ON THE INITIAL VALUE PROBLEM FOR

ROTATING STRATIFIED FLOW

By LOUIS N. HOWARD AND WILLIAM L. SIEGMANN
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~. Introduction. In this paper we shall investigate some
general properties of motions of a compressible fluid under the
influence of a gravitational field. Our main restrictive hypotheses

are first that we are concerned with-motions (or time scales) for

which the dissipative effects of viscosity and heat condition are
not important, and secuond that the motions are small deviations

from a basic state of rigidly rotating hydrostatic equilibrium.

[yt pticiag ey

We also assume: that the gravitational field is externally given,
and is not itself affected by the motion. The mathematical model

based on these hypotheses is the linear theory of rotating stratified

non-dissipative flow. Perhaps the most basic mathematical problem

in this context is the initial-boundary value problem: the values

of the flow varisbles are given at some initiasl time in & region

R, and their subsequent temporal evolution is sought, subject to

é appropriate boundary conditions on the boundary B of R. We shall
be concerned with this problem in the case of the boundary condition
corresponding to a rigid evelope B, i.e. we take the normal component

of the velocity vector to be zern on B. As usual with initial-boundary

value problems for linear systems of partial differential equations
with time independent coefficients, it is helpful to think of the "

B _;m

._ - . \\\ ~:: ‘}'" “Q?\,q

] Sy

problem in terms of the "method of normal modes," a normal mode being
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a solution of the differential equations which satisfies the (homogeneous)
boundary conditions and varies harmonically with time. If the initial
data can be represented as a superposition of the initial values of
the various normal modes, then the solution to the initial-boundary
value problem .5 simply the same superposition of normal mode com-
ponents, each evolving in time at its own frequency. From this

point of view there are two parts to the problem: first the determin-
ation of the frequencies and the spatial dependence of the various
normal modes, and second the representation of the initial data in
terms of their initial values. In many problems, for instance in

heat conductioii, the first part is by far the more difficult, the
representation of initial data being readily found by exploiting

some sort of spatial orthogecnality of normal modes of different
frequencies. To a certain exteni this is true of the present problem -
it is only in exceptionsl cases that it is possible to describe the
oscillatory normal modes explicitly (indeed even their existence

is not an easy question), though they do have a kind of spatial
orthogonality. However in the case of steady flows, normal modes

of frequency zero, it turns out to be possible to describe them quite
generally. But in the present case, as in the analogous problem for
homogeneous rotating flow, this class of steady flows is often quite
extensive - the frequency zero is highly degenerate, and this means
that the second part of the problem - the determination of exactly
vhich steady component is excited by the initial data - is by no means
trivial. Our main results deal with this aspect of the problem. After

formulating the problem and describing some of its general features,
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we shall describe all the steady flows. Then we shall establish some
basic conservation properties possessed by a&ll flows in this linear
theory, and show how they can be used to characterize exactly, from
the initial data, the steady component of the solution to the initial-
boundary value problem. We conclude with some examples illustrating
our general results in special cases, and compare the present problem

with its analogue for rotating homogeneous flow.

2. Formulation. The basic equations of our mathematical model
are those of a compressible fluid without viscosity or heat conduction,
written relative to a system rotating about the z-axis with angular

velocity @:

5t+295xg+g-v_g+%vp+vm=o (1)
P, +V « (pa) =0 (2)

syt u Vs =0 (3)

e = f(p,s) (&)

Here u, P, p and s are velocity, density pressure and specific

2, yz)/e + @, is the "geopotential,"” ¢, being

the ordinary gravitational potential; in the simplest case we would

entropy and @ = -92(x

have @l = gz, but we do not require any specific form for @l, nor

need we specialize the equation of state (4), though we shall assume
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(as is appropriate for all ordinary fluids) that 3f/3p > 0. Let
I. be a length characterizing the size of the region R containing
the fluid, and let p and s be characteristic density and entropy

scales. Then introduce dimensionless variables, indicated by asterisks,

as follows: r = Lr t = Q-lt*, u= 0y, p= Bp*, s = 88

b R 4
2 2~ 2.2
p=L0pp, P=02L 9. The dimensionless equations are then the

*

same as (1) - (4) except that 2 is replaced by 1, asterisks are
affixed to all the variables, and for the equation of state we write

£,(s,,p,) = p1f(ss,,150%0p,). Let the basic state about which

we shall linearize have u, =0, f, = Pyr Py = Py 8y = 845 the

equations then show that o and s, ere all functions of 9,

o’ Po 0

= n'! =
and in fact o, = -p'((9,) and @, = f,(sy,p,). We may thus consider

the basic state of stratification to be specified by, say, po(w*),

and po and sO are then determined. It should be noted that while

we shall usually write expressions like DO = po(¢;), this should not
be interpreted quite literally, for what the equations tor the basic

state really say is that p, does not change as one moves along a

0

surface of conczant @, in the flow region. But the constant ?,

surface may be cut into several disconnected components by the flow
region, and though po must be a constant within each component,

the different components may have different values of this constant.

