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ON THE INITIAL VALUE PROBLEM FOR 

ROTATING STRATIFIED FLOW 

By  LOUIS N. HOWARD AND WILLIAM L. SIEGMANN 

o 
fjft 1. Introduction. In this paper we shall investigate.some 

^.0    general properties of motions of a compressible fluid under the 

CS influence of a gravitational field. Our main restrictive hypotheses 

are first that we are concerned withmotions (or time scales) for 

which the dissipative effects of viscosity and heat condition are 

not important, and second that the motions are small deviations 

from a basic state of rigidly rotating hydrostatic equilibrium. 

We also assume^ that the gravitational field is externally given, 

and is not itself affected by the motion. The mathematical model 

based on these hypotheses is the linear theory of rotating stratified 

non-dissipative flow. Perhaps the most basic mathematical problem 

in this context is the initial-boundary value problem: the values 

of the flow variables are given at some initial time in a region 

R, and their subsequent temporal evolution is sought, subject to 

appropriate boundary conditions on the boundary B of R. We shall 

be concerned with this problem in the case of the boundary condition 

corresponding to a rigid evelope B, i.e. we take the normal component 

of the velocity vector to be zero on B. As usual with initial-boundary 

value problems for linear systems of partial differential equations 

with time independent coefficients, it is helpful to think of the 

problem in terms of the "method of normal modes," a normal mode being -to 
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a solution of the differential equations which satisfies the (homogeneous) 

boundary conditions and varies harmonically with time. If the initial 

data can be represented as a superposition of the initial values of 

the various normal modes, then the solution to the initial-boundary 

value problem Is simply the same superposition of normal mode com- 

ponents, each evolving in time at its own frequency. From this 

point of view there are two parts to the problem: first the determin- 

ation of the frequencies and the spatial dependence of the various 

normal modes, and second the representation of the initial data in 

terms of their initial values. In many problems, for instance in 

heat conduction, the first part is by far the more difficult, the 

representation of initial data being readily found by exploiting 

some sort of spatial orthogonality of normal modes of different 

frequencies. To a certain extent this is true of the present problem - 

it is only in exceptional cases that it is possible to describe the 

oscillatory normal modes explicitly (indeed even their existence 

is not an easy question), though they do have a kind of spatial 

orthogonality. However in the case of steady flows, normal modes 

of frequency zero, it turns out to be possible to describe them quite 

generally. But in the present case, as in the analogous problem for 

homogeneous rotating flow, this class of steady flows is often quite 

extensive - the frequency zero is highly degenerate, and this means 

that the second part of the problem - the determination of exactly 

which steady component is excited by the initial data - is by no means 

trivial. Our main results deal with this aspect of the problem. After 

formulating the problem and describing some of its general features, 



we shall describe all the steady flows. Then we shall establish some 

basic conservation properties possessed by all flows in this linear 

theory, and show how they can be used to characterize exactly, from 

the initial data, the steady cooponent of the solution to the initial- 

boundary value problem. We conclude with some examples illustrating 

our general results in special cases, and compare the present problem 

with its analogue for rotating homogeneous flow. 

2. Formulation. The basic equations of our mathematical model 

are those of a compressible fluid without ■■ iscosity or heat conduction, 

written relative to a system rotating about the z-axis with angular 

velocity Ü: 

u. + 2fik x u + u • Vu + -Vp + Vcp = 0 (1) 

Pt + V • (pu) = 0 (2) 

s. + u - Vs = 0 (3) 

P = f(p,s) (k) 

Here u, p, p and s are velocity, density pressure and specific 

2 2   2 
entropy and cp = -n (x + y j/2 + cp  is the "geopotential," cp  being 

the ordinary gravitational potential; in the simplest case we would 

have cp = gz? but we do not require any specific form for Cp., nor 

need we specialize the equation of dtate (4), though we shall assume 
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(as is appropriate for all ordinary fluids) that df/dp > 0. Let 

L be a length characterizing the size of the region R containing 

the fluid, and let P and s he characteristic density and entropy 

scales. Then introduce dimensionless variables, indicated by asterisks, 

as follows: r - Lr^, t = fi t#, u = ßLu^, P = PP#, s = ss# 

2 2^ 2 2 
p = L fi pp#, q) = n L <P#. Kie dimensionless equatirais are then the 

same as (1) - (4) except that, ü    is replaced by 1, asterisks are 

affixed to all the variables, and for the equation of state we write 

f#(s#>P^) = P f(ss^,L fi PP#)• Let the basic state about which 

we shall linearize have u,,. = 0, p# = P0, p# = p , s# = s ; the 

equations then show that pA, p_ and s. are all functions of 9 , 

and in fact p = -p' (9^) and p = f^(s ,p ), We may thus consider 

the basic state of stratification to be specified by, say, vA*?*)> 

and P0 and sn are then determined. It should be noted that while 

we shall usually write expressions like P,. = P-(<P "}, this should not 

be interpreted quite literally, for what the equations for the basic 

state really say is that Pn does not change as one moves along a 

surface of concöant ^    in the flow region. But the constant ? 

surface may be cut into several disconnected components by the flow 

region, and though p,, must be a constant within each component, 

the different components may have different values of this constant. 

