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MACHINE LEARNING OF HEURISTICS 

by Donald Arthur Waterman 

ABSTRACT:     First,  a method of representing heuristics as production 
rules is developed which facilitates dynamic manipulation 
of the heuristics by the program embodying them.     This 
representation technique permits separation of the heuristics 
from the program proper,  provides clear identification of 
individual heuristics,  is compatible with generalization 
schemes,  and expedites the process of obtaining decisions 
from the system. 

Second,  procedures are developed which permit a problem- 
solving program employing neuristics  in production rule form 
to learn to improve .i ts performance by evaluating and 
modifying existing heuristics and hypothesizing new ones, 
either during a special training process or during normal 
program operation. 

Third,   the sbovementioned representation and learning techniques 
are reformulated in the light of existing stimulus-response 
theories of learning,  and five different    S-R    models of 
human heuristic learning in problem-solving environments are 
constructed and examined in detail.     Experimental designs 
for testing  these information processing models are also proposed 
and discussed. 

Finally,  the feasibility of using the aforementioned represen- 
tation and learning  techniques in a complex proLlem-solvin;- 
situation is demonstrated by applying these techniques to the 
problem of making the bet decision  in draw poker.    This 
application,  involving the construction of a computer program, 
demonstrates that few production rules or training trials are 
needed to produce a thorough and effective set of heuristics 
for draw poker. 

The research reported here was  supported in part by the Advanced Research 
Projects Agency of the Office of the Secretary of Defense  (SD-I85). 
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CHAPTER 1 

HEURISTIC PROBLEM-SOLVING BY COMPUTER 

1.1    INTRODUCTION 

Currently much research is being done with computers in an attempt 

to produce programs which exhibit intelligent behavior.    This work can 

be divided into two main categories,  (l) artificial intelligence research, 

and (2) research in the simulation of cognitive processes (Feigenbaum 

and Feldman, 196?).    The former is concerned with programming computers 

to perform intellectual tasks, while the latter is concerned with 

programming computers to simulate human cognitive processes. 

The goal of artificial intelligence research is the construction 

of computer programs which exhibit intelligent behavior, with the 

emphasis placed on the degree of intelligence exhibited.    The goal of 

research in the simulation of cognitive processes,  on the other hand, 

is the construction of compute., programs which simulate human cognitive 

behavior, with the emphasis placed on the degree to which the programs 

can predict this behavior. 

To illustrate the distinction between these two categories consider 

the intellectual task of game playing.    A researcher in artificial 

intelligence would judge the merits of his game-playing program on the 

basis of its skill at playing the game, the ideal program being one 

capable of defeating all other players.    However,  a researcher in the 

simulation of cognitive processes would base the evaluation of his game- 

playing program on the extent to which its game decisions or "moves" 

paralleled those of human players, not on how well his program played the 
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game. This distinction is not a clear one, since some research efforts 

can be classified as belonging to both categories. One example of this 

is the NSS Chess Player (Newell, Shaw, and Simon, 1958), a program, 

proficient at playing chess, which employs many human-like problem-solving 

techniques. 

In both the artificial intelligence area and the simulation of 

cognitive processes area extensive use is made of heuristic programming, 

that is, of employing heuristics in programs which solve complex problems. 

The utility of most of these heuristic programs depends to a large extent 

on the form or character of the heuristics employed. Thus heuristics 

play an important role in the attempt to create programs which exhibit 

intelligent behavior. 

One of the important unsolved problems of artificial intelligence 

research today is that of the learning of heuristics (Feigenbaum and 

Feldman, 1963).  The question is this:  how can computers (and how do 

people) learn new heuristic rules and methods which can be used to 

facilitate decision-making in a problem-solving situation? Furthermore, 

how are these new heuristics combined with existing ones to produce a 

functional system capable of intelligent decision making? Solutions in 

this problem area, besides permitting the construction of very powerful 

problem-solving programs might also suggest what direction psychological 

theories of learning should take.  This paper will be concerned primarily 

with the development of computer programs which learn heuristics in a 

problem-solving environment. 
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1.2 DEFINITION OF HEURISTIC METHODS 

In this section the concept of the heuristic will be discussed in 

detail. First, the term "heuristic" will be informally defined and 

contrasted with the concept of the algorithm. Next, more formal 

definitions of these terms will be presented, and the implications of 

these definitions examined. 

Informal Definitions 

A heuristic (heuristic procedure, heuristic method) is a rule-of- 

thumb, strategy, trick, simplification, or any other kind of device 

which drastically limits search for solutions in large problem spaces 

(Feigenbaum and Feldman, 1965). A heuristic does not guarantee a solution, 

rather it supplies solutions which are acceptable most of the time. On 

the other hand, an algorithm (from the logician's viewpoint) is any set 

of operation^ which can be represented by a Turing machine (Trakhtenbrot, 

I963). However, when "algorithm" is contrasted with ''heuristic" a 

narrower definition is usually implied. In the narrow sense an algorithm 

is a well-defined search procedure which is guaranteed to produce the 

correct solution, given enough time. The advantage in using a heuristic 

method rather than an algorithmic one is often that of reduced search time 

and effort. The disadvantage is that a solution may not be found, and if one 

is found it may not be optimal. 

EVALUATION. The above informal definitions give a clear, intuitive picture 

of what is usually meant by the term "heuristic" but are unsatisfactory 

in two respects. First, these definitions lead to much confusion 

concerning the nature of the differences between heuristic and algorithmic 



I 
methods. For example, they fail to provide the answers to the following 

questions: 

(1) Can a search procedure be both heuristic and algorithmic? 

(2) Does a heuristic procedure necessarily imply failure on 

some problems? 

(3) How does one show that a given procedure is a heuristic one? 

An algorithmic one? 

Confusion concerning these and related questions has led to a good deal 

of controversy in this area. 

Second, these definitions state that a heuristic necessarily 

implies reduced search time or effort in a problem area, thus denying 

the existence of heuristics which do not lead to reduced search time 

or effort. This constraint leads to definitions which are satisfactory 

for the typical heuristic problem-solving program; i.e., one where the 

heuristics are embedded in the program and can be changed only by some 

external operation, such as the programmer revising portions of the code. 

However, these definitions are not satisfactory for the type of program 

to be described in this paper, a program which hypothesizes, evaluates, 

and modifies its own heuristics. For this type of program the concept 

of a "poor" (inadequate, ineffective, or useless) heuristic is needed 

since the program itself must be able to determine whether ■:  given heuristic 

is a "good" or "poor" one; and thus decide whether to retain it or 

discard it.  It cannot be assumed that every procedure hypothesized by 

this type of program will lead to reduced search time or effort, but 

it would be convenient to think of all these procedures as heuristics. 

This can be accomplished if the definition of the term heuristic carries 

no stipulation about search time or effort but instead uses the search 
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time or effort as one of the criteria for the "goodness" or "worth" 

of the heuristic. 

Formal Definitions 

In this paper the terms computational rule, algorithm, and 

heuristic will be taken to mean the following. 

Computational Rule: any procedure determined by a set of instructions 

that specify at each moment precisely and unambiguously what is 

to be done next. 

Algorithm: a computational rule which obtains solutions to problems, 

such that there exists at ]east one problem domain where for 

every problem in the domain this computational rule produces 

the correct solution. Furthermore, the computational rule is 

said to be an "algorithm for" each problem domain satisfying 

the above requirement. 

Heuristic: a computational rule which obtains solutions to problems, 

such that there exists at least one problem domain where the 

computational rule obtains one or more correct solutions but 

where it is not true that the computational rule will produce 

the correct solution for every problem in the domain. Further- 

more, the computational rule is said to be a "heuristic for" 

each problem domain satisfying the above requirement. 

These formal definitions satisfy the two conditions that the informal 

definitions failed to satisfy. That is, (l) providing a clear dis- 

tinction between heuristic and algoritlunic methods, and (2) admitting 

the existence of heuristics which fail tc lead to reduced search time 

or effort. 
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IMPLICATIONS. From the formal definitions given above it is clear that 

for any computational rule, Civ, and problem domain, D, if CP produces any- 

correct solutions in D then it is always true that CR is either a 

heuristic for D or an algorithm for D , but never both. However, 

a computational rule may be both a heuristic and an algorithm; for example, 

CR might be a heuristic for problem domain Dl but an algorithm for 

domain D2 . Also, it is possible that a computational rule could 

be a heuristic for more than one problem domain. 

To show that a computational rule CR is an algorithm for a problem 

domain D one must 

(l)  show that CR produces the correct solution 

for every problem in D . 

To show that a computational rule CR is a heuristic for a problem domain 

D oie must 

(1) show that CR produces a correct solution for a least 

one problem in D . 

(2) show that CR fails to produce a correct solution for 

at least one problem in D . 

It should be noted that under these formal definitions, a heuristic 

procedure does necessarily imply failure on some problems. 

If one is unable to show that a particular computational rule CR 

(which produces correct solutions in problem domain D) is an algorithm 

for D , and is also unable to show that CR is a heuristic for D then 

the status of CR is unknown, although it is still either an algorithm 

or a heuristic (but not both) for D . Since the members of this class 

of computational rules are generally thought of as being heuristics, 

in this paper they will, for convenience, be labeled or "hypothesized" 
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as heuristics with the understanding that their status is actually 

unknown and may be discovered or proven at some later date. 

HEURISTIC PROGRAM. A program will be considered to be a computational rule 

precise enough to be executed by a computer, and a heuristic program 

simply a program which contains heuristics. Thus under the formal 

definitions given, a heuristic (or heuristic procedure) is just a 

heuristic program containing exactly one heuristic. And conversely a 

heuristic program is actually a heuristic for some particular problem 

domain. Figure 1-1 illustrates how a heuristic program for chess (Bernstein 

and Roberts, 19^8) could be considered a heuristic for the problem domain 

Dl while containing heuristics for domains D2 , D3 , D4 , and D5 . 
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Heuristic Program for Chess 

heuristic in D2 
(for improving 
area control) 

heuristic in D5 
(for improving 
mobility) 

heuristic in D^ 
(for maintaining 
king defense) 

heunsi-ic in D5 
(for improving 
material balance) 

I 
i 
4 

heuristic 
in Dl (for 
winning a 
game of 
chess) 

Figure 1-1.  Structure of a heuristic program for chess, 
illustrating how the program is a heuristic 
for domain Dl while containing heuristics for 
domains D2, DJ, Dk,   and D5. I 
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HEURISTIC POWER. The usefulness or "power" of a heuristic (as formally- 

defined) is dependent on two criteria« 

(1) the search time or effort involved in obtaining 

a solution, and 

(2) the percentage of problems in the domain which can be 

correctly solved. 

A very useful, good, or powerful heuristic would thus be one requiring 

only a short search time to find a solution, while having the capability 

of correctly solving a large percentage of the problems in the domain. 

On the other hand, the usefulness of an algorithm is dependent on just 

one criterion, the search time or effort involved in obtaining a solution. 

The percentage of problems correctly solved is not relevant since by 

definition the algorithm always solves all the problems in the domain. 

These criteria are demonstrated graphically in Figure 1-2 (Anonymous, 

1967). Here algorithm A, , is unequivocally superior to heuristic H, , 

algorithm Ap , and heuristic H ; i.e., A, > H, , Ap , Hp . In the 

0-3 hour range H > Ap > Hp , but in the 0-5 hour range A^ > H.> Hg , 

and in the 0-7 hour range Ap > Hp > H • This clearly illustrates how a 

heuristic can prove more useful than an algorithm when the search time or 

computing effort is restricted, since H,  is superior to Ap when the 

computing effort is limited to 3 hours or less. 
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1.3 HISTORICAL BACKGROUND 

In the last decade a large number of computer programs employing 

heuristics have been written, most of them being of a nonnumerical 

nature. Some of the more important programs of this type will now be 

briefly discussed. For this discussion it will be convenient to think 

of them as being divided into two categories:  (a) programs designed 

primarily to demonstrate problem solving techniques, such as game playing, 

theorem proving, and question answering, and (b) programs designed 

primarily to demonstrate learning techniques, such as pattern recognition, 

concept learning, and verbal learning. 

Problem Solving Programs 

LOGIC THEORIST. One of the landmarks in the development of heuristic pro- 

gramming is a program written by Newell, Shaw, and Simon which attempts to 

prove theorems in elementary logic.  (Newell, Shaw, and S'Jmon, 1956, 1957a, 

1957b; Stefferud, 1965).  This program, called the Logic Theory machine 

(or LT), uses heuristic methods to discover proofs in the Russell-Whitehead 

system for the propositional calculus. 

Initially, the program is given a set of axioms to use and the 

problem of finding a proof for a particular theorem. The program first 

tries the method of substitution on the theorem; that is, LT compares 

the theorem with each axiom to see if through substitution of free 

variables and connectives the theorem can be made to match one of the 

axioms, thereby solving the problem. If no match can be found a number 

of subproblems are generated, each being the task of proving valid 

a particular proposition whose validity implies the validity of the 

original theorem. The method of substitution is then tried on the 

11 



subproblems and if no match can be found subproblems of each subproblem 

are generated and the procedure is again applied to each of them. 

The search continues in this fashion until a solution is found or the 

program runs out of time. 

Some of the important heuristics used in LT include (l) the 

heuristic technique of working backward from the theorem to be proved 

toward the axioms, (2) the methods used to generate subproblems, and 

(5) the heuristics for deciding which subproblem out of a group of 

subproblems should be attempted first (i.e., which subproblem is easiest 

to solve) and which should not be attempted at all. The heuristics used 

in LT are an integral part of the program and are thus difficult to 

recognize and specify precisely. 

The LT project has been criticized (Wang, 1960a) on the grounds 

that there exist mechanical decision procedures for the propositional 

calculus which will find the proof of any valid theorem and will find 

it faster than does LT. Minsky (1961) answers this criticism by noting 

that the purpose of LT is primarily to study techniques for solving 

difficult problems rather than to produce an expert theorem proving 

program in the propositional calculus. The techniques used by LT can 

be applied to many different problem areas, whereas Wang's decision 

procedure is applicable only to the propositional calculus. This is not 

meant to imply that decision or proof procedures are of little importance 

in artificial intelligence; much progress has been made, for example, 

in the area of proof procedures for the predicate calculus (Wang, 1960b, 

1961; Davis and Putnam, I960; Davis, 1965; Robinson, Wos, and Carson, 

I96U; Wos, Carson, and Robinson, 196^; Robinson, 1965; Slagle, 1967)- 

12 

. 

D 
.. 

0 
Ü 

:: 

ü 

: 



LT APPLICATIONS.    The techniques used by LT have been successfully applied 

to a number of different problem areas.    A program for proving theorems 

in plane geometry (Gelernter, 1959; Gelernter, Hansen, and Loveland, 

i960) has been developed which starts with the theorem to be proved 

and like LT generates subproblems in an attempt to work backward 

toward one of the given axioms.    Elementary symbolic integration problems 

have been solved using this same general approach.     (Slagle,   1961). 

Here the program starts with an expression to be integrated  (main problem) 

and generates other expressions tobe integrated (subproblems)   such 

that the solution of certain subproblems leads to the solution of the 

main problem.    A subproblem is  solved  (expression integrated) when the 

expression can be made to match one of a set of standard forms whose 

integrals are known.     These standard forms are thus analogous to the axioms 

of the Logic Theory machine. 

Another example of the LT influence  can be found in the area of question 

answering programs.    A program har, been written (Black, 196^) which is 

designed to answer questions put to it in advice-taker notation  (McCarthy, 

1959) by working backward from the question, generating subquestions,  in 

an attempt to match these subquestions with given statements known to be 

true.     Recentxy,  work has been done on incorporating the LT techniques 

into a general purpose program capable of constructing proofs  for proposi- 

tions in a number of different problem domains  (Slagle and Bursky,  1968). 

GENERAL PROBLEM SOLVER.     Out of the Logic Theory mf.chine grew a more power- 

ful program called the General Problem Solver (GPS),  designed to simulate 

human problem-solving processes  (Newell,  Shaw, and Simon,  1959;  Newell and 

Simon,  I961).     This program deals with a task environment consisting of 
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objects and operators. The problem is usually of the form "given 

an initial object A and a desired object B , find a sequence 

of operators, S:^, ...0 , that will transform A into B ". In this 

formulation the problem is one of heuristic search, a process which underlies 

much of the recent work in problem solving programs (Newell and Ernst, 

1965). To so.ve thxs problem GPS has three types of goals available: 

(1) Transform object A into object B , 

(2) Apply operator Q to object A , 

(5) Reduce the difference D between object A and object B • 

Associated with each goal is a set of methods related to achieving 

iio&ls  of that type. Hence solving the problem consists of selecting an 

appropriate goal, evaluating this goal in context to see if it is worth 

attempting, and executing the methods associated with the goal, if the goal 

deemed feasible.  If the methods include achieving one or more of the 

three goals just desc/ibed then these are considered subgoals whose 

attainment leads to the attainment of the initial goal. GPS attempts 

to solve the problem of transforming A into B by generating, in a 

"depth first" fashion (Newell, 1962), goals and subgoals relevant to 

reducing the differences between A and B . 

One of the initial applications of GPS has been to the problem 

of proving theorems in the propositional calculus. For this particular 

task, the objects are logic expressions, the operators are axioms or 

rules for transforming one Logls expression into another, and the 

differences between objects which are recognized by the program include 

features like the logical connectives employed or the number of occur- 

rences of a variaole. Besides being given the definitions of the objects, 

operators, and differences, the program must also be supp]:ed with a 
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connection table which associates with each difference a set of 

operators relevant to modifying that difference.  Once the task 

environment is so defined, GPS is ready to attempt to prove theorem A, 

a logic expression in the propositional calculus, by transforming it 

into a given expression B which is a known axiom in the propositional 

calculus. 

The important heuristics used in GPS are (l) those connected with 

the methods used to try to achieve the generated subgoals, (2) heuristics 

for deciding whether or not a particular subgoa] is worth attempting, 

and (.5) the technique of planning, i.e., constructing a tree of subgoals 

based on an abstracted problem space composed of simplified objects and 

operators, and then using this tree as a plan of attack for the actual 

problem space of complex objects and operators. Most of these heuristics 

deal directly with the manipulation of objects and differences. In 

contrast, the heuristics of LT deal with the manipulation of theorems 

and axioms in the propositional calculus.  It is precisely this difference 

that makes GPS a "general" problem solver, that is, capable of solving 

problems in any domain where the problem can be specified in terms of 

objects, operators, and differences. 

Besides proving theorems in logic, GPS has also been used to 

solve trigonometric identities (Newell, Shaw, and Simon, lS'5l)- 

Programs employing GPS problem solving techniques ha/e been written which 

balance assembly lines (Tonge, 19^1), compile computer programs (Simon, 

1961, ll63), and simulate human behavior in the binary choice 

experiment (Feldman, Tonge, and Kanter, 1963). 

CHESS-PLAYING PROGRAMS.  Game playing is another area which is quite 
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NSS CHESS PLAYER. Newell, Shaw, and Simon have developed a cuess program 
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D 
amenable to the development of heuristic programs. In this area, a large 

portion of the work has been concentrated on the development of programs 

for playing chess.  Shannon in 191+9 proposed a framework for a chess playing 

program which in essence stated that (l) the chess game can be thought of 

in terms of a game tree whose nodes correspond to board configurations and 

whose branches correspond to the alternative legal moves and, (2) the 

best move to make from a particular node Nl (i.e., in a particular board 
- 

situation) can be determined by generating alternative moves in the tree 

down to some particular depth, evaluating the board configurations at that 

depth as single numerical values, and minimaxing (Slagle, 1965) these 

values back up the tree to node Nl , picking from Nl the alternative move 

which received the highest value (Shannon, 1950; Newell, Shaw, and 

Simon, 1958). 

Turing has described a program based on Shannon's proposal which, 

in determining the best move, generates all possible alternative moves 

down the tree until a dead position with regard to piece exchange is 

reached at each branch (Turing, 1950). A group at Los Alamos has i 

programmed MANIAC I to play chess, also generating all possible alternative 

moves but only down the tree to a fixed depth of k  moves (Kister et al., 

1957).  The program performs only a minimal evaluation of the board con- 

figurations at this depth, before minimaxing to determine the best al- 

ternative. A program written by Bernstein plays chess using this same 

framework but generates only 7 plausible alternatives at each node down 

to a fixed depth of h  moves, where it performs an extensive evaluation 

of the board configuration before minimaxing (Bernstein and Roberts, j.958). 

! 
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which differs in a number of respects from the programs just described 

(Newell, Shaw, and Simon, 1958). A set of goals are defined (king safety, 

material balance, etc. ) and alternative moves are generated which tend to 

satisfy the top priority goals in the given situation. The tree is 

generated until at each branch a dead position is reached with respect to 

all goals, that is, until no move can be made which will drastically alter 

the situation with respect to these goals.  The board configuration at 

each dead position is then evaluated as a list of values (one for each 

goal) describing how well that configuration meets each goal, and these 

lists are minimaxed back up the tree. An alternative move is chosen as 

being a satisfactory one if the list associated with it through minimaxing 

is greater, element by element, than a list representing the minimum 

allowable values for each goal. 

The important heuristics used in the chess programs just described 

are (l) those concerned with the generation of alternative moves, (2) 

those concerned with the depth of analysis, and (5) heuristics for the 

evaluation of board configurations. Again it is difficult to recognize 

and specify precisely the heuristics used by these programs, since they 

tend to be interrelated and are an inseparaVie part of each program. 

Learning Programs 

PATTERN-RECOGNITION PROGRAMS. Pattern-recognition research has led to the 

development of many programs which employ learning mechanisms. Much of 

the initial work in pattern recognition was based on neural network learning 

techniques (Carne, 1965), the most successful example of these techniques 

being Rosenblatt's perceptron (Rosenblatt, 1958, 1962; Green, 1963)•  The 

perceptron is basically a network of randomly inter-connected neural 
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elements, each element being capable of "fiving" or putting out a fixed 

amplitude signal over its output connection lines whenever the sum or 

the signals on its input connection lines exceeds some threshold. The 

network learns through reinforcement procedures, the most common type 

consisting of presenting the network with a stimulus (a set of input 

signals) and for each learning trial incrementing the output amplitude 

of all elements which fire when the correct response (output signal) is 

made. 

A more sophisticated pattern-recognition model. Pandemonium 

(Selfridge, 195S')* uses a highly organized network where the elements 

represent likely features of the input patterns. The model learns 

by adjusting the weights associated with the connections between these 

elements .nd the possible responses. For example, if the model were 

given a pattern containing feature f. and was told that the pattern 

belonged in class R, , then the weight on the connection between 

element f  and response R,  would be incremented, meaning that a 

pattern with feature f?  would then have a greater probability of being 

classified as type R, .  One problem with this type of model is that 

the features it uses must be supplied to it by the designer, and it is 

seldom clear what features will lead to efficient operation. A pattern- 

recognition program has been written (Uhr and Vossler, l;6l), which 

attempts to overcome this difficulty by effectively generating features 

at random, evaluating them in terms of their usefulness, and discarding 

those which are not useful.  The program not only learns to classify 

patterns by adjusting weights or coefficients on the features, but also 

learns what features can be used to classify the patterns. 

18 
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In the pattern-recognition programs just described the learning 

consists essentially of using a reinforcement process as the basis for 

generalizing by adjusting weights or coefficients. The heuristics 

involved include those connected with the determination of features to use 

and those concerned with the techniques used to adjust the weights. 

SAMUEL'S CHECKER-PLAYING PROGRAM.  One of the most successful learning 

programs to date is a checker-playing program which learns to improve its 

playing ability through training and game-playing experience (Samuel, 

1959> I960).  This program is patterned after the framework proposed by 

Shannon for the game of chess. As in the chess programs described earlier, 

the checker program bases its move decision on the results of looking 

ahead in the game tree to relatively dead positions, evaluating the board 

configurations at these positions, and minimaxing these values back up 

the tree. The value of a board configuration is determined by calculating 

the numerical value of a linear scoring polynomial w..f.. + Wpfp + ... + w f , 

where the f's represent certain parameters or features of the board 

configuration (such as piece advantage, denial of occupancy, mobility, 

and center control) and the w's are weights or coefficients representing 

the relative importance of each parameter. 

The checker program is capable of two basic types of learning, 

(l) rote learning and (2) generalization learning. The rote learning 

is quite elementary and consists of storing in memory all the board 

positions encountered during play together with their scores based on 

lookahead minimaxing. Performance improves under this learning scheme 

since the program saves time when it encounters familiar board positions, 

and this time can be used for searching the game tree to a greater depth. 
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The generalization learning,  on the other hand,  is somewhat complex and 

involves adjusting the coefficients of the scoring polynomial toward 

their optimal values. 

20 
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BOOK LEARNING. In one form of generalization learning the program is 

"trained" by being given a large number of board positions and the associated 

book moves (the moves recommended by master checker players). During this 

book learning procedure the program keeps track of the parameters whose 

values have a general tendency to increase as a result of the book moves 

and also those whose values have a tendency to decrease. The parameters 

whose values increase are considered to be important for winning the 

game and their coefficients are incremented.  Conversely, the parameters 

whose values tend to decrease are considered unimportant and have their 

i: 

coefficients decremented. 
it 

LEAENING THROUGH GAME PLAY.  In another form of generalization learning 

the program modifies the coefficients during actual play by comparing, (for 
- ■ 

each of its moves) the bp.cked-up score for the board position with the score 

calculated directly from the scoring polynomial.  It is assumed that the 

backed-up score is more accurate than the direct score, hence the 

coefficients of the parameters are adjusted so that the direct score will 

more nearly approximate the backed-up score.  Parameters which have a 

general tendency to increase the difference between the backed-up and 

the direct scores are removed from the polynomial and replaced by para- 

meters from a reserve list.  Thus the program can radically modify its 

evaluation polynomial and can possibly learn which of a given set of 

parameters are relevant to the goal of winning at checkers. 
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SIGNATURE TABLES. One difficulty with implementing learning by adjusting 

coefficients in a linear polynomial is that there exists in this procedure 

an implicit assumption of independence of the parameters involved, while in 

actual fact the parameters are seldom independent.  Samuel (196?) has proposed 

a "signature table" scheme to help overcome this problem.  In its simplest 

form this scheme consists of grouping the parameters into sets called 

signature types, and for each set defining a function which when given 

a value for each parameter of the set generates a number reflecting the 

relative worth of that particular combination of parameter values. Each 

function is defined by enumeration; that is, by a table pairing each 

combination of parameter values with a number indicating their worth. 

To keep the tables small the range of parameter values is restricted 

to either 5, 5 or 7 values. A board position is then evaluated by evaluating 

each signature table using the parameter values of that position and 

adding together the numbers obtained from each table. The signature table 

approach proves to be more efficient than the linear polynomial method when 

book learning is employed. 

In the checker program, learning consists of generalizing by 

modifying coefficients of board parameters. Among the heuristics used 

are those concerned with depth of analysis, tree pruning techniques 

(such as the a3.pha-beta procedure:  Slagle, 1965; Samuel, 196?), de- 

termination of parameters, specification of the evaluation function, 

and the adjustment of coefficients.  Heuristics which are used but are 

seldom acknowledged in this type of program are those connected with 

the definitions of the parameters; for example, mobility can be defined 

in many ways, but one definition is likely to be more useful than the 
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others. The particular definition chosen can be considered a heuristjc 

for measuring the value of the parameter. 

CONCEPT-LEARNING PROGRAMS.  Programs have also been written which simulate 

human learning processes.  One of the important contributions in this area 

is a concept-learning program by Hunt (19^2, 1966) which learns to distin- 

guish between positive and negative instances of a concept after it is 

presented with a small sampling of positive and negative instances.  Hunt 

represents an instance of a concept as a set of attribute values, for 

example, (LARGE, RED, TRIANGULAR) is a positive instance of the concept 

"large triangle", while (LARGE, RED, CIRCULAR) and (SMALL, RED, TRIANGULAR) 

are negative instances. The learning process consists of growing a 

decision tree whose nodes represent tests on the attribute values, such 

as "is the object large?" or "is the object triangular?". The decision 

tree is used to classify any given instance as being either positive or 

negative by sorting the instance down the tree to a terminal node and 

assigning the instance to the category associated with that terminal node. 

To illustrate this process consider the sampling of positive and 

negative instances given in the above example for the concept "large 

triangle". The program would use these instances to grow the following tree. 

I 
I 
I 
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is it large? 

negative 
instance 

positive 
instance 

negative 
instance 

Figure 1-3. 

It is clear that if a new instance, such as (IARGE, BLUE, HEXAGONAL) is 

presented it will be sorted to the proper terminal node (negative, in 

this case) and thus correctly identified. Another program which performs 

concept learning is one written by Kochen (i960, 1961).  This program, 

like Hunt's, generates a decision rule for deciding whether or not a 

given object belongs to a certain class, but makes no attempt to simulate 

human behavior. 

In the concept-learning programs the process of learning consists 

of making clever generalizations based on the given information. The 

important heuristics used in Hunt's program are those concerned with 

the choice of attribute values to use as tests for the nodes and the 

order in which the chosen values are arranged in the tree. 

SIMULATION OF VERBAL LEARNING. Another important contribution in the area 

of simulation of human learning is a program called EPAM (elementary 
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perceiver arid memorizer), which simulates verbal learning behavior by memor- 

izing three-letter nonsense syllables presented in associate pairs or serial 

lists (Feigenbaum, 1959, 1965, 1964, I967). EPAM's task for each pair of 

syllables S,R is to learn to produce the response R when given the 

stimulus S .  The program accomplishes this by growing a discrimination 

net composed of nodes which are tests on the values of certain attributes 

of the letters in the nonsense syllables. For example, a test at one node 

might be "does the third letter of the syllable have a horizontal component?". 

The various stimuli and responses are individually sorted down the net to 

trminal nodes where they are stored, one per terminal node.  If two 

different syllables are sorted to the same terminal node a new test node 

2k 
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is grown at that point capable of distinguishing between the two syllables 

and thus sorting them into two separate terminal nodes.  In this fashion 

the discrimination net is grown. A complete description (all 3 letters) 

of each response is stored in the net, but for each stimulus only a 

partial description (l or 2 letters) is stored together with a cue or 

partial description of the associated response. 

As an illustration of this process consider the task of learning 

the two pairs of syllables, RAX - JIF and JEQ - HOX. The program 

would grow the following type of net. 

- • 
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does the third letter have 
a horizontal component? 

does the first letter have 
a curved component? 

Figure 1-h. 

Now if EPAM is given RAX and asked for the response,  it sorts RAX 

down to terminal node 3,  retrieves the cue J_F  ,   sorts it down to 

terminal node 1 and responds with JIF.     If the test at a node cannot 

be applied because of insufficient information in the cue,  the cue is 

sorted left or right randomly at that node.     The program improves its 

performance as the nurrber of learning trials   increases,  since each 

time it retrieves an incorrect response it enlarges the partial des- 

cription connected with the retrieval of that  response.    Using this 

basic scheme EPAM is able to demonstrate stimulus generalization, 
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response generalization, and retroactive inhibition. 

Learning takes place in EPAM by simple association; a stimulus 

is associated with a response cue in a terminal node. However, generali- 

zation techniques (the growing of the discrimination net and the use of 

partial descriptions) are employed which tend to minimize the amount 

of information that needs to be stored and which lead to iiumanlike 

verbal learning behavior. The important heuristics used in EPAM are 

those concerned with the implementation of the generalization techniques. 

It is of interest tc note that in all of the learning programs 

discussed, learning is accomplished either through rote memorization 

processes or through various generalization techniques. The implication 

here is that the process of generalization must be well understood in 

order to be able to construct really effective programs for performing 

complex learning tasks. 

26 
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1.1» OBJECTIVES 

This paper proposes to examine the following three questions as 

a first step toward the development of computer programs which learn 

heuristics:  (l) what is a useful way of representing heuristics in a 

program?,  (2) how can heuristics be modified by the program embodying 

them?, and (3) what implications do these representation and modifi- 

cation techniques have for theories of human learning? 

Most heuristic programs (and in fact, all the programs discussed 

in section 1.3) have the heuristics "built-in"j i.e., the heuristics are 

an integral part of the program and even on close inspection it is 

difficult to decide exactly what heuristics are being used, what their 

effects are, and how they are related to one another. When this is the 

case, the entire program, in  a sense, is a representation of the embodied 

heuristics. 

The problem encountered in using this naive method of representation 

is the following. The heuristics are so entwined in the program that 

it is extremely difficult to make the program itself manipulate them. 

It would be desirable to have a program which during execution could 

monitor the use of its own heuristics; e.g., which could obtain measures 

of their values, modify them in an attempt to improve them, discard ones 

which seem of little value, and add new ones to replace the discarded 

ones. A program with the ability to manipulate its own heuristics could 

be given, as a secondary task, the job of learning what set of heuristics 

would provide optimal performance in its primary task. For instance, a 

game-playing program with this ability could learn, during the course of 

a game, how to play the game more intelligently by manipulating the 
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heuristics concerned with the strategy used in playing the game. 

Psychologists have been studying the phenomenon of learning for over 

three-quarters of a century, with the result that many divergent theories 

or viewpoints have appeared. The majority of the work in this field 

has been done on simple learning (acquisition of motor skills, discrimi- 

nation learning, memorization, etc.)- Some work has been done on more 

complicated learning processes such as concept learning (Bruner, Goodnow, 

and Austin, 1956; Hunt, 1962),  but little has been done on the complex 

processes involved in strategy learning in game-playing or problem-solving 

envirorraents. Thus, it would prove beneficial if artificial intelligence 

techniques for representing and modifying heuristics could be applied to 

a psychological theory of complex human learning. 

i 
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CHAPTER 2 

REPRESENTATION OP HEURISTICS 

2.1 INTRODUCTION 

The feasibility of learning heuristics by dynamically manipulating 

them in a program depends heavily upon the method used to represent the 

heuristics. 

REQUIREMENTS.  To facilitate dynamic manipulation, the representation should 

satisfy the following requirements: 

1. It should permit separation of the heuristics 

from the program using these heuristics. 

2. It should provide for clear identification of 

individual heuristics and show how these heuristics 

are interrelated. 

;.  It should be relatively easy to work with. 

The first requirement is basic, since the program would have a 

difficult time trying to manipulate heuristics that it could not even 

locate. The second requirement is necessary because individual heuristics 

need to be modified and evaluated, and when a modification occurs the 

effect of this change on the whole system of heuristics must be known if 

an accurate evaluation is to be made. For example, if heuristic hi 

depends in some way on heuristic h2 , and h2 is modified, then 

effectively hi is also modified. In the evaluation of this modification 

it is necessary to recognize the relation between hi and h2 ,  since 
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to the exposition of a representation technique which does satisfy the 

above requirements. 

DEFINITIONS. A method of representing heuristics which satisfies the re- 

quirements of section 2.1 will now be proposed. First, however, the follow- 

ing items must be defined: 

1.  Heuristic Rule: a heuristic which directly specifies 

5C 
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it is possible that either hi or h2 will be rendered less effective 

by the change. If the relation were unrecognized, the program might naively 

proceed with the evaluation by testing the new h2 but ignoring the heur- 

istic hi . 