The density distributions down inside each of two potholes in the bottom
of a stratified lake need not agree. The linearized equations are

now obtained by setting u, = Egi, Py = po + Epl, Py = po + Epl,

Sy = Syt ESy in (1) - (4) and retaining first order terms in €;

€ may be regarded as a sort of Rossby number characterizing the
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magnitude of the initial perturbation. Suppressing from now on the
subscripts 1 and x, and writing f_ and fp for 3f,/ds, and

df,/dp, evaluated at the basic state, these linearized equations are:

1_1,t+2l;xg+p6]Vp+p61pV¢=o (5)
Py + 7V +(pu) = 0 (6)

Byt Vs, =0 (7)
p=f.s+ D (8)

These equations are to be considered in a fixed region R, with
the boundary condition that u - n =0 on the boundary B of R,
n being the unit outward normal to B. For the initial value
problem we also prescribe u, o and s at t = 0.

The equations (5) - (8) possess an invariant (i.e. temporally

conserved) "energy integral." It can be obtained as follows:

2 (1 -1, 2 =)
3t < 2 Po TpP >‘ Po B(Py = £5y)

L[] - ' L[] '
Tl A

]
©
(@]
J
—
]
O
<

fsg - Vo)

= -1 ' — .
= -pV - u pop%%ﬁ V¢ = -pV E*P%# Vo,

since p! =7 f

1 ]
0 <50 + ppo from the original equation of state. But

we also have
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3t \ 2 o=
and so
Vd
1l - 2 -1 2
Z(3e'tp’ -y - v ur oo

1}

-V (pu) +u - (Vp + W)

"

-7 (p) - 3 5% (e lul®)

using (5). Thus
3
31 2 -1, 2 , -l, 2 . -
atz{polgl + P, fpp (s]) fSS}+V (pu) = 0. (9)

Integrating this over R and using the boundary condition we find

the energy conservation formula:
')-lfsszjl' av = 0. (10)

We assume that fp > 0 (density increases with pressure if no
heat is added), and we shall also suppose that the basic state is
such that (sc'))_lfS <0, i.e. it is "statically stable." Usually
this would mean sé > 0 (specific entropy increases with altitude),
since most ordinary fluids expand on being heated at constant pressure,
i.e. fs < 0. With these assumptions we see that the quadratic form

€ 1is positive definite and thus the perturbation quantities will

remain bounded (in L2 norm anyway) if they are so initially. It
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is of course to achieve this, i.e. to rule out the possibility of
convective instability, that we assume static stability of the basic
state.

If we introduce the inner product corresponding to the quadratic
form & by
@1’1’1’51]‘-‘2’1’2’52) =A [pgu - u, + 0, “1e P1P2 (S') f sy 1851av (11)
(the asterisk denotes the complex conjugate) one readily verifies that
the inner product of two (possibly complex) solutions of (5) - (8)
is also invariant in time. In particular this implies the reality
of the frequency of any normal mode solution of (5) - (8), and the
orthogonality, in the sense of the inner product (11), of any two
normal modes of different frequencies.

We note also that the energy conservation formula (10) implies
the uniqueness of the solution to the initial value problem, for the

difference of two solutions with the same initial data is also a

solution o +he equations and the boundary condition, and has zero
energy initially. Being conserved, its energy is also zero there-

i after, and since it is positive definite this implies that the
difference flow is always zero, i.e. the original solution is
unique. A proof of the existence of a solution to the initial value
problem appears to be a more difficult question - we shall merely

assume it here.
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3. Steady flows. The time-independent solutions of equations
(5) - (8) can be easily described explicitly. First of all, (7)
shows that the velocity field of eny such solution must be horizontal,
i.e. directed along surfaces of constant @, u - V9 = 0. (We shall
always use the word "horizontal" in this sense - vectors perpendicular
to k are thus not usually horizontal.) If this is true, then the
cross product of V@ with the time independent form of (5) shows

that

u= (29,00) 770 x % (12)

and putting this back in (5) we find that ¢ must be given by

3

p= -5 (13)
z

These two necessary conditions together with the equation of state
(8) give us a candidate for a steady solution of (5) - (8) for any
function p, and in fact one easily checks that formulas (12)
and (13) are sufficient for (5) and (7) to be satisfied. However
(6) will ve satisfied only il also Vp - V@ XV(PZ = 0; this is
no restriction on p in case VO x‘V@z = 0, but otherwise it
shows that p must be constant along the integral curves of the
vector field VO x'V@z, i.e. along the intersections of the surfaces
of constant ¢ and those of constant @Z. Parts of the flow region
R throughout which V@ X'V@Z =0, 1i.e. in which ¢ and @z are

functionally dependent, we shall call geostrophicaelly free regions.




Elsewhere, we imagine the integral curves of Y9 x\7q>z to be constructed,

and call them geostrophic curves. Through each point in parts of R

which are not geostrophically free (if any) there passes a unique
geostrophic curve; some or all of these curves may cross the boundary
of the region R. Those parts of R which are covered by geostrophic

curves which cross the boundary B we call geostrophically blocked

regions. Other parts of R which are covered by geostrophic curves
which do not cross the boundary we call geostrophically guided regions.
We shell assume that the geostrophic curves in guided regions are

closed, neglecting the possibility that they might wind around infinitely
inside the region. It is certainly difficult to imagine a potential
function which is at all reasonable for which the geostrophic curves

stay in the flow domain but are not closed. With this terminology

we may say then that for a steady flow it is necessary that p be

constant along geostrophic curves in guided or blocked regions, i.e.
(essentially) t = p(@,@z) there. There is an additional minor
restriction on p - it must be such that (12) and (13) do not make
u or p singular at places where ¢; = 0, 1if there are any such.
But except for this, (12), (13) and the equation of state (to give

s} provide the general solution of the steady forms of (5) - (8),

with p arbitrary in free regions, or an arbitrary function cmstant

on geostrophic curves otherwise. However we are actually interested

only in solutions which also satisfy the boundary condition u - n=20
on B; (12) shows that this is always true on horizontal parts of
B, if any, but that it is necessary (and sufficient) that p be

constant along horizontal curves on the non-horizontal part of B.

