transmission loss theorem, Theorem IJI
says roughly that it is possible to select vocabularies
us [ul,°--,um,---,uM}, M= enw, of code words of length n,

u, = (xml’...’xmn)’ and decoding functions wa(-) that yield, on the
average, a transmiscion loss as low as desired, provided ¢ <C,
the channel capacity.

In Section 6, Processing and Transmission are iinked together to
glve Theorem IV and IV'., Theorems II, I1II, IV and IV' give in fact
upper bounds to the various expected losses. Theorem IV states, in
short, that there are codes (wl(-),¢2(°)) that yield, on the
average, a loss, due to communication, as close as desired to the
lower bound in Theorem I, if Source, loss funciion and Channel are
matched in a certain way. Theorem IV' 1is a variant of Theorem IV
for limited length message blocks.-

In Section 7 we treat the ;eneral problem stated in the
introduction and give a tentative approach to the special cace where
the following additional assumptions obtain: binary, uniform source,
binary symmetric loss function, binary symmetric channel, linear

utility and cost functions,

-z
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SECTION 2
2.1. Basic Concepts of Information Theory

2,1.1. A discrete channel, denoted by (X,p(y|x',Y) or
(p(ylx)) consists of two finite sets, X and Y, and a non-negative
function p(y|x), defined for all pairs (x,y', x: X, y - Y such
that Z p(y|x) =1 for all x's. X and Y are called input and
output sets of the channel and p(y|x) is the conditicnal probability
to receive y when x 1is transmitted.

It is standard practice to consider the transmission of a
sequence of symbols, each symbol bhelonging to the input set X. For
any positive inteper n and any set, for example X, we denote by

X% the set of n-tuples (x ,--~,xn\ = x® with each X, € X. If a

1
sequence xn = (xl,'--,xn‘ is applied at the input of the channel,
then a sequence yn : (yl,“',yn ¢ Y' is received at the output with
a conditional probability p(yl,"',ynlxl,”-,xn which has yet to

be specified for all X ot Xy and all n. We will restrict our
attention to discrete channels without memory. For such channels,

successive operations are independent.

A discrete channel (X,p(y!x ,Y) 1is said to be memoryless if

n

ni n. I
p(y x0T p(yklxk

k=1

11
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for a1l y' € Y and all x" € X* and all ne (1,2,...).

Thus & discrete, memoryless channel (X,p(yl|x),Y) is
characterized by a matrix with row set X and column set Y, whose
entries are p(ylx). This matrix is called the channel matrix. 1In
this work a channel will always be a discrete memoryless channel.

Let M and n be positive integers, and O 5_K < 1l. A code
of length M, word length n, and probability of error < A, denoted
(n,M,N), for a discrete memoryless channel (X,p(yl|x),Y) consists
of a sequence of M distinct elements of xn, [ul,"',uM], and a

sequence of M disjoint subsets of Yn; Dl,°'°,D such that

M’

- n
P(Dmlum) = 2 n P(y |um) 2 l = )\ for m-= l,.oo,M’

yheD_

P(y*u) = [[ Ry lx).
k=1
[ul,---,uM) is called a vocabulary of input messages or codewords
and Dm is called a decoding set for U
Practically one uses a code as follows. A message u is

selected arbitrarily and tranmitted over the channel. The letter
sequence yn is received with probability p(ynlum). If yn € Dt
the receiver concludes that u, was sent. The probability that any

t
message U will be tranmitted so as to be decoded incorrectly is

<M
A real number ¢ >0 1is called an attainable tiransmission rate
for a channel p(y|x) if there exists a sequence of codes
\ ny s
(n,Mn,Rn\ for p(ylx) with M >e” and ln - 0. The transmission

capacity ¢* of a discrete memoryless channel is defined to be the

| S

A

e e
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supremum of the set of its attainable rates. We may give the follow-
ing interpretation to the transmission capacity ¢*. If O« ¢ < {¢*
then one can transmit any of {§ e-ary symbols per transmission
period over the channel with an arbitrarily small probability of error

by making the word length n large enough.

If (X,p(ylx),Y) 1is a discrete memoryless channel and q(x)
is a given probability distribution on X, then we let p(x,y) =

p(ylx)q(x) and rly) = Ex p(x,y). We define

Hy) = =) x(y) log r(y)
X

Hylx) = - © a(x)  p(ylx) log p(y|x)
X y

where all logarithms are base e. Let

I(q) = H(y) - H(ylx
= H(x - H(x|y"
B ’ X,y)
= p(x,y) log EALIE
Xy

In information theory the quantity 1I(q), which depends on the
input distribution q(.) 1is interpreted as the average amount of
information, per transmission, received through the channel. The
maximum amount of information received through the channel is called

channel capacity. It is defined as the maximum over q(°:) of 1I(q).
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C=max /) / p(xy) log —(22-(1” (e -Z /) p(x,y) log Eﬁf-lrr -
T y X

Where the max is taken over all distributions q(+<) on X.

<

The fundamental Theorem of Information Theory which was first
proved by Shannon states that, for any discrete memoryless channel,

¥ =C.

2.1.2. Pay-off function and loss function. The pay-off
funetion w(°,*) : E X A - Reals gives the benefit associated with
event e and action a. For any event e, there exists ot least one

optimal action a(e) such that:
w(e,a(e)) > w(e,a) v a.

The loss function associated with w(:,+) 1is defined on the

same domain by the relation
A
d(e,a) = w(e,a(e)) - w(e,a).

This function is what i1s called regret function in Decision
Theory. We used the letter d because it plays exactly the same role,
as far as processing and transmission of information go, as Shannon's
"single letter distortion measure". We want to communicate information

so as to maximize the expected-pay-off. It is actually the same to
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communicate informetion so as to minimize the expected loss, or

distortion. ]

2.1.3. The Rate-Loss Function (Rate-Distortion Function).
This notion, first introduced by Shannon is his 1959 paper,

"Coding theorems for a discrete Soura with a fidelity criterion”,

would appear to reconcile the two problems of communicating information

accurately and communicating it efficiently, given a Pay-off Function.

We will define this function formally. Its interpretation will

appear immediately and justify why, intuitively, it had to be con-
sidered.
, Let E = (1,+++,g,+++,G) be the set of events (or messages)
‘ and A= (1,°,k,**+,H} be the set of actions. Let (E,w(ale),A)
be an arbitrary channel with input alphabet E and output alphabet
A. Let d(e,a) be the loss function and P(+' the probability

l distribution on the messages generated by the source.

Consider
(1) alw(e«]+) = E o {d(e,a) ]} = P(e) w(ale) d(e,a)
) [
| e,a
S
T wiale)
(2)  I(w( \)—‘ P(e) w(ale) log S—F{eTwlaTTe)

“g !
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with the constraint

a(w(+]+)) < D.

Note that I(*) 4is a continuous function of w(+|*) and that
the domain of w(:|:) 1is closed and bounded. The inf is in fact a
minimum when it exists. Moreover, R(D) 1is decreasing in D since
as D 1increases the domain of minimization increases. One shows

quite easily that R(D) is convex downward and that the constraint

a(w(+]+M < D is equivalent to a(w(+|)) = D.

d(w(+|+)) 1is a measure of the average loss, I(w(-|:') is
the average rate of information through (E,w(ale),A). This last
quantity is proportional to the effort we must make to transmit the
messages. We would like to make both of these quantities as small as
possible, which of course is not feasible. So, given the source and
P(+° and d(-,-), it is important to know what is the smallest rate
of information consistent with the maintenance of a loss no greater
than some specified level, or equivalently, what is the smallect loss
we can achieve if the rate is fixed.

