
■
'

CS 118
A. I. 74

O

to

10

^5

MACHINE LEARNING OF HEURISTICS

BY

DONALD ARTHUR WATERMAN

SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

DECEMBER 1968

'

JAN 221969

■•-

• „j

I
I
I
I

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUSE

lor Federal Scientific & Technical
Information Springfield Va. 22151

I

.;u'h

BEST
AVAILABLE COPY

I
I
1
I
i

Machine r.egrning of Heuristics

A DISSERTATION

SUBMITTED TO TiiE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON THE GRADUATE DIVISION

OF STANFORD UNIVERSITY

IN PARTIAL FULULLMFNT OF THE REQUIREMENTS

FOR THE DEOREE OF

DOCTOR OF PHILOSOPHY

By

Donald Arthur Waterman

December 1968

STANFORD ARTIFICIAL INTELLIGENCE REPORT
MEMO NO. AI-7U

December 1968

MACHINE LEARNING OF HEURISTICS

by Donald Arthur Waterman

ABSTRACT: First, a method of representing heuristics as production
rules is developed which facilitates dynamic manipulation
of the heuristics by the program embodying them. This
representation technique permits separation of the heuristics
from the program proper, provides clear identification of
individual heuristics, is compatible with generalization
schemes, and expedites the process of obtaining decisions
from the system.

Second, procedures are developed which permit a problem-
solving program employing neuristics in production rule form
to learn to improve .i ts performance by evaluating and
modifying existing heuristics and hypothesizing new ones,
either during a special training process or during normal
program operation.

Third, the sbovementioned representation and learning techniques
are reformulated in the light of existing stimulus-response
theories of learning, and five different S-R models of
human heuristic learning in problem-solving environments are
constructed and examined in detail. Experimental designs
for testing these information processing models are also proposed
and discussed.

Finally, the feasibility of using the aforementioned represen-
tation and learning techniques in a complex proLlem-solvin;-
situation is demonstrated by applying these techniques to the
problem of making the bet decision in draw poker. This
application, involving the construction of a computer program,
demonstrates that few production rules or training trials are
needed to produce a thorough and effective set of heuristics
for draw poker.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-I85).

i

I
I
I

:.

.

ACKNOWLEDGMENTS

I wish to express my sincere thanks and appreciation to my principal

thesis advisor, Professor Edward A. Feigenbaum, not only for his perceptive

guidance, his intellectual inspiration, and his discerning criticisms,

but also for the friendly encouragement and moral support he so generously

provided. I am also grateful to Professor Gordon H. Bower for the extensive

time and effort he spent enlightening me with regard to the psychological

aspects of my thesis topic.

In addition I am indebted to Dr. Bruce G. Buchanan, Professor D. R. Reddy,

and Professor David J. Gries for their valuable suggestions and critical

evaluations of this thesis.

I would also like to thank Mrs. Grace Mickelson and Mrs. Gail Schwartz

for their excellent job in typing and proofreading ohis report, Mrs.

Dorothy McGrath for her fine illustrations. Miss Dianna Konrad for supervising

the preparation of this report, and Miss Barbara Chiarle for reproducing

parts of this report.

i
111

BLANK PAGE

i

MMMMMMMI

TABLE OF CONTENTS

Chapter Page

1. HEURISTIC PROBLEM-SOLVING BY COMPUTER 1

1.1 Introduction 1

1.2 Definition of Heuristic Methods 5

1.3 Historical Background 11

l.U Objectives 27

2. REPRESENTATION OF HEURISTICS 29

2.1 Introduction 29

2.2 Production Rules 52

2.3 Translation of Heuristics into Production Rules ^0

5- PROGRAM MANIPULATION OF HEURISTICS V/

5.1 Creation and Evaluatiu.. of Heuristics ^7

3.2 Training Procedures 55

5.5 Learning Without Explicit Training 77

k, IMPLICATIONS FOR S-R THEORIES OF LEARNING 89

^.1 Introduction 89

h.2 An S-R Interpretation of Production Rules 91

k.J, Proposed Experimental Designs Ilk

5. A SPECIFIC APPLICATION 120

5.1 Intorduction 120

5.2 Heuristics for Draw Poker 122

5.5 Training the Poker Program 155

5.1+ Learning Poker Without Explicit Training IU5

5.5 Discussion of Results 152

IV

MHMBHMHBBMBIH

CONTENTS (Continued)

Chapter Page

6. CONCLUSIONS 158

6.1 Achievements 158

6.2 Areas for Future Investigation l6ü

BIBLIOGRAPHY I69

APPENDIX A. Models of Strategy Learning 175

APPENDIX B. Heuristics for Draw Poker 182

APPENDIX C. Sample of Games Played During Proficiency

Test for Built-in Heuristics 190

APPENDIX D. Training Trials for Manual-training Heuristics 195

APPENDIX E. Sample of Games Played During Proficiency

Test for Manual-training Heuristics 201

APPENDIX F. Sample of Games Played During Proficiency

Test for Before-Training Heuristics 205

APPENDIX G. Training Trials for Automatic Training

Heuristics 209

APPENDIX H. Sample of Games Played During Proficiency

Test for Automatic-training Heuristics . . 217

APPENDIX I. Logical Statements for Draw Poker 221

APPENDIX J. Trt-ining Trials for Implicit-training

Heuristics 226
*

APPENDIX K. Sample of Games Flayed During Proficiency

Test for Implicit-training Heuristics . . . 251

1

I

I
:

:

:

E
:

1

LIST OF ILLUSTRATIONS

Figure

1-1 Structure of a Heuristic Irogram for Chess

1-2 Graphical Illustration of the Criteria for the Usefulness

or Power of Heuristics

1-3

i-k

2-1

2-2

2-J Syntax of a Language for Specifying Heuristics

5-1 A Block Diagram of the Training Procedure

5-2

5-5

M

k-l Feasible Models of Strategy Learning

k-2 Training Sequence and Defi'.iinions to Illustrate Model

Operation .

^-5 An Environment for Testing Models of Human Strategy Learning

5-1 Definitions of State Vector Variables and Symbolic Values .

5-2 The Relationships Existing Between the Function Variables

and the Pookkeepign Variables

5-5 Built-in Heuristics

5-U Possible Arrangements of Hands for the Proficiency Test

for Draw Poker

vi

Page

8

10

25

25

52

58

U2

69

75

75

85

97

99

117

124

126

127

12r,

ILLUSTRATIONS (Continued)

Figure Page

5-5 150

5-6 Results Obtained by Appiyin,- the Proficiency Test to the

Poker Program Containing the Built-in Heuristics 1J2

5-7 Manual-training Heuristics 155

5-8 Results of Applying the Proficiency Test to the Poker Program

Containing the Manual-training Heuristics 15^

5-9 Results of Applying the Proficiency Test to the Poker Program

Containing the Before-training Heuristics 15Ö

5-10 Automatic-training Heuristics lAO

5-11 Results of Applying the Proficiency Test to the Poker Program

Containing the Automatic-Training Heuristics 1^2

5-12

5-15 Implicit-Training Heuristics 1^9

5-1^ Results of Applying the Proficiency Test to the Poker Program

Containing the Implicit-Training Heuristics 151

6-1 161

6-2 162

6-5 17

A-l 180

Table

5-1 Percentage Agreement Between Trainer and Trainee 1^1

5-2 Percentage Agreement Between Learning Program and Axiom Set • 150

5-5 Summary of Results 155

vii

ß
ß
D
E
£
:

i
1
1
J

1

1
1
1
1
:

.:

E

• •

CHAPTER 1

HEURISTIC PROBLEM-SOLVING BY COMPUTER

1.1 INTRODUCTION

Currently much research is being done with computers in an attempt

to produce programs which exhibit intelligent behavior. This work can

be divided into two main categories, (l) artificial intelligence research,

and (2) research in the simulation of cognitive processes (Feigenbaum

and Feldman, 196?). The former is concerned with programming computers

to perform intellectual tasks, while the latter is concerned with

programming computers to simulate human cognitive processes.

The goal of artificial intelligence research is the construction

of computer programs which exhibit intelligent behavior, with the

emphasis placed on the degree of intelligence exhibited. The goal of

research in the simulation of cognitive processes, on the other hand,

is the construction of compute., programs which simulate human cognitive

behavior, with the emphasis placed on the degree to which the programs

can predict this behavior.

To illustrate the distinction between these two categories consider

the intellectual task of game playing. A researcher in artificial

intelligence would judge the merits of his game-playing program on the

basis of its skill at playing the game, the ideal program being one

capable of defeating all other players. However, a researcher in the

simulation of cognitive processes would base the evaluation of his game-

playing program on the extent to which its game decisions or "moves"

paralleled those of human players, not on how well his program played the

1

I

£

game. This distinction is not a clear one, since some research efforts

can be classified as belonging to both categories. One example of this

is the NSS Chess Player (Newell, Shaw, and Simon, 1958), a program,

proficient at playing chess, which employs many human-like problem-solving

techniques.

In both the artificial intelligence area and the simulation of

cognitive processes area extensive use is made of heuristic programming,

that is, of employing heuristics in programs which solve complex problems.

The utility of most of these heuristic programs depends to a large extent

on the form or character of the heuristics employed. Thus heuristics

play an important role in the attempt to create programs which exhibit

intelligent behavior.

One of the important unsolved problems of artificial intelligence

research today is that of the learning of heuristics (Feigenbaum and

Feldman, 1963). The question is this: how can computers (and how do

people) learn new heuristic rules and methods which can be used to

facilitate decision-making in a problem-solving situation? Furthermore,

how are these new heuristics combined with existing ones to produce a

functional system capable of intelligent decision making? Solutions in

this problem area, besides permitting the construction of very powerful

problem-solving programs might also suggest what direction psychological

theories of learning should take. This paper will be concerned primarily

with the development of computer programs which learn heuristics in a

problem-solving environment.

1

::

1.2 DEFINITION OF HEURISTIC METHODS

In this section the concept of the heuristic will be discussed in

detail. First, the term "heuristic" will be informally defined and

contrasted with the concept of the algorithm. Next, more formal

definitions of these terms will be presented, and the implications of

these definitions examined.

Informal Definitions

A heuristic (heuristic procedure, heuristic method) is a rule-of-

thumb, strategy, trick, simplification, or any other kind of device

which drastically limits search for solutions in large problem spaces

(Feigenbaum and Feldman, 1965). A heuristic does not guarantee a solution,

rather it supplies solutions which are acceptable most of the time. On

the other hand, an algorithm (from the logician's viewpoint) is any set

of operation^ which can be represented by a Turing machine (Trakhtenbrot,

I963). However, when "algorithm" is contrasted with ''heuristic" a

narrower definition is usually implied. In the narrow sense an algorithm

is a well-defined search procedure which is guaranteed to produce the

correct solution, given enough time. The advantage in using a heuristic

method rather than an algorithmic one is often that of reduced search time

and effort. The disadvantage is that a solution may not be found, and if one

is found it may not be optimal.

EVALUATION. The above informal definitions give a clear, intuitive picture

of what is usually meant by the term "heuristic" but are unsatisfactory

in two respects. First, these definitions lead to much confusion

concerning the nature of the differences between heuristic and algorithmic

I
methods. For example, they fail to provide the answers to the following

questions:

(1) Can a search procedure be both heuristic and algorithmic?

(2) Does a heuristic procedure necessarily imply failure on

some problems?

(3) How does one show that a given procedure is a heuristic one?

An algorithmic one?

Confusion concerning these and related questions has led to a good deal

of controversy in this area.

Second, these definitions state that a heuristic necessarily

implies reduced search time or effort in a problem area, thus denying

the existence of heuristics which do not lead to reduced search time

or effort. This constraint leads to definitions which are satisfactory

for the typical heuristic problem-solving program; i.e., one where the

heuristics are embedded in the program and can be changed only by some

external operation, such as the programmer revising portions of the code.

However, these definitions are not satisfactory for the type of program

to be described in this paper, a program which hypothesizes, evaluates,

and modifies its own heuristics. For this type of program the concept

of a "poor" (inadequate, ineffective, or useless) heuristic is needed

since the program itself must be able to determine whether ■: given heuristic

is a "good" or "poor" one; and thus decide whether to retain it or

discard it. It cannot be assumed that every procedure hypothesized by

this type of program will lead to reduced search time or effort, but

it would be convenient to think of all these procedures as heuristics.

This can be accomplished if the definition of the term heuristic carries

no stipulation about search time or effort but instead uses the search

k

:

1

1

:

1

i

■

I

i

time or effort as one of the criteria for the "goodness" or "worth"

of the heuristic.

Formal Definitions

In this paper the terms computational rule, algorithm, and

heuristic will be taken to mean the following.

Computational Rule: any procedure determined by a set of instructions

that specify at each moment precisely and unambiguously what is

to be done next.

Algorithm: a computational rule which obtains solutions to problems,

such that there exists at]east one problem domain where for

every problem in the domain this computational rule produces

the correct solution. Furthermore, the computational rule is

said to be an "algorithm for" each problem domain satisfying

the above requirement.

Heuristic: a computational rule which obtains solutions to problems,

such that there exists at least one problem domain where the

computational rule obtains one or more correct solutions but

where it is not true that the computational rule will produce

the correct solution for every problem in the domain. Further-

more, the computational rule is said to be a "heuristic for"

each problem domain satisfying the above requirement.

These formal definitions satisfy the two conditions that the informal

definitions failed to satisfy. That is, (l) providing a clear dis-

tinction between heuristic and algoritlunic methods, and (2) admitting

the existence of heuristics which fail tc lead to reduced search time

or effort.

B

IMPLICATIONS. From the formal definitions given above it is clear that

for any computational rule, Civ, and problem domain, D, if CP produces any-

correct solutions in D then it is always true that CR is either a

heuristic for D or an algorithm for D , but never both. However,

a computational rule may be both a heuristic and an algorithm; for example,

CR might be a heuristic for problem domain Dl but an algorithm for

domain D2 . Also, it is possible that a computational rule could

be a heuristic for more than one problem domain.

To show that a computational rule CR is an algorithm for a problem

domain D one must

(l) show that CR produces the correct solution

for every problem in D .

To show that a computational rule CR is a heuristic for a problem domain

D oie must

(1) show that CR produces a correct solution for a least

one problem in D .

(2) show that CR fails to produce a correct solution for

at least one problem in D .

It should be noted that under these formal definitions, a heuristic

procedure does necessarily imply failure on some problems.

If one is unable to show that a particular computational rule CR

(which produces correct solutions in problem domain D) is an algorithm

for D , and is also unable to show that CR is a heuristic for D then

the status of CR is unknown, although it is still either an algorithm

or a heuristic (but not both) for D . Since the members of this class

of computational rules are generally thought of as being heuristics,

in this paper they will, for convenience, be labeled or "hypothesized"

6

;

I
as heuristics with the understanding that their status is actually

unknown and may be discovered or proven at some later date.

HEURISTIC PROGRAM. A program will be considered to be a computational rule

precise enough to be executed by a computer, and a heuristic program

simply a program which contains heuristics. Thus under the formal

definitions given, a heuristic (or heuristic procedure) is just a

heuristic program containing exactly one heuristic. And conversely a

heuristic program is actually a heuristic for some particular problem

domain. Figure 1-1 illustrates how a heuristic program for chess (Bernstein

and Roberts, 19^8) could be considered a heuristic for the problem domain

Dl while containing heuristics for domains D2 , D3 , D4 , and D5 .

.;

Heuristic Program for Chess

heuristic in D2
(for improving
area control)

heuristic in D5
(for improving
mobility)

heuristic in D^
(for maintaining
king defense)

heunsi-ic in D5
(for improving
material balance)

I
i
4

heuristic
in Dl (for
winning a
game of
chess)

Figure 1-1. Structure of a heuristic program for chess,
illustrating how the program is a heuristic
for domain Dl while containing heuristics for
domains D2, DJ, Dk, and D5. I

—

:

I

I

I

I

HEURISTIC POWER. The usefulness or "power" of a heuristic (as formally-

defined) is dependent on two criteria«

(1) the search time or effort involved in obtaining

a solution, and

(2) the percentage of problems in the domain which can be

correctly solved.

A very useful, good, or powerful heuristic would thus be one requiring

only a short search time to find a solution, while having the capability

of correctly solving a large percentage of the problems in the domain.

On the other hand, the usefulness of an algorithm is dependent on just

one criterion, the search time or effort involved in obtaining a solution.

The percentage of problems correctly solved is not relevant since by

definition the algorithm always solves all the problems in the domain.

These criteria are demonstrated graphically in Figure 1-2 (Anonymous,

1967). Here algorithm A, , is unequivocally superior to heuristic H, ,

algorithm Ap , and heuristic H ; i.e., A, > H, , Ap , Hp . In the

0-3 hour range H > Ap > Hp , but in the 0-5 hour range A^ > H.> Hg ,

and in the 0-7 hour range Ap > Hp > H • This clearly illustrates how a

heuristic can prove more useful than an algorithm when the search time or

computing effort is restricted, since H, is superior to Ap when the

computing effort is limited to 3 hours or less.

- 00

■ t»-

MD

*»
O

-p
3

K\

U

3
o

• CM

I.
■P ^3 +J
a o o "o
Ü (^ ^ >
^ h H
0) tu O O

a< o o w

10

-p

-2

-p
•H
h
V

tu

-p

a
CJ

•H
-P
1

O £

C <w
O O

•H

CO OJ
tn "

n
a

O

i-l w
(0 01
o c

•H H

CD OJ

OJ
I

s
ä

i

I

i

i

i

■

!

.

- »

:

i
i

1.3 HISTORICAL BACKGROUND

In the last decade a large number of computer programs employing

heuristics have been written, most of them being of a nonnumerical

nature. Some of the more important programs of this type will now be

briefly discussed. For this discussion it will be convenient to think

of them as being divided into two categories: (a) programs designed

primarily to demonstrate problem solving techniques, such as game playing,

theorem proving, and question answering, and (b) programs designed

primarily to demonstrate learning techniques, such as pattern recognition,

concept learning, and verbal learning.

Problem Solving Programs

LOGIC THEORIST. One of the landmarks in the development of heuristic pro-

gramming is a program written by Newell, Shaw, and Simon which attempts to

prove theorems in elementary logic. (Newell, Shaw, and S'Jmon, 1956, 1957a,

1957b; Stefferud, 1965). This program, called the Logic Theory machine

(or LT), uses heuristic methods to discover proofs in the Russell-Whitehead

system for the propositional calculus.

Initially, the program is given a set of axioms to use and the

problem of finding a proof for a particular theorem. The program first

tries the method of substitution on the theorem; that is, LT compares

the theorem with each axiom to see if through substitution of free

variables and connectives the theorem can be made to match one of the

axioms, thereby solving the problem. If no match can be found a number

of subproblems are generated, each being the task of proving valid

a particular proposition whose validity implies the validity of the

original theorem. The method of substitution is then tried on the

11

subproblems and if no match can be found subproblems of each subproblem

are generated and the procedure is again applied to each of them.

The search continues in this fashion until a solution is found or the

program runs out of time.

Some of the important heuristics used in LT include (l) the

heuristic technique of working backward from the theorem to be proved

toward the axioms, (2) the methods used to generate subproblems, and

(5) the heuristics for deciding which subproblem out of a group of

subproblems should be attempted first (i.e., which subproblem is easiest

to solve) and which should not be attempted at all. The heuristics used

in LT are an integral part of the program and are thus difficult to

recognize and specify precisely.

The LT project has been criticized (Wang, 1960a) on the grounds

that there exist mechanical decision procedures for the propositional

calculus which will find the proof of any valid theorem and will find

it faster than does LT. Minsky (1961) answers this criticism by noting

that the purpose of LT is primarily to study techniques for solving

difficult problems rather than to produce an expert theorem proving

program in the propositional calculus. The techniques used by LT can

be applied to many different problem areas, whereas Wang's decision

procedure is applicable only to the propositional calculus. This is not

meant to imply that decision or proof procedures are of little importance

in artificial intelligence; much progress has been made, for example,

in the area of proof procedures for the predicate calculus (Wang, 1960b,

1961; Davis and Putnam, I960; Davis, 1965; Robinson, Wos, and Carson,

I96U; Wos, Carson, and Robinson, 196^; Robinson, 1965; Slagle, 1967)-

12

.

D
..

0
Ü

::

ü

:

LT APPLICATIONS. The techniques used by LT have been successfully applied

to a number of different problem areas. A program for proving theorems

in plane geometry (Gelernter, 1959; Gelernter, Hansen, and Loveland,

i960) has been developed which starts with the theorem to be proved

and like LT generates subproblems in an attempt to work backward

toward one of the given axioms. Elementary symbolic integration problems

have been solved using this same general approach. (Slagle, 1961).

Here the program starts with an expression to be integrated (main problem)

and generates other expressions tobe integrated (subproblems) such

that the solution of certain subproblems leads to the solution of the

main problem. A subproblem is solved (expression integrated) when the

expression can be made to match one of a set of standard forms whose

integrals are known. These standard forms are thus analogous to the axioms

of the Logic Theory machine.

Another example of the LT influence can be found in the area of question

answering programs. A program har, been written (Black, 196^) which is

designed to answer questions put to it in advice-taker notation (McCarthy,

1959) by working backward from the question, generating subquestions, in

an attempt to match these subquestions with given statements known to be

true. Recentxy, work has been done on incorporating the LT techniques

into a general purpose program capable of constructing proofs for proposi-

tions in a number of different problem domains (Slagle and Bursky, 1968).

GENERAL PROBLEM SOLVER. Out of the Logic Theory mf.chine grew a more power-

ful program called the General Problem Solver (GPS), designed to simulate

human problem-solving processes (Newell, Shaw, and Simon, 1959; Newell and

Simon, I961). This program deals with a task environment consisting of

15

M

objects and operators. The problem is usually of the form "given

an initial object A and a desired object B , find a sequence

of operators, S:^, ...0 , that will transform A into B ". In this

formulation the problem is one of heuristic search, a process which underlies

much of the recent work in problem solving programs (Newell and Ernst,

1965). To so.ve thxs problem GPS has three types of goals available:

(1) Transform object A into object B ,

(2) Apply operator Q to object A ,

(5) Reduce the difference D between object A and object B •

Associated with each goal is a set of methods related to achieving

iio&ls of that type. Hence solving the problem consists of selecting an

appropriate goal, evaluating this goal in context to see if it is worth

attempting, and executing the methods associated with the goal, if the goal

deemed feasible. If the methods include achieving one or more of the

three goals just desc/ibed then these are considered subgoals whose

attainment leads to the attainment of the initial goal. GPS attempts

to solve the problem of transforming A into B by generating, in a

"depth first" fashion (Newell, 1962), goals and subgoals relevant to

reducing the differences between A and B .

One of the initial applications of GPS has been to the problem

of proving theorems in the propositional calculus. For this particular

task, the objects are logic expressions, the operators are axioms or

rules for transforming one Logls expression into another, and the

differences between objects which are recognized by the program include

features like the logical connectives employed or the number of occur-

rences of a variaole. Besides being given the definitions of the objects,

operators, and differences, the program must also be supp]:ed with a

III

i

i

:

connection table which associates with each difference a set of

operators relevant to modifying that difference. Once the task

environment is so defined, GPS is ready to attempt to prove theorem A,

a logic expression in the propositional calculus, by transforming it

into a given expression B which is a known axiom in the propositional

calculus.

The important heuristics used in GPS are (l) those connected with

the methods used to try to achieve the generated subgoals, (2) heuristics

for deciding whether or not a particular subgoa] is worth attempting,

and (.5) the technique of planning, i.e., constructing a tree of subgoals

based on an abstracted problem space composed of simplified objects and

operators, and then using this tree as a plan of attack for the actual

problem space of complex objects and operators. Most of these heuristics

deal directly with the manipulation of objects and differences. In

contrast, the heuristics of LT deal with the manipulation of theorems

and axioms in the propositional calculus. It is precisely this difference

that makes GPS a "general" problem solver, that is, capable of solving

problems in any domain where the problem can be specified in terms of

objects, operators, and differences.

Besides proving theorems in logic, GPS has also been used to

solve trigonometric identities (Newell, Shaw, and Simon, lS'5l)-

Programs employing GPS problem solving techniques ha/e been written which

balance assembly lines (Tonge, 19^1), compile computer programs (Simon,

1961, ll63), and simulate human behavior in the binary choice

experiment (Feldman, Tonge, and Kanter, 1963).

CHESS-PLAYING PROGRAMS. Game playing is another area which is quite

15

NSS CHESS PLAYER. Newell, Shaw, and Simon have developed a cuess program

:

D
amenable to the development of heuristic programs. In this area, a large

portion of the work has been concentrated on the development of programs

for playing chess. Shannon in 191+9 proposed a framework for a chess playing

program which in essence stated that (l) the chess game can be thought of

in terms of a game tree whose nodes correspond to board configurations and

whose branches correspond to the alternative legal moves and, (2) the

best move to make from a particular node Nl (i.e., in a particular board
-

situation) can be determined by generating alternative moves in the tree

down to some particular depth, evaluating the board configurations at that

depth as single numerical values, and minimaxing (Slagle, 1965) these

values back up the tree to node Nl , picking from Nl the alternative move

which received the highest value (Shannon, 1950; Newell, Shaw, and

Simon, 1958).

Turing has described a program based on Shannon's proposal which,

in determining the best move, generates all possible alternative moves

down the tree until a dead position with regard to piece exchange is

reached at each branch (Turing, 1950). A group at Los Alamos has i

programmed MANIAC I to play chess, also generating all possible alternative

moves but only down the tree to a fixed depth of k moves (Kister et al.,

1957). The program performs only a minimal evaluation of the board con-

figurations at this depth, before minimaxing to determine the best al-

ternative. A program written by Bernstein plays chess using this same

framework but generates only 7 plausible alternatives at each node down

to a fixed depth of h moves, where it performs an extensive evaluation

of the board configuration before minimaxing (Bernstein and Roberts, j.958).

!

1
I

:

which differs in a number of respects from the programs just described

(Newell, Shaw, and Simon, 1958). A set of goals are defined (king safety,

material balance, etc.) and alternative moves are generated which tend to

satisfy the top priority goals in the given situation. The tree is

generated until at each branch a dead position is reached with respect to

all goals, that is, until no move can be made which will drastically alter

the situation with respect to these goals. The board configuration at

each dead position is then evaluated as a list of values (one for each

goal) describing how well that configuration meets each goal, and these

lists are minimaxed back up the tree. An alternative move is chosen as

being a satisfactory one if the list associated with it through minimaxing

is greater, element by element, than a list representing the minimum

allowable values for each goal.

The important heuristics used in the chess programs just described

are (l) those concerned with the generation of alternative moves, (2)

those concerned with the depth of analysis, and (5) heuristics for the

evaluation of board configurations. Again it is difficult to recognize

and specify precisely the heuristics used by these programs, since they

tend to be interrelated and are an inseparaVie part of each program.

Learning Programs

PATTERN-RECOGNITION PROGRAMS. Pattern-recognition research has led to the

development of many programs which employ learning mechanisms. Much of

the initial work in pattern recognition was based on neural network learning

techniques (Carne, 1965), the most successful example of these techniques

being Rosenblatt's perceptron (Rosenblatt, 1958, 1962; Green, 1963)• The

perceptron is basically a network of randomly inter-connected neural

17

elements, each element being capable of "fiving" or putting out a fixed

amplitude signal over its output connection lines whenever the sum or

the signals on its input connection lines exceeds some threshold. The

network learns through reinforcement procedures, the most common type

consisting of presenting the network with a stimulus (a set of input

signals) and for each learning trial incrementing the output amplitude

of all elements which fire when the correct response (output signal) is

made.

A more sophisticated pattern-recognition model. Pandemonium

(Selfridge, 195S')* uses a highly organized network where the elements

represent likely features of the input patterns. The model learns

by adjusting the weights associated with the connections between these

elements .nd the possible responses. For example, if the model were

given a pattern containing feature f. and was told that the pattern

belonged in class R, , then the weight on the connection between

element f and response R, would be incremented, meaning that a

pattern with feature f? would then have a greater probability of being

classified as type R, . One problem with this type of model is that

the features it uses must be supplied to it by the designer, and it is

seldom clear what features will lead to efficient operation. A pattern-

recognition program has been written (Uhr and Vossler, l;6l), which

attempts to overcome this difficulty by effectively generating features

at random, evaluating them in terms of their usefulness, and discarding

those which are not useful. The program not only learns to classify

patterns by adjusting weights or coefficients on the features, but also

learns what features can be used to classify the patterns.

18

I

I

I
:

In the pattern-recognition programs just described the learning

consists essentially of using a reinforcement process as the basis for

generalizing by adjusting weights or coefficients. The heuristics

involved include those connected with the determination of features to use

and those concerned with the techniques used to adjust the weights.

SAMUEL'S CHECKER-PLAYING PROGRAM. One of the most successful learning

programs to date is a checker-playing program which learns to improve its

playing ability through training and game-playing experience (Samuel,

1959> I960). This program is patterned after the framework proposed by

Shannon for the game of chess. As in the chess programs described earlier,

the checker program bases its move decision on the results of looking

ahead in the game tree to relatively dead positions, evaluating the board

configurations at these positions, and minimaxing these values back up

the tree. The value of a board configuration is determined by calculating

the numerical value of a linear scoring polynomial w..f.. + Wpfp + ... + w f ,

where the f's represent certain parameters or features of the board

configuration (such as piece advantage, denial of occupancy, mobility,

and center control) and the w's are weights or coefficients representing

the relative importance of each parameter.

The checker program is capable of two basic types of learning,

(l) rote learning and (2) generalization learning. The rote learning

is quite elementary and consists of storing in memory all the board

positions encountered during play together with their scores based on

lookahead minimaxing. Performance improves under this learning scheme

since the program saves time when it encounters familiar board positions,

and this time can be used for searching the game tree to a greater depth.

1 •

The generalization learning, on the other hand, is somewhat complex and

involves adjusting the coefficients of the scoring polynomial toward

their optimal values.

20

I
I
I
!

BOOK LEARNING. In one form of generalization learning the program is

"trained" by being given a large number of board positions and the associated

book moves (the moves recommended by master checker players). During this

book learning procedure the program keeps track of the parameters whose

values have a general tendency to increase as a result of the book moves

and also those whose values have a tendency to decrease. The parameters

whose values increase are considered to be important for winning the

game and their coefficients are incremented. Conversely, the parameters

whose values tend to decrease are considered unimportant and have their

i:

coefficients decremented.
it

LEAENING THROUGH GAME PLAY. In another form of generalization learning

the program modifies the coefficients during actual play by comparing, (for
- ■

each of its moves) the bp.cked-up score for the board position with the score

calculated directly from the scoring polynomial. It is assumed that the

backed-up score is more accurate than the direct score, hence the

coefficients of the parameters are adjusted so that the direct score will

more nearly approximate the backed-up score. Parameters which have a

general tendency to increase the difference between the backed-up and

the direct scores are removed from the polynomial and replaced by para-

meters from a reserve list. Thus the program can radically modify its

evaluation polynomial and can possibly learn which of a given set of

parameters are relevant to the goal of winning at checkers.

- •

:

?

SIGNATURE TABLES. One difficulty with implementing learning by adjusting

coefficients in a linear polynomial is that there exists in this procedure

an implicit assumption of independence of the parameters involved, while in

actual fact the parameters are seldom independent. Samuel (196?) has proposed

a "signature table" scheme to help overcome this problem. In its simplest

form this scheme consists of grouping the parameters into sets called

signature types, and for each set defining a function which when given

a value for each parameter of the set generates a number reflecting the

relative worth of that particular combination of parameter values. Each

function is defined by enumeration; that is, by a table pairing each

combination of parameter values with a number indicating their worth.

To keep the tables small the range of parameter values is restricted

to either 5, 5 or 7 values. A board position is then evaluated by evaluating

each signature table using the parameter values of that position and

adding together the numbers obtained from each table. The signature table

approach proves to be more efficient than the linear polynomial method when

book learning is employed.

In the checker program, learning consists of generalizing by

modifying coefficients of board parameters. Among the heuristics used

are those concerned with depth of analysis, tree pruning techniques

(such as the a3.pha-beta procedure: Slagle, 1965; Samuel, 196?), de-

termination of parameters, specification of the evaluation function,

and the adjustment of coefficients. Heuristics which are used but are

seldom acknowledged in this type of program are those connected with

the definitions of the parameters; for example, mobility can be defined

in many ways, but one definition is likely to be more useful than the

..1

others. The particular definition chosen can be considered a heuristjc

for measuring the value of the parameter.

CONCEPT-LEARNING PROGRAMS. Programs have also been written which simulate

human learning processes. One of the important contributions in this area

is a concept-learning program by Hunt (19^2, 1966) which learns to distin-

guish between positive and negative instances of a concept after it is

presented with a small sampling of positive and negative instances. Hunt

represents an instance of a concept as a set of attribute values, for

example, (LARGE, RED, TRIANGULAR) is a positive instance of the concept

"large triangle", while (LARGE, RED, CIRCULAR) and (SMALL, RED, TRIANGULAR)

are negative instances. The learning process consists of growing a

decision tree whose nodes represent tests on the attribute values, such

as "is the object large?" or "is the object triangular?". The decision

tree is used to classify any given instance as being either positive or

negative by sorting the instance down the tree to a terminal node and

assigning the instance to the category associated with that terminal node.

To illustrate this process consider the sampling of positive and

negative instances given in the above example for the concept "large

triangle". The program would use these instances to grow the following tree.

I
I
I
!

I

.

..

22

:

.

is it large?

negative
instance

positive
instance

negative
instance

Figure 1-3.

It is clear that if a new instance, such as (IARGE, BLUE, HEXAGONAL) is

presented it will be sorted to the proper terminal node (negative, in

this case) and thus correctly identified. Another program which performs

concept learning is one written by Kochen (i960, 1961). This program,

like Hunt's, generates a decision rule for deciding whether or not a

given object belongs to a certain class, but makes no attempt to simulate

human behavior.

In the concept-learning programs the process of learning consists

of making clever generalizations based on the given information. The

important heuristics used in Hunt's program are those concerned with

the choice of attribute values to use as tests for the nodes and the

order in which the chosen values are arranged in the tree.

SIMULATION OF VERBAL LEARNING. Another important contribution in the area

of simulation of human learning is a program called EPAM (elementary

23

Mi ^

perceiver arid memorizer), which simulates verbal learning behavior by memor-

izing three-letter nonsense syllables presented in associate pairs or serial

lists (Feigenbaum, 1959, 1965, 1964, I967). EPAM's task for each pair of

syllables S,R is to learn to produce the response R when given the

stimulus S . The program accomplishes this by growing a discrimination

net composed of nodes which are tests on the values of certain attributes

of the letters in the nonsense syllables. For example, a test at one node

might be "does the third letter of the syllable have a horizontal component?".

The various stimuli and responses are individually sorted down the net to

trminal nodes where they are stored, one per terminal node. If two

different syllables are sorted to the same terminal node a new test node

2k

.

is grown at that point capable of distinguishing between the two syllables

and thus sorting them into two separate terminal nodes. In this fashion

the discrimination net is grown. A complete description (all 3 letters)

of each response is stored in the net, but for each stimulus only a

partial description (l or 2 letters) is stored together with a cue or

partial description of the associated response.

As an illustration of this process consider the task of learning

the two pairs of syllables, RAX - JIF and JEQ - HOX. The program

would grow the following type of net.

- •

- ■

..

::

does the third letter have
a horizontal component?

does the first letter have
a curved component?

Figure 1-h.

Now if EPAM is given RAX and asked for the response, it sorts RAX

down to terminal node 3, retrieves the cue J_F , sorts it down to

terminal node 1 and responds with JIF. If the test at a node cannot

be applied because of insufficient information in the cue, the cue is

sorted left or right randomly at that node. The program improves its

performance as the nurrber of learning trials increases, since each

time it retrieves an incorrect response it enlarges the partial des-

cription connected with the retrieval of that response. Using this

basic scheme EPAM is able to demonstrate stimulus generalization,

25

response generalization, and retroactive inhibition.

