AFCRL-68-0479

10)

R

C.C.

· · · · ·

• • • •

RRA-T88

RADIATION RESEARCH ASSOCIATES

Fort Worth, Texas 76104

SCATTERING AND REFLECTANCE OF LIGHT FROM AIRBORNE LASER SYSTEMS

by Dave G. Collins and Michael B. Wells

Contract No. F19628-67-C-0298

 Project No.
 7621

 Task No.
 762107

 Work Unit No.
 76210701

17

Scientific Report No. 4

15 June 1968

Contract Monitor Robert W. Fenn Optical Physics Laboratory

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS 01730

> Prevoduci d by the CLEW RINGHOUSE Ice te dee E Scientific & Technic et Internet en Springfield Val 22151

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the Clearinghouse for Federal Scientific and Technical Information.

Ì.

ł

AFCRL-68-0479

\$

RRA-T88

Scattering and Reflectance of Light from Airborne Laser Systems

Ъy

Dave G. Collins and Michael B. Wells

Radiation Research Associates, Inc. 1506 West Terrell Avenue Fort Worth, Texas 76104

Contract No. F19628-67-C-0298

 Project No.
 7621

 Task No.
 762107

 Work Unit No.
 76210701

Scientific Report No. 4

15 June 1968

Contract Monitor Robert W. Fenn Optical Physics Laboratory

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

.

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS 01730

SCATTERING AND REFLECTANCE OF LIGHT FROM AIRBORNE LASER SYSTEMS

Dave G. Collins and Michael B. Wells

ABSTRACT

The LITE-I Monte Carlo program was used to predict the ground reflected and atmospheric scattered components of the scattered light from airborne laser systems received at collimated receivers located at the same altitude as the laser system and focused on the ground area illuminated by the direct radiation from the laser system. Lasers emitting light with wavelengths of 0.5145, 1.06, 3.507 and 10.6 microns were considered at different altitudes in two model atmospheres. The first atmosphere was a clear atmosphere having a ground level meteorological range of 25 km. The second atmosphere was identical to the first above 1.5 km but below 1.5 km the aerosol content was increased to reduce the ground level meteorological range to 5 km. The ground reflected component of the scattered light entering the receiver for all four wavelengths was taken to be the sum of the direct radiation incident on the ground and reflected to the receiver plus the single scattered radiation incident upon the ground area illuminated by the direct radiation and then reflected to the receiver. For the 3.507 and 10.6 micron lasers the atmospheric scattered component at the receiver in both atmospheres is composed almost entirely of single scattered light, but for the 0.5145 and 1.06 micron lasers the single scattered irradiance seriously underpredicts the atmospheric scattered component for lookangles greater than just a few degrees.

iii

FOREWORD

This report was prepared by Radiation Research Associates, Inc., Fort Worth, Texas, under Contract No. F19628-67-C-0298.

The contract is under the technical direction of Dr. Robert W. Fenn of the Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts.

Mr. Michael B. Wells of Radiation Research Associates, Inc., was principal investigator. Mr. Dave G. Collins was the principal mathematician and programmer. In addition, Mr. J. D. Marshall, Mr. J. M. Newell, and Mrs. Frances Hopper contributed to the program. Dr. Fredric E. Volz of AFCRL provided valuable consultation on the atmospheric description. Mr. Karekin Agazarian was very helpful in checking out the computer programs at AFCRL and in performing all the computer runs.

TABLE OF CONTENTS

.

,

٠

		Page
	ABSTRACT	iii
	FOREWORD	iv
	LIST OF FIGURES	vi
	LIST OF TABLES	viii
I.	INTRODUCTION	1
II.	ATMOSPHERIC DESCRIPTION	2
III.	PATH RADIANCES AND GROUND REFLECTANCES	14
	3.1 LITE-I Calculations	14
	3.2 Components From First Order Reflection	14
	3.3 Components From Second Order Reflection	27
	3.4 Conversion to Different Albedos	33
	3.5 Single Scattering and Reflection	55
IV.	CONCLUSIONS	63
	REFERENCES	64

v

ALC: NOT OF THE REAL

LIST OF FIGURES

Į.

Figure		Page
1.	Haze C Model Aerosol Phase Function for 0.5145 Micron Light, Index of Refraction = 1.50-0.0 i	10
2.	Haze C Model Aerosol Phase Function for 1.06 Micron Light, Index offraction = 1.50-0.0 i	11
3.	Haze C Model Aerosol Phase Function for 3.507 Micron Light, Index of Refraction = 1.50-0.007 i	12
4.	Haze C Model Aerosol Phase Function for 10.6 Micron Light, Index of Refraction = 1.47-0.1 i	13
5.	Airborne Laser System and Collimated Receiver Geometry	15
6.	Reflectance and Path Radiance for 0.5145µ Wavelength Laser in a 25 kilometer Visibility Atmosphere for a 0 ⁰ Lookangle: Ground Albedo = 0.9	34
7.	Reflectance and Path Radiance for 0.5145µ Wavelength Laser in a 25 kilometer Visibility Atmosphere for a 45 ⁰ Lookangle: Ground Albedo = 0.9	35
8.	Reflectance and Path Radiance for a 0.5145µ Wavelength Laser in a 25 kilometer Visibility Atmosphere for a 70 [°] Lookangle: Ground Albedo = 0.9	36
9.	Reflectance and Path Radiance for a 0.5145µ Wavelength Laser in a 5 kilometer Visibility Atmosphere for a 0 ⁰ Lookangle: Ground Albedo = 0.9	37
10.	Reflectance and Path Radiance for a 0.5145µ Wavelength Laser in a 5 kilometer Visibility Atmosphere for a 45° Lookangle: Ground Albedo = 0.9	38
11.	Reflectance and Path Radiance for a 0.5145µ Wavelength Laser in a 5 kilometer Visibility Atmosphere for a 70 ⁰ Lookangle: Ground Albedo = 0.9	39
12.	Reflectance and Path Radiance for a 1.06µ Wavelength Laser in a 25 kilometer Visibility Atmosphere for a 0° Lookangle: Ground Albedo = 0.9	40

LIST OF FIGURES (CONT.)

.

41
42
43
45
58

vii

Table		Page
Ι.	Temperature, Pressure, and Water Vapor Distributions Versus Altitude	3
II.	Cross Sections Versus Altitude for 0.5145µ Wavelength Light (km ⁻¹)	5
III.	Cross Sections Versus Altitude for 1.0648µ Wavelength Light (km ⁻¹)	6
IV.	Cross Sections Versus Altitude for 3.507µ Wavelength Light (km ⁻¹)	7
۷.	Cross Sections Versus Altitude for 10.6µ Wavelength Light (km ⁻¹)	8
VI.	Scattered Irradiance Versus Order of Reflection for 0.5145 micron Laser in a 25 kilometer Visibility Atmosphere, Ground Albedo = 0.9	16
VII.	Scattered Irradiance Versus Order of Reflection for 0.5145 micron Laser in a 5 kilometer Visibility Atmosphere, Ground Albedo = 0.9	17
VIII.	Scattered Irradiance Versus Order of Reflection for 1.06 micron Laser in a 25 kilometer Visibility Atmosphere, Ground Albedo = 0.9	18
IX.	Scattered Irradiance Versus Order of Reflection for 1.06 micron Laser in a 5 kilometer Visibility Atmosphere, Ground Albedo = 0.9	<u>1</u> 9
х.	Scattered Irradiance Versus Lookangle for 3.507 and 10.6 micron Lasers at 18000 meters in 25 kilometer and 5 kilometer Visibility Atmospheres, Ground Albedo = 0.9	20
XI.	Ground Reflected and Atmospheric Scattered Components of 0.5145 micron Laser Light in 25 kilometer Visibility Atmosphere before Second Order Reflection from Ground Surface	
	with Albedo = 0.9	22

÷

viii

.

Table		Page
XII.	Ground Reflected and Atmospheric Scattered Components of 0.5145 micron Laser Light in 5 kilometer Visibility Atmosphere before Second Order Reflection from Ground Surface with Albedo = 0.9	23
XIII.	Ground Reflected and Atmospheric Scattered Components of 1.06 micron Laser Light in 25 kilometer Visibility Atmosphere before Second Order Reflection from Ground Surface with Albedo = 0.9	24
XIV.	Ground Reflected and Atmospheric Scattered Components of 1.06 micron Laser Light in 5 kilometer Visibility Atmosphere before Second Order Reflection from Ground Surface with Albedo = 0.9	25
XV.	Ground Reflected and Atmospheric Scattered Components of 3.507 and 10.6 micron Lasers at 18000 meters in 25 and 5 kilometer Visibility Atmospheres: Ground Albedo = 0.9	26
XVI.	Ground Reflected and Atmospheric Scattered Components from First and Second Order Reflection of 0.5145 micron Laser Light in 25 kilometer Visibility Atmosphere: Ground Albedo = 0.9	29
XVII.	Ground Reflected and Atmospheric Scattered Components from First and Second Order Reflection of 0.5145 micron Laser Light in 5 kilometer Visibility Atmosphere: Ground Albedo = 0.9	30
XVIII.	Ground Reflected and Atmospheric Scattered Components from First and Second Order Reflection of 1.06 micron Laser Light in 25 kilometer Visibility Atmosphere: Ground Albedo = 0.9	31
XIX.	Ground Reflected and Atmospheric Scattered Components from First and Second Order Reflection of 1.06 micron Laser Light in a 5 kilometer Visibility Atmosphere: Ground Albedo = 0.9	32

LIST OF TABLES (CONT.)

Table		Page
xx.	Atmospheric Scattered and Ground Reflected Components of Scattered Irradiance Versus Order of Reflection for 25 kilometer Visibility Atmosphere for 0.9 Ground Albedo	46
XXI.	Atmospheric Scattered and Ground Reflected Components of Scattered Irradiance Versus Order of Reflection for 5 kilometer Visibility Atmosphere for 0.9 Ground Albedo	50
XXII.	Single Air Scattered Irradiance Versus Wave- Length, Altitude, and Lookangle for Airborne Laser System in a 25 kilometer Visibility Atmosphere	59
XXIII.	Single Air Scattered Irradiance Versus Wave- length, Altitude, and Lookangle for Airborne Laser System in a 5 kilometer Visibility Atmosphere	61

I. INTRODUCTION

The amounts of the electromagnetic radiation originating from an airborne laser system that are reflected from the ground and scattered within the air into a collimated receiver located at the same altitude as the airborne laser system have been computed for two model atmospheres. Laser sources emitting radiation with wavelengths of 0.5145, 1.06, 3.507, and 10.6 microns and directed vertically downward were located within the atmospheres at 300, 1500, 6000, 9000 and 18000 meters altitude. At each source altitude, collimated receivers were placed at various horizontal ranges. These receivers were focused upon the area of ground surface illuminated by the direct radiation from the source.

The ground surface was considered to be a Lambert type surface for which the ground albedo was varied from 0.0 to 0.9. A detailed description of the two model atmospheres used in the calculations; is given in Section II.

The relative amounts of the ground reflected and air scattered radiation received by the collimated receivers were evaluated through the use of the LITE-I Monte Carlo program (Ref. 1) and a single scattering analysis that is discussed in Section II. The results of the calculations are also presented and discussed in Section III. The two model atmospheres used in this study differed only in the aerosol content at altitudes below 1.5 km. The temperature and water vapor distributions with respect to pressure for the model atmospheres are shown in Table I. These data were obtained from July 1966 soundings in Saigon (Ref. 2). The atmospheric pressures were related to altitudes by assuming that the pressure variation with altitude was the same as that given for the tropical 15° North latitude atmosphere in the AFCRL Handbook of Geophysics and Space Environments (Ref. 3). The Rayleigh scattering cross sections for wavelengths of 0.5145, 1.06, 3.507, and 10.6 microns were computed for the atmospheric density and pressure profiles given as a function of altitude in Table I using the equations reported by Penndorf (Ref. 4).

The aerosol scattering and total cross sections and aerosol phase functions for each of the four wavelengths as well as for 0.55 micron wavelength light were computed by use of the machine procedures described in Ref. 5 for the Haze C aerosol size distribution given by Deirmendjian for a continental haze (Ref. 6). A real refractive index of 1.50 was assumed for the aerosols for 0.5145, 0.55 and 1.06 micron wavelength light, and complex refractive indices of 1.50-0.007i and 1.47-0.1i were assumed for the 3.507 and 10.6 micron wavelengths. The computed aerosol scattering coefficients per particle as a function of wavelength were normalized at 0.55 microns to the aerosol scattering coefficient computed for atmospheres with ground level meteorological ranges of 25 km and 5 km to give the magnitudes of the aerosol cross section at ground level as a function of wavelength.