The answers to these questions are given by R(D), the so-called
Rate=-Distortion function, or Information rate of the Source for a loss
level D. (This has to be proved because the minimum was taken over
a very restricted class of information systems) Shannon's coding

theorem states that, with some mild restriction on P(.) and d(-.,.),

R(D) 1is the minimum achievable rate of information consistent with

Ll LT Papieny vty o4 £ S Lt irnauio ol g e LT
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E, {d(e,a)} ¢ D. Or, for any € > 0, there exist codes with

J

D {d(e,a)} < D and Rate ¢ R(D) + E. Conversely, there exists no
)

code with average loss D and rate less than R(D).

Typically, R(D) is found to have the following general shape:

“iwms A
My S5 T s
i
|\
\
|
S
o
| ~
\\\\\~
{ , E . -
i'n:?-; 'l:' e 2
where: Dmin = Ee P(e) mina d'e,a) = 0 because our distortion function

has the property that for any e J an a such that d(e,a) = 0.
This point is achieved with a deterministic channel with w(a(e)le) =1
and w(ale) = 0 for all a # a(e). The corresponding value R(0) of
R(D) is the entropy H(e' of the source.

D ooy = mina Ze P(e' d(e,a) is the minimum achievable average
loss with no information. Here the w(ale) matrix has a column of
ones, all the other entries being zero. The capacity of such a

channel is null because it has identical rows (see Ash, for example'.

For a binary, uniform, memoryless source, with the loss fuiction:

!O if e = a
d(e,a) = 1 - &(e,a) = 1
-1 if e # a.




18

R(D)=I- H(D)
"(C,:l

-

R — inbinary uni’s

2.2, Notation and Definitions

2.2.1. The source s proauces a sequence {ek}:=l of
messages (or events) at a fixed rate of 1 message per second, each

e, being taken at random from a finite set E = {l,+-+,gs+++,G]}.

k
The process {ek];::l is a sequence of independent, identically

distributed random variables. Prob [ek =gl ="Ple=g)="Pe v

k=l,2’..'.

2.2.2. The channel K is discrete, memoryless with input
alphabet X = {(1,¢+<,i,°*+,I}, output alphabet Y = {1,+::,3,**,Jd},
Prob {y = j|x = 1} = p(y|x). The channel capacity per use is C,

and it can be used at most once every second.

2.2.3. The actions form a sequence {a.k]::l, each a.k is

chosen within a finite set A = (1,:++,k,***,H)}.

-

U e
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2.2.4, Blocks of n events en = el oo ek e en € En =

{ J "\
EXE **+ X E are encoded into blocks of n channel input letters:

Blocks of n output letters are recovered:

n
¥ = Vi oV, €Y,

which are decoded into blocks of n actions:

REMARK: As was said in the introduction, it is not efficient
to restrict ourselves to vocabularies where all words have equal

length.

2.2.5. A code of length H consists of: a vocabulary u of

M channel words of length n:

and of two functions respectively called Encoding and Decoding

functions:
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:‘ri’n-auc:)(rl

¥y

¢2:Yn—+'ucAn

2.2.6. The rate of a code (wl,we) is defined to be

S

y = = log M where the log 1is of base e. We will sometimes use

log2 to express final results because & bit of information is more

readily interpretable than a nat. It suffices though to remember

1l bit

that 1 nat = E—g .

2.2.7. The loss-measure. We recall that the loss.when event

e has occurred and action & has been taken is defined to be:
d(e,a) = w(e,a(e)) - w(e,a)
w(e,a(e)) > uw(e,a) v a,

where w(e,a) 1is a finite Pay-off Function. d(e,a) is a non-negative
function of e and a and, for e fixed, it assumes the value
zero at least once.

By definition:

A
d(en,an) =

[~ F

1
n L desy)
k

1}
[ur]

[ SRS
r— -




xR

2l

This definition implies that time does not enter this problem. It
intervenes only through the message and decision rates.

The treatment of time would introduce more parameters such
as: encoding time, transmission time, decoding time, discount

factor,....

The overall loss for the system of information (Wl('):T(W 2(-))n

is then

d => P(e™) Prob (a]e™) a(e®,a™).
™

n 'ifl.’T’wQ

[ Prob (a"]e™) 1s the result of the compositinn of
| V101542

| ¥(:WI(+) end y, () in that order.

2.2.8. Processing and Transmission Loss Functions. We have
to cope with & major difficulty in connection with -yl( *): a channel
input letter cannot be loaded, on the average, with an amount of
information larger than or equal to the channel capacity, C, because
the information which was loaded will eventually be entirely lost
after transmission. If H(e) > C, one is forced to resort to what
transmission engineers call a noisy code, ie., a code where the same
word may represent several messages. In doing so, we present the
channel with coarser information, that is, information of lesser value.
The information is coarsened to the extent necessary so that it can
be carried through the channel.

Practically, an efficient choice of q;l(-\ and we(-) is

possible only if one has a measure of the loss (of information value)

-+
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due to vl('), and a measure of the loss due to T(:) and vz(-)
such that the total loss is given by processing (\yl( *)) + transmitting
(T(+) * y5(+)) losses.

Unless there is a well-defined relationship between channel
input letters and actions, it seems difficult to derive these
measures from d(.,.). For the sake of simplicity, we have assumed
I=H (i.e., the channel input alphabet and the action set are of
equal size), which lead us to consider all possible 1-1 correspond-
ences between X and A. Not meking this assumption would bring
about more complex associations, but the increased difficulty, we
think, 1s not insurmountable.

Let momentarily denote Xy the x associated with a particular

DEFINITION. ) e,xa) 3 d(e,a) 1is called Processing Loss

3
n n.Al on
Measure (Functioa) 5l(e o = = -1 Bl(ek,xk).

The average Processing Loss, 51, equals

2 0 P(en) 5l(en,\yl(en\).

e
The transmission loss when x = is sent and x'" is received
is given by
\ p(e™) [6, (e, x'™) - & (e",x™))
A 1" 1
enevil(xn)

However, the proof of our transmission loss bound required a single

0 ny ln :
letter measure (i.e., 52(x 7 ) = Zk:l 52(x k,xk)). That brought

sbout the following definition.




DEFINITION. 8.(x,x') & A (Z, P(e)X . (e) B (e,x') - 8 (e,x);

Ze P(e)Xx,x(e) [Sl(e,x) s Sl(e,x')]}, where Xxx,(e) is the

indicator function of {e : bl(e,x') > Gl(e,x) b

It is Justified by the fact that

n
S Z 8 (k0% ) 2 ) P(e") (5, (e",x™) = 8, (e",x™) 1.
k=

[ur)
=
'

= |

2.2.9. Transmission Scheme.

) () T() ¢) ]
Sourcel, " Fruﬁsur Lsa'corx = (X.plylx),Y) F,/' Dl‘f:d" —-X :-Q-'Q“

T e e —— 58 . ca— RO

Processing Loss Transmission Loss

=B (6 (e y (eN))=0 < B (5(x" 5] = 8,
e

X L,y

Tl Len i NE (8,(e" 4,(e")) + E (6, (x", 4, (y) )
X,y




SECTION 3

The lower bound on Communication Loss for a given channel capacity

The theorem we are about to state is due to Shannon (1959).
It answers the question, 'What is the smallest average loss one should

expect with a channel of capacity C7'

THEOREM I. For an independent memoryless source S with a
finite loss function d(-,:), and a discrete memoryless channel of
capacity C, there exists no encoding and decoding function that
g

yields an average loss smaller than R ~(C), where R'l(') is the

inverse of the Rate-loss function R(:).