Learning takes place in EPAM by simple association; a stimulus

is associated with a response cue in a terminal node. However, generali-

zation techniques (the growing of the discrimination net and the use of

partial descriptions) are employed which tend to minimize the amount

of information that needs to be stored and which lead to iiumanlike

verbal learning behavior. The important heuristics used in EPAM are

those concerned with the implementation of the generalization techniques.

It is of interest tc note that in all of the learning programs

discussed, learning is accomplished either through rote memorization

processes or through various generalization techniques. The implication

here is that the process of generalization must be well understood in

order to be able to construct really effective programs for performing

complex learning tasks.

26

I
:

:

r

.1

1.1» OBJECTIVES

This paper proposes to examine the following three questions as

a first step toward the development of computer programs which learn

heuristics: (l) what is a useful way of representing heuristics in a

program?, (2) how can heuristics be modified by the program embodying

them?, and (3) what implications do these representation and modifi-

cation techniques have for theories of human learning?

Most heuristic programs (and in fact, all the programs discussed

in section 1.3) have the heuristics "built-in"j i.e., the heuristics are

an integral part of the program and even on close inspection it is

difficult to decide exactly what heuristics are being used, what their

effects are, and how they are related to one another. When this is the

case, the entire program, in a sense, is a representation of the embodied

heuristics.

The problem encountered in using this naive method of representation

is the following. The heuristics are so entwined in the program that

it is extremely difficult to make the program itself manipulate them.

It would be desirable to have a program which during execution could

monitor the use of its own heuristics; e.g., which could obtain measures

of their values, modify them in an attempt to improve them, discard ones

which seem of little value, and add new ones to replace the discarded

ones. A program with the ability to manipulate its own heuristics could

be given, as a secondary task, the job of learning what set of heuristics

would provide optimal performance in its primary task. For instance, a

game-playing program with this ability could learn, during the course of

a game, how to play the game more intelligently by manipulating the

27

heuristics concerned with the strategy used in playing the game.

Psychologists have been studying the phenomenon of learning for over

three-quarters of a century, with the result that many divergent theories

or viewpoints have appeared. The majority of the work in this field

has been done on simple learning (acquisition of motor skills, discrimi-

nation learning, memorization, etc.)- Some work has been done on more

complicated learning processes such as concept learning (Bruner, Goodnow,

and Austin, 1956; Hunt, 1962), but little has been done on the complex

processes involved in strategy learning in game-playing or problem-solving

envirorraents. Thus, it would prove beneficial if artificial intelligence

techniques for representing and modifying heuristics could be applied to

a psychological theory of complex human learning.

i

.

-.

28

■

CHAPTER 2

REPRESENTATION OP HEURISTICS

2.1 INTRODUCTION

The feasibility of learning heuristics by dynamically manipulating

them in a program depends heavily upon the method used to represent the

heuristics.

REQUIREMENTS. To facilitate dynamic manipulation, the representation should

satisfy the following requirements:

1. It should permit separation of the heuristics

from the program using these heuristics.

2. It should provide for clear identification of

individual heuristics and show how these heuristics

are interrelated.

;. It should be relatively easy to work with.

The first requirement is basic, since the program would have a

difficult time trying to manipulate heuristics that it could not even

locate. The second requirement is necessary because individual heuristics

need to be modified and evaluated, and when a modification occurs the

effect of this change on the whole system of heuristics must be known if

an accurate evaluation is to be made. For example, if heuristic hi

depends in some way on heuristic h2 , and h2 is modified, then

effectively hi is also modified. In the evaluation of this modification

it is necessary to recognize the relation between hi and h2 , since

2

to the exposition of a representation technique which does satisfy the

above requirements.

DEFINITIONS. A method of representing heuristics which satisfies the re-

quirements of section 2.1 will now be proposed. First, however, the follow-

ing items must be defined:

1. Heuristic Rule: a heuristic which directly specifies

5C

I
I
I
1

•

it is possible that either hi or h2 will be rendered less effective

by the change. If the relation were unrecognized, the program might naively

proceed with the evaluation by testing the new h2 but ignoring the heur-

istic hi .

The last requirement states that the representation technique

employed should be easy to work with. By this is meant (a) that the

heuristics should be easy to modify or replace, (b) that the represen-

tation should be compatible with generalization schemes, and (c) that

it should be easy to use the heuristics to obtain a decision from the

system. The desirability of conditions (a) and (c) is clear. Condition

(b) is desirable in view of the evidence presented in Chapter 1 that

complex learning can be achieved through the use of generalization

techniques.

The representation method discussed in Chapter 1, where the entire

program is a large complex representation of the embodied heuristics,
4

is obviously inadequate. It fails to satisfy every requirement except

conditions (b) and (c) under requirement J. This chapter will be devoted

;

■

L

:

an action to be taken.

:

-

i

i

i

5« General Heuristic;

k. Special Heurirtic;

Heuristic Definition: a heuristic which does not specify

an action directly, but instead de-

fines a term.

a heuristic rule or definition which

employs terms defined by heuristic

definitions.

a heuristic rule or definition which

does not employ terms defined by heuristic

definitions.

Some examples (taken from the game of checkers) to Illustrate the

above definitions are given below.

(a) If the piece advantage is "high" then 'make an even exchange'.

(General heuristic rule).

(b) If the piece advantage is greater than 5 then 'make an even

exchange'. (Special heuristic rule).

(c) A "high" piece advantage is one 5 or more greater than a

"low" piece advantage. (General heuristic definition).

(d) A "high" piece advantage is one equal to or greater than k.

(Special heuristic definition).

In section 1.2 a heuristic is defined as a particular type of

computational rule, capable of obtaining solutions to problems. Consider

example (b) above from the game of checkers. This can be thought of as a

computational rule for solving the problem "what type of move should I

make to increase my chances of winning the game?" Furthermore, example

(d) can be thought of or restated as a computational rule for solving the

problem "Is the piece advantage in the present board configuration a high

51

one?" Thus the above definitions correspond to those presented in

section 1.2.

2.2 PRODUCTION RULES

During execution, a program goes through a succession of states

as the values of its variables are changed. Consider a "situation" as

the set of current values of the variables of the program and let this

set be called the state vector C of the program (McCarthy, 1962, 1965).

When a block of code is executed, the effect on the state vector may be

described by the equation £' = f(6) , where 6' is the resulting state

vector and f(£) is a function which stands for the block of code. In

the typical heuristic program the heuristics are represented by blocks

of code, each block being a complicated, inflexible function of the program

variables. The relation between the code and the values of the program

variables is illustrated below for variables A, B, and C with values

a. , b , and c. .

6 = (a1,b1,c1)

COMPUTATION

BLOCK

f(e) = f(A,B,C) (a'^b'^c^) = ß'

I
I
"■

--

..

t

Figure 2-1.

32
1
I

•

A simple, more flexible way to express such a function is by a

set of rules, each having the form

(a1,b1,.i) - (f^e), f2(e), f5(e)) .

The above rule states that when the value of A is a.. , B is b and

C is c , the function (or block of code) changes the values such that the

value of A becomes f, (£) , B becomes f2(e) , and C becomes f,(£) •

The problem with this technique is that it may require an excessively

large number of rules to adequately describe a function.

This difficulty can be eliminated by using sets of values in place

of individual values in the description of the state vector. For example,

instead of using (a..,b ,c) above to represent a particular state,

(Al,Bl,Cl) can be used where Al, Bl, and Cl are sets, in this case de-

fined as Al = [a } , Bl = fb } , and Cl = (cJ . A single description

such as (Al,Bl,Cl) can be made to represent a number of states by merely

enlarging the sets defined by Al, Bl, and Cl . Thus by using rules of

the form

(Ai, Bi, ci) - (f^e), f2(e), f3(e))

it takes fewer rules to adequately describe a function depicting a

block of code containing heuristics.

In view of these considerations a heuristic will be represented

as a rule of the form ^ -* Y • This rule will either (a) specify

an action to be taken in situation S by the rule S -• S' , where S' is

the situation that results after the action is taken, or (b) define a

term by the rule Z -• Z' , where Z is the term being defined and Z' is

some conbination of terms which constitutes the definition of Z .

55

Jt

i
It will be useful to think of these rules as production rules which

specify how a value or string of values of variables from the state vector

can lead to other strings.

51*

REPRESENTATION OF HEURISTIC RULES. A heuristic rule can now be re-

presented by a production rule of the type S - S' . Here S la a situation -'

defined by the state vector variables, such as the vector (Al, Bl, Cl) ,

and S' is the definition of the resulting situation or state vector,

such as (f-^t), f2(e), f,(&)) • Production rules of the type S - S'

will be called action rules (ac rules). Consequently, an action rule

states that in a situation of type S the values of some of the state vector

variables are changed to produce a situation of type S' . This type of

production rule is weakly analogous to the productions used in a Chomsky

type 0 grammar (Chomsky, 1959)'

REPRESENTATION OF HEURISTIC DEFINITIONS. A heuristic definition can be

represented by a production rule of the type Z -• Z' , where Z is a

value of a state vector variable (such as Al) and Z1 is either

(1) a value of a state vector variable and an associated predicate, or

(2) a computational rule for combining variables of the state vector.

Case (l) will be called a bf rule (backward form) and case (2) an ff

rule (forward form). An example of case (l) Is Al -• A , A > 20 ,

meaning that A is considered a -ember of the set Al if the current

value of A is greater than 20 . An example of case (2) is X -* Kl x C ,

meaning that X is defined by the arithmetic expression Kl x D .

This type of production rule is weakly analogous to the productions used

in a Chomsky type 2 grammar (Chomsky, 1959)-

STATE VECTOR COMPOSITION- The state vector is subdivided into three

types of variables: bookkeeping variables, which provide a record of

past experiences; function variables, which represent arithmetic

expressions containing state vector variables; and dynamic variables,

which either directly influence the decisions of the program or change

in value as a direct result of these decisions. Only the dynamic

variables are used in the descriptions which represent the left

and right parts of the action rules.

Decision Making Using Production Rules

The production rule just described can be used to implement decision

making in a problem solving program. This technique will now be illustrated

for the class of problem solving programs categorized as game players. The

"intelligünce" of a game playing program is measured by the appropriateness of

the decisions (or moves) it makes during the course of a game. In order to

make a decision, a program using the production rule method of heuristic

representation (l) examines the action rules to find one applicable to the

current situation, and (2) uses the rule just found to change the values of

certain dynamic variables of the state vector in such a way that the change

defines a move.

To illustrate the use of these production rules in a game-playing

situation, let the gubvect [ß , composed of the pertinent dynamic

variables of the state vector, be the following:

ß - (a, b, c)

where A, B, and C are variables with the current values a, b, and c

respectively. The heuristics to be used for this simple example are:

1. If A is an "Al" then add X to the value of B .

^

2. If A is an "A2" and C is a "Cl" then subtract Y

from the value of C .

5- If B is a "Bl" then add Y to the value of C .

k. A is an "Al" when A > 25 .

5. A is an "A2" when A < 25 •

I. ^Al, *, »J ~* la, X+b, c; ac

2. (A2, *, ci) -* (a, b, c-Y) IV

'■• (*, Bl, ») - (a, b, Y+c) ac

;.. A.l —• A, A > 25 bf

■• A2 —» A, A < 25 tr

HI —♦ B, B > 1 ■'\-

7. W -♦ B, B > ^ bf

-. C] -• C, C = 5 bf

• X —» Kl x D ff

10. Y -. K2 - (K3 X E) ff

I

6. B is a "Bl" when B > 1 .

7. B is a "B2" when B > ^ .

8. C is a "Cl" when C ■ 5 •

9« X increases as D increases.

10. Y increases as E decreases.

In the preceding heuristics, D and E are bookkeepint; variables,

X and Y function variables, and A, B, and C dynamic variables.

The corresponding production rules are:

i
.

1

A "*■" in a subvector indicates that the variable in question may

take on any value. Hence (Al, *, *) describes all situations where A

has the symbolic value Al , while B and C have any values. Also needed

are the following production rules (one for each element of the subvector):

36
:.

11. A •* a. a € (set of possible values of A] bf

12. 3 - b, b 6 [set of possible values of B } bf

15» C -• c, c 6 (set of possible values of C } bf

For this example, the set. of possible values for A, B, and C will be

defined as the set of natural .lumbers.

In the game, when the point is reached where the program must

make a "move" decision, the values of A, B, C, D and E will have been

set by either a previous program decision or by the non-heuristic part

of the program. The terms Kl, K2, and K5 are considered to be

constants. The decision is made in two steps as follows.

A- Each element of the current program subvector

is matched against all right sides of the bf rules.

When a match occurs (the predicate is satisfied) the

corresponding left side of that bf rule is then matched

against all right sides of bf rules, etc., until no more

matches can be found. The resulting set of symbols de-

fines a symbolic subvector. This step is somewhat analogous

to parsing (irons, Ijbk; Ingerman, 1^66).

L. The symbolic subvector derived in Step A is

matched against all left sides of the action rules,

going from top to bottom, and when the first match is

found the values of the program subvector are modified

as described by the right side of the matched rule. A for-

ward search is usually necessary, through the ff rules, to

determine the new values for the program subvector variables.

57

As a concrete example let the subvector have the values a = ^ b = 5,

c = 6 , the constants have the values Kl - 1, K2 = 20, K5 = 5 , and let

the bookkeeping variables have the values D = 7 and E = 8 . Then

0 = C1*» 5, 6) and the "parse" c* step A has the following form.

A2 Bl

I
I
I

,.

Figure 2-2.

Here sLep A is initiated by comparing a = k with each bf rule

predicate, the predicate being satisfied only if it contains the symbol

a and is true when a is set equal to ^ . Thus a. = h is found to

match rule 11 and no others. Next, A = 4 is similarly compared with all

bf rule predicates and is found to match only rule 5« Finally, A2 = h

is CTipared with all bf rule predicates, and since it matches none of

them the search terminates, leaving A2 as the final symbolic value.

Elements b and c are processed in the same manner, and the symbolic

subvector that results ;.s ((A2), (B1,B2), (C)) . This subvector

is a description of all situations in which (l) the variable A has the

symbolic value A2 , (2) the variable B haö either the symbolic value

Bl or B2 , and (3) the variable C has the symbolic value C .

otep B now consists of comparing the subvector ((A2), (B1,B2), (C))

with the left side of each action rule, until a match is found. In

this case a match occurs at rule 3' The program subvector is then set

y
:

I

i

to the values specified in the right side of rule 5- Hence the new ß

equals {k, 5, (20 - (3 x 8)) + 6) or {h, 5, 2) . In effect, the pro-

gram made the decision to change the value of the variable C to 2 .

The method just proposed for representing heuristics easily satis-

fies the first two requirements of section 2.1, since the heuristics are

separated from the program, and the individual heuristics and their inter-

relationships are clearly identified. The third requirement of section

2.1 is also satisfied, since the production rules are easy to

modify or replace, are compatible with generalization schemes (this will

be shown in Chapter 3), and are easy to use to obtain a decision from

the system. Standard techniques for handling production rules, such as

parsing, are seen to suggest methods which can be used to facilitate the

decision making process.

NEWELL'S SYSTEM. This is not the first attempt to use a production

system as the underlying mechanism in a problem solving scheme.

Newell (l9o6> 1^7) uses a production system to characterize the problem

solving process occuring in a human subject as he solves crypt-arithmetic

problems. Each production consists of an expression of the form:

condition •* action

and specifies the action to take when the condition in the left part

of the production is true. The productions are priority ordered so

that the system can uniquely determine which production to use in

situations where more than one is applicable. The production rule

system ^ust described closely parallels Newell's system in its

general approach to decision making.

39

Ä

2.5 TRANSLATION OF HEURISTICS INTO PRODUCTION RULES

At this point it is reasonable to ask how one cui go from a

heuristic stated informally, like "if the piece advantage is high make

an even exchange", to a set of representative production rules. This

transition can be accomplished through the use of an intermediate step,

that is, a formal language in which heuristics can be expressed precisely,

and which can be automatically translated into production rules. With

such a tool, one would only have to restate the heuristic in this

intermediate formal language in order to effect its transformation into

production rules.

A Language For Specifying Heuristics

The syntax of a language for expressing heuristics is presented in

Figure 2-5 as a set of syntactic rules. This language will be called

LASH: language for specifying heuristics.

TERMINAL SYMBOLS. The terminal symbols in the syntactic rules include

(l) all the underlined words, (2) all non-alphabetic symbols, and (5) all

Greek letters. The terminal symbol @ stands for any ALGOL-like

identifi'jr (Bauman et al., 196^; Ekman and Froberg, 1965)j while the

terminal symbol # stands for any ALGOL-like number.

The terminal symbol \ stands for any simple arithmetic expression,

that is, any ALGOL-like expression composed of identifiers, the arith-

metic operators +, -, x, + and the delimiters) and (. However one

restriction is made; a single number or identifier must be enclosed in

parentheses to be recognized as an expression. Without this restriction

it would be, in some cases, impossible to determine whether a given

ko

terminal string was an @ , a # , or a \ . Also, one extension is made;

an expression can include the function "random (a,b)", which when

executed evaluates to a number chosen at random from the range a to b .

The terminal symbol n stands for any simple Boolean expression which

is enclosed in parentheses, that is, any parenthesized ALGOL-like Boolean

expression composed of identifiers, arithmetic operators +, -, x^ tj

relational operators >,<>=> ^ j and the delimiters) and (. Some

ej. mples of ©-type strings are Kl, STORE, and MJJ > of #-type strings

are 3, 1.5» and -12 , of \-type strings are (Kl), (3), and L8 + (3 x Q) ,

and of n-type strings are (P > h), {6 y, Uk = PL-5), and (L8 + (5 x Q) < Kl) .

kl

a)
h
P.
H
rH
P

VH

+3
CD ■ J3

c P
CJ a

•ri o a a -P •H o
0 •rH M 3

•H a m ■ ■ •H 0) ■ IH U g
c t OJ {X o o T3 X -p - a 1 ■

¥> X •^
o <u ■ +J
CD a SJ rH h

o o CD CD .^ .,-1 • H 3
^ +> + > a Ui

ä a •H •r< UJ •H
M c C

H •rH fi •r(•ri a e ■ ■ o ^ Vn o o ■ VI -p 0) 0) ■p •p
CD CD CD -a -D CD CD Si II ^i-. V A Vl Al III ® =♦= ^ t

tttttttttttttttttttf
a a C t/J H c e P -P C a c C a c H e u r. r>
o o bü a e o 0 U tn O 0 c o o o B o <v o p
H •rH •H c o •H •r(CD CD •H • H •H •H ■H •H C ■p A ■H M

■P P ta • H •H p P -P ■P -P •P -P p •H CD H Pi
u u w ♦» 4* •H •H TO CD CD m CD a) P ^ w H
CD CD CD • .H • H c a ,-H H H ^H H H CD 0 OJ i-i

a q •rH •rH 1/ II 0) OJ OJ V H R 3
•M •rH VH <« >H c N h ^ h V ft C
VH '« 1) OJ U H
(D w T3 T3 ii

T3 >0

[
I
:

:

• >

II
p •p

B c
2 •2 1

• B -P
CD

^_^
■p CD 0) -P -P h
a) ■ H a H M a w E
M a U n E 0) rQ 0
a o (U •H a e -p
0 ., (■a -p 0) (U 3 CD

•H + ' Ü OJ 43 -p a
P .. < ^ ■ H ■P CO r4
«) L: •rH -p CM c a
R •H ■ c;j • •

!
0) n l n o 0

CD V, k: B fl -P K •rH ■H
r (0) o 0 o <v OJ CD OJ (U h P ■P
O T3 •rH ■H >H t- n U w e ft ft CD CD

a» *» P P CD p ■H rH CO rH H
T5 • vD CD CD

c
0 T3

y
V < > OJ E _

:| H Ui CD CD CO 0 H K II o rH 1-4 H CVI E
• < (U 11 . < , i r(•H II OJ a H •H T3 n '7 TT tj B e O
4 r-. , < u o u P H H 3 -P OJ '11 OJ OJ o o -P
n J3 3 a) II H) O g d H Vi C) S-H (H IN IH h -p -p CD

^ll R c Tl ■n -o CD R •rH »—■ CD ft ft ft ft Pi CD co -

tttttttttttttttttttt
II H rH H-> ■ H C W Ui (U P -P 0) -a >o rH rH OJ OJ ID
ii II 01 (U B B O (U IV rH a B -p a) cu T3 T) T3 n E

•H B .: n n 0 •rH H r-i -1 u IU co h ^H (i) K 'OJ m m
J •H •H c ■ ,H •rH P 3 P (H B B U ft Pi (H ^H C C
3 P ■P n *' H CD h u 0) 0) ■H p p. ft ft ^
o 3 1 •rH as CD u -p -p •o 0
tH n O + > U h co CD CD OJ •H

u (-, CD
R
CD

o
V

co
H

CJ

CO
rH
u
II

T3

O

T3

•P ■ -P
ft

14?

-P
o

;:

SIMPLE PRECEDENCE SYNTAX. The syntax presented in Figure 2-5 is a simple

precedence syntax i.e., the syntactic rules are so arranged that the

relation between any two symbols is unique. Three types of relations are

considered.

(1) The relation ■ holds between all adjacent symbols within

any string forming the right side of a syntactic rule.

(2) The relation < holds between the symbol immediately preceding

a reducible string and the leftmost symbol of that string.

(3) The relation •> holds between the rightmost symbol of a

reducible string and the symbol immediately following that

string.

Here a reducible string is one which can be reduced through parsing

to another string of equal or smaller length. As a consequence

of this arrangement, the language defined by the syntax is a simple

precedence phrase structure language (Wirth and Weber, 1966).

The advantage in using this type of language is that there exists a

very efficient algorithm for parsing sentences of the language (Wirth and

Weber, 1 6). This is quite important if one wants to construct a

syntax-directed compiler (irons, I96I, 1965; Ingerman, I966) for automat-

ically translating the language into some other form, such as a set of

machine instructions or list of rules. Thus the language is designed not

only to provide for adequate dejcriptions of heuristics, but also to

permit relatively simple and efficient translation into production rales,

^he computer program to be describeil in this paper does not include a

compiler for translating LASH into production rules. Consequently,

translation into production rules is performed by hand.

STRUCTURE. The structure of the language defined in Figure 2-5 will now

be illustrated by using it to express a number of heuristics for a

hypothetical game. It will be assumed that for this game the dynamic

variables are A, B, C, D, and E , the bookkeeping variables are F and

G , the function variables are P and R , and the constants are

Kl, K2, K5> and K^ . The way in which the language can be used to

express heuristics is shown below.

beKin 'MOVEl'

'M0VE3'

DZ ^is a D such that (D < E-20),

P equals (Kl X F) - (K2 x R),

i

i
B ♦- 2xB; C *- D +(i+xC)+P,

B ♦- B+6; D <- C+D; E «- (O),

A *- (5); D »- (E).

_ifA> 5AB<10 then 'MOVEl' otherwise

if A > 20 then (if B=0 then 'M0VE2' else »

!

(if B=l A C=GX then 'M0VE3' else 'MOVEl')) otherwise

if D=DZ then 'M0VE5' .

CX is a C such that (C+5 > P)i I

T

R equaxs (KJ X G) + (K^ X A) end

Note that each of the three declarations, MOVEl, M0VE2, and M0VE5 >

define a change to be made in the state vector, or more precisely a change

in some of the dynamic variables of the state vector. The three rules

(see Figure 2-5 for the definition of the symbol "rule") in the above

example specify under what conditions each of these changes in the state

vector is to be made. The four definitions contained in the example

merely define variables used in the declarations, the rules and in the

definitions themselves.

kk

TRANSLATION. The heuristics in the above example translate into the

following production rules.

(Al, Bl, *, *, *) -

Al -

Bl -

(A2, B2, *, *, *) -

(A2, B5, CX, *, *) -

(A2, *, *, *, *)

A2 -

B2 -

B5 -

(*, *, *, DZ, *)

CX -

DZ -

P -

R -

(*, 2xb, d+(4xc)+P, *, *)

A, A > 5

B, B < 10

(-*, b+6, *, c+d, 0)

(5, *, ♦, e, *)

(*, 2xb, d+(4xc)+P, *, *)

A, A > 20

B, B=0

B, B=l

(5, *, *, e, *)

C, C+5 > P

D, D < e-20

(KIXF) - (K2XR)

(KJXG) + (Ki+XA)

ac

bf

bf

ac

ac

ac

bf

bf

bf

ac

bf

bf

ff

ff

Here when the value of a variable in the right side of an action

rule is a "*" it means that no change is made in the value of that

variable. Thus

(A2, B3, CX, *, *) - 0, *, *, e, *)

means that when A=A2 , BHBJ , and C^CX then A is changed to 5 ,

D in changed to the current value of E , and B, C, and E are left

unchanged in value. This notation is slightly different from (and

slightly superior to) the notation presented earlier for the representation

of heuristic rules. In the earlier notation the above rule would be

^5

written

(A2, B5, CX, *, *) - (5, b, c, e, e) .

It should be noted that a rule in LASH translates almost directly

into a number of action rules and bf-type heuristic definitions. Moreover,

a definition in LASH translates directly into either an ff-type or a

bf-type heuristic definition. Thus the translation of heuristics

expressed in this language into production rules is a relatively simple

task.

SPECIFYING HEURISTICS IN LASH. There is one question as yet unanswered.

How difficult is it to take heuristics stated in natural language and

restate them in this formal language? The answer is that it is quite

easy to make this transition, provided that a relevant state vector has

been established and its variables defined. For example, the heuristic

mentioned at the beginning of this section, "if the piece advantage is

high make an even exchange", can be restated as

if PIECEADVANTAGE = HIGH then 'EVENEXCHANGE' .

Also necessary is (l) a LASH declaration defining 'EVENEXCHANGE' by

specifying the effect of an even exchange on the state vector variables,

and (2) a LASH definition defining the term HIGH. The high degree of

similarity between the heuristic stated in English and the heuristic

stated in LASH indicates how simple, sometimes even trivial, the transi-

tion from one to the other can be. Consequently the formal language serves

as a very convenient intermediate step in the process of translating

heuristics into production rules.

46

:

1
:

i ■

]

i
j

i

i

1

;

.

:

:

CHAPTER 5

PROGRAM MANIPULATION OF HEURISTICS

5.1 CREATION AND EVALUATION OF HEURISTICS

Ideally, a heuristic problem-solving-program should be able to

modify or replace its heuristics in order to improve its overall problem

solving performance. A step has been made in this direction by the

deveDopment of a game playing program which modifies coefficients in

an evaluation polynomial in order to improve performance (Samuel, 195V*

i960), and a pattern recognition program which generates, evaluates, and

modifies its operators in an attempt to improve pattern recognition ability

(Uhr and Vossler, 196l). However, these programs make no effort to

recognize, create or evaluate individual heuristics, and as a consequence

they are unable to radically modify their own heuristic configurations.

Before the manipulation of heuristics in a program can be implemented

two major problems must be faced:

(1) the problem of evaluating existing heuristics in terms

of their usefulness to the program.

(2) the problem of creating new heuristics, both by modifying

old ones and hypothesizing new ones.

To solve these problems, techniques must be devised which will enable the

program to evaluate and create heuristics during the course of its regular

problem solving activity.

Evaluation of Heuristics

Of the two problems just outlined, the first one, measuring the value

■•Y

or usefulness of a heuristic is perhaps trie more difficult. This problem

is actually an excellent example of the basic credit-assignment problem

for complex reinforcement learning systems (Minsky, 196l).

CREDIT-ASSIGNMENT PROBLEM. The credit-assignment problem is the following.

If a large number of steps ire required to complete some complex task,

then how should the credit for completing the task be distributed among

each of the individual steps? A learning system which could answer this

question would be able to reinforce steps pertinent to completion of the

task and thus learn which steps are necessary and which are redundant or

ineffectual . A rudimentary solution to the credit-assignment problem is to

merely assign an equal amount of credit to each step involved in the successful

completion of the task. This approach, however, will lead either to very

inefficient learning or no learning at all unless the steps are relatively

independent. If the steps are highly dependent, as is the case for the

tasks to be considered in this paper, this simple approach is doomed to failure.

Minsky (1961) illustrates the dangers of underrating the credit-

assignment problem in a discussion of a program-writing program by

Frieiberg (1958, 1959). The Friedberg program is designed to learn,

through reinforcement, to write a test program that will perform some

simple task. Frieiberg's program attempts this by (a) randomly generating

a öH-instruction test program^ (b) executing this test program and eval-

uating its operation according to a predetermined criterion, and (c) using

the information concerning the success or failure of the test program to

reinforce indi .idual instructions associated with successful test programs.

Reinforcement consists of increasing the probability that particular

instructions will be generated in later trials. Friedberg's program

le-irns to solve simple problems but takes much longer than it would take

to solve the problems by pure chance alone. The mistake imde, Minsky

notes, is that credit is assigned to individual instructions rather than

to functional groups of instructions such as subroutines, and this

disregard for the hierarchical nature of the problem leads to the poor

results.

OUTER-LEVEL PROBLEM. Evaluating or measuring the usefulness of a heuristic

in a game playing program (or any type of problem solving program) is

actually a 2-level credit-assignment problem; that is, a credit-assignment

problem within another credit-assignment problem. The outer or

top-level problem is to evaluate the effectiveness of a sequence

of decisions or "moves" and then to use this result to assign credit or

blame to the individual decisions in the sequence. The problem is difficult

because it may not be clear how to distribute the credit or blame. For

example, if the sequence is a poor one, which decisions in the sequence

should taKe the blame? It would be unrealistic to blame every decision

automatically , since the sequence may have been ruined by just one

or two key decisions. Conversely, if the sequence is a good one 11

does not necessarily mean that every decision is good; there could be a

few poor ones present which exert very little influence on the game

situation.

In general, it is relatively easy to evaluate the effectiveness

of a long sequence of game decisions (the longer the sequence, the easier

the evaluation) but difficult to evaluate or determine the effectiveness

of any individual decision. Even so, it must be pointed out that the

method used to determine the value of a game decision depends to a large

1*9

extent on the particular game uncwr consideration.

I INMFR-L5VEL PROBUBM. The inner or lower-level credit-assignment problem is

that of using the evaluation of a game decision to assign credit or br.ame

to the individual heuristics which played a part in making the decision.

Again the problem is difficult because there exists no simple rule for

specifying how to distribute the credit or blame. This problem is

50

0
D
D
D
D

possibly more formidable than the higher-level problem, since the heuristics

are often highly entangled and interdependent. Assigning credit (or

blame) to a set of heuristics which have been involved in making a

good (or bad) decision entails trying to determine to what degree each

heuristic contributed to the decision. Thif is especially difficult when

the heuristics are very dependent on one another.
Q
0 SOLUTION TO THE EVALUATION PROBLEM. Part of the solution to the problem

of evaluating heuristics lies in the method chosen to represent them. The

fii'st step in solving the problem is obviously to separate the heuristics

from the main body of the program and to clearly define the relation-

ships existing between them. This is accomplished automatically by

representing heuristics as production rules. The ne .t a'.ep is to devise

techni iues for distributing credit or blame. The heirarchical

arrangement of the production rules in the form of an ordered list suggests

the following type of analysis. When a decision is made via production

rules a symbolic subvector representing the game situation is compared

to all left parts of the list of action rules (production rules which

represent heuristic rules) going from top to bottom until a match

is found. The action rule which defines the decision, that is, the one
ii

whose left part matches the symbolic tmbvector, can easily be located.

After the decision is evaluated the credit or blame can then be assigned

to the action rule which defined the decision (or to the rules above it

in the list of action rules) and to the associated heuristic definitions.

The approach to be used here is that of assigning blame to action rules

leading to poor decisions by immediately modifying these rules in an

attempt to make them more effective, while ignoring action rules leading

to good or acceptable decisions.

Creation of Heuristics

The second major problem which must be faced before the heuristics
o

of a program can be adequately manipulated is the problem of creating new

heuristics. The most feasible way of creating new heuristics is by

modifying existing ones. For action rules, three modification techniques

will be considered:

(1) Replacing the symbolic values in the left part of the

rule. For example, (Al, B^., *) ■* (l, 2, *) might be

changed into (A, B3, *) - (l, 2, *) .

(2) Changing the relevancy of the elements in the left part

of the rule. For exauiple, (Al, Bl, *) - (l, 2, *) might

be changed into (*, Bl, *) - (l, 2, *) . Here element A

is made irrelevant.

(3) Changing the heuristic definitions associated with the

left part of the rule. For example, (Al, Bl, *) - (l, 2, *)

might remain unaltered while the definition of Al is

changed; i.e., Al -♦ A , A < 15 might become Al -* A, A < 20.

These techniques will be applied to action rules which lead to

51

Wfimmmmm vammmrtrm
i»

decisions that are evaluated as being poor. Heuristic definitions

represented by bf-tyje rules will be modified by simply changing the

predicates in the right parts, oi' the rules. Definitions represented hy

ff-type rules will not be modifiad.

52

E
S
E
8
II INFORMATION NEEDED. In order to create useful heuristics,

either by »nodifying existing ones or by hypothesizing new ones, three

items of information will be uspd.

(1) a good or acceptable decision for the situation,

(2) the situation elements (subvector variables) relevant

to making this good decision, and

(3) the reason why the decision is being made, expressed as

an evaluation of these relevant situation elements.

To illustrate that these three items are adequate consider the example

given below. The subvector ß for this example will be defined by the

dynamic variables A, B, and C . Tie action rules will be

1. (Al, *, C2) - (*, -, c+3)

2. (A2, Bl, *) - (a+2, *, *)

3. (*, B2, Cl) - (*, b+1, *)

and the rules corresponding to heuristic definitions will be

k. Al - A, A > 20

5. A2 - A, A < 20

6. Bl - B, B > 16

7. B2 - B, B < 16

8. Cl - C, C > 5

9. C2 - C, C < 5

10. A -• a, a € fset of natural numbers]

ö

;:

i

:

:;

11. i3 -• b 6 fset of natural numbers}

12. C -• c € fset of natural numbers)

If the program subvector representing the game situation if, considered

to be (13* 5* 7) > the symbolic subvector obtained through parsing is

(A2, B2, Cl) . This symbolic subvector matches rule 3 above and leads

to the decision of increnienting the value of B by 1 . If it can be

determined that this was a poor decision and that

(1) a good decision is to add 6 to the value of A ,

(2) the variables relevant to this decision are A and C ,

and

(3) the decision is being made because the current value of A

classifies A as an Al and the current value of C

classifies C as a Cl ,

then the production rules can be modified by (a) changing the

rules corresponding to the heuristic definitions of Al and A2 such

that they become Al -• A , A > 13 and A2 -• A , A < 13 , and (b) inserting

the action rule (Al, *, Cl) ■* (a+6, *, *) just above the action rule

which now "catches" the symbolic subvector. Changing the definitions

of Al and A2 changes the symbolic subvector to (Al, B2, Cl) which

still matches or catches on rule 3* thus the new action rule is inserted

just above rule 3- After such a modification is made the rules have

the form:

1. (Al, *, C2) - (*, *, c+3)

2. (A2, Bl, *) - (a+2, *, *)

3. (Al, *, Cl) - (««6« *, *)

k. (*, B2, Cl) - (*, b+1, *)

53

I

I

5. Al - A, A > 13 ^

6. A2 -» A, A< 13 T

7. Bl -» B, B > \6

8. B2 -» B, B < Iß

9. Cl - C, C> 5

10. C2 -» C, C < 5

11. A -* a, a € fset of natural numbers}

12. B -• b, "b € fset of natural numbers}

13. C -, c, c € fset of natural numbers}

It can be seen that now in the situation (13» 9» 7) the correct

decision, "add 6 to the value of A ", is made. Consequently, the

three items of information previously mentioned, i.e., a good decision,

the relevant elements, and an evaluation of these elements, permit

the creation of useful or "good" heuristics. This process is specified

in detail in the next section.

;:

;:

:

1
:

:.

:

» , __.

3.2 TRAINING PROCEDURES

In the previous section it was noted that three items of information

are adequate for the creation of useful heuristics:

(1) a good decision for the situation,

(2) the relevant situation elements, and

(3) the reason why the decision is being made.