| |
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Such a steady solution of (5) - (8) which satisfies ua -n=0 on B

we call a geostrophic flow. In non-free regions we note that

-1 Bp( o, q)z )

zO) ——B@z V(prcpz,

so that the velocity vector of a geostrophic flow is directed along
the geostrophic curves. Furthermore the magnitude of u along a
given geostrophic curve (in the non-free case) is a constant multiple
of |V9 x‘V@zl, and thus if & geostrophic curve crosses the boundary
the velocity vector on it must be zero. In this case the momentum
equation (or (12)) shows that p must not only be constant along
geostrophic curves, but constant on horizontal surfaces, i.e.
(essentiaily) p = p(®) in blocked regions; and (13) and (8) then
show that p and s are likewise constant on horizontal surfaces.
Thus a geostrophic "flow" in a blocked region 1s at most only a
perturbation of the basic state into another state of hydrostatic
equilibrium.

Summarizing these results, the geostrophic flows are given by
(12), (13) and (8) with p a function which is: (a) arbitrary in
free regicns, except that it must be constant along horizontal
curves on the non-horizontal part of B, (b) an arbitrary function
constant along geostrophic curves in guided regions, or (e¢) an

arbitrary function coustant on horizontal surfaces in blocked regions.

3
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4. Conservation theorems. The temporal conservation of the

energy integral is a result of & very general sort; something like

it is true of any non-dissipative system. We come now to some results
which are in a sense much stronger, and relate much more specifically
to the properties of linearized rotating stratified flow. The first
of these has to do with quantities on the boundary B of the flow
region. Some of B may consist of pieces of constant @ surfaces -
we call this the horizontal part Bh of B; onit nxVe=0.

Parts of the boundary on which n XV® # O make up the non-horizontal
part Bn' (Edges, where Bn and B

h
of Bh.) Since n and V9 have the same direction on the "flat

meet, we may count as part

spots" B, the boundary condition and the entropy equation (7)

show that Sy = 0 there. Thus entropy is conserved pointwise on

flat spots, for any solution satisfying the boundary condition.
This is not true on Bn, but there is a related result. Let T n

be any closed horizontal curve on Bn, and consider the rate of

change of the circulation around [ 0 We have

-a—f u-d.r=-f [2kxu+o'le+o'loVCP]-dr
dtJp = ~ r - = 0 0 =
n n

since Fn is horizontal (so V¢ . dr = 0), 0. 1is constant along

0
Fn’ and Vp - dr is an exact differential. However, on I n’

WXE

R R Rk
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doc being arc length, so

n-k L
kXxu-dr=-——— u* VP do=—"—"5do .
Vo x n] [ve x n| %0

Thus we obtain

Is

af af n-k
2 cdr= 22| —m—— 2o,

so setting

c(r)=f wxvp+ 25 - n—L— (14)
n r S, =

0 ~|vo x n}
n n

we see that C(Pn) is constant in time. We have estabiished our

first basic result:

Theorem I. For every solution of (5) - (8) with u - n =0
on B,

(«) s 1is conserved on the flat spots B if any, and

h,
(v) C(Fn) (given by (14%)) is conserved for each closed horizontal

curve Fn lying on Bn.

Our second basic conservation property concerns a quantity related
to that appearing in the integrand of (14). One readily shows from
(5) and (7) that

1

.a_ -1 1y T | — _ -1
3t {DOCPZ [E X VO + 25(50) ]?_:_J }- 2005 sz Vp X Vo, (15)
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Taking the divergence of this and using (6) we get

2o [pow;l <2 X V9 + 28(86)-15)] - 2p} = ¢.°Up - Vo x Vg . (16)

Let us define the scalzr field 1T by

! -1 K 2
I= P v. [pocpz (g XV + 2(56) sg)] - 200 P. (l?)

We call T the "potential vorticity” of the flow. Throughout any
geostrophically free region we see at once from (16) that I is
conserved pointwise. In non-free regions this 1is not true, but a
somewhat weaker kind of conservation does apply. First consider

a geostrophically guided region, and let I' be any closed geostrophic
curve in it (or on its boundary). We define the "mean potential

vorticity for T" by the formula:

| T(T) =f of | v xve | ao. (18)
r 2 z
Along I' we have dr = IVCP xVCPZI.JVCp X VCPZ do, so (16) shows that

d = 5l S
3t UD) _fr o | 7o xvcpzl Top - VO X VP do

! r

4 since po is constant along I' and ¥p - dr 1is exact. This kind
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of a result does not apply in blocked regions, since there the
geostrophic curves are not closed. For a blocked region we cunsider
any horizontal surface I lying in the biocked region, and let T
be the horizontal curve on B which is the boundary of ¥; T and
' are characterized by some value of the potential, say @b. Then

we construct the quantify
-1
(@) = | mivel™as
z
j o117 x n|™(u x 70 + 25(s*) )n ao (19)
T

where the orientations of T' and ¥ are related as usual in Stokes®
theorem, i.e. if PV@I-lVW is regarded as the unit normal to I,

on I' we have dr = |ve x EI_LV@ X n dc. Now we have on T':

u, XV + zst(sé)'l_k_) - n|vo x nl'ldo

[(-2}5 Xu - o,SJVp) X V¢ - 2u -w;] - n| vo x n| 4o

[-ECPZE - oalvp xvq:] - n| Vo x gl'ldo = -p(;lvp - dr, so
d -1 - -1 -1 -
&%=_/‘z°o @zz\'/'p-vwwizlvml as +L/;q>z DOIVp-dE