In other words, for any code (wl,w2) the average loss,

D> R-l(c) . We will give a condensed version of Shannon's proof:

Suppose D 1is the average loss for (wyl,dve), a block code of
length n. nC > I(x";y") by definition of capacity for a discrete
memoryless channel I(xn;yn) > I(en;an) by the data processing
theorem (Feinstein 5.3.3) I(en;a.n) = H(en) - H(enlan) >
Z{t:l [H(ek) - H(eklak)] because H(enlan) = H(ellal a.n) +
H(e2|el,a.l an) + e + H(enlel,---,en_l,al,---,a.n) <

H(ella.l) 4+ oes + H(en|a.n)

2k
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Now Z?=l I(ek,ak) > nR(D) by definition of R(D)

¢ >R(D) ..D > R'l(c\ because R(*) is decreasing.

q.e.d.

COROLLARY I. For an independent memoryless source s with a
finite loss function d(+,-', there exists no encoding function that
yields a processing loss smaller than R-l(H(x‘3 if H(x) 1is the

entropy of the channel input letters in the encoded messages.

Proof. This result clearly holds when the channel function

T(*) and we('\ are identity transformations.

(x5 = HGD e H(x)
.. the same string of inequalities yields
: a4 b -1
C > H(x">R(D" .. D>R (H(x) g.e.d.

In the next section, we will prove that there exist wl('\'s

such that




SECTION 4
4.1. The Processing Loss Theorem. An Upper Round to Processing Loss

We are faced here with the problem of processing the messages
from the source (source encoding' in such a way as to decrease the
rate of information to be sent through the channel so that there will
be a least possible loss in information value for the user. The

relevant loss measure is ©O.(+,*) : E X X = Reals. We recall that a

X
1=1 correspondence was established between A and X and that
bl(e,x\ was defined to be equal to d(e,a) for the associated
couple (x,a). It follows that the rate loss function for the source
6, with 51(-,-‘, Rl(Al\, is identical to R(-).

The encoding procedure we will describe 1s due to Shannon for
its basic idea, which was later improved by Yudkin, and to Jelinek
for its final version.

The problem was: given a memoryless source, governed by a
distribution P(- over the outputs e € E, an alphabet
x = (1,°++,H) and a loss measure 5l(~,-\ : E x X - Reals, let
wl(-\ denote an encoding function that maps sequences en onto a
set, u = (ul,---,uM} of M sequences of letters, u = (xlm,-.-,unm],

called a vocabulary. What is the least obtainable value of the

average loss E n {6l(en,¢l(en))] and what is the corresponding wl(-\?
e
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The only general answer to this question is obtained through a
"random coding argument", which involves "threshold type encoders"
proved to be efficient for large n's. In Shannon's approach, the
threshold was a constant. In Yudkin's, it is a function of the
sequence en designev in such a way as to minimize the expected
processing loss. We may think of 5l(e,x) as a distance between
¢ and x (although it does not necessarily have the properties of a
mathematical distance) and say that an optimal wl(-) should map each
sequence e” onto its closest code word in the vocebulary.

We will now reproduce the mein steps of Jelinek's proof. We
will need these in Section 4.2.

wl('\ is defined in the following fashion, given u:
/(e =u 1if © (en ul)>4d (en) for m'=1,eee,m -1
1 m 1'" ’m 0 rm

, Ao R
and ol(e ,um3 S_do(e ]

—T ST T T

oy :
wl(e u Uy otherwise.

\

do(en\ is a function over En whose exact form will be

determined later according to the statistical properties of the source
and the loss function.

Let d be the largest element in the loss matrix (0. (e,x)0]

s
and ¢l('\ the characteristic function defined on E° as follows:




28

|
¢ @ = b
1 Uy otherwise.

The expected loss, given 1, and do(-‘, can be bounded:

n n 3 n
B, (0 (ehy (eM V) =0y e Be™ d(eML - g ]

(u’l.l

; n n
\ .
+d P(e ¢l(e "

In order to estimate the bound, a random coding argument is
resorted to. Let us assume that the code words um of u are select-

ed independently at random, with probability

c’.
L
D>

8 Q(um\

Prob {u) = Q(u),
m=1 o

where q(*' 1s an arbitrary distribution on X. Then:

B 25 (8, (5 (M (Mg pea (e

e

0]

n
e

(b1,

n _n M

~ n n n

2 O \

+ dmax ) P(e ™) (Pth 3 e ,x ' > do(e 1))
n

e

l(

The Mth power appears because the M codewords are selected

independently.




Now, by the inequality log x < x -1 or x 5.9?-1, the

above inequality car be writtien:

1 0
e e
(Nedw3)
n, n n n n
et J= {e: Pq {5l(e 5% ) _<_do(e 1} < M]'
Then
L p(en\(pq(sl(en,x“» 4 ByM ) pe™ 4+ PleMe™
e eled eeg®
1
o, n {‘ ne ™ i
<8 +, Flel] s — b
B th{al(e ) g dg(en) )
=4
>0 (h.1.b)

The last term is obtained by using the usual bound to the indicator
function of J and the definition of the rate of a code 5 % log M.

A lower bound to the probability in the denominator is found
in Chapter 8 of Fano's, "Transmission of Information".

It can be shown that:
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Pq(5l( ) < % (p,eM) > exp [7 (0, - 07" (p,e")
(4.1.5)
+%log 21m-B(o,en)] -2 g P <O

Where: - B(p,en) is a monotonically decreasing function of p, is

independent of n and is bounded for all eMts , as long as IDI,G,H

are finite.
n = o)
\ pS_ (e, x)
- 7n(o,en) =) (e, e,) '24 log L q(x) e LK 1 (4.1.6)
k=l k=1 b4

1l

n, 1 , n
If we choose do(e V= Sy n(o,e )

, (3.1.3) becomes

) GH
61 SZ P(en) % 7ln(p’en) + dmax [S'n 3 n-z- B(p)s-n[c‘b'p’(c)]]

n
$ (4,1.7)

= <p<O 0gocl

Where: w( o) é-log [Ll} P(e) e-U(V(p,e\-py'(p,e))]

- Blp) = (om exp [max - B(p,e™))

e

Finally, provided 3 o e [0,1] such that K'(0) = ¢

— ﬁ
gl 52—' P(e)7'(p,e) + d oy [2"‘ e B(p)g'n(oll (o) - LL(O’))]
©<p<O (4.1.8)
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let us define:

so that
7'(p,e) —z wp(xle)al(e,x\
x
and
- e
5 SZ P(e) )_) Wp(x|e)51(e,x) ta (e + ngg(p)s'n(m'(c)-u(o))]
e b d

The second term tends to zero with n as long as oy - (o) >0.