The density distributions down inside each of two potholes in the bottom 

of a stratified lake need not agree. The linearized equations are 

now obtained by setting u„ -- Eu,, P. = P^ + EP-, >    ?- = ?„ + EP, > 

s. = sn -* ts  in (1) - {h)  and retaining first order terms in £; 

e may be regarded as a sort of Rossby number characterizing the 
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magnitude of the initial perturbation. Suppressing from now on the 

subscripts 1 and », and writing f and f for df#/äs# and 

df^./dp.y. evaluated at the basic state, these linearized equations are: 

u^. + 2k x u + P^ vp + p" pVJp = 0 ^t ■ -  -  "0 

Pt + V .(p^) = 0 

s. + u • VsQ = 0 

p = f s + f p. s    p^ 

(5) 

(6) 

(7) 

(8) 

These equations axe  to be considered in a fixed region R, with 

the boundary condition that u • n = 0 on the boundary B of R, 

n being the unit outward normal to B. For the initial value 

problem we also prescribe u, P and s at t = 0. 

The equations (5) - (8) possess an invariant (i.e. temporally 

conserved) "energy integral." It can be obtained as follows: 

fe (I pö V) ■ pölp(pt - Vt' 

= p" p(-PnV • u - p!u. ■ Vcp + s'f u • Vq)) 
0 ^ 0 0^ 0 s- 

= -p V • u - p" pf p' u • Vcp = -p V • u + pf u -Vcp, ■^   —  0 r p-^O- -   P- 

since p' = f s' + f p' from the original equation of state. But 0   s 0   p 0 

we also have 
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itii H^1***2) = -(so)'lfsss^ •v<p = -sf8u • **' 

and so 

= -V •  (pu) + u • C^p + P^) 

-V.  {pu)-|^(P0lu|2) 

using (5).    Thus 

it \ {"oW2 - "öV " '^'XsA *v •(P!i) ■0- (9) 

Integrating this over R and using the boundary condition we find 

the energy conservation formula: 

We assume that f > 0 (density increases with pressure if no 

heat is added), and we shall also suppose that the basic state is 

such that (si.) f < 0, i.e. it is "statically stable." Usually 
Ü   s 

this would mean SA > 0 (specific entropy increases with altitude), 

since most ordinary fluids expand on being heated at constant pressure, 

i.e. f < 0. With these assumptions we see that the quadratic form 

£ is positive definite and thus the perturbation quantities will 

remain bounded (in L^ norm anyway) if they are so initially. It 



is of course to achieve this, i.e. to rule out the possibility of 

convective 5.nstability, that we assume static stability of the basic 

state. 

If we introduce the inner product corresponding to the quadratic 

form C by 

(the asterisk denotes the complex conjugate) one readily verifies that 

the inner product of two (possibly complex) solutions of (5) - (8) 

is also invariant in time. In particular this implies the reality 

of the frequency of any normal mode solution of (5) - (8), and the 

orthogonality, in the sense of the inner product (11), of any two 

normal modes of different frequencies. 

We note also that the energy conservation formula (10) implies 

the uniqueness of the solution to the initial value problem, for the 

difference of two solutions with the same initial data is also a 

solution of the equations and the boundary condition, and has zero 

energy initially. Being conserved, its energy is also zero there- 

after, and since it is positive definite this implies that the 

difference flow is always zero, i.e. the original solution is 

unique. A proof of the existence of a solution to the initial value 

problem appears to be a more difficult question - we shall merely 

assume it here. 
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2- Steady flows. The  time-independent solutions of equations 

(5) - (8) can be easily described explicitly. First of all, (?) 

shows that the velocity field of any such solution must be horizontal, 

i.e. directed along surfaces of constant cp, u • Vqp = o. (We shall 

always use the word "horizontal" in this sense - vectors perpendicular 

to k are  thus not usually horizontal.) If this is true, then the 

cross product of vcp with the time independent form of (5) shows 

that 

u = (29 PQ)'
1
^^  x Vp (12) 

and putting this back in (5) we find that P must be given by 

p = - r • (15) 
z 

These two necessary conditions together with the equation of state 

(8) give us a candidate for a steady solution of (5) - (8) for any 

function p, and in fact one easily checks that formulas (12) 

and (l}) are sufficient for (5) and (7) to be satisfied. However 

(6) will be satisfied only if also Vp • V9 xVcp = 0; this is 
z 

no restriction on p in case vcp x vcp = o, but otherwise it 

shows that p must be constant along the integral curves of the 

vector field Vcp x vcp , i.e. along the intersections of the surfaces 

of constant cp and those of constant cp . Parts of the flow region 

R throughout which Vcp x vcp =0, i.e. in which cp and cp  are 
z z 

functionally dependent, we shall call geostrophically free regions. 
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Elsewhere, we Imagine the integral curves of vqp x vq»  to be constructed, 

and call them geostrophic curves. Ihrough each point in parts of R 

which are not geostrophically free (if any) there passes a unique 

geostrophic curve; some or all of these curves may cross the boundary 

of the region R. Those parts of R which are covered by geostrophic 

curves which cross the boundary B we call geostrophically blocked 

regions. Other parts of R which are covered by geostrophic curves 

which do not cross the boundary we call geostrophically guided regions. 

We shell assume that the geostrophic curves in guided regions are 

closed, neglecting the possibility that they might wind around infinitely 

inside the region. It is certainly difficult to imagine a potential 

function which is at all reasonable for which the geostrophic curves 

stay in the flow domain but are not closed. With this terminology 

we may say then that for a steady flow it is necessary that p be 

constant along geostrophic curves in guided or blocked regions, i.e. 

(essentially) p = p(cP,cp ) there. There is an additional minor 

restriction on p - it must be such that (12) and (15) do not make 

u or p singular at places where qp = 0, if there are any such. 