When a learning program is presented with a game situation and the above

items of information for the purpose of improving its performance, the

process will be called training.

BOOK LEARNING. In section 1.3 a checker-playing program which employs

an abbreviated form of training is described. T^iis technique is called

book learning (Samuel, 1959» 1967)1 a procedure wherein the program is

presented with game situations and the associated book-recommended moves

and is permitted to use this book information to correct its move

generating apparatus. In this procedure item (l) above is given to the

program b items (2) and (3) are not.

Book learning has proved to be a successful technique for teaching

programs to play games where minimaxing procedures can be applied. The

book information supplies the program with a good move decision while the

minimaxing procedure provides a method by which the program can determine

wir.ch situation elements (or parameters) are relevant. One way parameter

relevancy is determined in the checker program is by comparison of the

current parameter values for a situation with the backed-up parameter

values obtained through minimaxing on the path in the game tree corres-

ponding to the book move. The parameters whose backed-up values are

55

consistently greater than the current values are considered the relevant

ones, since these aie the parameters that the book moves tend to increase.

In one version of the checker program the value or vorth of any game

situation (or board configuration) is represented by a linear polynomial.

As a consequence, when a move decision is made it is always because the

move has associated with it the largest numerical value obtained by

minimaxing evaluations of the polynomial back up the game tree. Thus

by using minimaxing and a polynomial representation of the board value

the program is able to obtain, by itself, the information specified by

items (2) and (3) above.

Learning Heuristic Rules

As illustrated in section 3.1 the training information provides the

data necessary for the construction of a new action rule; i.e., item (l)

I
I
I
I
II
0
B
:

.:

TRAINING. For the general game-playing program, where the parameters

are not independent and minimaxing is impossible (beciuse not enough in-

formation is known to construct a game or decision tree) training procedures

can be used to improve performance. This training can take place in

two ways, (a) by supplying the program with a number of unrelated game

situations and the associated information needed for training, or (b)

by having a human (who is an expert at the game) monitor the decisions

of the program as it plays an actual game and give the program, when

a poor decision is made, the three items of training information.

In section 3.1 an example was presented which indicated how heuristics

in production rule form can be created or learned when the appropriate

training information is available. The use of training information

in learning heuristic rules and definitions will now be examined in detail.

;:

D
::

0
ö
ö
:

:

of the training information supplies the right part of the action rule,

while items (2) and (3) supply the left part. The most elementary method

of correcting the set of action rules when they lead to a poor decision

is by (a) using the training informatior to create a new action rule

through generalization, and (b) inserting this new rule in the list of

action rules immediately above the action rule which led to the unacceptable

decision. However, this method may not always be practical, since it

entails adding a new action rule for every training trial. Such a

technique could lead to a prohibitive number of action rules.

CORRECTION BY MODIFYING EXISTING RULES. What is needed for efficient

correction of the set of action rules is the addition of another gener-

alization scheme to the abovementioned process. Such a scheme should

permit training information to be added to the set of action rules

without the insertion of a new rule. One way this can be accomplished

is by finding an appropriate action rule already located above the error-

causing rule and modifying it to malic it general enough to catch the

symbolic subvector. An appropriate rule is one which is capable of

being suitably modified and which leads to the same decision as

that specified in item (l) of the training information. After such a

modification is carried out, the training information is effectively

incorporated into the set of action rules. This is true because whenever

the original training situation is re-encountered (i.e., the current

state vector is identical to the state vector of the training trial) the

system will make the decision previously specified by the training

information.

If no appropriate rules are located above the error-causing

57

rule but some are located below it, the following approach may be used.

The error-causing rule, If suitable. Is modified sc as to pass (rather

than catch) the symbolic subvector, while the first appropriate action

rule below It Is modified to catch the subvector. Also, if any rules

located between the error-causing one and the first appropriate one

catch the subvector, they are modified to pass it. This type of

modification also Incorporates the training information into the set of

action rules.

RULES APPROPRIATE FOR MODIFICATION. At this point it must be made

clear which rules can be modified to catch the symbolic subvector,

which ca"; be modified to pass it, and exactly how this modification process

takes place. An action rule will be considered appropriate for modifi-

cation to catch the subvector if it has the same form as the training

rule, that 1^, the action rule which can be created from the training

information. An action rule has the same form as the training rule

only if (l) their right parts are identical, (2) for each * in the

left part of the training rule there is a correspondicig * in the left

part of the action rule, and (3) the correspeeding symbolic values of

their left parts are identical, or at least are alike to the extent that

they are both defined by the same logical operator. Here * is

considered to always be identical to any other symbolic value.

EXAMPLE OF RULE MODIFICATION. For example, consider the rule created

from the training information to be

0
D
;:

0
G
;;

B
■

G
0
0
D

D
0
Q

(Al, *, Cl) - (♦, b+2, *)

and the existing production rules to be

i ' 1

1. (Al, *, C2) - (♦, b+2, *)

2. (Al, Bl, ♦) - (*, *, a+5)

3. (A2, *, C3) ^ (*, b+2, *)

k. (Al, *, *) - (*, *, a+5)

5. Al - A. A < 6

6. A2 ^ A, A < 8

7- Bl - 3, B > 8

8. Cl - C, C> 12

9. C2 - C, C < 5

10. 03 -» C, C> lU

Here rule 1 anr" the training rule are not of the same form becaus-s Cl

and C2 are not defined by the same logical operator (requirement (3)

above). Rule 2 and the training rule are not of the same form because

rule 2 has a Bl where the training rule has a * and their right parts

are different (requirements (2) and (l) above). Rule 3 ana the training

rule, however, are of the same form since they satisfy all three of the

above requirements.

An action rule can be modified to catch the symbolic subvector by

enlarging the sets defined by the symbolic values in the rule. As an

illustration of this generalization technique consider ac.ain the example

Just presented, and let the program subvector be (5, 3, 13) • The

symbolic subvector obtained through parsing is ((Al, A2), (u), (Cl)),

which matches or catches on rule h. This rule leads co a poor decision,

since it is not the decision advocated by the training information.

Rule 3 is located above error-causing rule k and has the same form

as the training rule. Thus, if rule 3 is modified to catch the symbolic

subvector, the training rule will effectively be incorporated into the

59

set of action rules. The left part of rule 3 is (A2, *, C3) , so it

can be seen that the subvector matches the left part of rule 5 with

respect to its first two elements but not with respect to its third

element CJ • If the value C3 in rule 3 is replaced by a symbolic

value representing a set large enough to inCude the current value of

the state vector variable C (which in this case is 13) the symbolic

subvector obtained through parsing will catch on rule 5' Therefore C3

is replaced by Cl , making rule 3 become (A2, *, Cl) - (*, b+2, *•) .

The subvector now catches on rule 5* as desired, and causes the action

advocated by the training information to be taken.

An action rule can be modified to pass the symbolic subvector by

reducing the size of the sets defined by the symbolic values in the

rule. This technique is somewhat the opposite of the generalization

method just described. In the previous example the symbolic subvector

catches on the new rule 3« To modify this rule so that it passes the

subvector it is necessary to restrict the definition of one of the sym-

bolic values in the rule such that the symbolic subvector no longer

includes this symbolic value. This can be achieved by restricting the

definition of A2 so that it no longer includes the current value of the

state vector variable A (which in this case is 5)• Let rule 6 become

A2 - A, A < 5 ; then the symbolic subvector becomes ((Al), (B), (Cl))

which fails to catch on the new rule 3, as desired.

OVERGENERALIZATION. When an action rule is modified so it will pass (or

catch) the symbolic subvector it is necessary to expand (or restrict)

the size of the sets defined by one or more of the symbolic values in the

rule. Care must be taken not to overgeneralize, that is, to change

60

:

E
E
:

:

o

o

;:

:

;

:

■

:

:

:

ü
0
0
D

I

the definitions of the symbolic values. If this happens the

training process could become unstable; that is, many redundant action

rules might be created during training.

Overgeneralization may be guarded against by specifying the maximum

allowable definition change viliich may be made. In the previous examples

Cl replacing C5 led to a change of size 2, since the predicate was

changed from C > 1^ to C > 12 , and A2 had a definition change of

size 3. The maximum allowable change depends largely on the type of

game being played, and thus will be represented as a generalization constant

K which can be changed only by the programmer. In view of these con-

siderations, an action rule is appropriate or suitable for modification

only if the definition change involved is equal to or less than K .

Learning Heuristic Definitions

It has been shown how the three items of training information supply

the data necessary for the creation and modification of heuristic rules

represented as action rules. This training information also provides the

necessary data for creating or learning heuristic definitions represented

as bf rules. The techniques whicn can be used to learn heuristic

definitions will now be described.

PAETITIONING. A simple bf rule consists of a production rule and an

associated simple predicate, such as

Al - A, A > 10

This rule states that if the value of the state vector variable A is

greater than 10 , then the state vector variable A may take on the

symbolic value Al . The symbolic values a state vector variable may

61

■■■■■■■■■■^■■^■^^■■■■■■■■■H

I
I

take partition the set of possible values for that variable into subsets.

Two types of partitioning procedures will be considered, (l) mutually J

exclusive (and exhaustive) partitioning, and (2) overlapping (and

non-exhaustive) partitioning. An example of mutually exclusive partition-

ing for the state vector variable A is

Al - A, A > 10

A2 -» A, A < 10

where the set being partitioned is just the set of natural numbers. Here

any value of the state vector variable A permits A to take one and

only one symbolic value. An example of overlapping partitioning is

Here a particular value of the state vector variable A may permit A to

take zero, one, or a number of symbolic values.

EXCLUSIVE VS OVERLAPPING VAEIABLES. In the learning procedure about to

be outlined a state vector variable will be considered one of two types:

either an exclusive variable with symbolic values defined by mutually

exclusive definitions, or an overlapping variable with symbolic values

defined by overlapping definitions. Item 5 of the training information

provides a reason why the proposed decision is being advocated. When

an exclusive state vector variable is being referred to in item 3, the

symbolic value associated with the current numerical value of the

variable must be given. Let A , for example, be an exclusive state

vector variabl? with a value of 8 . Then item 3 might state that the

62

:

:

Al - A, A > 10

A2 ^ A, A > 4

.

4.

li
:

:

:

mm

proposed decision is being advocated because " A is an A2 ". When an

overlapping state vector variable is being referred to in item 5> a

magnitude indication associated with the current numerical value of the

variable must be given. Let A , for example, be an overlapping state

vector variable with a value of 20 . Then item 5 might state that the

prorcsed decision is being advocated because " A is large" or because

" A is small".

LEARNING EXCLUSIVE DEFINITIONS. The procedure for learning the definitions

of the symbolic values of an exclusive state vector variable merely con-

sists of partitioning the given range into the number of desired subsets

and then using the data of item 5 from each training trial to shift the

boundary lines whenever the newly acquired information so permits. An

example will clarify this procedure. Let A be an exclusive state

vector variable with the three subsets or possible symbolic values Al ,

A2 , and A3 , and let the range of A be the positive integers from

1 to 60 • Initially A is partitioned into the specified number of

subsets by estimating or guessing the boundary locations. Let the initial

estimate of the boundaries partioion A as follows:

Al A2

t rh
A5

20 21 ^ "WTa Ti

Thus the initial bf rules are

Al -» A, A < 20

A2 -» A > 20 A A < ^0

A3 -♦ A, A > U0

63

"•

The effect of k hypothetical training trials on the partitioning is

shown below.

Trial

1.

Information New Boundaries

A2 A = Ik, A has the Al
value associated with h .. I i
the middle subset; ^
i.e., A is an A2 .

A = 7 > A is an Al Al A2

A5

1*0 M ■rt

A3

TJTIT f#i
1+0'1+1 TO

A = 50 , A is an A3 Al A2 A5

TJ^ 29*30" ■^

1+. A = 11, A is an A2 Al A2 A3

lo'n 29l30 •^

The bf rules learned are:

Al -» A, A < 10

A2 -♦ A, A > 10 A A < 29

A3 -» A, A > 29

LEARNING OVERLAPPING DEFINITIONS- The procedure for learning the definitions

of the symbolic values of an overlapping state vector variable is quite

elementary. It consists of using the magnitude indication of item 3 to-

gether with the current numerical value of the state vector variable to

define a particular subset of the range. If the variable is classified

as "large" the current numerical value of the variable and all values

above it are defined as a subset. Conve.'sely, if the classification is

"small" the current value and all below it are defined as a subset. Con-

sider the following example for the overlapping state vector variable B

61+

:.

::

:

i

i
:

:

with a range from 1 to 60 . Initially, there are no bf rules for B ,

and the range is unpartitioned as follows:

B

T6

The effect of k hypothetical training trials is shown below.

Trial Information

1. B = 8 , B is small

2. B = 50 , B is large

5- B = 51 > B is large

It. B = 28 , B is large

New Boundaries

Bll

ST
Bl

"58

TT 29 50

|B2

TT
Bl

^9

29 30

|B2 .

 53

B5

50 51 60

27 20 50* 51 601

Note that on trial 4 instead of defining a new subset B^ , where

B > 27 , the existing subset B2 was enlarged. This type of generalization

will be performed whenever it can be accomplished without enlarging beyond

some maximum amount KK , a constant which depends on the game being

learned. The bf rules learned are:

Bl -♦ B, B < 9

B2 -♦ B, B > 27

B5 -» B, B > 50

Training Procedure Outline

The entire training procedure for learning heuristics represented

as production rules will now be briefly outlined. This outline, shown

65

vm

below, lists the steps involved in a single training trial.

1. a. Parse the program subvector to obtain the symbolic subvector.

b. Drop the symbolic subvector through the action rules to

obtain a decision,

c If the trainer indicates that the decision was acceptable

then stop, otherwise go to step 2.

2. a. Obtain the training information from the trainer,

b. Construct an action rule (to be called the training rule)

from this information,

c Use item (5) of the training information to change or create

bf rules which represent heuristic definitions. If this

changes the symbolic subvector then go to step 5» otherwise

go to step h.

5. a. Drop the new symbolic subvector through the action rules to

obtain a decision,

b. If the decision is the one advocated by item (l) of the

training information then stop, otherwise go to step k.

k. a. Locate the action rule responsible for the unacceptable

decision made in step 5 (nr in step 1 if step 3 was skipped).

This action rule will be called the error-causing rule.

5. a. Search the action rules above the error-causing rule for a

rule which has the same form as the training rule and is

suitable for modification to catch the symbolic subvector.

This rule will be called the target rule.

b. If such a rule is found modify it to catch the symbolic

subvector and go to step 3, otherwise go to step 6.

66

,

1
1

i
6. a. Search the action rules below the error-causing rule for a

rule which has the same form as the training rule and is

suitable for modification to catch the symbolic subvector.

This rule will be called the target rule.

b. If (l) such a rule is found, (2) the error-causing rule is

suitable for modification to pass the symbolic subvector,

and (5) the rules between the error-causing rule and the

target rule either pass the symbolic subvector or are suit-

able for modification to pass it then modify the target rule

to catch the subvector, the error-causing rule to pass the

sub\ector, and the rules between these two to pass the

subvector and go to step 3^ otherwise go to step 7-

7. a. Place the trainin. rule immediately above the error-causing

rule in the list of action rules and stop.

These steps are illustrated by the block diagram given in figure 3-1.

To see exactly how these steps are applied consider the following example,

where the dynamic subvector variables are A, B, and C • Here A is

an exclusive variable, while B and C are overlapping variables. The

initial set of production rules for this example is shown below.

1. (A2, Bl, *) -♦ (a+1, *, *)

2. (Al, *, Cl) -► (*, b+2, *)

5- (*, »j *) -» (random)

h. Al -» A, A < 20

5- A2 -» A, A > 20

6. Bl -♦ B, B > 5

7. Cl -♦ C, C > 9

L-7

I ■MMHI

The word random in the right part of rule 3 means that if the symbolic

subvector catches on this rule, a decision will be chosen at random from

the set of possible decisions. During training "random" is assumed to

always lead to an unacceptable decision since this accelerates the training

process.

INSERTING A NEW ACTION RULE. Let the program subvector at the beginning

of trial 1 be (l8, 2, 11) . This parses to the symbolic subvector

(Al, B, Cl) which catches on rule 2 and leads to the decision of in-

crementing B by 2 . Assume that this decision is unacceptable and

that the training information is:

68

I
:

j

:

i

ö

r

I

i

::

^START')

Obtain a
decision

Figure 3-1. A block diagram of the training procedure.

69

i

1

(1) a good decision is "add 5 to the value of C "•

(2) the relevant variables are A am? B .

(3) the decision is being made because "A is an A2 " and

" B is small".

The training rule (constructed from the training information) is

(A2, B2, *) -» (*, *, c+3)

and the bf rules changed or created (on the basis of item (3) above) are

Al -» A, A < 18

A2 ■♦ A, A > 18

B2 -» B, B < 5 •

These bf rules change the symbolic subvector to (A2, B2, Cl) which

catches on rule J» Thus the error-causing rule is rule J« No action

rules above or below the error-causing rule have the same form as the

training rule, so the training rule is inserted into the list of action

rules immediately above error-causing rule > The new set of rules is

shown below. Here, when the program subvector is (l8, 2, 11) the

desired decision, "add 5 to the value of C ", is made.

1. (A2, Bl, *) -4 (a+1, *, *)

2. (Al, *, Cl) -» (*, b+2, *)

3. (A2, B2, *) -♦ (*, *, c+3)

k. (*, *, *) -♦ (random)

5. Al -» A A < 18

6. A2 -♦ A, A > 18

7. Bl -♦ B, B > 5

70

e
:

E
E
I
I
I
:

::

o
D
D
D
::

i
i

«na

8.

9.

B2 -♦ B, B < 3

Cl -» C, C> 9

MODIFYING A RULE ABOVE THE ERROR-CAUSING RULE. Let the program

subvector at the beginning of training trial 2 be (12, 1, 7) • This

parses to the symbolic subvector (Al, B?, C) which catches on rule k

and leads to a random decision. Assume that this decision is unacceptable

and that the training information is:

(1) a good decision is to "add 2 to the value of B ".

(2) the relevant variables are A and C .

(5) the decision is being made because " A is an Al " and

" C is large".

The training rule (constructed from the training information) is

(Al, *, C2) -» (*, b+2, *)

and the bf rule created (on the basis of item (5) above) is

C2 -» C, C > 6 .

This bf rule changes the symbolic subvector to (Al» B2, 02) which still

catches on rule k. Thus the error-causing rule is rule ^« Rule 2,

above the error-causing rule, has the same form as the training ru3.e and

is suitable for modification to catch the symbolic subvector if K > 3 •

Let K = 3 , then rule 2 is modified by replacing 01 with 02 . The

new set of rules is shown below. Here, when the program subvector is

(12, 1, 7) the desired decision, "add 2 to the value of B ", is made.

1. (A2, 31, *) -» (a+1, *, *)

2. (Al, *, 02) -♦ (*, b+2, *)

71

5. (A2, B2, ♦) -♦ (*, *, c+3)

k. {*, *, *) -» (random)

5. Al -» A, A < 18

6. A2 -♦ A > 18

7- Bl -♦ B, B > 5

8. B2 -♦ B, B < 5

9- Cl -♦ C, C > 9

10. C2 -♦ C, C > 6

MODIFYING A RULE BELOW THE ERROR-CAUSING RULE. Let the program subvector

at the beginning of training trial 3 be (21, k, 15) . This parses to

the symbolic subvector ((A2), (Bl), (C1,C2)) which catches on rule 1

and leads to the decision of incrementing A by 1 . Assume that this

decision is unacceptable and that the training information is:

(i) a good decisjon is to "add 3 to the value of C "■

(2) the relevant variables are A and B •

(5) the decision is being made because " A is an A2 " and

" B is small".

The training rule (constructed from the training information) is

(A2, Bi *) "» (*, *> c+3)

and the bf rule created (on the basis of item (3) above) is

B3 -♦ B, P < 5 •

This bf rule changes the symbolic subvector to ((A2), (B1,B3)» (C1,C2))

which still catches on rule 1, making it the error-causing rule. Rule 3

below the error-causing rule has the same form as the training rule and

72

::

::

:

:

■■

..

I!

i2 suitable for modification to catch the symbolic subvector. Further-

more, the error-causing rule is suitable for modification to pass the

subvector. Thus rule 5 is modified by replacing B2 with B5 , and rule

1 is modified by changing the definition of Bl to

Bl -♦ B, B > J+ •

The new set of rules is shown below. Here, when the program subvector

is (21, h, 15) the desired decision, "add 5 to the value of C ",

is made.

1. (A2, Bl, *) -♦ (a+1, *, *)

2. (Al, *, C2) -► (*, b+2, *)

5. (A2, B3, *) -♦ (*, *, c+5)

);. (*, *, *) ^ (random)

5. Al -»A, A < 18

6. A2 -» A, A > 18

?. Bl -» B, B > 1+

8. B2 -♦ B, B < 5

9. B^ -♦ B, B < 5

iO. Cl -» C, C > 9

11. C2 -» C, C > 6

CONVERGENCE. The effectiveness of these modification techniques can

be tested by using a program, rather than a human, as a trainer. The

training program must contain a complete set of game heuristics in produc-

tion rule form and must monitor the learning program, which initially

contains no heuristics. Whenever thu learning program makes a decision

which conflicts with the one made by the training program, it will be

f'

told by the training program the correct decision, the relevant variables,

and why the decision was made. The training program's decisions are

considered to be the correct decisions. If the modification techniques

used were perfect for use in the task environment under consideration,

the learning program would eventually grow a set of production rules

leading to exactly the same decisions as the training program rules.

Poor modification techniques would create a learning program which rarely

made the same decision as the training program. Thus the speed and

degree of convergence obtainable between the decisions generated

by the learning program and those generated by the trainer can be used

as a measure of the effectiveness of the modification and generalization

procedures.

Applicability of Training Process

A pertinent question at this point is the following. Using the

modification and generalization techniques just described what features

of the task environment affect the speed and the degree of convergence

obtainable between the decisions generated by the learning program

and those generated by the training program? For the learning procedures

even to be applicable each subvector variable must be considered to

have a range consisting of a set of integer values. When this condition

is satisfied convergence can be obtained, however the speed and degree

of convergence depend upon the properties of the "decision f.pace"

utilized by the trainer.

DECISION SPACE. The decision space of the traJner is considered to be

an n-dimensional space which has a dimension corresponding to each of

7^

I
I
1

:

• -

i

mmmmm

the n variablis in the subvector. Thus each point in this space

represents a game situation, and the entire space represents the set

of all possible game situations.

The trainer is assumed to know the correct decision to make in

every game situation, i.e., it has a decision associated with each point

in its decision space. For example, let ß - (P, B) where P and B

each have a range from 1 to ^ and where decisions d.. , dg, d,, and

d, may be made. Then the decision space for the trainer could have the

form shown below.

B i

5 - ' d ' 'd ! 2: n V^/'Vi
k ■

3 ■

Id2! ^

2 ■
i'äH'^- .3' ^ d^

1 ■ idi di
V

di di;'A;
0 __ —,— , , , ^

Figure 5-2.

The degree to which identical decisions tend to form groups will be

called the clustering effect, indicated by the dotted lines in the

above figure. In this example there is a high degree of clustering.

An example of minimal clustering is shown below.

i

5- ' di \ dl \ h
k-

■ d2 d, - d5 h
y ' dl % dl \ dl

. ■

■ d2
d '. s d2

i-
" dl

' 1— 1—

dl
i— 1—

dl
 1—

4 5

75

Figure 5-3-

converge until it has acquired one action rule for each game situation

in the entire decision space.

■:•-

:
SPEED OF CONVERGENCE. It can now be seen that the speed of convergence

depends on the degree of clustering inherent in the decision space of

the trainer. If there is a high degree of clustering then convergence will

be rapid, that is, the learning syatem will be able to accurately

imitate the training program after learning only a small number of action

rules. If, however, there is a low degree of clustering, con ergence

will be slow. For example, with minimal clustering the system will not

.

DEGREE OF CONVERGENCE- The degree of convergence obtainable from

the learning system, on the other hand, depends on the degree of

consistency exhibited by the trainer during the training process. If

the trainer is very consistent in its task of supplying decisions when

presented with game situations (i.e., the arrangement of decisions in

its decision space is very stable) a high degree of convergence is

possible.

i

3-5 LEARNING WITHOUT EXPLICIT TRAINING

In section 3-2 it was shown how heuristics in the form of production

rules can be learned when the following information is available for

each move or game decision made by the program:

(1) a good decision for the situation^

(2) the relevant situation elements, and

(3) the reason why the decioion is being made.

Training is one way to provide the program with this information, but

this technique requires the presence and participation of a trainer. Since

humans can learn to play games without explicit training, developing pro-

grams which also can learn without explicit training seems a reasonable

goal. This can be attained if the program itself can be made to generate

the training information, either through logical deduction or hypothesis

formation. Once the training information is generated the program can

proceed as outlined in the previous section and in a sense train itself.

One difficulty is that some mechanism must be included for testing the

hypotheses formed and for eliminating useless ones. Further, this

mechanism must be compatible with the generalization techniques used in

the training process. A procedure will now be described which enables

the program to generate the training information during the normal

course of play and thus learn heuristics without explicit training.

AXIOMATIZATION. The fundamental problem at this point is: how can the program

hypothesize reasonable heuristic rules without explicit training? The

chance of finding a reasonable or useful heuristic by creating heuristic

rules at random seems rather remote. A novel way to attack the problem

is to formalize or axiomatize (McCarthy, 1951) the following for the

77

game under consideration:

before learning starts. Each row of the matrix stands for a game

decision or class of decisions and each column for a subvector variable.

Each entry E.. in the matrix indicates why the variable j is relevant,

if when th? decision i is made it is in fact relevant. For example,

70

I

1
(1) the rules of the game,

(2) statements (or "axioms") about the game.

■•

(5) general statements about techniques used in game playing.

The result is a set of logical statements or premises, from which new

statements can be deduced using rules of deductive inference. These new

statements can then be used as the basis for creating new heuristic rules.

This technique of logical deduction can be used by the program to

obtain item (l) of the training information, that is, a good decision

for the gi.en game situation. This process entails (a) making a

decision in a situation S , (b) noting the effect on S of the sub-

sequent decision by the opponent, and (e) using the information about S

and the change in S together with the set of logical statements to

deduce what the original decision should have been. It was noted in

section J.l that the longer the sequence of decisions, the easier it

is to evaluate the sequence as being good or bad. This technique of using

logical deduction permits the evaluation of a decision sequence of the

mi
worst type, a sequence of length one. An example of this technique

applied to a particular game, as well as a complete set of logical
• ■

statements for the game, is presented in chapter 5«

u
DECISION MATRIX. Item (5) of the training information can be obtained

from a decision matrix which is game dependent and is given to the program

::

2

i

i
t.

■•

if the program can determine that decision i is good and variable

j is relevant, and entry E.. is the term "large" then it knows that

decision i was made because variable j is large. An underlying

assumption here is that when a variable is relevant for a particular

decision or class of decisions it is always relevant for the same reason.

The types of reasons under consideration are simply (a) the category

the current value of the variable belongs to (for exclusive variables),
mm

and (b) the magnitude indication associated with the current value

of the variable (for o/erlapping variables).

A linear polynomial used to determine a move decision is ;;omewhat

analogous to a decision matrix with just one row but with one column

for each parameter of the polynomial. The entries in the matrix would

all be the term "large", since whenever a decision is picked it is

always because tne relevant parameters are large and thus increase the

value of the polynomial. Another heuristic program which is supplied

with information in matrix form is GPS (Newell, Shaw, and Simon, 1959)*

This program relies on a connection table to provide information about

the operators relevant to reducing certain differences.

HYPOTHESIS FORMATION. Tern (2) of the training information can be obtained

through the generation and testing of hypotheses concerning the relevancy

of subvector variables. Again the problem of generating useful or

reasonable hypotheses arises. This problem can be solved for the special

case of relevancy hypotheses in the following manner. Let the initial

hypotbsses in every case be that all subvector variables are relevant;

this means that the left parts of the training rules constructed from the

5 items of training information will initially contain no *■ 's. Testing

;:

••

will consist of noting whether or not a particular training rule (placed

in the set of action rules by step 7 of the training procedure) catches

the symbolic subvector when the action advocated by the rule is determined

to be the correct decision. If the rule does not catch the subvector,

the hypothesis for that rule concerning the relevancy of the variables

is changed by making some of the variables in the left part of the rule

irrelevant. This makes the rule more general since it then applies to

a greater variety of situations.

This technique can be easily incorporated into the training procedure

as follows. If it is desired to modify an hypothesized action rule to

catch the subvector and the rule cannot be suitably modified by replacing

symbolic values then the following action is taken. The left part of

the rule is modified by making a minimum number of variables irrelevant

while still increasing the generality enough so the rule can catch the

symbolic subvector. Of course some limit must be imposed on the degree

of generality which may be obtained, otherwise the hypothesized action

rules would eventually contain all * 's in their left parts. Let N stand

for the minimum allowable nurrber of variables which must remain relevant

in the left part of an action rule. Then, when an hypothesized action

rule has only N symbolic values which are not * 's in its left part it

cannot be modified by reducing the number of its relevant variables.

The value of N depends on the number of subvector variables used and the

particular game under consideration.

Revised Training Procedure

The technique just described can be merged with the training

procedure outline In section ^.2 by making a few minor changes. This

revised training procedure outline is shown below.

80

I
1

i

::

y

D
::

T
t

I
I
I
i

I
T

i. a. Parse the program subvector to obtain the symbolic sub-

vector.

b. Drop the symbolic subvector through the action rules to

obtain a decision.

c. If the trainer indicates that the decision was acceptable

then stop, otherwise go to step 2.

2. a. Obtain the training information from the trainer.

b. Construct an action rule (to be called the training

rule) from this information.

c. Use item (5) of the training information to change or

create bf rjles which represent heuristic definintions.

If this changes the symbolic subvector then go to

ötep 5, otherwise go to step h.

J. a. Drop the new symbolic oubvector through the action rules

to obtain a decision.

b. If the decision is the one advocated by item (l) of the

training information then stop, otherwise go to step h.

k. a. Locate the action rule responsible for the unacceptable

decision made in step 5 (or in step 1 if step 5 was

skipped). This action rule will be called the error-

causing rule.

b. a. Search the action rules above the error-causing rule for

a non-hypothesized rule which has the same form as the

training rule and is suitable for modification to catch

the symbolic subvector. This rule will be called the

target rule.

1

1

b. If such a rule is found use the training generalization

techniques to modify it to catch the symbolic subvector

and go to step 3> otherwise search the action rules above

the error-causing rule for an hypothesized action rule

leading oo the decision advocated by the training infor-

mation. If such a rule is found, modify it to catch the

subvector by making a minimum number of variables irrele-

vant if this can be done and still leave N variables

relevant and go to step 3> if no action rules suitable

for this type of modification can be found above the

error-causing rule then go to step 6.

a. Search the action rules below the error-causing rule for

a non-hypothesized rule which has the same form as the

training rule and is suitable for modification to catch

the symbolic subvector. Th.s rule will be called the

target rule.

b. If (l) such a rule if found, (2) the error-causing rule

is suitable for modification to pass the symbolic sub-

vector, and (3) the rules between the error-causing rule

and the target rule either pass the symbolic subvector

or are suitable for modification to pass it then use the

training generalization techniques to modify the target

rule to catch the subvector, the error-causing rule to

pass the subvector and go to step 5> otherwise go to

step ?•

Place the training rule immediately above the error-causing

rule in the list of action rules and stop.

82

I.

D
..

:

-

An example of the operation of the revised training procedure will

now be given fur a state vector composed of overlapping variables A, B»

and C . It will be assumed that K = 5 * N = 1 , and the decision matrix

is:

A

B

C

large large small

small large small

small small large

Figure 3-^'

where d stands for "add 1 to the value of A ", d- stands for "add

2 to the value of B " and d stands for "add 3 to the value of C ".

The initial set of production rules for this example is shown below.

1. (Ali », Ci) -» (*, *, c+3)

2. (*, *, *) -♦ (random)

3. AJ -» A, A > 10

h. Cl -» C, C < 15

INSERTING AN HYPOTHESIZED ACTION RULE- Let the program subvector be

(l5j 12, 2) . This parses to (Al, B, Cl) which catches on rule 1 and

leads to the decision of incrementing C by 3 • The opponent now

makes a decision and the program uses the information about the resulting

game situation to logically deduce what its own decision should have been.

Assume that the program deduces that a good decision would have been

"add 2 to the value of B ". The training rule is then

85

(A2, Bl, C2) -» (♦, b+2, »)

and the bf rules changed or credted are

A2 -» A, A > lU

Bl -* B, B > 11

C2 -► C, C < 5

-'i

I
I
!

- •

Since no rules in the set of action rules lead to the correct decision

the training rule is inserted above the error-causing rule (rule l) as

specified in step 7 of the revised training procedure outline. In this

case the training rule is an hypothesized rule and is marked in some way

so the program can distinguish it from action rules which were not

hypothesized. The new set of rules is shown below. Here, when the

program subvector is (15, 12, 2) the desired decision, "add 2 to the

value of B " is made.

1. (A2, Bl, C2) -» (*, b+2, *) hypothesized

2. (Al, *, Cl) -» (*, *, c+3)

5« (*, *, *) ■♦ (random)

k. Al -» A, A > 10

5- A2 -► A, A > 14

6. Bl -♦ B, B > 11

?. Cl -♦ C, C < 15

8. C2 -♦ C, C < 3

MODIFYING AN EXISTING HYPOTHESIZED RULE. Let the program subvector

at the time of the program's next move decision be (j8, 13, 1^) .

This parses to ((Al, A2), (Bl), (Ci)) which catches on rule .' and

1

I

.

leads to the decision of incrementing C by 3 • The opponent now

make a decision, and the program logically ueduces what its own

decision should have been. Assume that the program deduces that a

good decision would have been "add 2 to the value of B "• The

training rule is then

(A2, Bl, Cl) -» (*, b+2, *)

and no bf rules are changed or created. Rule 1 which leads to the

correct decision and is above the error-causing rule cannot be modified

to catch the subvector by replacing symbolic values since K is too

small. However, this rule is an hypothesized one and can therefore be

modified by making variables irrelavant. In this case only the variable

C must be consiaered irrelevant, so rule 1 becomes

(A2, Bl, *) -► (*, b+2,*) .

The new set of rules is shown below.

1. (A2, Bl, *) -» (*, b+2, *) hypothesized

2. (AI, *, Cl) -♦ (*, *, c+3)

3- (*j *> *) -♦ (random)

U. Al -♦ A, A > 10

5. A2 -♦ A, A > 14

6. Bl -♦ B, B > II

7- Cl -» C, C < 15

Here when the program subvector is (l8, 15, Ik) the desired decision,

"add 2 to the value of B " is made.

COMBINING TRAINING AND HYPOTHESIS FORMATION. The system just described

85

i

can learn heuristics in a variety of ways. It can learn through

(1) training alone: here the action rules are non-hypothesized,

since they are all based on information obtained from a

trainer,

(2) hypothesis formation alone: here the action rules are all

hypothesized, or

(5) training and hypothesis formation combined: here the action

rules are a mixture of hypothesized and non-hypothesized

rules.

In any case the program starts with no heuristic definitions and just one

heuristic rule, (*, *, *) -» (random) , which tells it to initially make

decisions at random. Training and hypothesis formation may be combined

by first giving the program a number of explicit training trials and

then letting it learn through hypothesis formation during actual game

pla^. In this situation the hypothesized action rules must be distinguished

from the non-hypothesized ones since the two types of rules require

different generalization techniques. However, when an hypothesized rule

is generalized to the extent of having only N variables remaining in its

left part it can be given the status of a non-hypothesized rule.

Creation of Redundant Action Rules

The use of hypothesized action rules increases the possibility of

accidentally creating redundant action rules. These are rules which can

be removed from the list of action rules without in any way affecting

the decisions made by the system.