We want to minimize ¢ under the constraint:

o

e,x

P(e) wp(xle)sl(e,x\ <4 o e [O,DM]

. ( ) = mi iﬁ Wp(xle)
VainlA (p’q(,r)l)e,\(Al) [/ P(e) wp(x}e\ log _qz;_s_]
v (4.1.9)
A 2 iteal) b

e,x

P(e) wp(x|e)61(e,x\ Slﬁ; P <0}

It turns out that wmin(/ﬁ\ = R(Al) (4.1.10) for a complete

proof, I refar to Jelinek, Chap. 1l section 11.3 and 11.4.
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THEOREM 11, Let S, a constant, memoryless source governed
by a distribution P(°) over the messages e € E, a loss matrix
[5l(e,x)], e€ E, x € X, and a number Ai € [O,DM] be given. The
random family of encoding functions wl(-)u, we have considered, of

output sequences e onto a set 4 = {ul,...,uM} of M= enw

codewords u, = (xml,...,xmn) yield on the average a processing loss
Bi such that:

- %? -na(w,éi)
Je )

(k.1.11)

Where

d ax is the maximal entry in [6l(e,x)]

a P(e) wp(xle) bl(e,x) = Ai

e,x

pﬁl(e)x)
w (x|e) = g(x)e
p = 051(8,){')
Z v a(x')e

and

a(w,éi) >0 provided ¢ > R(Ai)'

COROLLARY II. There exists an encoding function of sequences
n B n ny
e onto a vocabulary u = [ul,...,uM] cX,M=e whose loss, 51,

is bounded by the same expression.

e ides dom-.tee hmi8bn b e e
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4.2, Derivation of the Communication Loss Measure (Function) 52(x,x0

Let us come back a few steps from the point we have reached.
Let q(:) and p < O be arbitrary. Let {§ be equal to u'(0),
0OcOo< 1,

Let U be a vocabulary of emh codewords

w (xle)

(v > o P(e)wp(xle) log'-—ar;y—) U= {ul,"',uM). The encoding
rule is the following:

Encode e’ as u if u is the first code word in u
such that Sl(en,um) < do(en); if this never occurs, encode e as
Uy or, which is the same, do not encode it at all. We understand

how this decreases the quantity of information to be communicated

it is now < ¢ nats, on the average, per event. From (3.1.1)

- ‘ Al

n n, . ! n n S n n
Een (bl(e ,wl(e )u,] <. PleNd (e +d_ 7 P(e )¢l(e )u
R o

(4.2.1)

The second term overbounds the processing loss due to not
encoding certain e™'s. The first overbounds the loss due to the
actual encoding of the other e™'s. Note that this term does not
depend on the vocabulary u, but only on do(en) which, in turn,

depends only on q(x) and p.
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Case of block length one:

There are M = e* words in the vocabulary, chosen randomly
with probability q(x). A single message e is mapped on u, =X

only if

A}

N
= . o
5l(e,x\ < do(e) ‘ wp(x|e§ l(e,x).

X
What is the added loss if u, =X is decoded as x'?
If 51(e,x') < do(e\ there might be a loss, but it has already
been taken into account in the (source encoding bound) Processing loss
bound. We need only be concerned about those e's such that

(e,x') > d. (e). Clearly
0

5 (e,x) S.do(°) and ®,

{e : B _(e,x) 5_do(e\ and 5l(e,x') > do(e)} c {e : 5l(e,x)<:61(e,x')L

1

Let Xxx,(e) be the indicator function of

{e : 51(e,x\ < Sl(e,x')}. Then the loss Eg(x,x') due to

Transmitting and decoding input x into x'

> ) SL‘ P(e)Xxx,(e) (Sl(e,x') - 51(e,x)) (4L.2.2)

e

22(

DEFINITION. The transmission distortion function is




Al

This definition is unnatural a priori. The consideration of

o.(.,.) 1is Justified by:

- 5?(',') is not function of the particular code at hand
whereas 22(-,-) is. It is function of the given of this problem:

P(+) and d(-,+).

= Ly(x,x') £ 8, (x,x") v x and x'.
2.
n Rt 1 ° be) [
2(x 7 1) €7 2(xk,x X' This last property is
k=1

crucial in the proof of theorem III. It will be proved below.

- 4

Case of block length n:

LEMMA. The loss ﬂg(xn,x'n\ due to transmitting and decoding

channel input X into x'? is over-approximated by the single

letter loss function Bp(x,x'):

0

l |
Sn /. Balmex'y).

k=1

zg(xn)xln)
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Proof,
g(xxt™y < (e ey(ex) -5 (e x)]
2 s 1 1
e ef
where:
R P (en,xn)-<6 (e“,x”ﬁ}
1 1
now:;
i n n_.n n_n
CORE oy (e x ™) - b (% x)]
el
HL,
g P(en) = (5.(e ,x' ) -5 (e ,x.))
My n _, 1Yk k 1K Tk
n_.n k=1
e €f
1 claim that
n
) ' -
‘ . (6l(ek‘x k) él(ek)xk))
k:‘;l
2
: ( 1 n . .
S_ 1 \bl(ek,'x k) 6l(ek)xk))>‘x x! \ek)
=2 K™k
K=1
Indeed, suppose that for a particular e, X (e.) = ). Then
xkx bk k

1) - ) = ] _ f— .
6l(ek,x k) < 6l(ek,xk) and therefore, t¢ a non-positive term in the

first member correspunds a zeru term in the second.




B Lol Lo phaspe: < ey
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= m,
ST ot n 1°
L.(x,x'") < Ple) ALE X g (ek)(bl(ek,x k) - bl(ek,xk)
T k™ k
1 k=1
e
Now, since P(e ) = P(el) . P(en)
nooo
n_,n _1 ’ s vt s
Z2(x X' < o - P\e))xyx,k(e)(bl(c.x i) tl(e,xK )
k:1l e '
n.
. n n _1 : PP
..Eg(x oA B i be\xk,x'k) by {(5.2.5) g.e.d.
k=1

REMARK : 62(x,x') is in fact the product of the probability of
X Dbeing sent given that x belongs to the vocabulary u and the
loss whea the output of the channel is decoded into x'. Therefore,

to compute the Expected transmission loss, we need only sum up the

expected losses for each word in the vocabulary.

Properties of 6?(-,-):
1) &, (x,x') -0, bz(x,x') -~ ) when x = x'
2) the [5.(x,x')] matrix is square and symmetric, an

important property for what follows.

5) 62(',') has the triangular inequality property.

LEMMA. B, (x,.x,) <98, (x

A Axpx) + 00 0%,

¢ J

1

Proof. Let us first show that

i
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| P(e\Xxlx (e\(bl(e,xj) - 5l(e,xl\)
5
e
< P(e\Xxlxﬁ(eﬁ(bl(e,xp\ - 6l(e,xl\ (.2,
. ,
- P(e\‘xng(e\(bl(e,xj‘ - 6l(e,x?\
e

P(ex (e)[51(e,x5) - El(e,x?) + Bl(e,xp\ - 51(

S ‘ 1 S e, V2K : ses
Suppose \xlxs(e 1, i.e., l(e,xj > Jl(e,xl) These cases are

possible.

>0 l(

1) Bl(e,xi‘ > l(e,x‘,,\ >0

e,xl‘ the two members of the in-

equality (4.2.4) are equal,

2) b .(e,x.)) > 61(e,x5) > bl(e,xl) the right-hand side of (4.2.4°

is larger because it has a zero terr. rather than the negative term,

&, (e,x,) =D

5 1
3) B

l( e, X, .

&)X; > ol(e,xl > 61(

is larger for the same reason as in 2.

( 2,x,) the right-hand side of (L4.2.4)
1 y

TEAX B (e) = 0 then the right-hard side of (4.7.4) is larger than or
15
equal to the left-hand side, because it is non-negative. We would

prove in the same fashion that:
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\
LS P(e\&x}xl(e\(&l(e,xl) - ﬁl(e,xj))
e

P(e\Xxix?(e)(6l(e,x?) - bl(e,xi) (4.2.4")

IN

e

-
g ) V(B ) -t )
+ P(e Xx?xl(e ( l(e,yl l(e,xg)

therefore, from {L4.2.3), (4.2.4) and 4.2.4'), it follows that:

ég(xl,x5 < Bﬁ(xl,xg) + Bp(xg,xB\ q.e.d.