=f -p(;le (@;lvp) -Wlwl'lds +f o lo Vp -+ dr = 0
z I-\ z O -

by Stokes' Theorem, since Po is constant on Y. This finishes

the proof of
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Theorem II. For every solution of (5) - (8) with u - n=0
on B,
(a) T (given by (17)) is conserved at each point of a geostrophically
free region,
(b) T (given by (18)) is conserved for each geostrophic curve
in a guided region, and
(¢) Q (given by (19)) is conserved for each horizontal surface

in a blocked region.

5. The initial-value problem. Suppose u(t), e(t), s(t),

p(t) 1is the solution to the initial value problem for some given

set of initial conditions. We shall define the geostrophic part

of u, ete., (called Eg’ etc.) to be the projection, orthogonal
in the sense of the inner product (11), of u, etc. onto the space
of geostrophic flows. Of course we really have such a projection
for each value of t, but these are in fact always the same.

This would be immediately obvious if we knew the existence and
completeness of normal mode solutions in terms of which we could
represent g(t} etec., for all oscillatory normal modes are
orthogonal to the steady ones, which are just the geostrophic
flows. But even without the exiscence of a complete set of normal
modes, the projection is easily seen to be independent of time;
this follows for instance from the equivalent definition of u
etc. as that geostrophic flow which minimizes the energy of the
difference flow u - u_, etc., (at a given time t). If u

) 8,

is the projection at t, and u that at t,. then the energies
1 --g2 2
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of the difference flows u -u . and u - 282 must be constant

in time, hence equal, since one is minimal at t, and the other

at t2' The identity of ggl and 282 then follows from the
uniqueness of the projection implied by the positive definiteness

of the energy. Since the geostrophic part is independent of time,

it can, in principle at least, be determined from the initial data -

it is our main purpose to describe explicitly how this may be done.
This problem is not altogether trivial becausc the space of geostrophic
flows is relatively extensive - it is not simply a matter of calculating
a coefficient, as it would be if there were only one geostrophic

flow.

It is a reasonable conjecture that the geostrophic part might
also be the time average over 0 <t < » of the solution to the
initial value problem. This is probably essentially true; for
example if one assumes that u(t) etc. remain bounded and that
the time average exists, one easily checks that the time average
satisTies the geostrophic equations. Then the time average of
u - gg etc. would also be a geostrophic flow, and one that is
orthogonal to all geostrophic flows (assuming interchangability of
spacial and temporal integrations), in particular to itself. Thus
the time average of u would in fact be 8o It should be remarked

however that this argument, even if it could be fully justified,

would only prove that gg was the {ime average almost everywhere.

It seems in fact to be the case that sometimes the time average is
not exactly the same as gg, but exhibits certain discontinuities

on parts of the boundary. We shall see luter how this comes about.
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To determine _1_18 we first need a formula for the inner product
of an arbitrary time dependent flow u, p, ¢, s with an arbitrary
geostrophic flow g, S, B, 3; the latter is given in terms of its
pressure field p by the formulas of §3, and we want to express
the inner product also in terms of 5 We have, using the real form
of (11) (the complex form is only needed in connection with oscillatory

normal modes):

N A A

. A -], ~ _l . PN
(w,p,0,5|u,p,0,5) =j; [oog w4+ e f PP - (s5) ss] av
[¢]V¢xvp.u+plfppp+(s) <(Pp+fp>]

[ <— u X VP + (sc'))‘185> . VD + fpf; <_pc-)lp + (sc'))'ls>J av

1,1~ -1 ~f -1 -1
5 %, P [ngcp + 2(so) sEJdS +/;{ fpp <°o P+ (so) s) av

-f %i‘;v |:¢J-l <u X VO + 2(8')-lsk>] dv.
R z &= 0 =

J;
Sl

s

But
1/ -1 ] - [ a7/ -1 >1
. { 1 = o '
v [cpz \g X VP + 2(so) s§>J pol\7 l_poq)z Kg XVo + 2(so) SEJ
-1 NS 0 RS | v -l
- 20, po(cp)(so) s =1+ 2070 = 20, (fsso fppo)(so) s

I+ 2p e (p +p (sc'))'ls).