TYPES OF REDUNDANCIES. Two types of redundancies will be considered:

B6

1

•'

(a) subordinate redundancy, where a rule in the ordered list

causes a rule below it to be redundant, and (b) superordinate redundancy,

where a rule in the ordered list causes a rule above it to be redundant.

To illustrate, let rule i be above rule j in the list of action

rules. Then rule i makes rule j a subordinate redundant rule if i

keeps J from ever catching a symbolic subvector, by itself catching all

generated subvectors that could otherwise be caught by j . This situation

occurs when each symbolic value in the left part of rule i defines a

set which includes the set defined by the corresponding symbolic value

of ruJe J .

Conversely, rule i is a superordinate redundant rule if every

symbolic subvector caught by i would be caught by another rule below

i leading to the same decision as i if rule i were removed. This

situation occurs when each symbolic value in the left part of a lower

rule , defines a set which Includes the set defined by the correspond-

ing symbolic value of rule i , and rule i , rule j , and all rules

between i and J lead to the same decision.

EXAMPLE. As an example, consider the set of production rules shown

below, where the state vector contains overlapping variables A, B, and

C , and 3 different decisions are denoted by d , d2, and d .

1. (Al, Bl, *) -♦ ä1

2. (A2, B2, Cl) -♦ dp

3. (», B2, C2) - d.

h. (*, Bl, *) -► d2

■>

.:

5

5. Al -► A, A > 5

6. A2 -» A, A > 10

37

7- Bl -» B, B < 9

8. B2 -» B, B < 4

9- Cl -♦ C, C > 15

10. C2 ■* C, C < 7

2. (*, Bl, *) -♦ d,

3- Al -» A, A > 5

U. Bl -• B, B < 9

Note that the removal of action rules 2 and 5 made bf rules 6, 8, 9, and

10 superfluous and thus led to their removal also.

:;

:

Here rule 1 makes rule 2 a subordinate redundant rule, and rule h makes

rule 5 a superordinate redundant rule. As a consequence, the set of

production rules shown below, with action rules 2 and 5 removed, is

exactly equivalent to the original set.

1. (Al, Bl, *) -♦ d1

.

:

REDUNDANCY CHECKS. In a learning system of the type proposed in this

section redundancy checks should be made periodically to keep the action

rule list from becoming too long. However, the danger in removing

redundancies before learning is completed is that rules may bt removed

which later would have been generalized upon and made non-redundant.

Premature reri;oval of this type will tend to slow down the learning process.

Tnus both the length of the action rule list and the speed of convergence

of the learning system must be considered when determining how often

redundancy checks should be made.

88

:

CHAPTER k

IMPLICATIONS FOR S-R THEORIES OF LEARNING

k.l. INTRODUCTION

mmmm

..

In psychology, learning theories fall into two major categories,

stimulus-response (S-R) theories and cognitive theories (Hilgard and

Bower, 1966). The stimulus response theories view learning as the

acquisition of stimulus-response chains or "habits". Organisms are

assumed to merely learn responses, and to resort to trial and error when

confronted with a novel problem for which no response has been learned.

Cognitive theories on the other hand, view learning as the acquisi+ion

of memories or expectations in the form of cognitive structures.

Organisms are assumed to learn facts, and to employ "insight" based on

the understanding of the essential relationships involved when * onfronted

with a novel problem.

In both categories, model building has proved to be a useful

technique for describing data and predicting experimental results.

Mathematical models of learning (Bush and Mosteller, 1955; Estes, 1959)

have been constructed which are simple, concise descriptions of quanti-

tative data, many capable of yielding quite accurate numerical pre-

dictions. As Bower (1966) points out, most of tne theoretical work in

mathematical learning theory has been in the area of "stimulus-response

associationism", although cognitive theories can be and often are

expressed in mathematical form.

More recently, information-processing models of human behavior

and intelligence have emerged (Feigenbaum, 1959» Feldman, 1959; Newell

••

■

;.

and Simon, 196l; Hunt, 1962; Simon and Kotovsky, 1965; Reitman, 1965).

This type of model, in the form of a computer program, can be regarded

as a theory of the psychological processes underlying the behavior being

simulated. The information-processing model is a precise, unambiguous

statement of the theory and is well suited for generating explicit

predictions. ♦•

Up to now S-R theories have been used to explain many types of

simple learning, but not processes as complex as strategy or heuristic

learning. The information-processing system described in Chapter 2 and

5 suggests a number of approaches to the problem of constructing S-R

theories or models of human strategy learning in game-playing or problem- «

solving environments. Some of the possible approaches to this problem

w.

will now be examined and evaluated.

.:

;:

ü

::

90 L

E

I

■■

k.2, AN S-R INTERPRETATION OF PRODUCTION RULES

A production rule defining the change to make in the state vector

C of a program has the form:

(Ai, Bi, ci) ■♦ (^(e), f2(e), f3(e)) ,

where Al, Bl, and Cl are symbolic representations of the current values

of the subvector, and 1,(6), fp(&) and f (£) are functions or arith-

metic expressions defining the new values for the subvector. It will

be recalled that the subvector is the set of program variables which

may influence or be affected by the decisions of the program» Another

way to interpret the subvector is to consider it a description of a

particular game situation, where each element of the subvector is a

value of a pertinent attribute of the situation. The production rule

shown above can thus be thought of as a situation-action pair

which effectively means "in situation S take action A". Under this

interpretation, strategy learning simply consists of the acquisition

of S-A pairs.

S-R Models of Strategy Learning

Models of human strategy learning in a game-playing environment

will now be proposed. These models learn by being presented with a

series of game situations, the corresponding actions to take in each

situation, and the reason why each action is taken. A situation des-

cription consists of a list of all pertinent aspects of the situation,

each aspect being called a situation (or stimulus) element.

-1

I
CONSTRAINTS. All the models under consideration are based on certain

constraints about how strategy learning can actually take place. The

constraints thus postulated are the following:

1. Association: the stimulus elements of a situation become

associated with or connected to the correct action to take in

that situation.

2. One-trial learning: the stimulus elements are connected com-

pletely to an action after one training trial.

5. Dependent elements: a situation description is a pattern of

dependent stimulus elements, i.e., the pattern, rather than

the individual elements, becomes connected to the action.

h. Interference: the only way that forgetting can occur is through

interference, that is, by replacing the action part, A , of

an S-A connection with a new action A' .

5. Consistent training: the situation-action pairs presented to

the model will not contain conflicting information, such as

the same situation paired with two or more different actions.

Tho effect of this constraint is that interference (and hence

forgetting) will not occur.

Association, one-trial learning, and interference arc postulated

because they provide the models with a basic structure that is

relatively simple. Dependent elements must be postulated, since in

a game-playing situation the stimulus elements are qui ,e highly inter-

dependent. Consistent training is postulated so that complications

due to forgetting may be neglected.

02 :

;

ACTUAL ELEML'NTS. In a game-playing situation the pattern of stimulus

elements that describes the situation at a particular time is composed

of the values of the pertinent attributes of the situation. It is

nssumed that these values can be represented as integers. For example,

consider a game with attributes H , P , and B , each having values

from 1 to 10 . Then a typical situation description (pattern of

stimulus elements) might be 2,9^5 meaning that this situation is

defined by il having a value of 2 , Pa value of 9 > and B a

value of 5 . An asterisk as an attribute value indicates that the

attribute may take on any value. Hence 6,*,4 represents a class ol

situations where H has the value 6 , P any value from 1 to 10 ,

and B the value U . These integer stimulus elements are called

"actual" elements.

ABSTRACT KLEMENTS. Another type of element to be considered is the

symbolic stimulus element, auch as hi , pi , or bl , where each

nymbol represent* any element from a particular subset of integers.

Thus hl,pJ,bl. is a description of a class of situations. These

Kymbülio stlnulUfl elements are called "abstract" elements and are

defined by partitioning the ranges of the attributes either into

mutually exclusive and exhaustive subsets or into overlapping subsets.

An example of the former type of partitioning for H is "hl: H < 6

and h2: H > 6". An example of the latter type is "hl: H < 7 and

h2: H > J".

.STOKAGE. II a pattern of stimulus elements S is presented to a

model and the model laiis to predict the correct action A , the model

Ö

::

is told the correct action, and the S-A connection is stored in a

list. The storage process may consist of simply placing the new

connection at the end of the previously learned connection list. If

exclusive abstract elements are used, storage may consist of also

growing a decision tree from the previously learned S-A connections.

Furthermore, when overlapping abstract elements are present, storage

may consist of the following steps.

(1) The definitions of the abstract elements are changed such

that the new S-A connection is effectively placed in the

previously learned connection list.

(2) If step (l) is not possible, the new S-A connection is

added to the previously learned list by placing it immediately

above the connection which led to the last error.

RETRIEVAL. When a model is given a situation description S , it

must predict what action to take. It is assumed that this prediction

is based in some way on the result of a retrieval process. The most

elementary process consists of matching S against every situation

description stored and if a perfect match is found retrieving the

associated action. If no match is found an action is picked at random

for output.

A more complicated process consists of comparing S to every

situation description stored and choosing as the prediction the action

associated with the description that is closest to S . Here closeness

is defined as the distance between two descriptions, where a description,

for n attributes, is thought of as a point in n-dimensional space.

9^

•

A third possible process consists of filtering S down a decision

tree or discrimination net grown from previously learned S-A connections.

The action associated with the terminal node finally reached by S is

then used as the orediction.

DEGREES OF FrEEDOM. The preceding remarks concerning methods of

representation, storage, and retrieval for the models will now be

summarized. The models are permitted the following degrees of freedom:

1. Situation Representation

a. Actual Elements (example: 9>^>7)

b. Abstract Elements (example: hl,p2,b3)

(1) Mutually exclusive definitions (example: hi: H< 5 >

h2: H > 5)

(2) Overlapping definitions (example: hi: H > 7>

h2: H < 15)

2. Storage Mechanism (storage of an S-A connection)

a. Simple Placement: the connection is added to the end

of the connection list already learned.

b. Induction: a decision tree is grown based on the current

list of learned S-A connections.

c. Complex Placement; definitions of abstract elements are

changed, if possible, to effectively place the connection

in the learned list. Otherwise the connection is added

just above the connection that led to the last error.

3. Retrieval Mechanism (retrieval of an A when given an S)

a. Simple Search; the S is compared to all descriptions

in the learned connection list, and if an exact match is

95

w,.

.

found the corresponding A is retrieved, otherwise an

A is picked at random.

b. Stimulus Generalization: the S is compared to all

descriptions in the learned connection list, and for

the best match (defined by closeness in n-dimensional

space) the corresponding A is used. ••

c. Tree-sorting: the S is sorted down a decision tree to

a terminal node, and the A at that node is used.

FEASIBLE MODELS. Allowing the preceding degrees of freedom should

permit the construction of 3x3x3 or 27 different models. Actually

only 10 of these models are feasible due to certai'' incompatibilities

which exist between the proposed methods of representation, storage

and retrieval. In the diagram shown below each square represents one

of the 27 hypothetical models. The X's indicate which of these

are the 10 feasible models.

.

:

.

Actual
Elements

Abstract
Elements
(exclusive

definitions)

Abstract
Elements

(overlapping
definitions)

© X X i

©
© X X |

X

X ©

Simple
Search

Stimulus
Generalization

Tree-sorting

Simple
Placement

Induction

Complex
Placement

Simple
Placement

Induction

Complex
Placement

Simple
Placement

Induction

Complex
Placemer.t

Figure U-l.

Four of these models, indicated by the circles in Figure ^-1, will be

described in this chapter and their operation illustrated by the train-

ing sequence given in Figure k-2.

TRAINING. Training consists of supplying the models with training

information after each error. This training information consists of

(l) the correct decision, (2) the elements relevant to making the correct

decision, and (3) the reason why the decision is being advocated, express-

ed in terms of an evaluation of each relevant element. If a model uses

97

actual elements, item (3) is not required since there are no definitions

to learn. If a model uses abstract elements, item (3) is necessary,

and the model is assumed to learn the definitions of these elements using

the procedure outlined in section 3.2. Figure h-2 gives the definitions

the models would learn if this procedure were applied to the training

sequence shown. Model operation will be illustrated as though the models

are given these definitions, in order to simplify the examples presented.

However, in an actual experimental design the models would be required

to learn the definitions.

96

::

.

:;

::

:

Range of Actual Values: H(l-50) P(l-60) B(l-10)

Mutually Exclusive
Definitions:

Overlapping Definitions:

Training Sequence:

hl(H>25)

h2(lO<H<25)

h3(H<10)

hl(H<l6)

h2(H<5)

h3(H>36)

situation correct relevant
description decision elements

1. 15,21,6 A3 H,P,B

2. 4,28,3 Ak H

3. 1.3,8,U A2 H,P,B

k. nX9 Al H,P

: ■ 12,9,10 AU H,B

1,^2,17 AU H

7. 12,5,5 A? H,P,B

pl(E>9)

p2(l<9)

pl(H>20)

p2(P<9)

bl(B>7)

b2(B<7)

bl(B<7)

b2(B>9)

reason

H is "h2" or "small", P is "pi"
or "large", B is "b2" or "small"

H is "h3" or "small"

H is "h2" or "small", P is V
or "small", B is "b2" or "small"

H is "hi" or "large", P is "pß"
or small

H is "h3" or "small", B is "bl"
it-i ii or large

H is "h3" or "small"

H is "h2" or "small", P is "p2"
or "small", B la "b2" or "small"

Figure U-2. Training sequence and definitions
to illustrate model operation.

■)■

I
A Simple Model J

in Figure k-2.

100

i The first model to be described is defined as having the following

characteristics:

(1) actual elements,

(2) simple placement,

(3) simple search.

This is called a Simple Model and is the most elementary one which can

be constructed within the framework just proposed. Its operation will

be illustrated for the first five trials of the training sequence shown

- -

■

PREDICTION. When the model is given a situation description S and is

asked to predict A it matches S against all left sides of the

connections in the learned list going from top to bottom until an

exact match is found. The right side of the connection whose left side

exactly matches S is then used as the prediction. If the prediction

is wrong, a new connection, formed from S and the correct action, is

added to the bottom of the list of learned connections.

The model is assumed to initially consist of a single S-A

connection of the form

,,* "♦ [action picked at random]

which catches all situation descriptions and leads to an action being

picked at random from the set of possible actions. Since the model

learns through training what actions are possible, on the first trial

the known set of possible actions is empty and no prediction is made.

1

f

OPERATION. The operation of the Simple model for the first five training

trials is depicted below.

Learned S-A
B Connections Predicted A Correct A

1. 15,21,6 *,*,* -♦ (} none A3

2. ^28,5 15,21,6 -♦ A3 A3 Ak

,,* -♦ [A3} (from last
connection)

3. 13,8,U 15,21,6 -» A3 Ak A2
k,*,* -♦ Ak (from last

,,* -♦ [A3,AU} connection)

h. 57,M 15,21,6 -♦ A5 A3 Al
k,*,* -» AU (from last
13,8, U -> A2 connection)

,,* -» lA2,A3,A4}

5. 12,9,10 15,21,6 -♦ A3 A2 AU

+,,* -» Ah (from last
13,8,1» -» A2 connection)

37,^,* -♦ Al
,,* -♦ [Al,A2,A3,AUj

EVALUATION OF THE MODEL. Because of the wide range of values of the

three attributes, the probability of finding an exact match for S

among the learned connections is quite small, especially if the situation

descriptions are chosen at random. Hence the model does little more

than make a random guess when presented with an A and asked for a

prediction. This model is clearly too simple to serve as a useful theory

of human strategy learning.

A Stimulus Generalization Model

The second model to be described is called the Stimulus Generaliza-

tion model and is defined as having the following characteristics:

101

(1) actual elements.

(2) simple placement, |

(3) stimulus generalization.

The operation of this model will be illustrated for the entire training

sequence given in Figure k 2.

OPERATION. The operation of the Stimulus Generalization model for the

training sequence of Figure k-2 is shown below.

102

I

i

.

PREDICTION. The model makes a prediction, when given a situation

description S , be comparing S to every situation description stored

in the learned connection list and choosing as the prediction the action

associated with the description that comes closest to matching S .

Closeness it defined as the distance between two descriptions when euch

description, for n attributes, is interpreted as a point In n-dimensional

space. However, descriptions containing one or more ^'s must be thought

of as hyperplanes in the n-dimensional space. For example, if n=3

then 15,21,6 represents a point, 15,*,6 a line, and 15,*,* a

plane in 3-dimension'jl space. If the prediction made by the model is

wrong, a new connection composed of S and the correct action is added

to the end of the learned connection list. No prediction is tr A% on

the first trial since at this point the connection list is empty.

.

.

:

Learned Distance Between
S-A Connections S and Connection Predicted A Correct A

1. 15 ,21,6 none none none A3

2. ^ 28,3 15 21,6 -♦ A3 13.U A5 AU

5. 15 ,8,U 15) 21,6 -» A. 13.3 AU A2
K *,* -♦ AU 9.0

h. 37 A,9 15, 21,6 -♦ A3 28.0 A2 Al
^, *,* -» AL 35.0

13, 8,1* -» A2 2U.8

5. 12 ,9,10 15, 21,6 -♦ A3 15.0 A2 AU
h, v -♦ Ah 8.0

13, M -» A2 6.2
57, ^* -» Al 25.5

t. I,1 +2,17 15, 21,6 -» A3 27.6 AU AU
^ »* -» AU 5.0

13, 8,{ -♦ A:.' 38.U
37, ^* -♦ Al 52.5
12, *,10 -4 Ah 15.1

7. 12 .5,5 15, 21,6 -» A3 16.3 A2 A2
^ v -♦ AU 8.0

13, 8,U -♦ A2 5.5
37, If,« -> Al 25.0
12, *,10 -» AU 5.0

The model always chooses an A such that the distance between S

and the left side of the connection containing A is minimized. In

trial 5, lor instance, action A2 is predicted by the model because the

distance d between S (12,9,10) and the situation description of the

third connection (13,Ö,U) is the smallest. This calculation is

illustrated below.

d ^(v*^ + (yry'P + (zrz2^

=l/(l2-13)2 + (9-B)2 + (10-U)2 = 6.2

105

A "*" is considered to be an exact match for any value when the above

formula is used to calculate d .

EVALUATION OF THE MODEL. This model is clearly superior to the Simple

model since the closest match to S is always I'ounc?, and thus the model

need not resort to random predictions. However, this model does have

its weak points. First, the type of comparison procedure suggested for

retrieval is quite involved, and it is difficult to imagine humans

actually performing such mathematically-oriented calculations when placed

in such a training situation. Second, in the early stages of training

virtually every training trial adds a new S-A connection to the learned

list. Since the input S must always be compared with every connection

on this list, the time needed to retrieve a response (i.e., the latency)

sharply increases as the number of reinforced trials increases.

An Induction Model

The third model to be described is the Induction model, which is

defined as having the following characteristics:

(1) abstract elements with mutually exclusive definitions,

(2) induction,

(3) tree-sorting.

The training sequence and definitions in Figure h-2 will be used to

illustrate the operation of this model.

PREDICTION. The Induction model makes a prediction by sorting the given

S to a termipal node in a decision tree previously grown using the

current list of learned S-A connections. The action associated with

that terminal node is used as the prediction. If the prediction is

10k

wrong, the connection formed by S and the correct action is added to

the learned S-A connection list, and a new tree is grown.

The generalization technique used to grow the tree is an extension

of the technique used by Hunt (1962,1966) for growing concept trees,

that is, trees for distinguishing between positive and negative instances

of a concept. The decision tree partitions the universe of situations

into m sets, one for each possible action that may be taken. Each

situation element is considered to be an attribute of the situation,

and the tests made at the nodes of the decision tree are tests on the

possible values of these attributes. The tree-growing technique is

summarized in Appendix A, Part I.

OPERATION. The operation of the Induction model for the training sequence

in Figure k-2 will now be illustrated. No prediction is made on the

first trial since at this point no decision tree exists.

8

1. 15,21,6

h2,pl,b2

Learned
S-A Connections

none

Tree used to
produce a prediction

none

Predicted A Correct A

none V

2. 4,28,3 h2,pl,b2 -♦ A3

h5,pl,b2

A3 A3 Ik

3. 13,8,4 h2,pl,b2

h2,p2,b2 h3,*,*

A3

Ah

A3 A2

105

Learned
S-A Connections

hl>p2,bl

h2,pl,b2

h2,p2,b2

A?

A2

5. 12,9,10 h2,pl,b2 -» A5

h2,p2,bl h5,*,* "♦ AU

h2,p2,b2 -» A2

hl,p2,* -» Al

6. 1,^2,1?

h3,pl,bl

h2,pl,b2 -♦ A3

h3,*,* -» Ah

h2,p2,b2 -♦ A2

hl,p2,* -♦ Al

h2,*,bl -» Ah

Tree used to
produce a prediction

■B
A3 A2

106

Predicted A Correct A

A2

A2

Ak

Al

A4

Ah

::

i

i
i
i
i
i
!

I

:

Li

."

;

:

7.

Learned
S-A Connections

12,5,5 h2,vl,t)2 -» A3

h2,p2,b2 hj,*,* -» Ak

h2,p2,b2 -» A2

hl,p2,* -» Al

h2,*,bl -» A^

Tree used to
produce a prediction Predicted A Correct A

A2 A2

Note that a completely new tree must be grown each time another S-A

connection is added to the learned list. Only in trial 7 above was a

new tree unnecessary, since the correct prediction was made in trial

6 and consequently no S-A connection was added to the list.

EVALUATION OF THE MODEL. The Induction model is possibly superior to

the models previously presented si^ . it does not have to resort to

random predictions and the retrieval mechanism is somewhat more satisfying

as an explanation of human cognition. Also, this model does not lead

to a sharp increase in response retrieval time when the number of

reinforced training trials increases, as does the Stimulus Generalization

model. This is true because (a) the response retrieval time depends

entirely on the time needed to sort the S down the tree, and this

107

1

.

sorting time increases very slowly as the size of the tree increases;

the retrieval time doesn't depend on the time needed to grow the tree

since tree growing occurs at the end of a trial, as part of the storage

process, and (b) fewer S-A ccanections are stored during training to

a criterion of say x correct trials in a row, and fewer connections

means faster retrieval.

Although this model is possibly superior to the others, it does

have its deficiencies. First, the decision treo that is grown, and hence

the action retrieved, is highly dependent on the algorithm used to deter-

mine which attribute value is to be chosen as a test at a node, and it

is not clear what the best algorithm is. However, this dependency can

be turned into a virtue if one can see how to modify the algorithm to

improve the performance of the model. Second, the model must be presented

with completely consistent training information in order to function

properly. If during training it is given information implying that more

than one action is possible in a certain situation, the tree-generating

■r.echanism will generate some branches which never terminate. For example,

if the model is told the S-A connections hi,pi,* ■♦ Al , and

hl,*,b2 -» A2 are both valid it will grow a uon-terminating branch.

This feature is a deficiency because humans are able to learn strategies

even when presented with inconsistent information.

A Complex-placement Model

The last model to be described is the Complex-placement model, which

is defined as having the following characteristics:

(l) abstract elements with overlapping definitions.

108

i

1 •

(2) complex placement,

(j) simple retrieval.

The operation of this model will be illustrated for the training

sequence and definitions given in Figure k-2.

PREDICTION. The Complex-placement model makes a prediction by comparing

the given S to all situation descriptions in the learned connection

list, going from top to bottom, and if an exact match is found the

corresponding A is retrieved. If a match is not found, an action is

selected at random from the known set of possible actions. When an

incorrect action is retrieved the abstract definitions are changed, if

possible, to effectively place the connection formed by S and the

correct A In the existing list. Otherwise this new connection is added

to the existing ordered connection list immediately above the S-A

connection that led to the previous error. Initially, the model consists

of a single S-A connection which catches all S's and leads to an action

being picked at random, as in the Simple model.

OPKRATION. The operation or the Complex-placement model for the training

sequence of Figure h-2 is shown below.

Learned S-A Connections

,,* (} 1. 15,21,6

hl,pl,bl

2. Iu28,^ hl,pl,bl -» A3

hi -h2,pl,bl *,*,* -» Uj}

Predicted A Correct A

none

A3

(from the first
connec tion)

A;

Ah

109

■

§ Learned . j-A Connec tions Predicted A Correct A

3. 13,8,1+ h2,*,* -♦ AU A4 A2

hl,p2,bl hl,pl,bl

-♦

A3

U3, A4}

(from last
connection)

it. 37,^,9 h2,*,* -► Alt A2 Al

h3,p2,b hl,pl,bl

hl,p2,bl

A3

A2

(from the last
connection)

»,♦,* -♦ IA2, A3, A4}

5. 12,9,10 h2,*,* -» All A3 A4

hl,p,b2 hl,pl,bl

hl,p2,bl

h3,p2,*

-»

-♦

-♦

A3

A;
1

Al

(from last
connection)

,,* -» [Al, A2, A3, A4}

6. 1,^2,17 h2,*,* -♦ A4 A4 A4

hl-h2,pl,b2 hl,pl,bl

hl,p2,bl

h3,p2,*

hl,*,b2

A3

AT

Al

A4

(from first
connection)

,,* -» [Al, A2, A3, A4}

7. 12,5,5 h2,*,* -» A4 A? A2

hl,p2,bl hl,pl,bl

hl,p2,bl

h5,p2,«
hl,*,b2

-♦

-♦

A3

A2

Al

A4

(from third
connection)

,,* ■» Ul,A2,A3,A4}

110

.

- •

- R

The actual situation descriptions, such as 4,28,5 in trial 2, are

converted to abstract situation descriptions in a manner analogous to the

parsing step of section 2.2. Thus 4,28,3 becomes hl-h2,pl,bl, meaning

that 4 is a member of set hi md set h2 , 28 is a member of set

pi , and 3 is a member of set bl . In trial 5 the actual element

:

9 is a member of no set and is consequently represented by the abstract

element p •

In the training trials just described no S-A connections were

placed in the connection list by merely modifying definitions because

no connection already in the list had the same form as the ones being

added to the list. A connection in the list has the same form as one

being added to the list only if (l) their A's are identical, (2) for

each • in the S of the connection being added there is a corresponding

• in the S of the connection already in the list, and (3) their

corresponding abstract elements both use the same logical operator.

For example, consider the following S-A connections.

(a) hi,*,W. -♦ Al hl: H < 12

(b) bl,»,b2 -»Al h2: H < 6

where bl: B > 7

(c) hi,*,* -♦ A2 b2: B < 15

(d) h2,*,b3 -»Al bj: B > 2

Here (a) and (b) are not of the same form because of restriction (3),

(a) and (c) are not of the same form because of restriction (l), and

(a) and (d) are of the same form.

The process of placing a connection in the list by modifying

definitions is described below for the learning of the connection

"18,24,5 -» A3 because 18 is small, 2k is large, and 3 is small".

S Learned G-A Connections Fredictod A Correct A

18,24,3 h2,*,* -» Ah Al A3

= h,pl,bl hl,pl,b] -♦ A3 (from last
IT o v,-i .. Ao connection) hl,p2,bl -* A2

ill

•

S Learned S-A Comiections Predicted A Correct A

h3,p2,* -» Al

hl,*,b2 -» Ak

,,* -» iAl,A2,A3,AU]

I

It is assumed that the wrong action was predicted using the last connec-

tion is the above list, hence the model must add the connection

h^pljbl -» A3 to the list. Here hU is defined by the set "H < 19" ,

and this is learned when the model is told that 18 is "small". The

model searches all connections above the error-causing one to see if

any have the same form as h^,pl,bl -♦ A3 • In the above example, r y

the second connection, hl,pl,bl -» A3 , has this form. Consequently,

the definition of hi is changed to include 18 , thus its new definition

is hl: H < 19 . Now when l8,2U,3 is given to the model it predicts

the correct action, A3 ■

EVALUATION OF THE MODEL. The Complex-placement model, like the Induction

model, offers a more satisfying explanation of human cognition than do

the first two models described. Also, for this model, the response

retrieval time does not sharply increase as the number of reinforced

! training trials increases. This is because (a) the retrieval process

does not always require looking at every connection in the list, and

(b) a new connection is not always added to the connection list when

an error is made. Moreover, the Complex-placement model does not require

consistent training trials, as does the Induction model. If the model

1
is told that hi,pi,* -♦ Al is a valid connection, and then that

hl,*,b2 -♦ A2 is a valid connection, it has been given inconsistent

information, since in situation hl,pl,b2 two different actions should

112

be taken. Nonetheless, this inforraation is incorporated into the

ordered connection list. If the second connection is placed in the

list because the first connection led to an error, the list has the

following form:

hl,»,b2 ■♦ A2

hi,pi,* ■» Al

,,* -♦ iAl,A2}

But now because of the hierarchical arrangement of the connections in

the list the information is no longer inconsistent. The list in effect

says to take action Al if H is hi , P is pi and B is anything

but b2 , and to take action A2 if H is hi , P is anything, and

B is b2 .

The Complex-placement model does, however, have at least one short-

coming. In the early stages of training it often resorts to making

predictions at random, since it is difficult to find an exact match

when the connection list is short. This might have a detrimental effect

on the degree of correlation obtainable between the predictions made

by the model and the predictions made by human subjects.

115

I
lt. 3. PROPOSED EXPERIMENTAL DESIGNS !

In the previous section & number of S-R theories or models of

human strategy learning were presented. The validity of these models

can be tested by comparing them with human subjects in a game-playing

or problem-solving environment.

Random Selection Design

An experimental paradigm for testing these models is outlined

below. It is patterned after a series of experiments performed by Hunt,

Marin, and Stone (1966) which are based on a random selection design.

1. Choose a game-playing or problem-solving environment. For this

environment define (a) a set of attributes with numerical values,

such that a situation description consists of a list of the values

of these attributes, (b) a set of actions which can be taken, and

(c) a set of consistent strategies in the form of situation-action

pairs with exclusive abstract values, which partitions the universe

of possible situations into n subsets, one for each possible

action.

2. Pick a group of situation descriptions at random from the universe

of possible situations.

3. Present these situation descriptions to the subjects in a serial

fashion, and for each presentation or trial ask the subjects to

predict the correct action. After each subject makes a prediction

give him the correct action, and the reason why the action is correct,

expressed as an evaluation of the relevant attributes. Present

this information visually, such that on subsequent trials the subject

114

!

I
i

has available a cumulative visual record of the results of all

! previous trials.

1
h. Compare the predictions of the models with the predictions of the

human subjects, when the models are given the situation descriptions

from step 2, presented in the same order as they were presented

to the subjects.

TRAINING INFORMATION. The information given to the subjects after each

prediction can be obtained in a variety of ways. One way is to separately

analyze each situation description from step 2 and decide, on the basis

of the particular environment being represented, what action should be

taken and why. The danger here is the possibility of inadvertently
- ■

giving the subjects inconsistent information.

A better way to obtain the desired information is to use the set

of S-A pairs defined in step 1 to grow a decision tree, using the

generalization technique described for the Induction model. Each

situation description, S , of step 2 is then sorted down the tree,

and the correct action is assumed to be the one contained in the terminal

node reached by S . As this S is sorted down the tree it passes

' through a number of test nodes which define its path through the tree.

All attributes which are tested by these path-defining nodes are consid-

ered to be attributes relevant to choosing the correct action for S .

j The evaluation of these relevant attributes (or the reason why the action

is taken) is simply the specification of the categories they fall into.

' The available categories are those defined by the exclusive definitions

used to specify the abt-tract values needed for the set of S-A pairs

defined in step 1.

I

I
I
I

lib

«

TRAINING TRIALS. The training trials used in section i+.2 to describe the

operation of the models were obtained by the method just outlined. The

environment chosen is shown in Figure k~3, and the tree grown from the

S-A pairs in Figure k-3 is shown in Figure A-l. To see how the training

trials were constructed, consider the situation description 12,9,10

used in the training sequence of Figure k-2. This description becomes

h2,p2,bl when expressed in terms of the abstract values defined in

Figure U-3, thus h2,p2,bl is sorted down the tree of Figure A-l. The

terminal node reached contains Ah , so the correct action is assumed to

be Ah . The path that h2,p2,bl takes through the tree is defined

by the test nodes üil?) ftj2fl and (bl?) , thus attributes H

and B are assumed relevant. The reason Ah is correct is therefore

because H is an h2 , and B is a bl . A game-playing interpretation

of the environment defined in Figure k-3 is presented in Appendix A,

part II.

Rather than giving the subjects nondescriptive category names like

hi , b2 , and h3 they are given descriptive names which suggest how to

order the categories, like large, medium, and small. Thus for trial 1

in Figure k-2 the correct action is A3 because "H is medium, P

is large, and B is small". If the models are to be compared to human

subjects they must be given the training information in the same form

used for the subjects. Consequently, the Induction model and the

Complex-placement mod:-! (the models which learn the definitions of the

abstract values) are given ordering information about the categories

used to describe the attribute values, e.g., that "large" > "medium" >

"small".

:;

,

lib

Attributes: H P B

Range of Values: 1-50 1-60 1-10

Abstract Values: hl(H>25) pl(R>9) bl(B>7)

h2(lO<H<25) P2(P<9) b2(B£7)

h3(H<10)

Universe of Situations:

/
A2 S

AJ<)

(Al 1 , — ^ \ /

\ —k A5
/

V
Universe consists of 50x60x10 or 30,000 situations

Heuristics: hl,*,b2 —► Al

hl,p2,* _► Al

h2,p2,b2 ^ A2

hl,pl,bl —► A3

h2,pl,b2 —» A3

h2,»,bl ♦ AU

h3,*,* —» kh

Figure ^--3. An environment for testing models
of humah strategy learning.

117

1

part of the S-A connection last added to the list from which the tree

was grown. The requirement is satisfied for the Complex-placement model

if it is required to pick an S which catches on or below the last S-A

connection added to the list. It is difficult to satisfy this requirement

118

I
:

..

The Induction model can then use the ordering information to

translate "large" into hi , "medium" into h2 , and "small" into h3

when it is told why a particular action is correct, and then proceed

as described in section ^.2. The Complex-placement model must use the

ordering information to translate any given category into either "large"

or "small". It can accomplish this by interpreting all categories above

the middle one as "large", all below the middle one as "small", and the

middle one itself (if there is one) as "small". Thus it would interpret

"large", "medium", and "small" as "large", "small", and "small" when

told why a particular action is correct, and proceed as described in

section U.2.

Interactive Selection Design

Another experimental design which might prove interesting is one

where interactive selection (Hunt, Marin, and Stone, 1966) is used in

step 2 rather than random selection. Here the subject examines the

entire universe of situation descriptions and decides for himself which

situation description to consider for each trial. The models must like-

wise decide which situation description to pick for each trial, and an

S should be picked which provides a good test of the training information

received when the last error was made.

For the Induction model this requirement is satisfied if it is

required to pick an S that sorts to the same terminal node as the S

. i

'■

;:

!

t

for the Simple and Stimulus Generalization models, consequently, they

would not be included in an experiment based on interactive selection.

I-19

CHAPTER 5

A SPECIFIC APPLICATION

5.1 INTRODUCTION

In order to demonstrate the feasibility of the representation and

manipulation techniques presented in chapters 2 and 3 a full scale

application in the area of game playing will now be described. The

game chosen for this task is basic draw poker, a game in which the

players do not have access to all the existing game information. In

contrast, games like chess, checkers, go, and backgammon are designed

so that each player has available the total game information at each

decision point; these are called games of perfect information (Rapport,

1966).

To date, research in heuristic game playing has been concerned

predominately with games of perfect information, because these games

can usually be represented by game trees in which very effective search

and prediction procedures (ruch as minimaxing) are applicable. Mini-

maxing cannot be used with most games of imperfect information, as

there is not enough information available to construct a game tree in

advance. The representation and manipulation techniques described

earlier are an effective approach to implementing decision-making and

]earning in an imperfect information environment.

Game playing is studied not merely to develop programs which are

good at playing games, but more to develop programmable methods and

techniques for solving practical problems. Gamer of imperfect information

are useful to study because they are realistic abstractions of the complex

120

BUNK PAGE

121

D
ö
S
&

&

:

problems encountered in daily life, moreso than games of perfect infor-

mation. For example, chiss is actually e game of war, where tach side

tries to defeat the other by capturing the opposing army and imprisoning

the king. In actual war it is seldom the case that one side knows the

exact location, strength, and capabilities of all units of the opposing

army, as one does in the gane of chess.