But except for this, (12), (15) and the equation of state (to give 

s) provide the general solution of the steady forms of (5) - (8), 

with p arbitrary in free regions, or an arbitrary function constant 

on geostrophic curves otherwise. However we are actually interested 

only in solutions which also satisfy the boundary condition u • n = 0 

on B; (12) shows that this is always true on horizontal parts of 

B, if any, but that it is necessary (and sufficient) that p be 

constant along horizontal curves on the non-horizontal part of B. 
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Such a steady solution of (5) - (8) which satisfies a • n = 0 on B 

we call a geostrophic flow. In non-free regions we note that 

u= (2<PzP0)  -^^Vqjxvcp^ 
z 

so that the velocity vector of a geostrophic flow is directed along 

the geostrophic curves. Furthermore the magnitude of u along a 

given geostrophic curve (in the non-free case) is a constant multiple 

of |vcp x Vcp |, and thus if a geostrophic curve crosses the boundary 
Zi 

the velocity vector on it must he zero. In this case the momentum 

equation (or (12)) shows that p must not only he constant along 

geostrophic curves, hut constant on horizontal surfaces, i.e. 

(essentially) p = p(cp) in blocked regions; and (15) and (8) then 

show that p and s are likewise constant on horizontal surfaces. 

Thus a geostrophic ''flow" in a blocked region is at most only a 

perturbation of the basic state into another state of hydrostatic 

equilibrium. 

Summarizing these results, the geostrophic flows are given by 

(12), (13) and (8) with p a function which is:  (a) arbitrary in 

free regions, except that it must be constant along horizontal 

curves on the non-horizontal part of B, (b) an arbitrary function 

constant along geostrophic curves in guided regions, or (c) an 

arbitrary function constant on horizontal surfaces in blocked regions. 
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k.    Conservation theorems. The temporal conservation of the 

energy Integral is a result of a very general sort; something like 

it is true of any non-dissipative system. We come now to seme results 

which are in a sense much stronger, and relate much more specifically 

to the properties of linearized rotating stratified flow. Ihe first 

of these has to do with quantities on the boundary B of the flow 

region. Seme of B may consist of pieces of constant <P surfaces - 

we call this the horizontal part R  of B; on it n xV(p = o. 

Parts of the boundary on which n x Vcp / 0 make up the non-horizontal 

part B . (Edges, where B and.   B  meet, we may count as part 

of B..) Since n and Vcp have the same direction on the "flat 

spots" B,, the boundary condition and the entropy equation (7) 

show that s. = 0 there. Ihus entropy is conserved pointwise on 

flat spots, for any solution satisfying the boundary condition. 

Ihis is not true on B , but there is a related result. Let F 
n' n 

be any closed horizontal curve on B , and consider the rate of w n 

change of the circulation around F . We have 

u • dr = - /  [2k x u + p" Vp + p^ pvcp] . dr 
Ot J r*        — (J p 

n 

= -2 /  k x u • dr 

n 

since V      is horizontal (so vcp . dr = 0), p^ is constant along 
n —      0 

F , and Vp • dr is an exact differential. However, on F , 
n - n 

V(p x n 
dr = rn r äsj, 
-  Vcp x n   ' 
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do   being arc length, so 

n • k n • k   s. 
k x u • dr = u • Vq)   da =  -7- da . 

Ivcp x nl |v<p x n|    0 

•Rius we obtain 

3tJr -    -       atjr   |V   xn|   s0 

so setting 

c(r ) = /     [u x Vcp +  2 4- k] • n —^-~ 
n      Jr so Ivcp x n 

(IM 

we see that CfF ) is constant in time. We have established our 

first basic result: 

Theorem I. For every solution of (5) - (8) with u • n = 0 

on B, 

(a) s is conserved on the flat spots B. , if any, and 

(b) C(r ) (given by (1*0) is conserved for each closed horizontal 

curve F  lying on B . 
n  tf       n 

Our second basic conservation property concerns a quantity related 

to that appearing in the integrand of (1^). One readily shows from 

(5) and (?) that 

JPQ^
1
 u x Vcp + 2s(s^)~1kJ [ =  -2PQU - cp^Vp x vcp.   (15) hk< 
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Taking the divergence of this and using (6) we get 

It r ' rVz1 (ü x ^ + 2s(so)'V)  * 2p| = ^z^P * V<p x vcp
z-   (^ 

Let us define the scalar field n hy 

n = P'^-V . I p^1 U x vcp + 2{s^'1sk)  - ap^p.     (17) 

We call IT the "potential vorticity" of the flow. Throughout any 

geostrophically free region we see at once from (16) that H is 

conserved pointwise. In non-free regions this is not true, but a 

somewhat weaker kind of conservation does apply. First consider 

a geostrophically guided regionj and let F be any closed geostrophic 

curve in it (or on its boundary). We define the "mean potential 

vorticity for F" by the formula: 

iT(r) = / q)2|vg)xV(p I'-'-n da. (18) 
J p z        z 

Along    F   we have    dr =  |vcp x vcp |~"Vcp x vcp   do,    so (l6) shows that z z 

■— I(r) = /   p'11 vcp x vcp | "Vp . V<p x vqp   da 
Clu        u p  ^ 2 Z 

/ p^Vp • dr = 0, 

since Pn is constant along P and Vp • dr is exact. Ihis kind 
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of a result does not apply in blocked regions, since there the 

geostrophic curves are not closed. For a blocked region we consider 

any horizontal surface Z lying in the blocked region, and let T 

be the horizontal curve on B which is the boundary of E; E and 

F are characterized by some value of the potential, say cp . üben 

we construct the quantify 

<i(q,o) =/ iiiv<pr:Lds 

/   cp^lvcp x nl^Cu xvcp + asCs')"1^)!! da J-p    z (19) 

where the orientations of    r   and   E   are related as usual in Stokes' 

theorem, i.e.  if    |vcp|"  vcp   is regarded as the unit normal to   E, 

on    r   we have    dr =  |vcp x nl" vcp x n dj.    Now we have on    T: 