For the first atmosphere, the aerosol cross sections for each wavelength were assumed to vary with altitude according to the profile given by Elterman for a model clear standard atmosphere (Ref. 7). For the second atmosphere, the aerosol profile above one and a half kilometers was taken to be identical to that for

TABLE I

TEMPERATURE, PRESSURE, AND WATER VAPOR DISTRIBUTIONS VERSUS ALTITUDES

ALTITUDE	TEMPERATURE	PRESSURE	WATER VAPOR
(KM)	(DEG•K)	(MB•)	(PREC.CM)
0.000+00	3,005+02	1.01325+03	2.15+00
1.000+00	2.940+02	9,04134+02	1.50+00
2.000+00	2.883+02	8.04790+02	1.06+00
3.000+00	2.830+02	7,14754+02	7.30-01
4.000+00	2.775+02	6.33206+02	4.80-01
5.000+00	2.715+02	5,59266+02	3.12-01
6.000+00	2.656+02	4.92402+02	1.98-01
7.000+00	2.603+02	4.32099+02	1.22-01
8.000+00	2.546+02	3.77918+02	7.50-02
9.000+00	2.484+02	3.29330+02	4.25-02
1,000+01	2.412+02	2 85890+02	1.88-02
1.100+01	2.325+02	2.47214+02	4.20-03
1.200+01	2.238+02	2.12859+02	1.17-03
1.300+01	2.152+02	1.82451+02	4.10-04
1.400+01	2.066+02	1:55637+02	1.84-04
1.500+01	2.011+02	1.32109+02	9.30-05
1.600+01	1.963+02	1.11548+02	6.10-05
1.700+01	1.948+02	9.37040+01	4•70-05
1.800+01	1.988+02	7.88798+01	4.00-05
1.900+01	2.027+02	6.66272+01	3.70-05
2.000+01	2.067+02	5.64623+01	3.55-05
2.100+01	2.107+02	4.80069+01	3.57-05
2.200+01	2.146+02	4.09413+01	3.75-05
2.300+01	2.170+02	3.50059+01	4.15-05
2.400+01	2.192+02	2.99734+01	4•80-05
2.500+01	2.214+02	2•57079+01	5.10-05
2.600+01	2.236+02	2:02859+01	6.00-05
2.700+01	2.258+02	1.89993+01	6.50-05
2.800÷01	2.279+02	1.63701+01	6.90-05
2.900+01	2.301+02	1.41247+01	7.20-05
3.000+01	2.323+02	1.22061+01	7.20-05
3.100+01	2.345+02	1.05624+01	7.20-05
3.200+01	2.366+02	9.15227+00	/ • 10-05
3.300+01	2.388+02	7.94080+00	6.80-05
3.400+01	2 4 10 + 02	6 8 8 9 9 2 3 + 00	
3.500+01		5 22004+00	
3+000+01 3 700+01	20475±02	2022900700 4.56020±00	5.50-05
3 900-01	2 497402	3.09236+00	5.10-05
3.000+01	2.519+02	3.48221+00	1.70-05
4.000+01	2,540+02	3,04839+00	4.30-05
4.100+01	2,562+02	2.97127+00	3.90-05
4.200+01	2.583+02	2.34404+00	3,50-05
4.300+01	2.605+02	2.05886+00	3.10-05
4.400+01	2.627+02	1,81056+00	2.80-05
4.500+01	2.648+02	1.59389+00	2.50-05
4.600+01	2.670+02	1.40478+00	2.20-05
4.700+01	2.691+02	1.23937+00	2.00-05
4.800+01	2.702+02	1.09438+00	1.80-05
4.900+01	2.702+02	0.96645+00	2.60-05
5.000+01	2.702+02	0.85359+00	1:40-05

1

.

the first atmosphere, but below one and a half kilometers, the perosol distribution was assumed to be constant with altitude. The aerosol size distribution below 1.5 kilometers was still considered to be defined by the Model C aerosol size distribution, but the concentration was increased to reduce the ground level meteorological range to 5 km.

The variation of the attenuation coefficients with altitude in the Model Atmosphere with a ground level meteorological range of 25 km is shown in Tables II, III, IV and V for wavelengths of 0.5145µ, 1.0648µ, 3.507µ, and 10.6µ, respectively. Only the aerosol attenuation coefficient for altitudes below 1.5 kilometers were changed for the second atmosphere. For 0.5145µ wavelength light the only significant absorption process was ozone absorption. An interpolation on the ozone cross sections listed by Elterman (Ref. 7) for wavelengths on either side of 0.5145 micron wavelength gave the data listed in Table II. Machine calculations of the water vapor absorption coefficient versus temperature and pressure, taking into account the contributions from lines lying ±50 wavenumbers on either side of 1.0648 microns, were furnished by Dr. R. F. Calfee (Ref. 8). These data are listed versus altitude in Table III where the relation between altitude and pressure was assumed to be that given for the 15° N tropical atmosphere in Reference 3. For the 3.507 and the 10.6 micron wavelengths, absorption by aerosol particles becomes significant. For the 3.507μ wavelength, the absorption by CO, was considered to be negligible, but for the 10.6 micron wavelength, the CO, absorption coefficient derived by Long (Ref. 9) was used. Water vapor absorption coefficients for both the 3.057 and 10.6 micron wavelengths were taken from data reported by Goody (Ref. 10). For 10.6 microns the variation of the water vapor absorption coefficient with altitude was assumed to depend only on the water vapor density, but for the 3.507 micron wavelength the water vapor absorption coefficient was also assumed to vary with the square root of the pressure as a function of altitude.

TABLE II

CROSS SECTIONS VERSUS ALTITUDE FOR 0.5145 WAVELENGTH LIGHT (KM -1)

ALTITUDE	RAYLEIGH	AEROSOL	OZONE
(KM)	SCATTERING	SCATTERING	ABSORPTION
0.000+00	0.145-01	0.153+00	0.182-03
0.100+01	0.132-01	0.677-01	0.167-03
0.200+01	0.120-01	0.292-01	0.150-03
0.300+()1	0.109-01	0.122-01	0.128-03
0.400+01	0•989-02	0•554-02	0.116-03
0.500+01	0.896-02	0•246-02	0+113-03
0.600+01	0.809-02	0•846-03	0.111-03
0.700+01	0.728-02	0.307-03	0.114-03
0.800+01	0.654-02	0.108-03	0.117-03
0.900+01	0•586-02	0•384-04	0.144-03
0.100+02	0.523-02	0.199-04	0.179-03
0.110+02	0.465-02	0•185-04	0.235-03
0 120+02	0.412-02	0.169-04	0.318-03
0.140102	0.364-02	0•185-04	0•433-03
0.150.02	0.320-02	0.199-04	0•490-03
0.160+02	0.245.02	0.323-04	0•509-03
0.170+02	0.209-02	0.523-04	0.528-03
0.180+02	0.172-02	0.570-04	0.569-03
0.190+02	0.1/2-02	0.615-04	0.624-03
0.200+02	0.118-02	0.663-04	0.730-03
0.210+02	0.988-03	0.631-04	0.842-03
0.220+02	0.827-03	0.615-04	0.942-03
0.230+02	0.699-03	0.584-04	0.100-02
0.240+02	0.592-03	0.400-04	0.002-02
0.250+02	0.503-03	0.276-04	0.936-03
0.260+02	0.428-03	0.199-04	0.836-03
0.270+02	0.364-03	0.185-04	0.725-03
0.280+02	0.311-03	0.169-04	0.630-03
0.290+02	0.266-03	0.153-04	0.548-03
0.300+02	0.227-03	0•146-04	0.463-03
0.310+02	0:195-03	0.000+00	0.407-03
0.320+02	0.167-03	0.000+00	0.349-03
0.330+02	0.144-03	0.000+00	0.298-03
0.340+02	0.124-03	0.000+00	0.247-03
0.350+02	0.107-03	0.00+00	0.221-03
0.370.02	0.924-04	0.000+00	0.185-03
0.380.02	0.799-04	0.000+00	0.155-03
0.300+02	0.500.04	0.000+00	0.129-03
0.400+02	0.599-04	0.000+00	0.111-03
0.410.02		0:000+00	0.954-04
0.420+02	0.303-04	0.000+00	0•781-04
0.430+02	0.342-04	0.000+00	0.608-04
0.440+02	0.292-04	0.000+00	0.477-04
0.450+02	0.261-04	0.000+00	0.381-04
0.460+02	0.228-04	0.000+00	0.295-04
0.470+02	0.199-04		0.228-04
0.480+02	0.175-04	0.000+00	0.162.04
0•490+02	0.155-04	0.000+00	0.114 04
0•500+02	0.137-04	0.000+00	0.45%-05

•

P & Pa.

h

Ì

6

TABLE III

CROSS SECTIONS VERSUS ALTITUDE FOR 1.0648μ WAVELENGTH LIGHT (KM⁻¹)

	RAYLEIGH	AEROSOL	WATER VAPOR
IVM	SCATTERING	SCATTERING	ABSORPTION
0.000+00	0.780-03	0.772-01	0•184-03
0.100+00	0.711-03	0.339-01	0•989-04
0.200+01	0.647-03	0.146-01	0•556-04
	0.585-03	0.615-02	0.306-04
	0.531-03	0.278-02	0.161-04
0 600 0 1	0.481-03	0.123-02	0.858-05
	0.434=03	0.424-03	0.445-05
	0.391=03	0.154-03	0.223-05
	0.351-03	0.542-04	0.108-05
0.000401	0.314=03	0-193-04	0.501-06
	0.281 ± 03	0.100-04	0.178-06
0.110+02	0.250-03	0.928-05	0.327-07
0.120.02	0.221=03	0.850-05	0.766-08
0 + 120 + 02	0.195-03	0.928-05	0.225-08
	0.172-03	0.100-04	0.846-09
0+140+02	0.151-03	0.162-04	0.362-09
0.150+02	0 131-03	0.262-04	0.198-09
0.150+02	0.11203	0.285-04	0.129-09
0.170+02	0.024.004	0.308-04	0.932 - 10
0.180+02		0.347=04	0.747 - 10
0.190+02		0.331-04	0.621-10
0.200+02		0-316-04	0.535-10
0.210+02		0.308-04	0.487-10
0.220+02		0.293-04	0.456-10
0.230+02	0.319-04	0.200-04	0.460-10
0.240+02	0.318-04	0.138-04	0.428 - 10
0.250+02	0.220-04	0.100-04	0.443 - 10
0.260+02		0.928-05	0.425 - 10
0.270+02		0.850=05	0.400-10
0.280+02	0.167-04	0.772=05	0.374-10
0.290+02	0.122.04	0.733=05	0.338-10
0.300+02	0 104-04	0.000+00	0.309-10
0.310+02	0.000.05	0.000+00	0.269-10
0.320+02		0.000+00	0.231 - 10
0.330+02	0.774-03		0.201-10
0.340+02		0.000+00	0.176-10
0.350+02		0.000+00	0.147 - 10
0.360+02	0.496-05	0.000+00	0.127-10
0.370+02	0.271.05	0.000+00	0.107 - 10
0.380+02	0.371-05	0.000+00	0.902-11
0.390+02	0.370.05	0.000+00	0.761-11
0.400+02	0.242-05	0.000+00	0.631-11
0:410+02	$0_{\pm}242=05$	0.000+00	0.521-11
0.420+02	0.211-09	0.000+00	0.418-11
0.430+02	0.184-05	0.000+00	0.352-11
0.440+02			0.287-11
0•450+02	0.140-05		0.22011
0.460+02	0.122-05		0.200-11
0.470+02	0.107-05		0,160,11
0.480+02	0.943-06		0.212.11
0•490+02	0.833-06		0.100-11
0.500+02	0.736-06		0.100-11

TABLE IV

CROSS SECTIONS VERSUS ALTITUDE FOR 3.507 μ WAVELENGTH LIGHT (KM-1)

	DAVIETON	AFRASAL	AEROSOL	WATER VADAR
ALTITODE /VMA	SCATTEDING	SCATTEDING	ALKUSUL	ARCORDITION
0.000+00	0.644-05	0.217-01	ABSORPTION 0.172-02	ADSURFIION
0.100+01	0.597-05	0.054-02	0.757-02	0.947-01
0.200.01	0.525.05	0.412.02	0.326-02	0.570-01
0.200+01	0.0339-09	0.170.02	0.127.02	0.075.01
		0.701.02	0.137~03	0.375-01
0.400+01	0.439-05	0.781-03	0.020-04	0.232-01
0.500+01	0.397-05	0.347-03	0.2/5-04	0.142-01
0.600+01	0.359-05	0.119-03	0.947-05	0.845-02
0.700+01	0.323-05	0.434-04	0.344-05	0.48/-02
0.800+01	0.290-05	0.152-04	0.121-05	0.280-02
0.900+01	0.260-05	0.542-05	0.430-06	0.148-02
0.100+02	0.232-05	0.281-05	0.223-06	0.611-03
0,110+02	0.206-05	0.261-05	0.207-06	0.127-03
0.120+02	0•183-05	0.239-05	0•189-06	0•329-04
0.130+02	0.161-05	0.261-05	0,207-06	0.107-04
0•140+02	0•142-05	0.281-05	0•223-06	0.442-05
0.150+02	0.124-05	0.456-05	0.361-06	0.206-05
0.160+02	0.108-05	0•737-05	0•585⊷06	0•124-05
0.170+02	0•925 - 06	0.803-05	0.637-06	0.874-06
0.180+02	0•763-06	0•868-05	0•688-06	0•684-06
0.190+02	0.632-06	0.976-05	0•774-06	0.581-06
0.200+02	0•525-06	0•932-05	0•739-06	0.515-06
0.210+02	0•438-06	0.890-05	0.706-06	0.475-06
0.220+02	0•367-06	0.868-05	0•688-06	0•461-06
0.230+02	0.310-06	0.824-05	0.653-06	0.473-06
0•240+02	0•263-06	0•564-05	0•447-06	0.504-06
0.250+02	0.223-06	0.390-05	0•309-06	0.496-06
0°560+05	0.190-06	0.281-05	0.223-06	0•542-06
0.270+02	0.161-06	0.261-05	0.207-06	0•545-06
0.280+02	0.138-06	0.239-05	0•189-06	0.537-06
0.290+02	0.118.06	0.217-05	0.172-06	0.520-06
0.300+02	0.101-06	0.206-05	0.163-06	0∙484∞06
0.310+02	0.866-07	0.000+00	0.000+00	0.449-06
0.320+02	0.744-07	0.000+00	0.000+00	0.413-06
0.330+02	0.639-07	0.000+00	0.000+00	0.369-06
0.340+02	0.550-07	0.000+00	0.000+00	0.328-06
0.350+02	0•474-07	0.000+00	0.000+00	0.297-06
0.360+02	0.410-07	0.000+00	0.000+00	0.255-06
0.370+02	0.354-07	0.000+00	0.000+00	0.226-06
0.380+02	0.306-07	0.000+00	0.000+90	0.196-06
0.390+02	0.266-07	0.000+00	0.000+00	0.169-06
0.400+02	0.230-07	0.000+00	0.000+00	0.144-06
0.410+02	0.200-07	0.000+00	0.000+00	0.122-06
0.420+02	0.174-07	0.000+00	0.000+00	0.103-06
0 430+02	$0 \cdot 152 - 07$	0.000+00	0.000+00	0.856-07
0.440+02	0.132-07	0.000+00	0.000+00	0.725-07
0.450+02	0.115-07	0.000+00	0.000+00	0.608-07
0.460+02	0.101-07	0.000+00	0.000+00	0.502-07
0.470+02	0.885-08	0.000+00	0.000+00	0.428-07
0.480+02	0.779-08	0.000+00	0.000+00	0.262-07
0.490+02	0.4668-08	0.000+00	0.000+00	0.202-01
0,500+02	0.607-08	0.000+00	0.000+00	0.240-07