A similar analogy can be drawn between games of imperfect information

and the struggle which occurs between businesses engaged in marketing

competitive products. Again, each side is faced with the problem of

making crucial decisions without having available the information needed

for accurately predicting what the counter-move by the opposition will be.

In this chapter a detailed analysis of the heuristics for the bet

decision in draw poker will be presented together with their representation

as production rules and an illustration of their use in an actual computer

program. Next, the process of training will be illustrated by showing

how the program can be trained to play draw poker, using either a human

or a program as a trainer. Finally, it will be shown how the program can

learn to play poker without explicit training, that is, by gaining

experience through actual game play.

I
I
T
i

i

I
I

:

:

:

VM

5-2 HEURISTICS FOR DRAW POKER

The {jame under consideration is a standard version of five-card

draw poker, in which up to three cards may he replaced and no cards

are wild. (See Appendix B, Part I for a detailed definition of the

game.) The bet decision made by the computer program which plays

this game is based on a number of interrelated heuristics. An informal

description of these heuristics is given in Appendix B, Part II.

State Vector Description

The state vector needed to adequately describe the bet decision

heuristics for this game has the form:

6 = (\TiHAND,POT,LASTBET,BLUFFO,POTBET,ORP,OSTYIiE,O^OB,CS,BO,IiAP,

SB, MB, BB, BBS, BBL, OAVGBET, OTBET, OBLUFFS, OCORREL, OD) ,

where the dynamic variables are VDHAKD^POTiLASTBETjBLUFFO^OTBET^ORP,

and CSTYLE , the function variables are OH,OB,CS,BO,LAP,SB,MB,BB,BBS,

and BBL , and the bookkeeping variables are OAVGBET,CTBET,OBLUFFS,OCORREL,

and OD . The definitions of these variables and the definitions of the

symbolic values of variable VDHAND are presented in Figure 5-1«

The range of values for BLUFFO,OSTYIiE,OH,OB,CS,BO, and OCORREL is

the set of positive and negative integers, where a large or positive

value indicates a high probability that the opponent can be bluffed, tne

opponent is conservative, etc. VDHAND ranges from 1 for one-of-a-kind

to 600,000 for a royal flush, LASTBET ranges from 1 to 20 , and OPP

ranges from 0 to 5 . VDHAND is an exclusive variable, while the other

dynamic variables are of the overlapping type. It should be noted that

122

in two instunces a variable .serves a dual role, being both a function

and a dynamic variab.Tr, i.e., BO and BLUFFO both .stand for the same

variable, and CS and OSTYLE both stand for the same variable.

The subvector for this game is composed of the dynamic variables

of the state vector and thus has the form:

0 = (VDHAND,POT,LASTBET,BLUFFO,POTBET,ORP,OSTYLE) •

For convenience the dynamic variables will be abbreviated so that the

subvector can be written:

ß = (H, P, B, BFO, PB, R, OCS) .

0

0

D
B
0
II
ß
B
0

e
D
o
0

::

u
i!

125

II

VDHAND: the value of your hand

FCT: the amount of money in the pot

LASTBET: the amount of money last bet

BLUFFO: a measure of the probability that the opponent can be bluffed

POTBET: the ratio of the money in the pot to the amount last bet

ORP: the number of cards replaced by the opponent

OSTYLE: a measure of conservative style by the opponent

OH: the expected value of the opponent's hand

OB: a measure of the prjba>-Llity that the opponent is bluffing

CS: a measure of conservative style by the opponent

BO: a measure of the probability that the opponent can be bluffed

LAP: the largest bet possible without causing the opponent to drop

SB: a small bet

MB: a medium size bet

BB: a large bet made in an attempt to bluff the opponent

BBS: I small bluff bet

BBL: a large bluff bet

OAVGBET: the average bet made during a round of play

OTBET: the number of bets made by the opponent during a round of play

OBLUFFS: the number of times the opponent was caught bluffing

CCORFEL: a measure of the correlation between the opponent's hands and
bets

OD: the number of times the opponent has dropped

SW: a sure-to-win hand

EC: an excellent-chance-of-winning hand

GC: a good-chance-of-winning hand

PC: a poor-chance-of-winning hand

NC: a no-chance-of-winning hand

Kl to KJl: constants

sfr

i Figure J»l, Definitions of state vector variables
and symbolic values.

:

:

12k

-;..v Hj

I
The Heuristics As Production Rules

The bet decision heuristics (described in Appendix B, Part II) by I

virtue of being informal are also imprecise and occasionally ambiguous.

However, they can be made precise and unambiguous by being rewritten and

expanded in LASH, a language designed for specifying heuristics (see

section 2.3). The LASH version of the bet decision heuristics are

given in Appendix B, Part III, and the corresponding production rules

in Appendix B, Part IV.

The five function variables OH,OB,CS,BO, and LAP are highly inter-

related as can be seen from ff rules 11 through 1^ in Appendix B, Part IV.

The relationships existing between these variables and the bookkeeping

variables are illustrated in Figure 5-2. OAVGBET and OTBET can be

thought of as contributing to the short-term memory of the system while

OBLUFFS,OCQRREL and OD contribute to the long-term memory. Extending

this ideu, VDHAND,P0T,LA3TBET,P0TBET, and ORP are short-term variables

while BLUFFO and OSTYLE are long-term variables. The value of the

constants used in defining tnese variables are given in Appendix B,

Part V.

The production rules representing the bet decision heuristics

have been incorporated into a LISP (McCarthy, 1962) computer program

which plays draw poker. A listing of the action rules and bf rules

actually used by the program is shown in Figure 5-5« The expression

(INCP) in the action rules stands for the expression P0T+(2 X LASTBET) .

For each action rule in Figure 5-5 the first item in the rule is the

left part of that rule, with the last 7 items forming the right part

of the rule.

J
I
I
I
:

0
;:

B
S
I

1 I

I
I
I
I
I

r>>

ir\
BoS

\Ly
r^

i

>

8

I

§
v^y \—

A
n o

W

^S

| o

O

§

h 55

St:
5

126

jj

s: H

(0
Ö -H

d) bo '3
60 P< c v

•H 0)
-P X
m X

•H o
X o
0) ,Q

CO 0)
P..G

•H +3
X!
w «o
ß C
o to

-p
33

XI
CD

01 (H

i

vnm

(UfFPHUP "UlLT-IN-MtURlSTlCS
1 4IU

1((SM k'H M • t • •! • (INCP) ^ • • • •)
* m • • • m \ • (IMf'Pl 1 AP • * m » \

(CCC
• ■ ■ ■ ■ •! ■ t|1wr| U*" ■ ■ • •(

PI ,^ • • • •) • (INCPI «;••••)
((tC •••••!)• (1NCP) U*P • • t •)
((CC K? J» • • UR1 •) • (|NC^) • • « •'•)
((CC P9 H6 • • URl •) I (|NCP) »••••)
(<CL ■ «f • I OH? CS1) • (INCH) *••••)
((CC P3 H} • • URJ •) • (INQP) 4 • • • •)
((CC • • HÜ1 • 393 •) • (INCH) bU • • » *)
((CC P4 t<$ t • • •) • (INCH) 4 • • • •>
((CC H9 d7 • • • •) • (INLH) KI • • i •)
((CC • • • • t i) • (INCP; MM • • • •)
((PC • •>>>■ Pd? 0H4 •) • (INCP) «)••••)
((PC • 09 • Pd? OH? CS?> • (INCH) «••••)
((PC P6 b9 ÖOl PB3 0H6 •) • (INCH) rirt « . « •)
((PC Pb i? dU^ • » ■) • (INCH) bb • • • •)
((PC i bd • Pb4 0R6 •) J • a • • • •)
((PC • d9 ■ • t •) • (1NCP» •••••!
((PC •) • (|NCP; SH • • . •)
UNO • • 0 • 0R4 •) ^ • ? • • • •)
((NC • • t • OR? CSJ) c • n • • • »>
((NC
((NC H6 ri4 öüj i ORÖ •) • (]ICP) dBL «tit)
((NC • ü1» • Pbl « t) • (INCP) H • • • •)
((NC P7 r4V • • 1 .<) • (INCH) H • • • •)
((NC P? M • t • tj • (IMCH) >>H • • • •)
MNC P6 >4J • ■ UR6 «i • (INCH) !>«••••)
(,(NC • «••i«)(1* '4 ••••))

AMU (CH»*n.RH (UlfKERtxCL H OH) Kid) (.»01 (UESSH H K19)))
(FC ANU (GHI.ATLRP (OlUEHLJCt H UH) K\i) (UrbSH H K19))
CCC km

(LtSSP K^H (DirrtHLNLt N OM))
INWf (UREATrHP (UUrtHfiLE H OH) Kl»)))

(PC ANU
(LtssP K21 (UlfFtHt-NC» H UH))
(NUT (URtAUHP (DUFLHt-Ct H OH) K2^)))

(NC NOT (GHlATtRP (UIFKHLNCt H OH) K?l)))
((PJ IjRt'.ItHH P K\) (P? r.HLATLRH P K?)

(P.5 CHtATLRP P K4)
(P4 BMAtkNI* P K6>
(P5 LtbSH P K«)
(Po UtSSH P K14)
(P7 LtSSP P M?)
(Pd CHLATtRP P 1?»)
(P9 ÜHtAltHP P 17)
(Pik) LtSSP P 15))

((HI LtbJP u KH) (l<^ LtSSP M KliO)
{tii LI SSH d K1J)
(d4 LtSSP d Kl!>)

(Hb (.RtATtHH y 11)
(bV ANJ (LLSSP « 5) (NUT (tOU*L d 3))))

< (HO G^tATtMP dfO K".) (I.u/ GHtAftRP bFU KID
(riOJ G^KAURP UFU Kl«))

((Pai BNCATiW PH K17) (Pbü '.fitATtHH PH D
(Pb-J OrttAltRP P8 3)
(Ph4 LtSSP Pb HI

((Ort] Oh ((-Ü H i) KQ * 1)) (UH<: LOUAL M 2)
(UH3 LOUAL H «D
(UH4 LilUAL H 4)
(UKt> LOUAL H 1)
(UHb NOT (EUUAL R •!>)
(o-i/ LOUAL R 3))

((CSl GHfAftHP OCS KJ) (CS^ GKEATtRP OCS K7)
(CS3 GNLATLRP OCS K12)>))

VALUD

Figure 5-3. Built-in heuristics for draw poker.

127

I

r.
:

1

1
1
:

::

.:

;:

:

1

:;

1
1
1

:

I
I
I

A Proficiency Test for Poker

In ths next sectita it will be cliown how trainiug can produce

useful and effective sets of heurj sties. Iü order to test the poker

playing abilitv of the programs which axe trained, some type of proficiency-

test is needed. Such a test will now be described and applied to the

poker program as it uses the heuristics (28 action rules and 4l bf rules)

given in Figure 5-3 (henceforth referred to as the "built-in" heuristics).

Applying this test to the program containing the built-in heuristics will

provide a base against which the heuristics learned through training can

be compared, in terms of game-playing effectiveness.

TEST PROCEDURE. The proficiency test consists of the following procedure.

The program plays 5 games against a human opponent, each consisting of

5 hands. The cards are dealt from a standard deck of 52 cards which

is first shuffled in a random manner. When the deck is depleat^d the

cards are shuffled and the same deck is used again. Thus a total of

50 hands are dealt during the 5 games, 25 to the program and a corres-

ponding 25 to the human opponent, (in this context a hand is taken to

mean the 5 cards dealt plus 3 additional cards which may be fiven to

the player if he decides to replace cards from his original fi"e.)

After the 5 games are played a second series of 5 games is played,

again using the same hands that were used in the first series. However,

in the second series of games the program receives the 25 hands held by

the opponent in the first series, and the opponent receives the 25

corresponding hands held by the program in the first series.

128

s

0
0
Q

Program Opponent Program Opponent B
Series Game Hand Hand Series Game Hand Hand

I. 1. a1 II. 1. u' u D
b' V
c' w

0 d' X
e1 y

2. f 2. k 0 g1 i
h1 m
i1 n B y o

5. k1 .3. f a v g
m1 h

n n' i
o o1 i 8

k. P P' h. a
q q' b

Q r r* c
s s' d
t t' e

5- ■ u1 5. P D
V V1 «
w w1 r • •

X x' s
y y' t

Figure 5-^. Possible arrangements of hands for
the p/oflciency test for draw poker.

129 1
I

This procedure is illustrated in Figure 5-k. It is seen that in

series I the program receives hands a through y , and the opponent

hands a' through y' . In series II the situation is reversed; the

program receives a' through y' and the opponent a through y .

The only difference between series I and series II, other than the

reversal of hands, is that the games do not occur in the same order.

For example, in Figure l6, game 1 of series I occurs as the fourth game

of series II. The games of series I axe rearranged by a random process

to establish the game order for series II.

PLAYING ABILITY. The playing ability of the program is measured relative

to the opponent's playing ability as follows. The amount won by the

program in series I is compared to the amount won by the opponent in

series II for corresponding r-o-p's , and these results are displayed

in graphical form as illustrated below.

Cumulative
amount won
by each
player

: ^ difference

Number of rounds-of-play (r-o-p's) or hands

Figure 5-5.

Also calculated is the percentage difference between the total amount

won by the opponent and the total amount won by the program. Since

the same human oppouent is used in each proficiency test, the test

provides a means of comparing the game-playing effectiveness of different

sets of heuristics.

130

■

::

In order to reduce the likelihood that the opponent remembers

and uses information he is exposed to in series I as he plays the games

of series II, (l) a number of dummy hands chosen randomly are played

immediately before and after series I is played, and (2) a time elapse

of 2U hours is used to separate series I from series II.

TEST RESULTS FOR BUILT-IN HEURISTICS. The results obtained by applying

the proficiency test to the poker program containing the built-in

heuristics are shown in Figure 5-6. It is seen that the program won

roughly the same amount en, the human opponent, who is an experienced

player. In fact, the program won slightly more than the human opponent;

i.e., the opponent won % less than the amount won by the program. A

portion of the series of games which comprise this proficiency test is

presented in Appendix C.

:

-

i
131

I
0

01

1
o
u
v

5

t
*
>> o
c

•rH
tl

•H
CH
o
E
ft 01

g
A c

M -P
U H

•H "H

P*
CD £

!»

O) C
C -H

■H a
a« +>
+> 2
,Q O
o o
co S
-P «D

3 tO
CO o
(U ^
K P,

ITS

I

132

5.5 TRATNING THE POKER PROGRAM

The training procedures described in section 5*2 will now be

applied to the aforementioned system for playing draw poker. The

program to be trained initially contains one action rule of the form

(*, *t *f *f »^ *, •*) -» (random decision) ,

no bf rules, and one ff rule for each of the function variables. During

the course of training the program learns both the action rules and the

bf rules, in a manner exactly identical to the process described

earlier. In all examples discussed in this section training is

continued to the point where further training results in little or no

improvement in the program's ability to avoid making decisions which

are rated unacceptable by the trainer.

8
I
I
I
:;

::

;:

!

133

• ■

i
i

Training Using a Human Trainer

In the first type of training to be illustrated the program plays

an actual game against a human opponent and immediately after making

each move decision asks a human trainer if the move was satisfactory.

If the trainer indicates that the move was acceptable, the program

proceeds by making that move. If the trainer instead indicates that

a particular alternative move would have been better, the program

analyzes the training information supplied by the trainer, incorporates

it into the existing production rule list, and then proceeds by making

the trainer-recommended move. This correction procedure is called a

training trial. Thus a training trial occurs only when the program

makes an error, that is, a decision which is unacceptable to the trainer.

The heuristics learned by the program after being put through 58

training trials by a human trainer are given in Figure 5-7« These

heuristics will be referred to as the "manual-training" heur'sties.

During the training process 51 action rules were created, but 5 of these

were made redundant through generalization on other rules and were

automatically removed after training was completed, leaving the 26

action rul«ir, shown in Figure 5-7• A portion of the training trials

used to create the manual-training heuristics is presented in Appendix D.

TEST RESULTS FOR MANUAL TRAINING. In order to test the game-playing effec-

tiveness of the manual-training heuristics the proficiency test was applied

to the poker program containing these heuristics (see Appendix E for a

sample of the games played for this test) and the results plotted in

Figure 5-8. As the graph shows, the program won almost as much as the

opponent did, winning 6.8$ less than the amount won by the opponent.

15k

'"*- ^* ' ^ ^

(UCFTROP MANUAL-TRAININC-HEUHISTICS
(NIL

(<(H3 # B3 • • • •) • (INCP) 0 • • • •)
((H3 Pi •••••% • (INCP) SB • • • •)
((H3 P14 B2 B03 • • •) • (INCH) BBS • • • •)
((H3 • B2 • • • •) • (INCP) SB • • • •)
(CM PI A? B02 • • •) • (INCP) OÖ • • • •)
((H4 • B2 • • • •) • (INCP) SB • • • •)
((H4 Pi B8 • • • •) • (INCH) u • • • •)
((H4 • • • PB4 ••)i)«0«**»)
((H4 P3 34 • • • •) • (INCP) 0 • • • •)
((H4 PI • • • Rl •) • (INCH) SB • • • •)
((H2 • • B03 • Rl •) • (INCP) SB • • • •)
((H2 Pi • B04 • • •) • (INCP) BB • • • •)
((H2 Pi 02 • • • •) • (INCH) SB • • • •)
((H2 P8 H4 • • • •) • (INCH) B • • • e)
((H2 P2 HI • • • •) • (|NCH) | • • • •!
((H2 ••••••)• (INCP) MU • • • •)
((H3 P4 BS • • • t) • (INCH) MH • • • •)
((H4 •••*H4«)i4*kl**»«)
((Hl P4 •••••) • (INCP) Sli • • • •)
((H^ P1J •••••)• (INCH) MB • • • •)
((Hl M •••••} • (INCP) LAP • • • •)
((HI P9 B4 • • • •) • (INCH) t) • • • •)
((Hl Pik) B3 • • • •) • (INCP) ■••••!
((HI ••••••)• (INCP) LAP • • • •)
((H3 Vi.2 B9 • • • •) • (INCP) 0 • • • •)
{(H3 ••••••)• (INCP) S« • • • •)
((•••••••) (STARÜ) (bTAHl) (BETÜ) ••••>)

(((H4 LF.!>SP (OIFFeRLNCL H (LVAL1 (QUUTL UH))) 0)
(H3 AND

(NOT (LESSP (OlFFtHrNCE N (LVALl (UUUTE, OH))) 0))
(LtSSP (DIFFERENCE H (EVAL1 (QUOTt OH))) 12))

(H2 AND
(NUT (LESSP (U1FFLHENCE H (LVALl (UUUTE OH))) 12))
(LLSSP (ÜIFFERENCE H (EVAL1 (QUOTE OH))) 34))

(HI NOT (LLSSP (DIFFERLNCt H (LVALl (QUOTE OH))) 34)))
((PI LESSP P 3) (P2 GRLATLHP H 17)

(P3 GRLATtHP H 1)
(P4 LESSP H 13)
(P6 LESSP H J3)
(PS GREATENP P 41)
(P9 GRLATLHP H 1«3)
(Pia CHLAURH H 75)
(P12 GKEATtRH P 15)
(P13 LESS^ P ij3)
(P14 LESSP P 7))

((H9 NOT (EQUAL B d)) (B8 *NU (NUT (EUUAL P ^)) (LESSP B 4))
(bl URLATLHP B 4)
(rf2 LESSP b 1)
(b3 liHFATLHP B 3)
(b4 URtATLHH b 1)
(B5 LESSP B 2)
(B7 LESSP B 3))

((B02 CHEATERP BFQ 17) (BOi UHLATLRP BFO 0) (B04 LESSP BFO -5))
((PB4 LESSP PB 4))
((R4 EQUAL H 0) (Rl EQUAL H -U)
ML))

VALUE)

Figure 5-7. Manual-training heuristics for draw poker

155

:

:

:

:

i
i
J

i
J
j

i

:-:

i
:

Comparing this with the performance of the program containing the

built-in heuristics it appears that although both programs play roughly

as well as the human opponent the program with the built-in heuristics

is somewhat superior to the program with the manual-training heuristics.

The improvement in game-playing ability due to training can be

illustrated by comparing the results of the proficiency test applied

before training (see Appendix F) with the results of the test applied

after training. Figure 5-9 shows the results befo. training, where the

program contained no bf rules and only one action rule of the form

(*******).♦ (random decision). Before training, as the graph

shows, the program won 71$ less than the amount won by the opponent,

while after training it won only 6.£$ less. Thus the training process

effected a significant improvement in the playing ability of the program.

Training Using a Program Trainer

Training can also be implemented using a program rather than

a human as the trainer. This method of training will now be illustrated,

using the poker program containing the built-in heuristics as the trainer

and another version of the poker program containing only the random

decision action rule as the trainee. As before the trainee querius the

trainer after each move decision to find if the move is acceptable. If it

is not, the trainer supplies the trainee with the training information,

in exactly the same form as that supplied by the human trainer, and

the trainee incorporates it into it:; existing production rule list.

137

I
«

I

I
I
a

o
+> •

N
o P ü
CM

c
i
e
n
c
y

te

s
g
h
e
u
r
i
s
t
i

■o •H C
i> «M -H ||> s o c

i-t CD U -H
i-l ft (D

M (U 4^
■o X! •
c P V
5 E
X 60 O
CM C VH
0 |j8 ~ r-l
1 P< ÜJ

r-l tj «0 -P ^

es
ul

ts

o
f

o
n
t
a
i
n
i
n
g

LTX « o

•

LA

fa
&

138

,

The effectiveness of the modification and generalization techniques

used by the trainee as it learns how to play the game can be tested in

the following manner. After training is completed the trainee plays

a number of games against the human opponent and each decision made

by the trainee is compared to the decision that the trainer would have

made in that game situation. If the two programs rarely make tht same

decision it can be inferred that the modification techniques used by

the trainee are ineffectual. On the other hand, if the trainer and

trainee always make exactly the same decisions it can be inferred that

the modification techniques used are extremely effective. In any

case, the percentage of decisions which the two programs agree upon

can be used as a measure of the effectiveness of the modification

and generalization techniques.

A program trainer rather than a human trainer is used in obtainir^

this measurement because the program trainer by its very nature will

make exactly the same decisions during testing as it did during the

training process, whereas the human trainer cannot be relied upon to

be this consistent. It should be clear that any inconsistency of this

type exhibited by the trainer will decrease the percentage of decisions

which the trainer and trainee agree upon, thus confounding the measure-

ment of the effectiveness of the modification techniques.

The heuristics learned by the trainee after being put through

29 training trials by the program trainer are shown in Figure 5-10. These

heuristics will be referred to as the "automatic-training" heuristics.

During the training process 20 action rul-'S were created, but one of

these was made redundant through generalization on other rules and was

159

i

I
I
I

I

I

(UETPROP AUTOMAT IC-THA I NlNG-HEURUTlCS
(NIL
(((H3 • U3 • PUl Rl •)••»••• •!
((H3 PI d8 b04 • • •) • (INCP) bb • • • •)
((H3 P6 H4 b03 PB2 H2 •) • (INCP) BO • • • •)
{'.H3 P6 B10 B05 • • •) • (INCP) Hb • • • •)
((H3 • b7 • • • •) • (INCP) H • • • •)
((H3) • (INCP) Sb • • • •)
((H2 • • bOl * Rl •) • (INCP) Sb • • • •)
((H2 P4 ril * • R3 •) • (INCP) ■••••!
((H2 Pi H • • • •} • (INCH) K5 • • • •)
((H2 * • aüj » Rl •) • (INCP) Sb t t • •)
((H2 P8 06 • • Rl •) • (INCP) ••#••!
((H2 ••••••)• (INCP) Mb • • • •)
((HI P| 0| • • • •} • (INCH) | • • • •!
{(HI ••••••)• (INCP) LAP • • * •)
((H4 P2 82 • • • •) • (INCH) SB • • • •)
((H4 P6 HI4 • • • •) • (INCH) 0 t • • •)
<(H4 P7 U^ • • R2 •) • (INCP) Sb • • • •)
((H4 • b7 • PB3 » ») # (INCP) PI • • • •)
((H4 ••**•*) •••••••!
(() (STARO) (STAKI) (BETO) ••*•))

(((H4 LESSF (DIFFERENCE H (LVAL1 (OUUTL ÜH))) id)
(H3 ANÜ

(NUT (LESSP (DlFFEHENCt M (EVAL1 (UUüft UH)») 0))
(LtSbP (ÜIFFLRENCL H (EVALl (QUOTE OH))) 13))

(H2 ANU
(NUT (LF.SSP (DIFFERENCE H (EVAU1 (UUUTfc. UH))) 13))
(LLSSP (DIFFERENCE H (EVALl (QUOTE OH))) 34))

(HI NOT (LtSSP (DlFFtRENCk. H (tVALl (QUOTE Oh))) 34)))
({PI LESSP P 11) (P2 LESSP P 3)

(P3 GRLATERP P 63)
(P4 CHLATKRP P 43)
(P5 GREATtKP P 47)
(P6 LESSP P 5)
(P7 LESSP P 15)
(P8 GREATtHP P 13))

((B4 ANU (LESSP B t>) (NUT (EQUAL b Id))) (bl CHEATLRP B 2)
(ti2 LLSSP B 1)
(B3 CREATERP B 13)
(06 GKEATfcRP b 1)
(d7 GHEATERP b id)
(d8 LtSSP B 3)
(did L^SSP b 4)*

{(HOI CHEATLRP dFO 21) ',503 ÜKEATLRH bFO 10)
{B04 GHEATtRP BFU 27)
(R05 GHEATLRH BFU 46))

{(PB1 LESSP PÖ 2) (PB2 GHEATEKP PB 3) (PH3 CRtATERP Pb 11))
{(R3 UR (EQ R 0) (EQ H D) (H2 NUT (EQUAL R -D) (Rl EQUAL
ML))

VALUE)

H »iii

Figure 5-10. Automatic-training heuristics for draw poker.

iko

■

automatically removed after training was completed, leaving the 19

'.ction rules shown in Figure 5-10. A portion of the training trials

used to create the automatic-training heuristics is given in Appendix G.

TEST RESULTS FOR AUTOMATIC TRAINING. The percentage of decisions which

the trainer and the trainee agreed upon was measured, both before and after

training, for 50 consecutive game situations supplied from hands chosen

at random. The results are ^hown in Table 5-1 below.

::

£ AGREEMENT BEFORE TRAINING 2üjb

i AGREEMENT AFTER TRAINING 9$

Table 5-1« Percentage agreement between
trainer and trainee.

It is seen that training produces close to 10C^ agreement between the

trainee and the trainer, thus showing that '^he modification and

generalization techniques used are extremely effective.

The playing ability of the trainee, the poker program containing

the automatic-training heuristics, was tested by applying the proficiency

test to the program (ree Appendix H for a sample of the games played).

The results £-re plotted in Figure 5-11« A^; the graph shows, the program

won approximately the same amount a.c did the opponent. Comparing Figure

5-11 with Figure 5-6 it appears that the trainee plays almost as well as

the trainer, in spite of the fact that the trainee contains only 19

action rules, 9 less than the trainer contains.

Ikl

I

OJ

r >

Q O Q
I' o o
3 to\

C
u
m

u
la

ti
v
e

A
m

ov
m

t
W

on

by

E
ac

h
P

la
y
er

 2

OJ 4
-p ■
o o □ 4J .H

OJ

en
cy

te

s
t

ng

h

e
u

ri
st

r-l
1
r-l

•i-t -H
o c

•H -H
CM CT

E

1 th
e

p
ro

a
ti

c
-t

r
•s 00 1

C P
^ •H J
(U >> w

Ü i-4
t—* ii P- .

O. £

O S
M w;

S ♦»
W C
a» r.

ITN

•

i

I

ll|2

;:

U3

5A LEARNING POKER WITHOUT EXPLICIT TRAINING

The techniques described in section 5.3 which permit the program to

obtain the training information through normal game play will now be

applied to the problem of making the bet decision in draw poker. The

program which uses this implicit-training procedure initially contains

one action rule of the form (*, *, *, *, *, *, *) -♦ (random decision) ,

no bf rules, no ff rules, a set of logical statements or premises

about the game of poker and game playing in general, and a decision

matrix for poker. During the course of playing a series of games the

program learns both the action ruler: and the bf rules.

Axiomatizing the Game

In order to permit the program to hypothesize reasonable heuristic

rules without explicit training it is necessary to provide the program

with a means of determining or deducing reasonable decisions.

This can be accomplished by supplying the program with a set of logical

statements based on

(]) the rules of the game,

(2) assertions (or "axioms") about the game,

(5) general propositions about techniques used in game playing.

Then, after the program makes a decision it can use these logical

statements, together with information concerning the subsequent decision

by the opponent and its effect on the game situation, to deduce what

the original decision should have been.

PROGRAM OPERATION. Specifically, the program operates as follows. During

a game the program subvector is saved each time a bet decision is made, and

:

this information is accumulated until the termination of the current

round-of-play. If the r-o-p was terminated by a "drop", the information

is not used; i.e., the program learns nothing. If the r-o-p was

terminated by a "call", thus exposing the opponent's hand, a program

subvector (and associated bet decision) is used, with the value of the

opponent's hand, to set the predicates in the logical statements. Once

these statements are so primed, the program is a^le to deduce what the

bet decision should have been in order to have maximized the program's

score. If the bet decision actually made by the program was not correct

(the one that would have maximized the program's score) a learning

trial takes place; i.e., the correct decision plus information from

the decision matrix is used by the program to modify the existing

production rule list as specified in section 5.5. This procedure

is carried out individually for each program subvector (and associated

I bet decision) accumulated after cards are replaced.

NON-EVALUATABLE ACTION RULES- A major problem encountered in using this

I learning technique is that all action rules which specify the action DROP

1 are non-evaluatable. This is true because when a drop is made the r-o-p

is terminated but the program is not permitted to see the opponent's

hand. Without this information the logical statements cannot be primed,

consequently there is no way to determine whether or not the decision to

drop was a sound one. This becomes a problem when a bad or ineffectual

action rule leading to drop is hypothesized by the system, because it

is non-evaluatable and thus cpnnot be modified or removed.

The problem of the non-evaluatable action rule is solved in the

following way. If during the learning trials the symbolic subvector

Ihk

^

catches on a non-evaluatable action rule the decision specified by

the rule is not made, instead an evaluatable one (in this case a CALL)

is made. Then during the evaluation process the non-evaluatable

decision (the drop) is compared to the decision deduced using the

logical statements, and if the two decisions differ the existing

production list is modified. After learning is completed the

substitution of evaluatable decisions for non-evaluatable ones is

discontinued.

LOGICAL STATEMENTS- The logical statements used by the program are shown

in Appendix I, Part I. The poker "axioms" included therein are statements

which can be deduced by a human strictly from the rules of the game and an

elementary knowledge of casual laws. It is reasonable to give these

statements to the program since a human about to play the game for the

first time would have this information readily available, even though

he knew nothing of the decision strategy to use for the game.

The logical statements used by the program have the form P 3 Q ,

meaning that if P is true then Q is also true. The expressions P ana

Q consist of predicates and the logrca] connectives A and V . The

arguments of a predicate may be either constants, as in add(pot,yourscore)

or variables, as in add(x,z) , and these variables may take the value

of any constant as long as the assignment is concistent within a logical

statement.

DEDUCTION PROCESS. To illustrate how the program can use these logical

statements to deduce the best decision; i.e., the decision that would have

maximized its score, consider the following. First, the state vector

U5

I
1

I
1

I
I
I
I

I
I
;

i

associated with one of the program's bet decisions and the value of the

opponent's hand are used to set certain predicates in the logical

statements. Then the program takes the expression maximize(yourscore)

and tries to make it true. To accomplish this the program searches the

right sides of the implication statements P D Q looking for a Q which

matches maximize (yourscore) or can be made to match it by substituting

constants for free variables. After such a Q is found the program applies

the same technique to the problem of making the left side or P of the

P D Q statement true by matching P or parts of P against the right

sides of the implication statements. This process continues until

all decisions which make maximize(yourscore) true are found. An

example of this deduction procedure is presented in Appendix I, Part III.

In some situations more than one type of action by the program will

make maximize(yourscore) true. When this is the case the program

chooses one of these actions as follows. The left side of general

axiom 2 has the form a V b V c . If expression a can be made true then

an action is picked at random from the set of actions which makes a

true. If a cannot be made true but b can, then an action is picked

at random from the set which makes b true. If neither a nor b can

be made true then an action is picked at random from the set of actions

which makes c true.

The Decision Matrix

As explained in section J.J a decision matrix is needed to provide

the program with the reasons why the subvector variables are relevant.

After the program logically deduces a decision and hypothesizes which

variables are relevant, it uses the decision matrix to determine why

Ikb

each of the variables hypothesized as relevant are in fact relevant.

The decision matrix used for draw poker is shown below. Each row

stands for a game decision and each column for a subvector variable.

VDHAND 10T LASTBET BLUFFO 1'OTBET OKI' oenu

DROP

'■AJJ.

LOW

LET
HIGH

"Category the
current value
of VDHAND
belongs In"

large large small small
"current
value of

ORP"
large i

"Catego-y the
current value
of VDHAND
t-longs In"

large large small lirge
"current
value of

OKP"
large

"Category the
current value
of VDHAND
belongi, in"

ümall small

program
hand : large
good

program
hand : small
poor

large
"current
value of

ORF"
Ikrge

"Category the
current value
of VDHAND
belongs in"

small

program
hand : large
good

program
hand : small
poor

program
hand : small
good

program
hand : large
poor

program
hand : small
good

program
hand : large
poor

"current
value of

CRP"

program
hand : small
good j

program |
hand : Urge
poor

Figure 5-12.

For example, if the program determines that the decision should have

been BET LOW and hypothesizes that VDHAND, POT, LASTBET, BLUFFO,

POTBET, ORP, and OSTYLE are relevant then it uses the decision matrix to

find that it should make the decision BET LOW because VDHAND falls

into a particular category, POT is small, LASTBET is small, BLUFFO is

large (if goodhand(you) = T) or small (if goodhand(you) = F) , POTBET

is large, ORP is a particular value, and OSTYLE is large.

IU7

::

—

-
«-

:

1

::

;

1
!

'

Learning Based on Implicit Training

The effectiveness of the implicit-training techniques used by the

learning program can be tested as follows. After learning is complete

the program plays a number of games against the opponent and each

decision made by the program is compared to the decision that would

have been deduced in that game situation using the axiom set. The

percentage of decisions agreed upon can be used as a measure of the

effectiveness of the hypothesis-formation and deduction techniques used

by the learning program.

The heuristics learned by the program after 57 training trials

are shown in Figure 5-13. These heuristics will be referred to %a

the "implicit-training" heuristics. During the training process 15

action rules were created, but one of these was made redundant through
I

generalization on other rules and was automatically removed after

learning was completed, leaving the Ik action rules shown in Figure 5-15-

A portion of the training trials used to create the implicit-training

heuristics is given in Appendix J.

Learning was terminated after 5? training trials since this was

the number cf trials needed to make the action rules general enough to

• catch the symbolic subvector the vast majority of the time. After 57 trials

they caught the symbolic subvector 95^ of the tiMi permitting the random

rule at the bottom of the action rule list co catch the subvector only

!$ of the time.