The last requirement states that the representation technique 

employed should be easy to work with. By this is meant (a) that the 

heuristics should be easy to modify or replace, (b) that the represen- 

tation should be compatible with generalization schemes, and (c) that 

it should be easy to use the heuristics to obtain a decision from the 

system.  The desirability of conditions (a) and (c) is clear.  Condition 

(b) is desirable in view of the evidence presented in Chapter 1 that 

complex learning can be achieved through the use of generalization 

techniques. 

The representation method discussed in Chapter 1, where the entire 

program is a large complex representation of the embodied heuristics, 
4 

is obviously inadequate. It fails to satisfy every requirement except 

conditions (b) and (c) under requirement J. This chapter will be devoted 
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an action to be taken. 
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5« General Heuristic; 

k.     Special Heurirtic; 

Heuristic Definition:     a heuristic which does not specify 

an action directly, but instead de- 

fines a term. 

a heuristic rule or definition which 

employs terms defined by heuristic 

definitions. 

a heuristic rule or definition which 

does not employ terms defined by heuristic 

definitions. 

Some examples (taken from the game of checkers) to Illustrate the 

above definitions are given below. 

(a) If the piece advantage is "high" then 'make an even exchange'. 

(General heuristic rule). 

(b) If the piece advantage is greater than 5 then 'make an even 

exchange'.  (Special heuristic rule). 

(c) A "high" piece advantage is one 5 or more greater than a 

"low" piece advantage.  (General heuristic definition). 

(d) A "high" piece advantage is one equal to or greater than k. 

(Special heuristic definition). 

In section 1.2 a heuristic is defined as a particular type of 

computational rule, capable of obtaining solutions to problems. Consider 

example (b) above from the game of checkers.  This can be thought of as a 

computational rule for solving the problem "what type of move should I 

make to increase my chances of winning the game?" Furthermore, example 

(d) can be thought of or restated as a computational rule for solving the 

problem "Is the piece advantage in the present board configuration a high 
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one?" Thus the above definitions correspond to those presented in 

section 1.2. 

2.2 PRODUCTION RULES 

During execution, a program goes through a succession of states 

as the values of its variables are changed.  Consider a "situation" as 

the set of current values of the variables of the program and let this 

set be called the state vector C of the program (McCarthy, 1962, 1965). 

When a block of code is executed, the effect on the state vector may be 

described by the equation £' = f(6) , where 6'  is the resulting state 

vector and f(£) is a function which stands for the block of code.  In 

the typical heuristic program the heuristics are represented by blocks 

of code, each block being a complicated, inflexible function of the program 

variables. The relation between the code and the values of the program 

variables is illustrated below for variables A, B, and C with values 

a. , b  , and c. . 

6 = (a1,b1,c1) 

COMPUTATION 

BLOCK 

f(e) = f(A,B,C) (a'^b'^c^) = ß' 

I 
I 
"■ 

-- 

.. 

t 

Figure 2-1. 
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A simple, more flexible way to express such a function is by a 

set of rules, each having the form 

(a1,b1,.i)   -   (f^e), f2(e), f5(e)) . 

The above rule states that when the value of A is a.. , B is b  and 

C is c , the function (or block of code) changes the values such that the 

value of A becomes f, (£) ,  B becomes f2(e) , and C becomes f,(£) • 

The problem with this technique is that it may require an excessively 

large number of rules to adequately describe a function. 

This difficulty can be eliminated by using sets of values in place 

of individual values in the description of the state vector. For example, 

instead of using (a..,b ,c ) above to represent a particular state, 

(Al,Bl,Cl) can be used where Al, Bl, and Cl are sets, in this case de- 

fined as Al = [a } , Bl = fb } , and Cl = (cJ . A single description 

such as  (Al,Bl,Cl) can be made to represent a number of states by merely 

enlarging the sets defined by Al, Bl, and Cl . Thus by using rules of 

the form 

(Ai, Bi, ci)  -   (f^e), f2(e), f3(e)) 

it takes fewer rules to adequately describe a function depicting a 

block of code containing heuristics. 

In view of these considerations a heuristic will be represented 

as a rule of the form ^ -* Y •  This rule will either (a) specify 

an action to be taken in situation S by the rule S -• S' , where S'  is 

the situation that results after the action is taken, or (b) define a 

term by the rule Z -• Z' , where Z is the term being defined and Z'  is 

some conbination of terms which constitutes the definition of Z . 
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It will be useful to think of these rules as production rules which 

specify how a value or string of values of variables from the state vector 

can lead to other strings. 

51* 

REPRESENTATION OF HEURISTIC RULES. A heuristic rule can now be re- 

presented by a production rule of the type S - S' . Here S la a situation    -' 

defined by the state vector variables, such as the vector (Al, Bl, Cl) , 

and S'  is the definition of the resulting situation or state vector, 

such as (f-^t), f2(e), f,(&)) • Production rules of the type S - S' 

will be called action rules (ac rules).  Consequently, an action rule 

states that in a situation of type S the values of some of the state vector 

variables are changed to produce a situation of type S' . This type of 

production rule is weakly analogous to the productions used in a Chomsky 

type 0 grammar (Chomsky, 1959)' 

REPRESENTATION OF HEURISTIC DEFINITIONS.  A heuristic definition can be 

represented by a production rule of the type Z -• Z' , where Z is a 

value of a state vector variable (such as Al ) and Z1 is either 

(1) a value of a state vector variable and an associated predicate, or 

(2) a computational rule for combining variables of the state vector. 

Case (l) will be called a bf rule (backward form) and case (2) an ff 

rule (forward form).  An example of case (l) Is Al -• A , A > 20 , 

meaning that A is considered a -ember of the set Al if the current 

value of A is greater than 20 .  An example of case (2) is X -* Kl x C , 

meaning that X is defined by the arithmetic expression Kl x D . 

This type of production rule is weakly analogous to the productions used 

in a Chomsky type 2 grammar (Chomsky, 1959)- 



STATE VECTOR COMPOSITION-  The state vector is subdivided into three 

types of variables: bookkeeping variables, which provide a  record of 

past experiences; function variables, which represent arithmetic 

expressions containing state vector variables; and dynamic variables, 

which either directly influence the decisions of the program or change 

in value as a direct result of these decisions.  Only the dynamic 

variables are used in the descriptions which represent the left 

and right parts of the action rules. 

Decision Making Using Production Rules 

The production rule just described can be used to implement decision 

making in a problem solving program. This technique will now be illustrated 

for the class of problem solving programs categorized as game players. The 

"intelligünce" of a game playing program is measured by the appropriateness of 

the decisions (or moves) it makes during the course of a game.  In order to 

make a decision, a program using the production rule method of heuristic 

representation (l) examines the action rules to find one applicable to the 

current situation, and (2) uses the rule just found to change the values of 

certain dynamic variables of the state vector in such a way that the change 

defines a move. 

To illustrate the use of these production rules in a game-playing 

situation, let the gubvect [ ß , composed of the pertinent dynamic 

variables of the state vector, be the following: 

ß - (a, b, c) 

where A, B, and C are variables with the current values a, b, and c 

respectively. The heuristics to be used for this simple example are: 

1. If A is an "Al" then add X to the value of B . 
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2.  If A is an "A2" and C is a "Cl" then subtract Y 

from the value of C . 

5-  If B is a "Bl" then add Y to the value of C . 

k.    A is an "Al" when A > 25 . 

5. A is an "A2" when A < 25 • 

I. ^Al, *, »J ~* la, X+b,   c; ac 

2. (A2, *, ci) -* (a,  b,  c-Y) IV 

'■• (*, Bl, ») - (a,  b, Y+c) ac 

;.. A.l —• A,  A > 25 bf 

■• A2 —» A,  A < 25 tr 

HI —♦ B,  B > 1 ■'\- 

7. W -♦ B,  B > ^ bf 

-. C] -• C,  C =  5 bf 

• X —» Kl x D ff 

10. Y -. K2 -  (K3 X  E) ff 

I 

6. B is a "Bl" when B > 1 . 

7. B is a "B2" when B > ^ . 

8. C is a "Cl" when C ■ 5 • 

9« X increases as D increases. 

10. Y increases as E decreases. 

In the preceding heuristics, D and E are bookkeepint; variables, 

X and Y function variables, and A, B, and C dynamic variables. 

The corresponding production rules are: 

i 
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1 

A "*■" in a subvector indicates that the variable in question may 

take on any value. Hence (Al, *, *) describes all situations where A 

has the symbolic value Al , while B and C have any values.  Also needed 

are the following production rules (one for each element of the subvector): 

36 
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11. A •* a. a € (set of possible values of A ]   bf 

12. 3 - b, b 6 [set of possible values of B }   bf 

15» C -• c,  c 6 (set of possible values of C }   bf 

For this example, the set. of possible values for A, B, and C will be 

defined as the set of natural .lumbers. 

In the game, when the point is reached where the program must 

make a "move" decision, the values of A, B, C, D and E will have been 

set by either a previous program decision or by the non-heuristic part 

of the program.  The terms Kl, K2, and K5 are considered to be 

constants. The decision is made in two steps as follows. 

A-  Each element of the current program subvector 

is matched against all right sides of the bf rules. 

When a match occurs (the predicate is satisfied) the 

corresponding left side of that bf rule is then matched 

against all right sides of bf rules, etc., until no more 

matches can be found. The resulting set of symbols de- 

fines a symbolic subvector.  This step is somewhat analogous 

to parsing (irons, Ijbk;  Ingerman, 1^66). 

L.  The symbolic subvector derived in Step A is 

matched against all left sides of the action rules, 

going from top to bottom, and when the first match is 

found the values of the program subvector are modified 

as described by the right side of the matched rule.  A for- 

ward search is usually necessary, through the ff rules, to 

determine the new values for the program subvector variables. 
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As a concrete example let the subvector have the values a = ^ b = 5, 

c = 6 , the constants have the values Kl - 1, K2 = 20, K5 = 5 , and let 

the bookkeeping variables have the values D = 7 and E = 8 . Then 

0 = C1*» 5, 6) and the "parse" c* step A has the following form. 

A2   Bl 

I 
I 
I 

,. 

Figure 2-2. 

Here sLep A is initiated by comparing a = k    with each bf rule 

predicate, the predicate being satisfied only if it contains the symbol 

a and is true when a is set equal to ^ . Thus a. = h    is found to 

match rule 11 and no others. Next, A = 4 is similarly compared with all 

bf rule predicates and is found to match only rule 5« Finally, A2 = h 

is CTipared with all bf rule predicates, and since it matches none of 

them the search terminates, leaving A2 as the final symbolic value. 

Elements b and c are processed in the same manner, and the symbolic 

subvector that results ;.s ((A2), (B1,B2), (C)) . This subvector 

is a description of all situations in which (l) the variable A has the 

symbolic value A2 , (2) the variable B haö either the symbolic value 

Bl or B2 , and (3) the variable C has the symbolic value C . 

otep B now consists of comparing the subvector ((A2), (B1,B2), (C)) 

with the left side of each action rule, until a match is found.  In 

this case a match occurs at rule 3' The program subvector is then set 
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to the values specified in the right side of rule 5-  Hence the new ß 

equals {k,  5, (20 - (3 x 8)) + 6) or {h,   5, 2) .  In effect, the pro- 

gram made the decision to change the value of the variable C to 2 . 

The method just proposed for representing heuristics easily satis- 

fies the first two requirements of section 2.1, since the heuristics are 

separated from the program, and the individual heuristics and their inter- 

relationships are clearly identified. The third requirement of section 

2.1 is also satisfied, since the production rules are easy to 

modify or replace, are compatible with generalization schemes (this will 

be shown in Chapter 3), and are easy to use to obtain a decision from 

the system. Standard techniques for handling production rules, such as 

parsing, are seen to suggest methods which can be used to facilitate the 

decision making process. 

NEWELL'S SYSTEM. This is not the first attempt to use a production 

system as the underlying mechanism in a problem solving scheme. 

Newell (l9o6> 1^7) uses a production system to characterize the problem 

solving process occuring in a human subject as he solves crypt-arithmetic 

problems. Each production consists of an expression of the form: 

condition •*  action 

and specifies the action to take when the condition in the left part 

of the production is true.  The productions are priority ordered so 

that the system can uniquely determine which production to use in 

situations where more than one is applicable.  The production rule 

system ^ust described closely parallels Newell's system in its 

general approach to decision making. 
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2.5 TRANSLATION OF HEURISTICS INTO PRODUCTION RULES 

At this  point it is reasonable to ask how one cui go from a 

heuristic stated informally, like "if the piece advantage is high make 

an even exchange", to a set of representative production rules. This 

transition can be accomplished through the use of an intermediate step, 

that is, a formal language in which heuristics can be expressed precisely, 

and which can be automatically translated into production rules. With 

such a tool, one would only have to restate the heuristic in this 

intermediate formal language in order to effect its transformation into 

production rules. 

A Language For Specifying Heuristics 

The syntax of a language for expressing heuristics is presented in 

Figure 2-5 as a set of syntactic rules. This language will be called 

LASH:  language for specifying heuristics. 

TERMINAL SYMBOLS.  The terminal symbols in the syntactic rules include 

(l) all the underlined words, (2) all non-alphabetic symbols, and (5) all 

Greek letters.  The terminal symbol @ stands for any ALGOL-like 

identifi'jr (Bauman et al., 196^; Ekman and Froberg, 1965)j while the 

terminal symbol # stands for any ALGOL-like number. 

The terminal symbol \ stands for any simple arithmetic expression, 

that is, any ALGOL-like expression composed of identifiers, the arith- 

metic operators +, -, x, + and the delimiters ) and ( . However one 

restriction is made; a single number or identifier must be enclosed in 

parentheses to be recognized as an expression. Without this restriction 

it would be, in some cases, impossible to determine whether a given 
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terminal string was an @ , a # , or a \ . Also, one extension is made; 

an expression can include the function "random (a,b)", which when 

executed evaluates to a number chosen at random from the range a to b . 

The terminal symbol n    stands for any simple Boolean expression which 

is enclosed in parentheses, that is, any parenthesized ALGOL-like Boolean 

expression composed of identifiers, arithmetic operators +, -, x^ tj 

relational operators >,<>=> ^ j and the delimiters ) and ( .  Some 

ej. mples of ©-type strings are Kl, STORE, and MJJ >  of #-type strings 

are 3,  1.5» and -12 , of \-type strings are (Kl), (3), and L8 + (3 x Q) , 

and of n-type strings are (P > h),   {6 y, Uk =  PL-5), and (L8 + (5 x Q) < Kl) . 
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SIMPLE PRECEDENCE SYNTAX.  The syntax presented in Figure 2-5 is a simple 

precedence syntax i.e., the syntactic rules are so arranged that the 

relation between any two symbols is unique.  Three types of relations are 

considered. 

(1) The relation ■ holds between all adjacent symbols within 

any string forming the right side of a syntactic rule. 

(2) The relation <    holds between the symbol immediately preceding 

a reducible string and the leftmost symbol of that string. 

(3) The relation •> holds between the rightmost symbol of a 

reducible string and the symbol immediately following that 

string. 

Here a reducible string is one which can be reduced through parsing 

to another string of equal or smaller length. As a consequence 

of this arrangement, the language defined by the syntax is a simple 

precedence phrase structure language (Wirth and Weber, 1966). 

The advantage in using this type of language is that there exists a 

very efficient algorithm for parsing sentences of the language (Wirth and 

Weber, 1  6).  This is quite important if one wants to construct a 

syntax-directed compiler (irons, I96I, 1965; Ingerman, I966) for automat- 

ically translating the language into some other form, such as a set of 

machine instructions or list of rules.  Thus the language is designed not 

only to provide for adequate dejcriptions of heuristics, but also to 

permit relatively simple and efficient translation into production rales, 

^he computer program to be describeil in this paper does not include a 

compiler for translating LASH into production rules. Consequently, 

translation into production rules is performed by hand. 



STRUCTURE. The structure of the language defined in Figure 2-5 will now 

be illustrated by using it to express a number of heuristics for a 

hypothetical game.  It will be assumed that for this game the dynamic 

variables are A, B, C, D, and E , the bookkeeping variables are F and 

G , the function variables are P and R , and the constants are 

Kl, K2, K5> and K^ .  The way in which the language can be used to 

express heuristics is shown below. 

beKin 'MOVEl' 

'M0VE3' 

DZ ^is a D such that (D < E-20), 

P equals (Kl X F) - (K2 x R), 

i 

i 
B ♦- 2xB;  C *- D +(i+xC)+P, 

B ♦- B+6; D <- C+D; E «- (O), 

A *- (5); D »- (E). 

_ifA>  5AB<10 then   'MOVEl'   otherwise 

if A > 20 then (if B=0 then   'M0VE2'   else » 

! 

(if B=l A C=GX then 'M0VE3' else 'MOVEl')) otherwise 

if D=DZ then 'M0VE5' . 

CX is a C such that (C+5 > P)i I 

T 

R equaxs (KJ X G) + (K^ X A)  end 

Note that each of the three declarations, MOVEl, M0VE2, and M0VE5 > 

define a change to be made in the state vector, or more precisely a change 

in some of the dynamic variables of the state vector.  The three rules 

(see Figure 2-5 for the definition of the symbol "rule") in the above 

example specify under what conditions each of these changes in the state 

vector is to be made.  The four definitions contained in the example 

merely define variables used in the declarations, the rules and in the 

definitions themselves. 
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TRANSLATION. The heuristics in the above example translate into the 

following production rules. 

(Al, Bl, *, *, *) - 

Al - 

Bl - 

(A2, B2, *, *,  *) - 

(A2, B5, CX, *, *) - 

(A2, *, *, *, *) 

A2 - 

B2 - 

B5 - 

(*, *, *, DZ, *) 

CX - 

DZ - 

P - 

R - 

(*, 2xb, d+(4xc)+P, *, *) 

A, A > 5 

B, B < 10 

(-*, b+6, *,  c+d, 0) 

(5, *, ♦, e, *) 

(*, 2xb, d+(4xc)+P, *, *) 

A, A > 20 

B, B=0 

B, B=l 

(5, *, *,  e, *) 

C, C+5 > P 

D, D < e-20 

(KIXF) - (K2XR) 

(KJXG) + (Ki+XA) 

ac 

bf 

bf 

ac 

ac 

ac 

bf 

bf 

bf 

ac 

bf 

bf 

ff 

ff 

Here when the value of a variable in the right side of an action 

rule is a "*" it means that no change is made in the value of that 

variable.  Thus 

(A2, B3, CX, *, *) - 0,  *,  *, e, *) 

means that when A=A2 , BHBJ , and C^CX then A is changed to 5 , 

D in changed to the current value of E , and B, C, and E are left 

unchanged in value. This notation is slightly different from (and 

slightly superior to) the notation presented earlier for the representation 

of heuristic rules. In the earlier notation the above rule would be 
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written 

(A2, B5, CX, *, *) - (5, b, c, e, e) . 

It should be noted that a rule in LASH translates almost directly 

into a number of action rules and bf-type heuristic definitions. Moreover, 

a definition in LASH translates directly into either an ff-type or a 

bf-type heuristic definition. Thus the translation of heuristics 

expressed in this language into production rules is a relatively simple 

task. 

SPECIFYING HEURISTICS IN LASH. There is one question as yet unanswered. 

How difficult is it to take heuristics stated in natural language and 

restate them in this formal language? The answer is that it is quite 

easy to make this transition, provided that a relevant state vector has 

been established and its variables defined.  For example, the heuristic 

mentioned at the beginning of this section, "if the piece advantage is 

high make an even exchange", can be restated as 

if PIECEADVANTAGE = HIGH then 'EVENEXCHANGE' . 

Also necessary is (l) a LASH declaration defining 'EVENEXCHANGE' by 

specifying the effect of an even exchange on the state vector variables, 

and (2) a LASH definition defining the term HIGH.  The high degree of 

similarity between the heuristic stated in English and the heuristic 

stated in LASH indicates how simple, sometimes even trivial, the transi- 

tion from one to the other can be. Consequently the formal language serves 

as a very convenient intermediate step in the process of translating 

heuristics into production rules. 
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CHAPTER 5 

PROGRAM MANIPULATION OF HEURISTICS 

5.1 CREATION AND EVALUATION OF HEURISTICS 

Ideally, a heuristic problem-solving-program should be able to 

modify or replace its heuristics in order to improve its overall problem 

solving performance. A step has been made in this direction by the 

deveDopment of a game playing program which modifies coefficients in 

an evaluation polynomial in order to improve performance (Samuel, 195V* 

i960), and a pattern recognition program which generates, evaluates, and 

modifies its operators in an attempt to improve pattern recognition ability 

(Uhr and Vossler, 196l).  However, these programs make no effort to 

recognize, create or evaluate individual heuristics, and as a consequence 

they are unable to radically modify their own heuristic configurations. 

Before the manipulation of heuristics in a program can be implemented 

two major problems must be faced: 

(1) the problem of evaluating existing heuristics in terms 

of their usefulness to the program. 

(2) the problem of creating new heuristics, both by modifying 

old ones and hypothesizing new ones. 

To solve these problems, techniques must be devised which will enable the 

program to evaluate and create heuristics during the course of its regular 

problem solving activity. 

Evaluation of Heuristics 

Of the two problems just outlined, the first one, measuring the value 
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or usefulness of a heuristic is perhaps trie more difficult.  This problem 

is actually an excellent example of the basic credit-assignment problem 

for complex reinforcement learning systems (Minsky, 196l). 

CREDIT-ASSIGNMENT PROBLEM. The credit-assignment problem is the following. 

If a large number of steps ire required to complete some complex task, 

then how should the credit for completing the task be distributed among 

each of the individual steps? A learning system which could answer this 

question would be able to reinforce steps pertinent to completion of the 

task and thus learn which steps are necessary and which are redundant or 

ineffectual . A rudimentary solution to the credit-assignment problem is to 

merely assign an equal amount of credit to each step involved in the successful 

completion of the task. This approach, however, will lead either to very 

inefficient learning or no learning at all unless the steps are relatively 

independent. If the steps are highly dependent, as is the case for the 

tasks to be considered in this paper, this simple approach is doomed to failure. 

Minsky (1961) illustrates the dangers of underrating the credit- 

assignment problem in a discussion of a program-writing program by 

Frieiberg (1958, 1959). The Friedberg program is designed to learn, 

through reinforcement, to write a test program that will perform some 

simple task. Frieiberg's program attempts this by (a) randomly generating 

a öH-instruction test program^ (b) executing this test program and eval- 

uating its operation according to a predetermined criterion, and (c) using 

the information concerning the success or failure of the test program to 

reinforce indi .idual instructions associated with successful test programs. 

Reinforcement consists of increasing the probability that particular 

instructions will be generated in later trials. Friedberg's program 



le-irns to solve simple problems but takes much longer than it would take 

to solve the problems by pure chance alone.     The mistake imde, Minsky 

notes,  is that credit is assigned to individual instructions rather than 

to functional groups of instructions such as  subroutines,  and this 

disregard for the hierarchical nature of the problem leads to the poor 

results. 

OUTER-LEVEL PROBLEM.     Evaluating or measuring the usefulness of a heuristic 

in a game playing program  (or any type of problem solving program)  is 

actually a 2-level credit-assignment problem;  that is, a credit-assignment 

problem within another credit-assignment problem.     The outer or 

top-level problem is to evaluate the  effectiveness of a sequence 

of decisions or "moves" and then to use this result to assign credit or 

blame to the individual decisions in the sequence.    The problem is difficult 

because it may not be clear how to distribute the credit or blame.    For 

example,  if the sequence is a poor one,  which decisions in the sequence 

should taKe the blame?    It would be unrealistic to blame every decision 

automatically ,   since the sequence may have been ruined by just one 

or two key decisions.     Conversely,  if the sequence is a good one  11 

does not necessarily mean that every decision is good; there could be a 

few poor ones present which exert very little influence on the game 

situation. 

In    general,   it  is relatively easy to evaluate the effectiveness 

of a long sequence of game decisions  (the longer the sequence,   the easier 

the evaluation) but difficult to evaluate or determine the effectiveness 

of any individual decision.    Even so,   it must be pointed out that the 

method used to determine the value of a game decision depends to a large 

1*9 



extent on the particular game uncwr consideration. 

I INMFR-L5VEL PROBUBM. The inner or lower-level credit-assignment problem is 

that of using the evaluation of a game decision to assign credit or br.ame 

to the individual heuristics which played a part in making the decision. 

Again the problem is difficult because there exists no simple rule for 

specifying how to distribute the credit or blame. This problem is 
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possibly more formidable than the higher-level problem, since the heuristics 

are often highly entangled and interdependent. Assigning credit (or 

blame) to a set of heuristics which have been involved in making a 

good (or bad) decision entails trying to determine to what degree each 

heuristic contributed to the decision. Thif is especially difficult when 

the heuristics are very dependent on one another. 
Q 
0 SOLUTION TO THE EVALUATION PROBLEM. Part of the solution to the problem 

of evaluating heuristics lies in the method chosen to represent them. The 

fii'st step in solving the problem is obviously to separate the heuristics 

from the main body of the program and to clearly define the relation- 

ships existing between them. This is accomplished automatically by 

representing heuristics as production rules. The ne .t a'.ep is to devise 

techni iues for distributing credit or blame. The heirarchical 

arrangement of the production rules in the form of an ordered list suggests 

the following type of analysis. When a decision is made via production 

rules a symbolic subvector representing the game situation is compared 

to all left parts of the list of action rules (production rules which 

represent heuristic rules) going from top to bottom until a match 

is found. The action rule which defines the decision, that is, the one 
ii 



whose left part matches the symbolic tmbvector, can easily be located. 

After the decision is evaluated the credit or blame can then be assigned 

to the action rule which defined the decision (or to the rules above it 

in the list of action rules) and to  the associated heuristic definitions. 

The approach to be used here is that of assigning blame to action rules 

leading to poor decisions by immediately modifying these rules in an 

attempt to make them more effective, while ignoring action rules leading 

to good or acceptable decisions. 

Creation of Heuristics 

The second major problem which must be faced before the heuristics 
o 

of a program can be adequately manipulated is the  problem of creating new 

heuristics. The most feasible way of creating new heuristics is by 

modifying existing ones. For action rules, three modification techniques 

will be considered: 

(1) Replacing the symbolic values in the left part of the 

rule. For example, (Al, B^., *) ■* (l, 2, *) might be 

changed into (A, B3, *) - (l, 2, *) . 

(2) Changing the relevancy of the elements in the left part 

of the rule. For exauiple, (Al, Bl, *) - (l, 2, *) might 

be changed into (*, Bl, *) - (l, 2, *) . Here element A 

is made irrelevant. 

(3) Changing the heuristic definitions associated with the 

left part of the rule. For example, (Al, Bl, *) - (l, 2, *) 

might remain unaltered while the definition of Al is 

changed; i.e., Al -♦ A , A < 15 might become Al -* A, A < 20. 

These techniques will be applied to action rules which lead to 
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decisions that are evaluated as being poor. Heuristic definitions 

represented by bf-tyje rules will be modified by simply changing the 

predicates in the right parts, oi' the rules. Definitions represented hy 

ff-type rules will not be modifiad. 
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II INFORMATION NEEDED. In order to create useful heuristics, 

either by »nodifying existing ones or by hypothesizing new ones, three 

items of information will be uspd. 

(1) a good or acceptable decision for the situation, 

(2) the situation elements (subvector variables) relevant 

to making this good decision, and 

(3) the reason why the decision is being made, expressed as 

an evaluation of these relevant situation elements. 

To illustrate that these three items are adequate consider the example 

given below. The subvector ß for this example will be defined by the 

dynamic variables A, B, and C . Tie action rules will be 

1. (Al, *, C2) - (*, -, c+3) 

2. (A2, Bl, *) - (a+2, *, *) 

3. (*,  B2,  Cl) - (*, b+1,  *) 

and the rules corresponding to heuristic definitions will be 

k. Al - A, A > 20 

5. A2 - A, A < 20 

6. Bl - B, B > 16 

7. B2 - B,  B < 16 

8. Cl - C,  C > 5 

9. C2 - C,  C < 5 

10.                      A   -• a, a € fset of natural numbers] 

ö 

;: 
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11. i3 -• b 6 fset of natural numbers} 

12. C -• c € fset of natural numbers) 

If the program subvector representing the game situation if, considered 

to be (13* 5* 7) > the symbolic subvector obtained through parsing is 

(A2, B2, Cl) . This symbolic subvector matches rule 3 above and leads 

to the decision of increnienting the value of B by 1 . If it can be 

determined that this was a poor decision and that 

(1) a good decision is to add 6 to the value of A , 

(2) the variables relevant to this decision are A and C , 

and 

(3) the decision is being made because the current value of A 

classifies A as an Al and the current value of C 

classifies C as a Cl , 

then the production rules can be modified by (a) changing the 

rules corresponding to the heuristic definitions of Al and A2 such 

that they become Al -• A , A > 13 and A2 -• A , A < 13 , and (b) inserting 

the action rule (Al, *, Cl) ■* (a+6, *, *) just above the action rule 

which now "catches" the symbolic subvector. Changing the definitions 

of Al and A2 changes the symbolic subvector to (Al, B2, Cl) which 

still matches or catches on rule 3* thus the new action rule is inserted 

just above rule 3- After such a modification is made the rules have 

the form: 

1. (Al, *, C2) - (*, *, c+3) 

2. (A2, Bl, *) - (a+2, *, *) 

3. (Al, *, Cl) - (««6« *, *) 

k.     (*, B2, Cl) - (*, b+1, *) 
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5. Al - A, A > 13 ^ 

6. A2 -» A, A< 13 T 

7. Bl -» B, B > \6 

8. B2 -» B, B < Iß 

9. Cl - C,  C> 5 

10. C2 -» C,  C < 5 

11. A -* a, a € fset of natural numbers} 

12. B -• b, "b € fset of natural numbers} 

13. C -, c, c € fset of natural numbers} 

It can be seen that now in the situation    (13» 9» 7)    the correct 

decision, "add 6 to the value of   A ", is made.    Consequently, the 

three items of information previously mentioned,  i.e., a good decision, 

the relevant elements, and an evaluation of these elements, permit 

the creation of useful or "good" heuristics.    This process is specified 

in detail in the next section. 

;: 

;: 
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3.2 TRAINING PROCEDURES 

In the previous section it was noted that three items of information 

are adequate for the creation of useful heuristics: 

(1) a good decision for the situation, 

(2) the relevant situation elements, and 

(3) the reason why the decision is being made. 

When a learning program is presented with a game situation and the above 

items of information for the purpose of improving its performance, the 

process will be called training. 

BOOK LEARNING. In section 1.3 a checker-playing program which employs 

an abbreviated form of training is described. T^iis technique is called 

book learning (Samuel, 1959» 1967)1 a procedure wherein the program is 

presented with game situations and the associated book-recommended moves 

and is permitted to use this book information to correct its move 

generating apparatus. In this procedure item (l) above is given to the 

program b  items (2) and (3) are not. 

Book learning has proved to be a successful technique for teaching 

programs to play games where minimaxing procedures can be applied. The 

book information supplies the program with a good move decision while the 

minimaxing procedure provides a method by which the program can determine 

wir.ch situation elements (or parameters) are relevant. One way parameter 

relevancy is determined in the checker program is by comparison of the 

current parameter values for a situation with the backed-up parameter 

values obtained through minimaxing on the path in the game tree corres- 

ponding to the book move. The parameters whose backed-up values are 
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consistently greater than the current values are considered the relevant 

ones, since these aie the parameters that the book moves tend to increase. 

In one version of the checker program the value or vorth of any game 

situation (or board configuration) is represented by a linear polynomial. 

As a consequence, when a move decision is made it is always because the 

move has associated with it the largest numerical value obtained by 

minimaxing evaluations of the polynomial back up the game tree. Thus 

by using minimaxing and a polynomial representation of the board value 

the program is able to obtain, by itself, the information specified by 

items (2) and (3) above. 

Learning Heuristic Rules 

As illustrated in section 3.1 the training information provides the 

data necessary for the construction of a new action rule; i.e., item (l) 
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TRAINING. For the general game-playing program, where the parameters 

are not independent and minimaxing is impossible (beciuse not enough in- 

formation is known to construct a game or decision tree) training procedures 

can be used to improve performance. This training can take place in 

two ways, (a) by supplying the program with a number of unrelated game 

situations and the associated information needed for training, or (b) 

by having a human (who is an expert at the game) monitor the decisions 

of the program as it plays an actual game and give the program, when 

a poor decision is made, the three items of training information. 

In section 3.1 an example was presented which indicated how heuristics 

in production rule form can be created or learned when the appropriate 

training information is available. The use of training information 

in learning heuristic rules and definitions will now be examined in detail. 
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of the training information supplies the right part of the action rule, 

while items (2) and (3) supply the left part. The most elementary method 

of correcting the set of action rules when they lead to a poor decision 

is by (a) using the training informatior to create a new action rule 

through generalization, and (b) inserting this new rule in the list of 

action rules immediately above the action rule which led to the unacceptable 

decision. However, this method may not always be practical, since it 

entails adding a new action rule for every training trial. Such a 

technique could lead to a prohibitive number of action rules. 

CORRECTION BY MODIFYING EXISTING RULES. What is needed for efficient 

correction of the set of action rules is the addition of another gener- 

alization scheme to the abovementioned process. Such a scheme should 

permit training information to be added to the set of action rules 

without the insertion of a new rule. One way this can be accomplished 

is by finding an appropriate action rule already located above the error- 

causing rule and modifying it to malic it general enough to catch the 

symbolic subvector. An appropriate rule is one which is capable of 

being suitably modified and which leads to the same decision as 

that specified in item (l) of the training information. After such a 

modification is carried out, the training information is effectively 

incorporated into the set of action rules. This is true because whenever 

the original training situation is re-encountered (i.e., the current 

state vector is identical to the state vector of the training trial) the 

system will make the decision previously specified by the training 

information. 

If no appropriate rules are located above the error-causing 
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rule but some are located below it, the following approach may be used. 

The error-causing rule, If suitable. Is modified sc as to pass (rather 

than catch) the symbolic subvector, while the first appropriate action 

rule below It Is modified to catch the subvector. Also, if any rules 

located between the error-causing one and the first appropriate one 

catch the subvector, they are modified to pass it. This type of 

modification also Incorporates the training information into the set of 

action rules. 

RULES APPROPRIATE FOR MODIFICATION. At this point it must be made 

clear which rules can be modified to catch the symbolic subvector, 

which ca"; be modified to pass it, and exactly how this modification process 

takes place. An action rule will be considered appropriate for modifi- 

cation to catch the subvector if it has the same form as the training 

rule, that 1^, the action rule which can be created from the training 

information. An action rule has the same form as the training rule 

only if (l) their right parts are identical, (2) for each * in the 

left part of the training rule there is a correspondicig * in the left 

part of the action rule, and (3) the correspeeding symbolic values of 

their left parts are identical, or at least are alike to the extent that 

they are both defined by the same logical operator. Here * is 

considered to always be identical to any other symbolic value. 

EXAMPLE OF RULE MODIFICATION. For example, consider the rule created 

from the training information to be 
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(Al,  *,  Cl) - (♦, b+2,  *) 

and the existing production rules to be 
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1. (Al, *, C2) - (♦, b+2, *) 

2. (Al, Bl, ♦) -  (*, *, a+5) 

3. (A2, *, C3) ^ (*, b+2, *) 

k. (Al, *, *) - (*, *,  a+5) 

5. Al - A. A < 6 

6. A2 ^ A, A < 8 

7- Bl - 3, B > 8 

8. Cl - C, C> 12 

9. C2 - C, C < 5 

10. 03 -» C, C> lU 

Here rule 1 anr" the training rule are not of the same form becaus-s Cl 

and C2 are not defined by the same logical operator (requirement (3) 

above). Rule 2 and the training rule are not of the same form because 

rule 2 has a Bl where the training rule has a * and their right parts 

are different (requirements (2) and (l) above). Rule 3 ana the training 

rule, however, are of the same form since they satisfy all three of the 

above requirements. 