TABLE V

CROSS SECTIONS VERSUS ALTITUDES FOR 10.6° WAVELENGTH LIGHT (KM⁻¹)

ALTITUDE	RAYLEIGH	AEROSOL	AEROSOL	WATER VAPOR	
(KM)	SCATTERING	SCATTERING	ABSORPTION	ABSORPTION	ABSORPTION
0.000+00	0.771-07	0.436-02	0.543-02	0.159+00	0.632-01
0.100+01	0.704-07	0.191-02	0.238-02	0.111+00	0•478-01
0.200+01	0.641-07	0.827-03	0.103-02	0.784-01	0.375-01
0.300+01	0.579-07	0.347-03	0•433-03	0.540-01	0.303-01
0.400+01	0.526-07	0.157-03	0.195-03	0.355-01	0.247-01
0.500+01	0.476~07	0.698-04	0.869-04	0.231-01	0.207-01
0.600+01	0.430-07	0.239-04	0.298-04	0.147-01	0.157-01
$0 \bullet 700 + 01$	0.387-07	0.872-05	0.108-04	0.903-02	0.123-01
0.800+01	0.348-07	0.306-05	0.381-05	0.555-02	0.921-02
0.900+01	0.311-07	0.109-05	0.135-05	0.314-02	0.680-02
0 + 100 + 02	0.278-07	0.565-06	0.704-06	0.139-02	0.550-02
0.110+02	0.247-07	0.524-06	0.653-06	0.318-03	0.480-02
$0 \cdot 120 + 02$	$0 \cdot 219 - 07$	0.480-06	0.598-06	0.866-04	0.410-02
0.130+02	0.193-07	0.524-06	0.653-06	0.303-04	0.380-02
0.140+02	$0 \cdot 170 - 07$	0.565-06	0.704-06	0.136-04	0.374-02
0.150+02	0.149-07	0.916-06	0.114-05	0.688-05	0.380-02
0.160+02	0.130-07	0.148-05	0.184-05	0,451-05	0.400-02
0.170+02	$0 \cdot 110 - 07$	0.161-05	0.201-05	0.348-05	0.420-02
0.180+02	0.914-08	0.174-05	0.217-05	0.296-05	0.440-02
0.190+02	0.757-08	0.196-05	0.244-05	0.274-05	0.450-02
0.200+02	0.629-08	0.187-05	0.233-05	0.263-05	0.469-02
0.210+02	0.525-08	0.178-05	0.222-05	0.264-05	0.480-02
0.220+02	0.439-08	0.174-05	0.217-05	0.278-05	0.490-02
0.230+02	0.371-08	0.165-05	0.206-05	0.307-05	0.500-02
0.240+02	0.315-08	0.113-05	0 = 141 = 05	0.355-05	0.510-02
0.250+02	0.267-08	0,783-06	0.976-06	0.377-05	0.514-02
0.260.02	0.227-08	0,565-06	0.704-06	0.444-05	0.510-02
$0 \cdot 200 + 02$	0.194-08	0.4524-06	0.653-06	0.481-05	0.490-02
0.280+02	0.165-08	9.480-06	0.598-06	0.511-05	0.460-02
0.290+02	0.141-08	0.436-06	0.543-06	0.533-05	0.430-02
0.300+02	0 < 121 - 08	0.413-06	0.515-06	0.533-05	0.410-02
0 + 310 + 02	0.103-08	C+000+00	0.000+00	0.533-05	0.360-02
0.320.02	0.891-09	0+000+00	0.000+00	0.525-05	0.300-02
0.330+02	0.766-09	0.000+00	0.000+00	0.502-05	0.250-02
0.340+02	0.660-09	0.000+00	0.000+00	0.481-05	0.200-02
0.350+02	0.569-09	0.000+00	0.000+00	0.466-05	0.120-02
0.360+02	0.491-09	Ú•000+00	0.000+00	0.429-05	0.500-03
0.370+02	0.424-09	0.000+00	0.000+00	0.407-05	0.000+00
0.380+02	0.367-09	0.000+00	0.000+00	0.377-05	0.000+00
0.390+02	0.318-09	0.000+00	0.000+00	0.348-05	C.000+00
0.400+02	0.276-09	0.000+00	0.000+00	0.318-05	0•000+00
0.410+02	0.240-09	0.000+00	0.000+00	0.289-05	0.000+00
0.420+02	0.209-09	0.000+00	0.000+00	0.259-05	0.000+00
0.430+02	0.182-09	0.000+00	0.000+00	0.229-05	0.000+00
0.440+02	0.158-09	0.000+00	0.000+00	0.207-05	0.000+00
0.450+02	0.138-09	0.000+00	0.000+00	0.185-05	0.000+00
0 460+02	0.121-09	0.000+00	0.000+00	0.163-05	0.000+00
0.470+02	0.106-09	0.000+00	0.000+00	0.143-05	0.000+00
0.480+02	0.933-10	0.000+00	0.000+00	0.133-05	0.000+00
0.490+02	0,824-10	0,000+00	0.000+00	0.118-05	0.000+00
0.500+02	0.728-10	0.000+00	0.000+00	0.104-05	0.000+00

The normalized aerosol phase functions for each of the four wavelengths are shown in Figs. 1 through 4. Although the normalized aerosol phase functions are almost identical over a larger position of the scattering angle range, the scattering angles where the largest differences appear are those near 0 and 180 degrees. The phase functions shown in Figs. 1 through 4 are normalized so that an integration over solid angle gives a value of 1.0.

Fig. 1. Hoze C Model Aerosol Phase Function for 0.5145 Micron Wavelength Light: Index of Refraction = 1.50 - 0.0i

Ĭ

ļ

Fig. 2. Haze C Model Aerosol Phase Function for 1.06 Micron Wavelength Light: Index o: Refraction = 1.50 - 0.0i

Fig. 3. Haze C Model Aerosol Phase Function for 3.507 Micron Wavelength Light: Index of Refraction = 1.50 - 0.007i

Fig. 4. Haze C Model Aerosol Phase Function for 10.6 Micron Wavelength Light. Index of Refraction = 1.47 - 0.1i

13

ц.

III. PATH RADIANCES AND GROUND REFLECTANCES

The LITE-I program was used to compute the irradiance at collimated receivers located at the source altitude and focused on the ground area illuminated by the direct radiation from laser sources shining vertically downward from altitudes ranging from 300 to 18000 meters. Figure 5 illustrates the problem geometry. The same source receiver positions were considered for the two model atmospheres discussed in Section II. Source altitudes of 300, 1500, 6000, 9000 and 18000 meters were considered in the calculations for the 0.5145 and 1.06 micron wavelengths. A source altitude of 18000 meters was the only one considered for the 3.507 and the 10.6 micron wavelengths. The laser beam is emitted in a cone with an apex angle of $\varepsilon = 0.1$ radians.

3.1 LITE-I Calculations

Tables VI through X list the results of the LITE-I calculation of the scattered light irradiance at the collimated receivers as a function of the order of reflection and lookangle for each source altitude and wavelength. The lookangle is defined as the angle between a vertical axis through the receiver position and the axis of the collimated receiver where the receiver is oriented to view the area of ground surface illuminated by the direct radiation from the source. The irradiances listed in Tables VI through X were computed for a Lambert type surface having an albedo of 0.9. The irradiances for a ground albedo of 0.9 may be converted to irradiances for other values of the ground albedo by multiplying the irradiances for the nth order of reflection by the factor $(\alpha/0.9)^n$ where α is the new albedo and n is the order of reflection.

3.2 Components from First Order Reflection

The irradiances recorded in Tables VI through X for the zero order of reflection are due to light undergoing scattering within the atmosphere without reflecting from the ground surface. The

Fig. 5. Airborne Laser System and Collimated Receiver Geometry

TABLE VI

SCATTERED IRRADIANCE VERSUS ORDER OF REFLECTION FOR 0.5145 MICRON LASER IN 25 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

			ORDER	OF REFLECT	ION	
ALTITUDE	LOOKANGLE			2 TONS ME2 15	3 NURCE PHOT	4 () NI)
(METERS)	(DEGREES/	INNAU	ANCE THO		OUNCE FROM	
300	0	4.087-06	2.955-06	8.252-10	0.000+00	0.000+00
	45	1.818-10	1.038-06	2.378-10	0.000+00	0.000+00
	70	1.171-11	1.106-07	3.420-11	0.000+00	0.000+00
1500	0	3•533-06	9.641-08	9.578-11	0.000+00	0.000+00
	45	2•452-11	3.239-08	3.886-11	0.000+00	0.000+00
	70	1.972-12	2.880-09	3•553 - 12	4.686-15	0.000+00
6000	0	1.334-07	5.263-09	2.707-11	3.177-13	0.000+00
	45	7.137-12	1.697-09	9 . 986 - 12	1.066-13	8.428-16
	70	4.666-13	1.306-10	8.003-13	8.090-15	2.048-18
9000	0	1.060-07	2.340-09	2.002-11	4.691-13	2.042-15
	45	4.658-12	7.532-10	7•055 - 12	1.667-13	4.052-16
	70	2•463-13	5.469-11	5.200 - 13	1.127-14	1.488-17
18000	0	1.164-08	5.776-10	8.244-12	2.015-13	3.209-15
	45	2.452-12	1.843-10	3.001-12	8.196-14	2.893-15
	70	1.306-13	1.313-11	2.090-13	5.927-15	2.256-16

. • .

. •

TABLE VII

SCATTERED I IN 5	RRADIANCE KILOMETER	VERSUS OR VISIBILIT	DER OF REF Y ATMOSPHE	LECTION FO RE, GROUND	R 0•5145 M ALBEDO =	ICRON LASER 0•9
ALTITUDE	LOOKANGLE	0	1	2	3	4
(METERS)	(DEGREES)	IRRAD	IANCE (PHO	TONS M-2/S	OURCE PHOT	ON)
300	0	3.774-05	2.038-06	8.488-10	0.000+00	0.000+00
	45	4.712-10	6.601-07	6.586-10	0.000+00	0.000+00
	70	3.832-11	5.058-08	4.078-11	0.000+00	0.000+00
1500	0	3.074-05	1.545-08	1.103-10	0.000+00	0.000+00
	45	2.210-11	3.193-09	2.938-11	2.644-13	0.000+00
	70	4.911-13	5.463-11	6.177-13	4.434-15	0.000+00
6000	0	3.271-07	1.459-09	5.343-11	2.472-12	0•000+00
	45	2.050-11	3.371-10	1.674-11	6.812-13	0.000+00
	70	6.100-13	5.146-12	2.042-13	4.543-15	0.000+00
9000	0	1.155-07	7.497-10	3.428-11	2.738-12	0.000+00
	45	1.917-11	1.946-10	8.167-12	3.387-13	1.823-14
	70	5•404-13	3.128-12	2.199-13	5.947-15	9=267-15
18000	0	7•324-09	2.567-10	1.816-11	1.372-12	5•426-14
	45	1.127-11	6.905-10	6.507-12	2.846-13	1.617-14
	70	3.830-13	1.451-12	1.337-13	1.001-14	3•196-16

17

•

.

TABLE VIII

SCATTERED IRRADIANCE VERSUS ORDER OF REFLECTION FOR 1.06 MICRON LASER IN 25 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

			ORDER	OF REFLECT	ION	
ALTITUDE				2 TONS M ⁻² /S	3 AURCE DHAT	4 ON)
CMCTERO/	(DEGREES/	INNAU	IANGE (FIIO		OUNCE FIIOT	
300	0	1:300-06	3.063-06	5.127-10	0.000+00	0•000+00
	45	3•279-11	1.083-06	1.915-10	0.000+00	0•090+00
	70	1.789-12	1.192-07	2.027-11	0.000+00	0:000+00
1500	0	2.062-07	1.126-07	5.772-11	1.489-13	3•061 - 14
	45	1.464-11	3.933-08	2.674-11	5•553 - 14	1.059-14
	70	9•455 - 13	3.961-09	2.512-12	5.239-15	1.069-15
6000	0	1.254-09	6.837-09	1.445-11	4.303-14	0.000+00
	45	3.093-12	2.343-09	5.580-12	2.099-14	3.746-17
9000	0	2.037-10	3.068-09	9•403-12	2 . 091 -1 4	1.268-15
	45	2.543-12	1.055-09	3.789-12	8.118-15	4.199-16
	70	1.976-13	1.019-10	3.529-13	8.439-16	4.189-17
18000	0	2•437-11	7.879-10	4.706-12	4.877-14	2.359-16
	45	1.086-12	2.720-10	1.859-12	2•115-14	1.952-16
	70	8.026-14	2.653-11	1.732-13	2.417-15	8.145-18

TABLE IX

SCATTERED IRRADIANCE VERSUS ORDER OF REFLECTION FOR 1.06 MICRON LASER IN 5 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

ł,

1

5

			ORDER (OF REFLECT	ION	
ALTITUDE (METERS)	LOOKANGLE (DEGREES)	0 IRRADI	1 ANCE (PHO	2 TONS M ² /SC	3 DURCE PHOT	4 DN)
300	0 1	•218-05	2.545-06	2.298-09	0.000+09	0.000+00
	45 3	8.018-10	8.509-07	1.034-09	0.000+09	0.000+00
	70 2	2•643-11	7.891-08	1.037-10	0.000+00	0.000+00
1500	0	.481-05	4.111-08	2.655-10	3.421-12	0.000+00
	45	8.196-11	1.154-08	9.399-11	9.222-13	0.000+00
	70	1.059-12	5.015-10	3.300-12	1.270-13	0.000+00
6000	0	8•380-09	3.382-09	6•670 - 11	3.046-12	2.167-13
	45	1.511-11	9.705-10	2.060-11	1.266-12	7•766-14
	70	8.143-13	3.962-11	8.730-13	8.799-14	2•514-15
9000	0	3•520-10	1.662-09	4•727-11	2.545-12	1.369-13
	45	1:855-11	4.895-10	1.636-11	1.231-12	6•142-14
	70	6.454-13	2.156-11	7.217-13	3.887-14	2.941-15
18000	0	7•544-11	5.086-10	1.998-11	1.305-12	3.635-14
	45	8•423-12	1.609-10	7•021 - 12	4.094-13	1.447-14
	70	4.354-13	7.521-12	4.280-13	2.358-14	9•289-16

19

.