■ o-l -1. (u.  x vcp + 2s.(s')    k)  • n|vcp x nl" da —t. to - 

(-2k x u - p"Vp) x Vcp - 2u • Vcpk -1, • n| Vcp x n|    da 

=    -2Cp u - p'Vp x vcp    • n| Vcp x nl^da = -P'VP • dr,      sc 

^ = /   plV^v-p • V9 x vcp  Ivcpl^dS + /   cp"1p"'aVp • dr Jv   0    z z' J v   z    0    *       — dt 

= / -PÖ"^ x ^l^7^   ' Vcp I Vcp I "■'"dS + / CP^PQVP • dr = 0 

by Stokes' Theorem, since p. is constant on E. This finishes 0 

the proof of 
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Theorem II. For every solution of (5) - (8) with u • n = 0 

on B, 

(a) H (given hy (17)) is conserved at each point of a geostrophically 

free region, 

(b) n (given by (18)) is conserved for each geostrophic curve 

in a guided region, and 

(c) Q (given by (19)) is conserved for each horizontal surface 

in a blocked region. 

5_. The  initial-value problem. Suppose u(t), p(t), s(t), 

p(t) is the solution to the initial value problem for some given 

set of initial conditions. We shall define the geostrophic part 

of u, etc., (called u , etc.) to be the projection, orthogonal 

in the sense of the inner product (11), of u, etc. onto the space 

of geostrophic flows. Of course we really have such a projection 

for each value of t, but these are in fact always the same. 

This would be immediately obvious if we knew the existence and 

completeness of normal mode solutions in terms of which we could 

represent u(t) etc., for all oscillatory normal modes are 

orthogonal to the steady ones, which are Just the geostrophic 

flows. But even without the cxiscence of a complete set of normal 

modes, the projection is easily seen to be independent of time; 

this follows fo^ instance from the equivalent definition of u 

etc. as that geostrophic flow which minimizes the energy of the 

difference flow u - u , etc., (at a given time t). If u 
—g "^i 

is the projection at t, and u   that at t  then the energies 
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of the difference flows u - u   and u - u   must be constant 
^l        ^2 

in time, hence equal, since one is minimal at t.. and the other 

at tp. The identity of u   and u   then follows from the 
-«!     -g2 

uniqueness of the projection implied hy the positive definiteness 

of the energy. Since the geostrophic part is independent of time, 

it can, in principle at least, be determined from the initial data - 

it is our main purpose to describe explicitly how this may be done. 

This problem is not altogether trivial because the space of geostrophic 

flows is relatively extensive - it is not simply a matter of calculating 

a coefficient, as it would be if there were only one geostrophic 

flow. 

It is a reasonable conjecture that the geostrophic part might 

also be the time average over 0 < t < « of the solution to the 

initial value problem. This is probably essentially true; for 

example if one assumes that u(t) etc. remain bounded and that 

the time average exists, one easily checks that the time average 

satisfies the geostrophic equations. Then the time average of 

u - u  etc. would also be a geostrophic flow, and one that is 

orthogonal to all geostrophic flows (assuming interchangability of 

spacial and temporal integrations'), in particular to itself. Thus 

the time average of u would in fact be u . It should be remarked 
- -g 

however that this argument, even if it could be fully justified, 

would only prove that u  was the time average almost everywhere. 

It seems in fact to be the case that sometimes the time average is 

not exactly the same as u , but exhibits certain discontinuities 
-g 

on parts of the boundary. We shall see later how this comes about. 



T''WR"'B?PWSh5 36 *^ ■ -  ■^~ . 

17 

To determine u  we first need a formula for the inner product 

of an arbitrary time dependent flow u, p, p, s with an arbitrary 

geostrophic flow u, p, p, s; the latter is given in terms of its 

pressure field p by the formulas of §5, and we want to express 

the inner product also in terms of p. We have, using the real form 

of (11) (the complex form is only needed in connection with oscillatory 

normal modes): 

(u,p,P,s|u,p,P,s) = /  p^ • u + P" f pp - P" (sp" ss I dV 

= J^ [l ^ x VP * Ü + %\™ + (SQ^ \\\ + fpp)] dV 

J L^z1 (I -x vcp + ^o)'1^) * VP + V K^ö1*+ ^y dV 

u x vcp + 2(s')"1sk dS +  /   f p (pQ1? + {s,)'1s) dV 

* -1 / -1    V cp     f u x Vcp + 2(s')    sk )   dV. 

'R 

B 
1   m-l" 
2 ^ PEL * 

1 "• 
|PV 

But 

cp'1 i u xVCp + 2(s')"1sk ) 
. z     \ 0 / J 

:= ^"^ *   ^z1 lü xV<p + 2
(
S
O)'

1S
1L)J 

2P-
1

P(;(CP)(S')-
1

S = n + 2P-
1P - 2P-I(fss'  - fpP0)(Si)-

1s 

»n^p^yp + p^s«)-^). 

Thus we obtain: 
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<ü,p,P,s|u,p,p,s> = - - / pH dV + /  <p' p(s')' sn • kdS 
-      - 2JR       -'^ 

Z   0 

1/ ^P« ' [EX^-1- 2(so)'ls^dS*   (^ 
B 
n 

New p is the pressure field of a geostrophic flow, so it must be 

constant along the horizontal curves T (<p) on B . We imagine 

the last surface integral in (20) to he calculated hy dividing 

B  up into infinitesimal strips between adjacent curves P ; one 

easily sees from the geometry that in this case we have 

i-l. 
dS = |vcp x nj d<P do, so 

/  qp'1?!! • [u x vcp + 2(s')"1sk]dS 
'B 
n 

= /  p(q>)d'P /    cp^jvep x nl"1!! • (u x V9 + 2(s!)"1sk)da (21) 
B      

ur (Cp) 
n       n' ' 

We now use these formulas to characterize those flows which are 

orthogonal to all geostrophic flows, by requiring the right hand side 

of (20) to be zero for an arbitrary geostrophic pressure field p. 