Thus we obtain:
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(u,p,p,slu,p,p,s) =5 c if plt av +f ¢ p(s!) lsg - kdS
+ lf qflfm s [uxVe + 2(s')°lsk]d.S. (20)
2 B 2% = 0 -
n

Now ﬁ is the pressure field of a geostrophic flow, so it must be
constant along the horizontal curves Th(@) on Bn. We imagine
the last surface integral in (20) to be calculated by dividing

Bn up into infinitesimal strips between adjacent curves Th; one
easily sees from the geometry that in this cese we have

as = | v x n| 149 do, so
-1~ (-1
® pn - [uxVP+ 2(s') skldS
B 2 - = 0 =

3 ~ [\ - _ -
=f p(9)a? | wzl!W x n| 15 + (u x Vo + 2(s]) lsg)do (21)
B

We now use these formulas tc characterize those flows which are
orthogonal to all geostrophic flows, by requiring the right hand side
of (20) to be zero for an arbitrary geostrophic pressure field ﬁ.
Let us suppose the region R to be divided into geostrophically

free, guided, and blocked parts, RF’ RG and R and denote the

B,

portions of B, and Bn which are associated with each such part

h

by similar subscripts. First we may choose ﬁ to be zero on the

bourdary and in RG and RB’

(20) then shows that for u, etc., to be orthogonal to all

but otherwise arbitrary in RF'

geostrophic flows it must have zero potential vorticity throughout

RF' Next we may choose a ﬁ which is zero in RG and RB (as we
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have just seen the volume integral then vanishes since I must

be zero in RF) and which is zero on Bn’ BhG and BhB’ but
which is arbitrary on BhF' We thus see that it is also necessary
that s should vanish (pointwise) on BhF' Now we cannot choose a

geostrophic pressure field which is arbitrary on BnF’ for there

it must be constant along horizontal curves, but its value can vary
arbitrarily from one horizontal curve to the next. Using the

form (21) for the surface integral over B p We see then, noting

that ¢; is constant along horizontal curves on BnF’ that it

is also necessary that the quantity C defined by (14) should

be zero on every horizontal curve on BnF' Next we may choose a

ﬁ which is zero on the boundary and ir R_ but is arbitrary in

B

R to the extent that is possible, i.e. an arbitrary function

GJ
of geostrophic curves in RG' Since 5 is not completely arbitrary

we cannot conclude that T must vanish in R but if we think of

GJ

the volume integral over R, as being evaluated by integrating over

G
infinitesimal tubes around the geostrophic curves, such a tube being

given for instance by ¢l o< ¢l + 49 and ¢zl < @z < ¢zl + d¢z,
one sees that dv = |W X‘Vﬁgl-ldw d9, do, and the vanishing of

the volume integral for arbitrary 5(¢,¢ ) thus implies that the

zZ

mean potential vorticity T(I') defined by (18) must vanish for

every closed geostrophic curve in R As above one then shows that

N

C(Fq) must also vanish for Th's on B since 9, 1is constant

GJ
along these curves, the zeostrophic curves in RG not crossing the

boundary. However one cannot conclude that s = 0 pointwise on

B for 5 must be constant along the geostrophic curves there.

hG’
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Dividing BhG into strips between adjacent geostrophic curves ve find
as = |[Wp x chzl'llvwidq)z do end thus since n : k=+ @ IWI-l on
Bh, we see that for each geostrophic curve Fh on BhG the quantity

D(T,) =f |ve x vo |15 do (21)
r Z
h

must vanish. Passing now to the blocked parts, if any, we note that
here the arbitrariness of ﬁ is so restricted that we can no longer
consider the volume integral and the surface integral over BnB
separately. Evaluating the former by integrating over horizontal

sheets between adjacent surfaces of constant @ and the latter by
using the corresponding horizontal strips on BnB we find that the
necessary condition is tie vanishing of the quantity Q(T) defined
by (19), for each horizontal surface T in RB. Finally on BhB’

since n - k = i_lvwl'lwz there, we must have the quantity

E =f | vo|™Ls as (22)
zero as well. It should perhaps be mentioned explicitly that in
case some of the surfaces ¥ or Bb consist of several disconnected
pieces, these conditions must hold separately for each connected

component. Summarizing these results we have

Theorem IIT. In order that a flow u, p, P, s should be
orthogonal to all geostrophic flows it is necessary (and sufficient)

that each of the following should vanish:




(a) The potential vorticity 1 (eq. (17)), at each point

of RF;

(b) T(T) (eq. (18)), for each geostrophic curve I in R,3

i (¢) Q(Z) (eq. (19)), for each horizontal surface in RB;
(d) C(Pn) (eq. (14)), for each horizontal curve on Bp
or BnG;

(e) s, on B

() D(Th) (eq. (21)), for each geostrophic curve Ph on B, .3

(g) E (eq. (22)), for each connected component of BhB'
| Notice that all of these quantities are constant in time,
: because of Theorems I and II. They must of course be, because of
the temporal invarisnce of the inner product which assures us that
if u etc. is once orthogonal to all geostrophic flows it will
always be so; note however that Theorem I is slightly stronger
since it asserts the constancy of s pointwise on all of Bh’
without the averaging implied in the quantities D and E.

Theorem III now allows us to characterize completely the
geostrophic part of the solution to the initial value problem.
For gg etec. to be the projection of u ete. onto the geostrophic

flows simply means that the difference flow u - gg etc. is orthogonal

to all geostrophic flows, hence the quantities (a) ::- (g) mentioned
in Theorem III must all vanish when calculated for this difference
flow. Thus Eg etc. must be a geostrophic flow for which the
quantities (a) ... (g) are all the same as they are for the initial
data. The geostrophic part is uniquely determined by these conditions,

for the difference of two geostrophic flows both of which have the




same values of (a) --- (g) would be a geostrophic flow with zero
values of these guantities, hence orthogonal to itself and so zero.