*

.

•

TABLE X

SCATTERED IRRADIANCE VERSUS LOOKANGLE FOR 3.507 AND 10.6 MICRON LASERS AT 18000 METERS IN 25 KILOMETER VISIBILITY ATMOSPHERE

GROUND ALBEDO = 0.9

WAVELENGTH (MICRONS)	LOOKANGLI (DEGREES	E O) IRRAD	ORDER 1 IANCE (PHO	OF REFLECT 2 TONS M ⁻² /S	ION 3 OURCE PHOT	4 'ON)
		25 KILOME	TER VISIBI	LITY ATMOS	PHERE	
3,507	0	2.067-12	4.599-10	5.339-13	4.000-16	0.000+00
	45	1.543-13	1.424-10	1.778-13	1.374-16	0•000+00
	70	9•564-15	9.721-12	1.214-14	1.266-17	0.000+00
10.6	0	4:020-12	2.147-10	4.715-14	0:000+00	0.000+00
	45	1•188-14	5.699-11	1.342-14	0.000+00	0.000+00
	70	4•299-16	2.228-12	5.400-16	0.000+00	0.000+00
		5 KILOME	TER VISIBI	LITY ATMOS	PHERE	
3.507	0	1.733-11	3.488-10	5.384-12	1.005-13	1.127-14
	45	2.083-12	1.014-10	1.866-12	3:037-14	3.975-15
	70	9•169-14	4.574-12	8.051-14	1.514-15	1•424-17
10.6	0	1.021-12	1.800-10	3.196-13	2.286-15	0•000+00
	45	1•414-13	4•582-11	9•068 - 14	7.207-16	0.000+00
	70	3•616-15	1.489-12	3.020-15	2.257-17	0.000+00

irradiances recorded for the other orders of reflection were not separated into a ground reflected component and an atmospheric scattered component however, an attempt has been made to separate the irradiances recorded for the first and second orders of reflection into these components.

The basic assumption made in evaluating components of the irradiances for the first order of reflection is that the ground reflected component is composed entirely of the reflected direct radiation plus the reflected single scattered irradiance that scatters at a sufficiently small angle such that it is incident upon the ground surface subtended by the collimated receivers. The direct radiation reflected into each collimated receiver and the single scattered radiation that is reflected from the ground surface subtended by the collimated receivers are listed in the columns headed by DR and SCR in Tables XI through XV for a ground albedo of 0.9. The validity of the assumption that the ground reflected component of the LITE-I calculated irradiances for first order reflection is made up entirely of the reflected direct and single scattered radiation may be checked by comparing the single scattered reflected to the direct reflected. If the single scattered reflected is only a small fraction of the direct reflected, then the reflection of radiation which scatters more than once in the atmosphere before the first reflection will be negligible. This is the case for all but the higher altitudes in the 5 kilometer visibility atmosphere in which case the assumption may cause an under-prediction of the reflected radiation by as much as 30 per cent.

The irradiances reflected directly from the ground after undergoing a first order reflection are shown in the columns headed by TRl in Tables XI through XV. These irradiances were obtained by adding the direct and single scattered reflected components. The columns headed by ASl list the atmosphere scattered component of

ţĵ

MICRON LASER LIGHT IN 25 KILOMETER VISIBILITY ATMOSPHERE BEFORE SECOND ORDER REFLECTION FROM GROUND SURFACE WITH ALBEDO = 0.9 ALT LA DR SCR TR1 AS1 ASO TAS 300 2.95-06 2.97-06 0.300.0 4.09-06 0 2.23-08 4.09-06 7.50-09 45 1.03-06 1.04-06 00300.0 1.82-10 1.82-10 70 1.10-07 8.28-10 1.11-07 0.00600 1.17-11 1.17-11 1500 0 9.27-08 2.20-09 9.49-08 1.51-09 3.53-06 3.54-06 6.70-10 45 3.09-08 3.16-08 8.17-10 2 • 45 - 11 8.42-10 70 2.76-09 4.85-11 2.81-09 7.11-11 1.97-12 7.30-11 6000 4.03-10 0 4.71-09 5.11-09 1.50-10 1.33-07 1.34-07 45 1.49-09 1.25-10 7.14-12 1.61-09 8.20-11 8.91-11 70 1.13-10 9.74-12 1.23-10 7.94-12 4.66-13 8.40-12 9000 0 1.99-09 2.14-10 2.20-09 1.36-10 1.06-07 1.06-07 45 6.30-10 6.75-11 6.98-10 5.57-11 4.66-12 6.04-11 70 4.64-11 4.94-12 5.13-11 3.35-12 2.46-13 3.60-12 18000 0 4.65-10 6.73-11 5.32-10 4.53-11 1.16-08 1.17-08 45 1.44-10 2.02-11 1.64-10 2.01-11 2.45-12 2.26-11 70 1.01-11 1.45-12 1.16-11 1.58-12 1.31-13 1.71-11

ALT - ALTITUDE (METERS)

LA - LOOKANGLE (DEGREES)

- DIRECT RADIATION REFLECTED INTO COLLIMATED RECEIVER DR

- SCR SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER
- TR1 TOTAL FIRST ORDER REFLECTION (DB + SCR)
- AS1 ATMOSPHERIC SCATTERED COMPONENT AFTER 1ST ORDER REFLECTION
- ASO ATMOSPHERIC SCATTERED COMPONENT BEFORE ANY REFLECTION OCCURS
- TAS TOTAL ATMOSPHERIC SCATTERED COMPONENT (AS1 + ASO) RESULTING FROM 0 AND FIRST ORDER REFLECTIONS BY GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M -2/SOURCE PHOTON

TABLE XI

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS OF 0.5145

TABLE XII

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS OF 0.5145

MICRON	LASER	LIGHT II REFLECT	N 5 KILOM ION FROM	ETER VISI GROUND SU	BILITY AT	MOSPHERE H ALBEDO	BEFORE = 0.9
ALT	LA	DR	SCR	TR1	AS1	ASO	TAS
300	0	1.93-06	7•95-08	2.01-06	2.80-08	3.77-05	3•77-05
	45	6.16-07	2.55-08	6.42-07	1.86-08	4.71-10	1.90-08
	70	4.79-08	1.96-09	4.99-08	6.80-10	3.83-11	7.18-10
1500	0	1.04-08	2.17-09	1.26-08	2.88-09	3.07-05	3.07-05
	45	2•22 - 09	4.40-10	2.66-09	5.33-10	2.21-11	5.55-10
	70	3.84-11	7.91-12	4.63-11	8.30-12	4.91-13	8.79-12
6000	0	5.32-10	3.09-10	8.41-10	6.18-10	3.27-07	3.27-07
	45	1.07-10	6.20-11	1.69-10	1.66-10	2.05-11	1.86-10
	70	1.58-12	9.20-13	2.50-12	2.64-12	6.10-13	3.25-12
9000	0	2•26-10	1.67-10	3.93-10	3.56-10	1.16-07	1.16-07
	45	4.54-11	3.40-11	7.94-11	1.15-10	1.92-11	1.34-10
	70	6.47-13	4.76-13	1.12-12	2.00-12	5.40-13	2•55-12
18000	0	5.26-11	5.25-11	1.05-10	1.52-10	7•32-09	7 • 48 - 09
	45	1.04-11	1.07-11	2•11-11	4.80-11	1.13-11	5•92-11
	70	1.40-13	1.40-13	2.80-13	1.17-12	3.83-13	1.55-12

ALT - ALTITUDE (METERS)

LA - LOOKANGLE (DEGREES)

DR - DIRECT RADIATION REFLECTED INTO COLLIMATED RECEIVER

SCR - SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER

TR1 - TOTAL FIRST ORDER REFLECTION (DB + SCR)

AS1 - ATMOSPHERIC SCATTERED COMPONENT AFTER 1ST ORDER REFLECTION AS0 - ATMOSPHERIC SCATTERED COMPONENT BEFORE ANY REFLECTION OCCURS

TAS - TOTAL ATMOSPHERIC SCATTERED COMPONENT (AS1 + ASO) RESULTING FROM 0 AND FIRST ORDER REFLECTIONS BY GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M^{-2} /SOURCE PHOTON

TABLE XIII

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS OF 1.06 MICRON LASER LIGHT IN 25 KILOMETER VISIBILITY ATMOSPHERE BEFORE SECOND ORDER REFLECTION FROM GROUND SURFACE WITH ALBEDO = 0.9

ALT	LA	DR	SCR	TR1	AS1	ASO	TAS
300	0	3.07-06	1.08-08	3.08-06	00300.0	1•30-06	1.30-06
	45	1.08-06	3.80-09	1.08-06	00300.0	3•28-11	3.28-11
	70	1.19-07	4.20-10	1.19-07	00300•0	1.79-12	1.79-12
1500	0	1.11-07	1.58-09	1.13-07	00300+0	2.06-07	2.06-07
	45	3.71-08	5.70-10	3.76-08	1.73-09	1.46-11	1.74-09
	70	3.88-09	5.90-11	3.94-09	2.15-11	9.46-13	2.24-11
6000	0	6.49-09	2.61-10	6.75-09	8.60-11	1.25-09	1.34-09
	45	2.20-09	8.60-11	2.29-09	5.64-11	3.09-12	5.95-11
	70	2:13-10	8.60-12	2.22-10	4.40-12	2.85-13	4.68-12
9000	0	2 • 87-09	1.44-10	3.01-09	5.40-11	2.04-10	2.58-10
	45	9.72-10	2.50-11	9.97-10	5.81-11	2.54-12	6.06-11
	70	9.36-11	4.72-12	9.83-11	3.57-12	1.98-13	3.77-12
18000	0	7.16-10	4.80-11	7.64-10	2.39-11	2.44-11	4.83-11
	45	2.42-10	1.60-11	2.58-10	1.40-11	1.09-12	1.51-11
	70	2.34-11	1.57-12	2.49-11	1.63-12	8.03-14	1.71-12

ALT - ALTITUDE (METERS)

LA - LOOKANGLE (DEGREES)

DR - DIRECT RADIATION REFLECTED INTO COLLIMATED RECEIVER

SCR - SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER

- TR1 TOTAL FIRST ORDER REFLECTION (DB + SCR)
- AS1 ATMOSPHERIC SCATTERED COMPONENT AFTER 1ST ORDER REFLECTION
- ASO A MOSPHERIC SCATTERED COMPONENT BEFORE ANY REFLECTION OCCURS
- TAS TOTAL ATMOSPHERIC SCATTERED COMPONENT (AS1 + ASO) RESULTING FROM 0 AND FIRST ORDER REFLECTIONS BY GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN JNITS OF PHOTONS M^{-2} /SOURCE PHOTON

TABLE XIV

GROUND MICRON SECOND	REFLE LASER ORDER	CTED AND LIGHT II REFLECT	ATMOSPHE N 5 KILOM ION FROM	RIC SCATTI ETER VISII GROUND SUI	ERED COMPO BILITY ATH RFACE WITH	ONENTS OF MOSPHERE H ALBEDO	1.06 BEFORE = 0.9
ALT	LA	DR	SCR	ŤR1	ASI	ASO	TAS
300	0	2•46-06	4•79-08	2.51-06	3.80-08	1.22-05	1.22-05
	45	8.31-07	1.61-08	8.47-07	3.90-09	3.02-10	4.20-09
	70	7•78-08	1.51-09	7•93-08	0.00+00	2.64-11	2.64-11
1500	0	3.65-08	3.53-09	4.00-08	1.11-09	1.48-05	1.48-05
	45	9•90-09	9.60-10	1.09-08	6.81-10	3.20-11	7.13-10
	70	4.39-10	4.26-11	4.82-10	1.99-11	1.06-12	2.09-11
6000	0	2•13-09	5.98-10	2•73-09	6.54-10	8•38-09	9.03-09
	45	5.76-10	1.55-10	7.31-10	2.40-10	1.51-11	2.55-10
	70	2.41-11	6.76-12	3.09-11	8.72-12	8.14-13	9.53-12
9000	0	9.45-10	3.37-10	1.28-09	3.80-10	3.52-10	7.32-10
	45	2.55-10	8.90-11	3.44-10	1.46-10	1.86-11	1.64-10
	70	1.06-11	3.80-12	1.44-11	7.16-12	6.45-13	7 e 81-12
18000	0	2.35-10	1.13-10	3.48-10	1.61-10	7.54-11	2.36-10
	45	6.35-11	3.10-11	9.45-11	6.64-11	8.42-12	7.48-11
	70	2.65-12	1.27-12	3.92-12	3.60-12	4.35-13	4.03-12

ALT - ALTITUDE (METERS)

LA - LOOKANGLE (DEGREES)

DR - DIRECT RADIATION REFLECTED INTO COLLIMATED RECEIVER

SCR - SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER

- TR1 TOTAL FIRST ORDER REFLECTION (DB + SCR) AS1 ATMOSPHERIC SCATTERED COMPONENT AFTER 1ST ORDER REFLECTION AS0 ATMOSPHERIC SCATTERED COMPONENT BEFORE ANY REFLECTION OCCURS