=




SECTION 5

An Upperbound to the Expected Transmission Loss, Given a Channel

Let us be given a channel (X,p(y|x),Y), where:

X = {1,"",i, " *,H]

Y = {l,"',j,"',J)

and a transmission loss matrix [52(x,x')}. We recall that 52(-,4

was induced by © ‘) through an arbitrary 1-1 correspondence

NEE
between the action set A and X.

We want now to associate channel input and output letters in order
to define a distortion measure between channel input and channel output

letters. Let us call a(y) the action associated with y determined

in the following fashion:
a(xp(y x5 (x,8(3) < )
X

a(x)p(y[%)8,(x,x") v x',

-

%>

where q(x) 1is the probability distribution used on the x's.
A =
Define: 53(x,y) = bp(x,a(y)).
We will suppose, furthermore, that the correspondence between A

and X has been done so as to minimize

40
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) a(x)p(y[x)8,(x,2(y)).

pa—)

X,¥

The channel is now adapted to the source and the loss function
a( ).

We now propose to ask the following question: Let 1 be a
vocabulary of M sequences [ul,°-',uM} of channel input letters of

length n : um = {ea °-,xmn) and let the source messages en be

o
mapped on the codewords um's by the rule given in 4.1. The loss
when u is transmitted and decoded into U is over-approximated
by 82(um,um,). What is the best decoding function w2(°) : Y 5 AR
and what is the least obtainable value of the expected transmission
loss?

s a natter of fact, the only optimal decoding function is the

one .nich maps an output sequence yn onto the code word um that

minimizes the quantity,

8
n
; Pr[um' IY }se(um’umv W

m'=1

Unfortunately this decoding rule is hardly feasible in practice,
especially for large n's, and moreover one does not know how to
evaluate its performances in terms of a bound.

We will “nstead use & so-called "minimum distance" decoding

function, defined as follows:
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— n n - e
voly ) = u if O (ups¥ ) € ¥(u y) vm' = 1,00 M (5.1)
When yn is received, w,.,(-)u decode it as the code word u,
which is the less distorted with respect to yn.
Given a vocabulary W4 = {ul, .. °,uM} ;, we would like to evaluate
the expected value of the transmission loss function:
M
i

62(um,‘1r2(yn\u) Pr(yn|um} (5.2)

m:l Y.n
As in Section 4.1, we will only be able to evaluate the expected
value of this quantity over all 's = {ul,-- -,uM} generated at
random as in 4,1. We will prove that if the code rate { is small
enough, the expected transmission loss, averaged over all Y 's, is

bounded from above by & function which tends to zero with n - =,

Proof. Let U be generated at random, each word U being
i chosen independently with probability Prob {um = ) = Q(xn) =

| A
m 1 q(xk\ where x (x

= ...,x)---,xn) and q(-) is the same

1’ k
distribution as in 4.1.

Let x = (x, - xn\ be a code word and y© be received when

1

x" has been sent. The probability that the distortion & (xn,yn) be

3

larger than some value ¢ is bounded from above using & result of

Fano's, "Transmission of Information", Chapter 8.

L CC el S T I L 3 T U0 e T
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vron n
B {53(xn,yn) > g (x,8)) < E—n[ss (x7,8)-g(x",8) ] | > 0 (5.3)

where:

g'(xn,s) is an increasing function of s and

3

8'(xn)0) = > P(ynlxn\E’B(anyn)

b

v P (ylx,)
b
sg'(x",s) - g(x",s) = ) £ ) Ps(ylxk) log g?ﬂ—xzky— 20
k=1 Y
increasing with s
sd_(x, ,x)
e 3\ P(y|x,)
PS(ylxk> = SO (X )yvj
5, P(y'lx)e ° K
i k=

If ® (xn,ys > g'(xn,s) then the transmission loss is less than or

3

equal to 82 max’ the maximal entry in the [52(x,x‘)] matrix. If
Bi(xn,yn) 5'g'(xn,s\ then a transmitting and decoding loss smaller
than or equal to 2g'(xn,s3 could occur only if there was another
code word x'" such that 63(x'n,yn) < g'(xn,s), otherwise, no loss. |
The probability of such a situation depends on yn and g'(xn,s)

only, since the code words are chosen independently. This probability,
averaged over all yn's such that 53(xn,yn\ < g'(xn,s) is taken to
be equal to the probability of another code word at a distance less
than g'(xn,s) from x.

Let us now estimate this probability using once agein one of
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Ly

Fano's bound:

Prob (x'" : 52(xn,X'n) <g'(x",s))
(5.4)

-n(Nx )£ (6, N ) =20, M) 15 M) < 0
<e

where:

( g (x%,8) = £1(AGED) or M) =0 if g'(xM,s) > £1(x",0).

f'(xn,%) is an increasing function of A

£1(x,N) < f'(xn,O) =) Q(xn)52(xn,x'n); A<O
T
X
D Q(x'|x, )
vl A
)\f'(xn,?\) - f(xn,7\\ '—'““ n L Q?\(X'ka) log ——ar}-c-,-)(krz 0 for A <0
k=1 x'eX

is a decreasing function of A

?\5,.‘()( ,X')
(x'| e K gy
GLx'x) = == T (%, %)
\ S alx')e

The probability that 1 no other code word in the sphere of
radius g'(xn,s) about X :

TS D e-n(?x(x“)f'(x“,?x(xn))-f(xn,?\(xn))]M'l o [eee]!

the probability that ] at least anocher code word in this sphere:

e
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L5

'n"(-l_[cu-]M
2
1 1 b
L k% 1
Now (1 -x)" >¢ >e for 0<x<1

an(AN(x )£ (XN ) -7, N X))
.'.Trsl-exp[-%_e_ - M]

but l-g'xs)CVX and M=gn‘l'

n[Nx )2 (o, Mk ) =20 Mk ) =]
e

PN

a T

So the loss, averaged over all \'s that have X as one of the

code words, is bounded by

E {52(xniwﬁ(yn\ n J
u(xHy" u(x")
n (AP (x ,Mx ) =F(x ,Nx )=y ]
_<_3€'(xn,s)g n n n n (5.5)
r.n n
+ 52 ax _e_‘n(SS (x ,S)-g(x :S)) )\(xn) >0, §<0

It is left now to average the loss over all vocabularies and all

code words. The probabilityaof o being a code word is equal to

1- (1 - MM~ o).

the average loss for W, averaged over all u's

b 2
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E (B,(x"1,(¥"),)
n _n
W,y ,x

< E (38'(x",s)) E [e'n[x(xn)f'(xnyk(xn))-f(xn:%(xn))-\y]
<z Ele
X X

-n(g'(x" )-(xns)) n
+ 5 g (e (8 (X80 -8(x8))y My <o, 55 0
2 max D

(5.6)

Now:

"
W
=
~

E (3g'(x")s)) P (¥ %08, (x,¥)

3/ a(x) Ps(ylx)53(x;y)
X,y

because Q(xn) = TLkn=l q(xk).