I
I
I
I
I

TEST RESULTS FOR IMPLICIT TRAINING. The percentage of decisions agreed

upon by the program and the axiom set was measured for 50 consecutive

148

(DEFPRÜP IMPLICIT-TRAINING-HEURI5TICS
(NIL
(((Hl • • • PB5 • CS5> • (INCH) bSS (DUMMY •)••#)
((M3 • bi • • • CSi») • (INCH) 0 (DUMMY •)••*)
((H4 P32 üb »034 PÜ27 • CS12) • (INÜP) düd (DUMMY •)#••)
((H4 P14 B12 ••••)••« (ÜUMMY •)•••)
((H3 P27 Ü22 • PR5 • •) • (INCP) SSS (DUMMY •)«••)
({H2 • Ul9 • PB5 • CS2) • (INUK) bSb (OUHHV •)«••)
((H4 • y22 ••••)• (INC^> SSb (DUMMY •)•••)
((H3 • d\2 «02 PB7 • CSD M • t (ÜUMMY •)•»•)
((H2 • bö • Püü • CSD • (INO') H (DUMMY •) • • •?
((Hl P22 ^4 ßO? Py4 • Cb6) • (INCP) Rb1) (ÜUMMY «)««•)
((Hl t b3 • • • CS?) • (INCP) 0 (UUMKY •)•••)
((H2 PXb • BÜ14 • Rl rS7) • UNUHJ bHd IDUHHV •)•*•)
((H3 P12 •••«!•)• (I.MUP) BHÜ (ÜUMMY •)•••)
((H2 P?^ Ü4 • PB17 • •) ■ H»lCHJ üliii (DUMMY •)•••)
((• •) (STAKO) (ÜTAKD (dtlU) ••*•))

(((H4 LF.SSP H J) (H^ ANÜ (NUT (LtbSP K 3)) (UESSP H 2^))
(H? AN') CNUT (ILSSP H ?0)) (LLSSP H ^2))
(Hl NOT (LLSSh' N 42)))

((Pl? LlvS$P P ?7) (P14 üHLATtHP P 5)
(Plb uESbP H 21)
(P20 UEbSH P 61)
(P22 LESSP P 31)
(P27 LFSSP P 46)
(P32 LFSSP P 23))

(013 GRLATFHP 0 4) (H4 ÜRtAUKP H D
{üb LCSSP ff 4)
(HR CRLATEWP U 7)
(Hl? r.WKATLKP b 0)
CB1« LLSSP H 14)
(Ü2? LLbSP H 6))

((HO? LLSSP bFü -b) (Ü014 LL'ibP HFO 6) (B031 ÜRLATLRP Bf'O -32))
((Pb4 LLSSP Pd 17) (PB5 GKLATl.HP PÖ 1)

(PU7 I.LSSP Pü 41)
(Pül7 LKSSP Pri ?D
(PB?7 CKtATt-KP Pb 6))

((Rl EO 1< 3))
((CS1 GHFATLRP üCS -1) (CS2 GWLATLRP OCS -2)

(CS1? UHLATtRP DCS -1)
(CS^ LLSbP DCS 1)
(CS/ LLbbP OCS 3)
(CS12 CRtAfEHP OCS -6))))

v',' i •-)

Figure 5-13. [«plicit-tpalning heuristics for draw poker.

1^9

:

:

i

:

game situations, both before and after the training trials. The results

are shown in Table 5-2 below.

f agreement before training

$ agreement after training

21$

Q2$

Table 5-2. Percentage agreement between
learning program and axiom set.

It is seen that the training trials produce an 82^ agreement between

the program and the axiom set, an increase of 58$ over the agreement

before training, thus showing that the implicit-training techniques

are effective in implementing learning. The percentage agreement

between the program and the axiom set (8^) was less than the

percentage agreement between the trainee and trainer (9^) described

in section 5«5'

The playing ability of the program containing the implicit-training

heuristics was tested by applying the proficiency test to the

program (see Appendix K for a sample of the games played). The results

are plotted in Figure 5-1^« As the graph indicates, the program won

1% less than did the experienced human opponent, implying that the

opponent is a slightly better player than the learning program.

150

:
:

i

•

■a

i

■o a
a) a;

tu
o
u

0

s^
01
M
o
a
i
.c

•
o w

■p a
•H

W W

+J h
3

>> (Ü
o A
a
Oj M

•H e
•H a
<« •. i
O CO

p. -p
I

0) -p

P O
•H

«) I-)
q P.

•H e
H

K A
CO P

CM >il
O «

•H ■ a
+> -H
. i a
3 P
to ^
(u o

, t

t) c
> Q •H 3t ^

« P o
H
S
(0

151

:

5-5 DISCUSSION OF RESULTS

The results obtained in sections 5'2, 5'iS and 5-^ are summarized

in Table 5-3' The first column of this table is a list of the various

sets of heuristics (action rules and associated bf rules) tested in

this chapter. The before-training heuristics consist of a single

action rule of the form (*, *, *, *,*,*>*)-* (random decision) and no

bf rules, whereas the other sets of heuristics consist of the action

and bf rules illustrated in Figures 5-3, 5-7, 5-10, and 5-13'

NUMBER OF TRAINING TRIALS. The second column of Table 5-3 contains the

number of training trials used to create the sets of heuristics listed

in the first column of the table. The built-in and before-training

heuristics were created by hand and thus required no training trials.

The manual-training and automatic-training heuristics were created using

the training procedure of section 5«2, and required 30 and 29 training

trials, respectively. Training was continued until the trainee, during

training, played one complete game of 5 hands without once making a

decision rated unacceotable by the trainer. The implicit-training

heuristics were created without the use of a trainer and required 57

training trials. Training was continued until the acquired action rules

were made general enough to catch the symbolic subvector, and thus gener-

ate a non-random decision, 9% of the time.

The number of training trials required by the explicit-training

procedures cannot be directly compared to the number of trials required

by the implicit-training procedure because (l) the same criterion was not

used in each case for determining when training trials should cease, and

152

s
p

d
m
0)

■p

I

I
d

a)

H

(U i
-p

d
cd

-P
d

e »H
0) 0)
d) d
E
I
■P
d
0) P
E
a» u c <

CO E
H

bD
d

•H

u
U
<U bD
-P d

< d

(S c
EH

w
H

OS
•rH
h

0) E-i E
o

I
V

<X>
o
d t« cd
a) ui cd 0)
h bo tu x:
<u d -d

cd

T3

cd

tu d
•H d

d d
0) -H
O
E
0)

+->
e d
3 a>
E d
bD O

04 O

-. (
o

0)

t/J

i
d
o

■H

o

O -H
o bfi d

h d d -H

f.o

d) cd

O

h
ti)
d

■H rH
d cd

•H -H
cd u

a EH

■p T)

a'

1 ■ ■
ON OO

1 1 i i
CM

1 «
+

i A
i

rH

rH
CM H

i 1 LTN H H 1

' 1 CO 0^
CM

It

i d
1 •'H

■
-P
"-1
•H
B m Be

fo
re

-
t
r
a
i
n
i
n
g

M
a
n
u
a
l
-

t
r
a
i
n
i
n
g

A
u
t
o
m
a
t
i
c
-

t
r
a
i
n
i
n
g

I
m
p
l
i
c
i
t
-

t
r
a
i
n
i
n
g

i

cd
EH

155

i

i

i

i

i

i

i

]

:

i

i

I

(2) the number of decisions which had to be learned was not a constant,

i.e., .ie explicit-training programs had to learn to associate 8 different

decisions with the game situations encountered, while the implicit-

training program had to do the same with only k different decisions.

Nevertheless, there is an indication that the implicit-training procedure

requires many more trials than does explicit training, since this was

the case even when the implicit-training program had only half as many

decisions to deal with as did the other programs.

Implicit training requires more trials because not only are training

generalization techniques being utilized but also generalization

techniques for determining variable relevancy. The important point,

however, is that only a modest number of trials is required by either

procedure to produce a program capable of playing a c mplex game, like

draw poker, with roughly the same level of skill as an experienced human

player.

NUMBER OF REDUNDANCIES- The third column of Table 5-3 contains the number

of action rules made redundant during training. It is seen that more

redundancies occurred during manual training than occurred during either

automatic training or implicit training. One explanation is that

the human trainer was less consistent during training than was the program

trainer or axjom set and this inconsistancy led to an increase in the

number of redundancies created. More important is the result that the

modification and generalization techniques employed form learning systems

which are quite stable and which accordingly create very few redundancies

during the acquisition process.

154

JL

NUMBER OF ACTION RULES- The fourth column of Table 5-3 contains the

number of action rules either created by training or put into the system

by hand. Note that although the trainee (the program containing the

automatic-training heuristics) contained 9 fewer action rules than did

its trainer (the program containing the built-in heuristics) it played

almost as well as the trainer. Here the training process acted like a

transformation procedure, changing a lengthy, thorough set of action

rules into a compact, efficient set, leaving out rules corresponding

to game situations seldom encountered in actual play.

The numoer of action rules created by the implicit-training process

is seen to be less than the number created by explicit training. This

difference is due simply to the fact that during implicit training the

program had only four decisions to associate with game situations, while

during the explicit training it had eight decisions. More generally

speaking, it is seen from column h that a surprisingly small number

of action rules (and associated bf rules) are needed to describe a

thorough and effective set of heuristics for the game of draw poker.

PROGRAM PROFICIENCY. The fifth column of Table 5-5 contains the percent

difference between the program's winnings and the opponent's winnings dur-

ing an application of the proficiency test, expressed as a percentage of

the amount won by the winning player. A plus percentage indicates that

the program was the winning player, a minus percentage that the opponent

was the winner. It is clear by comparing the difference in winnings

before and after training that both the explicit and the implicit training

procedures led to a significant increase in the playing ability of the

programs involved.

155

I
i
I

.

-

I

I
I

r

However, the increase in playing ability during implicit training

was not as great as the increase during explicit training. This

result is due, presumably, to the following factors: (l) the axiom

set, which provides a means for deducing "good" decisions, does not

provide the program with decisions which are as shrewd or perceptive as

those provided by a human trainer, (2) the program must use a complex

generalization process to determine variable relevancy during implicit

training, while it is given this information by the trainer during

explicit training, and (5) the program is permitted to learn to

make only half as many different decisions during implicit training

as it can learn to make during explicit training.

CONVERGENCE. The last two columns of Table 5-3 contain a measure of the

agreement obtained between (a) the trainer and trainee and (b) the axiom

set and the implicit-training program, both before and after training.

In each case the percentage is based on the number of identical

decisions made during 50 consecutive game situations. It is seen from

Table 5-5 that a high percentage of agreement or degree of convergence

was achieved for both case (a) and case (b) above.

However, the degree of convergence for case (b) is less than

that for case (a), probably because of the following aspect of the

implicit-training procedure. The axiom set is used, together with the

value of the opponent's hand, to logically deduce the decision that would

have maximized the prograr.'s score, and this is considered by the program

to be the decision it should have made during actual play. But during

actual play the decisions of the program are based on a set of action

rules which do not include the value of the opponent's hand (this

value is unknown at the time).

156

For example, the "trainer" (the program as it performs deductions

with the axiom set) may indicate that in game situation S action A

should be taken and that in game situation S' action A' should be

taken. If the only difference between S and S' is the value of the

opponent's hand then the two situations are identical when put into

action rule form. Thus it appears to the "trainee" (the program as

it uses the action rules to make a decision) that the "trainer" is

sometimes inconsistent, and as a result the percentage of agreement

between the two is reduced.

157

I
I
I
I
I
I
I

.

:

i

i
i

I
I
I
I

I
I
I
1

CHAPTER 6

CONCLUSIONS

6.1 ACHIEVEMENTS

In the preceeding chapters a number of ideas relative to the

problem of implementing machine learning of heuristics were presented

and investigated. The achievements resulting from this examination

Of the problem will now be briefly summarized.

First, a method of representing heuristics (as production rules)

was developed which facilitates dynamic manipulation of the heuristics

by the program embodying them. This representation technique permits

separation of the heuristics from the program proper, provides clear

Mentification of individual heuristics and indicates how they are

interrelated, makes the modification or replacement of heuristics a

trivial task, and makes it simple to use the heuristics to obtain a

decision from the system. Furthermore, a language for .^ecifying

heuristics was formulated which serves as a convenient intermediate

step In the process of translating informally stated heuristics into

production rules.

Second, procedures were developed which permit a problem-solving

program employing heuristics in production rule form to learn

to improve its performance by evaluating and modifying existing

heuristics and hypothesizing reasonable new ones, either during a

special training process or during normal program operation. These

1'•irnim'- pro^edurea an applicable in -ill 'asea where each of the

158

:

subvector variables, the program variables which directly influence or

are influenced by the program's decisions, can be considered to have

a range consisting of a set of integer values.

Third, the abovementioned representation and learning techniques

were reformulated in the light of existing stimulur-response theories

of learning, and five different S-R models of human heuristic learning

in problem-solving environments were constructed and examined in detail.

Experimental designs for testing these information processing models

were also proposed and discussed.

Finally, the feasibility of using the aforementioned representation

and learning techniques in a complex problem-solving situation was

demonstrated by applying these techniques to the problem of making

the bet decision in draw poker. This application, involving the

construction of a computer program, demonstrated that (a) a surprisingly

small number of production rules are needed to describe a set of heuristics

for draw poker which enables a computer program to play the game with

roughly the same level of skill as an experienced human player, (b)

the program, whether learning via the training process or learnin'?

during normal program operation, requires only a modest number of

acquisition trials to produce a thorough and effective set of heuristics

for draw poker, and (c) the modification and generalization techniques

which form the basis of the learning process lead '.o the creation of

learning systems which are highly non-redundant or stable and whose

decisions tend to converge to those supplied by the trainer during

training.

159

.:

.:

.

::

i

6.2 AREAS FOR FUTURE INVESTIGATION

The ideas presented in the previous chapters suggest a number of

areas which merit further investigation. These areas will now be

specified and briefly discussed.

Learning the Decision Matrix

The learning system described in Chapters 3 and 5 which learns

through actual game experience rather than explicit training must be

supplied with a decision matrix. This matrix, it will be recalled,

has a row corresponding to each decision the system can make and a

column corresponding to each subvector variable. Each entry E.. in

the matrix indicates why the variable j is relevant, if when

decision i is made the variable is in fact relevtnt. The next

logical step in the process of expanding the power of the learning

system is to eliminate the requirement that the system be supplied

with a decision matrix. This can be accomplished by initially pro-

viding the system with an empty decision matrix and then having it

learn through game experience what the entries in the matrix should be.

CHANGING LOGICAL OPERATORS. One approach to the problem of learning

the decision matrix entries will now be outlined. As mentioned in

Chaptnr 3 there are essentially two ways an action rule cgm be generalized

upon to catch the symbolic subvector (or program subvector).

l6o

I

(1) Training Method: the sets corresponding to the symbolic

values in the left part of the rule are enlarged by-

changing the numerical values in the predicates defining

the sets.

(2) Hypothesis-formation Method: some of the relevant sub-

vector variables (variables which have symbolic values

other than the value *) in the left part of the rule

are made irrelevant (are given the value *).

In order to implement the learning of the decision matrix entries a

third method of modifying an action rule to catch the symbolic sub-

vector is needed. This method is shown below.

(3) Decision-matrix Method: the logical operators in the predicates

defining the sets corresponding to the symbolic values in

the left part of the rule are changed, and each time a

logical operator is changed the corresponding entry in the

decision matrix is also changed in the same manner.

EXAMPLE. A simple illustration will serve to clarify this procedure.

Assume the subvector is (P, B), the action rule to be modified is

(PI, Bl) -> d where PI -* P, P> 15 and Bl -* B, E < b , the

progran' subvector is (7; 2), and the current decision matrix is as

shown below.

P B

> <

< >

Figure 6-1.

I

Ibl

■

1
:

I

I

1

I

I

f

Then the action rule can be modified to catch the program subvector

by changing the logical operator in the definition of PI from

> .to < . Thus the definition becomes PI -* P, P < 17 . The

numerical value in the definition is adjusted so that l6 is still

a member of the set defined by PI. The entry in the decision matrix

which corresponds to the logical operator just changed is the one

found by entering the matrix at row d, > column P . Consequently,

the decision matrix entry at this location is also changed and the

matrix takes the form shown below.

< <

< >

Figure 6-2.

I*' the decision matrix used by the learning system is initially empty

the system can be thought of as hypothesizing whether > or < should

be an entry at each location in the matrix and then later testing and

revising each hypothesis.

CREDIT ASSIGNMENT. The crucial problem involved in using this approach

to implement the decision matrix learning is the following. If method (l)

Ls not applicable for modifying the action rule to catch the symbolic

subvector, either method (2) or method (3) can be applied. The

problem is to devise a priority scheme that specifies which of these

two methods to use in any particular learning situation.

162

.

•

In a general sense, the problem is that of determining which of

two concurrent hypotheses is to blame when an error is detected, the

relevancy hypothesis or the decision-matrix hypothesis. This is

another example of the credit-assignment problem, an extremely

difficult and heretofore unsolved problem in artificial intelligence.

In this case, however, the priority scheme does not have to solve

the problem single-handedly by determining with perfect accuracy which

hypotheses are in error. It operates in conjunction with a learnit,?

system which is self-correcting, that is, which modifies or removes

poor action rules. Thus the priority scheme need only be accurate

enough to keep from overloading the self-correction mechanism, thereby

permitting the learning system to converge at a reasonable speed.

Learning the Function Definitions

Another way to expand the power of the learning system is to

require that it learn the function definitions. (They are ordinarily

supplied to the system.) The functions (ff rules), described in

Chapter 3> are defined by mathematical expressions composed of book-

keeping variables and function variables. Mathematical expressions

of this type are a very compact, efficient way to represent heuristics,

and for this very reason are quite difficult to manipulate or learn.

EXPANDING THF SUBVECTOR. Rather than trying to devise a system which

will learn the function definitions directly, the following approach

can be taken. Expand the subvector (the set of dynamic variables)

by including in it all the bookkeeping variables needed to define the

165

:,

i

J
I

functions. Then during the learning process described in Chapter 3

a number of action rules (and associated bf rules) will be learned

which are roughly equivalent to the original action rales containing

function definitions.

EXAMPLE. To see how a set of action rules can approximate a single

action rule and its associated function definitions consider the

following example. Assume that the subvector is (P, B) and the

function A is defined as A -♦ E + 3 , where E is a bookkeeping

variable with a range of 1 to 6. Then the action rule and function

definition

(PI, Bl) -♦(♦, A)
set 1

A ->E + 3

can be approximated by the set of production rules given below, in

which E is considered a subvector variable.

(PI, Bl, El) -»(*, 8, *)

(PI, Bl, E2) -> (*, 6, *) set 2

(PI, Bl, *) -> (*, »4, *)

El -»E, E > ^

E2 -* E, E > 2

The action advocated by set 2 is compared below to the action advocated

by set 1.

I6h

■

New va lue or p

1 Set 1 Set 2

1 h 1»

2 5 1*

3 6 6

k 7 6

s 8 B

6 " ß

.

It is clear that set 2 does approximate set 1. In general, the number

of ftCtiOD rules needed to approximate a function defin^ion depends

on the complexity of the function p.nd the range of the function

variables.

Other Areas of Interest

There are a number of areas remaining which, if properly

exploited, could lead to an increase in the power of the proposed

learning system. Two of these areas will now be briefly described.

IMPROVING THE AXIOM SET. One area which presents a challenge is the

axiom set and associattd QSduetion techniques used to supply the

system with good decisions. In Chapter 5 it was noted that the degree

of convergence exhibited by the learning system is reduced when the

axiom set is used in place of a trainer. The explanation given for

this was, in brief, that the axiom .set has a tendency to appear

inconsistent to the learning system, since in its deduction process

165

::

;:

■

i

I

it makes use of the value of the opponent's hand, a variable which the

learning system does not have available.

Since the value of the opponent's hand is essential to the axiom

system operation and cannot be given to the learning system (at the

time it makes a decision) an indirect approach to the problem is in

order. A profitable approach might be to use a more sophisticated

axiom set, one which nas not only the goal of maximizing the program's

score but also the goal of providing a decision which is reasonable

when the value of the opponent's hand is unknown. However, this

approach, in one sense, is more a restatement of the problem than a

bona fide solution. As the axiom set is made more sophisticated the

problem of finding a necessary and sufficient set of axioms becomes

increasingly difficult.

DEFINING THE TASK ENVIRONMENT. Another area which presents a challenge

is the problem of devising an effective way of defining the task

environment in which the learning system operates. The task environ-

ment can be considered to consist of the set S of all possible situations

which can occur and the set D of all possible decisions which can be

made. This environment is defined by (l) specifying the subvector

variables and their ranges, and (2) defining and partitioning the

decision set. For example, the set D used in Chapter 5 is shown

below.

166

Figure 6-5.

The dotted lines in Figure 6-3 indicate how the set was partitioned

into subsets.

During the learning process an ordered list of action rules

is acquired which el'fectivcly partitions set S into n subsets,

establishing a one-one correspondence between the subsets of S and

and the subsets of D . It should be clear that the manner in which

the subvector variables are chosen and defined (thus defining S)

and the way in which the decision set is partitioned both have a

profound influence on the prospective capabilities of the learning

system.

To illustrate, consider the task of partitioning the decision

set D . This set shoulJ ideally be partitioned to (a) maximize the

speed of convergence of the learning system, and (b) permit the

system to become proficient at the problem-solving task being learned.

An approach to maximizing convergence speed is to generate trial par-

titionings. Each partitioning restructures or redefines the trainer's

decision space, and each newly-defined decision space can be used to

16?

l
\

I
i
I
I
I
I
1
I
I

:

:

■

estimate the resulting speed of convergence of the system. The size

of this estimate can be used as one of the criteria for determining

a good partitioning of D . Another criterion can be the number of

subsets D is partitioned into, where the assumption Is that potential

proficiency increases with the number of subsets used.

The speed of convergence can be estimated by sampling the decision

space of the trainer to determine the approximate number ans size of

decision clusters in the space. Since (l) the number of action rules

needed to describe the space is roughly equal to the number of clusters

in the space, and (2) the optimal generalization constant K is very

nearly equal to the average cluster width, this sampling provides an

estimate of the speed of convergence of the learning system.

•

168

^

b

BLANK PASE

BIBLIOGRAPHY

Anonymous, 1^67. Heuristic programs and algorithms, SICART
Newlsetter, November, pp. 10-25»

Baumann, R., Feliciano, M., Bauer, F., and Samelson, K- 196^.
Introduction to ALGOL, Prentice .iall. Inc., Englewood Cliffs,
N. J.

Bernstein, A., and Roberts, M. 1958. Computer vs. chess player.
Scientific American, Jund, v. 198, pp. yS-105,

Black, F. 1964. A deductive question answering system. Doctoral
dissertation, Harvard University, Cambridge, Mass.

Bower, G. H. 1966. Mathematical learning theory. Theories of
Learning, Hilgard, E. R., and Bower, G. H., Chapter 11,
Appleton-Century-Crofts, New York.

Bruner, J. W., Goodnow, J. J., and Austin, G. A. 1956. A Study
of Tninking, Wiley, New York.

Bush, R. R., and Mosteller, F. 1955« Stochastic Models for
Learning, Wiley, New York.

Came, E. B. 1965. Artificial Intelligence Techniques, Spartan
Books, Inc., Washington, D. C

Chomsky, N. 1959« On certain formal properties of grammars.
Information and Control, v. 2 pp. 137-167.

Davis, M., and Putnam, H. i960. A computing procedure for
quantification theory. ACM Journal v. 7* no. 2, pp. 201-215.

Ekman, T., and Froberg, C. 1965. Introduction to ALGOL Programming,
Studentlitteratur, Lund, Sweden.

Estes, W. K. 1959. The statistical approach to learning theory.
Psychology: A study of a Science, Vol. 2 S. Koch (ed.),
McGraw-Hill, New York.

Feigenbaum, E. A. 1959« An information processing theory of verbal
learning. Rand Corporation Paper P-I817, October, Santa Monica,
Calif.

169

170

.

Feigenbaum, E. A. I963. The simulation of verbal learning behavior.
Computers and Thought, Feigenbaum, E. A. and FeJ.dman, J. (eds.)
pp. 277-509.

I
Feigenbaum, E. A. and Feldraan, J. I965. Computers and Thought,

New Yord, McGraw-Hill. '

Feigenbaum, E. A., and Simon, H. A. 1964. An information processing
theory of some effects of similarity, familiarization, and
meaningfulness in verbal learning. Journal of Verbal Learning
and Verbal Behavior, v. 5, no. 5, October, pp. 385-5967 '

Feigenbaum, E. A. 1967. Information processing and memory. Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
v. h, pp. 57-51, University of California, Berkeley, Calif.

Feldman, J. 1965- Simulation of behavior in the binary choice
experiment. Computers and Thought, Feigenbaum, E. A., Feldman, J.
(eds.) McGraw-Hill, New York, pp. 529-5^6.

Feldman, J., Tonge, F., and Kanter, H. 1965. Empirical explorations
of a hypothesis-testing model of binary choice behavior.
Symposium on Simulation Models: Methodology and Applications to
the Behavioral Sciences, Hoggatt, A., and Balderston, F. (edsTJ
Cincinnati, Ohio, South-Western Publishing Co., pp. 55-100.

Friedberg, R. M. 195^« A learning machine, part I. IBM Journal,
June v. 5* pp. 282-287.

Friedberg, R. M., Dunham, B., and North, J. H. 1959« A learning
machine, part II. IBM Journal, June, v. 5, pp. 282-287. ___ _^—_^_

Gelernter, H. 1959« Realization of a geometry theroem-proving machine.
Proceedings of the International Conference on Information
Processing, Paris, UNESCO House, pp. 275-282.

I Gelernter, H., Hansen, J. R., and Loveland, D. W. i960. Empirical
explorations of the geometry theorem-proving machine. Proceedings
of the Western Joint Computer Conference, May i960, pp. ik^-lkf.

Green, B. F. 1963. Digital Computers in Research, McGraw-Hill, New York.

Hilgard, E. R., and Bower, G. H. 1966. Theories of Learning, Appleton-
Century-Crofts, New York.

Hunt, E. B. 1962. Concept Learning; An Information Processing Problem,
John Wiley & Sons, New York.

1

1

Hunt, E. B., Marin, J., and Stone, P. J. 1966. Experiments in
Induction, Academic Press, New York.

Ingerman, P. Z. 1966. A Syntax-Oriented Translator, Academic Press,
New York.

Irons, E. T. I96I. A syntax directed compiler for ALGOL 60. ACM
Communications, v. k, January, pp. 51-55•

Irons, E. T. 1965. The structure and use of the syntax directed
compiler. Annual Review in Automatic Programming, v. 3,
Goodman, R. (ed.) MacMillan Co., New York, pp. 207-228.

Irons, E. T. 196^. Structural connections in formal languages,
ACM Communications, v. 7> no« 2, February, pp. 67-71«

Kister, J., Stein, P., Ulam, S., Waiden, W., and Wells, M. 1957.
Experiments in chess, ACM Journal, April v. h, no. 2, pp. 17^-177.

Kochen, M. i960. Experimental study of hypothesis formation by

I

!

computer. IBM Report RC-29i+, International Business Machines
Corporation, Yorktown Heights, New York.

Kochen, M. I96I. An experimental program for the selection of
disjunctive hypotheses. Proceedings of the Western Joint
Computer Conference, v. 19, pp. 571-57^.

McCarthy, J. 1959« Programs with common sense. Proceedings of the
Symposium on Mechanisation of Thought Processes, National
Physical Laboratory, Teddington, England, Blake, D., and Uttley, A.
(eds.) pp. 75-84.

McCarthy, J. 1962. Towards a mathematical science of computation.
Proceedings ICIP.

McCarthy, J. 1962. LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachusetts.

McCarthy, J. 1965. Problems in the theory of computation. Proceedings
of the IFIP Congress, pp. 219-222.

Minsky, M. L. 1961. Steps toward artificial intelligence. Proceedings
of the IRE, v. 1+9» no. 1, January.

Newell, A., and Simon, H. A. 1956. The logic theory machine. IRE
Transactions on Information Theory, v. n-2, no. 5, pp. 61-79«

Newell, A., Sli-nf, J. C, and Simon, H. A. 1957a. Empirical explorations
of the logi^ theory machine. Proceedings of the Western Joint
Computer Conference (WJCC) pp. 218-259«

171

'

Newell, A., and Shaw, J. C. 1957b. Programming the logical theory-
machine. Proceedings of the Western Joint Computer Conference
(WJCC), pp. 230-2110.

Newell, A., Shaw, J. C, and Simon, H. A. 1958. Chess-playing programs
and the problem of complexity. IBM Journal of Research and
Development, v. 2, no. k, pp. 320-335.

Newell, A., Shaw, J. C, and Simon, H. A. 1959. Report on a general
problem-solving program. Rand Corporation Paper P-1584, Santa
Monica, California.

Reitman, W. R. 1965» Cognition and Thought, An Information Processing
Approach, Wiley, New York.

Robinson, G. A., Wos, L. T., and Carson, D. F. 1964. Some theorem-
proving strategies and their implementation. AMD Technical Memo
no. 72, Argonne National Laboratory.

172

:

Newell, A., and Simon, H. A. 1961. GPS, a program that simulates
human thought. Rand Corporation Paper P-2257> Santa Monica,
California.

Newell, A. 1962. Some problems of basic organization in problem-
solving programs. Rand Report RM-3283-PR, December, Santa
Monica, California, p. 8.

Neviell, A., and Ernst, G. 1965« The search for generality. Proceedings
of the IFIPS Congress 6^, v. 1, pp. 17-2^.

Newell, A. 1966. On the analysis of human problem solving protocols.
Proceedings International Symposium on Mathematical and Computational
Methods in the Social Sciences.

Newell, A. I967. Studies in problem solving: subject 3 on the crypt-
arithmetic task Donald + Gerald = Robert. Center for the Study
of Information Processing, Carnegie Institute of Technology,
Pittsburgh, Pa.

Rapoport, A. 1966. Two-Person Game Theory, University of Michigan j
Press, Ann Arbor, Michigan. ■

I

:

!

i

!

Robinson, J. A. 1965a. A machine-oriented logic based on the resolution
principle. ACM Journal, v. 12, January, pp. 23-^1.

Robinson, J. A. 1965b. Automatic deduction with hyper-resolution.
International Journal of Computer Mathematics, v. 1, July ,
PP. 227-234.

I

Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychol.
Rev., v. 65, pp. 386-1+08.

Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, Spartan Press, New York.

Samuel, A. L. 1959« Some studies in machine learning using the
game of checkers. IBM Journal, v. 5> no. 3, pp. 210-229.

Samuel, A. L. i960. Programming computers to play games. Advances
in Computers Vol. 1, Alt. F. L. (ed.), Academic Press, New York,
pp. 165-192.

Samuel, A. L. 1967« Some studies in machine learning using the game
of checkers, II - Recent Progress. IBM Journal, November, v. 11,
no. 6, pp. 6OI-617.

Selfridge, 0. G. 1959« Pandemonium: a paradigm for learning. Proc.
Symposium on Mechanisation of Thought Processes, H. M. Stationery
Office, Londor.

Shannon, C E. 1950. Programming a digital computer for playing
chess. Philosophy Magazine, March, v. ^1, pp. 356-375.

Simon, H. A. I96I. Experiments with a heuristic compiler. Rand
Paper, P-23I+9, Santa Monica, California.

Simon, H. A. I963. The heuristic compiler. Rand Corporation Report,
RM-3588-PR, Santa Monica, California.

Simon, H. A. and Kotovsky, K. I963. Human acquisition of concepts
for sequential patterns, Psychol. Rev, vol. 70> no. 6, pp. 55^-5^6.

Slagle, J. R. I96I. A computer program for solving problems in
freshman calculus. Doctorial Dissertation, MIT, Cambridge,
Massachusetts.

Slagle, J. R. 1963« Game trees, m & n minimaxing, and the m & n
alpha beta procedure. Lawrence Radiation Laboratory AI Report
no. 3> November, Livermore, California.

Slagle, J. R. 1967« Automatic theorem proving with renamable and
semantic resolution. ACM Journal, October, v. ih, no. U,
pp. 687-697.

Slagle, J. R., and Bursky, P. 1968. Experiments with a multipurpose,
theorem-proving heuristic program. ACM Journal, v. 15, no. 1,
PP. 85-99-

173

Stefferud, E. 1965. The logic theory machine: a model heuristic
program. Rand Corporation report RM-5751-CC, Santa Monica,
California.

Tonge, F. M. I96I. A Heuristic Program for Assembly Line Balancing,
Englewood Cliffs, N. J., Prentice-Hall.

Trakhtenbrot, B. A. 1965« Algorithms an.. Automatic Computing Machines,
D. C. Heath and Company, Boston.

Turing, A. M. 1950. Computing machinery and intelligence. Mind,
October, v. 59^ pp. ^-^O.

Uhr, L., and Vossler, C 1961. A pattern recognition program that
generates, evaluates, and adjusts its own operators. Teleological
mechanisms. Annals of the New York Academy of Science, v. 50,
no. 189, pp. 555-569.

Wang, H. 1^60a. Toward mechanical mathematics. IBM Journal of
Research and Development, v. 4, no. 1., pp. 2-22.

Wang, H. 1960b. Proving theorems by pattern recognition-I. ACM
Communications, v. 5, April i960, pp. 220-2Jk.

Wang, H. I96I. Proving theorems by pattern recognition-II. Bell
System Technical Journal, v. kO, Jan. 1961, pp. 1-^2.

Wirth, N., and Weber, H. 1966. EULER: a generalization of ALGOL,
and its formal definition: part I. ACM Communications, v. 9
no. 1, January, pp. 13-25.

Wirth, N., and Weber, H. 1966. EULER: a generalization of ALGOL,
and its formal definition: part II. ACM Communications, v. 9,
no. 2, February, pp. 39-99'

Wos, L., Carson, D., and Robinson, G. 1964. The unit preference
strategy in theorem proving. AFIPS Conference Proceedings, v. 26,
Spartan Books, Washington, D. C., pp. 615-621.

174

I
I

APPENDIX A

MODELS OF STRATEGY LEAENING

I. Generalization Technique for Growing Concept Trees

The tree-growing technique discussed in section h.2 is summarized

below. Thia technique is applied to the current unordered list of

S-A connections.

1. Group the situation descriptions (or S's) into sets determined by

the actions associated with them, i.e., all the S's connected

to action Ai form a set called Ai • The situation descriptions

comprising all these sets will be called the class of relevant

S's .

2. If all the S's in the class of relevant S's are members of one

set then grow a terminal node containing the name of that set.

5. If it is not the case that all the S's in the class of relevant

S's are members of one set then grow a test node using as the

test the attribute value determined by the procedure described below.

Eliminate from consideration any value which occurs in every S

of every set. This test node has the form:

I
I

^

t« If a test node was grown in step J, sort all the S's in the current

class of relevant S's down the node to eithex' the positive side or

the negative side. However, if an S has * as the value of the

test attribute T than sort it down both sides of the node. Now take

all S's which sorted down the positive branch and apply steps 1

through h again, using the^e S's as the current class of relevant

S's and growing the next node from this positive branch. Finally,

take all S's which sorted dowr. the negative branch and apply steps

1 through k again, using these S's as the current class of relevant

S's and growing the next node from this negative branch.

CHOOSING AxTRIBlfTE VALUES. The attribute value to use as a test at a

node (see step 3 above) is ascertained by applying the following procedure

to the sets which partition the current class of relevant S's :

(a) For each attribute value calculate the maximum

value of be , the value of av , and the value

of sv . For a particular set containing attri-

bute value v of attribute T ,

(number of times v. occurs as a value of T in the set)
be = ■ '■

(total number of S's in the .set)

The maximum value of be for attribute value v is Just the

largest value obtained when the above formula is applied to

every set. The quantities av and ;;v are defined as folluwc

for attribute value v of attribute T .

176

av =

sv =

(the number of sets where (the total number of *'s
* is used at least once used as the value of T ,
as the value of T) counting all sets)

(total number of S's in all the sets

(number of times v, occurs as a value of T in all sets
except the set used to determine the maximum value of be)

(total number of S's in all the sets

(b) Choose as the test at the node that attribute value which

maximizes the arithmetic expression ae , where ae = bc-av-sv .

If more than one value maximizes ae , one of them could be

selected at random. Instead, however, select one according

to some arbitrary deterministic criterion, such as h's before,

p's , p's before b's , and in case of a tie on letters, low

digits before high digits.