TAS - TOTAL ATMOSPHERIC SCATTERED COMPONENT (AS1 + ASO) RESULTING FROM Q AND FIRST ORDER REFLECTIONS BY GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M -2/SOURCE PHOTON

٠

.
TABLE XV

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS OF 3.507 AND 10.6 MICRON LASER AT 18000 METERS IN 25 AND 5 KILOMETER VISIBILITY ATMOSPHERES, GROUND ALBEDO = 0.9

WL.	LA	DR	SCR 25 KILOM	TR1 ETER VISI	ASI BILITY AT	ASO MOSPHERE	TAS
	0	5.03-10	3.81-13	4.60-10	0.00+00	2.07-12	2.07-12
3.507	45	1.55-10	1•22-13	1•42-10	0•00+00	1•54-13	1,54-13
	70	1.06-11	8.20-15	9 • 72 - 12	0.00+00	9•56-15	9.56-15
	0	2.41-10	8.55-13	2.14-10	0.00+00	4:02-12	4.02-12
10.6	45	6.39-11	2.32-13	5.70-11	0.00+00	1•19-14	1.19-14
	70	2.51-12	8.87-15	2.23-12	0.00+00	4:30-16	4.30-16
			5 KILOM	ETER VISI	BILITY AT	MOSPHERE	
	0	2•78-10	5.68-11	3.48-10	1.32-11	1.73-11	3.05-11
3.507	45	7.60-11	1.59-11	1.01-10	9.10-13	2.08-12	2.99-12
	70	3.33-12	6.77-13	4.57-12	5.63-13	9•17-14	6 . 55 - 13
	0	1.86-10	7.92-12	1.80-10	000+00	1.02-12	1.02-12
10.6	45	4.69-11	2.05-12	4.58-11	0.00+00	1•41-13	1.41-13
	70	1.51-12	6.43-14	1.49-12	0.00+00	3.62-15	3.62-15

WL - WAVELENGTH())

LA - LOOKANGLE (DEGREES)

DR - DIRECT RADIATION REFLECTED INTO COLLIMATED RECEIVER

SCR - SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER

TR1 - TOTAL FIRST ORDER REFLECTION (DB + SCR)

AS1 - ATMOSPHERIC SCATTERED COMPONENT AFTER 1ST ORDER REFLECTION

ASO - ATMOSPHERIC SCATTERED COMPONENT BEFORE ANY REFLECTION OCCURS

TAS - TOTAL ATMOSPHERIC SCATTERED COMPONENT (AS1 + ASO) RESULTING FROM 0 AND FIRST ORDER REFLECTIONS BY GROUND SURFACE

REFLECTED AND SCATTERED COMPONENTS ARE GIVEN IN UNITS OF PHOTONS M⁻² /SOURCE PHOTON the first order reflection intensities This component was obtained by subtracting the total reflected radiation from the LITE-I computed component for the first order of reflection. The columns headed by ASO list the LITE-I computed irradiances for the zero order of reflection. These Lata were added to the atmosphere scattered component of the radiation scattering from first order reflections to give the atmospheric scattered component listed in the columns under the heading TAS.

The sums of the components of the irradiance resulting from first order reflection of the direct beam and the single scattered radiation for the 3,507 and 10.6 micron wavelength lasers, as given in Table XV, for the 18000 meters altitudes were larger than the LITE-I computed irradiances for single order reflection for all cases except that for the 3.507 micron wavelength laser in the second atmosphere. This is an indication that the atmosphere scattered portion of the LITE-I computed irradiances resulting from first order reflection is negligible in comparison with the component resulting from the direct beam reflecting from the ground surface. Since the atmospheric scattered portion of the LITE-I computed first order reflected irradiances is expected to become less significant with decreasing altitudes, it was decided that single scattering and single reflection calculations would provide sufficient information to evaluate the atmospheric scattered and ground reflected irradiances for the 3.507 and 10.6 micron wavelength lasers at the lower altitudes in the two atmospheres.

3.3 Components from Second Order Reflection

The irradiances at the collimated receivers due to second order reflection and scattering in the atmosphere after second order reflection are, in general, somewhat smaller than the ground reflected and atmosphere scattered components determined for the zero and first order reflection. In some cases, however, the irradiances received

after second order reflection are sufficiently large to contribute to either the ground reflected or atmospheric scattered component. An attempt was made, therefore, to separate the LITE-I calculated irradiances for second order reflection into ground reflected and atmospheric scattered components.

To separate the LITE-1 calculated irradiances for second order reflection into ground reflected and atmospheric scattered components, it was observed that the direct radiation plus the single scattered radiation reflected from the ground surface subtended by source and receiver collimators, GRF1, composed almost all of the irradiance, GR1, reflected directly to the receivers from the entire ground surface for first order reflection. These two groups of irradiances are shown in Tables XVI through XIX for the 0.5145 and 1.06 micron wavelength lasers at the various altitudes and lookangles considered in the LITE-I calculations.

The photon flux, N_n , reflected from the area on the ground surface illuminated by the laser beam that results from photons undergoing their nth order of reflection from that area is proportional to the photon flux, N_{n-1} , previously reflected from that area. The ratio N_n/N_{n-1} is independent of the placement of the source and receiver. It is dependent only on the absorption and scattering properties of the atmosphere and the albedo of the ground area illuminated by the laser beam. Since the direct attenuation from the ground surface area illuminated by the laser beam to a receiver position is the same for all orders of reflection, the ground reflected portion of the LITE-I calculated irradiance at the receiver for second order reflections should have the same distribution with altitude and lookangle as does the ground reflected component of the LITE-I calculated irradiance for the first order reflection. Therefore, if the ground reflected component of the LITE-I calculated irradiance for second order reflection is known for any receiver, it may be determined for all other receivers.

TABLE XVI

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS FROM FIRST AND SECOND ORDER REFLECTION OF 0.5145 MICRON LASER LIGHT IN 25 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

ALT	LA	GRF1	GR1	GRF2	AS2	GRT	AST
300	0	2.97-06	3.00-06	7.84-10	4.12-11	2.97-06	4.09-06
	45	1.04-06	1.06-06	2.74-10	0.00+00	1.04-06	1.82-10
	70	1.11-07	1.14-07	2.93-11	4.90-12	1.11-07	1.66-11
1500	0	9.49-08	1.03-07	2.51-11	7.07-11	9.49-08	3.54-06
1900	45	3.16-08	3.49-08	8.35-12	3.05-11	3.16-08	8.73-10
	70	2.81-09	3.20-09	7.42-13	2.81-12	2.81-09	7.58-11
6000	0	5.11-09	5.60-09	1.35-12	2.57-11	5.11-09	1.34-07
0000	45	1.61-09	1.82-09	4.25-13	9.56-12	1.61-09	9.87-11
	70	1.23-10	1.42-10	3.25-14	7.68-13	1.23-10	9.17-12
9000	0	2.20-09	2.42-09	5.81-13	1.94-11	2.20-09	1.06-07
9000	45	6-98-10	7.74-10	1.84-13	6.89-12	6.98-10	6.72-11
	70	5,13-11	5.90-11	1.35-14	5.06-13	5.13-13	4.11-12
19000	0	5.32-10	5.71-10	1.41-13	8.10-12	5.32-10	1.17-08
19000	45	1.64-10	1.80-10	4.33-14	2.96-12	1.64-10	2.56-11
	49 70	1.16-11	1,29-11	3.06-15	2.06-13	1.16-11	1.92-12
	10	1410-11		2020 00			

ALT - ALTITUDE (METERS)

- LOOKANGLE (DEGREES) LA GRF1 - DIRECT AND SINGLE SCATTERED RADIATION REFLECTED INTO
- COLLIMATED RECEIVER
- GR1 SINGLE ORDER REFLECTED RADIATION INTO UNCOLLIMATED RECEIVER
- GRF2 REFLECTED RADIATION AT COLLIMATED RECEIVER DUE TO SECOND ORDER REFLECTION
- AS2 ATMOSPHERIC SCATTERED CONTRIBUTION AFTER SECOND ORDER REFLECTION
- TOTAL GROUND REFLECTED COMPONENT AT COLLIMATED RECEIVER GRT
- TOTAL ATMOSPHERIC SCATTERED COMPONENT AT COLLIMATED RECEIVER AST (ASO + AS1 + AS2) RESULTING FROM 0, FIRST, AND SECUND ORDER REFLECTIONS FROM GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M -2/SOURCE PHOTON

and a second second

TABLE XVII

κĪι	OMET	ER VISIBI	LITY ATMO	SPHERE, G	ROUND ALB	EDO = 0.9	
ALT	ĻΑ	GRF1	GR1	GRF2	AS2	GRT	AST
300	0	2.01-06	?•27 - 06	6.78-10	1.71-10	2.01-06	3.77-05
	45	6.42-07	7.60-07	2.16-10	4.43-10	6•42-07	1.94-08
	70	4.99-08	6•27-08	1.68-11	2.40-11	4•99-08	7.42-10
1500	0	1.26-08	2•47-08	4.25-12	1.06-10	1.26-08	3.07-05
	45	2.66-09	6.62-09	8.96-13	2.85-11	2.66-09	5.84-10
	70	4.63-11	2.11-10	1.56-14	6.02-13	4.63-11	9.39-12
6000	0	8.41-10	1.57-09	2.83-13	5.31-11	8.41-10	3.07-07
	45	1.69-10	3.50-10	5.70-14	1.67-11	1.69-10	2.03-10
	70	2.50-12	5.86-12	8.42-16	2.04-13	2.50-12	3.45-12
9000	0	3.93-10	6.75-10	1.32-13	3.41-11	3.93-10	1.16-07
	45	7.94-11	1.43-10	2.68-14	8.14-12	7.94-11	1.42-10
	70	1.12-12	2:34-12	3.78-16	2.20-13	1.12-12	3.77-12
18000	0	1.05-10	1.63-10	3.54-14	1.81-11	1.05-10	7°49-09
	45	2.11-11	3.33-11	7.11-15	6.50-12	2.11-11	6.57-11
	70	2.80-13	5.07-13	9.43-17	1.34-13	2.80-13	1.68-12

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS FROM FIRST AND SECOND ORDER REFLECTION OF 0.5145 MICRON LASER LIGHT IN 5

ALT - ALTITUDE (METERS) LA - LOOKANGLE (DEGREES)

- GRF1 DIRECT AND SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER
- SINGLE ORDER REFLECTED RADIATION INTO UNCOLLIMATED GR1 RECEIVER
- GRF2 REFLECTED RADIATION AT COLLIMATED RECEIVER DUE TO SECOND ORDER REFLECTION
- ATMOSPHERIC SCATTERED CONTRIBUTION AFTER SECOND ORDER AS2 REFLECTION
- TOTAL GROUND REFLECTED COMPONENT AT COLLIMATED RECEIVER GRT
- TOTAL ATMOSPHERIC SCATTERED COMPONENT AT COLLIMATED RECEIVER AST (ASO + AS1 + AS2) RESULTING FROM 0, FIRST, AND SECOND ORDER REFLECTIONS FROM GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M -2/SOURCE PHOTON

TABLE XVIII

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS FROM FIRST AND SECOND ORDER REFLECTION OF 1.06 MICRON LASER LIGHT IN 25 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

ALT	LΑ	GRF1	GR1	GRF2	AS2	GRT	AST
300	0	3.08-06	3.08-06	5.00-10	1.27-11	3.08-06	1.30-06
	45	1.08-06	1.09-07	1.75-10	1.65-11	1.08-06	3.44-11
	70	1.19-07	1.21-07	1.93-11	9 . 70-13	1.19-07	2.76-12
1500	0	1.13-07	1.16-07	1.84-11	3.93-11	1.13-07	2.06-07
	45	3•76-08	4.04-08	6.10-12	2.06-11	3.76-08	1.76-09
	70	3.94-09	4.14-09	6.40-13	1.87-12	3•94-09	2.43-11
6000	0	6•75-09	6•99-09	1.09-12	1.34-11	6.75-09	1.35-09
	45	2.29-09	2.39-09	3.72-13	5.21-12	2.29~09	6.47-11
	70	2 • 22-10	2.33-10	3.61-14	5.31-13	2.22-10	5.21-12
9000	0	3.01-09	3.11-09	4.89-13	8.91-12	3.01-09	2.66-10
	45	9•97-10	1.06-09	1.62-13	3.63-12	9.97-10	6.42-11
	70	9•83-11	1.03-10	1.60-14	3.37-13	9.83-11	4•11-12
18000	0	7.64-10	7.77-10	1.24-13	4.58-12	7.64-10	5.29-11
	45	2.58-10	2.64-10	4.19-14	1.82-12	2.58-10	1.69-11
	70	2.49-11	2.56-11	4.04-15	ĩ•62 − 13	2•49-11	1.87-12

2

- ALT ALTITUDE (METERS) LA LOOKANGLE (DEGREES)
- GRF1 DIRECT AND SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER
- SINGLE ORDER REFLECTED RADIATION INTO UNCOLLIMATED GR1 RECEIVER
- GRF2 REFLECTED RADIATION AT COLLIMATED RECEIVER DUE TO SECOND ORDER REFLECTION
- ATMOSPHERIC SCATTERED CONTRIBUTION AFTER SECOND ORDER AS2 REFLECTION
- TOTAL GROUND REFLECTED COMPONENT AT COLLIMATED RECEIVER GRT
- TOTAL ATMOSPHERIC SCATTERED COMPONENT AT COLLIMATED RECEIVER AST (ASO + AS1 + AS2) RESULTING FROM 0, FIRST, AND SECOND ORDER REFLECTIONS FROM GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M-2/SOURCE PHOTON

TABLE XIX

GROUND REFLECTED AND ATMOSPHERIC SCATTERED COMPONENTS FROM FIRST AND SECOND ORDER REFLECTION OF 1.06 MICRON LASER LIGHT IN 5 KILOMETER VISIBILITY ATMOSPHERE, GROUND ALBEDO = 0.9