An action rule can be modified to catch the symbolic subvector by 

enlarging the sets defined by the symbolic values in the rule. As an 

illustration of this generalization technique consider ac.ain the example 

Just presented, and let the program subvector be (5, 3, 13) • The 

symbolic subvector obtained through parsing is ((Al, A2), (u), (Cl)), 

which matches or catches on rule h.    This rule leads co a poor decision, 

since it is not the decision advocated by the training information. 

Rule 3 is located above error-causing rule k  and has the same form 

as the training rule. Thus, if rule 3 is modified to catch the symbolic 

subvector, the training rule will effectively be incorporated into the 
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set of action rules. The left part of rule 3 is (A2, *, C3) , so it 

can be seen that the subvector matches the left part of rule 5 with 

respect to its first two elements but not with respect to its third 

element CJ • If the value C3 in rule 3 is replaced by a symbolic 

value representing a set large enough to inCude the current value of 

the state vector variable C (which in this case is 13 ) the symbolic 

subvector obtained through parsing will catch on rule 5' Therefore C3 

is replaced by Cl , making rule 3 become (A2, *, Cl) - (*, b+2, *•) . 

The subvector now catches on rule 5* as desired, and causes the action 

advocated by the training information to be taken. 

An action rule can be modified to pass the symbolic subvector by 

reducing the size of the sets defined by the symbolic values in the 

rule. This technique is somewhat the opposite of the generalization 

method just described. In the previous example the symbolic subvector 

catches on the new rule 3« To modify this rule so that it passes the 

subvector it is necessary to restrict the definition of one of the sym- 

bolic values in the rule such that the symbolic subvector no longer 

includes this symbolic value. This can be achieved by restricting the 

definition of A2 so that it no longer includes the current value of the 

state vector variable A (which in this case is 5 )• Let rule 6 become 

A2 - A, A < 5 ;  then the symbolic subvector becomes ((Al), (B), (Cl)) 

which fails to catch on the new rule 3,  as desired. 

OVERGENERALIZATION. When an action rule is modified so it will pass (or 

catch) the symbolic subvector it is necessary to expand (or restrict) 

the size of the sets defined by one or more of the symbolic values in the 

rule. Care must be taken not to overgeneralize, that is, to change 
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the definitions of the symbolic values. If this happens the 

training process could become unstable; that is, many redundant action 

rules might be created during training. 

Overgeneralization may be guarded against by specifying the maximum 

allowable definition change viliich may be made.  In the previous examples 

Cl replacing C5 led to a change of size 2, since the predicate was 

changed from C > 1^ to C > 12 , and A2 had a definition change of 

size 3. The maximum allowable change depends largely on the type of 

game being played, and thus will be represented as a generalization constant 

K which can be changed only by the programmer.  In view of these con- 

siderations, an action rule is appropriate or suitable for modification 

only if the definition change involved is equal to or less than K . 

Learning Heuristic Definitions 

It has been shown how the three items of training information supply 

the data necessary for the creation and modification of heuristic rules 

represented as action rules.  This training information also provides the 

necessary data for creating or learning heuristic definitions represented 

as bf rules. The techniques whicn can be used to learn heuristic 

definitions will now be described. 

PAETITIONING. A simple bf rule consists of a production rule and an 

associated simple predicate, such as 

Al - A, A > 10 

This rule states that if the value of the state vector variable A is 

greater than 10 ,  then the state vector variable A may take on the 

symbolic value Al . The symbolic values a state vector variable may 
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take partition the set of possible values for that variable into subsets. 

Two types of partitioning procedures will be considered, (l) mutually J 

exclusive (and exhaustive) partitioning, and (2) overlapping (and 

non-exhaustive) partitioning. An example of mutually exclusive partition- 

ing for the state vector variable A is 

Al - A, A > 10 

A2 -» A, A < 10 

where the set being partitioned is just the set of natural numbers. Here 

any value of the state vector variable A permits A to take one and 

only one symbolic value. An example of overlapping partitioning is 

Here a particular value of the state vector variable A may permit A to 

take zero, one, or a number of symbolic values. 

EXCLUSIVE VS OVERLAPPING VAEIABLES.  In the learning procedure about to 

be outlined a state vector variable will be considered one of two types: 

either an exclusive variable with symbolic values defined by mutually 

exclusive definitions, or an overlapping variable with symbolic values 

defined by overlapping definitions.  Item 5 of the training information 

provides a reason why the proposed decision is being advocated.  When 

an exclusive state vector variable is being referred to in item 3, the 

symbolic value associated with the current numerical value of the 

variable must be given. Let A , for example, be an exclusive state 

vector variabl? with a value of 8 .  Then item 3 might state that the 

62 

: 

: 

Al - A, A > 10 

A2 ^ A, A > 4 

. 

4. 

li 
: 

: 

: 



mm 

proposed decision is being advocated because " A is an A2 ". When an 

overlapping state vector variable is being referred to in item 5> a 

magnitude indication associated with the current numerical value of the 

variable must be given. Let A , for example, be an overlapping state 

vector variable with a value of 20 . Then item 5 might state that the 

prorcsed decision is being advocated because " A is large" or because 

" A is small". 

LEARNING EXCLUSIVE DEFINITIONS. The procedure for learning the definitions 

of the symbolic values of an exclusive state vector variable merely con- 

sists of partitioning the given range into the number of desired subsets 

and then using the data of item 5 from each training trial to shift the 

boundary lines whenever the newly acquired information so permits. An 

example will clarify this procedure. Let A be an exclusive state 

vector variable with the three subsets or possible symbolic values Al , 

A2 , and A3 , and let the range of A be the positive integers from 

1 to 60 • Initially A is partitioned into the specified number of 

subsets by estimating or guessing the boundary locations. Let the initial 

estimate of the boundaries partioion A as follows: 

Al A2 

t rh 
A5 

20 21 ^ "WTa Ti 

Thus the initial bf rules are 

Al -» A, A < 20 

A2 -» A > 20 A A < ^0 

A3 -♦ A, A > U0 
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The effect of k hypothetical training trials on the partitioning is 

shown below. 

Trial 

1. 

Information New Boundaries 

A2 A = Ik, A   has the      Al 
value associated with h .. I i 
the middle subset; ^ 
i.e., A is an A2 . 

A = 7 > A is an Al    Al A2 

A5 

1*0 M ■rt 

A3 

TJTIT f#i 
1+0'1+1 TO 

A = 50 , A is an A3    Al A2 A5 

TJ^ 29*30" ■^ 

1+. A = 11, A is an A2 Al A2 A3 

lo'n 29l30 •^ 

The bf rules learned are: 

Al -» A, A < 10 

A2 -♦ A, A > 10 A A < 29 

A3 -» A, A > 29 

LEARNING OVERLAPPING DEFINITIONS- The procedure for learning the definitions 

of the symbolic values of an overlapping state vector variable is quite 

elementary. It consists of using the magnitude indication of item 3 to- 

gether with the current numerical value of the state vector variable to 

define a particular subset of the range. If the variable is classified 

as "large" the current numerical value of the variable and all values 

above it are defined as a subset. Conve.'sely, if the classification is 

"small" the current value and all below it are defined as a subset. Con- 

sider the following example for the overlapping state vector variable B 
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with a range from 1 to 60 . Initially, there are no bf rules for B , 

and the range is unpartitioned as follows: 

B 

T6 

The effect of k  hypothetical training trials is shown below. 

Trial Information 

1. B = 8 , B is small 

2. B = 50 , B is large 

5- B = 51 > B is large 

It. B = 28 , B is large 

New Boundaries 

Bll 

ST 
Bl 

"58 

TT 29 50 

|B2 

TT 
Bl 

^9 

29 30 

|B2 . 

 53 

B5 

50 51 60 

27 20 50* 51 601 

Note that on trial 4 instead of defining a new subset B^ , where 

B > 27 , the existing subset B2 was enlarged. This type of generalization 

will be performed whenever it can be accomplished without enlarging beyond 

some maximum amount KK , a constant which depends on the game being 

learned. The bf rules learned are: 

Bl -♦ B, B < 9 

B2 -♦ B, B > 27 

B5 -» B, B > 50 

Training Procedure Outline 

The entire training procedure for learning heuristics represented 

as production rules will now be briefly outlined. This outline, shown 
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below, lists the steps involved in a single training trial. 

1. a. Parse the program subvector to obtain the symbolic subvector. 

b. Drop the symbolic subvector through the action rules to 

obtain a decision, 

c If the trainer indicates that the decision was acceptable 

then stop, otherwise go to step 2. 

2. a. Obtain the training information from the trainer, 

b. Construct an action rule (to be called the training rule) 

from this information, 

c Use item (5) of the training information to change or create 

bf rules which represent heuristic definitions. If this 

changes the symbolic subvector then go to step 5» otherwise 

go to step h. 

5.  a. Drop the new symbolic subvector through the action rules to 

obtain a decision, 

b. If the decision is the one advocated by item (l) of the 

training information then stop, otherwise go to step k. 

k.     a. Locate the action rule responsible for the unacceptable 

decision made in step 5 (nr in step 1 if step 3 was skipped). 

This action rule will be called the error-causing rule. 

5.  a. Search the action rules above the error-causing rule for a 

rule which has the same form as the training rule and is 

suitable for modification to catch the symbolic subvector. 

This rule will be called the target rule. 

b. If such a rule is found modify it to catch the symbolic 

subvector and go to step 3, otherwise go to step 6. 
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6. a. Search the action rules below the error-causing rule for a 

rule which has the same form as the training rule and is 

suitable for modification to catch the symbolic subvector. 

This rule will be called the target rule. 

b.  If (l) such a rule is found, (2) the error-causing rule is 

suitable for modification to pass the symbolic subvector, 

and (5) the rules between the error-causing rule and the 

target rule either pass the symbolic subvector or are suit- 

able for modification to pass it then modify the target rule 

to catch the subvector, the error-causing rule to pass the 

sub\ector, and the rules between these two to pass the 

subvector and go to step 3^ otherwise go to step 7- 

7. a. Place the trainin. rule immediately above the error-causing 

rule in the list of action rules and stop. 

These steps are illustrated by the block diagram given in figure 3-1. 

To see exactly how these steps are applied consider the following example, 

where the dynamic subvector variables are A, B, and C • Here A is 

an exclusive variable, while B and C are overlapping variables. The 

initial set of production rules for this example is shown below. 

1. (A2, Bl, *) -♦ (a+1, *, *) 

2. (Al, *, Cl) -► (*, b+2, *) 

5-  (*, »j *)  -» (random) 

h. Al -» A, A < 20 

5- A2 -» A, A > 20 

6. Bl -♦ B, B > 5 

7. Cl -♦ C, C > 9 
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The word random in the right part of rule 3 means that if the symbolic 

subvector catches on this rule, a decision will be chosen at random from 

the set of possible decisions. During training "random" is assumed to 

always lead to an unacceptable decision since this accelerates the training 

process. 

INSERTING A NEW ACTION RULE. Let the program subvector at the beginning 

of trial 1 be (l8, 2, 11) . This parses to the symbolic subvector 

(Al, B, Cl) which catches on rule 2 and leads to the decision of in- 

crementing B by 2 . Assume that this decision is unacceptable and 

that the training information is: 
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Obtain a 
decision 

Figure 3-1.    A block diagram of the training procedure. 
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(1) a good decision is "add 5 to the value of C "• 

(2) the relevant variables are A am? B . 

(3) the decision is being made because "A is an A2 " and 

" B is small". 

The training rule (constructed from the training information) is 

(A2, B2, *) -» (*, *, c+3) 

and the bf rules changed or created (on the basis of item (3) above) are 

Al -» A, A < 18 

A2 ■♦ A, A > 18 

B2 -» B, B < 5 • 

These bf rules change the symbolic subvector to (A2, B2, Cl) which 

catches on rule J» Thus the error-causing rule is rule J« No action 

rules above or below the error-causing rule have the same form as the 

training rule, so the training rule is inserted into the list of action 

rules immediately above error-causing rule > The new set of rules is 

shown below.  Here, when the program subvector is (l8, 2, 11) the 

desired decision, "add 5 to the value of C ", is made. 

1. (A2, Bl, *) -4 (a+1, *, *) 

2. (Al, *, Cl) -» (*, b+2, *) 

3. (A2, B2, *) -♦ (*, *, c+3) 

k.     (*, *, *)  -♦ (random) 

5. Al -» A A < 18 

6. A2 -♦ A, A > 18 

7. Bl -♦ B, B > 5 
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8. 

9. 

B2 -♦ B,  B < 3 

Cl -» C,  C> 9 

MODIFYING A RULE ABOVE THE ERROR-CAUSING RULE.     Let the program 

subvector at the beginning of training trial 2 be    (12, 1, 7)  •    This 

parses to the symbolic subvector    (Al, B?,  C)    which catches on rule k 

and leads to a random decision.    Assume that this decision is unacceptable 

and that the training information is: 

(1) a good decision is to "add   2    to the value of    B ". 

(2) the relevant variables are   A    and    C . 

(5)    the decision is being made because " A   is an   Al " and 

" C    is large". 

The training rule  (constructed from the training information)  is 

(Al,  *,  C2) -»  (*,  b+2,  *) 

and the bf rule created (on the basis of item (5) above) is 

C2 -» C, C > 6 . 

This bf rule changes the symbolic subvector to    (Al» B2,  02)    which still 

catches on rule k.   Thus the error-causing rule is rule ^«    Rule 2, 

above the error-causing rule, has the same form as the training ru3.e and 

is suitable for modification to catch the symbolic subvector if    K > 3  • 

Let    K = 3 ,  then rule 2 is modified by replacing   01    with    02   .     The 

new set of rules  is  shown below.    Here,  when the program subvector is 

(12,  1, 7)    the desired decision,  "add    2    to the value of    B ",   is made. 

1. (A2, 31, *) -» (a+1, *, *) 

2. (Al,  *,  02) -♦  (*,  b+2, *) 
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5.  (A2, B2, ♦) -♦ (*, *, c+3) 

k.    {*, *, *)      -» (random) 

5. Al -» A,  A < 18 

6. A2 -♦ A > 18 

7- Bl -♦ B,  B > 5 

8. B2 -♦ B,   B < 5 

9- Cl -♦  C,   C > 9 

10. C2 -♦ C,   C > 6 

MODIFYING A RULE BELOW THE ERROR-CAUSING RULE.  Let the program subvector 

at the beginning of training trial 3 be (21, k,  15) . This parses to 

the symbolic subvector ((A2), (Bl), (C1,C2)) which catches on rule 1 

and leads to the decision of incrementing A by 1 . Assume that this 

decision is unacceptable and that the training information is: 

(i) a good decisjon is to "add 3 to the value of C "■ 

(2) the relevant variables are A and B • 

(5) the decision is being made because " A is an A2 " and 

" B is small". 

The training rule (constructed from the training information) is 

(A2, Bi *) "» (*, *>  c+3) 

and the bf rule created (on the basis of item (3) above) is 

B3 -♦ B, P < 5 • 

This bf rule changes the symbolic subvector to ((A2), (B1,B3)» (C1,C2)) 

which still catches on rule 1, making it the error-causing rule. Rule 3 

below the error-causing rule has the same form as the training rule and 
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i2 suitable for modification to catch the symbolic subvector. Further- 

more, the error-causing rule is suitable for modification to pass the 

subvector. Thus rule 5 is modified by replacing B2 with B5 , and rule 

1 is modified by changing the definition of Bl to 

Bl -♦ B, B > J+ • 

The new set of rules is shown below. Here, when the program subvector 

is  (21, h,  15) the desired decision, "add 5 to the value of C ", 

is made. 

1. (A2, Bl, *) -♦ (a+1, *, *) 

2. (Al, *, C2) -► (*, b+2, *) 

5. (A2, B3, *) -♦ (*, *, c+5) 

);. (*, *, *)  ^ (random) 

5. Al -»A, A < 18 

6. A2 -» A, A > 18 

?. Bl -» B, B > 1+ 

8. B2 -♦ B, B < 5 

9. B^ -♦ B, B < 5 

iO. Cl -» C, C > 9 

11. C2 -» C, C > 6 

CONVERGENCE. The effectiveness of these modification techniques can 

be tested by using a program, rather than a human, as a trainer. The 

training program must contain a complete set of game heuristics in produc- 

tion rule form and must monitor the learning program, which initially 

contains no heuristics. Whenever thu learning program makes a decision 

which conflicts with the one made by the training program, it will be 
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told by the training program the correct decision, the relevant variables, 

and why the decision was made.  The training program's decisions are 

considered to be the correct decisions.  If the modification techniques 

used were perfect for use in the task environment under consideration, 

the learning program would eventually grow a set of production rules 

leading to exactly the same decisions as the training program rules. 

Poor modification techniques would create a learning program which rarely 

made the same decision as the training program. Thus the speed and 

degree of convergence obtainable between the decisions generated 

by the learning program and those generated by the trainer can be used 

as a measure of the effectiveness of the modification and generalization 

procedures. 

Applicability of Training Process 

A pertinent question at this point is the following. Using the 

modification and generalization techniques just described what features 

of the task environment affect the speed and the degree of convergence 

obtainable between the decisions generated by the learning program 

and those generated by the training program? For the learning procedures 

even to be applicable each subvector variable must be considered to 

have a range consisting of a set of integer values. When this condition 

is satisfied convergence can be obtained, however the speed and degree 

of convergence depend upon the properties of the "decision f.pace" 

utilized by the trainer. 

DECISION SPACE.  The decision space of the traJner is considered to be 

an n-dimensional space which has a dimension corresponding to each of 
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the n variablis in the subvector. Thus each point in this space 

represents a game situation, and the entire space represents the set 

of all possible game situations. 

The trainer is assumed to know the correct decision to make in 

every game situation, i.e., it has a decision associated with each point 

in its decision space. For example, let ß - (P, B) where P and B 

each have a range from 1 to ^ and where decisions d.. , dg,  d,, and 

d,  may be made. Then the decision space for the trainer could have the 

form shown below. 

B i 

5 - ' d ' 'd ! 2: n V^/'Vi 
k ■ 

3 ■ 

Id2! ^ 

2 ■ 
i'äH'^- .3' ^ d^ 

1 ■ idi  di 
V 

di   di;'A; 
0 __  —,—  , , , ^ 

Figure 5-2. 

The degree to which identical decisions tend to form groups will be 

called the clustering effect, indicated by the dotted lines in the 

above figure. In this example there is a high degree of clustering. 

An example of minimal clustering is shown below. 
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converge until it has acquired one action rule for each game situation 

in the entire decision space. 

■:•- 

: 
SPEED OF CONVERGENCE.  It can now be seen that the speed of convergence 

depends on the degree of clustering inherent in the decision space of 

the trainer.  If there is a high degree of clustering then convergence will 

be rapid, that is, the learning syatem will be able to accurately 

imitate the training program after learning only a small number of action 

rules.  If, however, there is a low degree of clustering, con ergence 

will be slow. For example, with minimal clustering the system will not 

. 

DEGREE OF CONVERGENCE- The degree of convergence obtainable from 

the learning system, on the other hand, depends on the degree of 

consistency exhibited by the trainer during the training process. If 

the trainer is very consistent in its task of supplying decisions when 

presented with game situations (i.e., the arrangement of decisions in 

its decision space is very stable) a high degree of convergence is 

possible. 
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3-5 LEARNING WITHOUT EXPLICIT TRAINING 

In section 3-2 it was shown how heuristics in the form of production 

rules can be learned when the following information is available for 

each move or game decision made by the program: 

(1) a good decision for the situation^ 

(2) the relevant situation elements, and 

(3) the reason why the decioion is being made. 

Training is one way to provide the program with this information, but 

this technique requires the presence and participation of a trainer.  Since 

humans can learn to play games without explicit training, developing pro- 

grams which also can learn without explicit training seems a reasonable 

goal. This can be attained if the program itself can be made to generate 

the training information, either through logical deduction or hypothesis 

formation.  Once the training information is generated the program can 

proceed as outlined in the previous section and in a sense train itself. 

One difficulty is that some mechanism must be included for testing the 

hypotheses formed and for eliminating useless ones. Further, this 

mechanism must be compatible with the generalization techniques used in 

the training process. A procedure will now be described which enables 

the program to generate the training information during the normal 

course of play and thus learn heuristics without explicit training. 

AXIOMATIZATION.  The fundamental problem at this point is:  how can the program 

hypothesize reasonable heuristic rules without explicit training? The 

chance of finding a reasonable or useful heuristic by creating heuristic 

rules at random seems rather remote. A novel way to attack the problem 

is to formalize or axiomatize (McCarthy, 1951 ) the following for the 
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game under consideration: 

before learning starts. Each row of the matrix stands for a game 

decision or class of decisions and each column for a subvector variable. 

Each entry E.. in the matrix indicates why the variable j is relevant, 

if when th? decision  i is made it is in fact relevant. For example, 
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(1) the rules of the game, 

(2) statements (or "axioms") about the game. 

■• 

(5) general statements about techniques used in game playing. 

The result is a set of logical statements or premises, from which new 

statements can be deduced using rules of deductive inference. These new 

statements can then be used as the basis for creating new heuristic rules. 

This technique of logical deduction can be used by the program to 

obtain item (l) of the training information, that is, a good decision 

for the gi.en game situation.  This process entails (a) making a 

decision in a situation S , (b) noting the effect on S of the sub- 

sequent decision by the opponent, and (e) using the information about S 

and the change in S together with the set of logical statements to 

deduce what the original decision should have been.  It was noted in 

section J.l that the longer the sequence of decisions, the easier it 

is to evaluate the sequence as being good or bad.  This technique of using 

logical deduction permits the evaluation of a decision sequence of the 

mi 
worst type, a sequence of length one. An example of this technique 

applied to a particular game, as well as a complete set of logical 
• ■ 

statements for the game,   is presented in chapter  5« 

u 
DECISION MATRIX.     Item (5)  of the training information can be obtained 

from a decision matrix which is game dependent and is  given to the program 

:: 
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if the program can determine that decision i is good and variable 

j is relevant, and entry E..  is the term "large" then it knows that 

decision i was made because variable j is large. An underlying 

assumption here is that when a variable is relevant for a particular 

decision or class of decisions it is always relevant for the same reason. 

The types of reasons under consideration are simply (a) the category 

the current value of the variable belongs to (for exclusive variables), 
mm 

and (b) the magnitude indication associated with the current value 

of the variable (for o/erlapping variables). 

A linear polynomial used to determine a move decision is ;;omewhat 

analogous to a decision matrix with just one row but with one column 

for each parameter of the polynomial.  The entries in the matrix would 

all be the term "large", since whenever a decision is picked it is 

always because tne relevant parameters are large and thus increase the 

value of the polynomial. Another heuristic program which is supplied 

with information in matrix form is GPS (Newell, Shaw, and Simon, 1959)* 

This program relies on a connection table to provide information about 

the operators relevant to reducing certain differences. 

HYPOTHESIS FORMATION. Tern (2) of the training information can be obtained 

through the generation and testing of hypotheses concerning the relevancy 

of subvector variables. Again the problem of generating useful or 

reasonable hypotheses arises.  This problem can be solved for the special 

case of relevancy hypotheses in the following manner.  Let the initial 

hypotbsses in every case be that all subvector variables are relevant; 

this means that the left parts of the training rules constructed from the 

5 items of training information will initially contain no *■ 's. Testing 

;: 
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will consist of noting whether or not a particular training rule (placed 

in the set of action rules by step 7 of the training procedure) catches 

the symbolic subvector when the action advocated by the rule is determined 

to be the correct decision. If the rule does not catch the subvector, 

the hypothesis for that rule concerning the relevancy of the variables 

is changed by making some of the variables in the left part of the rule 

irrelevant.  This makes the rule more general since it then applies to 

a greater variety of situations. 

This technique can be easily incorporated into the training procedure 

as follows.  If it is desired to modify an hypothesized action rule to 

catch the subvector and the rule cannot be suitably modified by replacing 

symbolic values then the following action is taken. The left part of 

the rule is modified by making a minimum number of variables irrelevant 

while still increasing the generality enough so the rule can catch the 

symbolic subvector.  Of course some limit must be imposed on the degree 

of generality which may be obtained, otherwise the hypothesized action 

rules would eventually contain all * 's in their left parts.  Let N stand 

for the minimum allowable nurrber of variables which must remain relevant 

in the left part of an action rule. Then, when an hypothesized action 

rule has only N symbolic values which are not * 's in its left part it 

cannot be modified by reducing the number of its relevant variables. 

The value of N depends on the number of subvector variables used and the 

particular game under consideration. 

Revised Training Procedure 

The technique just described can be merged with the training 

procedure outline In section ^.2 by making a few minor changes.  This 

revised training procedure outline is shown below. 
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i.  a. Parse the program subvector to obtain the symbolic sub- 

vector. 

b. Drop the symbolic subvector through the action rules to 

obtain a decision. 

c. If the trainer indicates that the decision was acceptable 

then stop, otherwise go to step 2. 

2.  a. Obtain the training information from the trainer. 

b. Construct an action rule (to be called the training 

rule) from this information. 

c. Use item (5) of the training information to change or 

create bf rjles which represent heuristic definintions. 

If this changes the symbolic subvector then go to 

ötep 5, otherwise go to step h. 

J.  a. Drop the new symbolic oubvector through the action rules 

to obtain a decision. 

b. If the decision is the one advocated by item (l) of the 

training information then stop, otherwise go to step h. 

k.     a. Locate the action rule responsible for the unacceptable 

decision made in step 5 (or in step 1 if step 5 was 

skipped).  This action rule will be called the error- 

causing rule. 

b.  a. Search the action rules above the error-causing rule for 

a non-hypothesized rule which has the same form as the 

training rule and is suitable for modification to catch 

the symbolic subvector. This rule will be called the 

target rule. 

1 
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b.  If such a rule is found use the training generalization 

techniques to modify it to catch the symbolic subvector 

and go to step 3> otherwise search the action rules above 

the error-causing rule for an hypothesized action rule 

leading oo the decision advocated by the training infor- 

mation. If such a rule is found, modify it to catch the 

subvector by making a minimum number of variables irrele- 

vant if this can be done and still leave N variables 

relevant and go to step 3> if no action rules suitable 

for this type of modification can be found above the 

error-causing rule then go to step 6. 

a. Search the action rules below the error-causing rule for 

a non-hypothesized rule which has the same form as the 

training rule and is suitable for modification to catch 

the symbolic subvector.  Th.s rule will be called the 

target rule. 

b. If (l) such a rule if found, (2) the error-causing rule 

is suitable for modification to pass the symbolic sub- 

vector, and (3) the rules between the error-causing rule 

and the target rule either pass the symbolic subvector 

or are suitable for modification to pass it then use the 

training generalization techniques to modify the target 

rule to catch the subvector, the error-causing rule to 

pass the subvector and go to step 5> otherwise go to 

step ?• 

Place the training rule immediately above the error-causing 

rule in the list of action rules and stop. 
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An example of the operation of the revised training procedure will 

now be given fur a state vector composed of overlapping variables A, B» 

and C . It will be assumed that K = 5 * N = 1 , and the decision matrix 

is: 

A 

B 

C 

large large small 

small large small 

small small large 

Figure 3-^' 

where d  stands for "add 1 to the value of A ", d- stands for "add 

2 to the value of B " and d  stands for "add 3 to the value of C ". 

The initial set of production rules for this example is shown below. 

1. (Ali », Ci) -» (*, *, c+3) 

2. (*, *, *)  -♦ (random) 

3. AJ -» A, A > 10 

h. Cl -» C, C < 15 

INSERTING AN HYPOTHESIZED ACTION RULE-     Let  the program subvector be 

(l5j  12, 2)   .     This parses to    (Al,  B,  Cl)    which catches on rule 1 and 

leads to the decision of incrementing    C    by    3  •    The opponent now 

makes a decision and the program uses the  information about the resulting 

game situation to logically deduce what  its own decision should have been. 

Assume that the program deduces that a good decision would have been 

"add    2    to the value of    B ".    The training rule is then 
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(A2, Bl, C2) -» (♦, b+2, ») 

and the bf rules changed or credted are 

A2 -» A, A > lU 

Bl -* B, B > 11 

C2 -► C, C < 5 

-'i 

I 
I 
! 

- • 

Since no rules in the set of action rules lead to the correct decision 

the training rule is inserted above the error-causing rule (rule l) as 

specified in step 7 of the revised training procedure outline.  In this 

case the training rule is an hypothesized rule and is marked in some way 

so the program can distinguish it from action rules which were not 

hypothesized.  The new set of rules is shown below.  Here, when the 

program subvector is (15, 12, 2) the desired decision, "add 2 to the 

value of B " is made. 

1. (A2, Bl, C2) -» (*, b+2, *)   hypothesized 

2. (Al, *, Cl) -» (*, *, c+3) 

5«  (*, *, *)   ■♦ (random) 

k. Al -» A, A > 10 

5- A2 -► A, A > 14 

6. Bl -♦ B, B > 11 

?. Cl -♦ C, C < 15 

8. C2 -♦ C, C < 3 

MODIFYING AN EXISTING HYPOTHESIZED RULE.  Let the program subvector 

at the time of the program's next move decision be (j8, 13, 1^) . 

This parses to  ((Al, A2), (Bl), (Ci)) which catches on rule .' and 
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leads to the decision of incrementing C by 3 •  The opponent now 

make a decision, and the program logically ueduces what its own 

decision should have been. Assume that the program deduces that a 

good decision would have been "add 2 to the value of B "• The 

training rule is then 

(A2, Bl, Cl) -» (*, b+2, *) 

and no bf rules are changed or created. Rule 1 which leads to the 

correct decision and is above the error-causing rule cannot be modified 

to catch the subvector by replacing symbolic values since K is too 

small. However, this rule is an hypothesized one and can therefore be 

modified by making variables irrelavant. In this case only the variable 

C must be consiaered irrelevant, so rule 1 becomes 

(A2, Bl, *) -► (*, b+2,*) . 

The new set of rules is shown below. 

1. (A2, Bl, *) -» (*, b+2, *) hypothesized 

2. (AI, *, Cl) -♦ (*, *, c+3) 

3-  (*j *>  *)  -♦ (random) 

U. Al -♦ A, A > 10 

5. A2 -♦ A, A > 14 

6. Bl -♦ B, B > II 

7- Cl -» C, C < 15 

Here when the program subvector is    (l8,  15,  Ik)    the desired decision, 

"add    2    to the value of    B "  is made. 

COMBINING TRAINING AND HYPOTHESIS FORMATION.     The system just described 
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can learn heuristics in a variety of ways. It can learn through 

(1) training alone: here the action rules are non-hypothesized, 

since they are all based on information obtained from a 

trainer, 

(2) hypothesis formation alone: here the action rules are all 

hypothesized, or 

(5) training and hypothesis formation combined: here the action 

rules are a mixture of hypothesized and non-hypothesized 

rules. 

In any case the program starts with no heuristic definitions and just one 

heuristic rule, (*, *, *) -» (random) , which tells it to initially make 

decisions at random. Training and hypothesis formation may be combined 

by first giving the program a number of explicit training trials and 

then letting it learn through hypothesis formation during actual game 

pla^.  In this situation the hypothesized action rules must be distinguished 

from the non-hypothesized ones since the two types of rules require 

different generalization techniques. However, when an hypothesized rule 

is generalized to the extent of having only N variables remaining in its 

left part it can be given the status of a non-hypothesized rule. 

Creation of Redundant Action Rules 

The use of hypothesized action rules increases the possibility of 

accidentally creating redundant action rules. These are rules which can 

be removed from the list of action rules without in any way affecting 

the decisions made by the system. 

TYPES OF REDUNDANCIES. Two types of redundancies will be considered: 

B6 

1 



•' 

(a) subordinate redundancy, where a rule in the ordered list 

causes a rule below it to be redundant, and (b) superordinate redundancy, 

where a rule in the ordered list causes a rule above it to be redundant. 

To illustrate, let rule i be above rule j in the list of action 

rules. Then rule i makes rule j a subordinate redundant rule if i 

keeps J from ever catching a symbolic subvector, by itself catching all 

generated subvectors that could otherwise be caught by j . This situation 

occurs when each symbolic value in the left part of rule i defines a 

set which includes the set defined by the corresponding symbolic value 

of ruJe J . 

Conversely, rule i is a superordinate redundant rule if every 

symbolic subvector caught by i would be caught by another rule below 

i leading to the same decision as i if rule i were removed.  This 

situation occurs when each symbolic value in the left part of a lower 

rule ,  defines a set which Includes the set defined by the correspond- 

ing symbolic value of rule i , and rule i , rule j , and all rules 

between i and J lead to the same decision. 

EXAMPLE. As an example, consider the set of production rules shown 

below, where the state vector contains overlapping variables A, B, and 

C , and 3 different decisions are denoted by d , d2, and d . 

1. (Al, Bl, *) -♦ ä1 

2. (A2, B2, Cl) -♦ dp 

3. (», B2, C2) -  d. 

h.     (*, Bl, *)  -► d2 

■> 

.: 

5 

5. Al -► A, A > 5 

6. A2 -» A, A > 10 
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7- Bl -» B, B < 9 

8. B2 -» B, B < 4 

9- Cl -♦ C, C > 15 

10. C2 ■* C, C < 7 

2.  (*, Bl, *) -♦ d, 

3- Al -» A, A > 5 

U. Bl -• B, B < 9 

Note that the removal of action rules 2 and 5 made bf rules 6, 8, 9,  and 

10 superfluous and thus led to their removal also. 

:; 

: 

Here rule 1 makes rule 2 a subordinate redundant rule, and rule h  makes 

rule 5 a superordinate redundant rule. As a consequence, the set of 

production rules shown below, with action rules 2 and 5 removed, is 

exactly equivalent to the original set. 

1.  (Al, Bl, *) -♦ d1 

. 

: 

REDUNDANCY CHECKS. In a learning system of the type proposed in this 

section redundancy checks should be made periodically to keep the action 

rule list from becoming too long. However, the danger in removing 

redundancies before learning is completed is that rules may bt removed 

which later would have been generalized upon and made non-redundant. 

Premature reri;oval of this type will tend to slow down the learning process. 

Tnus both the length of the action rule list and the speed of convergence 

of the learning system must be considered when determining how often 

redundancy checks should be made. 
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CHAPTER k 

IMPLICATIONS FOR S-R THEORIES OF LEARNING 

k.l.    INTRODUCTION 

mmmm 

.. 

In psychology, learning theories fall into two major categories, 

stimulus-response (S-R) theories and cognitive theories (Hilgard and 

Bower, 1966). The stimulus response theories view learning as the 

acquisition of stimulus-response chains or "habits". Organisms are 

assumed to merely learn responses, and to resort to trial and error when 

confronted with a novel problem for which no response has been learned. 

Cognitive theories on the other hand, view learning as the acquisi+ion 

of memories or expectations in the form of cognitive structures. 

