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INTRODUC TICN

There is strong pressure within government and within the
society as a whole for quantitative analysis of an ever widening
clasz of problems, in order to produce "onjective' results in a
“scientific' manner. Such analyses, it is hoprd, wiil minimize
the extent to which the conclusions drawn depend on the "subjective"
Jjudgment of the analyst drawing them, and maximize the extent to
which they reflect "objective' reality. This pressure has produced
an infatuation with computational techniques coupled with a neglect
of the conceptual principles underlying the development of those
techniques which sometimes results in their application in situations
in which the interpretation given to the results, if not the technignes
themselves, are inappropriate. ! Notable examples of this have
occurec in studics arising from the Vietnam war and in the study
and interpretation of various forms of domestic data, such as
criminal statistics.

One form «of analysis which seems to me to be abused with
great frequency 1s statistical inference. Whenever data is available
in a form similar to that which would be obtained from a process
for which a standard statistical model and well defined analytical
techniques exist, and the questions of interes about the real world
process producing the data are similar to questions about the

standard model which can be answered with accepted techniques, it




is tempting to apply these techniques to the data and to interpret
the resulis as tnough the model were an adequate representaticen of
the real world process. This is often done even thcugh the analyst
inv-lved {c fully aware that this standard model is not a reasonabie
one for the process being studied and that the ‘nterpretations

being made have objective meaning only in the context of that
model.

Consider, for exampie, the probiem of comparing the fraction
of two populations having a particular character stic based on data
obtained from a fortuitous sample of those populations. Standard
techniques are available for testing the hypothesis that the fraction
of a given type of individual is the same in two populations, vena
random sample from cach of them, and it seems natural to use these
techniques. But if we then find that the difference is significant, at
say, the .05 level, what have we learned? The s atement that the
results are significant at the . 05 level means that, if the samples
were obtained by random sampling from two populations each with
the same fraction of individuals of the type in question, then the
diiferences between the samples as great as or greater than that
actually observed would be expected to occur 5% of the time. [t 1s
only a statement about what we would expect given random sampling,
and says nothing directly about what we should expect if the data

were produced in a different manner. If the data ava:lable cannot




reasonably be considered a random sample from anything,
statements about the statistical significance of differences between
groups occurring in that data provide, by themselves, little objective
~vitcnne about thet difierene~. In such circumstances, the best
interpretation which I can find for the statement that the data are
"statistically significant" is that the author has shown that it is
unlikely that the data were produced by a particular process (in
this case, random sampling from identical populations), which is
often one which no reasonable man would believe is the process
producing them, thcrefore he would like the reader to accept his
explanation of the data rather than other explanations which he has
not seriously considered.

Inferences drawn in this manner cannot be considered
"objective, " since their validity in the real world depends heavily
on the relationship between the real world process being investipated
and the model from which the inferences are derived. Judgments
are required about the nature of this relationship, and about the way
in which results should be interpreted given the discrepancies
between the model and the process being studied. These judgments
are seldom made explicitly, and in fact, are sometimes not even
given serious consideration,

Stattstical inference, or any other form of quantitative anualysis,

provides truly objective results only in very special circumstances,




for example, when the analyst is able to mold the process being
investigated to conform to the model used, rather than the reverse.
This is, after all, what occurs in a sample survey from a well defined
finite population using probability sampling methods, or in other
experiments in which randomization is introduced by the experimenter.
In the analysis of the data produced as a fortuitous byproduct of some
other activity, however, statistical or other quantitative techniques
can be at best an aid to judgment, and if they are to serve this

function well, this judgment should be careful and explicit.

This is not to imply, of course, that conclusions reached
through the application of statistical techniques to data when the
assumptions on which those techniques are based are not satisfied
are necessarily wrong. That certaintly is not the case, anymore
than conclusions reached through the use of a crystal ball, astrology,
or flipping a coin are necessariiy wrong. If I flip a coin to determine
the answer to all my yes-no questions, [ will, af.er all, be right
about haif the time. T'he issue, then, is not whether a par ular
conclusion is correct or incorrect, but rather it is the basis for
confidence 1n that conclusion. It is, it seems to me, reasonable to
base confidence n a coaclusion on a particular theory or model only
to the extent to which we are willing to accept the axioms or other
assumptions {explicit or implicit) of the theory or of the model, and

the logical consequences which follow from them. My concern over




some of the current uses of statistical inference (and other forms
of decision analysis as well) stems from the fact that conclusions
arce given theoret.cal justification when in fact the assumptions
required for this justification are obviously violated, and the degirce

of violation and its effects are either ignored or glossed over.