Let us suppose the region H to be divided into geostrophically 

free, guided, and blocked parts, IL,, R  and R^, and denote the 

portions of B.  and B  which are associated with each such part 

by similar subscripts. First we may choose p to be zero on the 

boundary and in R  and R , but otherwise arbitrary in R-,. 

(20) then shows that for u, etc., to be orthogonal to all 

geostrophic flows it must have zero potential vorticity throughout 

Rp. Next we may choose a p which is zero in R  and RR (as we 
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have just seen the volume integral then vanishes dince IT must 

be zero in R.,) and which is zero on B , B. „ and B, „, hut 

vrtiich is arbitrary on B,-. We thus see that it is also necessary 

that s should vanish (pointwise) on B „. Now we cannot choose a 

geostrophic pressure field which is arbitrary on B „, for there 

it must be constant along horizontal curves, but its value can vary 

arbitrarily from one horizontal curve to the next. Using the 

form (21) for the surface integral over B „ we see then, noting 

that cp  is constant along horizontal curves on B „, that it z 0 nF' 

is also necessary that the quantity C defined by {lh)  should 

be zero on every horizontal curve on B _,. Next we may choose a nr 

p which is zero on the boundary and ir R^ but is arbitrary in 

R„, to the extent that is possible, i.e. an arbitrary function 
u 

of geostrophic curves in R,,. Since p is not completely arbitrary 

we cannot conclude that H must vanish in R_, but if we think of 
Ü 

the volume integral over R0 as being evaluated by integrating over 

infinitesimal tubes around the geostrophic curves, such a tube being 

given for instance by cp, < cp < cpn + d9 and cp . < cp < cp , + dcp > 
1—     -1 zl-z—   zl z 

one sees that    dV =   |W x Vqp |' dcp dcp   do,    and the vanishing of 
2 Z 

the volume integral for arbitrary p(cp,cp ) thus implies that the 

mean potential vorticity Tl{T)    defined by (18) must vanish for 

every closed geostrophic curve in R0. As above one then shows that 
u 

C(r ) must also vanish for F 's on B „, since cp  is constant v n' n      nG'       z 

along these curves, the geostrophic curves in R,, not crossing the 

boundary. However one cannot conclude that s = 0 pointwise on 

B, _, for p must be constant along the geostrophic curves there, nu 
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Dividing B. r into strips between adjacent geostrophic curves ve  find 

dS = |vtp x Vcp | |vq5id<P do and thus since n • k = + «P I^Pl'  on 
2 3 ■■"       ^  Z 

R, we see that for each geostrophic curve P  on B „ the quantity 

D(rv,) = / Ivcpxvcp I'-'-s da (21) 

h 

must vanish. Passing now to the blocked parts, if any, we note that 

here the arbitrariness of p is so restricted that we can no longer 

consider the volume integral and the surface integral over B _ 

separately. Evaluating the former by integrating over horizontal 

sheets between adjacent surfaces of constant <P and the latter by 

using the corresponding horizontal strips on B  we find that the 
nil 

necessary condition is the vanishing of the quantity Q(Z) defined 

by (19) j for each horizontal surface Z in R_. Finally on B.,,, 

since n • k = + |v<p|~ cp  there, we must have the quantity 

^B 

Vcpl'-Ss dS (22) 

zero as well. It should perhaps be mentioned explicitly that in 

case some of the surfaces Z or B.  consist of several disconnected 

pieces, these conditions must hold separately for each connected 

component. Summarizing these results we have 

Theorem III. In order that a flow u, p, p, s should be 

orthogonal to all geostrophic flows it is necessary (and sufficient) 

that each of the following should vanish: 
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(a) The potential vorticity n (eq. (17))> at each point 

of Rj.; 

(b) n(r) (eq. (18)), for each geostrophic curve T in R : 

(c) Q.{Z)    (eq. (19)), for each horizontal surface in R^; 

(d) C(r ) (eq. (1^)), for each horizontal curve on B _ 
n nr 

0r BnG; 

(e) s, on B^; 

(f) D(rh) (eq. (21)), for each geostrophic curve P  on B 

(g) E (eq. (22)), for each connected component of B.^. 

Notice that all of these quantities are constant in time, 

because of Theorems I and II. They must of course be, because of 

the temporal invariance of the inner product which assures us that 

if u etc. is once orthogonal to all geostrophic flows it will 

always be so; note however that Theorem I is slightly stronger 

since it asserts the constancy of s pointwise on all of B. , 

without the averaging implied in the quantities D and E. 

Theorem III now allows us to characterize completely the 

geostrophic part of the solution to the initial value problem. 

For u  etc. to be the projection of u etc. onto the geostrophic 

flows simply means that the difference flow u - u  etc. is orthogonal 

to all geostrophic flows, hence the quantities (a) ••• (g) mentioned 

in Theorem III must all vanish when calculated for this difference 

flow. Thus u  etc. must be a geostrophic flow for which the 
-g 

quantities (a) ••• (g) are all the same as they are for the initial 

data. The geostrophic part is uniquely determined by these conditions, 

for the difference of two geostrophic flows both of which have the 
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same values of (a) ••• (g) would be a geostrophic flow with zero 

values of these quantities, hence orthogonal to itself and so zero. 

This completes 

Theorem IV. The geostrophic part of the solution to the initial 

vniiie problem is that (unique) geostrophic flow which has the same 

values of Lhe quantities mentioned in Theorem III as the initial 

flow has. 