ALT	LA	GRF1	GR1	GRF2	AS2	GRT	AST
300	0	2.51-06	2.66-06	1.91-09	3.88-10	2.51-06	1.22-05
	45	8.47-07	9.20-07	6.44-10	3.90-10	8.47-07	4.59-09
	70	7.93-08	8.77-08	6.02-11	4.35-11	7•93-08	6.99-11
1500	0	4•00−08	5.56-08	3.04-11	2.35-10	4.00-08	1.48-05
	45	1.09-08	1.68-08	8.28-12	8.57-11	1.09-08	7.99-10
	70	4.82-10	9.01-10	3.66-13	2.93-12	4.82-12	2.38-11
6000	0	2•73-09	3.63-09	2.06-12	6.46-11	2•73-09	9 . 09 - 09
	45	7.31-10	1.01-09	5.56-13	2.00-11	7.31-10	2.75-10
	70	3.09-11	4•41-11	2.35-14	8.50-13	3.09-11	1.04-11
9000	0	1.28-09	1.62-09	1.68-12	4.56-11	1.28-09	7.78-10
	45	3.44-10	4.48-10	2.61-13	1.61-11	3.44-10	1.80-10
	70	1.44-11	1,90-11	1.09-14	7.11-13	1•44-11	8.52-12
18000	0	3.48-10	4.11-10	2.64-13	1.97-11	3.48-10	2.56-10
	45	9.45-11	1.12-10	7.18-14	6.95-12	9.45-11	8.18-11
	70	3•92-12	4.67-12	2.98-15	4.25-13	3.92-12	4.46-12

ALT - ALTITUDE (METERS)

- LA LOOKANGLE (DEGREES)
- GRF1 DIRECT AND SINGLE SCATTERED RADIATION REFLECTED INTO COLLIMATED RECEIVER
- GRF2 REFLECTED RADIATION AT COLLIMATED RECEIVER DUE TO SECOND ORDER REFLECTION
- AS2 ATMOSPHERIC SCATTERED CONTRIBUTION AFTER SECOND ORDER REFLECTION
- GRT TOTAL GROUND REFLECTED COMPONENT AT COLLIMATED RECEIVER
- AST TOTAL ATMOSPHERIC SCATTERED COMPONENT AT COLLIMATED RECEIVER (ASO + AS1 + AS2) RESULTING FROM 0, FIRST, AND SECOND ORDER REFLECTIONS FROM GROUND SURFACE

REFLECTED AND SCATTERED IRRADIANCES ARE GIVEN IN UNITS OF PHOTONS M-2/SOURCE PHOTON

It was assumed that the ratio of the ground reflected component to the second order reflection component of the irradiance at the collimated receiver for the zero lookangle and the 300 meters altitude was equal to the ratio of the total integrated intensity at the receiver resulting from radiation reflected directly to the receiver from the entire ground surface due to second order reflection to the total integrated intensity from second order reflection. Under this assumption the ground reflected components for the zero lookangle and the 300 meters altitude collimated receiver were determined to be 7.84*10⁻¹⁰ and 6.78*10⁻¹⁰ photons m^{-2} /source photon for the 0.5145 micron laser in the 25 kilometer and the 5 kilometer visibility atmospheres respectively and $5.00*10^{-10}$ and $1.91*10^{-9}$ photons m⁻²/ source photon for the 1.06 micron laser in the two atmospheres. The second order ground reflected component, GRF2, as shown in Tables XVI through XIX for the other altitudes and lookangles was determined by normalizing the distribution of the first order reflection component to the second order reflection component for the zero lookangle and 300 meters altitude. The difference between the LITE-I calculated total second order reflection irradiance and the ground reflected component, GRF2, was taken to be the atmospheric scattered portion, AS2, of the second order reflection data. This component is also shown in Tables XVI through XIX. Also shown in Tables XVI through XIX are the total ground reflected component, GRT, and the atmospheric scattered component, AST, through two orders of reflection. This data is plotted in Figures 6 through 17 for a ground albedo of 0.9.

3.4 Conversion to Different Albedos

The atmospheric scattered and the ground reflected components through the second order of reflection for a ground albedo of 0.9 are summarized in Tables XX and XXI. The atmospheric scattered component for a given wavelength, altitude, lookangle, and for a ground albedo of 0.9 is the sum of the data listed under the headings AS_c , AS_1 , and AS_2 . The ground reflected component for a ground albedo of 0.9 is the sum of the two values listed under the headings R_1 and R_2 . The data listed in Tables XX and XXI for a ground albedo of 0.9 may

Fig. 6. Reflectance and Path Radiance for 0.5145 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 0° Look Angle: Ground Albedo = 0.9

10-6 O REFLECTANCE . ▲ PATH RADIANCE 10-7 10-8

10-5

Fig. 7. Reflectance and Path Radiance for 0.5145 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 45° Look Angle: Ground Albedo = 0.9

10-0 10-7 ○ REFLECTANCE
 △ PATH RADIANCE 10-8 IRRADIANCE (photons m⁻²/source photon) 10-3 10-10 A ◬ 10⁻¹¹ 10-12 10-13 ō 3 12 6 9 15 18 ALTITUDE (km)

Fig. 8. Reflectance and Path Radiance for 0.5145 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 70° Look Angle: Ground Albedo = 0.9

.

Fig. 9. Reflectance and Path Radiance for a 0.5145 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 0^o Look Angle: Ground Albedo = 0.9

Fig. 10. Reflectance and Path Radiance for a 0.5145 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 45° Look Angle: Ground Albedo = 0.9

. .

Fig. 11. Reflectance and Path Radiance for a 0.5145 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 70° Look Angle: Ground Albedo = 0.9

10~4 10-5 REFLECTANCE PATH RADIANCE 0 ◬ 10-• IRRADIANCE (photons m⁻²/source photon) 10-7 10-1 10-9 10-10 10-" 3 6 9 12 Q 15 18 ALTITUDE (km)

Fig. 12. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 0^o Look Angle: Ground Albedo = 0.9

10-4 10-5 ⊘ REFLECTANCE
 △ PATH RADIANCE ه^10 IRRADIANCE (photons m⁻²/source photon) 10-7 10-8 ⊿ 10-9 10-10 Δ 10-11 0 3 6 9 12 15 18 ALTITUDE (km)

Fig. 13. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 45° Look Angle: Ground Albedo = 0.9

41

Fig. 14. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 25 Kilometer Visibility Atmosphere for a 70° Look Angle: Ground Albedo = 0.9

10-4 ⊿ 10-3 O REFLECTANCE 10-4 IRRADIANCE (photons m^{-2} /source photon) 10-7 10-8 10~° 10-10 10-11 ō 3 6 9 12 15 18 ALTITUDE (km)

Fig. 15. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 0^o Look Angle: Ground Albedo = 0.9

Fig. 16. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 45° Look Angle: Ground Albedo = 0.9

10-4 10-7 ○ REFLECTANCE
 △ PATH RADIANCE 10-1 IRRADIANCE (photons m⁻²/source photon) 10-1 10-1 ◬ 10[~]" 10-12 10-13 3 6 0 9 12 15 18 ALTITUDE (km)

Fig. 17. Reflectance and Path Radiance for a 1.06 Micron Wavelength Laser in a 5 Kilometer Visibility Atmosphere for a 70° Look Angle: Ground Albedo = 0.9

TABLE XX

ATMOSPHERIC SCATTERED AND GROUND REFLECTED COMPONENTS OF SCATTERED IRRADIANCE VERSUS ORDER OF REFLECTION FOR 25 KILOMETER VISIBILITY ATMOSPHERE FOR 0.9 GROUND ALBEDO

WL	LA	AS	AS ₁	AS_2	R ₁	R ₂
			ALTIT	UDE 300 M	ETERS	
0.5145	0	4•09-06	0.00+00	4.12-11	2.97-06	7.84-10
	45	1.82-10	0.00-00	00300.0	1.04-06	2.74-10
	70	1.17-11	0.00+00	4.90-12	1.11-07	2.93-11
			ALTIT	UDE 1500	METERS	
	0	3•53-06	1.51-09	7.07-11	9•49-08	2•51-11
	45	2.45-11	8.17-10	3.05-11	3.16-08	8.35-12
	70	1.97-12	7.11-11	2.81-12	2.81-09	7.42-13
			ALTIT	UDE 6000	METERS	
	0	1.33-07	1.50-10	2.57-11	5.11-09	1.35-12
	45	7.14-12	8.20-11	9.56-12	1.61-09	4.25-13
	70	4.66-13	7.94-12	7.68-13	1.23-10	3.25-14
			ALTIT	UDE 9000	METERS	
	0	1.06-07	1.36-10	1.94-11	2.20-09	5.81-13
	45	4.66-12	5.57-11	6.89-12	6,98-10	1.84-13
	70	2.46-13	3.35-12	5.06-13	5.13-11	1.36-14
			ALTIT	UDE 18000	METERS	
	0	1.16-08	4.53-11	8.10-12	5.32-10	1.41-13
	45	2.45-12	2:01-11	2:96-12	1.64-10	4:33-14
	70	1.21-12	1.58-12	2.06-13	1.16-11	3.06-15

1

• •

b -

.* *,

, ι

TABLE XX (CONTINUED)

WL	LA	AS	AS	AS 2	R 1	R ₂
			ALTIT	UDE 300 M	ETERS	
1.06	0	1.30-06	0.00+00	1.27-11	3.08-06	5.00-10
	45	3.28-11	0.00+00	1.65-11	1.08-06	1.75-10
	70	1.79-12	0•00+00	9.70-13	1.19-07	1.93-11
			ALTIT	UDE 1500	METERS	
	0	2.06-07	0.00+00	3.93-11	1.13-07	1.84-11
	45	1.46-11	1.73-09	2.06-11	3.76-08	6.10-12
	70	9•46-13	2.15-11	1.87-12	3.94-09	6•40-13
			ALTIT	UDE 6000	METERS	
	0	1.25-09	8.60-11	1.34-11	6•75-09	1.09-12
	45	3.09-12	5,64-11	5.21-12	2•29-09	3•72-13
	70	2.85-13	4:40-12	5.31-13	2.22-10	3.61-14
			ALTIT	UDE 9000	METERS	
	0	2.04-10	5°40-11	8•91-12	3.01-09	4.89-13
	45	2•54-12	5.81-11	3.63-12	9•97-10	1.62-13
	70	1.98-13	3•57-12	3.37-13	9.83-11	1.60-14
			ALTIT	UDE 18000	METERS	
	0	2•44-11	2.39-11	4•58-12	7.64-10	1.24-13
	45	1.09-12	1:40-11	1.82-12	2.58-10	4•19-14
	70	8.03-14	1.63-12	1.62-13	2.49-11	4.04-15

(ABLE XX (CONTINUED)

WL	LA	ASo	AS ₁	AS $_2$	Rl	R ₂
			ALTIT	UDE 300 M	ETERS	
3.507	0	2.63-09	0.00+00	0.00+00	3 • 2706	0•00+00
	45	2•3311	0•00+00	0.00+00	1•14-06	0.00+00
	70	1.94-12	0.00+00	0.00+00	1.22-07	0.00+00
			ALTIT	UDE 1500	METERS	
	Õ	3.30-10	0.00+00	0.00+00	1.01-07	0.00+00
	45	3.38-12	0.00+00	0.00+00	3.35-08	0•00+00
	70	2.34-13	0.00+00	0.00+00	2.95-09	0•00+00
			ALTIT	UDE 6000	METERS	
	0	2•41-11	0.00+00	0•00+00	4.66-09	0.00+00
	45	5.65-13	0•00+00	0.00+00	1.44-09	0+00+00
	70	3•19-14	0•00+00	0.00+00	1.01-09	0.00+00
			ALTIT	UDE 9000	METERS	
	0	9•71-12	0•00+00	0.00+00	2.01-09	0•00+00
	45	3.56-13	0.00+00	0.00+00	6•23-10	0.00+00
	70	2.01-14	0•00+00	0.00+00	4.27-11	0:00+00
			ALTIT	UDE 18000	METERS	
	0	2.07-12	0.00+00	0.00+00	4 ∘60-10	0.00+00
	45	1.54-13	0.00+00	0.00+00	1.42-10	0.00+00
	70	9.56-15	0•00+00	0.00+00	9.72-12	0.00+00

TABLE XX (CONTINUED)

WL	LA	AS	AS	AS 2	Rl	R ₂
			ALTIT	UDE 300 M	IETERS	
10.	6 0	2.45-10	0.00+00	0.00+00	3.13-06	0.00+00
	45	3.87-12	000+00	0.00+00	1.08-06	0.00+00
	70	3•45-13	0.00+00	0.00+00	1.12-07	0:00+00
			ALTIT	UDE 1500	METERS	
	0	2.77-11	0.00+00	0•00+00	8.30-08	0.00+00
	45	4.63-13	0.00+00	0.00+00	2.63-08	0.00+00
	70	3.02-14	0.00+00	0.00+00	1.97-12	0.00+00
			ALTIT	UDE 6000	METERS	
	0	1.59-12	0.00+00	0.00+00	2•69~09	0.00+00
	45	5.09-14	0.00+00	0.00+00	7•31 - 10	0.00+00
	70	2.05-15	0.00+00	0,00+00	3.33-11	0.00+00
			ALTIT	UDE 9000	METERS	
	c	5.95-13	0.00+00	0.00+00	1.05-09	0.00+00
	45	2.92-14	0.00+00	0.00+00	2•83-10	0.00+00
	70	1.10-15	0.00+00	0.00+00	1.18-11	0.00+00
			ALTIT	UDE 18000	METERS	
	0	4.02-12	0*00+00	0.00+00	2.14-10	0.00+00
	45	1•19-14	0•00+00	0•00+00	5•70-11	0.00+00
	70	4.30-16	0.00+00	0.00+00	2.23-12	0.00+00
			FGREES			
AS	- ATMOS	SPHERIC SC	ATTERED (COMPONENT	BEFORE AN	Y REFLECTION
	OCCUR	RS		_		
AS	- ATMOS	SPHERIC SC	ATTERED (OMPONENT	AFTER SIN	GLE ORDER
AS	- ATMOS	SPHERIC SC	CATTERED (COMPONENT	AFTER SEC	OND ORDER