AGREEMENT BETWEEN THE MODEL AND THE PROBLEM

In problems of statistical inference, lack of agreement
between the model and the problem being modeled can occur on
two different levels, violation of particular detailed assumptions
inherent in the specific model being used, and violation of the basic
principles and concepts relating to decision in the face of uncertainty
which are 1mplicit in the theory of statistic2!l inference and in decision
theory in general. The first tvpe of violation is usually easy to
identify, and occurs almost invariably to some degree. The
model 15 only an approximation of reality, and there may even be
approximations within the model itself (e, g., approximation of a binomual
distribution with a normal). In most instances, the effects of such
approximations may not he particularly harmtul. On the contravy,
the use of approxamations is quite helpful, by climinating or reducing
tedious computations which would otherwise be required or by bringing
out the effects of important elements or factors in the problem more
clearly than would be possible with a more complex model,  As
either the madel aor the problem being inodeled becomes inercasingly
complex, however, 1t becomes mereasingly harder {and more important)
to keep track of the eftects of the approximation involved, and to take
account of them n interpreting the results. The second type,
violation of principles implicit tn the theory, s more fundamental,

and when it accurs it may cast considerable -loubt on usefulness of




the analysis involved. There 1s not always a clear dividing line
Letween the two, but instead there may be a gradually increasing
scace of disagreement between the specific assumptions tnherent

in the model and reasonable assumptions about the real world such
that as we move further up the scale 1t becomes mcereasingly more
difficult to reconcile the application of the model to the real problem
with the basic principles of statistical wirerence.

Statistical inference, n princeiple, never involves direct
aiference from the data observed ' the process causing the data
{e.g., from the sample to the population in the case of sampling).

It consists, instead, of comparing the observed data with that
expected from varteus members of 4 oollection o predictive model s
which are assumed to be adequate models of poss=ible alternatv
versions of the process being tserved. The manner o whao h the
results of this comparison are used 1n the subscquent inferen o
depends on the nature of the aderence being made and on othae
criterza che on by the analyvst. F o purposes of this dbsouss
howeser, the guportant pomnt os that bserved data can be ntor s ered
relative to the alternative vers.ons of the process represented @

the predictive models consodered, and only refative 1o those. I

e vollection of preductive moddels comsrdered does not proyde y
reasonable (and thos can be dec ded -ady chroagh the can Ctul use

Ut ective cudernenty recresentatson oo the o tear woer bl alter ot o .




of interest, then the thcoretical considerations which provide
justification for the inference produced by the model (of which this
collection of predictive models is but a part) provide no justification

. . : 2
for the interpretation of that inference in the real world problem.




THE USE OF PREDICTIVE MODELS

To see the way in which predictive models are used in the
development of statistical techniques, let us turn to a standard
statistical example, that cf sampling from an urn filled with colored
bails. 3 Assume w - have an urn containing some fixed number of
balls, say 100, and that an unknown number (possibly zero) of thcse
are red and the rest are black. We draw a random sample of balls
from the urn, and wish to use this sample as a basis for inference
about the composition of the urn. The observed data in this case
is a description of the sample, and the process producing the data
consists of sampling, according to a fixed sampling procedure,
from an urn of fixed (but unknown) compositicn. The class of
predictive models which is considered, therefore, should include
a predictive model which describes the way in which each possible
urn composition and sampling procedure will produce samples.

If the sample is obtained by random sampling without
replacement (i.e., when a ball is drawn from the urn it is not
replaced and so has no chance of being drawn again), and we wish
to make no a priori assumptions about the composition of the urn,
we should then consider 101 different predictive models, corresponding
to the 101 different possible urn compositions (of r red balls and
100-r black balls, 0 <r < 100), and our methci of inference should

take into account the way in which samples are produced by each of
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these predictive models, 1 Standard statistical techniques applicable
to the problem do, in fact, do this. Fortunately, this is casier than
it may appear a' first glance, because each of these predictive models
results in the production of samples according to a distribution of
the same form (hypergeometric), and we can handle them all in the
form of a single general model with a varying parameter within the
model. > We should, however, be aware that in doing this we are,
conceptually at least, dealing not with a single model or single
process, but with 101 different predictive models of 101 different
versions of a process only ore of which is actually occurring when
we draw the balls from the urn.

The assumption of random sampling, then, and the use of
techniques based on that assumption, results in inferences based
on the comparison of the observed data with the expected outcomes
produced by predictive models of the results of random sampling
from urns of all possible compositions. If the true process producing
the data is not represented, i.e., if the balls are obtained by some
means other than random sampling, and if the relationship between
the actual urn composition and the sumple produced by this process
is> significantly different than the relationship for random sampling,
the use of the random sampling model may iead us to totally
inappropriate conclusions, and will certainly lead to inferences
whose performance characteristics (probability of crror, ete.) are

quite different from what we expect.




But how restrictive is the assumption of random sampling?
To answer this question we must contrast normal usage of the term
random with the much narrower and more restrictive technical
definition of ""random sampling' in the statistical sense. Webster
defines the adjective "random' as meaning "lacking or seeming to

lack a regular plan, purpose, or pattern, ' and also gives the

additional definition "having the same probability of occurring as

every other member of a set."