This completes

Theorem IV. The geostrophic part of the solution to the initial
veIne problem is that (unique) geostrophic flow which has the same
values of vhe quantities mentioned in Theorem III as the initial

flow has.

The actual computation of gg may not be easy, but it is eesier
than the full initiael value problem. For example if the entire region

is geostrophically free, the condition I = Hb gives an elliptic

partial differential eguation in 3 variables for pg, for which
in addition we have the boundary conditions that pg is constant

on horizontal curves on Bn, C=C, on these curves, and s = s

0

on Bh. We do not have a proof of the existence of a solution to

0

this problem (as usual, uniqueness is much easier) but we shall see
an example in the next section which at least suggests that such
existence is to be expected.

The unique determination of the geostrophic part by the initial
values of the quantities (a) --- (g) indicates that we may describe
them as "the features of the initial data which are carried by the
geostrophic part." It is natural to expect that the geostrophic part
would carry all aspects of the initial data which are constant in
time - yet this is not quite so, at least when guided or blocked

regions are present, for Theorem I shows for instance that s is
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pointwise constant on Bh’ yet the geostrophic part can only carry
certain averages of s on BhG and BhB; similarly C(fh) is
conserved for all Th's on Bn, but the geostrophic part rey not
be able to carry all of C on BnB’ though it does on the rest

of Bn' It seems however that this somewhat peculiar situation
occurs only at the boundary; at any rate simple examples which can
be explicitly solved and in which similar phenomena occur indicate
this, and we have seen atove that with rairly plausible assumptions
one can show the identity of the geostrophic part and the time

average almost everywhere.

5. Examples and remarks. Let us consider first the situation

typical of most laboratory experiments where the gravitational field
is that of the earth; to have it constant in the rotating system we
must assume that the vectors 2 and g are aligned, so that the
dimensionless potential function has the form

n

9= -2 (X +y) + vz (23)

where 7Y = g/{Iﬂe). In this case the entire region is geostrophically
free. (If Q and g are not parallel, we will not of course have

any steady basic state; this is indeed one of the difficulties in

doing experiments with rotating stratified fluids -~ the alignment

must be quite precise or it will be impossible to produce a sufficiently

stationary basic state.) Most laboratory experiments are also done

with fluids for which some sort of Boussinesq approximation is appropriate.
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In our non-dissipative case we may take this to mean that variations
in density due to pressure alone are negligible (fp = 0; this
eliminates compression waves) and variations in density due to
heating (or salt; s may be taken to be salinity rather than
entropy if the stratification is produced that way) are small
compared to the average density. A convenient simple model is
obtained by taking the basic stratification to be such that sé
is constant, and assuming that also fs = =@ 1is constant. With
a suitable choice of the basic scales of density and entropy we
-1

0 x1], 56 =Y, and p = -as as the linearized

equation of state. p may then be eliminated from the problem,

may take p

and the basic equations of this model become

w, + 2k Xu+p-avs(k - ¥(xi+yd) =0 (28)
Vegse (25)
s, +u - (k- vo(xi + y1) = o. (26)

This may be still further simplified by taking <Y to be large,
supposing that ay= N2 is of order unity. This makes the horizontal

surfaces perpendicular to k. In this case the energy is

e = %_/; [ul® + ¥Ps®)av (27)

Lo
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and the potential vorticity is
H=V-[gx5+235]=l£-ng+282. (28)

The geostrophic flows are given by

and

s =N"p (30)

for any function p constant along horizontal curves on Bn. The

] petential vorticity of a geostrophic flow is thus given by
1 -2
n -1 ( Fp + b pzz> (31)
where
- 2
V=V -k

The quantity C of (14) is

o(T) =f [ux k + 2sk] - n|k x n| a0 (32)
r
n
which for a geostrophic flow becomes
c = él'f (VP + W% k] - nlk x n| tdo. (33)
r S

n




A specific problem for which explicit calculations can readily be
made is o.tained with this model by taking the region R to be the
cylinder: O S’xz + y2 < a2, 0<z<1. To compute the geostrophic
part of the solution to the initial value problem we compute

Hb =k - VX u, + 2st from the initial data, and also (going to
cylindrical coordinates)

2w
Co(a) = | ug(a,0,2) - & aeo.

The problem for the geostrophic pressure field p is thus
Vzp + hN'zp = 2l (34)
H zz

0

with boundary conditions

D, = sto on z = 0,1 (35)
p=const. on r =a for each fixed z (36)
2ﬂ'a
Jf 5? (a,z,0)a d0 = 2CO(z). (37)
0

The somewhat unusual boundary conditions (36) and (37) on the
non-horizontal boundary become familiar ones when p 1is represented

as a Fourier series in ©:




T LT 8 AL e e B e g

(36) thus is
p(m)(a,z) =0 m#0

and (37) gives

ﬂ(az):%(z)

dr ’ T ot

To verify the existence of a solution to the Neumann problem for
p(o) it is only necessary to check that the source strength EHéo)
in (34) is consistent with the net flux out through the boundaries
given by (35) and (37); this is readily done. The solution then
can be computed for example by expanding p(o) - ra/n‘Co(z) in

a series of the form § an(z)Jo(knr/a), where the k are roots
of J', and p(m) in series I aﬁm)(z)Jlml(kgm)r/a), where the
kém) are roots of J|m|' An alternative representation is obtainable
by removing the inhomogeneity in the boundary condition (35) instead
of that in (37), and using Fourier cosine series in =z.