The actual computation of u  may not be easy, but it is easier 

than the full initial value problem. For example if the entire region 

is geostrophically free, the condition -^ = n0 gives an elliptic 

partial differential equation in 3 variables for p , for which 

in addition we have the boundary conditions that p  is constant 

on horizontal curves on B , C = CL on these curves, and s = s. 
n     0 0 

on B. . We do not have a proof of the existence of a solution to 

this problem (as usual, uniqueness is much easier) but we shall see 

an example in the next section which at least suggests that such 

existence is to be expected. 

The unique determination of the geostrophic part by the initial 

values of the quantities (a) ••• (g) indicates that we may describe 

them as "the features of the initial data which are carried by the 

geostrophic part." It is natural to expect that the geostrophic part 

would carry all aspects of the initial data which are constant in 

time - yet this is not quite so, at least when guided or blocked 

regions are present, for Theorem I shows for instance that s is 
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pointwise constant on B., yet the geostrophic part can only carry 

certain averages of s on B. _ and &_; similarly C(r ) is 

conserved for all T 's on B , but the geostrophic part ray not 

be able to carry all of C on B T,,    though it does on the rest 

of B . It seems however that this somewhat peculiar situation 

occurs only at the boundary; at any rate simple examples which can 

be explicitly solved and in which similar phenomena occur indicate 

this, and we have seen above that with fairly plausible assumptions 

one can show the identity of the geostrophic part and the time 

average almost everywhere. 

5. Examples and remarks. Let us consider first the situation 

typical of most laboratory experiments where the gravitational field 

is that of the earth; to have it constant in the rotating system we 

must assume that the vectors ^ and £ are aligned, so that the 

dimensionless potential function has the form 

cp = - | (x2 + y2) + yz (25) 

where y = g/{Iß  ). In this case the entire region is geostrophically 

free. (If 0 and g are not parallel, we will not of course have 

any steady basic state; this is indeed one of the difficulties in 

doing experiments with rotating stratified fluids - the alignment 

must be quite precise or it will be impossible to produce a sufficiently 

stationary basic state.) Most laboratory experiments are also done 

with fluids for which some sort of Boussinesq approximation is appropriate. 
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In our non-dissipative case we may take this to mean that variations 

in density due to pressure alone are negligible (f =0; this 

eliminates caapression waves) and variations in density due to 

heating (or salt; s may be taken to be salinity rather than 

entropy if the stratification is produced that way) are small 

compared to the average density. A convenient simple model is 

obtained by taking the basic stratification to be such that s' 

is constant, and assuming that also f = -a is constant. With 
s 

a suitable choice of the basic scales of density and entropy we 

may take P- 3r 1, s' = Y , and p = -Os as the linearized 

equation of state, p may then be eliminated from the problem, 

and the basic equations of this model become 

u^ + 2kxu+Vp- ocysCk - 7"x{xl + y^)) = 0 (2^) 

V •  u = 0 (25) 

st + u  ^   (k - 7"1(xi + yj.)) = 0. (26) 

This may be still further simplified by taking y   to be large, 

supposing that ay = IT is of order unity. This makes the horizontal 

surfaces perpendicular to k. In this case the energy is 

£ = 1/ [|ui2 + N^ldV (27) 
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and the potential vorticity is 

n = V . [u x k + 28k] = k • V x u + 2s . (28) 

The geostrophic flows are given by 

and 

u=|kx^ (29) 

s = N"2p (50) 
2 

for any function p constant along horizontal curves on B . Ihe 

potential vorticity of a geostrophic flow is thus given by 

ng = | ( ^P + 4N-
2pz J (51) 

where 

V = V - k |- H     - 3z. 

The quantity C of {lk)  is 

C(r ) = /  [u x k + 2sk] • n|k x nr1da n      J p     ~ 
(52) 

which for a geostrophic flow becomes 

C = | /      [VHp + i+N"2pzk]   • n|k x nl^cbj. (55) 
r 

n 
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A specific problem for which explicit calculations can readily be 

made is obtained with this model by taking the region R to be the 

2   2   2 
cylinder: 0<x +y <a, 0 < z < 1. To conipute the geostrophic 

part of the solution to the initial value problem we conipute 

11,= k • V x u- + 2s-  from the initial data, and also (going to 
0        -0   Oz 

cylindrical coordinates) 

p2Tr 
C0(z) = j   u^a^z) • ^ a dG. 

The problem for the geostrophic pressure field p is thus 

^P + ^N-2PZZ = 2no m 

with boundary conditions 

pz = ^sQ    on z = 0,1 (55) 

p = const, on   r = a    for each fixed z (56) 

r2Tr 
j       |£ (a,Z,e)a de = 2C0(z). (57) 

The  somewhat unusual boundary conditions (56) and (57) on the 

non-horizontal boundary become familiar ones when p is represented 

as a Fourier series in Ö: 

P 

00 

\  (m)/  x imB 
^ pv ;(r,z)e   ; 
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(56) thus is 

p^(a,z) =0  m ^ 0 

•ad (57) gives 

^(a,z)=|c0(Z). 

To verify the existence of a solution to the Neumann problem for 

p^ ' it is only necessary to check that the source strength 2lU ' 

in (5^) is consistent with the net flux out through the boundaries 

given by (55) and (57); this is readily done. The  solution then 

can be computed for example by expanding p   •' ra/ir Cn(z) in 

a series of the form E a (z)Jrt(k. r/a), where the k axe  roots 
nv ' 0V n ' n 

of J^, and p^ in series Z a^(z)Ji i (k^r/a), where the 

k^ ' are roots of Ji i. An «ü.ternative representation is obtainable 

by removing the inhomogeneity in the boundary condition (55) instead 

of that in (57)^ and using Fourier cosine series in z. 