The former definition, while consistent
with ordinary usage of the term ra' iom, is in contradistinction to the
statistical “efinition of the term  Random sampling, in the statistical
sense, imposes the positive requirement on the sampling procedure
that every possible sample be equally likely, and this is far different
from the essentially negative requirement that there be no obvious
pattern or plan. The latter definition, if interpreted properly,
encompasses the statistical meaning, but if interpreted improperly,
may also imply something far different. The set whose members
must have the same probability of occurring is not the set of balls

in the urn, but rather it is the set of all possible samples (of the

size we are considering) of such balls. Thus, for example, if we
number the balls irom 1 to 100 then choose a digit from 0 to 9 at
random and take, as a sample of size 10, all balls whose number

end.. in the digit chosen, we do not obtain a random sample. While

it 1s true that each ball has equal probability of being in the sample




(. 1), it 1s not true that 2ach sample i equally likely, since we
will never obtain a sample containing, say, both ball 16 and ball
18.

The assumption of random sampling is, therefore, quite a
restrictive one. In applications to real data, it imposes a positive
requirement on the analyst to insure that his sampling procedure
does indeed provide a random sample or a reasonable approximation
to one, and not simply a negative requirement to insure that there
are no obvious or conscious sources of bias. It is not sufficient
that each ball in the urn have equal probability of being included in
the sample, but it must also be true that each subset of balls have
cqual probability of being included. That the assumptions of the
models employed be satisfied is not <imply a matter of mathematical
nicety, but is a {fundamental to tiie validity of the inference, since
the inference is only a statement about what is reasonable if the
process being observed is one of those reprusented by the collection
of predictive models employed. Moreover, this is true whether or
not the analyst makes explicit use of the predictive models, since
even if he uses only techniques explicitly, he is implicitly using
the collection of predictive models for which those techniques were
developed.

The problem wouud be less serious if the models were self

verifying, in the sense that if the model did not it the process
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producing the data, this would be evident from the data and would
, prevent incorrect inferences from being drawn. Unfortunately,
this is seldom the case. The collection of predictive models
contained in the statistical models of many common statistical
problems is large enough to explain almost any observed data to
which the model is applied. In the case of balls drawn from an urn,
for example, the collection of predictive models representing random
sampling from all possible urn compositions is sufficient to explain

any sample of balls, so that there is no way to determine whether

e L

or not a sample of balls drawn from an urn of unknown composition

{ was drawn at random on the basis of the sample alone. (W= could,
on the other hand, make inferences about the randomness of the
sampling procedure given a sample of balls from an urn of known
composition. To do this we would use predictive models representing
alternative versions of the process of sampling from the urn of fixed
composition according to the set of alternative sampling methods we
wishes to consider. In fact, given any two of the three elements of
the problem, the urn composition, sampling procedure, and resulting
sample, it is possible to rnake meaningful statements or to draw
inferences about the third. If we have known only one of the three,
however, there is little we can say about the other two.)

It is, of course, possible to draw valid inferences from

nonrandom samples. In fact, the practical difficulties involved in
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random sampling from a very large population are such that random
sampling is seldom used in such cases. When a different sampling
procedure is used, however, the predictive models on which the
inferences is to be based should reflect the procedure actually used
and not simple one which tends to be mathematically convenient.
The basic principle underlying all statistical inference is that
we attempt tc distinguish the process actually being observed from
alternative possible versions of that process on the basis of expected
differences in the outcomes produced by these versions. The use
of predictive models which do not describe the behavior of the
alternatives among which we wish to distinguish, or of techniques

based on such models, is a clear violation of this principle.




REFERENCES AND NOTES

I am not condeming the use of statistical techniques to 'snoop”
through large amounts of data to look for possible interesting
relationships worthy of further study. Such "snooping," however,
is not statistical inference, and relationships thus found should
not be interpreted as though it were.

I am not concerned in this discussion with other forms of
justification often usec in practice, such as "Everyone does it

"on

this way and it seems to work, = We have all this data and have

to do something with it, " or "This is what they said to do in

Stat 309B, ' as these make no use of, and have no bearing on,

any theoretical considerations related to the validity of the
inferences drawn.

This discussion illustrates an important, and sometimes overlooked,
distinction between mathematicians and most other scientists in

the way in which they rvelate mathematical models to the real

world. Most scientists are concerned primartly with the real
world, and use models to help them understand i1it. Mathematicians,
on the other hand, are often primarily concerned with the models,
and use the real world to pain a better conceptual understanding

of the model. In this discussion T am not really interested in urns
filled with red and black balls, but in a class of models which seen

to describe some of the important aspects of sampling from a
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finite population. The real world picture which I draw of these
models (the urn) is simply to aid in understanding them.

If we do make a priori assumptions about the urn composition
(such as "at least half of the balls are red''), the composition
of collection of predictive models required will be reduced
accordingly.

War o discuccion ~f the mathematical details, the reader should
refer to any elementary statistics text, such as Hodges and

Lehmann, Basic Concepts of Proability and Statistics, Holden-Day,

1964.