Organisms are assumed to learn facts, and to employ "insight" based on 

the understanding of the essential relationships involved when * onfronted 

with a novel problem. 

In both categories, model building has proved to be a useful 

technique for describing data and predicting experimental results. 

Mathematical models of learning (Bush and Mosteller, 1955; Estes, 1959) 

have been constructed which are simple, concise descriptions of quanti- 

tative data, many capable of yielding quite accurate numerical pre- 

dictions. As Bower (1966) points out, most of tne theoretical work in 

mathematical learning theory has been in the area of "stimulus-response 

associationism", although cognitive theories can be and often are 

expressed in mathematical form. 

More recently, information-processing models of human behavior 

and intelligence have emerged (Feigenbaum, 1959» Feldman, 1959; Newell 
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and Simon, 196l; Hunt, 1962; Simon and Kotovsky, 1965; Reitman, 1965). 

This type of model, in the form of a computer program, can be regarded 

as a theory of the psychological processes underlying the behavior being 

simulated. The information-processing model is a precise, unambiguous 

statement of the theory and is well suited for generating explicit 

predictions. ♦• 

Up to now S-R theories have been used to explain many types of 

simple learning, but not processes as complex as strategy or heuristic 

learning. The information-processing system described in Chapter 2 and 

5 suggests a number of approaches to the problem of constructing S-R 

theories or models of human strategy learning in game-playing or problem-        « 

solving environments. Some of the possible approaches to this problem 

w. 

will now be examined and evaluated. 
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k.2,     AN S-R INTERPRETATION OF PRODUCTION RULES 

A production rule defining the change to make in the state vector 

C of a program has the form: 

(Ai, Bi, ci) ■♦ (^(e), f2(e), f3(e)) , 

where Al, Bl, and Cl are symbolic representations of the current values 

of the subvector, and 1,(6), fp(&) and f (£)  are functions or arith- 

metic expressions defining the new values for the subvector. It will 

be recalled that the subvector is the set of program variables which 

may influence or be affected by the decisions of the program» Another 

way to interpret the subvector is to consider it a description of a 

particular game situation, where each element of the subvector is a 

value of a pertinent attribute of the situation. The production rule 

shown above can thus be thought of as a situation-action pair 

which effectively means "in situation S take action A". Under this 

interpretation, strategy learning simply consists of the acquisition 

of S-A pairs. 

S-R  Models of Strategy Learning 

Models of human strategy learning in a game-playing environment 

will now be proposed. These models learn by being presented with a 

series of game situations, the corresponding actions to take in each 

situation, and the reason why each action is taken. A situation des- 

cription consists of a list of all pertinent aspects of the situation, 

each aspect being called a situation (or stimulus) element. 
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CONSTRAINTS. All the models under consideration are based on certain 

constraints about how strategy learning can actually take place. The 

constraints thus postulated are the following: 

1. Association: the stimulus elements of a situation become 

associated with or connected to the correct action to take in 

that situation. 

2. One-trial learning: the stimulus elements are connected com- 

pletely to an action after one training trial. 

5. Dependent elements: a situation description is a pattern of 

dependent stimulus elements, i.e., the pattern, rather than 

the individual elements, becomes connected to the action. 

h.    Interference: the only way that forgetting can occur is through 

interference, that is, by replacing the action part, A , of 

an S-A connection with a new action A' . 

5. Consistent training: the situation-action pairs presented to 

the model will not contain conflicting information, such as 

the same situation paired with two or more different actions. 

Tho effect of this constraint is that interference (and hence 

forgetting) will not occur. 

Association, one-trial learning, and interference arc postulated 

because they provide the models with a basic structure that is 

relatively simple. Dependent elements must be postulated, since in 

a game-playing situation the stimulus elements are qui ,e highly inter- 

dependent. Consistent training is postulated so that complications 

due to forgetting may be neglected. 
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ACTUAL ELEML'NTS.  In a game-playing situation the pattern of stimulus 

elements that describes the situation at a particular time is composed 

of the values of the pertinent attributes of the situation. It is 

nssumed that these values can be represented as integers. For example, 

consider a game with attributes H , P ,  and B , each having values 

from 1 to 10 . Then a typical situation description (pattern of 

stimulus elements) might be 2,9^5 meaning that this situation is 

defined by il having a  value of 2 ,  Pa value of 9 >     and B a 

value of 5 . An asterisk as an attribute value indicates that the 

attribute may take on any value. Hence 6,*,4 represents a class ol 

situations where H has the value 6 ,  P any value from 1 to 10 , 

and B the value U   . These integer stimulus elements are called 

"actual" elements. 

ABSTRACT KLEMENTS. Another type of element to be considered is the 

symbolic stimulus element, auch as hi , pi ,  or bl , where each 

nymbol represent* any element from a particular subset of integers. 

Thus hl,pJ,bl. is a description of a class of situations. These 

Kymbülio stlnulUfl elements are called "abstract" elements and are 

defined by partitioning the ranges of the attributes either into 

mutually exclusive and exhaustive subsets or into overlapping subsets. 

An example of the former type of partitioning for H is "hl: H < 6 

and h2: H > 6". An example of the latter type is "hl:  H < 7 and 

h2: H > J". 

.STOKAGE.  II a pattern of stimulus elements S  is presented to a 

model and the model laiis to predict the correct action A , the model 
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is told the correct action, and the S-A connection is stored in a 

list. The storage process may consist of simply placing the new 

connection at the end of the previously learned connection list. If 

exclusive abstract elements are used, storage may consist of also 

growing a decision tree from the previously learned S-A connections. 

Furthermore, when overlapping abstract elements are present, storage 

may consist of the following steps. 

(1) The definitions of the abstract elements are changed such 

that the new S-A connection is effectively placed in the 

previously learned connection list. 

(2) If step (l) is not possible, the new S-A connection is 

added to the previously learned list by placing it immediately 

above the connection which led to the last error. 

RETRIEVAL. When a model is given a situation description S , it 

must predict what action to take.  It is assumed that this prediction 

is based in some way on the result of a retrieval process. The most 

elementary process consists of matching S against every situation 

description stored and if a perfect match is found retrieving the 

associated action. If no match is found an action is picked at random 

for output. 

A more complicated process consists of comparing S to every 

situation description stored and choosing as the prediction the action 

associated with the description that is closest to S . Here closeness 

is defined as the distance between two descriptions, where a description, 

for n attributes, is thought of as a point in n-dimensional space. 
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A third possible process consists of filtering   S    down a decision 

tree or discrimination net grown from previously learned    S-A    connections. 

The action associated with the terminal node finally reached by    S    is 

then used as the orediction. 

DEGREES OF FrEEDOM.    The preceding remarks concerning methods of 

representation,   storage,  and retrieval for the models will now be 

summarized.    The models are permitted the following degrees of freedom: 

1. Situation Representation 

a. Actual Elements (example:    9>^>7) 

b. Abstract Elements (example:    hl,p2,b3) 

(1) Mutually exclusive definitions (example:    hi:    H< 5 > 

h2:    H > 5) 

(2) Overlapping definitions (example:    hi:    H > 7> 

h2:    H < 15) 

2. Storage Mechanism (storage of an    S-A    connection) 

a. Simple Placement:    the connection is added to the end 

of the connection list already learned. 

b. Induction:    a decision tree  is grown based on the current 

list of learned    S-A    connections. 

c. Complex Placement;    definitions of abstract elements  are 

changed,   if possible,  to effectively place the connection 

in the learned list.    Otherwise the connection is added 

just above the connection that led to the last error. 

3. Retrieval Mechanism (retrieval of an    A   when given an    S) 

a.     Simple Search;     the    S    is compared to all descriptions 

in the learned connection list,  and if an exact match is 
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found the corresponding    A    is retrieved,  otherwise an 

A    is picked at random. 

b. Stimulus Generalization: the S is compared to all 

descriptions in the learned connection list, and for 

the best match (defined by closeness in n-dimensional 

space)   the corresponding    A    is used. •• 

c. Tree-sorting:    the    S    is sorted down a decision tree to 

a terminal node,  and the    A    at that node is used. 

FEASIBLE MODELS.    Allowing the preceding degrees of freedom should 

permit the  construction of   3x3x3    or    27    different models.    Actually 

only    10    of these models are feasible due to certai'' incompatibilities 

which exist between the proposed methods of representation,   storage 

and retrieval.     In the diagram shown below each square represents one 

of the    27    hypothetical models.    The    X's    indicate which of these 

are the    10    feasible models. 

. 
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Figure U-l. 

Four of these models, indicated by the circles in Figure ^-1, will be 

described in this chapter and their operation illustrated by the train- 

ing sequence given in Figure k-2. 

TRAINING. Training consists of supplying the models with training 

information after each error. This training information consists of 

(l) the correct decision, (2) the elements relevant to making the correct 

decision, and (3) the reason why the decision is being advocated, express- 

ed in terms of an evaluation of each relevant element.  If a model uses 
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actual elements, item (3) is not required since there are no definitions 

to learn. If a model uses abstract elements, item (3) is necessary, 

and the model is assumed to learn the definitions of these elements using 

the procedure outlined in section 3.2. Figure h-2  gives the definitions 

the models would learn if this procedure were applied to the training 

sequence shown. Model operation will be illustrated as though the models 

are given these definitions, in order to simplify the examples presented. 

However, in an actual experimental design the models would be required 

to learn the definitions. 
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Range of  Actual Values:    H(l-50) P(l-60) B(l-10) 

Mutually Exclusive 
Definitions: 

Overlapping Definitions: 

Training Sequence: 

hl(H>25) 

h2(lO<H<25) 

h3(H<10) 

hl(H<l6) 

h2(H<5) 

h3(H>36) 

situation      correct      relevant 
description    decision    elements 

1. 15,21,6 A3 H,P,B 

2. 4,28,3 Ak H 

3. 1.3,8,U A2 H,P,B 

k. nX9 Al H,P 

: ■ 12,9,10 AU H,B 

1,^2,17 AU H 

7. 12,5,5 A? H,P,B 

pl(E>9) 

p2(l<9) 

pl(H>20) 

p2(P<9) 

bl(B>7) 

b2(B<7) 

bl(B<7) 

b2(B>9) 

reason 

H is  "h2" or "small",   P is  "pi" 
or "large",   B is  "b2" or "small" 

H is  "h3" or "small" 

H is  "h2" or "small",   P is  V 
or "small",  B is "b2" or "small" 

H is  "hi"  or "large",   P is  "pß" 
or    small 

H is  "h3" or "small",   B is "bl" 
it-i ii or    large 

H is "h3" or "small" 

H is  "h2"  or "small",   P is "p2" 
or "small",  B la "b2" or "small" 

Figure U-2.     Training sequence  and definitions 
to  illustrate model operation. 
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I 
A Simple Model J 

in Figure k-2. 
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i The first model to be described is defined as having the following 

characteristics: 

(1) actual elements, 

(2) simple placement, 

(3) simple search. 

This is called a Simple Model and is the most elementary one which can 

be constructed within the framework just proposed. Its operation will 

be illustrated for the first five trials of the training sequence shown 

- - 

■ 

PREDICTION. When the model is given a situation description S and is 

asked to predict A it matches S against all left sides of the 

connections in the learned list going from top to bottom until an 

exact match is found. The right side of the connection whose left side 

exactly matches S is then used as the prediction.  If the prediction 

is wrong, a new connection, formed from S and the correct action, is 

added to the bottom of the list of learned connections. 

The model is assumed to initially consist of a single S-A 

connection of the form 

*,*,* "♦ [action picked at random] 

which catches all situation descriptions and leads to an action being 

picked at random from the set of possible actions. Since the model 

learns through training what actions are possible, on the first trial 

the known set of possible actions is empty and no prediction is made. 

1 
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OPERATION. The operation of the Simple model for the first five training 

trials is depicted below. 

Learned    S-A 
B Connections Predicted A Correct A 

1. 15,21,6 *,*,* -♦ ( } none A3 

2. ^28,5 15,21,6 -♦ A3 A3 Ak 

*,*,* -♦ [A3} (from last 
connection) 

3. 13,8,U 15,21,6 -» A3 Ak A2 
k,*,* -♦ Ak (from last 

*,*,* -♦ [A3,AU} connection) 

h. 57,M 15,21,6 -♦ A5 A3 Al 
k,*,* -» AU (from last 
13,8, U -> A2 connection) 

*,*,* -» lA2,A3,A4} 

5. 12,9,10 15,21,6 -♦ A3 A2 AU 

*+,*,* -» Ah (from last 
13,8,1» -» A2 connection) 

37,^,* -♦ Al 
*,*,*  -♦ [Al,A2,A3,AUj 

EVALUATION OF THE MODEL. Because of the wide range of values of the 

three attributes, the probability of finding an exact match for S 

among the learned connections is quite small, especially if the situation 

descriptions are chosen at random. Hence the model does little more 

than make a random guess when presented with an A and asked for a 

prediction. This model is clearly too simple to serve as a useful theory 

of human strategy learning. 

A Stimulus Generalization Model 

The second model to be described is called the Stimulus Generaliza- 

tion model and is defined as having the following characteristics: 
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(1) actual elements. 

(2) simple placement, | 

(3) stimulus generalization. 

The operation of this model will be illustrated for the entire training 

sequence given in Figure k 2. 

OPERATION.    The operation of the Stimulus Generalization model for the 

training sequence of Figure k-2 is shown below. 
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PREDICTION. The model makes a prediction, when given a situation 

description S , be comparing S to every situation description stored 

in the learned connection list and choosing as the prediction the action 

associated with the description that comes closest to matching S . 

Closeness it  defined as the distance between two descriptions when euch 

description, for n attributes, is interpreted as a point In n-dimensional 

space. However, descriptions containing one or more ^'s must be thought 

of as hyperplanes in the n-dimensional space.  For example,  if n=3 

then 15,21,6 represents a point, 15,*,6 a line, and 15,*,* a 

plane in 3-dimension'jl space. If the prediction made by the model is 

wrong, a new connection composed of S and the correct action is added 

to the end of the learned connection list. No prediction is tr A%  on 

the first trial since at this point the connection list is empty. 

. 

. 

: 



Learned    Distance Between 
S-A Connections S and Connection Predicted A Correct A 

1. 15 ,21,6 none none none A3 

2. ^ 28,3 15 21,6 -♦ A3 13.U A5 AU 

5. 15 ,8,U 15) 21,6 -» A. 13.3 AU A2 
K *,* -♦ AU 9.0 

h. 37 A,9 15, 21,6 -♦ A3 28.0 A2 Al 
^, *,* -» AL 35.0 

13, 8,1* -» A2 2U.8 

5. 12 ,9,10 15, 21,6 -♦ A3 15.0 A2 AU 
h, v -♦ Ah 8.0 

13, M -» A2 6.2 
57, ^* -» Al 25.5 

t. I,1 +2,17 15, 21,6 -» A3 27.6 AU AU 
^ »* -» AU 5.0 

13, 8,{ -♦ A:.' 38.U 
37, ^* -♦ Al 52.5 
12, *,10 -4 Ah 15.1 

7. 12 .5,5 15, 21,6 -» A3 16.3 A2 A2 
^ v -♦ AU 8.0 

13, 8,U -♦ A2 5.5 
37, If,« -> Al 25.0 
12, *,10 -» AU 5.0 

The model always chooses an A such that the distance between S 

and the left side of the connection containing A is minimized. In 

trial 5, lor instance, action A2 is predicted by the model because the 

distance d between S (12,9,10) and the situation description of the 

third connection (13,Ö,U)  is the smallest. This calculation is 

illustrated below. 

d ^(v*^ + (yry'P + (zrz2^ 

=l/(l2-13)2 + (9-B)2 + (10-U)2 = 6.2 
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A "*" is considered to be an exact match for any value when the above 

formula is used to calculate d . 

EVALUATION OF THE MODEL. This model is clearly superior to the Simple 

model since the closest match to S is always I'ounc?, and thus the model 

need not resort to random predictions. However, this model does have 

its weak points. First, the type of comparison procedure suggested for 

retrieval is quite involved, and it is difficult to imagine humans 

actually performing such mathematically-oriented calculations when placed 

in such a training situation. Second, in the early stages of training 

virtually every training trial adds a new S-A connection to the learned 

list. Since the input S must always be compared with every connection 

on this list, the time needed to retrieve a response (i.e., the latency) 

sharply increases as the number of reinforced trials increases. 

An Induction Model 

The third model to be described is the Induction model, which is 

defined as having the following characteristics: 

(1) abstract elements with mutually exclusive definitions, 

(2) induction, 

(3) tree-sorting. 

The training sequence and definitions in Figure h-2 will be used to 

illustrate the operation of this model. 

PREDICTION. The Induction model makes a prediction by sorting the given 

S to a termipal node in a decision tree previously grown using the 

current list of learned S-A connections. The action associated with 

that terminal node is used as the prediction. If the prediction is 
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wrong, the connection formed by S and the correct action is added to 

the learned S-A connection list, and a new tree is grown. 

The generalization technique used to grow the tree is an extension 

of the technique used by Hunt (1962,1966) for growing concept trees, 

that is, trees for distinguishing between positive and negative instances 

of a concept. The decision tree partitions the universe of situations 

into m sets, one for each possible action that may be taken. Each 

situation element is considered to be an attribute of the situation, 

and the tests made at the nodes of the decision tree are tests on the 

possible values of these attributes. The tree-growing technique is 

summarized in Appendix A, Part I. 

OPERATION. The operation of the Induction model for the training sequence 

in Figure k-2 will now be illustrated. No prediction is made on the 

first trial since at this point no decision tree exists. 

8 

1. 15,21,6 

h2,pl,b2 

Learned 
S-A Connections 

none 

Tree used to 
produce a prediction 

none 

Predicted A    Correct A 

none V 

2.    4,28,3 h2,pl,b2 -♦ A3 

h5,pl,b2 

A3 A3 Ik 

3.    13,8,4 h2,pl,b2 

h2,p2,b2 h3,*,* 

A3 

Ah 

A3 A2 
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Learned 
S-A Connections 

hl>p2,bl 

h2,pl,b2 

h2,p2,b2 

A? 

A2 

5. 12,9,10 h2,pl,b2 -» A5 

h2,p2,bl h5,*,*      "♦ AU 

h2,p2,b2 -» A2 

hl,p2,*    -» Al 

6.     1,^2,1? 

h3,pl,bl 

h2,pl,b2 -♦ A3 

h3,*,* -» Ah 

h2,p2,b2 -♦ A2 

hl,p2,* -♦ Al 

h2,*,bl    -» Ah 

Tree used to 
produce a prediction 

■B 
A3 A2 
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Predicted A    Correct A 

A2 

A2 

Ak 

Al 

A4 

Ah 

:: 

i 

i 
i 
i 
i 
i 
! 

I 

: 

Li 

." 

; 
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7. 

Learned 
S-A Connections 

12,5,5 h2,vl,t)2 -» A3 

h2,p2,b2 hj,*,*  -» Ak 

h2,p2,b2 -» A2 

hl,p2,* -» Al 

h2,*,bl -» A^ 

Tree used to 
produce a prediction Predicted A   Correct A 

A2 A2 

Note that a completely new tree must be grown each time another S-A 

connection is added to the learned list.  Only in trial 7 above was a 

new tree unnecessary, since the correct prediction was made in trial 

6 and consequently no S-A connection was added to the list. 

EVALUATION OF THE MODEL. The Induction model is possibly superior to 

the models previously presented si^ . it does not have to resort to 

random predictions and the retrieval mechanism is somewhat more satisfying 

as an explanation of human cognition.  Also, this model does not lead 

to a sharp increase in response retrieval time when the number of 

reinforced training trials increases, as does the Stimulus Generalization 

model. This is true because (a) the response retrieval time depends 

entirely on the time needed to sort the S down the tree, and this 
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sorting time increases very slowly as the size of the tree increases; 

the retrieval time doesn't depend on the time needed to grow the tree 

since tree growing occurs at the end of a trial, as part of the storage 

process, and (b) fewer S-A ccanections are stored during training to 

a criterion of say x correct trials in a row, and fewer connections 

means faster retrieval. 

Although this model is possibly superior to the others, it does 

have its deficiencies. First, the decision treo that is grown, and hence 

the action retrieved, is highly dependent on the algorithm used to deter- 

mine which attribute value is to be chosen as a test at a node, and it 

is not clear what the best algorithm is. However, this dependency can 

be turned into a virtue if one can see how to modify the algorithm to 

improve the performance of the model. Second, the model must be presented 

with completely consistent training information in order to function 

properly. If during training it is given information implying that more 

than one action is possible in a certain situation, the tree-generating 

■r.echanism will generate some branches which never terminate. For example, 

if the model is told the S-A connections hi,pi,* ■♦ Al , and 

hl,*,b2 -» A2 are both valid it will grow a uon-terminating branch. 

This feature is a deficiency because humans are able to learn strategies 

even when presented with inconsistent information. 

A Complex-placement Model 

The last model to be described is the Complex-placement model, which 

is defined as having the following characteristics: 

(l)  abstract elements with overlapping definitions. 
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(2) complex placement, 

(j) simple retrieval. 

The operation of this model will be illustrated for the training 

sequence and definitions given in Figure k-2. 

PREDICTION. The Complex-placement model makes a prediction by comparing 

the given S to all situation descriptions in the learned connection 

list, going from top to bottom, and if an exact match is found the 

corresponding A is retrieved. If a match is not found, an action is 

selected at random from the known set of possible actions. When an 

incorrect action is retrieved the abstract definitions are changed, if 

possible, to effectively place the connection formed by S and the 

correct A In the existing list. Otherwise this new connection is added 

to the existing ordered connection list immediately above the S-A 

connection that led to the previous error. Initially, the model consists 

of a single S-A connection which catches all S's and leads to an action 

being picked at random, as in the Simple model. 

OPKRATION. The operation or the Complex-placement model for the training 

sequence of Figure h-2  is shown below. 

Learned S-A Connections 

*,*,* (  } 1. 15,21,6 

hl,pl,bl 

2. Iu28,^ hl,pl,bl -» A3 

hi -h2,pl,bl    *,*,*        -» Uj} 

Predicted A        Correct A 

none 

A3 

(from the first 
connec tion) 

A; 

Ah 
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§ Learned . j-A Connec tions Predicted A Correct A 

3. 13,8,1+ h2,*,* -♦ AU A4 A2 

hl,p2,bl hl,pl,bl 

-♦ 

A3 

U3, A4} 

(from last 
connection) 

it. 37,^,9 h2,*,* -► Alt A2 Al 

h3,p2,b hl,pl,bl 

hl,p2,bl 

A3 

A2 

(from the last 
connection) 

»,♦,* -♦ IA2, A3, A4} 

5. 12,9,10 h2,*,* -» All A3 A4 

hl,p,b2 hl,pl,bl 

hl,p2,bl 

h3,p2,* 

-» 

-♦ 

-♦ 

A3 

A;
1 

Al 

(from last 
connection) 

*,*,* -» [Al, A2, A3, A4} 

6. 1,^2,17 h2,*,* -♦ A4 A4 A4 

hl-h2,pl,b2 hl,pl,bl 

hl,p2,bl 

h3,p2,* 

hl,*,b2 

A3 

AT 

Al 

A4 

(from first 
connection) 

*,*,* -» [Al, A2, A3, A4} 

7. 12,5,5 h2,*,* -» A4 A? A2 

hl,p2,bl hl,pl,bl 

hl,p2,bl 

h5,p2,« 
hl,*,b2 

-♦ 

-♦ 

A3 

A2 

Al 

A4 

(from third 
connection) 

*,*,*   ■» Ul,A2,A3,A4} 
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The actual situation descriptions, such as 4,28,5 in trial 2, are 

converted to abstract situation descriptions in a manner analogous to the 

parsing step of section 2.2. Thus 4,28,3 becomes hl-h2,pl,bl, meaning 

that 4  is a member of set hi md set h2 , 28 is a member of set 

pi , and 3 is a member of set bl . In trial 5 the actual element 
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9 is a member of no set and is consequently represented by the abstract 

element p • 

In the training trials just described no S-A connections were 

placed in the connection list by merely modifying definitions because 

no connection already in the list had the same form as the ones being 

added to the list. A connection in the list has the same form as one 

being added to the list only if (l) their A's are identical, (2) for 

each • in the S of the connection being added there is a corresponding 

• in the S of the connection already in the list, and (3) their 

corresponding abstract elements both use the same logical operator. 

For example, consider the following S-A connections. 

(a) hi,*,W. -♦ Al hl: H < 12 

(b) bl,»,b2 -»Al h2: H < 6 

where   bl: B > 7 

(c) hi,*,* -♦ A2 b2: B < 15 

(d) h2,*,b3 -»Al bj: B > 2 

Here (a) and (b) are not of the same form because of restriction (3), 

(a) and (c) are not of the same form because of restriction (l), and 

(a) and (d) are of the same form. 

The process of placing a connection in the list by modifying 

definitions is described below for the learning of the connection 

"18,24,5 -» A3 because 18 is small, 2k    is large, and 3 is small". 

S    Learned G-A Connections Fredictod A  Correct A 

18,24,3 h2,*,*  -» Ah Al        A3 

= h,pl,bl hl,pl,b] -♦ A3 (from last 
IT o v,-i .. Ao connection) hl,p2,bl -*  A2 

ill 
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S    Learned S-A Comiections Predicted A  Correct A 

h3,p2,* -» Al 

hl,*,b2 -» Ak 

*,*,* -» iAl,A2,A3,AU] 

I 

It is assumed that the wrong action was predicted using the last connec- 

tion is the above list, hence the model must add the connection 

h^pljbl -» A3 to the list. Here hU is defined by the set "H < 19" , 

and this is learned when the model is told that 18 is "small". The 

model searches all connections above the error-causing one to see if 

any have the same form as h^,pl,bl -♦ A3 • In the above example, r  y 

the second connection, hl,pl,bl -» A3 , has this form. Consequently, 

the definition of hi is changed to include 18 , thus its new definition 

is hl: H < 19 . Now when l8,2U,3 is given to the model it predicts 

the correct action, A3 ■ 

EVALUATION OF THE MODEL. The Complex-placement model, like the Induction 

model, offers a more satisfying explanation of human cognition than do 

the first two models described. Also, for this model, the response 

retrieval time does not sharply increase as the number of reinforced 

! training trials increases. This is because (a) the retrieval process 

does not always require looking at every connection in the list, and 

(b) a new connection is not always added to the connection list when 

an error is made. Moreover, the Complex-placement model does not require 

consistent training trials, as does the Induction model. If the model 

1 
is told that hi,pi,* -♦ Al is a valid connection, and then that 

hl,*,b2 -♦ A2 is a valid connection, it has been given inconsistent 

information, since in situation hl,pl,b2 two different actions should 
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be taken. Nonetheless, this inforraation is incorporated into the 

ordered connection list. If the second connection is placed in the 

list because the first connection led to an error, the list has the 

following form: 

hl,»,b2 ■♦ A2 

hi,pi,* ■» Al 

*,*,*  -♦ iAl,A2} 

But now because of the hierarchical arrangement of the connections in 

the list the information is no longer inconsistent. The list in effect 

says to take action Al if H is hi , P is pi and B is anything 

but b2 , and to take action A2 if H is hi , P is anything, and 

B is b2 . 

The Complex-placement model does, however, have at least one short- 

coming.  In the early stages of training it often resorts to making 

predictions at random, since it is difficult to find an exact match 

when the connection list is short. This might have a detrimental effect 

on the degree of correlation obtainable between the predictions made 

by the model and the predictions made by human subjects. 
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lt. 3.  PROPOSED EXPERIMENTAL DESIGNS ! 

In the previous section & number of S-R theories or models of 

human strategy learning were presented. The validity of these models 

can be tested by comparing them with human subjects in a game-playing 

or problem-solving environment. 

Random Selection Design 

An experimental paradigm for testing these models is outlined 

below. It is patterned after a series of experiments performed by Hunt, 

Marin, and Stone (1966) which are based on a random selection design. 

1. Choose a game-playing or problem-solving environment. For this 

environment define (a) a set of attributes with numerical values, 

such that a situation description consists of a list of the values 

of these attributes, (b) a set of actions which can be taken, and 

(c) a set of consistent strategies in the form of situation-action 

pairs with exclusive abstract values, which partitions the universe 

of possible situations into n subsets, one for each possible 

action. 

2. Pick a group of situation descriptions at random from the universe 

of possible situations. 

3. Present these situation descriptions to the subjects in a serial 

fashion, and for each presentation or trial ask the subjects to 

predict the correct action. After each subject makes a prediction 

give him the correct action, and the reason why the action is correct, 

expressed as an evaluation of the relevant attributes. Present 

this information visually, such that on subsequent trials the subject 
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has available a cumulative visual record of the results of all 

! previous trials. 

1 
h.    Compare the predictions of the models with the predictions of the 

human subjects, when the models are given the situation descriptions 

from step 2, presented in the same order as they were presented 

to the subjects. 

TRAINING INFORMATION. The information given to the subjects after each 

prediction can be obtained in a variety of ways.  One way is to separately 

analyze each situation description from step 2  and decide, on the basis 

of the particular environment being represented, what action should be 

taken and why. The danger here is the possibility of inadvertently 
- ■ 

giving the subjects inconsistent information. 

A better way to obtain the desired information is to use the set 

of S-A pairs defined in step 1 to grow a decision tree, using the 

generalization technique described for the Induction model. Each 

situation description,  S , of step 2 is then sorted down the tree, 

and the correct action is assumed to be the one contained in the terminal 

node reached by S . As this S is sorted down the tree it passes 

' through a number of test nodes which define its path through the tree. 

All attributes which are tested by these path-defining nodes are consid- 

ered to be attributes relevant to choosing the correct action for S . 

j The evaluation of these relevant attributes (or the reason why the action 

is taken) is simply the specification of the categories they fall into. 

' The available categories are those defined by the exclusive definitions 

used to specify the abt-tract values needed for the set of S-A pairs 

defined in step 1. 
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TRAINING TRIALS. The training trials used in section i+.2 to describe the 

operation of the models were obtained by the method just outlined. The 

environment chosen is shown in Figure k~3,  and the tree grown from the 

S-A pairs in Figure k-3  is shown in Figure A-l. To see how the training 

trials were constructed, consider the situation description 12,9,10 

used in the training sequence of Figure k-2.    This description becomes 

h2,p2,bl when expressed in terms of the abstract values defined in 

Figure U-3, thus h2,p2,bl is sorted down the tree of Figure A-l. The 

terminal node reached contains Ah  , so the correct action is assumed to 

be Ah  . The path that h2,p2,bl takes through the tree is defined 

by the test nodes  üil?)  ftj2fl   and  (bl?)   , thus attributes H 

and B are assumed relevant. The reason Ah    is correct is therefore 

because H is an h2 , and B is a bl . A game-playing interpretation 

of the environment defined in Figure k-3  is presented in Appendix A, 

part II. 

Rather than giving the subjects nondescriptive category names like 

hi , b2 , and h3 they are given descriptive names which suggest how to 

order the categories, like large, medium, and small. Thus for trial 1 

in Figure k-2  the correct action is A3 because "H is medium, P 

is large, and B is small".  If the models are to be compared to human 

subjects they must be given the training information in the same form 

used for the subjects. Consequently, the Induction model and the 

Complex-placement mod:-! (the models which learn the definitions of the 

abstract values) are given ordering information about the categories 

used to describe the attribute values, e.g., that "large" > "medium" > 

"small". 

:; 
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Attributes: H P B 

Range of Values: 1-50 1-60 1-10 

Abstract Values: hl(H>25) pl(R>9) bl(B>7) 

h2(lO<H<25) P2(P<9) b2(B£7) 

h3(H<10) 

Universe of Situations: 

/ 
A2              S 

AJ<            ) 

( Al        1      , — ^    \ / 

\ —k A5 
/ 

V 
Universe  consists of 50x60x10 or 30,000 situations 

Heuristics: hl,*,b2 —► Al 

hl,p2,* _► Al 

h2,p2,b2  ^ A2 

hl,pl,bl —► A3 

h2,pl,b2 —» A3 

h2,»,bl ♦ AU 

h3,*,* —» kh 

Figure ^--3.     An environment for testing models 
of humah   strategy   learning. 
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part of the S-A connection last added to the list from which the tree 

was grown. The requirement is satisfied for the Complex-placement model 

if it is required to pick an S which catches on or below the last S-A 

connection added to the list.  It is difficult to satisfy this requirement 
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The Induction model can then use the ordering information to 

translate "large" into hi , "medium" into h2 , and "small" into h3 

when it is told why a particular action is correct, and then proceed 

as described in section ^.2. The Complex-placement model must use the 

ordering information to translate any given category into either "large" 

or "small". It can accomplish this by interpreting all categories above 

the middle one as "large", all below the middle one as "small", and the 

middle one itself (if there is one) as "small". Thus it would interpret 

"large", "medium", and "small" as "large", "small", and "small" when 

told why a particular action is correct, and proceed as described in 

section U.2. 

Interactive Selection Design 

Another experimental design which might prove interesting is one 

where interactive selection (Hunt, Marin, and Stone, 1966) is used in 

step 2 rather than random selection.  Here the subject examines the 

entire universe of situation descriptions and decides for himself which 

situation description to consider for each trial. The models must like- 

wise decide which situation description to pick for each trial, and an 

S should be picked which provides a good test of the training information 

received when the last error was made. 

For the Induction model this requirement is satisfied if it is 

required to pick an S that sorts to the same terminal node as the S 

. i 

'■ 
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for the Simple and Stimulus Generalization models,  consequently,   they 

would not be included in an experiment based on interactive selection. 
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CHAPTER 5 

A SPECIFIC APPLICATION 

5.1 INTRODUCTION 

In order to demonstrate the feasibility of the representation and 

manipulation techniques presented in chapters 2 and 3 a full scale 

application in the area of game playing will now be described. The 

game chosen for this task is basic draw poker, a game in which the 

players do not have access to all the existing game information. In 

contrast, games like chess, checkers, go, and backgammon are designed 

so that each player has available the total game information at each 

decision point; these are called games of perfect information (Rapport, 

1966). 

To date, research in heuristic game playing has been concerned 

predominately with games of perfect information, because these games 

can usually be represented by game trees in which very effective search 

and prediction procedures (ruch as minimaxing) are applicable. Mini- 

maxing cannot be used with most games of imperfect information, as 

there is not enough information available to construct a game tree in 

advance. The representation and manipulation techniques described 

earlier are an effective approach to implementing decision-making and 

]earning in an imperfect information environment. 

Game playing is studied not merely to develop programs which are 

good at playing games, but more to develop programmable methods and 

techniques for solving practical problems. Gamer of imperfect information 

are useful to study because they are realistic abstractions of the complex 
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problems encountered in daily life, moreso than games of perfect infor- 

mation. For example, chiss is actually e game of war, where tach side 

tries to defeat the other by capturing the opposing army and imprisoning 

the king. In actual war it is seldom the case that one side knows the 

exact location, strength, and capabilities of all units of the opposing 

army, as one does in the gane of chess. 

A similar analogy can be drawn between games of imperfect information 

and the struggle which occurs between businesses engaged in marketing 

competitive products. Again, each side is faced with the problem of 

making crucial decisions without having available the information needed 

for accurately predicting what the counter-move by the opposition will be. 