With this simple model it is in fact possible to find explicitly 

all the oscillatory normal modes as well, and so solve the full initial 

value problem. Although this brings out a number of interesting 

features, we do not do this here, our main interest in this paper 

being in the geostrophic part. 

Interesting examples which can be solved explicitly to the same 

ex Lent as our first one do not seem to be so easily found in the 

geostrophically guided case, but without attempting a full discussion 



• / 
*w.saKr35f«f , '.,-:.■■-rr^f. 

28 

we may consider the following. We take the same sort of Boussinesq 

fluid as above, bat now the region will be a spherical shell given 

in dimensionless form (spherical coordinates) by a<r<a + l. 

p 
For the geopotential we shall take <P = -y& /r so that "gravity" 

points radially inward, and as above we assume uniform stratification, 

with scaling such that s' = 7 . We also suppose y   is large and 

a small so that N   = ay   is of order unity. Ihen we find 

unit 

^/_5 

2 2 
Vq) = r^a /r , where r  is the radial unit vector; and 

<P =-.  -rc^z/r5.  Thus VCp x Vcp = r.. x kT^a /r5, 
z z  —1  —   ' 

and the geostrophic curves are latitude circles on the spheres of 

constant r. The potential vorticity is found to be 

n = V ■ sec 9 ( u x ^ + 2r2s/a2kj , 

9 being the polar angle. Ihe geostrophic flows are given by 

(38) 

u - | sec 6 r x Vp (59) 

and 

s = r a~"N~""sec 9 p = r a"'::N"^(p - tan 6 pe/r)     (^0) 

where p = p(r,9) is constant on the geostrophic curves, but is 

otherwise arbitrary since the boundaries r -= a, a + 1 are entirely 

horizontal. Computing the potential vorticity for a geostrophic 

flow one obtains; 
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\ = 2irV2 h {A'K Gr - tan 9 pe/r)] 

+ 2r sine^^ine ( sec e + 4N "r a tan 6 ) pe/i 

-2 ^ -1»- 
- 4N r a tan 6 p 

(41) 

2a 

^r' sin e 
ar' r ae 

6 -6 . « r a sin6 

1       - tan e 

- tan ö tan 9 +  j- sec 9 

a£ 
dr 

1 d£ 
r d9 

Since the weight factor in (18) is independent of azimuth, 

as is H , the basic equation II = II  is equivalent to setting 

11  equal to the average over azimuth of the initial potentiell 
o 

vorticity field. Similarly the 'boundary conditions on p, D = D 

p ^p „p 
(cf. (21)), are equivalent to taking r a' N" (p - tan 9 Pg/r) to 

be the azimuthal average of the initial entropy on r = a and a + 1. 

The explicit calculation of the geostrophic part of the flow produced 

by given initial conditions appears to be a fairly difficult problem 

in general with this model, but by carefully chooeing the initial 

conditions it is reasonably easy to give some simple examples. One 

class of such examples is obtained with initial conditions of the 

form: 

u^ = 0, s = A(r)cos^9 + B(r)cos 9 (1+2) 
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(with some restrictions on A and B to be mentioned in a moment), 

or any initial conditions whose azimuthal averages are of this form. 

In this case the potential vorticity is found from (58) to he 

n = 2r2a"2A,(r)cos5e + 2a'■2[(r2B), + 2rA]cos 9.       (^5) 

A little calculation shows that a geostrophic flow determined by 

p = f(r)cos 6 will give this same potential vorticity field provided 

that A and B are related to f by 

A = a'Wu/r5)' (MO 

and 

B = 3a"2N"2rf - (5a2/2r2) /  f^r^d^ . {k5) 
Ja. 

Such a geostrophic flow has entropy 

-2„-2 
s = a N 
g 

r5(f/r5)'cos^e + Jrf cos 9 j (^6) 

3 
and thus as far as the cos 6 term is concerned the conditions that 

s = s  on r = a and a + 1 are satisfied for any f; but the g   u 

cos 9 term shows that we also must require that 

a+1 
f(r)r dr = 0. 

^a 
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Thus to construct an example we need only take some f satisfying this 

condition, and calculate A and   B from (V?) and (WJ). f cos 9 

will then be the pressure field of the geostrophic part of the flow 

that evolves from the initial state {k2).    Its velocity field is, 

from (39), 

u = - J sin 29(f/r)91 (4?) 

where cp  is the unit azimuthal vector; the entropy (46) may also 

be written in the form: 

5 2-2     r1"      -2 
s = s + | a r cos Q f^IVri ^l' ^ ^ 

8> 

A psu'ticularly simple explicit example is obtained by taking 

2       15 -2 
f = r (r - a - -)/& ;    in this case, if IF is moderate and a 

is rather large (thin shell) the initial entropy field is not too 

different from cos ö/(aN ), and is thus a warming of the northern 

and cooling of the southern hemispheres. The geostrophic velocity 

field (^7) is then vertically sheared, being from west to east at 

low altitudes and from east to west at high altitudes in the northern 

hemisphere, and reversed in the southern. 