- GROUND REFLECTION FROM FIRST ORDER REFLECTION - GROUND REFLECTION FROM SECOND ORDER REFLECTION R R

THE UNITS FOR IRRADIANCE ARE PHOTONS 2-7 SOURCE PHOTON

TABLE XXI

ATMOSPHERIC SCATTERED AND GROUND REFLECTED COMPONENTS OF SCATTERED IRRADIANCE VERSUS ORDER OF REFLECTION FOR 5 KILOMETER VISIBILITY ATMOSPHERE FOR 0.9 GROUND ALBEDO

WL	LA	ASo	AS <u>1.</u>	AS2	Rl	R 2
			ALTIT	JDE 300 MI	ETERS	
0.5145	0	3.77-05	2.80-08	1.71-10	2.01-06	6.78-10
	45	4.71-10	1.86-08	4.43-10	6.42-07	2.16-10
	70	3.83-11	6.80-10	2•40-11	4•99-08	1.68-10
			ALTIT	UDE 1500	METERS	
	0	3.07-05	2.88-09	1.06-10	1.26-08	4.25-12
	45	2•21-11	5•33-10	2.85-11	2.66-09	8•96-13
	70	4.91-13	8.30-12	6.02-13	4.63-11	1.56-14
			ALTIT	UDE 6000	METERS	
	0	3.27-07	6.18-10	5.31-11	8.41-10	2.83-13
	45	2.05-11	1.66-10	1,67-11	1.69-10	5c70-14
	70	6.10-13	2.64-12	2.04-13	2.50-12	8.42-16
			ALTIT	UDE 9000	METERS	
	0	1.16-07	3.56-10	3.41-11	3,93-10	1.32-13
	45	1.92-11	1.15-10	8.14-12	7.94-11	2.68-14
	70	5.40-13	2.00-12	2.20-13	1.12-12	3.78-16
			ALTIT	UDE 18000	METERS	
	0	7.32-09	1.52-10	1.81-11	1.05-10	3.54-14
	45	1.13-11	4.80-11	6.50-12	2.11-11	7.11-15

70 3.83-13 1.17-12 1.34-13 2.80-13 9.43-17

TABLE XXI (CONTINUED)

ALTITUDE 300 METERS

WL	Ł٨	AS	AS ₁	AS $_2$	R ₁	R 2	
1.06	0	1.22-05	3.80-08	3.88-10	2.51-06	1.91-09	
	45	3.02-10	3.90-09	3.90-10	8.47-07	6.44-10	
	70	· •64-11	0:00+00	4.35-11	7.93-08	6.02-11	
			ALTIT	UDE 1500	METERS		
	0	1.48-05	1.11-09	2.35-10	400-08	3.04-11	
	45	3.20-11	6.81-10	8.57-11	1.09-08	8•28-12	
	70	1.06-12	1.99-11	2.93-12	4.82-10	3•66=13	
			ALTIT	UDE 6000	METERS		
	0	8 • 38-09	6•54-10	6.46-11	2•73-09	2.06-12	
	45	1.51-11	2.40-10	2.00-11	7.31-10	5.56-13	
	70	8.14-13	8•72-12	8.50-13	3.09-11	2.35-14	
			ALTIT	UDE 9000	METERS		
	0	3•52 - 10	3.80-10	4•56-11	1.28-09	1.68-12	
	45	1.86-11	1:46-10	1.61-11	3.44-10	2.61-13	
	70	6•45-13	7•16-12	7.11-13	1.44-11	1.09-14	
			ALTIT	UDE 18000	METERS		
	0	7•54-11	1.61-10	1.97-11	3.48-10	2.64-13	
	45	8•42-12	6•64-11	6.95-12	9.45-11	7.18-14	
	70	4.35-13	3.60-12	4.25-13	3.92-12	2.98-15	

TABLE XXI (CONTINUED)

WL	LA	AS	AS ₁	AS 2	R 1	R ₂
			ALTIT	UDE 300 M	ETERS	
3.507	0	2•32-08	0.00+00	0.00+00	2•93-06	0.00+00
	45	1.81-10	0.00+00	0.00+00	1.00-06	0:00+00
	70	1.38-11	0.00+00	0.00+00	9.80-08	0.00+00
			ALTÍT	UDE 1500	METERS	
	0	3.01-09	0.00+00	0.00+00	5.83-08	C•00+00
	45	1.52-11	0.00+00	0.00+00	1.70-08	0.00+00
	70	6.61-13	0.00+00	0.00+00	9.65-10	0.00+00
			ALTIT	UDE 6000	METERS	
	0	1.70-10	0•00+00	0.00+00	2.89-09	0.00+00
	45	2.85-12	0 ¢ 00+00	0.00+00	7•89-10	0.00+00
	70	9 . 51 - 14	0.00+00	0.00+00	3.55-11	0.00+00
			ALTIT	UDE 9000	METERS	
	0	6.59-11	0.00+00	0.00+00	1.28-09	0∙00400
	45	1.95-12	0•00+00	0.00+00	3.50-10	0.00+00
	70	6.23-14	0•00+00	0.00+00	1.54-11	0.00+00
			ALTIT	UDE 18000	METERS	
	0	1.73-11	1.32-11	0.00+00	3•48-10	0.00+00
	45	2.08-12	9.10-13	0.00+00	1.01-10	0.00+00
	70	9.17-14	5.63-13	0.00+00	4.57-12	0.00+00

TABLE XXI (CONTINUED)

WL	. L	Α.	AS	AS	AS 2	R	R 2	
	ALTITUDE 300 METERS						٠	
10.	6	0	2.26-09	0•00+00	0.00+00	2•98-06	0.00+00	
	4	45	3.26-11	0.00+00	0.00+00	1.02-06	0.00+00	
	-	70	2.80-12	0.00+00	0.00+00	1.02-07	0.00+00	
	ALTITUDE 1500 METERS							
		0	3.14-10	0\$00+00	0.00+00	6.45-08	0.00+00	
	2	45	3.12-12	0.00+00	0•00+00	1.93-08	0.00+00	
	-	70	1.65-13	0.00+00	0.00+00	1.20-09	0.00+00	
	ALTITUDE 6000 METERS							
		0	1.17-11	0•00+00	0.00+00	2.10-09	0.00+00	
	4	45	3.73-13	0•00+00	0.00+00	5.52-10	0.00+00	
	-	70	1.15-14	0•00+00	0•00+00	2.07-11	0.00+00	
	ALTITUDE 9000 METERS							
		0	4.17-12	0.00+00	0.00+00	8:39-10	0.00+00	
	4	45	2•27-13	0•00+00	0•90+00	2•15-10	0.00+00	
		70	6.35-15	0.00+00	0.00+00	7.41-12	0.00+00	
	ALTITUDE 18000 METERS							
		0	1.02-12	0.00+00	0•00+00	1.80-10	00+00	
	4	45	1•41-13	0.00+00	0.00+00	4.58-11	0.00+00	
	,	70	3+62-15	0.00+00	0.00+00	1.49-12	0.00+00	
WI	- WA	VFI	FNGTH (11)					
LA AS	- LO - AT	OKA	NGLE (D PHERIC SC	EGREES) ATTERED CO	OMPONENT	BEFORE AN	Y REFLECTION	
AS	0C - AT	 ATMOSPHERIC SCATTERED COMPONENT BEFORE ANT REFLECTION ATMOSPHERIC SCATTERED COMPONENT AFTER SINGLE ORDER REFLECTION ATMOSPHERIC SCATTERED COMPONENT AFTER SECOND ORDER REFLECTION GROUND REFLECTION FROM FIRST ORDER REFLECTION 						
AS	RE - AT							
R	RE GR							
R	- GR	OUN	D REFLECT	ION FROM	SECOND OR	DER REFLE	CTION	

THE UNITS FOR IRRADIANCE ARE PHOTONS /SOURCE PHOTON

53

.

be utilized to compute the atmospheric scattered component and the ground reflected component for a different background albedo with the following relationships

$$PR(\alpha) = AS_{0} + AS_{1} (\alpha/0.9) + AS_{2} (\alpha/0.9)^{2}$$
(1)
and
$$GR(\alpha) = R_{1} (\alpha/0.9) + R_{2} (\alpha/0.9)^{2}$$
(2)

where $PR(\alpha)$ is the atmospheric scattered component for the new background albedo α , $GR(\alpha)$ is the ground reflected component for the new background albedo and the parameters AS_0 , AS_1 , AS_2 , R_1 and R_2 are values listed in Tables XX or XXI for a particular combination of atmosphere, wavelength, altitude and lookangle.

If the area of the ground surface being illuminated has a different albedo from the surrounding background, equations 1 and 2 should be modified as follows:

$$PR(\alpha') = AS_{0} + AS_{1}(\alpha'/0.9) + AS_{2}(\alpha'/0.9)(\alpha/0.9)$$
(3)

$$GR(\alpha') = R_{1}(\alpha'/0.9) + R_{2}(\alpha'/0.9)^{2}$$
(4)

where α' is the albedo of the illuminated area and α is the background albedo. In equation 4, the albedo, α' , of the illuminated area is used because the nonreflected light incident on the ground surface is almost all incident on the area illuminated by the direct radiaiton from the source and the only portion of the second order reflected light seen by a collimated receiver is that reflected from the illuminated area. In equation 3, the atmospheric scattered light that has been reflected once is due to reflection from the illuminated area, but that which has been reflected twice, more than likely, was reflected the second time from the background area not illuminated by the direct radiation from the source.

If the albedo for the area illuminated by the direct radiation from the source has a reflection distribution other than the distribution for a Lambert type surface, the following equation should be utilized to compute the reflectance rather than equation 4: $GR(\alpha'(\theta)) = R_1 (\alpha'(\theta)/(0.9\cos\theta/\pi)) +$

 $R_{2} (\alpha'/0.9) (\alpha'(\theta)/(0.9\cos\theta/\pi))$ (5)

where $\alpha^{*}(\theta)$ is the differential albedo evaluated at the lookangle 9.

If the 1.06 micron wavelength laser were located at 6000 meters in the 5 kilometer visibility atmosphere with a background albedo of 0.1 but with the illuminated area having a total albedo of 0.7 and differential albedo of 0.05 in the direction of the 45 degree lookangle, then the atmospheric scattered component would be:

> $PR(0.7) = 1.51 \times 10^{-11} + 2.40 \times 10^{-10} \times (0.7/0.9)$ $+ 2.00 \times 10^{-11} (0.7/0.9) (0.1/0.9)$ $= 1.51 \times 10^{-11} + 1.867 \times 10^{-10} + 1.73 \times 10^{-12}$ = 2.04×10^{-10} (photons m⁻²/source photon)

and the reflected component would be:

 $GR(0.05) = 7.31 \times 10^{-10} (0.05/(0.9 \times 0.70711/3.1416) +$ 5.56*10⁻¹³ (0.7/0.9) (0.05/(0.9*0.70711/3.14159) $= 7.31 \times 10^{-10}$ (.2483) $+ 5.56 \times 10^{-13}$ (0.0193) $= 1.815 \times 10^{-10} + 1.073 \times 10^{-14}$ \neq 1.815*10⁻¹⁰ (photons m⁻²/source ploton)

3.5 Single Scattering and Reflection

In Tables XI through XV the direct radiation reflected to each receiver was computed with the expression:

> $DR(\alpha) = (\alpha \cos\theta / \pi r^2) \exp(-T(hs)(1 \div sec\theta))$ (6)

where T(hs) is the optical distance from the ground to the sourcereceiver altitude hs, θ is the lookangle of the receiver, α is the ground albedo and r is the slant distance from the illuminated area to the receiver position. The reflection of the single scattered radiation incident upon the ground area illuminated by the direct

radiation was computed with the expression:

$$SCR(\alpha) = (\alpha \cos\theta/\pi r^2) \exp(-T(hs)(1 + \sec\theta)) *$$

$$2\pi \int_{0}^{hs} \sigma_{a}(h) \int_{0}^{\theta_{h}} f_{a}(\theta') \sin \theta' d\theta' dh + 2\pi \int_{0}^{hs} \sigma_{r}(h) \int_{0}^{\theta_{h}} f_{r}(\theta') \sin \theta' d\theta' dh, \quad (7)$$

where $\sigma_a(h)$ and $\sigma_r(h)$ are the aerosol and Rayleight scattering cross sections as a function of altitude, $f_a(\theta')$ and $f_r(\theta')$ are the aerosol and Rayleigh phase functions and θ_h is the angle whose tangent is the radius of the illuminated ground area divided by the altitude of the single scattering event.

In addition to computing the ground reflected component of the scattered irradiance as shown above, single scattering calculations were performed to investigate the possibility of computing the atmospheric scattered component with a single scattering method.

The single scattered component was computed with the expression:

$$ss = \int_{0}^{hs} exp(-T(hs)-T(h))(1+sec\theta_{1})) [(\sigma_{a}(h)P_{a}(180-\theta_{1}) + \sigma_{a}(h)P_{a}(180-\theta_{1}))/((hs-h)sec\theta_{1})^{2}]dh$$
(8)

where T(hs) is the optical distance from the ground to the sourcereceiver altitude, T(h) is the optical distance from the ground to the single scattering center, h is the height of the scattering center, hs is the height of the source and receiver, and θ_1 is the angle between the vertical axis through the scattering center and the line joining the collision center with the receiver. The single scattering calculations illustrates the difficulty in computing the atmospheric scattered component when the source and receiver are located at the same position. For the other receiver positions, the denominator of equation 8 approaches a finite non-zero value as h approaches hs, but for the receiver located at the source position, the denominator approaches zero as h approaches hs. The

single scattered irradiance at the collimated receiver for the 0.5145 micron wavelength laser located at 9000 meters in the clear atmosphere is plotted versus lookangle in Fig. 18. This figure shows the typical sharp increase as the receiver position approaches the source position. The total atmospheric scattered components of the irradiance at the collimated receiver as computed by LITE-I for the three lookangles of 0, 45, and 70 degrees are compared in Fig. 18 with the single scattering calculations. It is noted that the single scattered irradiance underpredicts the atmospheric scattered component for the 45 and 70 degree lookangles. This comparison is typical of that observed for both the 0.5145 and 1.06 micron lasers at all altitudes in both the clear and hazy atmospheres. Thus, a single scattering analysis would greatly underestimate the atmospheric scattered component at the large lookangles for lasers in the visible and near-infrared region. For the 3.507 and 10.6 micron wavelength lasers the single scattered component at 18000 meters compares more favorably with the atmospheric scattered component and thus the assumption was made that it was unnecessary to compute the multiple scattered and reflected irradiances for the other source receiver altitudes. Tables XXII and XXIII give the results of the single scattering calculations as a function of lookangle and attitude for each wavelength for the two different atmospheres. The accuracy with which single scattering calculation predicts the atmospheric scattered component may be evaluated by comparing the values in Tables XXII and XXIII for a given wavelength, lookangle, and altitude with the sum of the three air scattered components for the same parameters in Tables XX or XXI.