6 {s-n[x(xn)-f'(xn,x(x“))-f(x“,x(x“))}

o Q(xn>2-n[7\(xn)-f'(xn,%(xn))-f(xn,%(xn)] (5.7)

L

(" N x1)<0)

+ E Q(xn)eo because 7\f'(xn,7\) - f‘(xn,7\) =0 for AN=0

boss
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Z ) o) =2 o}
But 2, . a(x) P (v [x)8,(x,y) gy ) P (y]x)8,(x,a(y)) because
of the association between Y and A, by this association:

Xy

——

]
X,y xx'

|

/a0y 08, (x,8(y)) < ) a(x)a(x")d,(x,x")

since Zx ¥ a(x) Ps(ylx)ﬁg(x,a(y)) is an increasing function of
2
we can choose s

S,

small enough to ensure

Joax) P(ylx)8,(x,a(y)) <l a(x)q(x")8,(x,x").
X,y X,x'

for s small enough Probq {Zx,n Q(x'n)ﬁg(xn,x'n\ <
% 0 Ps(yn|xn)53(xn,yn)] tends to zero exponentially as n — o,
¥

Sk
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Now, because of the continuity in A of M"(xn,?\) - f(xn,7\)
and because of the continuity of the expectation operation, there

exists a maximal A < O such that:

nE (A £ (XA -f(xP,A )
e (e NP AN AT S ° °

" E
n
X
/ . -
; 1 L1 =0 ) ' ' ' E
k En{f (x",A)) =" alx )Q)\S(X|x 1B, (x,x') 2 AP (y[x) 85 (x,y)
X X,x' X,y
\
n, '
N W Qk(x [x )
E OGN <N -8 ) gl log —ret)
X X' k=1 x'
- - \ﬁ Q}\(X'IX)
En[)\fv(x SN = f(x,N) ) = q(x)Q)\(x'|x) log CICR (5<8)
X X,x'

n n n n n
Finally, in order that E n (_e_-nD\(x (T, M) ) -2 (x5 Nx ))]m‘l’]
X

tends to zero with n - o, it suffices that

—_ Q7\ (x! Ix)
i ’ s .
=2 Q(X\QAS(X |x) log rICOR (5.9)

;x'
In the same fashion

E (g'(x",s)) = E_(g'(x,s)]
n

X

and
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B {e-n[sg'(xn,s)-g(xn,s)]] _ [e-n[sg'(x,s)-g(x,s)]}
e o &

n
X

We have proved, so far, that the expected transmission loss, averaged

over 8ll u = {ul’.."uM]’ (M = EP¢\
Q) 'k
. . s
) . 'n[zx,x'q(X)ka(x |%) g = -]
'E o n{62(x )‘l‘g(y \)ﬁjEX {8'(X;S)}g
LY »X
enlse (xs)elas)ly Ly o5 g
Z 2 max x =
/
!
{5 o
) a(x)Qy (x'|x)62(x,x') 2 q(x\PS(Y|X)53(X,y) '
xx' § x,y (5.10) i

Let us ask now a question of theoretical importance (its economic
relevance cannct be asserted unless the utility function of the
information system and the various cost functions are given):

What is the supremum, w‘, of the permissible code rates?

A priori w* < C the capacity of the channel.

,¥4
Let us prove that | > C:




\ @ (x" [%)
i _ max \ g A

U T Y N qa(x)Q)(x |x) log ——
! x’x'
i
s with
& :

A SRR o Q(X‘P(le)53(x;Y)

xx! =

50

(5.11)

by 3.9, 3.10 and the fact that l‘)x . q(x)Ps(y|x§52(x,y\ is minimum
J

b}

for s = 0. Po(y|x\ = p(y|x).

N )
C - max x) x' lo Z—_Fiij'ﬂ
<l p(y| B EF:

Ay v

by convexity U of - log(-)

—

)

C < max ' q(x\p(ylx) log 3 xx
a( ") -
Y

(3.12) can be written:

C < max a(x) p(ylx) log Rﬁ[""fl:
- q(.\ - 3 q X

xx' {y:a;(-y‘-—-x'}

(5.12)

(5.13)

where a(y) 1is the action or equivalently the channel input letter

associated with y.

Let us deno.e by QXV(X' |x), the sum z(y;a(

¥)=x"') p(y|x). By

e
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convexity N of 1log(:)

) p(y|x) log E&%ls ) p(y|x) log xx) (5.4
(y:a(y)=x"} (y:a(y)=x"}

From (3.13) and (3.1

2 * et |5e) x
cemx | a(0Q (x'|x) log LEE <,
g )6{]
because:
N * N
D a0 (x 08, (%) = 1 a(0)p(y 08, (x,)
x'x X,y

*
by definition of a(y) and Q (x'|x). q.e.d.
v = C.

Let us summarize the results obtained:

THECREM III. Let (X,p(y|xU,Y), a discrete memoryless channel
of capacity C and a transmission loss function 6P(',') t X X X =

Reals be given. Let q(*) be an arbitrary probability distribution

. n{
on X. Iet u-= tul,---,um,---,uM], M=e v u = (xml,"',umn\ be

a vocabulary of code words of length n generated a- random, each
word being chosen independently with probability Q(um) & ﬂizl q(xmk).
Then the expectation over all W 's of the average transmission loss

for a given vocabulary, when a "minimum distance" decoding function

(R Y oAt s used, satisfies the following inequality:




. ,.n n '"[*()‘a)'*]
§, - E (B, (x" (¥} < 5 E (8'(x,8))e
“ n.n ° ’ S
U,y ,x
‘ bp L E [2-11[83'(x,8)-g(x,5)l] A

o) '
Where 52 max 15 the max _, 2(x,x )

’

Q}\ (x' Ix)

——

52

5.15)

.y()\s) é‘d q(x) Q}\s(x'|x) log ﬁ;r> 0O for 8>0

xx'

sg'(xn,s‘) - g(xn,s) >0 for s>0

A (x,x")
3 _ (x")g ®
Q}\ (x Ix) = 4 Xg(x X"
s - et 1| 2Rt
Z . q(x')e
b e
sag(x)a‘(y))
P (y|x) - —2lXs
s'Y 5 s0,(x,a(y))
P(y'|x)e

yV

a(y) 1is the action associated with output y
y a(x)Qy (x'[x)8,(x,x") z}ﬁ a(x) P (y[x)8,(x,a(y))
(] s Z—
xx' X,y

sup dr(7\s) = C
a(*),s

and the bound tends to zero when s >0 and § < \y(7\s).
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e sl

COROLLARY III. There exists & vocabulary W4 = (uy,* ""‘M)’

n
U, - (uml,---,umn), M = 3* whose average loss, 52, satisfies

inequality (3.15).
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SECTION 6
The Communication Loss Theorems

We recall that, for the sake of analysing the effects of
encoding on the one hand and transmitting and decoding on the other
hand, we introduced, respectively, the Processing Loss Function
51(-,~) and the Transmission Loss Function 52(',') in such a way
that the expectation of the loss due to communication, d, be less
than or equal to the sum of the expectation of the loss due to encoding,

51, and the expectation of the loss due to transmitting and decoding,

8 .
2

d <8 +5, (6.1)

In section four, we proved that:

. n
- If a vocabulary | = {ul," ,uM], M=¢ W, U, = (uml,---,umn)
is generated at random with Prob (y} = nﬁ:l n§=l q(xmk), a(*) Dbeing
an arbitrary distribution on the channel alphabet X.