In this chapter a detailed analysis of the heuristics for the bet 

decision in draw poker will be presented together with their representation 

as production rules and an illustration of their use in an actual computer 

program. Next, the process of training will be illustrated by showing 

how the program can be trained to play draw poker, using either a human 

or a program as a trainer. Finally, it will be shown how the program can 

learn to play poker without explicit training, that is, by gaining 

experience through actual game play. 
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5-2 HEURISTICS FOR DRAW POKER 

The {jame under consideration is a standard version of five-card 

draw poker, in which up to three cards may he replaced and no cards 

are wild.  (See Appendix B, Part I for a detailed definition of the 

game.) The bet decision made by the computer program which plays 

this game is based on a number of interrelated heuristics. An informal 

description of these heuristics is given in Appendix B, Part II. 

State Vector Description 

The state vector needed to adequately describe the bet decision 

heuristics for this game has the form: 

6 = (\TiHAND,POT,LASTBET,BLUFFO,POTBET,ORP,OSTYIiE,O^OB,CS,BO,IiAP, 

SB, MB, BB, BBS, BBL, OAVGBET, OTBET, OBLUFFS, OCORREL, OD ) , 

where the dynamic variables are VDHAKD^POTiLASTBETjBLUFFO^OTBET^ORP, 

and CSTYLE , the function variables are OH,OB,CS,BO,LAP,SB,MB,BB,BBS, 

and BBL , and the bookkeeping variables are OAVGBET,CTBET,OBLUFFS,OCORREL, 

and OD . The definitions of these variables and the definitions of the 

symbolic values of variable VDHAND are presented in Figure 5-1« 

The range of values for BLUFFO,OSTYIiE,OH,OB,CS,BO, and OCORREL is 

the set of positive and negative integers, where a large or positive 

value indicates a high probability that the opponent can be bluffed, tne 

opponent is conservative, etc. VDHAND ranges from 1 for one-of-a-kind 

to 600,000 for a royal flush, LASTBET ranges from 1 to 20 , and OPP 

ranges from 0 to 5 . VDHAND is an exclusive variable, while the other 

dynamic variables are of the overlapping type. It should be noted that 
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in two instunces a variable .serves a dual role, being both a function 

and a dynamic variab.Tr, i.e., BO and BLUFFO both .stand for the same 

variable, and CS and OSTYLE both stand for the same variable. 

The subvector for this game is composed of the dynamic variables 

of the state vector and thus has the form: 

0 = (VDHAND,POT,LASTBET,BLUFFO,POTBET,ORP,OSTYLE) • 

For convenience the dynamic variables will be abbreviated so that the 

subvector can be written: 

ß = (H, P, B, BFO, PB, R, OCS) . 
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VDHAND: the value of your hand 

FCT: the amount of money in the pot 

LASTBET: the amount of money last bet 

BLUFFO: a measure of the probability that the opponent can be bluffed 

POTBET: the ratio of the money in the pot to the amount last bet 

ORP: the number of cards replaced by the opponent 

OSTYLE: a measure of conservative style by the opponent 

OH: the expected value of the opponent's hand 

OB: a measure of the prjba>-Llity that the opponent is bluffing 

CS: a measure of conservative style by the opponent 

BO: a measure of the probability that the opponent can be bluffed 

LAP: the largest bet possible without causing the opponent to drop 

SB: a small bet 

MB: a medium size bet 

BB: a large bet made in an attempt to bluff the opponent 

BBS: I small bluff bet 

BBL: a large bluff bet 

OAVGBET: the average bet made during a round of play 

OTBET: the number of bets made by the opponent during a round of play 

OBLUFFS: the number of times the opponent was caught bluffing 

CCORFEL: a measure of the correlation between the opponent's hands and 
bets 

OD: the number of times the opponent has dropped 

SW: a sure-to-win hand 

EC: an excellent-chance-of-winning hand 

GC: a good-chance-of-winning hand 

PC: a poor-chance-of-winning hand 

NC: a no-chance-of-winning hand 

Kl to KJl: constants 

sfr 

i Figure J»l, Definitions of state vector variables 
and symbolic values. 
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The Heuristics As Production Rules 

The bet decision heuristics (described in Appendix B, Part II) by I 

virtue of being informal are also imprecise and occasionally ambiguous. 

However, they can be made precise and unambiguous by being rewritten and 

expanded in LASH, a language designed for specifying heuristics (see 

section 2.3). The LASH version of the bet decision heuristics are 

given in Appendix B, Part III, and the corresponding production rules 

in Appendix B, Part IV. 

The five function variables OH,OB,CS,BO, and LAP are highly inter- 

related as can be seen from ff rules 11 through 1^ in Appendix B, Part IV. 

The relationships existing between these variables and the bookkeeping 

variables are illustrated in Figure 5-2. OAVGBET and OTBET can be 

thought of as contributing to the short-term memory of the system while 

OBLUFFS,OCQRREL and OD contribute to the long-term memory. Extending 

this ideu, VDHAND,P0T,LA3TBET,P0TBET, and ORP are short-term variables 

while BLUFFO and OSTYLE are long-term variables. The value of the 

constants used in defining tnese variables are given in Appendix B, 

Part V. 

The production rules representing the bet decision heuristics 

have been incorporated into a LISP (McCarthy, 1962) computer program 

which plays draw poker. A listing of the action rules and bf rules 

actually used by the program is shown in Figure 5-5« The expression 

(INCP) in the action rules stands for the expression P0T+(2 X LASTBET) . 

For each action rule in Figure 5-5 the first item in the rule is the 

left part of that rule, with the last 7 items forming the right part 

of the rule. 
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(UfFPHUP  "UlLT-IN-MtURlSTlCS 
1 4IU 

1((SM k'H    M  •  t  •  •!   •    (INCP)    ^   •   •   •   •) 
*    m    •    •    •    m \    •    (IMf'Pl    1  AP    •    *    m    » \ 

(CCC 
•      ■      ■     ■     ■     •!      ■      t|1wr|      U*"      ■     ■     •     •( 

PI  ,^ • • • •)  •  (INCPI  «;••••) 
((tC •••••!)•   (1NCP)   U*P   •   •   t   •) 
((CC K?   J»   •   •   UR1   •)   •   (|NC^)   •  •  «   •'•) 
((CC P9   H6   •   •   URl   •)   I   (|NCP)   »••••) 
(<CL ■   «f  •  I   OH?   CS1)   •   (INCH)   *••••) 
((CC P3   H}   •   •   URJ   •)   •   (INQP)   4   •   •   •   •) 
((CC •   •   HÜ1   •   393   •)   •   (INCH)   bU   •   •   »   *) 
((CC P4   t<$   t   •   •   •)   •   (INCH)   4   •   •   •   •> 
((CC H9   d7   •   •   •   •)   •   (INLH)   KI   •   •   i   •) 
((CC •   •   •   •   t   i)   •   (INCP;   MM   •   •   •   •) 
((PC •   •>>>■   Pd?   0H4   •)   •   (INCP)   «)••••) 
((PC •   09   •   Pd?   OH?   CS?>   •   (INCH)   «••••) 
((PC P6   b9   ÖOl   PB3   0H6   •)    •    (INCH)   rirt   «   .   «   •) 
((PC Pb    i?   dU^   •   »   ■)   •   (INCH)   bb   •   •   •   •) 
((PC i   bd   •   Pb4   0R6   •)   J   •   a   •   •   •   •) 
((PC •   d9   ■   •   t   •)   •   (1NCP»   •••••! 
((PC     •)   •   (|NCP;   SH   •   •   .   •) 
UNO •   •   0  •   0R4   •)   ^   •   ?   •   •   •   •) 
((NC •   •   t   •  OR?  CSJ)   c   •   n   •   •   •   »> 
((NC 
((NC H6   ri4   öüj   i   ORÖ   •)   •   (]ICP)   dBL   «tit) 
((NC •   ü1»   •   Pbl   «   t)   •   (INCP)   H   •   •   •   •) 
((NC P7   r4V   •   •   1   .<)    •    (INCH)    H    •    •    •    •) 
((NC P?  M  •  t   •  tj    •    (IMCH)    >>H   •   •   •    •) 
MNC P6   >4J   •   ■   UR6   «i   •   (INCH)    !>«••••) 
(,(NC •   «••i«)(1*   '4   ••••)) 

AMU   (CH»*n.RH   (UlfKERtxCL   H   OH)   Kid)   (.»01    (UESSH   H   K19))) 
(FC ANU   (GHI.ATLRP   (OlUEHLJCt   H   UH)   K\i)    (UrbSH   H   K19)) 
CCC km 

(LtSSP   K^H    (DirrtHLNLt   N   OM)) 
INWf   (UREATrHP   (UUrtHfiLE    H   OH)   Kl»))) 

(PC ANU 
(LtssP   K21   (UlfFtHt-NC»    H   UH)) 
(NUT   (URtAUHP   (DUFLHt-Ct   H   OH)   K2^))) 

(NC NOT    (GHlATtRP   (UIFKHLNCt   H   OH)   K?l))) 
((PJ IjRt'.ItHH   P   K\)    (P?   r.HLATLRH   P   K?) 

(P.5   CHtATLRP   P   K4) 
(P4  BMAtkNI*  P  K6> 
(P5   LtbSH   P   K«) 
(Po   UtSSH   P   K14) 
(P7   LtSSP   P   M?) 
(Pd   CHLATtRP   P   1?») 
(P9   ÜHtAltHP   P   17) 
(Pik)   LtSSP   P   15)) 

( (HI LtbJP   u   KH)    (l<^   LtSSP   M   KliO) 
{tii   LI SSH   d   K1J) 
(d4   LtSSP   d   Kl!>) 

(Hb   (.RtATtHH   y   11) 
(bV   ANJ   (LLSSP   «   5)    (NUT   (tOU*L   d   3)))) 

< (HO G^tATtMP   dfO   K".)    (I.u/   GHtAftRP   bFU   KID 
(riOJ   G^KAURP   UFU  Kl«)) 

((Pai BNCATiW   PH   K17)    (Pbü   '.fitATtHH   PH   D 
(Pb-J   OrttAltRP   P8   3) 
(Ph4   LtSSP   Pb   HI 

((Ort] Oh    ((-Ü   H   i)    KQ   *   1))    (UH<:   LOUAL   M   2) 
(UH3   LOUAL   H   «D 
(UH4   LilUAL   H   4) 
(UKt>   LOUAL   H   1) 
(UHb   NOT    (EUUAL   R   •!>) 
(o-i/   LOUAL  R  3)) 

((CSl GHfAftHP   OCS   KJ)   (CS^   GKEATtRP   OCS  K7) 
(CS3   GNLATLRP   OCS   K12)>)) 

VALUD 

Figure 5-3.    Built-in heuristics for draw poker. 
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A Proficiency Test for Poker 

In ths next sectita it will be cliown how trainiug can produce 

useful and effective sets of heurj sties. Iü order to test the poker 

playing abilitv of the programs which axe trained, some type of proficiency- 

test is needed. Such a test will now be described and applied to the 

poker program as it uses the heuristics (28 action rules and 4l bf rules) 

given in Figure 5-3 (henceforth referred to as the "built-in" heuristics). 

Applying this test to the program containing the built-in heuristics will 

provide a base against which the heuristics learned through training can 

be compared, in terms of game-playing effectiveness. 

TEST PROCEDURE. The proficiency test consists of the following procedure. 

The program plays 5 games against a human opponent, each consisting of 

5 hands. The cards are dealt from a standard deck of 52 cards which 

is first shuffled in a random manner. When the deck is depleat^d the 

cards are shuffled and the same deck is used again. Thus a total of 

50 hands are dealt during the 5 games, 25 to the program and a corres- 

ponding 25 to the human opponent, (in this context a hand is taken to 

mean the 5 cards dealt plus 3 additional cards which may be fiven to 

the player if he decides to replace cards from his original fi"e.) 

After the 5 games are played a second series of 5 games is played, 

again using the same hands that were used in the first series. However, 

in the second series of games the program receives the 25 hands held by 

the opponent in the first series, and the opponent receives the 25 

corresponding hands held by the program in the first series. 
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Program Opponent Program Opponent B 
Series Game Hand Hand Series Game Hand Hand 

I.    1. a1 II.    1. u' u D 
b' V 
c' w 

0 d' X 
e1 y 

2. f 2. k 0 g1 i 
h1 m 
i1 n B y o 

5. k1 .3. f a v g 
m1 h 

n n' i 
o o1 i 8 

k. P P' h. a 
q q' b 

Q r r* c 
s s' d 
t t' e 

5- ■ u1 5. P D 
V V1 « 
w w1 r • • 

X x' s 
y y' t 

Figure 5-^.     Possible arrangements of hands for 
the p/oflciency test for draw poker. 
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This procedure is illustrated in Figure 5-k.    It is seen that in 

series I the program receives hands a through y , and the opponent 

hands a' through y' . In series II the situation is reversed; the 

program receives a' through y' and the opponent a through y . 

The only difference between series I and series II, other than the 

reversal of hands, is that the games do not occur in the same order. 

For example, in Figure l6, game 1 of series I occurs as the fourth game 

of series II. The games of series I axe  rearranged by a random process 

to establish the game order for series II. 

PLAYING ABILITY. The playing ability of the program is measured relative 

to the opponent's playing ability as follows. The amount won by the 

program in series I is compared to the amount won by the opponent in 

series II for corresponding r-o-p's , and these results are displayed 

in graphical form as illustrated below. 

Cumulative 
amount won 
by each 
player 

: ^ difference 

Number of rounds-of-play (r-o-p's) or hands 

Figure 5-5. 

Also calculated is the percentage difference between the total amount 

won by the opponent and the total amount won by the program. Since 

the same human oppouent is used in each proficiency test, the test 

provides a means of comparing the game-playing effectiveness of different 

sets of heuristics. 
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In order to reduce the likelihood that the opponent remembers 

and uses information he is exposed to in series I as he plays the games 

of series II, (l) a number of dummy hands chosen randomly are played 

immediately before and after series I is played, and (2) a time elapse 

of 2U hours is used to separate series I from series II. 

TEST RESULTS FOR BUILT-IN HEURISTICS.  The results obtained by applying 

the proficiency test to the poker program containing the built-in 

heuristics are shown in Figure 5-6. It is seen that the program won 

roughly the same amount en,  the human opponent, who is an experienced 

player.  In fact, the program won slightly more than the human opponent; 

i.e., the opponent won %  less than the amount won by the program. A 

portion of the series of games which comprise this proficiency test is 

presented in Appendix C. 
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5.5 TRATNING THE POKER PROGRAM 

The training procedures described in section 5*2 will now be 

applied to the aforementioned system for playing draw poker. The 

program to be trained initially contains one action rule of the form 

(*, *t *f *f  »^ *, •*) -» (random decision) , 

no bf rules, and one ff rule for each of the function variables. During 

the course of training the program learns both the action rules and the 

bf rules, in a manner exactly identical to the process described 

earlier. In all examples discussed in this section training is 

continued to the point where further training results in little or no 

improvement in the program's ability to avoid making decisions which 

are rated unacceptable by the trainer. 
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Training Using a Human Trainer 

In the first type of training to be illustrated the program plays 

an actual game against a human opponent and immediately after making 

each move decision asks a human trainer if the move was satisfactory. 

If the trainer indicates that the move was acceptable, the program 

proceeds by making that move. If the trainer instead indicates that 

a particular alternative move would have been better, the program 

analyzes the training information supplied by the trainer, incorporates 

it into the existing production rule list, and then proceeds by making 

the trainer-recommended move. This correction procedure is called a 

training trial.  Thus a training trial occurs only when the program 

makes an error, that is, a decision which is unacceptable to the trainer. 

The heuristics learned by the program after being put through 58 

training trials by a human trainer are given in Figure 5-7« These 

heuristics will be referred to as the "manual-training" heur'sties. 

During the training process 51 action rules were created, but 5 of these 

were made redundant through generalization on other rules and were 

automatically removed after training was completed, leaving the 26 

action rul«ir, shown in Figure 5-7• A portion of the training trials 

used to create the manual-training heuristics is presented in Appendix D. 

TEST RESULTS FOR MANUAL TRAINING. In order to test the game-playing effec- 

tiveness of the manual-training heuristics the proficiency test was applied 

to the poker program containing these heuristics (see Appendix E for a 

sample of the games played for this test) and the results plotted in 

Figure 5-8. As the graph shows, the program won almost as much as the 

opponent did, winning 6.8$ less than the amount won by the opponent. 
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(UCFTROP   MANUAL-TRAININC-HEUHISTICS 
(NIL 

(<(H3   #   B3   •   •   •   •)   •   (INCP)   0   •   •   •   •) 
((H3 Pi •••••%  •   (INCP)   SB  •  •  •   •) 
((H3  P14   B2   B03   •   •   •)   •   (INCH)   BBS   •   •   •   •) 
((H3   •   B2   •   •   •   •)   •   (INCP)   SB  •   •   •   •) 
(CM   PI   A?   B02   •   •   •)   •   (INCP)   OÖ   •   •   •   •) 
((H4   •   B2   •   •   •   •)   •   (INCP)   SB   •   •   •   •) 
((H4  Pi   B8   •   •   •   •)   •   (INCH)   u   •   •   •   •) 
((H4   •   •   •   PB4   ••)i)«0«**») 
((H4  P3   34   •   •   •   •)   •   (INCP)   0   •   •   •   •) 
((H4   PI   •   •   •   Rl   •)   •   (INCH)   SB   •   •   •   •) 
((H2   •   •   B03   •   Rl   •)   •   (INCP)   SB   •   •   •   •) 
((H2   Pi   •   B04   •   •   •)   •   (INCP)   BB   •   •   •   •) 
((H2   Pi   02   •   •   •   •)   •   (INCH)   SB   •   •   •   •) 
((H2   P8   H4   •   •   •   •)   •   (INCH)   B   •   •   •   e) 
((H2   P2   HI   •   •   •   •)   •   (|NCH)   |  •  •  •  •! 
((H2   ••••••)•   (INCP)   MU   •   •   •   •) 
((H3   P4   BS   •   •   •   t)   •   (INCH)   MH   •   •   •   •) 
( (H4   •••*H4«)i4*kl**»«) 
((Hl   P4   •••••)   •   (INCP)   Sli   •   •   •   •) 
((H^   P1J   •••••)•   (INCH)   MB   •   •   •   •) 
((Hl   M  •••••}   •   (INCP)   LAP   •   •   •   •) 
((HI   P9   B4   •   •   •   •)   •   (INCH)   t)   •   •   •   •) 
((Hl   Pik)   B3   •   •   •   •)   •   (INCP)   ■••••! 
((HI   ••••••)•   (INCP)   LAP   •   •   •   •) 
((H3 Vi.2  B9   •   •   •   •)   •   (INCP)   0   •   •   •   •) 
{(H3   ••••••)•   (INCP)   S«   •   •   •   •) 
((•••••••)    (STARÜ)   (bTAHl)   (BETÜ)   ••••>) 

(((H4 LF.!>SP (OIFFeRLNCL H (LVAL1 (QUUTL UH))) 0) 
(H3 AND 

(NOT (LESSP (OlFFtHrNCE N (LVALl (UUUTE, OH))) 0)) 
(LtSSP (DIFFERENCE H (EVAL1 (QUOTt OH))) 12)) 

(H2 AND 
(NUT (LESSP (U1FFLHENCE H (LVALl (UUUTE OH))) 12)) 
(LLSSP (ÜIFFERENCE H (EVAL1 (QUOTE OH))) 34)) 

(HI NOT (LLSSP (DIFFERLNCt H (LVALl (QUOTE OH))) 34))) 
((PI LESSP P 3) (P2 GRLATLHP H 17) 

(P3 GRLATtHP H 1) 
(P4 LESSP H 13) 
(P6 LESSP H J3) 
(PS GREATENP P 41) 
(P9 GRLATLHP H 1«3) 
(Pia CHLAURH H 75) 
(P12 GKEATtRH P 15) 
(P13 LESS^ P ij3) 
(P14 LESSP P 7)) 

((H9 NOT (EQUAL B d)) (B8 *NU (NUT (EUUAL P ^))   (LESSP B 4)) 
(bl URLATLHP B 4) 
(rf2 LESSP b 1) 
(b3 liHFATLHP B 3) 
(b4 URtATLHH b 1) 
(B5 LESSP B 2) 
(B7 LESSP B 3)) 

((B02 CHEATERP BFQ 17) (BOi UHLATLRP BFO 0) (B04 LESSP BFO -5)) 
((PB4 LESSP PB 4)) 
((R4 EQUAL H 0) (Rl EQUAL H -U) 
ML)) 

VALUE) 

Figure 5-7. Manual-training heuristics for draw poker 
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Comparing this with the performance of the program containing the 

built-in heuristics it appears that although both programs play roughly 

as well as the human opponent the program with the built-in heuristics 

is somewhat superior to the program with the manual-training heuristics. 

The improvement in game-playing ability due to training can be 

illustrated by comparing the results of the proficiency test applied 

before training (see Appendix F) with the results of the test applied 

after training. Figure 5-9 shows the results befo. training, where the 

program contained no bf rules and only one action rule of the form 

(*******).♦ (random decision).  Before training, as the graph 

shows, the program won 71$ less than the amount won by the opponent, 

while after training it won only 6.£$ less. Thus the training process 

effected a significant improvement in the playing ability of the program. 

Training Using a Program Trainer 

Training can also be implemented using a program rather than 

a human as the trainer. This method of training will now be illustrated, 

using the poker program containing the built-in heuristics as the trainer 

and another version of the poker program containing only the random 

decision action rule as the trainee. As before the trainee querius the 

trainer after each move decision to find if the move is acceptable.  If it 

is not, the trainer supplies the trainee with the training information, 

in exactly the same form as that supplied by the human trainer, and 

the trainee incorporates it into it:; existing production rule list. 
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The effectiveness of the modification and generalization techniques 

used by the trainee as it learns how to play the game can be tested in 

the following manner. After training is completed the trainee plays 

a number of games against the human opponent and each decision made 

by the trainee is compared to the decision that the trainer would have 

made in that game situation. If the two programs rarely make tht same 

decision it can be inferred that the modification techniques used by 

the trainee are ineffectual. On the other hand, if the trainer and 

trainee always make exactly the same decisions it can be inferred that 

the modification techniques used are extremely effective.  In any 

case, the percentage of decisions which the two programs agree upon 

can be used as a measure of the effectiveness of the modification 

and generalization techniques. 

A program trainer rather than a human trainer is used in obtainir^ 

this measurement because the program trainer by its very nature will 

make exactly the same decisions during testing as it did during the 

training process, whereas the human trainer cannot be relied upon to 

be this consistent. It should be clear that any inconsistency of this 

type exhibited by the trainer will decrease the percentage of decisions 

which the trainer and trainee agree upon, thus confounding the measure- 

ment of the effectiveness of the modification techniques. 

The heuristics learned by the trainee after being put through 

29 training trials by the program trainer are shown in Figure 5-10. These 

heuristics will be referred to as the "automatic-training" heuristics. 

During the training process 20 action rul-'S were created, but one of 

these was made redundant through generalization on other rules and was 
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(UETPROP   AUTOMAT IC-THA I NlNG-HEURUTlCS 
(NIL 
(((H3   •   U3   •   PUl   Rl  •)••»•••  •! 
((H3 PI d8 b04 • • •) • (INCP) bb • • • •) 
((H3 P6 H4 b03 PB2 H2 •) • (INCP) BO • • • •) 
{'.H3 P6 B10 B05 • • •) • (INCP) Hb • • • •) 
((H3 • b7 • • • •) • (INCP) H • • • •) 
((H3 ) • (INCP) Sb • • • •) 
((H2 • • bOl * Rl •) • (INCP) Sb • • • •) 
((H2 P4 ril * • R3 •) • (INCP) ■••••! 
((H2 Pi H •  •  •  •}   •   (INCH) K5 • • • •) 
((H2   *   •   aüj   »   Rl   •)   •   (INCP)   Sb   t   t   •   •) 
((H2  P8  06   •   •   Rl   •)   •   (INCP)   ••#••! 
((H2   ••••••)•   (INCP)   Mb   •   •   •   •) 
((HI   P| 0|  •  •   •   •}   •   (INCH)   | •  •  •  •! 
{(HI   ••••••)•   (INCP)   LAP   •   •   *   •) 
((H4   P2   82   •   •   •   •)   •   (INCH)   SB   •   •   •   •) 
((H4   P6   HI4   •   •   •   •)   •   (INCH)   0   t   •   •   •) 
<(H4   P7   U^   •   •   R2   •)   •   (INCP)   Sb   •   •   •   •) 
((H4   •   b7   •   PB3   »   »)   #   (INCP)   PI   •   •   •   •) 
((H4   ••**•*)   •••••••! 
(( )    (STARO)   (STAKI)   (BETO)   ••*•)) 

(((H4 LESSF (DIFFERENCE H (LVAL1 (OUUTL ÜH))) id) 
(H3 ANÜ 

(NUT (LESSP (DlFFEHENCt M (EVAL1 (UUüft UH)») 0)) 
(LtSbP (ÜIFFLRENCL H (EVALl (QUOTE OH))) 13)) 

(H2 ANU 
(NUT (LF.SSP (DIFFERENCE H (EVAU1 (UUUTfc. UH))) 13)) 
(LLSSP (DIFFERENCE H (EVALl (QUOTE OH))) 34)) 

(HI NOT (LtSSP (DlFFtRENCk. H (tVALl (QUOTE Oh))) 34))) 
({PI LESSP P 11) (P2 LESSP P 3) 

(P3 GRLATERP P 63) 
(P4 CHLATKRP P 43) 
(P5 GREATtKP P 47) 
(P6 LESSP P 5) 
(P7 LESSP P 15) 
(P8 GREATtHP P 13)) 

((B4 ANU (LESSP B t>) (NUT (EQUAL b Id))) (bl CHEATLRP B 2) 
(ti2 LLSSP B 1) 
(B3 CREATERP B 13) 
(06 GKEATfcRP b 1) 
(d7 GHEATERP b id) 
(d8 LtSSP B 3) 
(did L^SSP b 4)* 

{(HOI CHEATLRP dFO 21) ',503 ÜKEATLRH bFO 10) 
{B04 GHEATtRP BFU 27) 
(R05 GHEATLRH BFU 46)) 

{(PB1 LESSP PÖ 2) (PB2 GHEATEKP PB 3) (PH3 CRtATERP Pb 11)) 
{(R3 UR (EQ R 0) (EQ H D) (H2 NUT (EQUAL R -D) (Rl EQUAL 
ML)) 

VALUE) 

H »iii 

Figure 5-10.    Automatic-training heuristics for draw poker. 
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automatically removed after training was completed, leaving the 19 

'.ction rules shown in Figure 5-10. A portion of the training trials 

used to create the automatic-training heuristics is given in Appendix G. 

TEST RESULTS FOR AUTOMATIC TRAINING. The percentage of decisions which 

the trainer and the trainee agreed upon was measured, both before and after 

training, for 50 consecutive game situations supplied from hands chosen 

at random.  The results are ^hown in Table 5-1 below. 

:: 

£  AGREEMENT BEFORE TRAINING 2üjb 

i  AGREEMENT AFTER TRAINING 9$ 

Table  5-1«    Percentage agreement between 
trainer and trainee. 

It is seen that training produces close to 10C^  agreement between the 

trainee and the trainer,  thus showing that '^he modification and 

generalization techniques used are extremely effective. 

The playing ability of the trainee,   the poker program containing 

the automatic-training heuristics,  was  tested by applying the proficiency 

test to the program (ree Appendix H for a sample of the games played). 

The results £-re plotted in Figure 5-11«     A^; the graph shows,   the program 

won approximately the same amount a.c did the opponent.    Comparing Figure 

5-11 with Figure  5-6 it appears that the trainee plays almost as well as 

the trainer,   in spite of the fact that the trainee contains only 19 

action rules,  9 less than the trainer contains. 
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5A LEARNING POKER WITHOUT EXPLICIT TRAINING 

The techniques described in section 5.3 which permit the program to 

obtain the training information through normal game play will now be 

applied to the problem of making the bet decision in draw poker. The 

program which uses this implicit-training procedure initially contains 

one action rule of the form (*, *, *, *, *, *, *) -♦ (random decision) , 

no bf rules, no ff rules, a set of logical statements or premises 

about the game of poker and game playing in general, and a decision 

matrix for poker. During the course of playing a series of games the 

program learns both the action ruler: and the bf rules. 

Axiomatizing the Game 

In order to permit the program to hypothesize reasonable heuristic 

rules without explicit training it is necessary to provide the program 

with a means of determining or deducing reasonable decisions. 

This can be accomplished by supplying the program with a set of logical 

statements based on 

(] )  the rules of the game, 

(2) assertions (or "axioms") about the game, 

(5) general propositions about techniques used in game playing. 

Then, after the program makes a decision it can use these logical 

statements, together with information concerning the subsequent decision 

by the opponent and its effect on the game situation, to deduce what 

the original decision should have been. 

PROGRAM OPERATION. Specifically, the program operates as follows. During 

a game the program subvector is saved each time a bet decision is made, and 

: 



this information is accumulated until the termination of the current 

round-of-play. If the r-o-p was terminated by a "drop", the information 

is not used; i.e., the program learns nothing. If the r-o-p was 

terminated by a "call", thus exposing the opponent's hand, a program 

subvector (and associated bet decision) is used, with the value of the 

opponent's hand, to set the predicates in the logical statements.  Once 

these statements are so primed, the program is a^le to deduce what the 

bet decision should have been in order to have maximized the program's 

score. If the bet decision actually made by the program was not correct 

(the one that would have maximized the program's score) a learning 

trial takes place; i.e., the correct decision plus information from 

the decision matrix is used by the program to modify the existing 

production rule list as specified in section 5.5.  This procedure 

is carried out individually for each program subvector (and associated 

I bet decision) accumulated after cards are replaced. 

NON-EVALUATABLE ACTION RULES- A major problem encountered in using this 

I learning technique is that all action rules which specify the action DROP 

1 are non-evaluatable. This is true because when a drop is made the r-o-p 

is terminated but the program is not permitted to see the opponent's 

hand. Without this information the logical statements cannot be primed, 

consequently there is no way to determine whether or not the decision to 

drop was a sound one.  This becomes a problem when a bad or ineffectual 

action rule leading to drop is hypothesized by the system, because it 

is non-evaluatable and thus cpnnot be modified or removed. 

The problem of the non-evaluatable action rule is solved in the 

following way. If during the learning trials the symbolic subvector 

Ihk 
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catches on a non-evaluatable action rule the decision specified by 

the rule is not made, instead an evaluatable one (in this case a CALL) 

is made. Then during the evaluation process the non-evaluatable 

decision (the drop) is compared to the decision deduced using the 

logical statements, and if the two decisions differ the existing 

production list is modified. After learning is completed the 

substitution of evaluatable decisions for non-evaluatable ones is 

discontinued. 

LOGICAL STATEMENTS- The logical statements used by the program are shown 

in Appendix I, Part I. The poker "axioms" included therein are statements 

which can be deduced by a human strictly from the rules of the game and an 

elementary knowledge of casual laws.  It is reasonable to give these 

statements to the program since a human about to play the game for the 

first time would have this information readily available, even though 

he knew nothing of the decision strategy to use for the game. 

The logical statements used by the program have the form P 3 Q , 

meaning that if P is true then Q is also true. The expressions P ana 

Q consist of predicates and the logrca] connectives A and V . The 

arguments of a predicate may be either constants, as in add(pot,yourscore) 

or variables, as in add(x,z) , and these variables may take the value 

of any constant as long as the assignment is concistent within a logical 

statement. 

DEDUCTION PROCESS. To illustrate how the program can use these logical 

statements to deduce the best decision; i.e., the decision that would have 

maximized its score, consider the following. First, the state vector 
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associated with one of the program's bet decisions and the value of the 

opponent's hand are used to set certain predicates in the logical 

statements. Then the program takes the expression maximize(yourscore) 

and tries to make it true. To accomplish this the program searches the 

right sides of the implication statements P D Q looking for a Q which 

matches maximize (yourscore) or can be made to match it by substituting 

constants for free variables. After such a Q is found the program applies 

the same technique to the problem of making the left side or P of the 

P D Q statement true by matching P or parts of P against the right 

sides of the implication statements. This process continues until 

all decisions which make maximize(yourscore) true are found. An 

example of this deduction procedure is presented in Appendix I, Part III. 

In some situations more than one type of action by the program will 

make maximize(yourscore) true. When this is the case the program 

chooses one of these actions as follows. The left side of general 

axiom 2 has the form a V b V c . If expression a can be made true then 

an action is picked at random from the set of actions which makes a 

true. If a cannot be made true but b can, then an action is picked 

at random from the set which makes b true. If neither a nor b can 

be made true then an action is picked at random from the set of actions 

which makes c true. 

The Decision Matrix 

As explained in section J.J a decision matrix is needed to provide 

the program with the reasons why the subvector variables are relevant. 

After the program logically deduces a decision and hypothesizes which 

variables are relevant, it uses the decision matrix to determine why 
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each of the variables hypothesized as relevant are in fact relevant. 

The decision matrix used for draw poker is shown below.  Each row 

stands for a game decision and each column for a subvector variable. 

VDHAND 10T LASTBET BLUFFO 1'OTBET OKI' oenu 

DROP 

'■AJJ. 

LOW 

LET 
HIGH 

"Category the 
current value 
of VDHAND 
belongs In" 

large large small small 
"current 
value of 

ORP" 
large    i 

"Catego-y the 
current value 
of VDHAND 
t-longs In" 

large large small lirge 
"current 
value of 

OKP" 
large 

"Category the 
current value 
of VDHAND 
belongi, in" 

ümall small 

program 
hand  : large 
good 

program 
hand  : small 
poor 

large 
"current 
value of 

ORF" 
Ikrge 

"Category the 
current value 
of VDHAND 
belongs in" 

small 

program 
hand  : large 
good 

program 
hand  : small 
poor 

program 
hand  : small 
good 

program 
hand  : large 
poor 

program 
hand  : small 
good 

program 
hand  : large 
poor 

"current 
value of 

CRP" 

program 
hand  : small 
good        j 

program     | 
hand  : Urge 
poor 

Figure 5-12. 

For example, if the program determines that the decision should have 

been BET LOW and hypothesizes that VDHAND, POT, LASTBET, BLUFFO, 

POTBET, ORP, and OSTYLE are relevant then it uses the decision matrix to 

find that it should make the decision BET LOW because VDHAND falls 

into a particular category, POT is small, LASTBET is small, BLUFFO is 

large (if goodhand(you) = T) or small (if goodhand(you) = F) , POTBET 

is large, ORP is a particular value, and OSTYLE is large. 
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Learning Based on Implicit Training 

The effectiveness of the implicit-training techniques used by the 

learning program can be tested as follows. After learning is complete 

the program plays a number of games against the opponent and each 

decision made by the program is compared to the decision that would 

have been deduced in that game situation using the axiom set.  The 

percentage of decisions agreed upon can be used as a measure of the 

effectiveness of the hypothesis-formation and deduction techniques used 

by the learning program. 

The heuristics learned by the program after 57 training trials 

are shown in Figure 5-13. These heuristics will be referred to %a 

the "implicit-training" heuristics. During the training process 15 

action rules were created, but one of these was made redundant through 
I 

generalization on other rules and was automatically removed after 

learning was completed, leaving the Ik  action rules shown in Figure 5-15- 

A portion of the training trials used to create the implicit-training 

heuristics is given in Appendix J. 