With this simple model it is in fact possible to find explicitly
all the oscillatory normal modes as well, and so solve the full initial
value problem. Although this brings out a number of interesting
features, we do not do this here, our main interest in this paper
being in the geostrophic part.

Interesting examples which can be solved explicitly to the same

ex.ent as our first one do not seem to be so easily found in the

geostrophically guided case, but without attempting a full discussion
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we may consider the following. We take the same sort of Boussinesq
fluid as above, but now the region will be a spherical shell given

in dimensionless form (spherical coordinates) by a <r <a + 1.

For the geopotential we shall take @ = -732/r so that "gravity"
points radially inward, and as above we assume uniform stratification,
with scaling such that sj = er. We also suppose 7y is large and

a small so that N2 = @y is of order unity. Then we find

Ve = giwaz/rg, where r. is the radial unit vector; and

1
N

P, = Wagz/r3. Thus VO X V@ =1, X gyza /rs,

and the geostrophic curves are latitude circles on the spheres of

constant r. The potential vorticity is found to be
I1=vV-. rsec Bluxr, 42 gs/agk (38)
TV [see @ lgxTy rars/ak )]

S ©being the polar angle. The geostrophic flows are given hy

r, X Vp (39)

and

= 2z D
sp= T8 N-"sec6p =ra N (p -tan® Py/T) (ko)

where p = p(r,8) is constant on the geostrophic curves, but is
otherwise arbitrary since the boundaries r = a, a + 1 are entirely
horizontal. Computing the potential vorticity for a geostrophic

flow one obtains:
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-2 -2 6 -k \
]Ig=2N r‘aa—r ra <pr-tan9pe/r>j'

+ a—iﬁ—e a—ae- sin 6[<sec26 + MN-Erha-htan%) py/T
(41)
- hN-erla-htan 2] pr:l }
— - - -
. 1 - tan © %P-
Sg—-A [:l = -a-]r6a-6sin6 i
- s )
Norosin L OT T 9 - tan 6tan2o + Nzah sec20 1lop
4y r 30

Since the weight factor in (18) is independent of azimuth,
as is Hé, the basic equation ﬁ% = ﬁb is equivalent to setting
Hg equal to the average over azimuth of the initial potential
vorticity field. Similarly the boundery conditions on p, Dg = Do
(ef. (21)), are equivalent to taking r2a-2N-2(pr - tan © pe/r) to
be the azimuthal average of the initial entropy on r=a and a + 1.
The explicit calculation of the geostrophic part of the flow produced
by given initial conditions appears to be & fairly difficult problem
in general with this model, but by carefully choocing the initial
conditions it is reasonably easy to give some simple examples. One

class of such examplies is obtained with initial conditions of the

form:

= 0, = A(r)cos39 + B(r)cos © (42)

50

&G
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(with some restrictions on A and B to be mentioned in a moment),
or any iritial conditions whose azimuthal averages are of this form.

In this case the potential vorticity is found from (38) to be

D - -
Hb = 2r s 2A'(r)cos39 + 28 2[(r28)' + 2rA]cos 6. (43)
A little calculation shows that a geostrophic flow determined by
P = f(r)cos39 will give this same potential vorticity fieid provided

that A and B are related to f by

A= a-2N-2rS(f/r3)' (k)
and
2 - o [T -
B=3 N et - (3a2/2r‘) “"/a f(rl)rlzdrl . (L5)

Such a geostrophic flow has entropy

-~ i r
8g = a-aN-ztrs(f/rj)'cOSBG + 3rf cos 9} (46)

and thus as far as the cos36 term is concerned the conditions that

sg =S, on r=a and a + 1 are satisfied for any f; but the

cos @ term shows that we also must require that

rat+l -2
/ f(r)r "dr = 0.

Ya
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Thus to construct an example we need only take some f satisfying this
condition, and calculate A and B from (45) and (46). f cos 0

will then be the pressure field of the geostrophic part of the flow
that evoives from the initial state (42). Its velocity field is,

from (39),
Eg = - % sin 2‘3(f/r)9l (47)

where g& is the unit azimuthal vector; the entropy (46) may also
be written in the form:

r
_ 3 2 -2 f a2
sz = 5o +$ar “cos C . f(rl)rl dr, . (48)

A particularly simple explicit example is obtained by taking
f= r2(r -a - %)/aa; in this case, if ¥ i modepate and @
is rather large (thin shell) the initial entropy field is not too
different from cos58/(aN2), and is thus a warming of the northern
and cooling of the southern hemispheres. The geostrophic velocity
field (47) is then vertically sheared, being from west to east at
low altitudes and from east to west at high altitudes in the northern
hemisphere, and reversed in the southern.