- If the blocks of source messages of length n are mapped

n n n

onto U in such a way that wl(e )u =u only if Bl(e ,um) < do(e ).
’ Then the average processing loss b, = E (® (en,t (eM.))

n.n 1l 1 1}

| U,x ,Y

satisfies:
b 5k

4

r AXcperrares . -~ S — E
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— ol

Al </ Ple)r'(pye) + 4 [e™ +n? _'"(U*'“( D)
i e
:
' peco 0<a<l]

n, n, .
Cafe™ =2 0 (p,e) 820 1 W (x]e )8y (e,x)
‘ k=1 k=1 x
:] W, (x|e)
\ and oy - u(o) >0 1if y = u'(o) > u'(0) = P(e\wp(xle)log-ear;y-

e,x

In Section five, we proved ‘hat:
- If a vocabulary U is generated at rendom as in Section four,
using a distribution q(*) on X, u= {ul,"',uM], M= enw,

%n=(ﬁuf'3ﬁm).

- If the channel outputs of length n are decoded, using the

1 "minimum distance" decoding function WE(-)u.

Then the expected transmission loss 8, =E (8, (x ﬂhﬁy )

U,y X
satisfies:

5, <30 ) -n{sg'(x,s)-g(x%s)]

a(x)g'(x,s) Je § + 5 )Iq(x e

% [>]

et QK '|x
where w(%s) =:/, x)QK x'|x) log -—-Y—jr——- (6.3)

xx'

and w(ks) -y >0 if y <o if ¢<¢(>\s)

From (6.1), (6.2) and (6.3) it follows that:
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(1) (2)

GH

e
(6.4)
(3) (%)
-n[y(A ) -y] C ' -
8 + bgmz q(x)g n[sg'(x,s)-g(x,s)]
X

+3 ( Zq(X)s'(x,s) Je
X

p<0,0<0<1l, 8>0

where (2), (3) and (4) tend to zero as n -« if

(x*]x)

W (x|e)
), e (xle) 20g Eroms 4 <) a0, (x'lx) 20s —ro— (619

e,Xx xx!

and q(°) 1is arbitrary.

Note that (6.5) can always be satisfied for q(.) and s given

by taking p < O large enough because Ze x P( e)wp(xle) log
J

as p =0,

Let us now minimize the bound in (6.4). Two cases need to be

considered;

a) There is no constraint on n.
Since (2), (3), and (4) tend to zero with n - when
p<0, 8>0 and y = u'(0) < -3(%8), n can be chosen large enough
to make (2), (3) and (4) negligible with respect to (1). We want,

therefore, to minimize (1) under the constraint that (©.5) is

SRR R P E I L LR R
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satisfied, i.e.

/

EJ P(e)w (xlc)b (e,x)
(O;q )J

subject to (6.6)

W (x|e) Qk (x* |x)
P(e)wp(X|e) log _p_qr;)_ =y = (o) </ q(X)QA (x'|x) log —-(—y—-

\\.’///////,///—‘\\ Now suppose p, qo(') and s, are solutions to (6.6), then
QA (x [x)

- Q (x'|x)

A1
>

. \
ZJ (X)Q% (x'|x) log ——agr—y-- " S?p / Qx X'Ix)ibg-arzj—-
X, X! X xx!

Q (x'[x)

B GX)8 ' [x) 2og gy < C
0

with equality only if qo(') and sy are solution to 5.11, If that

is so we will say that the source is matched with the channel. If it

is not so,
_ oy (x* |x)
c- qy(x)ay (x'[x) log —=
£§1 % )Eo qolxi

could be used as a measure of the mismatch between Source and Channel.
-1

. z . .

. in general minp’q(.),s b P(e)wo(xle)ﬁl(e,x) >R (C), by definition

of R(D).




THEOREM IV, let S be a constant, memoryless source which

generates messages e € E with a rixed probability P(*). Iet
d(*,*) : E X A - Reals be the loss function attached to S and A,
the cet of feasible actions. Let (X,p(y|x),Y) be a discrete,
memoryless channel of capacity C.

let a vocabulary y = [ul,---,uM], M= gnw, u = (xml, ---,xmn)
be generated with probability Prob ( } = nf:'l:l M, a(x ). Iet
the source messages en be mapped onto y using the encoding
function *l(')u. Let the outputs yn of the channel be decoded by

w2(°)u. Then:

(1)
E [d(en,\ye[T(\yl(en)u) ]u)} SZ P(e)Wp(xle)bl(e,x)
wT(+),e" e
(2)
GH

+a . [e7 +n 2 p(p)e nlovlo)])

(3) (€.7)
30 aogr (x,5))eHs)Y]

L}c_l

()

+8, o Tq(x)s'nfsg' (x,5)-g(x,s)]

where p,q(*),s minimize
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i"\
(/ P(e)wp(xle)bl(e,x)
e
« under the constraints p <0, 5§>0 and 0<oc <1 (6.8)
Q) (x'|x)

(x]e)

T W
') Ble)i (xle) log £ = y=ut (o) <z q(x)Q)‘s(x'lx)log T

€,X xx'

and Ze P(e)wp(xle)él(e,x) > R-l(C) with equality only if Source and

Channel are matched.

COROLIARY III. There exists a code (¢l,w2) whose expected loss

satisfies (6.7)

b) the block length n is constrained to be at most equal to

THEOREM 1V'.
GH

— N i GH ) )
12 0,q(- )80,y U Fle)rlose) +a,, Le n, n2p(p)e Rio¥-m))

. (6.9)

-n[ (A )-¢] '
+ 3 {z a(x)g' (x,s))e nly s) v . 82m&xz q(x)g-n[sg (x,S)-g(x,s)]}
| x

X
with p<0, s>0,n<N, y=u'(c), 0<o<l,
The minimization is made easier by the fact that all the function

in the bound are well behaved, either increasing or decreasing in the

various parameters.




SECTION 7

Treatment of the General Problem with Certain Properties of

the Source and the Channel Assumed

In this section, we deal with a more restrictive set of

assumptions, namely:

- the source S is binary, memoryless and uniform, i.e.,

E = ({12}, is a sequence of independent identical random

_ _ _ _ 1
variables and Pr [ek =1} = Pr [ek =2} = 3 .

{ek]k=l

- A={1,2)

- The loss function is symmetric in the following sense:

DEFINITION. A loss function is symmetric if each row of the loss

matrix [d(e,a)] contains the same set of numbers dl,"°,dH and

each column of [d(e,a)] contains the same set of numbers

ar., e, d!

1 G*

[a(e,a)] =

rn
Q.
(@]

We will take dmax = 1 without loss o¢f generality, so that

e o {d(e,a)} = Prob (error} per message, since d(e,a) =1 - LIy
’

where 8 1is the kronecker symbol.

) il + Pl w

| e ]
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- The channel is binary, symmetric and memoryless. {

DEFINITION., A channel is symmetric if each row of the channel

matrix [p(y|x)] contains the same set of numbers P'ysctyP'; and

each column of [p(y|x)] contains the same set of numbers Q' eee Q'

W.l.q.

ol

P(y|x) = p <
2

- The utility function is linear in all the criteria, to be

given later.

These hypothesis have been selected in such a way that:

the computations be feasible by hand,

the number of parameters be reduced to & minimum,

the results be simple enough to allow & direct reading of the

effect of each parameter.

This will enable us to discuss, for this case, the general
problem, stated in section 1, of the choice of an optimal Information
System (i.e., Encoding, Channel, Decoding), given a Source of messages
and the user's utility functon.

It is important to note that "binary" can easily be dropped if
all the other assumptions are kept.