Learning was terminated after 5? training trials since this  was 

the number cf trials needed to make the action rules general enough to 

• catch the symbolic subvector the vast majority of the time. After 57 trials 

they caught the symbolic subvector 95^ of the tiMi permitting the random 

rule at the bottom of the action rule list co catch the subvector only 

!$ of the time. 

I 
I 
I 
I 
I 

TEST RESULTS FOR IMPLICIT TRAINING.  The percentage of decisions agreed 

upon by the program and the axiom set was measured for 50 consecutive 
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(DEFPRÜP IMPLICIT-TRAINING-HEURI5TICS 
(NIL 
(((Hl • • • PB5 • CS5> • (INCH) bSS (DUMMY •)••#) 
((M3 • bi • • • CSi») • (INCH) 0 (DUMMY •)••*) 
((H4 P32 üb   »034 PÜ27 • CS12) • (INÜP) düd (DUMMY •)#••) 
((H4 P14 B12 ••••)••« (ÜUMMY •)•••) 
((H3 P27 Ü22 • PR5 • •) • (INCP) SSS (DUMMY •)«••) 
({H2 • Ul9 • PB5 • CS2) • (INUK) bSb (OUHHV •)«••) 
((H4 • y22 ••••)• (INC^> SSb (DUMMY •)•••) 
((H3 • d\2   «02 PB7 • CSD M • t (ÜUMMY •)•»•) 
((H2 • bö • Püü • CSD • (INO') H (DUMMY •) • • •? 
((Hl P22 ^4 ßO? Py4 • Cb6) • (INCP) Rb1) (ÜUMMY «)««•) 
((Hl t b3 • • • CS?) • (INCP) 0 (UUMKY •)•••) 
((H2 PXb   • BÜ14 • Rl rS7) • UNUHJ bHd IDUHHV •)•*•) 
((H3 P12 •••«!•)• (I.MUP) BHÜ (ÜUMMY •)•••) 
((H2 P?^ Ü4 • PB17 • •) ■ H»lCHJ üliii    (DUMMY •)•••) 
(( • •) (STAKO) (ÜTAKD (dtlU) ••*•)) 

(((H4 LF.SSP H J) (H^ ANÜ (NUT (LtbSP K 3)) (UESSP H 2^)) 
(H? AN') CNUT (ILSSP H ?0)) (LLSSP H ^2)) 
(Hl NOT (LLSSh' N 42) ) ) 

((Pl? LlvS$P P ?7) (P14 üHLATtHP P 5) 
(Plb uESbP H 21) 
(P20 UEbSH P 61) 
(P22 LESSP P 31) 
(P27 LFSSP P 46) 
(P32 LFSSP P 23)) 

(013 GRLATFHP 0 4) (H4 ÜRtAUKP H D 
{üb   LCSSP ff 4) 
(HR CRLATEWP U 7) 
(Hl? r.WKATLKP b 0) 
CB1« LLSSP H 14) 
(Ü2? LLbSP H 6)) 

((HO? LLSSP bFü -b)    (Ü014 LL'ibP HFO 6) (B031 ÜRLATLRP Bf'O -32)) 
((Pb4 LLSSP Pd 17) (PB5 GKLATl.HP PÖ 1) 

(PU7 I.LSSP Pü 41) 
(Pül7 LKSSP Pri ?D 
(PB?7 CKtATt-KP Pb 6) ) 

((Rl EO 1< 3)) 
((CS1 GHFATLRP üCS -1) (CS2 GWLATLRP OCS -2) 

(CS1? UHLATtRP DCS -1) 
(CS^ LLSbP DCS 1) 
(CS/ LLbbP OCS 3) 
(CS12 CRtAfEHP OCS -6)))) 

v',' i •-) 

Figure 5-13.  [«plicit-tpalning heuristics for draw poker. 
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game situations, both before and after the training trials. The results 

are shown in Table 5-2 below. 

f  agreement before training 

$ agreement after training 

21$ 

Q2$ 

Table 5-2. Percentage agreement between 
learning program and axiom set. 

It is seen that the training trials produce an 82^ agreement between 

the program and the axiom set, an increase of 58$ over the agreement 

before training, thus showing that the implicit-training techniques 

are effective in implementing learning. The percentage agreement 

between the program and the axiom set (8^) was less than the 

percentage agreement between the trainee and trainer (9^) described 

in section 5«5' 

The playing ability of the program containing the implicit-training 

heuristics was tested by applying the proficiency test to the 

program (see Appendix K for a sample of the games played). The results 

are plotted in Figure 5-1^«  As the graph indicates, the program won 

1%  less than did the experienced human opponent, implying that the 

opponent is a slightly better player than the learning program. 
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5-5    DISCUSSION OF RESULTS 

The results obtained in sections 5'2,  5'iS  and 5-^ are summarized 

in Table 5-3'    The first column of this table is a list of the various 

sets of heuristics  (action rules and associated bf rules) tested in 

this chapter.    The before-training heuristics consist of a single 

action rule of the form    (*, *, *, *,*,*>*)-*  (random decision)    and no 

bf rules, whereas the other sets of heuristics  consist of the action 

and bf rules illustrated in Figures 5-3,  5-7,   5-10,  and 5-13' 

NUMBER OF TRAINING TRIALS.     The second column of Table 5-3 contains the 

number of training trials used to create the  sets of heuristics listed 

in the first column of the table.    The built-in and before-training 

heuristics were created by hand and thus required no training trials. 

The manual-training and automatic-training heuristics were created using 

the training procedure of section 5«2, and required 30 and 29 training 

trials,  respectively.     Training was continued until the trainee,  during 

training, played one complete game of 5 hands without once making a 

decision rated unacceotable by the trainer.    The implicit-training 

heuristics were created without the use of a trainer and required 57 

training trials.    Training was continued until the acquired action rules 

were made general enough to catch the symbolic  subvector, and thus gener- 

ate a non-random decision,  9% of the time. 

The number of training trials required by the explicit-training 

procedures cannot be directly compared to the number of trials required 

by the implicit-training procedure because   (l)  the same criterion was not 

used in each case for determining when training trials should cease,  and 
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(2) the number of decisions which had to be learned was not a constant, 

i.e., .ie explicit-training programs had to learn to associate 8 different 

decisions with the game situations encountered, while the implicit- 

training program had to do the same with only k  different decisions. 

Nevertheless, there is an indication that the implicit-training procedure 

requires many more trials than does explicit training, since this was 

the case even when the implicit-training program had only half as many 

decisions to deal with as did the other programs. 

Implicit training requires more trials because not only are training 

generalization techniques being utilized but also generalization 

techniques for determining variable relevancy.  The important point, 

however, is that only a modest number of trials is required by either 

procedure to produce a program capable of playing a c mplex game, like 

draw poker, with roughly the same level of skill as an experienced human 

player. 

NUMBER OF REDUNDANCIES-  The third column of Table 5-3 contains the number 

of action rules made redundant during training.  It is seen that more 

redundancies occurred during manual training than occurred during either 

automatic training or implicit training.  One explanation is that 

the human trainer was less consistent during training than was the program 

trainer or axjom set and this inconsistancy led to an increase in the 

number of redundancies created. More important is the result that the 

modification and generalization techniques employed form learning systems 

which are quite stable and which accordingly create very few redundancies 

during the acquisition process. 
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NUMBER OF ACTION RULES- The fourth column of Table 5-3 contains the 

number of action rules either created by training or put into the system 

by hand. Note that although the trainee (the program containing the 

automatic-training heuristics) contained 9 fewer action rules than did 

its trainer (the program containing the built-in heuristics) it played 

almost as well as the trainer. Here the training process acted like a 

transformation procedure, changing a lengthy, thorough set of action 

rules into a compact, efficient set, leaving out rules corresponding 

to game situations seldom encountered in actual play. 

The numoer of action rules created by the implicit-training process 

is seen to be less than the number created by explicit training. This 

difference is due simply to the fact that during implicit training the 

program had only four decisions to associate with game situations, while 

during the explicit training it had eight decisions. More generally 

speaking, it is seen from column h  that a surprisingly small number 

of action rules (and associated bf rules) are needed to describe a 

thorough and effective set of heuristics for the game of draw poker. 

PROGRAM PROFICIENCY. The fifth column of Table 5-5 contains the percent 

difference between the program's winnings and the opponent's winnings dur- 

ing an application of the proficiency test, expressed as a percentage of 

the amount won by the winning player. A plus percentage indicates that 

the program was the winning player, a minus percentage that the opponent 

was the winner.  It is clear by comparing the difference in winnings 

before and after training that both the explicit and the implicit training 

procedures led to a significant increase in the playing ability of the 

programs involved. 
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However, the increase in playing ability during implicit training 

was not as great as the increase during explicit training. This 

result is due, presumably, to the following factors:  (l) the axiom 

set, which provides a means for deducing "good" decisions, does not 

provide the program with decisions which are as shrewd or perceptive as 

those provided by a human trainer, (2) the program must use a complex 

generalization process to determine variable relevancy during implicit 

training, while it is given this information by the trainer during 

explicit training, and (5) the program is permitted to learn to 

make only half as many different decisions during implicit training 

as it can learn to make during explicit training. 

CONVERGENCE. The last two columns of Table 5-3 contain a measure of the 

agreement obtained between (a) the trainer and trainee and (b) the axiom 

set and the implicit-training program, both before and after training. 

In each case the percentage is based on the number of identical 

decisions made during 50 consecutive game situations.  It is seen from 

Table 5-5 that a high percentage of agreement or degree of convergence 

was achieved for both case (a) and case (b) above. 

However, the degree of convergence for case (b) is less than 

that for case (a), probably because of the following aspect of the 

implicit-training procedure. The axiom set is used, together with the 

value of the opponent's hand, to logically deduce the decision that would 

have maximized the prograr.'s score, and this is considered by the program 

to be the decision it should have made during actual play. But during 

actual play the decisions of the program are based on a set of action 

rules which do not include the value of the opponent's hand (this 

value is unknown at the time). 
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For example, the "trainer" (the program as it performs deductions 

with the axiom set) may indicate that in game situation S action A 

should be taken and that in game situation S' action A'  should be 

taken.  If the only difference between S and S'  is the value of the 

opponent's hand then the two situations are identical when put into 

action rule form. Thus it appears to the "trainee" (the program as 

it uses the action rules to make a decision) that the "trainer" is 

sometimes inconsistent, and as a result the percentage of agreement 

between the two is reduced. 

157 

I 
I 
I 
I 
I 
I 
I 

. 

: 

i 

i 
i 



I 
I 
I 
I 

I 
I 
I 
1 

CHAPTER 6 

CONCLUSIONS 

6.1 ACHIEVEMENTS 

In the preceeding chapters a number of ideas relative to the 

problem of implementing machine learning of heuristics were presented 

and investigated. The achievements resulting from this examination 

Of the problem will now be briefly summarized. 

First, a method of representing heuristics (as production rules) 

was developed which facilitates dynamic manipulation of the heuristics 

by the program embodying them. This representation technique permits 

separation of the heuristics from the program proper, provides clear 

Mentification of individual heuristics and indicates how they are 

interrelated, makes the modification or replacement of heuristics a 

trivial task, and makes it simple to use the heuristics to obtain a 

decision from the system. Furthermore, a language for .^ecifying 

heuristics was formulated which serves as a convenient intermediate 

step In the process of translating informally stated heuristics into 

production rules. 

Second, procedures were developed which permit a problem-solving 

program employing heuristics in production rule form to learn 

to improve its performance by evaluating and modifying existing 

heuristics and hypothesizing reasonable new ones, either during a 

special training process or during normal program operation.  These 

1'•irnim'- pro^edurea an applicable in -ill 'asea where each of the 
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subvector variables, the program variables which directly influence or 

are influenced by the program's decisions, can be considered to have 

a range consisting of a set of integer values. 

Third, the abovementioned representation and learning techniques 

were reformulated in the light of existing stimulur-response theories 

of learning, and five different S-R models of human heuristic learning 

in problem-solving environments were constructed and examined in detail. 

Experimental designs for testing these information processing models 

were also proposed and discussed. 

Finally, the feasibility of using the aforementioned representation 

and learning techniques in a complex problem-solving situation was 

demonstrated by applying these techniques to the problem of making 

the bet decision in draw poker. This application, involving the 

construction of a computer program, demonstrated that (a) a surprisingly 

small number of production rules are needed to describe a set of heuristics 

for draw poker which enables a computer program to play the game with 

roughly the same level of skill as an experienced human player, (b) 

the program, whether learning via the training process or learnin'? 

during normal program operation, requires only a modest number of 

acquisition trials to produce a thorough and effective set of heuristics 

for draw poker, and (c) the modification and generalization techniques 

which form the basis of the learning process lead '.o the creation of 

learning systems which are highly non-redundant or stable and whose 

decisions tend to converge to those supplied by the trainer during 

training. 
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6.2    AREAS FOR FUTURE INVESTIGATION 

The  ideas presented in the previous chapters suggest a number of 

areas which merit further investigation.    These areas will now be 

specified and briefly discussed. 

Learning the Decision Matrix 

The learning system described in Chapters 3 and 5 which learns 

through actual game experience rather than explicit training must be 

supplied with a decision matrix. This matrix, it will be recalled, 

has a row corresponding to each decision the system can make and a 

column corresponding to each subvector variable. Each entry E..  in 

the matrix indicates why the variable j is relevant, if when 

decision i  is made the variable is in fact relevtnt.  The next 

logical step in the process of expanding the power of the learning 

system is to eliminate the requirement that the system be supplied 

with a decision matrix. This can be accomplished by initially pro- 

viding the system with an empty decision matrix and then having it 

learn through game experience what the entries in the matrix should be. 

CHANGING LOGICAL OPERATORS. One approach to the problem of learning 

the decision matrix entries will now be outlined. As mentioned in 

Chaptnr 3 there are essentially two ways an action rule cgm be generalized 

upon to catch the symbolic subvector (or program subvector). 
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(1) Training Method: the sets corresponding to the symbolic 

values in the left part of the rule are enlarged by- 

changing the numerical values in the predicates defining 

the sets. 

(2) Hypothesis-formation Method:  some of the relevant sub- 

vector variables (variables which have symbolic values 

other than the value * ) in the left part of the rule 

are made irrelevant (are given the value *  ). 

In order to implement the learning of the decision matrix entries a 

third method of modifying an action rule to catch the symbolic sub- 

vector is needed. This method is shown below. 

(3) Decision-matrix Method: the logical operators in the predicates 

defining the sets corresponding to the symbolic values in 

the left part of the rule are changed, and each time a 

logical operator is changed the corresponding entry in the 

decision matrix is also changed in the same manner. 

EXAMPLE. A simple illustration will serve to clarify this procedure. 

Assume the subvector is (P, B), the action rule to be modified is 

(PI, Bl) -> d  where PI -* P, P> 15 and Bl -* B, E < b  ,  the 

progran' subvector is (7; 2), and the current decision matrix is as 

shown below. 

P     B 

> < 

< > 

Figure 6-1. 
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Then the action rule can be modified to catch the program subvector 

by changing the logical operator in the definition of PI from 

> .to < . Thus the definition becomes PI -* P, P < 17 . The 

numerical value in the definition is adjusted so that l6 is still 

a member of the set defined by PI. The entry in the decision matrix 

which corresponds to the logical operator just changed is the one 

found by entering the matrix at row d, >  column P . Consequently, 

the decision matrix entry at this location is also changed and the 

matrix takes the form shown below. 

< < 

< > 

Figure 6-2. 

I*' the decision matrix used by the learning system is initially empty 

the system can be thought of as hypothesizing whether > or < should 

be an entry at each location in the matrix and then later testing and 

revising each hypothesis. 

CREDIT ASSIGNMENT. The crucial problem involved in using this approach 

to implement the decision matrix learning is the following.  If method (l) 

Ls not applicable for modifying the action rule to catch the symbolic 

subvector, either method (2) or method (3) can be applied.  The 

problem is to devise a priority scheme that specifies which of these 

two methods to use in any particular learning situation. 
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In a general  sense,  the problem is that of determining which of 

two concurrent hypotheses is  to blame when an error is detected,  the 

relevancy hypothesis or the decision-matrix hypothesis.     This  is 

another example of the credit-assignment problem,   an extremely 

difficult and heretofore unsolved problem in artificial  intelligence. 

In this case, however,   the priority scheme does not have to solve 

the problem single-handedly by determining with perfect accuracy which 

hypotheses  are  in error.     It  operates  in conjunction with  a  learnit,? 

system which is self-correcting,   that is, which modifies or removes 

poor action rules.    Thus the priority scheme need only be accurate 

enough to keep from overloading the self-correction mechanism, thereby 

permitting the learning system to converge at a reasonable speed. 

Learning the Function Definitions 

Another way to expand the  power of the  learning system is to 

require  that it learn the  function definitions.     (They are ordinarily 

supplied  to  the  system.)    The   functions  (ff rules),   described  in 

Chapter 3>   are  defined by mathematical expressions  composed of book- 

keeping  variables  and function  variables.    Mathematical  expressions 

of this  type are a very compact,   efficient way to represent heuristics, 

and for this very reason are quite difficult to manipulate or learn. 

EXPANDING THF SUBVECTOR.     Rather  than  trying to devise  a  system which 

will  learn the function definitions directly,  the  following approach 

can be  taken.    Expand the subvector  (the set of dynamic variables) 

by including in it all the bookkeeping variables needed to define the 
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functions. Then during the learning process described in Chapter 3 

a number of action rules (and associated bf rules) will be learned 

which are roughly equivalent to the original action rales containing 

function definitions. 

EXAMPLE. To see how a set of action rules can approximate a single 

action rule and its associated function definitions consider the 

following example. Assume that the subvector is (P, B) and the 

function A is defined as A -♦ E + 3 , where E is a bookkeeping 

variable with a range of 1 to 6. Then the action rule and function 

definition 

(PI, Bl) -♦(♦, A) 
set 1 

A ->E + 3 

can be approximated by the set of production rules given below,   in 

which    E    is  considered a subvector variable. 

(PI,  Bl,  El) -»(*,  8,  *) 

(PI,   Bl,  E2) -> (*, 6,  *) set 2 

(PI,   Bl,   *)    -> (*,  »4,  *) 

El -»E,  E > ^ 

E2 -* E,  E > 2 

The action advocated by set 2 is compared below to the action advocated 

by set 1. 
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New va lue or p 

1 Set 1 Set 2 

1 h 1» 

2 5 1* 

3 6 6 

k 7 6 

s 8 B 

6 " ß 

. 

It is clear that set 2 does approximate set 1.  In general, the number 

of ftCtiOD rules needed to approximate a function defin^ion depends 

on the complexity of the function p.nd the range of the function 

variables. 

Other Areas of Interest 

There  are  a number of areas  remaining which,   if properly 

exploited,   could lead to an  increase   in the power of the proposed 

learning  system.     Two of these  areas will now be briefly described. 

IMPROVING THE  AXIOM SET.      One  area which presents a challenge   is  the 

axiom set and associattd QSduetion techniques  used to   supply the 

system with good decisions.    In Chapter  5  it was noted that  the degree 

of convergence exhibited by the  learning system is reduced when the 

axiom set  is  used in place of a trainer.    The explanation given  for 

this was,   in brief,   that the  axiom .set has  a tendency to appear 

inconsistent  to the  learning system,   since  in its deduction process 
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it makes use of the value of the opponent's hand, a variable which the 

learning system does not have available. 

Since the value of the opponent's hand is essential to the axiom 

system operation and cannot be given to the learning system (at the 

time it makes a decision) an indirect approach to the problem is in 

order. A profitable approach might be to use a more sophisticated 

axiom set, one which nas not only the goal of maximizing the program's 

score but also the goal of providing a decision which is reasonable 

when the value of the opponent's hand is unknown. However, this 

approach, in one sense, is more a restatement of the problem than a 

bona fide solution. As the axiom set is made more sophisticated the 

problem of finding a necessary and sufficient set of axioms becomes 

increasingly difficult. 

DEFINING THE TASK ENVIRONMENT.  Another area which presents a challenge 

is the problem of devising an effective way of defining the task 

environment in which the learning system operates. The task environ- 

ment can be considered to consist of the set S of all possible situations 

which can occur and the set D of all possible decisions which can be 

made. This environment is defined by (l) specifying the subvector 

variables and their ranges, and (2) defining and partitioning the 

decision set. For example, the set D used in Chapter 5 is shown 

below. 
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Figure 6-5. 

The dotted lines in Figure 6-3 indicate how the set was partitioned 

into subsets. 

During the learning process an ordered list of action rules 

is acquired which el'fectivcly partitions set S into n subsets, 

establishing a one-one correspondence between the subsets of S and 

and the subsets of D . It should be clear that the manner in which 

the subvector variables are chosen and defined (thus defining S ) 

and the way in which the decision set is partitioned both have a 

profound influence on the prospective capabilities of the learning 

system. 

To illustrate, consider the task of partitioning the decision 

set D .  This set shoulJ ideally be partitioned to (a) maximize the 

speed of convergence of the learning system, and (b) permit the 

system to become proficient at the problem-solving task being learned. 

An approach to maximizing convergence speed is to generate trial par- 

titionings. Each partitioning restructures or redefines the trainer's 

decision space, and each newly-defined decision space can be used to 
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estimate the resulting speed of convergence of the system. The size 

of this estimate can be used as one of the criteria for determining 

a good partitioning of D . Another criterion can be the number of 

subsets D is partitioned into, where the assumption Is that potential 

proficiency increases with the number of subsets used. 

The speed of convergence can be estimated by sampling the decision 

space of the trainer to determine the approximate number ans size of 

decision clusters in the space. Since (l) the number of action rules 

needed to describe the space is roughly equal to the number of clusters 

in the space, and (2) the optimal generalization constant K is very 

nearly equal to the average cluster width, this sampling provides an 

estimate of the speed of convergence of the learning system. 

• 
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APPENDIX A 

MODELS OF STRATEGY LEAENING 

I.  Generalization Technique for Growing Concept Trees 

The tree-growing technique discussed in section h.2  is summarized 

below. Thia technique is applied to the current unordered list of 

S-A connections. 

1. Group the situation descriptions (or S's ) into sets determined by 

the actions associated with them, i.e., all the S's connected 

to action Ai form a set called Ai •  The situation descriptions 

comprising all these sets will be called the class of relevant 

S's . 

2. If all the S's in the class of relevant S's are members of one 

set then grow a terminal node containing the name of that set. 

5. If it is not the case that all the S's in the class of relevant 

S's are members of one set then grow a test node using as the 

test the attribute value determined by the procedure described below. 

Eliminate from consideration any value which occurs in every S 

of every set.  This test node has the form: 

I 
I 
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t« If a test node was grown in step J, sort all the S's in the current 

class of relevant S's down the node to eithex' the positive side or 

the negative side. However, if an S has * as the value of the 

test attribute T than sort it down both sides of the node. Now take 

all S's which sorted down the positive branch and apply steps 1 

through h  again, using the^e S's as the current class of relevant 

S's and growing the next node from this positive branch. Finally, 

take all S's which sorted dowr. the negative branch and apply steps 

1 through k  again, using these S's as the current class of relevant 

S's and growing the next node from this negative branch. 

CHOOSING AxTRIBlfTE VALUES.  The attribute value to use as a test at a 

node (see step 3 above) is ascertained by applying the following procedure 

to the sets which partition the current class of relevant S's : 

(a) For each attribute value calculate the maximum 

value of be , the value of av , and the value 

of sv .  For a particular set containing attri- 

bute value v  of attribute T , 

(number of times v. occurs as a value of T in the set) 
be = ■ '■  

(total number of S's in the .set) 

The maximum value of be for attribute value v  is Just the 

largest value obtained when the above formula is applied to 

every set. The quantities av and ;;v are defined as folluwc 

for attribute value v  of attribute T . 

176 



av = 

sv = 

(the number of sets where    (the total number of *'s 
*    is used at least once    used as the value of T , 
as the value of T )       counting all sets) 

(total number of S's in all the sets 

(number of times v,  occurs as a value of T in all sets 
except the set used to determine the maximum value of be ) 

(total number of S's in all the sets 

(b) Choose as the test at the node that attribute value which 

maximizes the arithmetic expression ae , where ae = bc-av-sv . 

If more than one value maximizes ae , one of them could be 

selected at random.  Instead, however, select one according 

to some arbitrary deterministic criterion, such as h's before, 

p's , p's before b's , and in case of a tie on letters, low 

digits before high digits. 

This procedure leads to the selection of tests which tend to minimize 

the size of the tree being grown. This is because the procedure favors 

tests on values which occur often in one set but seldom in all other 

sets, a condition conducive to minimal tree generation. 

EXAMPLE OF TREE GROWING.  To clarify this tree-growing procedure to 

above rules will be applied to the list of S-A connections shown below. 

The attributes considered are H , P , and B . 

hl,*,b2 -♦ Al 

hl,p2,* -» Al 

h2,p2,b2 -» A2 

hl,pl,bl -» A5 
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h2,pl,b2 -» A3 

h2,*,bl  -♦ Ak 

The S's are grouped into sets as indicated (step l); 

Al A2 A5 Ah 

hl,*,b2 h2,p2,b2 hl,pl,bl h2,*,bl 

hl,p2,* h2,pl,b2 h3,*,* 

Since the S's are not all members of one set, a terminal node is 

not grown (step 2). Instead, a test noae is grown (step 5) using hi 

as the test, since for hi the maximum be is -^ or 1 (from set 

Al ), av is -=— or 0 , and sv is — , and these values for be , 

av , and sv produce the largest ae . The value of ae for hi is 

thus 1-0-^ or r;    , while the value of ae for the other attribute 

values is less. All the S's are sorted down the test node (step h) 

to  produce the following result: 

Al 

hl,*,b2 

A3 

hl,pl,bl 

A2 A5 

h2,p2,b2    h2,pl,b2 

AU 

h2,*,bl 

h5,*,* 

; 

- - 

Now steps 1 through h  are applied to the S's that sorted down the 

positive branch of the hi test. This leads to the growing of a new 

2      1 
test node.  Since the value of ae is l-r-O or j for both pi and bl 
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12       1 
and is ö"7"

0
 

or "Z for ^0^    P2 and b2 t116 test is made on 

either pi or bl (in this case pi ,  since a priority of p's 

before b's has been established). The attribute value hi is 

not considered since it appears in every S of every set being 

currently processed.  Since pi is picked as the test at this node> 

after the S's are sorted down the node the result is: 

Al A5 Al 

hl,*,b2      hl,pl,bl hl,*,b2 

hl,p2,* 

Now steps 1 through k  are applied to the S's that sorted down 

the positive branch of the pi test, and a test node based on 

either bl or b2 must be grown. The attribute values hi and pi 

are not considered since they appear in every S of every set being 

currently processed. Value bl is picked as the test (since a 

priority of low digits before high digits nas been established) 

and the S's are sorted down the node, resulting in: 

A3     '        v     Al 

hl,pl,bl hl,*,b2 
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Now steps 1 through k  are applied to the S's that sorted down 

the positive branch of the bl test, but since all the S's belong 

to one set, a terminal node is grown (step 2) containing A5 . 

Similarly, when steps 1 through 4 are applied to the negative branch 

of the bl test a terminal node containing Al is grown. Then these 

steps are applied to the negative branch of the pi test and another 

terminal node containing Al is grown. Finally steps 1 through h 

are applied to the negative branch of the hi test, and three more 

test nodes plus four terminal nodes are grown.  The complete tree is 

shown below. 

Figure A-l. 
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It is easily demonstrated that all the S's from the original S-A 

connection list sort down the tree into terminal nodes corresponding 

to the actions with which they were associated. 

II. A Game-Playing Interpretation of the Environment Defined in 

Figure U-J. 

The game under consideration here is an extremely simplified 

version of draw poker where H is the value of your hand, P the 

amount of money in the pot, and B the amount last let by the opponent. 

Attributes: 

Range of Values: 

Abstract Values: 

H(hand) P(pot) I'(opponent' s last bet 

1 - 50 1-60 1 - 10 

hi(good) 
h2(fair) 
h3(poor) 

pl(large) 
p2(small) 

blClarge) 
b2(small) 

Universe of Situations: 

Heuristics:  hand-good and bet-small -♦ bet high 
hand-good and pot-small -♦ bet high 
hand-fair and pot-small and bet-small -» 
hand-good and pot-large and bet-large -♦ 
hand-fair and pot-large and bet-small -♦ 
hand-fair and bet-large -» drop 
hand-poor -♦ drop 

l8l 

bet low 
call 
call 



APPENDIX B 

HEURISTICS FOR DRAW POKER 

I. Definition of the Game 

In the version of draw poker being considered a game consists 

of a predetermined number of rounds-of-play between two players. Each 

round-of-play (r-o-p) is comprised of the following sequence of events. 

(1) Deal:  Each player receives 5 cards (a hand) and antes 
1 chip into the pot. The cards are dealt "face down", 
that is, each player sees only his own hand. 

(2) Betting Interval: Each player alternately has the option of 
betting, calling, or dropping. A call terminates the 
betting interval and a drop terminates the round-of-play. 

(3) Replace: Each player may remove from 0 to 3 cards from 
his hand and receive new cards to replace them. 

(h)    Betting Interval: Each player alternately has the option of 
betting, calling, or dropping.  As before, a call 
terminates the betting interval and a drop terminates 
the round-of-play. 

(5) Showdown:  Both players display their hands, and the one 
with the highest ranking hand wins the money in 
the pot. 

Betting is defined as placing in the pot an amount of money 

larger than the amount last placed there by the opposing player. 

Thr term "bet" stands for the difference between the amount placed 

in the pot and the amount previously placed there by the opponent. 

(In the standard poker jargon this is usually called the raise rather 

than the bet.) Only integer bets of from 1 to 20 are allowed. 

A call is defined as placing in the pot an amount of money equal 

to the amount last placed there by the opposing player. Thus a call 

can be thought of as a bet of zero. A call always terminates the 
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betting interval and after cards have been replaced leads directly to 

the showdown. However, a call may not be made until a bet has been 

made in the current betting interval. 

A drop is defined as withdrawing from the present round-of-play 

relinquishing all money in the pot to the opposing player. No hands 

are displayed when a player drops. All the standard poker hands from 

one-of-a-kind to a royal flush are recognized, but no wild cards are 

permitted. 

II. Informal Description of the Bet Decision Heuristics 

The heuristics used by the computer program in making the bet 

decision in draw poker are listed below. 

1. A player with a hand that is sure io  win should bet 
the largest amount possible without causing the opponent to drop. 
However, if the pot is extremely large a call should be made. 

2. A player with a 'land that has an excellent chance of winning 
should bet the largest amount possible without causing the opponent 
to drop.  However, a call should be made after the pot becomes 
quite large. 

3. A player with a hand that has a good chance of winning should 
bet a medium amount, unless the opponent is easily blnffad and 
cards have not yet been replaced. In this case a smal' bet should 
be made. However, if either the pot becomes quite large or both 
the pot and the opponent's last bet are fairly large then a call 
should be made. The call should be made sooner if the opponent 
replaces fewer than 2 cards or has not yet replaced cards. Further- 
more, a call should be made if the opponent is a conservative 
player and replaces two cards. 

k.    A player with a hand that has a poor chance of winning should 
call, unless the opponent has not yet bet. In this situation 
a .-mall bet should be made.  However, if cards have been replaced, 
the opponent's last bet is large, and the pot-bet ratio is small 
a drop should be made. Furthermore, if the pot and the opponent's 
last bet are small, and the opponent is easily bluffed a bluff bet .. 
(a large bet) should be made.  But if the opponent is a conservative 
player and replaces 0 or 2 cards and the pot-bet ratio is large, 
a call should be made. 
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5- A player with a hand that has almost no chance of winning 
should drop unless both the pot and the opponent's last bet are 
very small.  In this case a small bet should be made if the 
opponent has not yet bet or a call made if tht opponent has bet 
and the pot-bet ratio is large.  However, if the opponent is very 
easily bluffed and replaces 5 cards, and both the pot and the 
opponent's last bet are small then a bluff bet (a fairly large 
or a very large bet) should be made. 

6. A hand is sure to win if its value is large, and is very much 
larger than the expected value of the opponent's hand. 

7« A hand has an excellent chance of winning if its value is not 
large, but is very much larger than the expected value of the 
opponent's hand. 

8. A hand has a good chance of winning if its value is much larger 
than the expected value of the opponent's hand. 

9« A hand has a poor chance of winning if its value is only 
ilightly larger than the expected value of the opponent's hand. 

10. A hand has almost no chance of winning if its value is not 
larger than the expected value of the opponent'r hand. 

11. The expected value of the opponent's hand decreases as the average 
bet made during an r-o-p times 'the number of bets made by 
the opponent during an r-o-p' times 'the number of times the 
opponent was caught bluffing during the r-o-p' increases. 

12. The probability that the opponent is bluffing increases as 
'the number of times the opponent was caught bluffing' increases 
and decreases as 'a measure of conservative style by the opponent' 
increases. 

1^. A measure of conservative style by the opponent increases as 
'a measure of the correlation between the opponent's hands and 
bets' and 'the number of times the opponent has dropped' increase. 

Ik,    The probability of being able to bluff the opponent increases 
as 'a measure of conservative style by the opponent' increases and 
decreases as 'the expected value of the opponent's hand' increases. 

15« The largest bet possible without causing the opponent to drop 
increases as 'the probability of being able to bluff the opponent' 
decreases. 

l6. A small bet is ^ne ranging from 1 to 5 • 

17« A medium bet is one ranging from 5 to 9 • 

18. A fairly large bet is one ranging from 10 to 15 • 

m 
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19«     A large bet is one ranging from    8    to    1^  . 