This procedure leads to the selection of tests which tend to minimize

the size of the tree being grown. This is because the procedure favors

tests on values which occur often in one set but seldom in all other

sets, a condition conducive to minimal tree generation.

EXAMPLE OF TREE GROWING. To clarify this tree-growing procedure to

above rules will be applied to the list of S-A connections shown below.

The attributes considered are H , P , and B .

hl,*,b2 -♦ Al

hl,p2,* -» Al

h2,p2,b2 -» A2

hl,pl,bl -» A5

177

h2,pl,b2 -» A3

h2,*,bl -♦ Ak

The S's are grouped into sets as indicated (step l);

Al A2 A5 Ah

hl,*,b2 h2,p2,b2 hl,pl,bl h2,*,bl

hl,p2,* h2,pl,b2 h3,*,*

Since the S's are not all members of one set, a terminal node is

not grown (step 2). Instead, a test noae is grown (step 5) using hi

as the test, since for hi the maximum be is -^ or 1 (from set

Al), av is -=— or 0 , and sv is — , and these values for be ,

av , and sv produce the largest ae . The value of ae for hi is

thus 1-0-^ or r; , while the value of ae for the other attribute

values is less. All the S's are sorted down the test node (step h)

to produce the following result:

Al

hl,*,b2

A3

hl,pl,bl

A2 A5

h2,p2,b2 h2,pl,b2

AU

h2,*,bl

h5,*,*

;

- -

Now steps 1 through h are applied to the S's that sorted down the

positive branch of the hi test. This leads to the growing of a new

2 1
test node. Since the value of ae is l-r-O or j for both pi and bl

178

:

12 1
and is ö"7"

0

or "Z for ^0^ P2 and b2 t116 test is made on

either pi or bl (in this case pi , since a priority of p's

before b's has been established). The attribute value hi is

not considered since it appears in every S of every set being

currently processed. Since pi is picked as the test at this node>

after the S's are sorted down the node the result is:

Al A5 Al

hl,*,b2 hl,pl,bl hl,*,b2

hl,p2,*

Now steps 1 through k are applied to the S's that sorted down

the positive branch of the pi test, and a test node based on

either bl or b2 must be grown. The attribute values hi and pi

are not considered since they appear in every S of every set being

currently processed. Value bl is picked as the test (since a

priority of low digits before high digits nas been established)

and the S's are sorted down the node, resulting in:

A3 ' v Al

hl,pl,bl hl,*,b2

179

Now steps 1 through k are applied to the S's that sorted down

the positive branch of the bl test, but since all the S's belong

to one set, a terminal node is grown (step 2) containing A5 .

Similarly, when steps 1 through 4 are applied to the negative branch

of the bl test a terminal node containing Al is grown. Then these

steps are applied to the negative branch of the pi test and another

terminal node containing Al is grown. Finally steps 1 through h

are applied to the negative branch of the hi test, and three more

test nodes plus four terminal nodes are grown. The complete tree is

shown below.

Figure A-l.

1Ö0

:

.

I
I
I
I

It is easily demonstrated that all the S's from the original S-A

connection list sort down the tree into terminal nodes corresponding

to the actions with which they were associated.

II. A Game-Playing Interpretation of the Environment Defined in

Figure U-J.

The game under consideration here is an extremely simplified

version of draw poker where H is the value of your hand, P the

amount of money in the pot, and B the amount last let by the opponent.

Attributes:

Range of Values:

Abstract Values:

H(hand) P(pot) I'(opponent' s last bet

1 - 50 1-60 1 - 10

hi(good)
h2(fair)
h3(poor)

pl(large)
p2(small)

blClarge)
b2(small)

Universe of Situations:

Heuristics: hand-good and bet-small -♦ bet high
hand-good and pot-small -♦ bet high
hand-fair and pot-small and bet-small -»
hand-good and pot-large and bet-large -♦
hand-fair and pot-large and bet-small -♦
hand-fair and bet-large -» drop
hand-poor -♦ drop

l8l

bet low
call
call

APPENDIX B

HEURISTICS FOR DRAW POKER

I. Definition of the Game

In the version of draw poker being considered a game consists

of a predetermined number of rounds-of-play between two players. Each

round-of-play (r-o-p) is comprised of the following sequence of events.

(1) Deal: Each player receives 5 cards (a hand) and antes
1 chip into the pot. The cards are dealt "face down",
that is, each player sees only his own hand.

(2) Betting Interval: Each player alternately has the option of
betting, calling, or dropping. A call terminates the
betting interval and a drop terminates the round-of-play.

(3) Replace: Each player may remove from 0 to 3 cards from
his hand and receive new cards to replace them.

(h) Betting Interval: Each player alternately has the option of
betting, calling, or dropping. As before, a call
terminates the betting interval and a drop terminates
the round-of-play.

(5) Showdown: Both players display their hands, and the one
with the highest ranking hand wins the money in
the pot.

Betting is defined as placing in the pot an amount of money

larger than the amount last placed there by the opposing player.

Thr term "bet" stands for the difference between the amount placed

in the pot and the amount previously placed there by the opponent.

(In the standard poker jargon this is usually called the raise rather

than the bet.) Only integer bets of from 1 to 20 are allowed.

A call is defined as placing in the pot an amount of money equal

to the amount last placed there by the opposing player. Thus a call

can be thought of as a bet of zero. A call always terminates the

132

1

betting interval and after cards have been replaced leads directly to

the showdown. However, a call may not be made until a bet has been

made in the current betting interval.

A drop is defined as withdrawing from the present round-of-play

relinquishing all money in the pot to the opposing player. No hands

are displayed when a player drops. All the standard poker hands from

one-of-a-kind to a royal flush are recognized, but no wild cards are

permitted.

II. Informal Description of the Bet Decision Heuristics

The heuristics used by the computer program in making the bet

decision in draw poker are listed below.

1. A player with a hand that is sure io win should bet
the largest amount possible without causing the opponent to drop.
However, if the pot is extremely large a call should be made.

2. A player with a 'land that has an excellent chance of winning
should bet the largest amount possible without causing the opponent
to drop. However, a call should be made after the pot becomes
quite large.

3. A player with a hand that has a good chance of winning should
bet a medium amount, unless the opponent is easily blnffad and
cards have not yet been replaced. In this case a smal' bet should
be made. However, if either the pot becomes quite large or both
the pot and the opponent's last bet are fairly large then a call
should be made. The call should be made sooner if the opponent
replaces fewer than 2 cards or has not yet replaced cards. Further-
more, a call should be made if the opponent is a conservative
player and replaces two cards.

k. A player with a hand that has a poor chance of winning should
call, unless the opponent has not yet bet. In this situation
a .-mall bet should be made. However, if cards have been replaced,
the opponent's last bet is large, and the pot-bet ratio is small
a drop should be made. Furthermore, if the pot and the opponent's
last bet are small, and the opponent is easily bluffed a bluff bet ..
(a large bet) should be made. But if the opponent is a conservative
player and replaces 0 or 2 cards and the pot-bet ratio is large,
a call should be made.

183

I
I
1
I
1
I
I
I
I
i

:

;

.

!

:

:

:

;

5- A player with a hand that has almost no chance of winning
should drop unless both the pot and the opponent's last bet are
very small. In this case a small bet should be made if the
opponent has not yet bet or a call made if tht opponent has bet
and the pot-bet ratio is large. However, if the opponent is very
easily bluffed and replaces 5 cards, and both the pot and the
opponent's last bet are small then a bluff bet (a fairly large
or a very large bet) should be made.

6. A hand is sure to win if its value is large, and is very much
larger than the expected value of the opponent's hand.

7« A hand has an excellent chance of winning if its value is not
large, but is very much larger than the expected value of the
opponent's hand.

8. A hand has a good chance of winning if its value is much larger
than the expected value of the opponent's hand.

9« A hand has a poor chance of winning if its value is only
ilightly larger than the expected value of the opponent's hand.

10. A hand has almost no chance of winning if its value is not
larger than the expected value of the opponent'r hand.

11. The expected value of the opponent's hand decreases as the average
bet made during an r-o-p times 'the number of bets made by
the opponent during an r-o-p' times 'the number of times the
opponent was caught bluffing during the r-o-p' increases.

12. The probability that the opponent is bluffing increases as
'the number of times the opponent was caught bluffing' increases
and decreases as 'a measure of conservative style by the opponent'
increases.

1^. A measure of conservative style by the opponent increases as
'a measure of the correlation between the opponent's hands and
bets' and 'the number of times the opponent has dropped' increase.

Ik, The probability of being able to bluff the opponent increases
as 'a measure of conservative style by the opponent' increases and
decreases as 'the expected value of the opponent's hand' increases.

15« The largest bet possible without causing the opponent to drop
increases as 'the probability of being able to bluff the opponent'
decreases.

l6. A small bet is ^ne ranging from 1 to 5 •

17« A medium bet is one ranging from 5 to 9 •

18. A fairly large bet is one ranging from 10 to 15 •

m

185

19« A large bet is one ranging from 8 to 1^ .

20. A very large bet is one ranging from lh to 20 .

III. LASH Description of the Bet Decision Heuristics

The heuristics used by the computer program in making the bet decision

in draw poker are presented below in LASH.

begin 'CALL' : POT ♦-P0T+(2xLASTBET);LASTBET «- (0),
'BETLAP' : POT ♦-P0T+(2xLASTBET) ;LASTBET *- (LAP),
'BETSB' : POT «-P0T+(2xLASTBET);LASTBET «-(SBJ,
'BETMB' : POT «-P0T+(2*LASTBET) ;LASTBET ♦- (MB),
'BETBB' : POT «-P0T+(2xLASTBET);MSTBET «- (BB),
'BETBBS' : POT ♦-P0T+(2xLASTBET) ;IASTBET <- (BBS),
'BETBBL' : POT «-P0T+(2xLASTBET) ;IASTBET «- (BBL),
'DROP' : VDHMD «- (O); LASTBET «- (o) .

if H = SW then
{i£ F > WTK B^O then 'CALL' else 'BETLAP') otherwise

if K H EC then
(if P > Kl A B^O then 'CALL' else 'BETLAP') otherwise

if H H GC then
(if P > K2 A B^O A (R=CVR=1) then 'CALL else

(i_f P > 15 V B > 7 A (R-0 v R»l) then 'CALL' else
(if BfO A R=2 A OCS > K5 then 'CALL' else

(if P > K^ A B^O A R < 0 then 'CALL' else
(if BFO > K5 A R < 0 then 'BETSB' else

(if P > K6 A B^O then 'CALL' else
(if P < 15 A B > 10 then 'CALL' else 'BETMB')))))))otherwise

if H 5 PC then
(if Bf0 A PB > 1 A R=0 then 'CALL' jlse

(if B^O A PB > 1 A R=2 A OCS > K7 then 'CALL' else
(if P < Kl^ A B < 5 A B^O A BFO > K5 A PB > 5 A R^-l then 'BETBB' else

(if P < K9 A B < K10 A BFO > Kll then 'BETBB' else
(if B>9APB<^A R^-l then 'DROP' else

(if B^Q then 'CALL' else 'BETSB')))))) otherwise

if H s NC then
(if R=0 then 'DROP' else

(if R=2 A OCS > K12 then 'DROP' else
(if P < 15 A B < 5 A B^O A BFO > K5 A R=5 then 'BETBBS' else

(if P < Kl4 A B < K15 A BFO > Kl6 A K^-l then 'BETBBL' else
(if B^O A PB > Kl? then 'CALL' else

(if P < K32 A B < 5 A B^O then 'CALL' else
(if P > K32 A B < KIJ then 'BETSB' else

(if P < K14 A B v K15 A R^-l then 'BETSB' else 'DROP'))))))))

:

:

SW i_s an H such that (H-OH > Kl8 \ ti> K19),
EC j^s an H such that (H-OH > Kl8 , H < K19),
GC i_s an H such that (K20 < H-OH A H-OH < Kl8),
PC j^s an H such that (K21 < H-OH A H-OH < K20),
NC £s an H such that (H-OH < K2l),
OH equals K22-(K25 X OAVGBET x OTBET X OB),
OB equals {Y2h x OBLUFFS) - (K25 X CS),
CS equals (K26 X OCORREL) + (K27 x OD),
BO equals (K28 X CS) - (K2y X OH),
.LAP equals K50 - (K51 x BO),
SB equals random (1,5),
MB equals random (3,9),
BBo equals random (10,15),
BB equals random (8,]^),
BBL equals random (lU,20),
H is a VDHAHD such that (VDHAOT) > 0),
P i£ a POT such that (POT > -l),
B ijs a LASTBET such that (LASTBET) > 0 A LASTBET < 2l),
BFO J_s a BLUFFO such that (BLUFFO > 0 V BLUFFO < 0),
PB ^is a POTBET such that (POTBET >~0),
R J_s an ORP such that (ORP > -1 A ORP < M,
OCS is an OSTYLE such that (OSTYLE < 0 V OSTYLE < O) end.

It is clear that a one-to-one correspondence exists between

the first five informally stated heuristics in Appendix B, Part II (the

heuristic rules) and the five major if-statements in the above routine.

Similarly, there is one definition above for each of the other informally

stated heuristics (the heuristic definitions). The last seven definitions

given above (one for each subvector variable) do not correspond to any

of the informal heuristics. Instead, they correspond somewhat to those

game rules which define the allowable values for the game variables.

IV. Production Rule Description of the Bet Decision Heuristics

The production rules which correspond to the LASH routine shown in

Appendix B, Part III are presented below. The first 62 rules are

separated into five groups, each group having been generated from one

of the five major LASH if-statenents. The; remaining rules correspond,

in a one-to-one fashion, to the definitions set forth in the lASh routine.

186

1. a. (SW P8 B5 * * * *) -» (* P0T+(2xLASTBET) 0 * * * *)
b. (SW ***** *) -» (* P0r+(2XLASTBET) LAP * * * *)

2. a. (EC PI B5 * * * *) ■» (* P0T+(2xLASTBET) 0 * * * *)
b. PI -» P.. P > Kl
c. B5 -» B, B > 0
d. (EC ***** *) ■• (* P0T+(2xLASTBET) LAP * * * *)

j.. a. (GC P2 B5 * * OKI *) -► (* P0T+(2XLASTBET) 0 * * * *)
b. P2 -» P, P > K2
c. OR1 -» R, R = 0 or 1
d. (GC P9 B6 * * OR1 *) -» (* P0T+(2XLASTBET) 0 * * * *)
e. P9 -» P, P > 15
f. B6 -♦ B, B > 7
g. (GC * B5 * * 0R2 CS1) •» (* P0T+(2XLASTBET) 0 * * * *)
h. 0R2 -» R, R ^ 2
i. CS1 -» OCS, OCS > K5
,i. (GC P5 B5 * * OR3 *) -» (* P0T+(2XL'\STBET) 0 * * * *)
k. P3 -4 I , F > K4
1. OR3 ■» R, R = -1
m. (GC * * BOl * OR5) -♦ (* P0T+(2xLASTBET) SB * * * *)
n. BOl -» BFO, BFO > K5
0. (GC P^ B5 * * * *) -» (* P0T+(2XLASTBET) 0 * * * *)
p. I'k -» P, P > K6
q. (GC P9 B7 * * * *) -» (* F0T+(2XLASTBET) 0 * * * *)
r. B7 -» B, B > 10
s. (GC ***** *) ■» (* P0T+(2xLAGTBET) MB * * * *)

h. a. (PC * B5 * PB2 QRl* *) -♦ (* P0T+(2XLASTBET) 0 ♦ * » *)
b. PB2 -» PB, PB > 1
c 0R4 •* R, R = 0
d. (PC * B5 * PB2 0R2 CS2) •* (* P0T+(2xLASTBET) 0 » * * ♦)
e. CS2 ~» OCS, OCS > K7
f. (PC P6 B9 BOl PB5 0R6 *) -» (* P0T+(2xLASTBET) BB * * * *)
g. p6 ■♦ P, P < Klk
h. B9 -» B, B<5ABj/0
i. PB5 -» IB, PB > 3
J. 0R6 -► R, R / -i
k. (PC P5 B2 B02 * * *) -» (* P0T+(2XLASTBET) BB * * * *)
1. P5 ■♦ P, P < K9
m. B2 -» B, B < K10
n. B02 -♦ BFO, BFO > Kll
o. (PC * B8 * PB^ 0R6 *) -♦ (0 * 0 * * * *)
p. B8 -► B, B > 9
q. PBl+ ■♦ PB, PB < 2
r. (PC * B5 * * * *) -> (* P0T+(2XLASTBET) 0 * * -^ *)
G. (PC ***** *) -» (* P0T+(2XLASTBET) SB * * * *)

5. a. (NC * * * * OR^ *) .»(0*0*** *)
b. (NC * * * * 0R2 C'S3) -♦ (0 * 0 * * * *)
c. CS5 -» OCS, OCS > K12
d. (NC P10 B9 BOl * 0R7 *) -» (* P0T+(2xLASTBET) BBS * * * *)

187

il

call :

bet

call :
bf
bf

bet .

call
bf
bf D

call
bf
bf .

call
bf
bf :

call
bf
bf

bet :
bf

call
bf :

call
bf

:
bet

call
bf i bf

call
bf

■•

bet J
bf
bf
bf
bf ■

bet
bf
bf
bf

drop •
bf
bf

call
bet

drop
drop

bf
bet

i

e. P10 •¥?,?< I? bf
f. OR? ■♦ B, R = 3 bf
g. (NC P6 BU B03 * OR6 *) -» (* PCT+(2xLASTBET) BBL •****) bet
h. P6 -» P, P < KiU bf
i. It <* 1* • < K15 bf
J. B03 -» BFO, BFO > I'l6 bf
k. (NC * B5 PB1 * *) -» (* P0T+(2XLASTBET) 0 * * * *) call
1. PB1 -» PB, PB > Kl? bf
m. (NC P7 B9 * * * *) •• (* P0T+(2XLASTBET) 0 * * * *) call
n. P7 -» P, P < K32 bf
o. (NC P? B3 * * * *) -» (• P0T+(2XLASTBET) SB * * * *) bet
p. B3 -» B, B < K13 bf
q. (NC P6 B3 * * 0R6 *) -» (* P0T+(2XLASTBET) SB * * * *) bet
r. (NC ***** *) -» (0*0*»**) drop

6. SW -» H, H - OH > Kl8 and H > K19 bf

7« EC -» H, H - OH > Kl8 and H < K19 bf

8. GC -♦ H, K20 < H - OH < Kl8 bf

9« PC -» H, K21 < H - OH < K20 bf

10. NC -♦ H, H - OH < K21 bf

11. OH -» K22 - (K23 X OAVGBET X OTBET X OB) ff

12. OB -» (K24 X OBLUFFS) - (K25 X CS) ff

13- CS -♦ (K26 X OCORREL) + (K27 X OD) ff

li*. BO -» (K28 X CS) - (K29 X OH) ff

15- LAP -♦ K30 - (K51 X BO) ff

16. SB -» random(l,5) ff

17. MB -♦ random(3>9) ff

18. BBS -♦ random(lO,15) ff

ly. BB -♦ random(8,ll+) ff

20. BBL -♦ randora(U,20) ff

21. H -» VDHAND, VDHAND > 0 bf

22. P -♦ POT, POT > -1 bf

23. B -♦ LASTBET, 0 < LASTBET < 21 bf

24. BFO -» BLUFFO, BLUFFO < 0 V BLUFFO > 0 bf

188

i BLANK PAGE

^--

Wim

0
&

25. PB -» POTBET, PO'rBET > 0 bl'

Ze. R -» ORP, -1< ORP < 1+ W

V. Values of Constants Kl Through K32

The values of the constants used in defining th* production rules

representing the heuristics for draw poker are given below.

Kl = ^0 Kl? = ^
K2 = 22 Kl8 = 2?
K3 = 1 K19 = 376
Kif = 9 K20 = 10
K5 = 5 K21 = 0
K6 = 50 K22 = 6
K7 = 1 K25 = .05
K8 = 6 K24 = 1
K9 = 23 K25 = 2
K10 = 7 K26 = 1
Kll = 10 K27 = 2
K12 =1 K28 = 8

i

K15 ■ 1
Xlk = 21 KJO = 5
n.5 ■ ^ K3i = 1
Kl6 = 20 K52 = 8

189

E
:

:

:

1
K29 = 1 j

APPENDIX C
I

SAMPLE OF GAMES PLAYED DURING

PROFICIENCY TEST FOR BUILT-IN HEURISTICS

The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

PDP-6 timesharing system. This game is one of a fiv?-garae series usec"

to test the proficiency of the program. The left column on each pago

is the series I game of the test, while the right column on each page

is the corresponding series II game. The dialogue printed by the pro-

gram starts at the left margin of eacli column, while the dialogue typed

by the human opponent is indented five spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

spades, Dll a jack of diamonds, and Klk an ace of hearts.

Note that each hand dealt the human player in series I (left

column) is identical to the hard dealt the program in the corresponding

r-o-p in series II (right column), and vice versa. Thus the hands

held by the program in each r-o-p can be determined.

190

■ ■Mi

(REFEREE S>

YOUR HAND !S HS HI4 CI2 H4 D9

I BET I.
THE POT EQUALS 2.
YOUR BET ...

1

I CALL
I REF'.ACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ...

<HS H4 D9>

YOUR NEW CARDS ARE

I BET 3.
THE POT EQUALS 6.
YOUR BET ...

04 CI4 H7

I DROP
YOU WIN
MY SCORE IS -6.
YOUR SCORE IS 6.

YOUR HAND IS C4 HI I S7 SS S8
THE POT EQUALS 2.
YOUR BET ...

(REFEREE 5)

YOUR HAND IS 02 SI 2 D6 D8 C7

I BET 2.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WAT CARDS DO YOU WANT REPLACED ..•

(02 06 C7>

YOUR NEW CARDS ARE C6 C3 S4

I BET 7.
THE PCT EQUALS 6.
YOUR BET ...

DROP

I WIN
MY SCORE IS 3.
YOUR SCORE IS A MERE -ii

YOUR HAND 11 CI0 HI2 02 S10 S12
THE POT EQUALS 2.
YOUR BET ...

I DROP
YOU WIN
MY SCORE IS 2.
YOUR SCORE IS A MERE -2.

1

I
l
I
J
I
J
]

1
i

D
:

YOUR HAND IS 04 S3 D3 D7 D5

191

J
i
1

I
I

I BET 4.
THE POT EO.ALS 4.
YOUR BET ...

CALL

WHAT CARDS DO YOU WANT REPLACED ..<

{C4 S7 S5>

YOUR NEW CARDS ARE
I REPLACE I. CARD
THE POT EQUALS 12.
YOUR BET ...

I

SI3 CS H9

I BET 3.
THE POT E6UALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ...

(D4 D7 DS)

YOUR NEW CARDS ARE C12 09 C3

I BET 3.
THE POT EQUALS 8.
YOUR BET ...

I BET 8.
THE POT EQUALS 14.
YOUR BET ...

DROP

I WIN
MY SCORE IS I.
YOUR SCORE IS A MERE -I.

I CALL
MY HAND IS
YOU WIN
MY SCORE IS •If«
YOUR SCORE IS II

SI4 Sll HS C8 CM

YOUR HAND IS D10 C2 Sll S14 D8
YOUR HAND IS 09 H6 HI 4 H7 H8
THE POT EQUALS 2.
YOUR BET ...

I BET 2.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
MHAT CARDS DO YOU WANT REPLACED ...

(DIB 02 D8>

YOUR NEW CARDS ARE H5 08 Cll

I BET 3.
THE POT EQUALS 6.
YOUR BET ...

I BET 2.
THE POT EQUALS 8.
YOUR BET ...

CALL

WHAT CARDS 00 YOU WANT REPLACED

Off

YOUR NEW CARDS ARE H4
I REPLACE 3. CARDS
THE POT EQUALS 12.
YOUR BET ...

192

I BET 3«
THE POT EQUALS 22.
YOUR BET ...

I CALL
MY HAND IS CM DM S6 012 S.l
YOU WIN
NY SCORE IS -85.
YOUR SCORE IS 25.

! BET 3.
THE POT EQUALS 40.
YOUR BET •••

CALL

S3 03 CIS Ü9 C3 MY HAND IS
I WIN
MY SCORE IS 24.
YOUR SCORE IS A MERE -24.

YOUR HAND IS CM 32 06 014 C7
THE POT EQUALS S.
YOUR BET ...

YOUR HAND IS S3 CI3 H4 H9 CM

I BET 3.
mE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 0. CARDS
WHAT CARDS DO YOU WANT REPLACED ...

(S3 H4 H9)

YOUR NEW CARDS ARE S2 DM HI 4

I CALL
WHAT CARDS DO YOU WANT REPLACED ...

(S2 06 C7)

YOUR NEW CARDS ARE
I REPLACE 1. CARD
THE POT EQUALS 10.
YOUR BET ...

I BET 3.
THE POT EQUALS 20.
YOUR BET ...

S6 012 S4

I BET IS.
THE POT EQUALS 8.
YOUR BET ...

20

I DROP
YOU WIN
MY SCORE IS -47.
YOUR SCORE IS 47.
YOU WIN THE GAME

NIL

I
j

T

1
I

193

!

!

i

>

,

!

I BET 3.
THE POT EQUALS 30.
YOUR BET ...

CALL

MY HAND IS HI4 H9 H7 H6 H4
I WIN
MY SCORE IS 42.
YOUR SCORE IS A MERE -42.

YOUR HAND IS HI I 03 C8 C7 06

I BET I.
TOE POT EQUALS 2«
YOUR BET ...

CALL

I REPLACE 3. CARDS
WAT CARDS 00 YOU WANT REPLACED

(D3 07 DA)

YOUR NEW CARDS ARE 09 04 Cll

I BET 3.
THE POT EQUALS 4.
YOUR BET ...

I BET 3.
THE POT EQUALS 28.
YOUR BET ...

CALL

MY HAND IS CI4 CI3 S2 DI4 HI4
I WIN
MY SCORE IS 39.
YOUR SCORE IS A MERE -59.
I WIN THE SAME

NIL

19^

APPENDIX D

TRAINING TRIALS

FOR MANUAL-TRAINING HEURISTICS

The following program output is from the first 8 training trials

given the learning program by a human trainer via the Stanford PDP-6

timesharing system. The dialogue printed by the program starts at the

left margin, while the dialogue typed by the human trainer (who also

acts as the program's opponent) is indented 5 spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonas. Thus S8 is an eight of spades,

Dll a jack of diamonds, and Hl^ an ace of hearts.

Each time the program places a bet it first prints (l) the current

csnumber, i.e., the number of the action rule which was used in making

the bet decision, and (2) the hand it currently holds. The action

rules are considered to be numbered from top to bottom, starting with 1.

195

(REFEREE S)

YOUR HAND IS S9 02 H6 C9 FMS

(CSriUMBER 1.)
(03 H3 HI3 H7 H2)

t BET 3*
OK?

(BET SB BECAUSE YOUR HAND IS FAIR* AND THE POT IS SMALL)

(CSNUMBER I.)
(03 H3 H13 H7 H2)

I BET 1*
THE POT EQUALS 2.
YOUR BET ••«

(CSNUMBER 2*)
(03 H3 HI3 H7 H2)

I BET 3*
OK?

(CALL BECAUSE YOUR HAND IS FAIR* AND THE LASTBET IS LARGE* AND
ORP IS (EQUAL TO -l>>

(CSNUMBER 2.)
(03 H3 H13 H7 H2)

I CALL
I REPLACE 3* CARDS
WHAT CARDS DO YOU WANT REPLACED ...

(02 H6 DI3)

YOUR NEW CARDS ARE 05 06 SI0

196

WfUW,., i

(CSNUMBER 3«)
(C3 H3 SI 4 SI2 H4)

I BET |«
0K7

(BET SB BECAUSE YOUR HAND IS FAIR» AMD THE LASTBET IS SMALL)

(CSNUMBER 3.)
(C3 H3 SI 4 SI 2 H4)

I BET 1.
THE POT EQUALS 14*
YOUR BET •••

(CSNUMBER 4.)
(03 H3 SI4 S12 H4)

I CALL
OK?

(CALL BECAUSE YOUR HAND IS FAIR. THE POT IS LARGE* AND THE
LASTBET IS LARGE)

(CSNUMBER 4«)
(03 H3 S14 312 H4)

I CALL
MY HAND IS 03 H3 S14 SI2 H4
YOU WIN
MY SCORE IS -12*
YOUR SCORE IS 12»

YOUR HAND IS H8 D9 08 H9 014
THE POT EQUALS 2«
YOUR BET •••

197

BLANK PAGE

L
- --- - —

i

J

t«M

CCSNUMBER 5*)
(Hit C7 S6 C4 D3)

I CALL
OK?

(DROP BECAUSE YOUR HAND IS POOR* AND THE PBRATIO IS SMALL)

(CSNUMBER 5.)
(Hit 07 56 04 D3>

I DROP
YOU WIN
MY SCORE IS -13*
YOUR SCORE IS I?.

YOUR HAND IS Dl4 SB HI 4 D10 04

(CSNUMBER 6.)
<SI3 H12 011 DB S7)

I BET 15.
OK?

(BET SB BECAUSE YOUR HAND IS POOR« THE POT IS SMALL« AND
ORP IS (EQUAL TO -l>>

I BET I.
THE POT EQUALS 2*
YOUR REV ...

10

198

B
::

(CSNUMBER 6.)
(S13 HI2 Oil 08 S7>

i

I
m

I
I
I
I
I
I
I

(CSNUMBER 5«)
<S13 H12 Cll 08 S7)

I DROP
OK?

(OK)

(CSNÜM8ER 5.)
<S13 H12 Cll 08 S7)

1 DROP
YOU WIN
MY SCORE IS -15.
YOUR SCORE IS 15.

SHUFFLE

YOUR HAND IS H6 H3 S10 C13 S3
THE POT EQUALS 2.
YOUR BET ...

(CSNUMBER 6.)
(08 06 OS H4 03)

I BET 1.
OK?

(CALL BECAUSE YOUR HAND IS POOR* THE POT IS LARGE» AND THE
LASTE \LASTBET IS LARGE)

(CSNUMBER 6.)
(C8 06 05 H4 03)

199

u
B
E
:

:

i
i

(CSNUMBER 6.)
CC6 D5 H4 D3 S14)

a»

I CALL
OK? -y

I CALL
WHAT CARDS DO YOU WANT REPLACED •••

<H6 H8 S3)

YOUR NEW CARDS ARE D7 D10 38
I REPLACE 1* CARD
THE POT EQUALS 6.
YOUR BET ...

(DROP BECAUSE YOUR HAND IS POOR. AND THE PBRATIO IS SMALL,
AND THE LAST8ET IS LARGE)

(CSNUMBER 5.)
<C6 DS HA 03 S14)

I DROP
YOU WIN
MY SCORE IS -18.
YOUR SCORE IS 18.

i i

I
I
!

i

200

I
!

MMM

APPENDIX E

SAMPLE OF GAMES PLAYED DURING

PROFICIENCY TEST FOR MANUAL-TRAINING HEURISTICS

The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

PDP-6 timesharing system. This game is one of a five-game series used

to test the proficiency of the program. The left column on each page

is the series I game of the test, while the right column on each page

is the corresponding series II game. The dialogue printed by the

program starts at the left margin of each column, while the dialogue

typed by the human opponent is indented five spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

spades, Dll a jack of diamonds, and Hl^ an ace of hearts.

Note that each hand dealt the human player in series I (left

column) is identical to the hand dealt the program in the corresponding

r-o-p in series II (right column), and vice versa. Thus the hands

held by the program In each r-o-p can be determined.

201

(RCFCRCC 5)

YOUR HAND IS ST H« HI» 03 Sit

(REFEREE 5)

YOUR HAND IS S13S5D8H9S4

.:

:

I BET 8.
THE POT EQUALS 2.
YOUR BET ...

I

I CALL
I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ..

(S7 H6 03)

YOUR NEW CARDS ARE DM CIS SI I

I BET 8.
THE POT E6UALS 2.
YOUR BET ...

DROP

I WIN
HY SCORE IS 1.
YOUR SCORE iS A MERE -I.

YOUR HAND IS H2 H13 D6 S6 H3
THE POT EQUALS 2.
YOUR BET ...

I BET I.
THE POT EQUALS 8.
YOUR BET ...

I CALL
MY HAND IS
YOU WIN
MY SCORE IS -9.
YOUR SCORE IS 9.

SI3 H9 D9 04 02

I BET e.
THE POT EQUALS 8.
YOUR BET ...

CALL

WHAT CARDS DO YOU WANT REPLACED ...

<H2 K13 H3)

YOUR NEW CARDS ARE
I REPLACE 2. CARDS
THE POT EQUALS 12.
YOUR BET ...

C3 07 C2

YOUR HAND IS DM SI I H7 Cll C9
THE POT EQUALS 2.
YOUR BET ...

I BET 2.
THE POT EQUALS 8.
YOUR BET ...

CALL

I BET 10.
THE POT EQUALS 20.
YOUR BET ...

CALL

Dll Sll Cll SI2 CM MY HAND IS
I WIN
MY SCORE IS 21.
YOUR SCORE IS A MERE -21.

202

i

WHAT CARDS DO YOU WANT REPLACED

(H7 C9)

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POT EQUALS 12»
YOUR BET ...

I CALL
MY HAND IS
YOU WIN
MY SCORE IS -24.
YOUR SCORE IS 24.

SI2 C14

D6 S6 03 C7 C2

YOUR HAND IS C8 D3 H4 HI4 S9

I BET 4.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED

(C8 D3 H4)

YOUR NEW CARDS ARE HI 2 09 Hll

YOUR HAND IS S2 SI0 SI3 DS HI0

I BE'l 3.
THE POT EQUALS 10.
YOUR BET ...

I BET I I.
THE POT EOUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED

(S2 SI3 D5)

YOUR NEW CARDS ARE S3 010 C4

I BET 7.
THE POT EQUALS 28.
YOUR BET ...

CALL

MY HAND IS
I WIN
MY SCORE IS 42.
YOUR SCORE IS A MERE

SI0 HI0 S3 C10 04

•42.

I BET 4.
THE POT EQUALS 24.
YOUR BET ...

YOUR HAND IS S8 Hb H6 SI 4 DI3
THE POT EQUALS 2.
YOUR BET ...

I CALL
MY HAND IS
YOU WIN
MY SCORE IS -44.
YOUR SCORE IS 44.

HI 4 S9 HI2 D9 HI I
I BET 3.
THE PUT EQUALS 6.
YOUR BET ...

CALL

[
■ »

20$

1

YOUR HAND IS S7 012 S5 S4 C5
THE POT EflUALS 2.
YOUR BET ...

I DROP
YOU WIN
MY SCOKE IS -4S.
YOUR SCORE IS 45.

YOUR HAND IS Mil 38 S6 CB Dll

I BET II.
THE POT EOUALS 2.
YOUR BET ...

14

I DROP
YOU WIN
HY SCORE IS -S7.
YOUR SCORE IS S7.
YOU WIN THE GAME

NIL

WHAT CARDS DO YOU WANT REPLACED ...

(SB HS H«>

YOUR NEW CARDS ARE
I REPLACE 3* CARDS
THE POT EOUALS 12.
YOUR BET ...

CIS DI4 H9

55 CS 07 06 D2
I CALL
MY HAND IS
YOU WIN
MY SCORE IS 31.
YOUR SCORE IS A MERE -31.

YOUR HAND IS H7 H4 CI4 S2 06

I BET I.
THE POT EOUALS 2.
YOUR BET ...

CALL

I REPLACE I. CARD
WHAT CARDS DO YOU WANT REPLACED ...

(H4 S2 06)

YOUR NEW CARDS ARE HI 4 C4 HS

;:

::

I BET 9.
THE POT EOUALS 4.
YOUR BET ...