Iet us compute the right hand side of (6.9)
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o @)
min { ' (p, -n 2 e'n("‘#'u(c))
0,4(°), 8,3, ZP(e)? (p,e) +a [e” +n"Bloe ]
(3)
-n[§(A,)-y]

+3 gg:q(x)g'(x,s)lg
X

(%)

*8 }; q(xls"n[sg'(x,S)-s(x,S))]}
X
p<0, s>0, y=u(oc), O0<oc<l,

In this perfectly symmetric situation, the optimal association

between X, Y and A is, a priori:

X Y A
le— le— 1

26 2 & 2

Likewise the optimal a(*), Vv, p, s, n, § is the uniform

distribution q(x) =%‘ v X.

A. Computation of (1) and (2)

e\x l 2
1]0 1

al(e)x) bl
2 1 O

ﬂ

|




pﬁl(e,X)

7(p,e) = 1ogz a(x)e = log (% spxo + % )
X
7(pre) = log 3 (1+¢°) ve (7.1)
&
7'(0,8) = v e (7-2)
1+ _gp

w(o) = logy P(e) e[_c(7(p:e)'07'(p,e))]

p
(o) = -o [log% (1 + gp) - —92—5] (7.3)
l+e

p&l(e,x)-7(p,e)
W (xle) = ¢ alx)

e 1 2

p
1 l/l+e° E/l+gp

[W (XIe)] = (7')"’)
i 2 1€ e Vs

1 1 1
B(o,e)=|o|+3+zm=|p|+3 o= Ve
X

1. (1+ef
lof+ 5+ S‘fj]

(7.5)

B(p) =2r e

from (7.1), (7.2), (7.3), (7.5), and (6.9).
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p\2
p lol+ e G222
L)+ (2) = —S— + {g'n + noer e £
1+ gp -
(7.6)
o
-n[cﬁc’[log% (l+_qp)- s )
e L+e®
By definition
p
= & (7.7)
A'L 1+ Sp
o = 1 minimizes (2).
From (4.1.9) and (4.1.10)
1 p
log 5 (1 +¢°) - BE— = - R() (7.8)
1 + €
We will confine ourselves to Al <% without loss of generality;
. from {.7) and (.8)
1 1
1- 1-A
(1) + () =8, + (™ + 27 %’ S ST bRy ()

T

B. Computation of (3) and (4)

(7.10)
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] 1 2
1|0 1/2
[Sj(x,y)] = (7.11)
1/2 0 |
s8,(x,y)
e ° p(y|x)
PS(YIX) = Ssj(x,y)
2 e p(y|x)
y
X a]: 2
1- s/e
1 ———-&7— —J‘eﬁ—
l-p+pgs 2 l-p+pgs 2
P (v[x) = (7.12)
2 es/2 1
l-p+pgs 2 l-p-ipgs72
. . st/E
g'(x,s) = ) Ps(yIX)55(x,y) "3 T ; T vs (7.13)
y i
- pes/2
/. ax)er (x,s) =—; 72 (7.14)
= l-p+ pe
X el
oS P (v[x)
E, (s (x,s) - g(x,s)} = > q(X)PS(yIX) log =G
XYy
o
e T R




1 1 B

sg'(x,8) - g(x,s) = log

7\52()(,}(')
Q,(x'|x) = = *)
A ?ﬁzix,m
2:x' & q(x*)
X
X 1 2
1/ A e)‘/ A
1 71+e €l1+e
Q(x'|x) =
A A
. y e
£ (x, N =) g(x |%)8,(x,x') = 3 -V x
/;J' l+e
N Q) (x* |x)
A (D) - ) =) Qy(xt[x) log —grry
xl
2 2e
5 log )\ + = ?\ V X
l+e l+e

is the maximum A such that

+
l-p+pss/2 2l-1;>+pg
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(7.16)

(7.18)

e - . emencasiew
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-nE [ Af" (P A)-£ (N ]

;:/E n{-e_-n[k(xn)f'(xn,?\(xn))-f(xn,?\(xn))]}SE X

d N 5%

) gyl lesyxt) ) aler, (rlx)s, ()
xx! Xy

But here )\(xn) is independent of xn, due to the symmetry.

Moreover, MN'(x,A) - £(x,A) is independent from x. Therefore :

-ng [M'(xn;?\)'f( n!?\)]
{e-n[?\f' (xn) .)\)-f(xn’ }\)]] =i xn X

E
n
X

-nEx[?\f' (x, N)-£(x,7)]
=&

Therefore 7\S is such that:

T

:>J a(x")Q, (x* |x)8,(x,x") =}’ﬂ a(x)P (v [x)85(x,y)  (7.19)

xx! X,y

i.e,,

ol = /2 (7 020)

from (7.14) and (7.17), and that relation is true if and only if

. ’-1




[Q, (x! [x)] = [PS(YIX)] (7.21)
S

<. from (.15) and (7.18) y(A) = sg'(x,s) - g(x,s) and (3) +

(%) can ve written

A
3e S -n[ y(A_)-y) -ny(A)
(3) + () = ——=— ¢ " ¢+%g ° (7.22)
1 °H e 5
From (7.9) and (7.22) we get
1
1
3 (1-2,) -n[y-R ]
d<o+e™ron e’ 2ot Vg “
A
3¢ 5 -aly(A)-v]l  -ne(A)
+ n e +-2-_§
J L+ e S
(F1423)

with O<A_L<-]-', s >0

¥(A) =sg'(x,5) - glx,s)

Let us denote by F(Al,n, y,s) the upper bound in (7.23). It
is easily checked that F(°) is convex |J in all the parameters.

Now, A.L’ n, |y are parameters of encoding and decoding, whereas
s 1is bound to the channel. It is intuitively clear that:

- the encoding gets more difficult as n increases and Al

decreases,

- the decoding gets more difficult as n and | increase,
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- The channel gets better as the maximum velue of s increases,

In this context and short of being able to do better, one might
decide to choose an Information System in terms of Al,n,w,s and
F(&,n,§,5). One might further decide to attach constent cost
coefficients to these parameters and try to maximize a utility

function of the form:

u(2,n, §,8,F(A),n,§,5)) = kAlAl iRt ey e e s KF(&),m,4,5).
(6.2k)

u(*) would have a non-boundary maximum since it is convex (N

in 4,n,y, and s.

Now, if we assume that the user is not interested in very small
n's, i.e., he allows n's large enough so that minimizing (3) + (&)
in s would amount to choosing s so as to minimize the
exponential terms, that is, he would choose < so as to maximize
q;(?\s). But we have proved in Section 5 that maX (., s w(?\s) =C,
We have already maximized ¢(7\s) with respect to q(*). Therefore,

for that s = that maximizes ¢(7\S):




T0

1
3 o AU -aly-r(ey)]
e n e e

/(_i< +e-n+21r
<4 te

: A
l 3¢ O

]' + Lx_ S-n(C-t) +%E-nc A F*(Al,n, )
\ s

l+e =

with 0 <A <%

m
= : y(A, ) =cC.

And he would choose Al,n,*,c so as to maximize

+* »* *
u (Al’n' v, C,F (%rn’ *’C)) = kA‘L% - knn - k*' - kCC -k 3 (%’n; *,C)-
F

*
F (%,n, ¥,C) glves very explicitly the following asymtotic

information:
Ir R(lﬁ) < §y <€, there exist vocabularies Yy = [ul,---,uM]

M=e *, such that the average loss due to communication with

(*I(O)u’ *2(.)11' C) be less than L\l + €(n) where €(n) -0

as n — w,

3l
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