Fig. 18. Single and Multiple Scattered Components of the Atmospheric Scattered Irradiance at 9000 Meters Altitude versus Receiver Look Angle for a 0.5145 Micron Wavelength Laser in the Model Clear Atmosphere

TABLE XXII

S'NGLE AIR SCATTERED IRRADIANCE VERSUS WAVELENGTH, ALTITUDE, AND LOOKANGLE FOR AIRBORNE LASER SYSTEM IN A 25 KILOMETER VISIBILITY ATMOSPHERE

.

ALT	LA	WAVELENGTH (µ)				
		0.5145	1.06	3.507	10.6	
300	2	3.09-08	1.26-08	2•63-09	2.95-10	
	6	9•15-09	3.74-09	7.98-10	8.02-11	
	12	3.93-09	1.63-09	3•47-10	3.79-11	
	25	1.19-09	4.89-10	1.26-10	1.45-11	
	45	2.33-10	9•15-11	2.33-11	3,87-12	
	60	6.04-11	2.46-11	6.38-12	1.12-12	
	70	€ ⊶75−11	7.01-12	1.94-12	3.05-13	
	85	2.48-13	1.36-13	2.96-14	4.31-15	
1500	2	4•29 - 09	1.26-09	3.30-10	2.77-11	
	6	1.37-09	3.74-09	1.13-10	1.00-11	
	12	6.06-10	1.63-09	5.14-11	4.83-12	
	25	1.85-10	4.89-10	1.89-11	1.85-12	
	45	3.49-11	1.59-11	3.38-12	4.63-13	
	60	8.45-12	4.18-12	8.64-13	1.19-13	
	70	2.20-12	1.18-12	2•34-13	3.02-14	
	85	1•14-14	1 • 41-14	1.19-15	6.31-17	
6000	2	5.16-10	1.59-10	2.41-11	1.59-12	
	6	2•17-10	8.86-11	1.36-11	9.09-13	
	12	1.08-10	4.95-11	7.52-12	5.20-13	
	25	3.56-11	1.77-11	3.15-12	2.17-13	
	45	6.69-12	3.51-12	65-13.ز	5.09-14	
	60	1.53-12	9.25-13	1.34-13	1.09-14	
	70	3.63-13	2.59-13	3.19-13	2.05-15	
	85	7.64-16	2.36-15	4.45-17	2.50-19	

TABLE XXII (CONTINUED)

ALT	LΑ	WAVELENGTH (")				
		0.5145	1.06	3.507	10.6	
9000	2	2•51-10	6.77-11	9.71-12	5.95-13	
	6	1.15-10	4.43-11	6.70-12	4.23-13	
	12	6•14-11	2.77-11	4.18-12	2.73-13	
	25	2.14-11	1.08-11	1.90-12	1.22-13	
	45	4.12-12	2•26-12	3.56-13	2.92-14	
	60		6.03-13	8.53-14	6.14-15	
	70	2.18-13	1.72-13	2.01-14	1.10-15	
	85		1.54-15	2.54-17	8.39-20	
18000	2	7.41-11	1.57-11	1.99-12	1.08-13	
	6	3.82-11	1.18-11	1.72-12	1.02-13	
	12	2•24-11	8.70-12	1.32-12	8.39-14	
	25	8.86-12	4.17-12	7.51-13	4:63-14	
	45	1:83-12	1.00-12	1.62-13	1 e 24-14	
	60		2.83-13	4.11-14	2.67-15	
	70	9.52-14	8.26-14	9.95-15	4.71-16	
	85		7.59-16	1.28-17	2.54-20	

ALT - ALTITUDE (METERS) LA - LOOKANGLE (DEGREES)

IRRADIANCE IS GIVEN IN UNITS OF PHOTONS M^{-2} /SOURCE PHOTON

TABLE XXIII

SINGLE AIR SCATTERED IRRADIANCE VERSUS WAVELENGTH, ALTITUDE, AND LOOKANGLE FOR AIRBORNE LASER SYSTEM IN A 5 KILOMETER VISIBILITY ATMOSPHERE

ALT	LA	WAVELENGTH (µ)				
		0•5145	1.06	3.507	10•6	
300	2	1.07-07	6.20-08	2•32-08	2.26-09	
	6	2.76-08	4.70-08	6.65-09	7.08-10	
	12	1.10-08	7.03-09	2.82-09	3.28-10	
	25	3.02-09	2.03-09	1.01-09	1.24-10	
	45	5.04-10	3.59-10	1.81-10	3.26-11	
	60	1.19-10	9.07-11	4.79-11	9•32-12	
	70	2:99-11	2.52-11	1.38-11	2.80-12	
	85	7.62-14	1.81-13	1.28-13	2.84-14	
1500	2	6.65-09	6.80-09	3.01-09	3.14-10	
	6	1.09-09	1.50-09	7.35-10	8.57-11	
	12	3.62-10	5.69-10	2.91-10	3.74-11	
	25	8.19-11	1.49-10	9.72-11	1.33-11	
	45	9•50-12	2.20-11	1.52-11	3.12-12	
	60	1.23-12	4.11-12	3.22-12	7.37-13	
	70	1.21-13	7.17-13	6.61-13	1.65-13	
	85	6.15-20	7.24-17	2.68-16	1.16-16	
6000	2	9.11-10	5.68-10	1.70-10	1.17-11	
	6	5.32-10	4.33-10	1•41-10	1.07-11	
	12	1.80-10	2.03-10	7.31-11	6.23-12	
	25	2.51-11	4•28-11	2.05-11	1.88-12	
	45	2.30-12	5•69 - 12	2.85-12	3.73-13	
	60	2.63-13	1.01-12	5.40-13	7.09-14	
	70	2.29-14	1.68-13	9•51-14	1.15-14	
	85	4.53-21	1.27-17	1.03-17	4.65-19	
TABLE XXIII (CONTINUED)

ALT	LA	WAVELENGTH (μ)					
		0•5145	1.06	3.507	10.6		
9000	2	4.06-10	2•27-10	6.59-11	4.17-12		
	6	2.35-10	1.80-10	5.63-11	3.90-12		
	12	1.54-10	1.40-10	4.63-11	3.52-12		
	25	2.18-11	3.28-11	1.48-11	1.22-12		
	45	1.71-12	4.08-12	1.95-12	2.27-13		
	60	1.84-13	7.09-13	3.61-13	4.12-14		
	70	1.54-14	1.17-13	6.23-14	6.35-15		
	85	2.46-21	8:59-18	6.00-18	1.55-19		
18000	2	1.08-11	5:09-11	1.45-11	8.44-13		
	6	6.38-11	4.22-11	1.28-11	8.19-13		
	12	4•19-11	3:40-11	1.08-11	7.57-13		
	25	1.91-11	1.97-11	8.01-12	5.82-13		
	45	1.32-12	2.59-12	1.16-12	1.19-13		
	60	1.19-13	4.19-13	2.04-13	2.02-14		
	70	8.99-15	6•69-14	3.43-14	2.94-15		
	85	9.81-22	4.68-18	3.17-18	4.87-20		

- ALT ALTITUDE (METERS) LA LOOKANGLE (DEGREES)

IRRADIANCE IS GIVEN IN UNITS OF PHOTONS M $^{-2}$ /SOURCE PHOTON

IV. CONCLUSIONS

The atmospheric scattered component of the scattered irradiance received from an airborne laser system can be greatly reduced if the source and receiver are separated horizontally so that the lookangle is in the order of 5 degrees or larger. At lookangles near zero, even a small increase in the horizontal separation distance can greatly reduce the atmospheric scattered component.

For the wavelengths in the visible and near infrared regions, the light scattered within the atmosphere after reflecting from the ground surface contributes more to the irradiance at the collimated receivers for large lookangles than does the light scattered in the atmosphere before reflecting from the ground surface.

For the 3.507 and 10.6 micron wavelength lasers, a single scattering calculation predicts the atmospheric scattered component within the statistical accuracy of the Monte Carlo calculation of the multiple scattered irradiance at the collimated receivers.

63

REFERENCES

- L. D. G. Collins, M. B. Wells, and K. Cunningham, <u>Light Transport</u> <u>In the Atmosphere</u>, Vol. III, Radiation Research Associates, Inc. Report ECOM-00240-1, Vol. III (1966).
- 2. Dr. F. Volz, private communication.
- 3. S. L. Valley, Editor, <u>Handbook of Geophysics and Space</u> <u>Environments</u>, McGraw-Hill Book Company, Inc., New York (1965).
- 4. R. Penndorf, "Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region Between 0.2 and 20.0 μ and their Application to Atmospheric Optics", JOSA <u>47</u>, No. 2 (February 1957).
- 5. K. Cunningham, M. B. Wells and D. G. Collins, <u>Light Transport</u> In the Atmosphere, Vol. II. Radiation Research Associates, Inc. Report ECOM-00240-1, Vol. II (1966).
- 6. P. Deirmendjian, Applied Optics, 3, No. 2, 187-196 (February 1964).
- L. Elterman, <u>Atmospheric Attenuation Model</u>, 1964, in the Ultraviolet, <u>Visible</u>, and <u>Infrared Regions for Altitudes to 50 km</u>, Air Force Cambridge Research Laboratories Report AFCRL-64-740 (Sept. 1964).
- 8. R. F. Calfee, private communication.
- 9. R. K. Long, <u>Atmospheric Absorption of CO2 Laser Radiation</u>, Lecture Notes, The Ohio State University, (1 August 1967).
- R. M. Goody, <u>Atmospheric Radiation I</u>, Oxford at the Clarendon Press (1964).

Unclassified Security Classification									
DOCUMENT CONT	ROL DATA - R	8, D							
Security classification of title, body of abstract and indexing	annotation must be entered when the overall report is classified)								
Radiation Research Associates. Inc.		Unclass	ified						
1506 West Terrell Avenue		20. GROUP							
Fort Worth, Texas 76104									
SCATTERING AND REFLECTANCE OF LIGHT FROM A DESCRIPTIVE NOTES (Type of report and inclusive dates)	1 AIRBORNE LA	ASER SYSTEM	IS						
Scientific, Inierim.									
5. AUTHOR(S) (First name, middle initial, last name) Collins, Dave G. Wells, Michael B.									
6 REPORT DATE	74. TOTAL NO. OI	F PAGES	75. NO. OF REFS						
15 June 1968	64		10						
DI CON TRACT OR GRANT NO.	DRA. ORIGINATOR	REPORT NUMB	ER(\$)						
F19628-67-C-0298 ^{5. PROJECT NO.} Task, Work Unit Nos 7621-07-01	Scientific Report No. 4								
^{c.} DOD Element 62405394	96. OTHER REPORT NO(S) (Any other numbers that may be assigned								
DOD Subelement 681000	ATCDI _68_0/20								
	·····								
"1 - Distribution of this document is un Clearinghouse, Department of Commerce, f	nlimited. It for sale to t	: may be re :he general	leased to the public."						
11 SUPPLEMENTARY NOTES	12. SPONSORING N	ALITARY ACTIV	/ITY						
TECH, OTHER	Air Force Cambridge Research Laboratories (CRO), L. G. Hanscom Field								
Bedford. Massachusetts 01730 The LITE-I Monte Carlo program was used to predict the ground reflected and atmospheric scattered components of the scattered light from airborne laser systems received at collipated receivers located at the same altitude as the laser system and focused on the ground area illuminated by the direct radiation from the laser system. Lasers emitting light with wavelengths of 0.5145, 1.06, 3.507 and 10.6 microns were considered at different altitudes in two model atmos- pheres. The first atmosphere was a clear atmosphere having a ground level meteoro- logical range of 25 km. The second atmosphere was identical to the first above 1.5 km but below 1.5 km the aerosol content was increased to reduce the ground level meteorological range to 5 km. The ground reflected component of the scattered light entering the receiver for all four wavelengths was taken to be the sum of the direct radiation incident on the ground area illuminated by the direct radiation and then reflected to the receiver plus the single scattered radiation incident upon the ground area illuminated by the direct radiation and then reflected to the receiver in both atmospheres is composed almost entirely of single scattered light, but for the 0.5145 and 1.06 micron lasers the single scattered irradiance seriously underpredicts the atmospheric scattered component for lookangles greater than just a few degrees.									
DD FORM 1473		II 1 -							
		Unclass	Classification						
		Security	-inspirica (10)						

-.

.

.

Unclassified Security Classification

14. KEY WORDS	LIN	LINK A		LINK Ø		кс		
	ROLE	₩Т	ROLE	WT	ROLE	WΤ		
Lasers Light Scattering Reflectance Visibility Model Atmosphere Albedo Backscattering	LIN	K A	LIN ROLE	K U WT	LIN	K C		
	Unclassified Security Classification							

ىر بىرى ئىشىغىنى بىرىسىرى بىرى بىرى بىر بىرىكى بىرى ئۇسىرىيەتىشىرىيىرى بىر

Ĩ,