It is of interest to compare our general results with their 

analogues for a rotating homogeneous fluid, for the relationship 

between the two is a little more subtle than one might perhaps 

naively expect. Of course one would anticipate that "turning on" 

a little stratification (with a gravitational field) would be a small 
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perturbation, at least for a finite time, on the full initial value 

problem, but this is not necessarily the case when attention is 

focussed on the steady part of the solution.. Indeed steady flows in 

the linear theory of rotating homogeneous fluids must be independent 

of z (Taylor-Proudman Theorem), and this is not .t all necessary 

for steady stratified flows; on the other hand steady stratified 

flows must be along geopotential surfaces, which is not necessary 

in the homogeneous case where the geopotential (in the absence of 

free surfaces) plays no role at all.    What is happening here is 

of course that some of the oscillatory normal modes in the stratified 

case have frequencies which tend to zero as the stratification 

disappears and so show up as geostrophic motions when the stratification 

is turned off. Likewise, some initial conditions which would excite 

time dependent motion (probably largely at low frequencies) in the 

homogeneous case, may in fact lead to steady flows when a little 

stratification is put in. Though the situation is really more complex, 

it is a little like the apparent discontinuity in the nature of 

geostrophic homogeneous flows when the bottom of a container of 

constant height is slightly deformed: the class of geostrophic flows 

is greatly curtailed, and new low frequency oscillatory modes (Rossby 

waves) appear. 

The homogeneous analogues of our results can of course be obtained 

by the same methods - the difference comes only in the first step, the 
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description of the geostrophic flows themselves. Although these results 

are already fairly well known (they are essentially given, for instance, 

in H. P. Greenspan's monograph "nie theory of rotating fluids," 

Cambridge, I968) it is perhaps worth recalling them briefly to 

emphasize that the analogy with the stratified case is in fact 

quite close. To describe the homogeneous geostrophic IJows one must 

also distinguish free, guided, and blocked regions. The  free regions 

are those of constant height (measured parallel to the rotation axis); 

the guided regions are those not of constant height, but in which 

the contours of constant height ("geostrophic curves") do not cross 

the boundaries; and the blocked regions axe those in which they do. 

The geostrophic flows in free regions are independent of z and 

parallel to the top and bottom, but otherwise arbitrary; they are 

essentially characterized by the vertical vorticity component, a quantity 

which, when vertically averaged, is conserved for any motion in a free 

region. The  geostrophic flows in guided regions are independent 

of z and along geostrophic curves; they are characterized by their 

"mean circulation," the vertically averaged circulation around the 

closed geostrophic contours, another conserved quantity, in guided 

regions. The only geostrophic "flow" in a blocked region is zero. 

The steady part of the solution to an initial value problem "carries" 

the vertically averaged vertical vorticity of the initial data in free 

regions and the mean circulation of the initial daoa in guided regions, 

just as in the stratified case it carries the potential vorticity 

and the mean potential vorticity. In over-all structure the stratified 

geostrophic flow problem is really very similar to the homogeneous case, 



/ ■ }~.'-r z-i-^* 

Ik 

even though the latter is not readily derived from the former as a 

limiting case. 

What is the relationship between our function II and the familiar 

potential vorticity of non-linear shallow water theory? the latter, 

the (atsolute) vorticity divided toy the local depth of the fluid 

layer, is a quantity which is conserved following particles, not 

conserved at a particular place like H (or n), so a direct analogy 

is not to be expected; tout they are in fact closely related. The 

true generalization of the potential vorticity of shallow water theory 

is given toy EYtel's Theorem, which (in a non-rotating system) 

asserts the constancy following particles of the quantity p v x u • Vs. 

Ihis holds for an inviscid compressible fluid subject to a conservative 

toody force per unit mass, with s any scalar field (in particular 

the entropy, if there is no heat conduction) which is itself constant 

following particles and in addition, if Vp x Vp ^ o, is a function 

of p and p. Ertel's Theorem can toe readily proved from the 

Helmholtz vorticity theorem (which is true under these hypotheses) 

on using the above properties of s. The conservation of potential 

vorticity in shallow water theory follows from Ertel's Theorem, since 

shallow water theory is mathematically analogous to two dimensional 

compressible flow of an isentropic gas with 7=2; in this analogy 

the ':gas density" is the mass per unit area of the fluid layer, hence 

proportional, to the local depth. The gas motion toeing two dimensional 

and isentropic, we may take s = z, and the conservation of potential 

vorticity follows. Thus the quantity P v x u • Vs, or (in a rotating 

system) p~ (2Qk + V x u) • Vs might appropriately be called "potential 



vortlcity" for compressible stratified flow. In our linearized theory 

this is given in dimensionless form by 

PQ (1 + ep/P0) (2k + £Vx u) • (s^p + eVs) 

= SA^1<:P    2 + £ ( «p'^V x u • Vcp + 2(s')"1iS    - 2P"1P ) 
oo   ZL \z — oz *-'/. (^9) 

The coefficient of e in this expression is closely related to H, 

and our basic formula (16', from which the conservation of H (or H) 

was derived is an immediate consequence of Ertel's IRieorem in the 

linearized case. Indeed we have from (17) that 

n = cp'-'v x u • Vcp + 2(s')"1s - 2p'1p 
z    -       k 0   z    0 

+ ^C^1) • H x vcp + Sp^s ^ (PQ'P'VS^) •        (50) 

If we use (^9) and (50) and linearize, Ertel's Theorem says 

^ H - Vcp"1 . u, x vcp - 2D^S, ^- (P cp'Vs,!) ht z   -H;       0 t oz ' 0 z ' 0 

+ 2(S0Pö"\r1^- V(S0Pöicpz) = 0- 

Replacing u,. and s  in this formula by their values from (5) and 

(7) one recovers almost at once equation (16). 

The function 11 is thus approximately the first order part of 

the :'true;: potential vorticity p v x u • Vs - it has been defined 

somewhat differently in order to obtain a quantity which is constant 
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in time (in the geostrophicaUy free case) at a fixed place. Although 

the "true" potential vorticity is no doubt of more basic physical 

significance, being in fact conserved (following particles) even 

in the non-linear problem, we have felt it appropriate to give this 

name to the function -~ which, as we have seen, plays a fundamental 

role in the linear theory of rotating stratified flow. 
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