20.    A very large bet is one ranging from    lh    to    20 . 

III.     LASH Description of the Bet Decision Heuristics 

The heuristics used by the computer program in making the bet decision 

in draw poker are presented below  in LASH. 

begin     'CALL'   :   POT ♦-P0T+(2xLASTBET);LASTBET «- (0), 
'BETLAP'   :   POT ♦-P0T+(2xLASTBET) ;LASTBET *- (LAP), 
'BETSB'   :  POT «-P0T+(2xLASTBET);LASTBET «-(SBJ, 
'BETMB'   :   POT «-P0T+(2*LASTBET) ;LASTBET ♦- (MB), 
'BETBB'   :  POT «-P0T+(2xLASTBET);MSTBET «- (BB), 
'BETBBS'   :  POT ♦-P0T+(2xLASTBET) ;IASTBET <- (BBS), 
'BETBBL'   :  POT «-P0T+(2xLASTBET) ;IASTBET «- (BBL), 
'DROP'   :  VDHMD «- (O);  LASTBET «- (o)   . 

if H = SW then 
{i£    F > WTK  B^O then 'CALL' else 'BETLAP') otherwise 

if K H EC then 
(if P > Kl A B^O then 'CALL' else 'BETLAP') otherwise 

if H H GC then 
(if P > K2 A B^O A (R=CVR=1) then 'CALL else 

(i_f P > 15 V B > 7 A (R-0 v R»l) then 'CALL' else 
(if BfO A R=2 A OCS > K5 then 'CALL' else 

(if P > K^ A B^O A R < 0 then 'CALL' else 
(if BFO > K5 A R < 0 then 'BETSB' else 

(if P > K6 A B^O then 'CALL' else 
(if P < 15 A B > 10 then 'CALL' else 'BETMB')))))))otherwise 

if H 5 PC then 
(if Bf0 A PB > 1 A R=0 then 'CALL' jlse 

(if B^O A PB > 1 A R=2 A OCS > K7 then 'CALL' else 
(if P < Kl^ A B < 5 A B^O A BFO > K5 A PB > 5 A R^-l then 'BETBB' else 

(if P < K9 A B < K10 A BFO > Kll then 'BETBB' else 
(if B>9APB<^A R^-l then 'DROP' else 

(if B^Q then 'CALL' else 'BETSB')))))) otherwise 

if H s NC then 
(if R=0 then 'DROP' else 

(if R=2 A OCS > K12 then 'DROP' else 
(if P < 15 A B < 5 A B^O A BFO > K5 A R=5 then 'BETBBS' else 

(if P < Kl4 A B < K15 A BFO > Kl6 A K^-l then 'BETBBL' else 
(if B^O A PB > Kl? then 'CALL' else 

(if P < K32 A B < 5 A B^O then 'CALL' else 
(if P > K32 A B < KIJ then 'BETSB' else 

(if P < K14 A B v K15 A R^-l then 'BETSB' else 'DROP')))))))) 

: 
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SW i_s an H such that  (H-OH > Kl8 \ ti>  K19), 
EC j^s an H such that  (H-OH > Kl8 , H < K19), 
GC i_s an H such that  (K20 < H-OH A H-OH < Kl8), 
PC j^s an H such that  (K21 < H-OH A H-OH < K20), 
NC £s an H such that  (H-OH < K2l), 
OH equals K22-(K25 X OAVGBET x OTBET X OB), 
OB equals {Y2h  x OBLUFFS) - (K25 X CS), 
CS equals (K26 X OCORREL) + (K27 x OD), 
BO equals (K28 X CS) - (K2y X OH), 
.LAP equals K50 - (K51 x BO), 
SB equals random (1,5), 
MB equals random (3,9), 
BBo equals random (10,15), 
BB equals random (8,]^), 
BBL equals random (lU,20), 
H is a VDHAHD such that (VDHAOT) > 0), 
P i£ a POT such that (POT > -l), 
B ijs a LASTBET such that (LASTBET) > 0 A LASTBET < 2l), 
BFO J_s a BLUFFO such that (BLUFFO > 0 V BLUFFO < 0), 
PB ^is a POTBET such that (POTBET >~0), 
R J_s an ORP such that (ORP > -1 A ORP < M, 
OCS is an OSTYLE such that (OSTYLE < 0 V OSTYLE < O) end. 

It is clear that a one-to-one correspondence exists between 

the first five informally stated heuristics in Appendix B, Part II (the 

heuristic rules) and the five major if-statements in the above routine. 

Similarly, there is one definition above for each of the other informally 

stated heuristics (the heuristic definitions). The last seven definitions 

given above (one for each subvector variable) do not correspond to any 

of the informal heuristics. Instead, they correspond somewhat to those 

game rules which define the allowable values for the game variables. 

IV. Production Rule Description of the Bet Decision Heuristics 

The production rules which correspond to the LASH routine shown in 

Appendix B, Part III are presented below. The first 62 rules are 

separated into five groups, each group having been generated from one 

of the five major LASH if-statenents.  The; remaining rules correspond, 

in a one-to-one fashion, to the definitions set forth in the lASh routine. 
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1. a. (SW P8 B5 * * * *)      -» (* P0T+(2xLASTBET) 0 * * * *) 
b. (SW ***** *)        -» (* P0r+(2XLASTBET) LAP * * * *) 

2. a. (EC PI B5 * * * *)      ■» (* P0T+(2xLASTBET) 0 * * * *) 
b. PI -» P.. P > Kl 
c. B5 -» B, B > 0 
d. (EC ***** *) ■• (* P0T+(2xLASTBET) LAP * * * *) 

j..   a. (GC P2 B5 * * OKI *)            -► (* P0T+(2XLASTBET)  0 * * * *) 
b. P2    -» P,  P > K2 
c. OR1    -» R,  R =  0 or 1 
d. (GC P9 B6 * * OR1 *) -» (* P0T+(2XLASTBET)  0 * * * *) 
e. P9   -» P,  P >  15 
f. B6    -♦ B,  B > 7 
g. (GC * B5 * * 0R2 CS1) •» (* P0T+(2XLASTBET) 0 * * * *) 
h. 0R2 -» R, R ^ 2 
i. CS1 -» OCS, OCS > K5 
,i. (GC P5 B5 * * OR3 *)             -» (* P0T+(2XL'\STBET)  0 * * * *) 
k. P3    -4 I ,  F > K4 
1. OR3    ■» R,  R =  -1 
m. (GC * * BOl * OR5)                 -♦ (* P0T+(2xLASTBET)  SB * * * *) 
n. BOl    -» BFO,   BFO > K5 
0. (GC P^ B5 * * * *) -» (* P0T+(2XLASTBET)  0 * * * *) 
p. I'k    -» P,  P > K6 
q. (GC P9 B7  * * * *)                  -» (* F0T+(2XLASTBET)  0 * * * *) 
r. B7   -» B, B > 10 
s. (GC ***** *)                     ■» (* P0T+(2xLAGTBET) MB * * * *) 

h.   a. (PC * B5 * PB2  QRl* *)          -♦ (* P0T+(2XLASTBET)  0 ♦ * » *) 
b. PB2    -» PB,  PB >  1 
c 0R4    •* R,  R =  0 
d. (PC * B5 * PB2 0R2 CS2)      •* (* P0T+(2xLASTBET)  0 » * * ♦) 
e. CS2    ~» OCS,  OCS > K7 
f. (PC P6 B9 BOl PB5 0R6 *)    -» (* P0T+(2xLASTBET) BB * * * *) 
g. p6    ■♦ P, P < Klk 
h. B9    -» B,   B<5ABj/0 
i. PB5    -» IB,  PB > 3 
J. 0R6    -► R,  R /  -i 
k. (PC P5 B2 B02 * * *)            -» (* P0T+(2XLASTBET) BB * * * *) 
1. P5    ■♦ P,  P < K9 
m. B2    -» B,  B < K10 
n. B02   -♦ BFO,  BFO > Kll 
o. (PC * B8 * PB^ 0R6 *)          -♦ (0 * 0 * * * *) 
p. B8    -► B,  B >  9 
q. PBl+    ■♦ PB,  PB < 2 
r. (PC * B5 * * * *)                   -> (* P0T+(2XLASTBET)  0 * * -^ *) 
G. (PC ***** *)                     -» (* P0T+(2XLASTBET)  SB * * * *) 

5.   a. (NC * * * * OR^ *)                 .»(0*0*** *) 
b. (NC * * * * 0R2  C'S3) -♦ (0 * 0 * * * *) 
c. CS5    -» OCS,  OCS > K12 
d. (NC P10 B9 BOl * 0R7 *)      -» (* P0T+(2xLASTBET) BBS * * * *) 
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call : 

bet 

call : 
bf 
bf 

bet . 

call 
bf 
bf D 

call 
bf 
bf . 

call 
bf 
bf : 

call 
bf 
bf 

bet : 
bf 

call 
bf : 

call 
bf 

: 
bet 

call 
bf i bf 

call 
bf 

■• 

bet J 
bf 
bf 
bf 
bf ■ 

bet 
bf 
bf 
bf 

drop • 
bf 
bf 

call 
bet 

drop 
drop 

bf 
bet 
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e. P10 •¥?,?<  I? bf 
f. OR? ■♦ B, R = 3 bf 
g. (NC P6 BU B03 * OR6 *) -» (* PCT+(2xLASTBET) BBL •****) bet 
h. P6 -» P, P < KiU bf 
i. It <* 1* • < K15 bf 
J. B03 -» BFO, BFO > I'l6 bf 
k. (NC * B5 PB1 * *) -» (* P0T+(2XLASTBET) 0 * * * *) call 
1. PB1 -» PB, PB > Kl? bf 
m. (NC P7 B9 * * * *) •• (* P0T+(2XLASTBET) 0 * * * *) call 
n. P7 -» P, P < K32 bf 
o. (NC P? B3 * * * *) -» (• P0T+(2XLASTBET) SB * * * *) bet 
p. B3 -» B, B < K13 bf 
q. (NC P6 B3 * * 0R6 *) -» (* P0T+(2XLASTBET) SB * * * *) bet 
r. (NC ***** *) -» (0*0*»**) drop 

6. SW -» H, H - OH > Kl8 and H > K19 bf 

7« EC -» H, H - OH > Kl8 and H < K19 bf 

8. GC -♦ H, K20 < H - OH < Kl8 bf 

9« PC -» H, K21 < H - OH < K20 bf 

10. NC -♦ H, H - OH < K21 bf 

11. OH -» K22 - (K23 X OAVGBET X OTBET X OB) ff 

12. OB -» (K24 X OBLUFFS) - (K25 X CS) ff 

13- CS -♦ (K26 X OCORREL) + (K27 X OD) ff 

li*. BO -» (K28 X CS) - (K29 X OH) ff 

15- LAP -♦ K30 - (K51 X BO) ff 

16. SB -» random(l,5) ff 

17. MB -♦ random(3>9) ff 

18. BBS -♦ random(lO,15) ff 

ly. BB -♦ random(8,ll+) ff 

20. BBL -♦ randora(U,20) ff 

21. H -» VDHAND, VDHAND > 0 bf 

22. P -♦ POT, POT > -1 bf 

23. B -♦ LASTBET,  0 < LASTBET < 21 bf 

24. BFO -» BLUFFO,  BLUFFO < 0 V BLUFFO > 0 bf 
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25. PB -» POTBET, PO'rBET > 0 bl' 

Ze. R -» ORP, -1< ORP < 1+ W 

V. Values of Constants Kl Through K32 

The values of the constants used in defining th* production rules 

representing the heuristics for draw poker are given below. 

Kl = ^0 Kl? = ^ 
K2 = 22 Kl8 = 2? 
K3 = 1 K19 = 376 
Kif = 9 K20 = 10 
K5 = 5 K21 = 0 
K6 = 50 K22 = 6 
K7 = 1 K25 = .05 
K8 = 6 K24 = 1 
K9 = 23 K25 = 2 
K10 = 7 K26 = 1 
Kll = 10 K27 = 2 
K12 =1 K28 = 8 

i 

K15 ■ 1 
Xlk = 21 KJO = 5 
n.5 ■ ^ K3i = 1 
Kl6 = 20 K52 = 8 
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APPENDIX C 
I 

SAMPLE OF GAMES PLAYED DURING 

PROFICIENCY TEST FOR BUILT-IN HEURISTICS 

The following program output is from a game (5 hands) of draw 

poker played between the program and a human opponent via the Stanford 

PDP-6 timesharing system. This game is one of a fiv?-garae series usec" 

to test the proficiency of the program. The left column on each pago 

is the series I game of the test, while the right column on each page 

is the corresponding series II game. The dialogue printed by the pro- 

gram starts at the left margin of eacli column, while the dialogue typed 

by the human opponent is indented five spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of 

spades, Dll a jack of diamonds, and Klk    an ace of hearts. 

Note that each hand dealt the human player in series I (left 

column) is identical to the hard dealt the program in the corresponding 

r-o-p in series II (right column), and vice versa. Thus the hands 

held by the program in each r-o-p can be determined. 
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(REFEREE S> 

YOUR HAND !S   HS HI4 CI2 H4 D9 

I BET I. 
THE POT EQUALS 2. 
YOUR BET ... 

1 

I CALL 
I REF'.ACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED ... 

<HS H4 D9> 

YOUR NEW CARDS ARE 

I BET 3. 
THE POT EQUALS 6. 
YOUR BET ... 

04 CI4 H7 

I DROP 
YOU WIN 
MY SCORE IS -6. 
YOUR SCORE IS  6. 

YOUR HAND IS    C4 HI I S7 SS S8 
THE POT EQUALS 2. 
YOUR BET ... 

(REFEREE 5) 

YOUR HAND IS    02 SI 2 D6 D8 C7 

I BET 2. 
THE POT EQUALS 2. 
YOUR  BET   ... 

CALL 

I REPLACE 3. CARDS 
WAT CARDS DO YOU WANT REPLACED ..• 

(02 06 C7> 

YOUR NEW CARDS ARE    C6 C3 S4 

I BET 7. 
THE PCT  EQUALS   6. 
YOUR  BET   ... 

DROP 

I  WIN 
MY SCORE   IS   3. 
YOUR  SCORE   IS  A  MERE  -ii 

YOUR  HAND   11 CI0  HI2   02   S10   S12 
THE  POT   EQUALS  2. 
YOUR  BET   ... 

I  DROP 
YOU  WIN 
MY  SCORE   IS  2. 
YOUR  SCORE   IS  A  MERE  -2. 

1 

I 
l 
I 
J 
I 
J 
] 

1 
i 

D 
: 

YOUR HAND IS    04 S3 D3 D7 D5 
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I BET 4. 
THE POT  EO.ALS   4. 
YOUR BET  ... 

CALL 

WHAT CARDS  DO  YOU  WANT REPLACED  ..< 

{C4 S7  S5> 

YOUR  NEW  CARDS  ARE 
I REPLACE   I.   CARD 
THE POT  EQUALS   12. 
YOUR BET  ... 

I 

SI3 CS H9 

I BET 3. 
THE POT E6UALS 2. 
YOUR BET ... 

CALL 

I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED ... 

(D4 D7 DS) 

YOUR NEW CARDS ARE   C12 09 C3 

I BET 3. 
THE POT EQUALS 8. 
YOUR BET ... 

I BET 8. 
THE POT EQUALS 14. 
YOUR BET ... 

DROP 

I WIN 
MY SCORE IS I. 
YOUR SCORE IS A MERE -I. 

I CALL 
MY HAND IS 
YOU WIN 
MY SCORE IS •If« 
YOUR SCORE IS II 

SI4 Sll HS C8 CM 

YOUR HAND IS D10 C2 Sll S14 D8 
YOUR HAND IS   09 H6 HI 4 H7 H8 
THE POT EQUALS 2. 
YOUR BET ... 

I  BET 2. 
THE POT  EQUALS  2. 
YOUR BET   ... 

CALL 

I  REPLACE 3.   CARDS 
MHAT CARDS  DO   YOU  WANT  REPLACED   ... 

(DIB   02   D8> 

YOUR NEW CARDS ARE    H5 08 Cll 

I BET 3. 
THE POT   EQUALS   6. 
YOUR  BET   ... 

I BET 2. 
THE  POT  EQUALS  8. 
YOUR  BET   ... 

CALL 

WHAT  CARDS 00 YOU WANT REPLACED 

Off 

YOUR NEW CARDS ARE    H4 
I REPLACE 3. CARDS 
THE POT EQUALS 12. 
YOUR BET ... 
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I  BET  3« 
THE  POT EQUALS 22. 
YOUR  BET  ... 

I CALL 
MY HAND   IS CM   DM  S6  012   S.l 
YOU  WIN 
NY SCORE  IS -85. 
YOUR  SCORE   IS  25. 

!  BET 3. 
THE POT  EQUALS  40. 
YOUR BET  ••• 

CALL 

S3  03  CIS   Ü9 C3 MY  HAND   IS 
I   WIN 
MY  SCORE   IS 24. 
YOUR   SCORE   IS A MERE  -24. 

YOUR  HAND   IS CM 32   06  014 C7 
THE  POT   EQUALS S. 
YOUR  BET   ... 

YOUR HAND  IS S3 CI3 H4 H9 CM 

I  BET  3. 
mE POT  EQUALS 2. 
YOUR  BET   ... 

CALL 

I  REPLACE 0.   CARDS 
WHAT  CARDS   DO  YOU  WANT REPLACED   ... 

(S3   H4  H9) 

YOUR   NEW CARDS  ARE S2   DM HI 4 

I CALL 
WHAT CARDS DO YOU WANT REPLACED ... 

(S2 06 C7) 

YOUR  NEW CARDS  ARE 
I   REPLACE   1.   CARD 
THE  POT  EQUALS   10. 
YOUR  BET   ... 

I  BET  3. 
THE  POT  EQUALS 20. 
YOUR  BET   ... 

S6   012   S4 

I  BET   IS. 
THE POT EQUALS  8. 
YOUR  BET   ... 

20 

I  DROP 
YOU  WIN 
MY  SCORE   IS   -47. 
YOUR  SCORE   IS   47. 
YOU  WIN  THE  GAME 

NIL 

I 
j 

T 

1 
I 
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I  BET  3. 
THE POT  EQUALS  30. 
YOUR  BET   ... 

CALL 

MY HAND IS    HI4 H9 H7 H6 H4 
I WIN 
MY SCORE IS 42. 
YOUR   SCORE   IS A MERE -42. 

YOUR  HAND   IS HI I   03  C8  C7   06 

I  BET   I. 
TOE POT  EQUALS 2« 
YOUR  BET   ... 

CALL 

I   REPLACE  3.   CARDS 
WAT CARDS  00 YOU  WANT  REPLACED 

(D3   07   DA) 

YOUR NEW CARDS ARE    09 04 Cll 

I  BET  3. 
THE   POT  EQUALS   4. 
YOUR   BET   ... 

I  BET  3. 
THE  POT  EQUALS 28. 
YOUR  BET   ... 

CALL 

MY HAND IS    CI4 CI3 S2 DI4 HI4 
I WIN 
MY SCORE IS 39. 
YOUR SCORE   IS A MERE  -59. 
I   WIN THE SAME 

NIL 
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APPENDIX D 

TRAINING TRIALS 

FOR MANUAL-TRAINING HEURISTICS 

The following program output is from the first 8 training trials 

given the learning program by a human trainer via the Stanford PDP-6 

timesharing system. The dialogue printed by the program starts at the 

left margin, while the dialogue typed by the human trainer (who also 

acts as the program's opponent) is indented 5 spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonas.  Thus S8 is an eight of spades, 

Dll a jack of diamonds, and Hl^ an ace of hearts. 

Each time the program places a bet it first prints (l) the current 

csnumber, i.e., the number of the action rule which was used in making 

the bet decision, and (2) the hand it currently holds. The action 

rules are considered to be numbered from top to bottom, starting with 1. 
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(REFEREE  S) 

YOUR  HAND  IS S9   02  H6  C9   FMS 

(CSriUMBER   1.) 
(03  H3  HI3 H7  H2) 

t   BET 3* 
OK? 

(BET  SB  BECAUSE  YOUR  HAND  IS FAIR*   AND  THE  POT   IS  SMALL) 

(CSNUMBER  I.) 
(03  H3  H13  H7  H2) 

I BET 1* 
THE POT EQUALS 2. 
YOUR BET ••« 

(CSNUMBER 2*) 
(03 H3 HI3 H7 H2) 

I BET 3* 
OK? 

(CALL BECAUSE YOUR HAND IS FAIR* AND THE LASTBET IS LARGE* AND 
ORP IS (EQUAL TO -l>> 

(CSNUMBER 2.) 
(03 H3 H13 H7 H2) 

I CALL 
I REPLACE 3* CARDS 
WHAT CARDS DO YOU WANT REPLACED ... 

(02 H6 DI3) 

YOUR NEW CARDS ARE 05 06 SI0 
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(CSNUMBER  3«) 
(C3 H3  SI 4  SI2  H4) 

I   BET  |« 
0K7 

(BET  SB  BECAUSE YOUR  HAND  IS  FAIR»   AMD  THE LASTBET   IS  SMALL) 

(CSNUMBER   3.) 
(C3 H3  SI 4  SI 2  H4) 

I  BET  1. 
THE POT  EQUALS   14* 
YOUR BET   ••• 

(CSNUMBER   4.) 
(03 H3  SI4  S12  H4) 

I  CALL 
OK? 

(CALL  BECAUSE  YOUR  HAND  IS  FAIR.   THE POT  IS  LARGE*   AND  THE 
LASTBET  IS  LARGE) 

(CSNUMBER   4«) 
(03 H3  S14  312  H4) 

I   CALL 
MY HAND  IS 03  H3  S14  SI2  H4 
YOU WIN 
MY  SCORE  IS  -12* 
YOUR  SCORE  IS   12» 

YOUR HAND  IS H8  D9   08  H9  014 
THE POT  EQUALS  2« 
YOUR  BET   ••• 
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CCSNUMBER 5*) 
(Hit C7 S6 C4  D3) 

I CALL 
OK? 

(DROP BECAUSE YOUR HAND IS POOR* AND THE PBRATIO IS SMALL) 

(CSNUMBER 5.) 
(Hit 07 56 04 D3> 

I DROP 
YOU WIN 
MY SCORE IS -13* 
YOUR SCORE IS I?. 

YOUR HAND IS    Dl4 SB HI 4 D10 04 

(CSNUMBER 6.) 
<SI3 H12 011 DB S7) 

I BET 15. 
OK? 

(BET SB BECAUSE YOUR HAND IS POOR« THE POT IS SMALL« AND 
ORP IS (EQUAL TO -l>> 

I BET I. 
THE POT EQUALS 2* 
YOUR REV ... 

10 
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I 
I 
I 
I 
I 
I 
I 

(CSNUMBER 5«) 
<S13 H12 Cll 08 S7) 

I DROP 
OK? 

(OK) 

(CSNÜM8ER 5.) 
<S13 H12 Cll 08 S7) 

1 DROP 
YOU WIN 
MY SCORE IS -15. 
YOUR SCORE IS 15. 

SHUFFLE 

YOUR HAND IS    H6 H3 S10 C13 S3 
THE POT EQUALS 2. 
YOUR BET ... 

(CSNUMBER 6.) 
(08 06 OS H4 03) 

I BET 1. 
OK? 

(CALL BECAUSE YOUR HAND IS POOR* THE POT IS LARGE» AND THE 
LASTE \LASTBET IS LARGE) 

(CSNUMBER 6.) 
(C8 06 05 H4 03) 
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(CSNUMBER 6.) 
CC6 D5 H4 D3 S14) 

a» 

I   CALL 
OK? -y 

I   CALL 
WHAT  CARDS  DO  YOU  WANT  REPLACED   ••• 

<H6  H8  S3) 

YOUR NEW CARDS ARE    D7 D10 38 
I REPLACE 1* CARD 
THE POT EQUALS 6. 
YOUR BET ... 

(DROP BECAUSE YOUR HAND IS POOR. AND THE PBRATIO IS SMALL, 
AND THE LAST8ET IS LARGE) 

(CSNUMBER 5.) 
<C6 DS HA   03 S14) 

I DROP 
YOU WIN 
MY SCORE IS -18. 
YOUR SCORE IS 18. 

i i 

I 
I 
! 

i 
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APPENDIX E 

SAMPLE OF GAMES PLAYED DURING 

PROFICIENCY TEST FOR MANUAL-TRAINING HEURISTICS 

The following program output is from a game (5 hands) of draw 

poker played between the program and a human opponent via the Stanford 

PDP-6 timesharing system. This game is one of a five-game series used 

to test the proficiency of the program. The left column on each page 

is the series I game of the test, while the right column on each page 

is the corresponding series II game. The dialogue printed by the 

program starts at the left margin of each column, while the dialogue 

typed by the human opponent is indented five spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds.  Thus S8 is an eight of 

spades, Dll a jack of diamonds, and Hl^ an ace of hearts. 

Note that each hand dealt the human player in series I (left 

column) is identical to the hand dealt the program in the corresponding 

r-o-p in series II (right column), and vice versa. Thus the hands 

held by the program In each r-o-p can be determined. 
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(RCFCRCC 5) 

YOUR HAND IS    ST H« HI» 03 Sit 

(REFEREE   5) 

YOUR  HAND   IS S13S5D8H9S4 

.: 

: 

I BET 8. 
THE POT EQUALS 2. 
YOUR BET ... 

I 

I CALL 
I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED .. 

(S7 H6 03) 

YOUR NEW CARDS ARE    DM CIS SI I 

I BET 8. 
THE POT E6UALS 2. 
YOUR BET ... 

DROP 

I WIN 
HY SCORE IS 1. 
YOUR SCORE iS A MERE -I. 

YOUR HAND IS    H2 H13 D6 S6 H3 
THE POT EQUALS 2. 
YOUR BET ... 

I BET I. 
THE POT EQUALS 8. 
YOUR BET ... 

I CALL 
MY HAND IS 
YOU WIN 
MY SCORE IS -9. 
YOUR SCORE IS 9. 

SI3 H9 D9 04 02 

I BET e. 
THE POT EQUALS 8. 
YOUR BET ... 

CALL 

WHAT CARDS DO YOU WANT REPLACED ... 

<H2 K13 H3) 

YOUR NEW CARDS ARE 
I REPLACE 2. CARDS 
THE POT EQUALS 12. 
YOUR BET ... 

C3 07 C2 

YOUR HAND IS    DM SI I H7 Cll C9 
THE POT EQUALS 2. 
YOUR BET ... 

I BET 2. 
THE POT EQUALS 8. 
YOUR BET ... 

CALL 

I BET 10. 
THE POT EQUALS 20. 
YOUR BET ... 

CALL 

Dll Sll Cll SI2 CM MY HAND IS 
I WIN 
MY SCORE IS 21. 
YOUR SCORE IS A MERE -21. 
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WHAT CARDS DO YOU WANT REPLACED 

(H7 C9) 

YOUR NEW CARDS ARE 
I REPLACE 3. CARDS 
THE POT EQUALS 12» 
YOUR BET ... 

I CALL 
MY HAND IS 
YOU WIN 
MY SCORE IS -24. 
YOUR SCORE IS 24. 

SI2 C14 

D6 S6 03 C7 C2 

YOUR HAND IS    C8 D3 H4 HI4 S9 

I BET 4. 
THE POT EQUALS 2. 
YOUR BET ... 

CALL 

I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED 

(C8 D3 H4) 

YOUR NEW CARDS ARE    HI 2 09 Hll 

YOUR HAND IS S2 SI0 SI3 DS HI0 

I BE'l 3. 
THE POT EQUALS 10. 
YOUR BET ... 

I BET I I. 
THE POT EOUALS 2. 
YOUR BET ... 

CALL 

I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED 

(S2 SI3 D5) 

YOUR NEW CARDS ARE    S3 010 C4 

I BET 7. 
THE POT EQUALS 28. 
YOUR BET ... 

CALL 

MY HAND IS 
I WIN 
MY SCORE IS 42. 
YOUR SCORE IS A MERE 

SI0 HI0 S3 C10 04 

•42. 

I BET 4. 
THE POT EQUALS 24. 
YOUR BET ... 

YOUR HAND IS    S8 Hb H6 SI 4 DI3 
THE POT EQUALS 2. 
YOUR BET ... 

I CALL 
MY HAND IS 
YOU WIN 
MY SCORE IS -44. 
YOUR SCORE IS 44. 

HI 4 S9 HI2 D9 HI I 
I BET 3. 
THE PUT EQUALS 6. 
YOUR BET ... 

CALL 

[ 
■ » 
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YOUR HAND IS    S7 012 S5 S4 C5 
THE POT EflUALS 2. 
YOUR BET ... 

I DROP 
YOU WIN 
MY SCOKE IS -4S. 
YOUR SCORE IS 45. 

YOUR HAND IS Mil 38 S6 CB Dll 

I BET II. 
THE POT EOUALS 2. 
YOUR BET ... 

14 

I DROP 
YOU WIN 
HY SCORE IS -S7. 
YOUR SCORE IS S7. 
YOU WIN THE GAME 

NIL 

WHAT CARDS DO YOU WANT REPLACED ... 

(SB HS H«> 

YOUR NEW CARDS ARE 
I REPLACE 3* CARDS 
THE POT EOUALS 12. 
YOUR BET ... 

CIS DI4 H9 

55 CS 07 06 D2 
I CALL 
MY HAND IS 
YOU WIN 
MY SCORE IS 31. 
YOUR SCORE IS A MERE -31. 

YOUR HAND IS H7 H4 CI4 S2 06 

I BET I. 
THE POT EOUALS 2. 
YOUR BET ... 

CALL 

I REPLACE I. CARD 
WHAT CARDS DO YOU WANT REPLACED ... 

(H4 S2 06) 

YOUR NEW CARDS ARE    HI 4 C4 HS 

;: 

:: 

I BET 9. 
THE POT EOUALS 4. 
YOUR BET ... 

12 
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HI I Oil SB CB H9 
I CALL 
MY HAND IS 
I WIN 
MY SCORE IS S4. 
YOUR SCORE IS A MERE -54. 
I WIN THE GAME 

NIL 

: 
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APPENDIX F 

SAMPLE OF GAMES PLAYED DURING 

PROFICIENCY TEST FOR BEFORE-TRAINING HEURISTICS 

The following program output is from a game (5 hands) of draw 

poker played between the program and a human opponent via the Stanford 

PDP-6 timesharing system. This game is one of a five-game series used 

to test the proficiency of the program. The left column on each page 

is the series I game of the test, while the right column on each page 

is the corresponding series II game. The dialogue printed by the 

program starts at the left margin of each column, while the dialogue 

typed by the human opponent is indented five spaces. 

The abbreviations u ed to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of 

spades, Dll a Jack of diamonds, and ttlk    an ace of hearts. 

Note that each hand dealt the human player in series I (left 

column) is identical to the hand dealt the program in the corresponding 

r-o-p series II (right column), and vice versa. Thus the hands 

held by the progran. in each r-o-p can be determined. 
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(RCrCKEC S) (REFEREE 5) 

YOUR HAND IS    DIB CIS 014 HI! SI 4 YOUR HAND IS   SIS C* DI3 06 S4 

I BET 5. 
THE POT EQUALS 2. 
YOUR BIT ... 

I BET 8. 
THE POT EQUALS 30. 
YOUR BET ... 

II 

I BET 17. 
THE POT EQUALS 68. 
YOUR BET ... 

80 

I BET 19. 
THE POT EQUALS 142. 
YOUR BET ... 

I REPLACE 3. CARDS 
WHAT CARDS 00 YOU WANT REPLACED ..< 

NONE 

I BET IS. 
THE POT EQUALS 180. 
YOUR BET ... 

CALL 

MY HAND IS 
YOU WIN 
MY SCORE IS -IBS. 
YOUR SCORE IS IBS. 

013 SI2 D8 CI3 H4 
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I BET BB. 
THE POT EQUALS 8. 
YOUR BET ... 

DROP 

I WIN 
MY SCORE IS I* 
YOUR SCORE IS A MERE -I. 

YOUR HAND IS   014 S3 07 Hit H6 
THE POT EQUALS 8. 
YOUR BET ... 

I 

I BET IS. 
THE POT EQUALS 4. 
YOUR BET ... 

I WIN 
NY SCORE IS 3. 
YOUR SCORE IS A MERE -3. 

YOUR HAND IS    H7 09 Cll C6 S9 

I BET 6. 
THE POT EQUALS 8. 
YOUR BET ... 

CALL 

I REPLACE 3. CARDS 
WHAT C.«R»S DO YOU WANT REPLACED *.• 

(H7 Cll C6) 

YOUR NEW CARDS ARE C8 HS HS 

: 

o 
D 

Q 

;: 

— 

i 
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i 
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YOUR HAND IS    DS H9 SI3 S5 S6 
THE POT EQUALS 2. 
YOUR BET ... 

I BET e. 
THE POT EQUALS 8. 
YOUH BET ... 

CALL 

WHAT CARDS  DO YOU  WANT  REPLACED   ... 

(H9   SI3     S6> 

YOUR NEW CARDS ARE 
I REPLACE 3. CARDS 
THE POT EQUALS 12. 
YOUR BET ... 

II 

I DROP 
YOU WIN 
MY SCORE IS -III. 
YOUR SCORE IS III. 

012 03 O 

I BET 6. 
THE POT EQUALS 14. 
YOUR BET ••• 

HI3 HIB HI4 C8 04 MY HAND IS 
YOU WIN 
MY SCORE IS -10. 
YOUR SCORE IS IB« 

YOUR HAND IS   CU H3 03 ST HIB 
THE POT EQUALS 2. 
YOUR BET ••* 

I CALL 
WAT CARDS DO YOU KANT REPLACED  ... 

CCIl   ST  HI0> 

YOUR NEU CARDS ARE 
I REPLACE I* CARD 
THE POT EQUALS 8. 
YOUR BET ... 

CI8 CI4 04 

YOUR HANJ IS    07 HI 3 S8 H3 H»? 

I BET 2. 
THE POT EQUALS 2. 
Y -UR BET ... 

CALL 

I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED ... 

(C7 SB H3) 

YOUR NEW CARDS ARE 

I   BET  4. 
THE  POT  EQUALS   I«. 
YOUR  BET  ... 

CALL 

MY HAND IS   HI I DIB HB OT HI8 
YOU WIN 
MY SCORE IS -88. 
YOUR SCORE IS 88. 

YOUR HAND IS   H2 HIS CIS Sit SIS 
HI 4 C8 04 

I DROP 
YOU WIN 
MY SCORE IS -114. 
YOUR SCORE IS 114. 

I BET 6. 
THE POT EQUALS 8. 
YOUR BET ... 
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YOUR HAND IS    H8 Ott Db HI I 07 
THE POT EQUALS 2. 
YOUR BIT ... l   DROp 

YOU WIN 
1 MY SCORE IS -89. 

YOUR SCORE IS 29. 
YOU WIN THE SAME 

NIL 

I BEi IB. 
THE POT EQUALS A. 
YOJR BET ... 

DROP 

I WIN 
NY SCORE IS -lie. 
YOUR SCORE IS I IB. 

YOUR HAND IS    S3 SB CI3 HS S3 

I BET 3. 
THE POT EQUALS 2. 
YOUR BET ... 

CALL 

I REPLACE I. CARD 
WHAT CARDS DO YOU WANT REPLACED ... 

(S3 SB HS) 

YOUR  NEW CARDS ARE SI 4  DIB  CS 

I   DI?OP 
YOU WIN 
NY  SCORE   IS   -It«. 
YOUR   SCORE   IS   II«. 
YOU  WIN THE   OAHE 

NIL 
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APPENDIX G 

TRAINING TRIALS 

FOR AUTOMATIC-TRAINING HEURISTICS 

The following program output is from training trials 6 through 10 

given the learning program by a program trainer via the Stanford PDP-6 

timesharing system. The dialogue printed by the program being trained 

and by the program trainer starts at the left margin, while the dialogue 

typed by the human opponent is indented 5 spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spades, 

Dll a jack of diamonds, and Hlk    an ace of hearts. 

Each time the program places a bet it first prints (l) the current 

csnumber, i.e., the number of the action rule which was used in making 

the bet decision, and (2) the hand it currently holds.  The action 

rules are considered to be numbered from top to bottom, starting with 1. 
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(REFEREE 5> 

SHUFFLE 

YOUR HAND IS    Sie H3 HS SI4 H14 

(CSNUMBER 2.) 
(02 C2 Hli S9 04) 

I BET 4. 
OK? 

(CSNUMBER 19.) 
(D2 C2 HI I 59 04) 

(OK) 

(CSNUMBER 2.) 
(02 C2 HI I S9 04) 

I BET 2. 
THE POT EQUALS 2. 
YOUR BET ..« 

(CSNUMBER I.) 
(02 02 HI I S9 04) 

I CALL 
OK? 