It is of interest to compare our general results with their
analogues for a rotating homogeneous fluid, for the relationship
between the two is a little more subtle than one might perhaps

naively expect. Of course one would anticipate that "turning on"

a little stratification (with a gravitational field) would be a small




perturbation, at least for & finite time, on the full initial value
problem, but this is not necessarily the case when attention is
focussed on the steady part of the solution.. Indeed steady flows in
the linear theory of rctating homogeneous fluids must be independent
of z (Taylor-Proudmar. Theorem), and this is not .t all necessary
for steady stratified flows; on the other hand steady stratified
flows must be along geopotential surfaces, which is not necessary
in the homogeneous case where the geopotential (in the absence of
free surfaces) plays no role at all. What is happening here is
of course that some of the oscillatory normal modes in the stratified
case have frequencies which tend to zero as the stratification
disappears and so show up as geostrophic motions when the stratification
is turned off. Likewise, some initial conditions which would excite
time dependent motion (probably largely at low frequencies) in the
homogeneous case, may in fact lead to steady flows when a little
stratification is put in. Though the situation is really more complex,
it is a little like the apparent discontinuity in the nature of
geostrophic homogeneous flows when the bottom of a container of
constant height is slightly deformed: the class of geostrophic flows
is greatly curtailed, and new low frequency oscillatory modes (Rossby
waves) appear.

The homogeneous analogues of our results can of course te obtained

by the same methods - the difference comes only in the first step, the

.’Q’ﬂ\"
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description of the geostrophic flows themselves. Although these results
are already fairly well known (they are essentially given, for instance,
in H. P. Greenspan's monograph "The theory of rotating fluids,"
Cambridge, 1968) it is perhaps worth recalling them briefly to
emphasize that the analogy with the stratified case is in fact

quite close. To describe the homogeneous geostrophic tlows one must
also distinguish free, guided, and blocked regions. The free regions

are those of constant height (measured parallel to the rotation axis);

the guided regions are those not of constant height, but in which

the contours of constent height ('geostrophic curves") do not cross

the boundaries; and the bilocked regicns are those in which they do.

The geostrophic flows in free regions are independent of 2z and
parallel to the top and bottom, but otherwise arbitrary; they are
essentially characterized by the vertical vorticity component, a quantity
which, when vertically averaged, is conserved for any motion in a free
region. The geostrophic flows in guided regions are independent

of z and along geostrophic curves; they are characterized by their
"mean circulation,” the vertically averaged circulation around the
c¢losed geostrophic contours, another conserved quantity, in guicded
regions. The only geostrophic "flow" in a blocked region is zero.

The steady part of the solution to an initial value problem "carries"
the vertically averaged vertical vorticity of the initisl data in free
regions and the mean circulation of the initial daca in guided regions,
Jjust as in the stratified case it carries the potential vorticity

and the mean potential vorticity. In over-all structure the stratified

geostrophic flow problem is really very similar to the homogeneous case,
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even though the latter is not readily derived from the former as a
limiting case.

What is the relationcship oetween our function II and the familiar
potential vorticity of non-linear shallow water theory? The latter,
the (absolute) vorticity divided by the local depth of the fluid
layer, is a quantity which is conserved following particles, not
conserved at a particular place like I (or ﬁ), so a direct analogy
is not to be expected; but they are in fact closely related. The
true generalization of the potential vorticity of shallow water theory

is given by Ertel's Theorem, which (in a non-rotating system)

asserts the constancy following particles of the quantity D-LV Xu - Vs,
This holds for an inviscid compressible fluid subject to a conservative
body force per unit mass, with s any scalar field (in particular

the entropy, if there is no heat conduction) which is itself constant
following particles and in asddition, if Vp X Vp # 0, is a function

of p and . Ertel's Theorem can be readily proved from the

Helmholtz vorticity theorem (which is true under these hypotheses)

on using the above properties of s. The conservation of potential
vorticity in shallow water theory follows from Ertel's Theorem, since
shallow water theory is mathematically analogous to two dimensional
compressible flow of an isentropic gas with ¥ = 2; in this analogy

the “gas density" is the mass per unit area of the fluid lsyer, hence
proportional to the local depth. The gas motion being two dimensional
and isentropic, we may take s = z, and the conservation of potential
vorticity follows. Thus the quantity p'lV Xu Vs, or (in a rotating

system) p'l(2Q§ +V X u) - Vs might appropriately be called "potentiel
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vorticity™ for compressible stratified flow. In our linearized theory

this is given in dimensionless form by

c(')l(l + ec/po)'l(zg + EVX u) - (s(')V(p + EVs)

-1 -1 -1
T 1) o
soocp[2+echlv><u Vq)+2(s 5, 2p0 >:l (49)
The coefficient of € in this expression is closely related to i,
and our basic formula (1€ from which the conservation of 1 (or )
was derived is an immediate consequence of Ertel's Theorem in the

linearized case. Indeed we have from (17) that

+v'\cp;) -u><ch+2£:)l éa—(oq) /s c (50)

If we use (49) and (50) and linearize, Ertel's Theorem says

)
50 - ch .E't_'x‘ch-oOsta (DCP/S

+ 2(s'p P ) Tu - V(SODO ®,) =

Keplacing u, and s t in this formula by their values from (5) and
(7) one recovers almost at once equation (16).
The function Il is thus approximately the first order part of

the “true” potential vorticity o'lv X u + Vs - it has been defined

somewhat differently in order to obtain a quantity which is constant
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in time (in the geos*rophically free case) at a fixed place. Although
the “true” potential vorticity is no doubt of more basic physical
significance, being in fact conserved (following particles) even

in the non-linear problem, we have felt it appropriate to give this
name to the function .. which, as we have seen, plays a fundamental

role in the linear theory of rotating stratified flow.
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