12

204

HI I Oil SB CB H9
I CALL
MY HAND IS
I WIN
MY SCORE IS S4.
YOUR SCORE IS A MERE -54.
I WIN THE GAME

NIL

:

i
i

!

l

APPENDIX F

SAMPLE OF GAMES PLAYED DURING

PROFICIENCY TEST FOR BEFORE-TRAINING HEURISTICS

The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

PDP-6 timesharing system. This game is one of a five-game series used

to test the proficiency of the program. The left column on each page

is the series I game of the test, while the right column on each page

is the corresponding series II game. The dialogue printed by the

program starts at the left margin of each column, while the dialogue

typed by the human opponent is indented five spaces.

The abbreviations u ed to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

spades, Dll a Jack of diamonds, and ttlk an ace of hearts.

Note that each hand dealt the human player in series I (left

column) is identical to the hand dealt the program in the corresponding

r-o-p series II (right column), and vice versa. Thus the hands

held by the progran. in each r-o-p can be determined.

20^

i

■•^

(RCrCKEC S) (REFEREE 5)

YOUR HAND IS DIB CIS 014 HI! SI 4 YOUR HAND IS SIS C* DI3 06 S4

I BET 5.
THE POT EQUALS 2.
YOUR BIT ...

I BET 8.
THE POT EQUALS 30.
YOUR BET ...

II

I BET 17.
THE POT EQUALS 68.
YOUR BET ...

80

I BET 19.
THE POT EQUALS 142.
YOUR BET ...

I REPLACE 3. CARDS
WHAT CARDS 00 YOU WANT REPLACED ..<

NONE

I BET IS.
THE POT EQUALS 180.
YOUR BET ...

CALL

MY HAND IS
YOU WIN
MY SCORE IS -IBS.
YOUR SCORE IS IBS.

013 SI2 D8 CI3 H4

206

I BET BB.
THE POT EQUALS 8.
YOUR BET ...

DROP

I WIN
MY SCORE IS I*
YOUR SCORE IS A MERE -I.

YOUR HAND IS 014 S3 07 Hit H6
THE POT EQUALS 8.
YOUR BET ...

I

I BET IS.
THE POT EQUALS 4.
YOUR BET ...

I WIN
NY SCORE IS 3.
YOUR SCORE IS A MERE -3.

YOUR HAND IS H7 09 Cll C6 S9

I BET 6.
THE POT EQUALS 8.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT C.«R»S DO YOU WANT REPLACED *.•

(H7 Cll C6)

YOUR NEW CARDS ARE C8 HS HS

:

o
D

Q

;:

—

i

i
i

mm

i rll

YOUR HAND IS DS H9 SI3 S5 S6
THE POT EQUALS 2.
YOUR BET ...

I BET e.
THE POT EQUALS 8.
YOUH BET ...

CALL

WHAT CARDS DO YOU WANT REPLACED ...

(H9 SI3 S6>

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POT EQUALS 12.
YOUR BET ...

II

I DROP
YOU WIN
MY SCORE IS -III.
YOUR SCORE IS III.

012 03 O

I BET 6.
THE POT EQUALS 14.
YOUR BET •••

HI3 HIB HI4 C8 04 MY HAND IS
YOU WIN
MY SCORE IS -10.
YOUR SCORE IS IB«

YOUR HAND IS CU H3 03 ST HIB
THE POT EQUALS 2.
YOUR BET ••*

I CALL
WAT CARDS DO YOU KANT REPLACED ...

CCIl ST HI0>

YOUR NEU CARDS ARE
I REPLACE I* CARD
THE POT EQUALS 8.
YOUR BET ...

CI8 CI4 04

YOUR HANJ IS 07 HI 3 S8 H3 H»?

I BET 2.
THE POT EQUALS 2.
Y -UR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ...

(C7 SB H3)

YOUR NEW CARDS ARE

I BET 4.
THE POT EQUALS I«.
YOUR BET ...

CALL

MY HAND IS HI I DIB HB OT HI8
YOU WIN
MY SCORE IS -88.
YOUR SCORE IS 88.

YOUR HAND IS H2 HIS CIS Sit SIS
HI 4 C8 04

I DROP
YOU WIN
MY SCORE IS -114.
YOUR SCORE IS 114.

I BET 6.
THE POT EQUALS 8.
YOUR BET ...

20?

I

YOUR HAND IS H8 Ott Db HI I 07
THE POT EQUALS 2.
YOUR BIT ... l DROp

YOU WIN
1 MY SCORE IS -89.

YOUR SCORE IS 29.
YOU WIN THE SAME

NIL

I BEi IB.
THE POT EQUALS A.
YOJR BET ...

DROP

I WIN
NY SCORE IS -lie.
YOUR SCORE IS I IB.

YOUR HAND IS S3 SB CI3 HS S3

I BET 3.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE I. CARD
WHAT CARDS DO YOU WANT REPLACED ...

(S3 SB HS)

YOUR NEW CARDS ARE SI 4 DIB CS

I DI?OP
YOU WIN
NY SCORE IS -It«.
YOUR SCORE IS II«.
YOU WIN THE OAHE

NIL

208

1

APPENDIX G

TRAINING TRIALS

FOR AUTOMATIC-TRAINING HEURISTICS

The following program output is from training trials 6 through 10

given the learning program by a program trainer via the Stanford PDP-6

timesharing system. The dialogue printed by the program being trained

and by the program trainer starts at the left margin, while the dialogue

typed by the human opponent is indented 5 spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spades,

Dll a jack of diamonds, and Hlk an ace of hearts.

Each time the program places a bet it first prints (l) the current

csnumber, i.e., the number of the action rule which was used in making

the bet decision, and (2) the hand it currently holds. The action

rules are considered to be numbered from top to bottom, starting with 1.

209

(REFEREE 5>

SHUFFLE

YOUR HAND IS Sie H3 HS SI4 H14

(CSNUMBER 2.)
(02 C2 Hli S9 04)

I BET 4.
OK?

(CSNUMBER 19.)
(D2 C2 HI I 59 04)

(OK)

(CSNUMBER 2.)
(02 C2 HI I S9 04)

I BET 2.
THE POT EQUALS 2.
YOUR BET ..«

(CSNUMBER I.)
(02 02 HI I S9 04)

I CALL
OK?

(CSNUMBER IB«)
(02 02 HI 1 S9 04)

(OK)

(CSNUMBER I.)
(02 02 HI I 59 04)

210

(CSNUM8ER I.)
(02 C2 Hll S9 D4>

I CALL
I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED

(SI0 H3 H5)

YOUR NEW CARDS ARE C7 CA C10

(CSNUMBER 2.)
(02 C2 D13 S5 SA)

I BET 3.
0K7

(CSNUMBER 19*)
(02 C2 DI3 SS S4)

(OK)

(CSNUMBER 2.)
(02 02 013 SS S4>

I BET 3.
THE POT EQUALS 8.
YOUR BET ...

B

(CSNUMBER I.)
(02 02 013 S5 SAt

1 CALL
OK?

(CSNUMBER 18.)
(02 C2 D13 S5 S4)

(OK)

(CSNUMBER 1.)
(D2 C2 013 S5 S4)

211

I CALL
MY EANO IS 02 C2 013 S5 S4
YOU WIN
MY SCORE IS -20.
YOUR SCORE IS 20.

YOUR HAND IS DI4 SI I H6 SI2 S13
IRE POT EQUALS 2.
YOUR BET ..»

(CSNUMBER S.)
(CI3 Cl1 08 03 S2)

I CALL
OK?

(CSNUMBER 28.)
(CI3 Cll 08 03 S2>

(DROP BECAUSE THE HAND IS POOR)

(CSNUMBER 5.)
(CI3 Cll 08 03 S2)

I DROP
YOU WIN
MY SCORE IS -21.
YOUR SCORE IS 21.

YOUR HAND I 012 06 H2 Oil 57

(CSNUMBER 3.)
(C12 HI2 H8 S6 S3)

I BET 7.
OK?

(CSNUMBER 12.)
(CI2 H12 H8 S6 S3)

212
i

I

(OK)

(CSNUMBER 3.>
(CI2 HI2 H8 S6 S31

1 BET 7.
THE POT EQUALS 2.
YOUR BET ...

DROP

I '/JIN
MY SCORE IS -20.
YOUR SCORE IS 20.

YOUR HAND IS 09 H7 H9 D10 HA
THE POT EQUALS 2.
YOUR BET ...

(CSNUMBER 3.)
(C8 S8 H10 07 06)

I BET 5.
OK?

(CSNUMBER J8.)
(C8 SB HI0 D7 06)

(CALL BECAUSE THE HAND IS FAIR THE LASTBET IS LARGE)

(CSNUMBER I.)
(C8 S8 H10 07 06)

I CALL
WHAT CARDS DO YOU WANT REPLACED ...

(H7 D10 H4)

YOUR NEW CARDS ARE D9 C14 C5
I REPLACE 3. CARDS

SHUFFLE
THE POT EQUALS 10.
YOUR BET ...

215

(CSNUMBER 1.)
<C8 S8 H13 D5 C3)

I CALL
OK?

(CSNUMBER 18«)
CC8 SB H13 D5 C3>

♦• .„>;

(OK)

(CSNUMBER 1.)
(C8 S8 H13 DS C3>

I CALL
MY HAND 12 C8 SB HIS OS C3
YOU WIN
MY SCORE IS -33.
YOUR SCORE IS 33.

YOUR HAND IS Hit S13 HS C]0 H6

(CSNUMBER 3.)
(C12 D12 Cll 35 HA)

I BET 7.
OK?

(CSNUMBER 9*>
(C12 012 Cll S5 H4>

(BET SB BECAUSE THE HAND IS GOOD THE BLUFFS IS LARGE THE ORP IS (EQUA
L TO - 1 . > >

(CSNUMBER 3.)
(C12 D12 Cll SS H4)

CALL

21^

.:

I

4

I

I BET 3.
THE POT EQUALS 2.
YOUR BET ...

;

i

CALL

I REPLACE 3. CARDS
WHA1 CARDS DO YOU WANT REPLACED ...

(H5 H6)

YOUl; NEM CAKOS ARE D14 CM

(CSNUMBER 4.)
(C]? 012 S3 D5 D13)

I BEI 6.
o:<?

(CSNLWBEk 16.)
(C12 012 S3 05 013)

(BET BB BECAUSE THE HAND IS FAIR THE POT IS SMALL THE LASTBET IS SMAL
L THE BLUFFS IS LARGE)

(CSNUMBER 2.)
(012 D12 S3 05 013)

I BET 2.
THE POT EQUALS 8.
YOUR BET • ..

10

(CSNUMBER I.)
(C12 D12 S3 05 013)

I CALL
OK?

(CSNUMBER 17.)
(C12 D12 S3 05 013)

(DROP BECAUSE THE HAND IS FAIR THE LASTBET IS LARGE THE PBRATIO IS SM
ALL THE ORP IS (NOT (EÖUAL TO -1.)))

215

(CSNUMBtCR 1.)
CC12 012 S3 05 013)

I DROP
YOU WIN
MY SCORE IS -39.
YOUR SCORE IS 39.
YOU WIN THE GAME

NIP

216

mm

APPENDIX H

SAMPLE OF GAMES PLAYED DURING

PROFICIENCY TEST FOR AUTOMATIC-TRAINING HEURISTICS

The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

PDP-6 timesharing system. This game is one of a five-game series used

to test the proficiency of the program. The left column on each page is

the series I game of the test, while the right column on each page is

the corresponding series II game. The dialogue printed by the program

starts at the left margin of each column, while the dialogue typed by

the human opponent is indented five spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spaces,

Dll a jack of diamonds, and Hlk an ace of hearts.

Note that each hand def.lt the human player in series I (left

column) is identical to tvie hand dealt the program in the corresponding

r-o-p in series II (right column), vice versa. Thus the hands held

by the program in each r-o-p can be determined.

217

_

'*r

IMriMtR S)
<l<FFFf-.FF. S)

YOiip HftND is NIS SI4 M4 Sit tM YOllh HAND IS Cn CIH Sll Sfi CP

I RFT '»•
THF POl FANALS P.
YOdk PF1 ...

I HFI'LACF .1. CAKOS
V'HAT CARPS PO YOU WANT K-FPLACFP ...

(Hin SI? Did)

VOMK NF.V CARDS ARF HM C6 DI3

1 BET 8.
THF POT FWIIALS ?.
YOlli: BFT ...

CALL

I RF.PLACC n. CARDS
WHAT CARDS DO YOl) WANT KFPLACFD ...

(C1H SS C?)

YOIIH NFW CARDS ARF D8 HS H7

1 PFT A.
THF. I'OT FUMALS IM.
YOUR PFT ...

1 HFT 3.
THE POT F.WIIALS 18.
YOUR PFT ...

CALL

||4 DM HI4 06 013

I DROP
YOU WIN
ht SCORE IS -9.
YOUR SCORE IS 9.

MY HAND IS
I WIN
MY SCORE IS IP.
YOUR SCORE IS A .".ERF -IP.

YOUR HAND IS D9 C7 HA 513 D6
THE POT EOUALS P.
YOUR RET ...

YOUR HAND IS Mt M Sit •14 MS
THF POT FHllALS P.
YOUR PKl ...

I CALL
WHAT CARDS DO YOU WANT REPLACFD ...

I CALL
WHAT CARDS DO YOU WANT RFPLACFD ...

(CS SIH HM

YOUR NFW CARDS ARE
I REPLACE 3. CARDS
THF POl FHUALS (i.
YOUR PFI ...

Hid DP HIS

(C7 114 D*>

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POl tWllALS 4.
YOUR PFT ...

I

SB SS SI I

218

I nROH
YOU t'lN
f.r r.couK i;; -n.
vom- sr.nwr is \9*

I CALL
NY HACJO IS OM DIP N|t D? H^.
I '..IN
^,Y sr.ot-F. ir, 15.

YOMh HAMD IS SA DH C9 nil C1P

I PF.T ?.
THF POT KMMLtl ?>.
YOiil- PFT ...

CALL

I PKI-'LACK ?. CAHOS
WHAT CAFIDS HO YOl) (•'ANT rFf'LACFn

CM !JH C9>

YOII1- iV-'■' CAllOri AiF .".IP HR C3

I FF.T '..
THF. POT FlIIALS f.
YOl IK PF.T ...

11

i RK r '<.
THK. POT F1..111AL.': ™.
YOIJP BFT ...

CALL

Hn HIP nil H9 HI 1 KY HANI1 I",
YOl I V!N
Mr SCOPF is -.^s.

YOMP HAiNin 19 in IM.1 OH IM M^

IMF. POT FOdALT, P.
YOUR PRT ...

YOi'f; HANO IS Hn M Hlf> CA S9

I PFI ?.
IHF. POT Cl MAL«; P.
YOtll-; FKl ...

OAl.L

I rFi'LArF T. CA, n.r,
WHAi rAinr; no ymi MWn MCPLACRfi

('.9 r/i 5:9)

YOiir; NF';' ßARDS ATF en K9 HII

1 PIT 7.
THF. POl K'-IIAI.<; A.
YOi IC PF 1" ...

1 PFT K.
THF pnT KMMU »••
YOm- PFT . ..

OALL

MY HANO 18 OIP DM 11.1 HH C.T
I WIN
NV NCOIW 18 ^7.
Your SCOM IF A MFPF -^7.

Ynnr HANO ir-. nui 0? rn H7 UP

THF POT F.I'HALS P.
YOUR PFT ...

H

219

I CALL
WHAT CAKDJi nO YOU WANT RFHLACFn

cm o-i HS)

YOUK NfM CAKDS ARF
i NBTiMI t* CMPS
TSF. f'OT FWOALS (,.
YOIIH PF1 ...

Clfl 05 07

1 CALL
V.HAT CAHO.S r)0 YOII '.'ANT KKPLACFO ...

(Did CIS H7)

YOli^ iVEl" CAKOS AKF.
I kFKLACK ^. CARDS
THF I'OT F.I-KIALS ft.
YOUR PFT ...

H\A S6 S^

I CALL
MY HANO IS
I V IN
hY SCOMC IS -?«•
YOUR SCORF IS 5>8.

C? H? HI 4 S^. 53
i Di.üf
YOII WIN
MY SCOKE IS .T^.
YOIIC SCOKF IS A hFRF -3,T.

YfMI« HAN(- 19 S^ Ofr H4 H.T HM
YOUR HANO IS ni i SKI C4 CM oi?

I PKT •>.
THF »'OT FOIIAL.S f.
YOIIK HFI ...

1 BFT 1.
THF POT FtJllALS P.
YOUR PFT •• .

I CALL
I RFTLACF 1. CARP
l-.HAI CARIIS 90 YOII WANT RFPLACEO

(Of^ HA H\A)

YOIIK NF'/.' CARDS ARF. S7 Sll C9

I CALL
I REPLACE 3. CARPS
WHAT CARDS DO YOU WANT REPLACED

r/j

YOUR NFt CARDS ARF HK

I PFT S.
THE POT FUIIALS)?.
YOUR PFT ...

1 PFT 1 .
THE POT FOUALS IB.
YOUR PFT ...

CALL

MY HAND IS CI4 SIS Oft Oil N|S
I WIN
MY SCORF 1^ -17.
YOUR SCORE IS 17.
YOU WIN THE GAME

NIL

Sr? H3 S7 SI 1 C9
1 CALL
MY HAND IS
Y 011 WIN
MY SCORE IS P.T.
YOUR SCORE IS A MERE -P.I.
I WIN THE GAME

NIL

220

i

APPENDIX I

LOGICAL STATEMENTS FOR DRAW POKER

I. Rules and Axioms for Draw Poker

The rules and axioms for draw poker used by the computer program are listed

below. In these staLements "action" refers to the decision made by the program

while "oppaction" refers to the decision made by the program's opponent. A low

bet is defined as a bet from 1 to 9 > while a high beL is defined as one

from 10 to 20 .

Poker Rules:

1. action(call) A higher(yourhand,cpphaud) 3 add(lastbet,pot) A add(pot,yourscore)
2. oppaction(call) A higher(yourhand,opphand) Z) add(lastbet,pot) A add(pot,yourscore)
3. action(call) A higher(üpphand,yourhand) 3 addflastbet,pot) A sub(pot,yourscore)
h. oppaction(call) A higher(opphand,yourhand) D add(lastbet.pot) A add(pot,yourscore)
5. actian(drop) z> sub(pot,yourscore)
6. oppaction(drop) z> add(pot,yourscore)
7 action(bet low) 3 add(lastbet,pot)
8. action(bet high) 3 add(lastbet,pot)
9. oppaction(bet low) 3 add(lastbet,pot)

10, oppaction(bet high) D add(lastbet,pot)

Poker Axioms:

1. action(drop) 3 keepsmall(pot)
2. action(call) 3 unsureofhand(you)
J. onlycalled(opp) 3 unsureofhand(opp)
k. action(bet low) v action(bet high) 3 keepsbetting(you)
5. oppaction(bet low) V oppaction(bet high) 3 keepsbetting(opp)
u. keepsbetting(opp) A keepsbetting(you) 3 buildup(pot)
7- action(bet high) A higher(opphand,yourhand) 3 bluffed(opp)
8. goodhand(x) A didbet(x) 3 surehandwi'llwin(x)
9« unsureofhaud(yuu) A seerasureofhand(opp) 3 makelargenough(pot)

10. pot(large) V lastbetopp(bet high) 3 seemsureofhand(opp)
11. (action(call) V action(bet low) V actiori(bet high)) A higher(yourhand,opphand) 3

eventually(add(pot,yourscore))
12. bad(opphand) A bluffed(opp) A notprevoppaction(bet high) 3 prob(oppaction(drop))
13. (action(bet high) V action(bet low)) A surehandwillwin(opp) 3

prob(oppaction(bet low)) A prob(oppaction(bet high))

221

i

The meanings of the predicates shown above tend to be self-evident, however

the logical statements are written out in detail in Appendix I, Part II.

II. Description of Rules and Axioms for Draw Poker

The rules and axioms for draw poker listed in Appendix I, Part I are

described in detail below.

Poker Rules:

i. If you or your opponent calls, and your hand is higher than your
opponent's hand then the last bet is added to the pot, after which
the pot is added to yourscore.

2. If you or your opponent calls and your opponent's hand is higher than
your hand, then the last bet is ."idded to the pot, after which the pot
is subtracted from your score.

3. If you drop, then the pot is subtracted from your score.
h. If your opponent drops, then the pot is added to your score.
5« If you or your opponent bets, then that bet is added to the pot.

Poker Axioms:

1. If you drop, then you keep the pot small.
2. If you call, you are unsure your hand will win.
3. If your opponent calls but does not bet in an r-o-p, then he is unsure

his hand will win.
4. If you bet, then you have kept the betting going.
5« If your opponent bets, then he has kept the betting going.
6. If both you and your opponent keep the betting going, then the amount

of money in the pot builds up.
7. If you bet high and your opponent's hand is higher than your hand, the

you have bluffed.

222

1

I
I

Ih. action(bet low) A goüd(opphand) A unsureofhand(opp) D
prob(oppaction(bet low)) A prob(oppaction(call))

15. action(bet low) A bad(opphand) 3 prob(oppaction(bet low)) A prob(oppaction(call))

General Axioms:

1. x 3 eventually(x) I
2. (buildup(x) V makelargenough(x)) A eventually(add(x,z))

V add(x,z)
V (keepsmall(x) A sub(x,z) 3 maximize(z) I

I
I
I

I
I

I
I

i

!

1

I
1

1

I

I

8. If a player has a good hand and has just bet, then he is sure that
his hand will win.

9- If you are unsure your hand will win and the opponent seems sure his
hand will wir,, then you have made the pot large enough.

10. If the pot is large or the last bet by the opponent was large, then
the opponent seems sure his hand will win.

11. If you call or bet and your hand is higher than your opponent's
hand, then you will eventually add the pot to your score.

12. If your opponent has a bad hand and you bluff but have not pre-
viously bet high in the present r-o-p, then it is probable that
your opponent will drop.

13. If you bet and your opponent is sure that his hand will win, then
it is probable the I your opponent will also bet.

1^. If you bet lew and your opponent Las a good hand and is unsure
his hand will win, then it is probable that your opponent will
bet low or call.

15« If you bet low and your opponent IIPL, a bad hand, then it is
probable that your opponent will bet low or call.

General Axioms:

1. If x is now true then x will be true in the future, that is
eventually. (Here x must be a member of a class of predicates
whose values are irreversible within the time limit under consideration.)

2. If you increase the size of x or make x large enough and eventually
add x to z , or if you Just add x to z , or if you keep x
small and subtract x from z then you tend to maximize z .

III. Example of Deduction Procedure Uüing Rules and Axioms for Draw Poker

Assume the predicates in the logical statements are set as follows:

higher(yourhand,opphand) = F hi^her(opphand,yourhand) = T
notprevoppaction(bet high) = T lastbetopp(bet high) = F

onlycalled(opp) = T pot(large) = F
goodhand(you) = F gooc'.hand(opp) = F
good(opphand) = F bad(opphand) = T

didbet(you) = T aidbet(opp) = F

In this case maximize(yourscore) matches maximize(z) in the

right side of the last logical statement when "yourscore" is substituted

for z . Thus the program tries to make the left side of this statement

true, which is the expression:

: '■

;
(buildup(x) V (keepsraall(x) A eventually(add(x,yourscore))

V add(x,yourscore) V (keepsmall(x) A sub(x,yourscore)) .

This expression has the form a V b V c , so the program first

attempts to make a true. If this fails it tries to make b true,

and if this also fails it tries c . Here a has the form a.. A a,, :
1 d

accordingly both a., and a must be made true if a is to be true-

But a- = eventually(add(x,yourscore)) which matches only the right

side of axiom 11 of the poker axioms. For ap to be true, the left

part of axiom 11 must be true, but this is false since

higher(yourhand,opphand) is false. Consequently, it cannot be shown that

a^ can be made true, or that a can be made true.

Now the program attempts to make b true, where b = add(x,yourscore).

This expression matches the right sides of poker rules 1, 2, and 6

(b is considered a match for a A b since if it is shown that a A b

is true it is alsu shown that b is true), but the left sides of rules

1 and 2 cannot be made true since they both contain higher(yourhand,opphand),

which is false.

However, the right side of rule 6 can be made true if

cppaction(drop) can be made true. This expression matches only the

right side of poker axiom 12 and will be true if the left side of

axiom 12, bad(opphand) A bluffed(opp) A notprevoppaction(bet high),

can be made true. But bad(opphand) and notprevoppaction(bet high)

are both prediactes set to true by the program, so the right side of

axiom 12 is true if bluffed(opp) can be made true. This expression

matches only the right side of poker axiom 7 aud is true if the left

side of axiom 7, action(bet high) A higher(opphand,yourhand), can

22U

.

1
!

be made true. Since higher(opphand,yourhand) is one of the predicates

initially set to true by the program, bluffed(opp) is true if

action(bet high) can be made true. But his can be made true by having

the program make the decision to bet high; thus the decision to bet

high makes bluffed(opp), prob(oppaction(drop)), add(pot,yourscore),

and maximize(yourscore) all true. As a consequence, the program deduces

that it should have bet high in the given situation Vn order to have

maximized its score.

225

[I BLANK PAGE

APPENDIX J

TRAINING TRIALS

FOR IMPLICIT-TRAINING HEURISTICS

The l'ollowing program output is from the first 5 learning trials

given the learning program via the Stanford PDP-6 timesharing system.

The dialogue printed by the program starts at the left margin, while

the dialogue typed by the human opponent is indented 5 spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spades,

Dll a jack of diamonds, and Hl^ an ace of hearts.

Each time the program places a bet it first prints (l) the current

crnumber, i.e., the number of the action rules which was used in

making the bet decision, and (ü) the hand it currently holds. The

action rules are considered to be numbered from top to bottom, starting

with 1.

At the end of each r-o-p the program prints the following for

each bet decision it makes after cards are replaced: (l) the csnumber

for that bet decision, (2) a list of acceptable bet decisions, (3) and

(k) the decision chosen from the list of acceptable ones, which is

inserted In the action rule list as an action rule, and (5) the program

subvector existing at the time it made the bet decision, together with

the bet decisions made by the program and the opponent.

?26

(REFEREE 5

I
I
I
I

yOUK HAND IS H4D10C10C9D14

(CSNUMaEK I.)
(H6 D6 H\A D9 D5)

! BET 1.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
'.■JHAT CARDS DO YOU WANT REPLACED ..

IHA C9 Dl4)

YOUK NEW CARDS ARE D7 Sll D12

(CSNUMBER I.)
(H6 D6 S6 08 HtO)

I BET 1 .
THE POT EQUALS 4.
YOUR BET ...

(CSNUMBER 1.)
(H6 D6 56 Ü8 HUD

I BET I 1.
THE POT EQUALS 10.
YOUR BET ...

CALL

MY HAND IS H6 D6 S6 D8 Ht0

.

.

227

(CSNUMBEK I.)
(BETHIGH BETLOW)
BETLOW
(BET SSS)

(CSNUMÖEK 2.)
(BETHIGH BETLOVn
HF.TLO1^
(HET SSS)
(((52. 4. 0. -6. A. 3. 0.) BETLOW BETLOW) ((52. 6. 2. -6. 3. 3. 0.) t3
ETHIGH CALL)) I '/JIN
MY SCORE IS 16.
yOUN SCCmE IS A MERE -16.

SHUFFLE

yOUn HANI) IS SI2 D3 S9 C7 D12
THE POT EQUALS 2.
YOU« BET ...

(CSNUMUEK 2.)
(S/(O/i H13 H12 Hll)

I BET 13.
THE POT EUUALS 16.
YÜUK BET ...

CALL

WHAT CAKDS 00 YOU WANT REPLACED ...

(1)3 S9 C7)

YOUR NEW CARDS ARE D7 S10 H9
I REPLACE 3. CARDS
THE POT EQUALS 42.
YOUR BET ...

228

CCSNUiWDt Pi.)
(o4 ÜA SI I OR C2)

I CALL
MY HAND IS S4 D4 Sll QR Cf>

(CSNUMBEK 3.)
(CALL)
CALL
CALL
(((IM. 42. b. -6. R. 3. 0.) CALL NIL)) YOU WIN
MY SCOIJE I'J -10.
YOUK SCOKE 13 iO.

YOUR MANU IS SI 4 H6 D5 06 H4

(CSNUNBKN 3.)
(014 SI3 S8 S5 H2)

I BET 6.
THE POT EQUALS 2.
YOU

BET ...

CALL

! REPLACE 3. CArtDS
WHAT CARDS DO YOU WANT REPLACED

(05 H4)

yOUR NEW CARDS ARE D2 HR

(CSNUMBER 3.)
(DI4 S13 C8 C9 ClI)

I BET 5.
THE POT EUUALS 14.
YOUR BET . ..

CALL.

MY HAND IS D14 SI3 CR C9 CM

229

1

i

i

1

1

i

i

1

I

(CSNUHSCfl 3.)

D^OP
üKOP
(((2. 14. 0. -I A. 14. 2.
wy scocit; ib -22.
YOUK .JCOK'E IS 2^.

1.) ICTLOW CALL)) YOU WIN

YOUI* HAND IS C3 HI4 C6 C4 H3
THE POT EQUALS 2.
YOU.^ RET ...

(CSNUHtKR 4.)
(S7 H'I ClI 09 S3)

I CALL
.gHAT CARDS DO YOU WANT REPLACED ...

(C6 C4)

YOU« NEW CARDS ARE C5 HI0
I REPLACE 3. CARDS
THE POT EQUALS 6.
YOUi-i BET ...

3

(CSNUMOER 4.'*
(S7 H7 D10 D13 C12)

I CALL
MY HAND IS S7 H7 D10 D13 C12

(CSNUMBER 4.)
CBETLOW)
BETLOW
(BET SSS)
(((13. 6. 3. -14. 2.
MY SCORE IS -16.
YOU« SCORE IS 16.

2. -1.) CALL NIL)) I WIN

250

t

APPENDIX K

SAMPLE OF GAMES PLAYED DURING

PROFICIENCY TEST FOR IMPLICIT-TRAINING HEURISTICS

The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

PDP-6 timesharing system. This game is one of a five-game series used

to test the proficiency of the program. The left column on each page

ll the series I game of the test, while the right column on each

page is the corresponding series II game. The dialogue printed by

the program starts at the left margin of each column, while the dialogue

typed by the human opponent is indented five spaces.

The abbreviations used to represent playing cards are H: hearts,

S: spades, C: cl^s, and D: diamonds. Thus S8 is an eight of

spades, Dll a jack of diamonds, and Ulh an ace of hearts.

Note that each hand dealt the human player in series I (left

column) is identical to the hand dealt the program i.i the corresponding

r-o-p in series II (right column), and vice versa. Thus the hands

held by the program in each r-o-p can be determined.

251

L_ * ^

t

>

BLANK PAGE 1

• •■*

YOUR HAND IS C I 4 04 H 1 I H I 3 S7
IMF HOT FOUALS 2.
YOUR BET .. .

I BET 7.
THE POT EQUALS 8.
YOUR RET ...

CALL

I BET 1.
THE POT EQUALS 38.
YOUR BET ...

CALL

SI4 DI3 CIS ClI 01 MY HAND IS
t WIN
MY SCORE IS R».
YOUR SCORE IS A MERE -!>».

232

1

(REFEREE 5)

YOUR HAND IS 06 013 CI2 SI4 S3

I BFT 3.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ••

(D6 S3 CI2)

YOUR NEW CARDS ARE C13 CM 03

(REFEREE 5>

YOUR HAND IS HI4 S8 C6 08 S4

I BET 7.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CAWDS
WHAT CARDS 00 YOU WANT REPLACED ...

(Ht4 06 S4>

YOUR NEW CAKDli ARE H7 D3 OS

i

i

1

I
:

I BET 8.
THE POT EQUALS 8.
YOUR BET . , .

I BET 5.
THE POT EQUALS 16.
YOUR BET ...

.

I CALL
MY HAND IS
YOU WIN
MY SCORE IS -29.
YOUR SCORE IS 20.

S3 DU H7 D3 OS
I BET I.
THE POT EQUALS 32.
YOUR BET ...

•-

I

I

WHAT CARDS 00 YOU WANT REPLACED ...

(04 HJ1 S7>

YOUR NEW CARDS ARE
1 REPLACE 3. CARDS
THE POT EQUALS 22.
YOUR BET ...

09 07 C2

YOUR HAND IS 02 H8 DI2 C9 C5
THE POT EQUALS 2.
YOUR BET ...

I BET 2.
THE POT EÖUALS 26.
YOUR BET ...

CALL

MY HAND IS 012 C9 S9 H5 H2
I WIN
MY SCORE IS -5.
YOUR SCORE IS 5.

I BET 6.
THE POT EQUALS 8.
YOUR BET ...

CALL

WHAT CARDS DO YOU WANT REPLACED ..

<D2 H8 C5)

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POT EQUALS 20.
YOUR BET ...

S9 H5 H2

YOUR HAND IS 010 SI3 C8 S2 S5

I BET 7.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED ■•

(C8 S2 S5)

YOUR NEW CARDS ARE 07 HI0 SI0

I BET 6.
THE POT EQUALS 16.
YOUR BET ...

14

I DROP
YOU WIN
MY SCORE IS 10.
YOUR SCORE IS A MERE -10.

YOUR HAND IS Sll DI4 H4 H3 SI2

I BET 3.
HE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU HANT REPLACED .

(Sll H4 H3)

YOUR NEW CARDS ARE H6 HI2 S6

.;

i
255

_

I 8CT 18.
THE POT EQUALS 56.
YOUR BET ...

CALL

014 Sia H6 HIS S6 MY HAND IS
YOU WIN
MY SCORE IS -51.
YOUR SCORE IS 51.

YOUR HAND IS ClI 02 H1B S8 07
THE POT EOUALS 2.
YOUR BET ...

I BET 7.
THE POT EOUALS «.
YOUR BET ...

13

I BET 12.
THE POT EOUALS 48.
YOUR BET ...

CALL

SI3 018 C7 HI8 518 MY HAND IS
I WIN
MY SCORE 15 46.
YOUR SCORE IS A MERE -46.

I BET 14.
THE POT EOUALS 6.
YOUR BET ...

CALL

WHAT CARDS DO YOU WANT REPLACED ...

(ClI NIB C7)

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POT EOUALS 34.
YOUR BET ...

I

55 CI3 Oil

YOUR HAND IS HI2 H2 S9 06 SIS
THE POT EQUALS 2.
YOUR BET ...

I CALL
WHAT CARDS DO YOU WANT REPLACED ...

(H2 59 06)

YOUR NEW CARDS ARE
I REPLACE 3. CARDS
THE POT EOUALS 14.
YOUR BET ...

HI4 CI8 09

I BCT I.
THE POT EOUALS 36.
YOUR BET ...

CALL

MY HAND IS
I WIN
MY SCORE IS -32.
YOUR SCORE IS 32.

H12 SI2 HI4 CI8 09

I CALL
MY HAND IS
YOU WIN
MY SCORE IS 34.
YOUR SCORE IS A MERE

D2 32 S5 C13 DU

•34.

YOUR HAND IS 02 014 H8 HI3 S4 YOUR HAND IS Y 06 C8 S3 SB H3

2}k

YOUR HAND IS C2 DM H8 H13 S4 YOUR HAND IS Y C6 C8 S3 S8 H3

I BET 7.
THE POT EQUALS 2.
YOUR BET ...

CALL

1 REPLACE I. CARD
WHAT CARDS DO YOU WANT REPLACED ..

(C2 H8 S4)

YOUR NEW CARDS ARE HI I Sl.l S7

I BET 7.
THE POT EQUALS 2.
YOUR BET ...

CALL

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED

C6

YOUR NEW CARDS ARE S6

I RET 8.
TME POT EQUALS 16.
YOUR RET ...

I BET A.
THE POT EQUALS 16.
YOUR BET ...

1?

I BET A.
THE POT EQUALS 50.
YOUR BET ...

CALL

MY HAND IS
I WIN
MY SCORE IS -3.
YOUR SCORE IS 3.
YOU WIN THE GAME

NIL

C8 S8 S3 H3 S6

DI4 H13 HtI SI3 S7
I CALL
MY HAND IS
YOU WIN
MY SCORE IS 10.
YOUR SCORE IS A MERE -Ifl.
I WIN THE GAME

NIL

25^