(CSNUMBER IB«) 
(02 02 HI 1 S9 04) 

(OK) 

(CSNUMBER I.) 
(02 02 HI I 59 04) 
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(CSNUM8ER I.) 
(02 C2 Hll S9 D4> 

I CALL 
I REPLACE 3. CARDS 
WHAT CARDS DO YOU WANT REPLACED 

(SI0 H3 H5) 

YOUR NEW CARDS ARE C7   CA C10 

(CSNUMBER  2.) 
(02  C2   D13  S5  SA) 

I  BET  3. 
0K7 

(CSNUMBER 19*) 
(02 C2 DI3 SS S4) 

(OK) 

(CSNUMBER 2.) 
(02 02 013 SS S4> 

I BET 3. 
THE POT EQUALS  8. 
YOUR BET ... 

B 

(CSNUMBER I.) 
(02 02 013 S5 SAt 

1 CALL 
OK? 

(CSNUMBER 18.) 
(02 C2 D13 S5 S4) 

(OK) 

(CSNUMBER 1.) 
(D2 C2 013 S5 S4) 
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I CALL 
MY EANO IS    02 C2 013 S5 S4 
YOU WIN 
MY SCORE IS -20. 
YOUR SCORE IS 20. 

YOUR HAND IS    DI4 SI I H6 SI2 S13 
IRE POT EQUALS 2. 
YOUR BET ..» 

(CSNUMBER S.) 
(CI3 Cl1 08 03 S2) 

I CALL 
OK? 

(CSNUMBER 28.) 
(CI3 Cll 08 03 S2> 

(DROP BECAUSE THE HAND IS POOR) 

(CSNUMBER 5.) 
(CI3 Cll 08 03 S2) 

I DROP 
YOU WIN 
MY SCORE IS -21. 
YOUR SCORE IS 21. 

YOUR HAND I     012 06 H2 Oil 57 

(CSNUMBER 3.) 
(C12 HI2 H8 S6 S3) 

I BET 7. 
OK? 

(CSNUMBER 12.) 
(CI2 H12 H8 S6 S3) 

212 
i 

I 



(OK) 

(CSNUMBER   3.> 
(CI2   HI2   H8   S6   S31 

1   BET  7. 
THE  POT   EQUALS   2. 
YOUR   BET   ... 

DROP 

I   '/JIN 
MY   SCORE   IS   -20. 
YOUR   SCORE   IS   20. 

YOUR   HAND   IS 09   H7   H9   D10   HA 
THE  POT   EQUALS   2. 
YOUR   BET   ... 

(CSNUMBER   3.) 
(C8   S8   H10   07   06) 

I   BET   5. 
OK? 

(CSNUMBER   J8.) 
(C8   SB   HI0   D7   06) 

(CALL   BECAUSE   THE  HAND   IS  FAIR   THE   LASTBET   IS  LARGE) 

(CSNUMBER   I.) 
(C8   S8   H10   07   06) 

I  CALL 
WHAT   CARDS   DO   YOU   WANT   REPLACED   ... 

(H7   D10   H4) 

YOUR   NEW  CARDS   ARE D9   C14  C5 
I   REPLACE  3.   CARDS 

SHUFFLE 
THE  POT   EQUALS   10. 
YOUR   BET   ... 
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(CSNUMBER 1.) 
<C8 S8 H13 D5 C3) 

I CALL 
OK? 

(CSNUMBER 18«) 
CC8 SB   H13 D5 C3> 

♦•  .„>; 

(OK) 

(CSNUMBER 1.) 
(C8 S8 H13 DS C3> 

I CALL 
MY HAND 12    C8 SB HIS OS C3 
YOU WIN 
MY SCORE IS -33. 
YOUR SCORE IS 33. 

YOUR HAND IS   Hit S13 HS C]0 H6 

(CSNUMBER 3.) 
(C12 D12 Cll 35 HA) 

I   BET 7. 
OK? 

(CSNUMBER 9*> 
(C12 012 Cll S5 H4> 

(BET SB BECAUSE THE HAND IS GOOD THE BLUFFS IS LARGE THE ORP IS (EQUA 
L TO - 1 . > > 

(CSNUMBER 3.) 
(C12 D12 Cll SS H4) 

CALL 

21^ 

.: 

I 

4 

I 

I BET 3. 
THE   POT   EQUALS  2. 
YOUR   BET   ... 

; 
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CALL 

I REPLACE 3. CARDS 
WHA1 CARDS DO YOU WANT REPLACED ... 

(H5 H6) 

YOUl;   NEM   CAKOS   ARE D14  CM 

(CSNUMBER   4.) 
(C]?   012   S3   D5   D13) 

I  BEI    6. 
o:<? 

(CSNLWBEk    16.) 
(C12   012   S3   05  013) 

(BET   BB   BECAUSE   THE  HAND   IS   FAIR   THE   POT   IS   SMALL   THE   LASTBET   IS   SMAL 
L  THE  BLUFFS   IS   LARGE) 

(CSNUMBER   2.) 
(012   D12   S3   05   013) 

I   BET   2. 
THE   POT   EQUALS   8. 
YOUR   BET   • .. 

10 

(CSNUMBER   I.) 
(C12   D12   S3   05   013) 

I   CALL 
OK? 

(CSNUMBER    17.) 
(C12   D12   S3   05   013) 

(DROP   BECAUSE   THE   HAND   IS   FAIR   THE   LASTBET   IS  LARGE   THE   PBRATIO   IS   SM 
ALL   THE   ORP   IS   (NOT   (EÖUAL   TO   -1.))) 
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(CSNUMBtCR 1.) 
CC12 012 S3 05 013) 

I DROP 
YOU WIN 
MY SCORE IS -39. 
YOUR SCORE IS 39. 
YOU WIN THE GAME 

NIP 
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APPENDIX H 

SAMPLE OF GAMES PLAYED DURING 

PROFICIENCY TEST FOR AUTOMATIC-TRAINING HEURISTICS 

The following program output is from a game (5 hands) of draw 

poker played between the program and a human opponent via the Stanford 

PDP-6 timesharing system.  This game is one of a five-game series used 

to test the proficiency of the program. The left column on each page is 

the series I game of the test, while the right column on each page is 

the corresponding series II game. The dialogue printed by the program 

starts at the left margin of each column, while the dialogue typed by 

the human opponent is indented five spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spaces, 

Dll a jack of diamonds, and Hlk    an ace of hearts. 

Note that each hand def.lt the human player in series I (left 

column) is identical to tvie hand dealt the program in the corresponding 

r-o-p in series II (right column), vice versa. Thus the hands held 

by the program in each r-o-p can be determined. 
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IMriMtR   S) 
<l<FFFf-.FF.   S) 

YOiip HftND  is NIS SI4 M4 Sit tM YOllh   HAND   IS Cn   CIH   Sll    Sfi   CP 

I RFT '»• 
THF POl FANALS P. 
YOdk PF1 ... 

I   HFI'LACF   .1.   CAKOS 
V'HAT  CARPS  PO   YOU  WANT   K-FPLACFP   ... 

(Hin   SI?   Did) 

VOMK   NF.V   CARDS   ARF HM   C6   DI3 

1 BET 8. 
THF POT FWIIALS ?. 
YOlli: BFT ... 

CALL 

I RF.PLACC n. CARDS 
WHAT CARDS DO YOl) WANT KFPLACFD ... 

(C1H SS C?) 

YOIIH   NFW   CARDS   ARF D8   HS   H7 

1   PFT   A. 
THF.   I'OT   FUMALS   IM. 
YOUR   PFT    ... 

1   HFT   3. 
THE   POT   F.WIIALS   18. 
YOUR  PFT   ... 

CALL 

||4   DM   HI4   06   013 

I   DROP 
YOU  WIN 
ht  SCORE   IS   -9. 
YOUR   SCORE   IS   9. 

MY   HAND    IS 
I    WIN 
MY   SCORE    IS   IP. 
YOUR   SCORE   IS   A   .".ERF   -IP. 

YOUR  HAND   IS D9  C7   HA   513   D6 
THE   POT   EOUALS  P. 
YOUR  RET   ... 

YOUR   HAND    IS Mt  M   Sit •14 MS 
THF   POT  FHllALS   P. 
YOUR   PKl    ... 

I CALL 
WHAT CARDS DO YOU WANT REPLACFD ... 

I   CALL 
WHAT   CARDS   DO   YOU   WANT   RFPLACFD   ... 

(CS   SIH   HM 

YOUR   NFW   CARDS   ARE 
I    REPLACE   3.   CARDS 
THF   POl   FHUALS   (i. 
YOUR   PFI     ... 

Hid   DP   HIS 

(C7   114   D*> 

YOUR   NEW   CARDS  ARE 
I   REPLACE   3.   CARDS 
THE   POl   tWllALS   4. 
YOUR   PFT   ... 

I 

SB   SS   SI I 
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I    nROH 
YOU  t'lN 
f.r r.couK i;; -n. 
vom- sr.nwr is  \9* 

I   CALL 
NY   HACJO   IS OM   DIP  N|t   D?   H^. 
I   '..IN 
^,Y sr.ot-F.  ir,  15. 

YOMh HAMD IS    SA   DH C9 nil C1P 

I PF.T ?. 
THF  POT  KMMLtl ?>. 
YOiil-   PFT   ... 

CALL 

I   PKI-'LACK   ?.   CAHOS 
WHAT   CAFIDS   HO   YOl)   (•'ANT    rFf'LACFn 

CM   !JH  C9> 

YOII1-   iV-'■'   CAllOri   AiF .".IP   HR   C3 

I   FF.T   '.. 
THF.   POT   FlIIALS   f. 
YOl IK  PF.T   ... 

11 

i RK r '<. 
THK.   POT   F1..111AL.':   ™. 
YOIJP   BFT   ... 

CALL 

Hn   HIP   nil    H9   HI 1 KY   HANI1   I", 
YOl I   V!N 
Mr SCOPF  is -.^s. 

YOMP HAiNin  19        in IM.1  OH  IM M^ 

IMF.   POT   FOdALT,   P. 
YOUR  PRT   ... 

YOi'f;   HANO   IS Hn   M   Hlf>   CA   S9 

I    PFI    ?. 
IHF.   POT   Cl MAL«;   P. 
YOtll-;   FKl     ... 

OAl.L 

I    rFi'LArF   T.   CA, n.r, 
WHAi   rAinr; no ymi MWn  MCPLACRfi 

('.9  r/i  5:9) 

YOiir; NF';' ßARDS ATF       en  K9 HII 

1   PIT   7. 
THF.   POl    K'-IIAI.<;   A. 
YOi IC   PF 1"    ... 

1    PFT   K. 
THF   pnT   KMMU »•• 
YOm-   PFT    . .. 

OALL 

MY   HANO    18 OIP   DM   11.1   HH   C.T 
I    WIN 
NV   NCOIW   18  ^7. 
Your   SCOM  IF A MFPF -^7. 

Ynnr  HANO ir-.       nui 0? rn H7 UP 

THF   POT    F.I'HALS   P. 
YOUR   PFT    ... 

H 
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I CALL 
WHAT CAKDJi nO YOU WANT RFHLACFn 

cm o-i HS) 

YOUK   NfM   CAKDS   ARF 
i   NBTiMI t*  CMPS 
TSF.   f'OT   FWOALS   (,. 
YOIIH   PF1    ... 

Clfl   05   07 

1   CALL 
V.HAT   CAHO.S   r)0   YOII   '.'ANT   KKPLACFO   ... 

(Did   CIS   H7) 

YOli^   iVEl"   CAKOS   AKF. 
I   kFKLACK   ^.   CARDS 
THF   I'OT   F.I-KIALS   ft. 
YOUR   PFT    ... 

H\A   S6   S^ 

I    CALL 
MY   HANO    IS 
I    V IN 
hY  SCOMC   IS  -?«• 
YOUR   SCORF    IS   5>8. 

C?   H?   HI 4   S^.   53 
i   Di.üf 
YOII  WIN 
MY   SCOKE   IS   .T^. 
YOIIC   SCOKF   IS  A   hFRF   -3,T. 

YfMI«   HAN(-    19 S^   Ofr   H4   H.T   HM 
YOUR   HANO    IS ni i  SKI C4 CM oi? 

I   PKT   •>. 
THF   »'OT    FOIIAL.S  f. 
YOIIK   HFI    ... 

1    BFT    1. 
THF   POT   FtJllALS   P. 
YOUR  PFT   •• . 

I   CALL 
I    RFTLACF    1.   CARP 
l-.HAI    CARIIS   90   YOII   WANT   RFPLACEO 

(Of^   HA   H\A) 

YOIIK   NF'/.'   CARDS   ARF. S7 Sll C9 

I CALL 
I REPLACE 3. CARPS 
WHAT CARDS DO YOU WANT REPLACED 

r/j 

YOUR NFt CARDS ARF HK 

I    PFT   S. 
THE   POT   FUIIALS   )?. 
YOUR PFT ... 

1 PFT 1 . 
THE POT FOUALS IB. 
YOUR PFT ... 

CALL 

MY HAND IS    CI4 SIS Oft Oil N|S 
I WIN 
MY    SCORF    1^    -17. 
YOUR   SCORE   IS   17. 
YOU   WIN   THE   GAME 

NIL 

Sr?   H3   S7   SI 1    C9 
1   CALL 
MY   HAND    IS 
Y 011   WIN 
MY   SCORE    IS   P.T. 
YOUR   SCORE    IS  A   MERE   -P.I. 
I    WIN   THE   GAME 

NIL 
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APPENDIX I 

LOGICAL STATEMENTS FOR DRAW POKER 

I. Rules and Axioms for Draw Poker 

The rules and axioms for draw poker used by the computer program are listed 

below.  In these staLements "action" refers to the decision made by the program 

while "oppaction" refers to the decision made by the program's opponent. A low 

bet is defined as a bet from 1 to 9 > while a high beL is defined as one 

from 10 to 20 . 

Poker Rules: 

1. action(call) A higher(yourhand,cpphaud) 3 add(lastbet,pot) A add(pot,yourscore) 
2. oppaction(call) A higher(yourhand,opphand) Z)  add(lastbet,pot) A add(pot,yourscore) 
3. action(call) A higher(üpphand,yourhand) 3 addflastbet,pot) A sub(pot,yourscore) 
h. oppaction(call) A higher(opphand,yourhand) D add(lastbet.pot) A add(pot,yourscore) 
5. actian(drop) z>  sub(pot,yourscore) 
6. oppaction(drop) z>  add(pot,yourscore) 
7 action(bet low) 3 add(lastbet,pot) 
8. action(bet high) 3 add(lastbet,pot) 
9. oppaction(bet low) 3 add(lastbet,pot) 

10,     oppaction(bet high) D add(lastbet,pot) 

Poker Axioms: 

1. action(drop) 3 keepsmall(pot) 
2. action(call) 3 unsureofhand(you) 
J. onlycalled(opp) 3 unsureofhand(opp) 
k. action(bet low) v action(bet high) 3 keepsbetting(you) 
5. oppaction(bet low) V oppaction(bet high) 3 keepsbetting(opp) 
u. keepsbetting(opp) A keepsbetting(you) 3 buildup(pot) 
7- action(bet high) A higher(opphand,yourhand) 3 bluffed(opp) 
8. goodhand(x) A didbet(x) 3 surehandwi'llwin(x) 
9« unsureofhaud(yuu) A  seerasureofhand(opp) 3 makelargenough(pot) 

10. pot(large) V lastbetopp(bet  high) 3 seemsureofhand(opp) 
11. (action(call) V action(bet low) V actiori(bet high)) A higher(yourhand,opphand) 3 

eventually(add(pot,yourscore)) 
12. bad(opphand) A bluffed(opp) A notprevoppaction(bet high) 3 prob(oppaction(drop)) 
13. (action(bet high) V action(bet low)) A  surehandwillwin(opp) 3 

prob(oppaction(bet low)) A prob(oppaction(bet high)) 
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The meanings of the predicates shown above tend to be self-evident, however 

the logical statements are written out in detail in Appendix I, Part II. 

II. Description of Rules and Axioms for Draw Poker 

The rules and axioms for draw poker listed in Appendix I, Part I are 

described in detail below. 

Poker Rules: 

i.  If you or your opponent calls, and your hand is higher than your 
opponent's hand then the last bet is added to the pot, after which 
the pot is added to yourscore. 

2. If you or your opponent calls and your opponent's hand is higher than 
your hand, then the last bet is ."idded to the pot, after which the pot 
is subtracted from your score. 

3. If you drop, then the pot is subtracted from your score. 
h.     If your opponent drops, then the pot is added to your score. 
5«  If you or your opponent bets, then that bet is added to the pot. 

Poker Axioms: 

1. If you drop, then you keep the pot small. 
2. If you call, you are unsure your hand will win. 
3. If your opponent calls but does not bet in an r-o-p, then he is unsure 

his hand will win. 
4. If you bet, then you have kept the betting going. 
5«  If your opponent bets, then he has kept the betting going. 
6. If both you and your opponent keep the betting going, then the amount 

of money in the pot builds up. 
7. If you bet high and your opponent's hand is higher than your hand, the 

you have bluffed. 
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Ih.     action(bet low) A goüd(opphand) A unsureofhand(opp) D 
prob(oppaction(bet low)) A prob(oppaction(call)) 

15.  action(bet low) A bad(opphand) 3 prob(oppaction(bet low)) A prob(oppaction(call)) 

General Axioms: 

1. x 3 eventually(x) I 
2. (buildup(x) V makelargenough(x)) A eventually(add(x,z)) 

V add(x,z) 
V (keepsmall(x) A sub(x,z) 3 maximize(z) I 

I 
I 
I 

I 
I 

I 
I 

i 
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8. If a player has a good hand and has just bet, then he is sure that 
his hand will win. 

9- If you are unsure your hand will win and the opponent seems sure his 
hand will wir,, then you have made the pot large enough. 

10. If the pot is large or the last bet by the opponent was large, then 
the opponent seems sure his hand will win. 

11. If you call or bet and your hand is higher than your opponent's 
hand, then you will eventually add the pot to your score. 

12. If your opponent has a bad hand and you bluff but have not pre- 
viously bet high in the present r-o-p, then it is probable that 
your opponent will drop. 

13. If you bet and your opponent is sure that his hand will win, then 
it is probable the I your opponent will also bet. 

1^. If you bet lew and your opponent Las a good hand and is unsure 
his hand will win, then it is probable that your opponent will 
bet low or call. 

15« If you bet low and your opponent IIPL, a bad hand, then it is 
probable that your opponent will bet low or call. 

General Axioms: 

1. If x is now true then x will be true in the future, that is 
eventually.  (Here x must be a member of a class of predicates 
whose values are irreversible within the time limit under consideration. ) 

2. If you increase the size of x or make x large enough and eventually 
add x to z , or if you Just add x to z , or if you keep x 
small and subtract x from z then you tend to maximize z . 

III. Example of Deduction Procedure Uüing Rules and Axioms for Draw Poker 

Assume the predicates in the logical statements are set as follows: 

higher(yourhand,opphand)  = F hi^her(opphand,yourhand) = T 
notprevoppaction(bet high) = T lastbetopp(bet high) = F 

onlycalled(opp) = T pot(large) = F 
goodhand(you) = F gooc'.hand(opp) = F 
good(opphand) = F bad(opphand) = T 

didbet(you) = T aidbet(opp) = F 

In this case maximize(yourscore) matches maximize(z) in the 

right side of the last logical statement when "yourscore" is substituted 

for z  . Thus the program tries to make the left side of this statement 

true, which is the expression: 
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; 
(buildup(x) V (keepsraall(x) A eventually(add(x,yourscore)) 

V add(x,yourscore) V (keepsmall(x) A sub(x,yourscore)) . 

This expression has the form a V b V c , so the program first 

attempts to make a true. If this fails it tries to make b true, 

and if this also fails it tries c . Here a has the form a.. A a,, : 
1    d 

accordingly both a.,  and a  must be made true if a is to be true- 

But a- = eventually(add(x,yourscore)) which matches only the right 

side of axiom 11 of the poker axioms. For ap to be true, the left 

part of axiom 11 must be true, but this is false since 

higher(yourhand,opphand) is false. Consequently, it cannot be shown that 

a^ can be made true, or that a can be made true. 

Now the program attempts to make b true, where b = add(x,yourscore). 

This expression matches the right sides of poker rules 1, 2, and 6 

(b is considered a match for a A b since if it is shown that a A b 

is true it is alsu shown that b is true), but the left sides of rules 

1 and 2 cannot be made true since they both contain higher(yourhand,opphand), 

which is false. 

However, the right side of rule 6 can be made true if 

cppaction(drop) can be made true. This expression matches only the 

right side of poker axiom 12 and will be true if the left side of 

axiom 12,  bad(opphand) A bluffed(opp) A notprevoppaction(bet high), 

can be made true. But bad(opphand) and notprevoppaction(bet high) 

are both prediactes set to true by the program, so the right side of 

axiom 12 is true if bluffed(opp) can be made true. This expression 

matches only the right side of poker axiom 7 aud is true if the left 

side of axiom 7, action(bet high) A higher(opphand,yourhand), can 
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be made true. Since higher(opphand,yourhand) is one of the predicates 

initially set to true by the program, bluffed(opp) is true if 

action(bet high) can be made true. But his can be made true by having 

the program make the decision to bet high; thus the decision to bet 

high makes bluffed(opp), prob(oppaction(drop)), add(pot,yourscore), 

and maximize(yourscore) all true. As a consequence, the program deduces 

that it should have bet high in the given situation Vn order to have 

maximized its score. 
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APPENDIX J 

TRAINING TRIALS 

FOR IMPLICIT-TRAINING HEURISTICS 

The l'ollowing program output is from the first 5 learning trials 

given the learning program via the Stanford PDP-6 timesharing system. 

The dialogue printed by the program starts at the left margin, while 

the dialogue typed by the human opponent is indented 5 spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades, C: clubs, and D: diamonds.  Thus S8 is an eight of spades, 

Dll a jack of diamonds, and Hl^ an ace of hearts. 

Each time the program places a bet it first prints  (l) the current 

crnumber, i.e., the number of the action rules which was used in 

making the bet decision, and (ü) the hand it currently holds. The 

action rules are considered to be numbered from top to bottom, starting 

with 1. 

At the end of each r-o-p the program prints the following for 

each bet decision it makes after cards are replaced:  (l) the csnumber 

for that bet decision, (2) a list of acceptable bet decisions, (3) and 

(k)  the decision chosen from the list of acceptable ones, which is 

inserted In the action rule list as an action rule, and (5) the program 

subvector existing at the time it made the bet decision, together with 

the bet decisions made by the program and the opponent. 
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(REFEREE   5 

I 
I 
I 
I 

yOUK   HAND   IS H4D10C10C9D14 

(CSNUMaEK    I.) 
(H6   D6   H\A   D9   D5) 

!   BET   1. 
THE   POT   EQUALS   2. 
YOUR   BET   ... 

CALL 

I REPLACE 3. CARDS 
'.■JHAT CARDS DO YOU WANT REPLACED .. 

IHA   C9 Dl4) 

YOUK NEW CARDS ARE    D7 Sll D12 

(CSNUMBER I.) 
(H6 D6 S6 08 HtO) 

I BET 1 . 
THE POT EQUALS 4. 
YOUR BET ... 

(CSNUMBER 1.) 
(H6 D6 56 Ü8 HUD 

I BET I 1. 
THE POT EQUALS 10. 
YOUR BET ... 

CALL 

MY HAND IS    H6 D6 S6 D8 Ht0 

. 

. 
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(CSNUMBEK I.) 
(BETHIGH BETLOW) 
BETLOW 
(BET SSS) 

(CSNUMÖEK 2.) 
(BETHIGH BETLOVn 
HF.TLO1^ 
(HET SSS) 
(((52.    4.   0.   -6.   A.   3.   0.)   BETLOW   BETLOW)   ((52.   6.   2.   -6.   3.   3.   0.)   t3 
ETHIGH   CALL))    I   '/JIN 
MY   SCORE   IS   16. 
yOUN   SCCmE   IS  A  MERE  -16. 

SHUFFLE 

yOUn   HANI)   IS SI2   D3   S9   C7   D12 
THE  POT   EQUALS  2. 
YOU«   BET   ... 

(CSNUMUEK  2.) 
(S/(   O/i   H13   H12   Hll ) 

I   BET   13. 
THE   POT   EUUALS   16. 
YÜUK   BET   ... 

CALL 

WHAT CAKDS 00 YOU WANT REPLACED ... 

(1)3 S9 C7) 

YOUR   NEW   CARDS   ARE D7   S10   H9 
I REPLACE 3. CARDS 
THE POT EQUALS 42. 
YOUR   BET   ... 
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CCSNUiWDt  Pi.) 
(o4   ÜA   SI I    OR   C2) 

I   CALL 
MY   HAND   IS S4   D4   Sll   QR   Cf> 

(CSNUMBEK   3.) 
(CALL) 
CALL 
CALL 
(((IM.    42.    b.   -6.   R.   3.   0.)   CALL   NIL))   YOU   WIN 
MY  SCOIJE   I'J   -10. 
YOUK   SCOKE   13   iO. 

YOUR   MANU    IS SI 4   H6   D5   06   H4 

(CSNUNBKN   3.) 
(014   SI3   S8   S5   H2) 

I   BET   6. 
THE   POT   EQUALS   2. 
YOU 

BET   ... 

CALL 

!   REPLACE   3.   CArtDS 
WHAT   CARDS   DO   YOU   WANT   REPLACED 

(05   H4) 

yOUR   NEW   CARDS   ARE D2   HR 

(CSNUMBER   3.) 
(DI4   S13   C8   C9   ClI) 

I   BET   5. 
THE   POT   EUUALS   14. 
YOUR   BET   . .. 

CALL. 

MY  HAND   IS D14   SI3   CR   C9   CM 
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I 

(CSNUHSCfl 3.) 

D^OP 
üKOP 
(((2. 14. 0. -I A.    14. 2. 
wy scocit; ib -22. 
YOUK .JCOK'E IS 2^. 

1.) ICTLOW CALL)) YOU WIN 

YOUI* HAND IS    C3 HI4 C6 C4 H3 
THE POT EQUALS 2. 
YOU.^ RET ... 

(CSNUHtKR 4.) 
(S7 H'I ClI 09 S3) 

I CALL 
.gHAT CARDS DO YOU WANT REPLACED ... 

(C6 C4) 

YOU« NEW CARDS ARE    C5 HI0 
I REPLACE 3. CARDS 
THE POT EQUALS 6. 
YOUi-i BET ... 

3 

(CSNUMOER 4.'* 
(S7 H7 D10 D13 C12) 

I CALL 
MY HAND IS S7 H7 D10 D13 C12 

(CSNUMBER 4.) 
CBETLOW) 
BETLOW 
(BET SSS) 
(((13. 6. 3. -14. 2. 
MY SCORE IS -16. 
YOU« SCORE IS 16. 

2. -1.) CALL NIL)) I WIN 
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APPENDIX K 

SAMPLE OF GAMES PLAYED DURING 

PROFICIENCY TEST FOR IMPLICIT-TRAINING HEURISTICS 

The following program output is from a game (5 hands) of draw 

poker played between the program and a human opponent via the Stanford 

PDP-6 timesharing system. This game is one of a five-game series used 

to test the proficiency of the program. The left column on each page 

ll the series I game of the test, while the right column on each 

page is the corresponding series II game. The dialogue printed by 

the program starts at the left margin of each column, while the dialogue 

typed by the human opponent is indented five spaces. 

The abbreviations used to represent playing cards are H: hearts, 

S: spades,  C: cl^s, and D: diamonds. Thus S8 is an eight of 

spades,  Dll a jack of diamonds, and Ulh    an ace of hearts. 

Note that each hand dealt the human player in series I (left 

column) is identical to the hand dealt the program i.i the corresponding 

r-o-p in series II (right column), and vice versa. Thus the hands 

held by the program in each r-o-p can be determined. 
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YOUR  HAND   IS C I 4   04 H 1 I   H I 3   S7 
IMF   HOT   FOUALS   2. 
YOUR  BET   .. . 

I   BET   7. 
THE   POT   EQUALS   8. 
YOUR  RET   ... 

CALL 

I   BET   1. 
THE   POT   EQUALS   38. 
YOUR   BET   ... 

CALL 

SI4   DI3   CIS   ClI   01 MY   HAND   IS 
t    WIN 
MY   SCORE   IS   R». 
YOUR   SCORE   IS   A  MERE   -!>». 

232 

1 

(REFEREE   5) 

YOUR  HAND   IS 06   013  CI2   SI4  S3 

I   BFT   3. 
THE  POT   EQUALS   2. 
YOUR   BET   ... 

CALL 

I   REPLACE   3.    CARDS 
WHAT   CARDS   DO   YOU   WANT   REPLACED   •• 

(D6   S3   CI2) 

YOUR  NEW   CARDS   ARE C13   CM   03 

(REFEREE   5> 

YOUR  HAND   IS HI4   S8   C6   08   S4 

I   BET   7. 
THE   POT  EQUALS 2. 
YOUR   BET   ... 

CALL 

I REPLACE 3. CAWDS 
WHAT CARDS 00 YOU WANT REPLACED ... 

(Ht4 06 S4> 

YOUR  NEW  CAKDli   ARE H7   D3   OS 

i 

i 

1 

I 
: 

I   BET  8. 
THE   POT   EQUALS   8. 
YOUR   BET   . , . 

I   BET   5. 
THE   POT   EQUALS   16. 
YOUR   BET   ... 

. 

I   CALL 
MY  HAND   IS 
YOU  WIN 
MY   SCORE   IS  -29. 
YOUR   SCORE   IS   20. 

S3   DU   H7   D3   OS 
I   BET   I. 
THE   POT   EQUALS   32. 
YOUR   BET   ... 

•- 

I 



I 

WHAT  CARDS  00   YOU   WANT   REPLACED  ... 

(04 HJ1   S7> 

YOUR NEW CARDS ARE 
1 REPLACE 3. CARDS 
THE POT EQUALS 22. 
YOUR  BET   ... 

09   07   C2 

YOUR HAND   IS 02  H8   DI2   C9   C5 
THE   POT   EQUALS  2. 
YOUR   BET   ... 

I   BET  2. 
THE   POT  EÖUALS   26. 
YOUR  BET   ... 

CALL 

MY  HAND   IS 012   C9   S9   H5   H2 
I   WIN 
MY   SCORE   IS -5. 
YOUR   SCORE  IS   5. 

I   BET  6. 
THE   POT   EQUALS  8. 
YOUR  BET   ... 

CALL 

WHAT   CARDS   DO   YOU  WANT  REPLACED   .. 

<D2  H8   C5) 

YOUR NEW CARDS ARE 
I REPLACE 3. CARDS 
THE POT EQUALS 20. 
YOUR   BET   ... 

S9  H5  H2 

YOUR HAND  IS 010   SI3   C8   S2   S5 

I   BET  7. 
THE   POT  EQUALS   2. 
YOUR  BET   ... 

CALL 

I   REPLACE   3.   CARDS 
WHAT CARDS  DO   YOU  WANT  REPLACED  ■• 

(C8   S2   S5) 

YOUR NEW  CARDS   ARE 07   HI0   SI0 

I   BET  6. 
THE  POT  EQUALS   16. 
YOUR  BET  ... 

14 

I   DROP 
YOU   WIN 
MY   SCORE   IS   10. 
YOUR   SCORE   IS   A MERE  -10. 

YOUR  HAND   IS Sll   DI4 H4  H3   SI2 

I   BET   3. 
HE   POT  EQUALS  2. 
YOUR  BET   ... 

CALL 

I   REPLACE   3.   CARDS 
WHAT  CARDS   DO   YOU  HANT  REPLACED   . 

(Sll   H4 H3) 

YOUR NEW CARDS ARE    H6 HI2 S6 

.; 

i 
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I   8CT   18. 
THE   POT   EQUALS   56. 
YOUR  BET   ... 

CALL 

014   Sia  H6  HIS   S6 MY  HAND   IS 
YOU WIN 
MY   SCORE   IS  -51. 
YOUR   SCORE   IS   51. 

YOUR HAND   IS ClI   02  H1B  S8   07 
THE   POT   EOUALS  2. 
YOUR  BET   ... 

I   BET  7. 
THE   POT  EOUALS  «. 
YOUR  BET  ... 

13 

I   BET   12. 
THE   POT  EOUALS   48. 
YOUR  BET   ... 

CALL 

SI3 018 C7 HI8 518 MY HAND IS 
I WIN 
MY SCORE 15 46. 
YOUR SCORE IS A MERE -46. 

I   BET   14. 
THE   POT   EOUALS  6. 
YOUR  BET   ... 

CALL 

WHAT  CARDS   DO   YOU WANT  REPLACED  ... 

(ClI   NIB   C7) 

YOUR NEW CARDS ARE 
I REPLACE 3. CARDS 
THE POT EOUALS 34. 
YOUR  BET   ... 

I 

55  CI3  Oil 

YOUR HAND   IS HI2  H2   S9   06   SIS 
THE   POT  EQUALS  2. 
YOUR  BET   ... 

I CALL 
WHAT CARDS DO YOU WANT REPLACED ... 

(H2 59 06) 

YOUR NEW CARDS ARE 
I REPLACE 3. CARDS 
THE POT EOUALS 14. 
YOUR  BET   ... 

HI4  CI8  09 

I   BCT   I. 
THE   POT  EOUALS   36. 
YOUR  BET   ... 

CALL 

MY  HAND   IS 
I   WIN 
MY   SCORE   IS  -32. 
YOUR   SCORE   IS   32. 

H12   SI2 HI4 CI8  09 

I   CALL 
MY  HAND   IS 
YOU WIN 
MY   SCORE   IS   34. 
YOUR  SCORE   IS  A MERE 

D2   32   S5   C13   DU 

•34. 

YOUR HAND   IS 02   014 H8  HI3   S4 YOUR HAND  IS  Y     06   C8   S3   SB  H3 
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YOUR  HAND   IS C2   DM  H8   H13   S4 YOUR   HAND   IS   Y     C6   C8   S3   S8   H3 

I   BET   7. 
THE   POT   EQUALS   2. 
YOUR  BET   ... 

CALL 

1 REPLACE I. CARD 
WHAT CARDS DO YOU WANT REPLACED .. 

(C2 H8 S4) 

YOUR  NEW   CARDS   ARE HI I    Sl.l   S7 

I   BET   7. 
THE   POT   EQUALS  2. 
YOUR   BET   ... 

CALL 

I   REPLACE   3.   CARDS 
WHAT   CARDS   DO   YOU   WANT   REPLACED 

C6 

YOUR  NEW   CARDS   ARE S6 

I   RET  8. 
TME   POT   EQUALS   16. 
YOUR   RET   ... 

I   BET   A. 
THE   POT   EQUALS   16. 
YOUR   BET   ... 

1? 

I   BET   A. 
THE   POT   EQUALS   50. 
YOUR  BET   ... 

CALL 

MY   HAND   IS 
I   WIN 
MY   SCORE   IS   -3. 
YOUR  SCORE   IS   3. 
YOU WIN   THE   GAME 

NIL 

C8   S8   S3  H3   S6 

DI4  H13  HtI    SI3   S7 
I   CALL 
MY   HAND   IS 
YOU   WIN 
MY   SCORE   IS   10. 
YOUR   SCORE   IS   A MERE   -Ifl. 
I   WIN   THE   GAME 

NIL 
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